NASA Astrophysics Data System (ADS)
Xu, Jun; Papanikolaou, Nikos; Shi, Chengyu; Jiang, Steve B.
2009-08-01
Synchronized moving aperture radiation therapy (SMART) has been proposed to account for tumor motions during radiotherapy in prior work. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumor motion induced by respiration. In this paper, a two-dimensional (2D) superimposing leaf sequencing method is presented for SMART. A leaf sequence optimization strategy was generated to assure the SMART delivery under realistic delivery conditions. The study of delivery performance using the Varian LINAC and the Millennium DMLC showed that clinical factors such as collimator angle, dose rate, initial phase and machine tolerance affect the delivery accuracy and efficiency. An in-house leaf sequencing software was developed to implement the 2D superimposing leaf sequencing method and optimize the motion-corrected leaf sequence under realistic clinical conditions. The analysis of dynamic log (Dynalog) files showed that optimization of the leaf sequence for various clinical factors can avoid beam hold-offs which break the synchronization of SMART and fail the SMART dose delivery. Through comparison between the simulated delivered fluence map and the planed fluence map, it was shown that the motion-corrected leaf sequence can greatly reduce the dose error.
Xu, Jun; Papanikolaou, Nikos; Shi, Chengyu; Jiang, Steve B
2009-08-21
Synchronized moving aperture radiation therapy (SMART) has been proposed to account for tumor motions during radiotherapy in prior work. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumor motion induced by respiration. In this paper, a two-dimensional (2D) superimposing leaf sequencing method is presented for SMART. A leaf sequence optimization strategy was generated to assure the SMART delivery under realistic delivery conditions. The study of delivery performance using the Varian LINAC and the Millennium DMLC showed that clinical factors such as collimator angle, dose rate, initial phase and machine tolerance affect the delivery accuracy and efficiency. An in-house leaf sequencing software was developed to implement the 2D superimposing leaf sequencing method and optimize the motion-corrected leaf sequence under realistic clinical conditions. The analysis of dynamic log (Dynalog) files showed that optimization of the leaf sequence for various clinical factors can avoid beam hold-offs which break the synchronization of SMART and fail the SMART dose delivery. Through comparison between the simulated delivered fluence map and the planed fluence map, it was shown that the motion-corrected leaf sequence can greatly reduce the dose error.
Tacke, Martin; Nill, Simeon; Oelfke, Uwe
2007-11-21
Advanced radiotherapeutical techniques like intensity-modulated radiation therapy (IMRT) are based on an accurate knowledge of the location of the radiation target. An accurate dose delivery, therefore, requires a method to account for the inter- and intrafractional target motion and the target deformation occurring during the course of treatment. A method to compensate in real time for changes in the position and shape of the target is the use of a dynamic multileaf collimator (MLC) technique which can be devised to automatically arrange the treatment field according to real-time image information. So far, various approaches proposed for leaf sequencers have had to rely on a priori known target motion data and have aimed to optimize the overall treatment time. Since for a real-time dose delivery the target motion is not known a priori, the velocity range of the leading leaves is restricted by a safety margin to c x v(max) while the following leaves can travel with an additional maximum speed to compensate for the respective target movements. Another aspect to be considered is the tongue and groove effect. A uniform radiation field can only be achieved if the leaf movements are synchronized. The method presented in this note is the first to combine a synchronizing sequencer and real-time tracking with a dynamic MLC. The newly developed algorithm is capable of online optimizing the leaf velocities by minimizing the overall treatment time while at the same time it synchronizes the leaf trajectories in order to avoid the tongue and groove effect. The simultaneous synchronization is performed with the help of an online-calculated mid-time leaf trajectory which is common for all leaf pairs and which takes into account the real-time target motion and deformation information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Y; Keall, P; Poulsen, P
Purpose: Multiple targets with large intrafraction independent motion are often involved in advanced prostate, lung, abdominal, and head and neck cancer radiotherapy. Current standard of care treats these with the originally planned fields, jeopardizing the treatment outcomes. A real-time multi-leaf collimator (MLC) tracking method has been developed to address this problem for the first time. This study evaluates the geometric uncertainty of the multi-target tracking method. Methods: Four treatment scenarios are simulated based on a prostate IMAT plan to treat a moving prostate target and static pelvic node target: 1) real-time multi-target MLC tracking; 2) real-time prostate-only MLC tracking; 3)more » correcting for prostate interfraction motion at setup only; and 4) no motion correction. The geometric uncertainty of the treatment is assessed by the sum of the erroneously underexposed target area and overexposed healthy tissue areas for each individual target. Two patient-measured prostate trajectories of average 2 and 5 mm motion magnitude are used for simulations. Results: Real-time multi-target tracking accumulates the least uncertainty overall. As expected, it covers the static nodes similarly well as no motion correction treatment and covers the moving prostate similarly well as the real-time prostate-only tracking. Multi-target tracking reduces >90% of uncertainty for the static nodal target compared to the real-time prostate-only tracking or interfraction motion correction. For prostate target, depending on the motion trajectory which affects the uncertainty due to leaf-fitting, multi-target tracking may or may not perform better than correcting for interfraction prostate motion by shifting patient at setup, but it reduces ∼50% of uncertainty compared to no motion correction. Conclusion: The developed real-time multi-target MLC tracking can adapt for the independently moving targets better than other available treatment adaptations. This will enable PTV margin reduction to minimize health tissue toxicity while remain tumor coverage when treating advanced disease with independently moving targets involved. The authors acknowledge funding support from the Australian NHMRC Australia Fellowship and NHMRC Project Grant No. APP1042375.« less
Blind multirigid retrospective motion correction of MR images.
Loktyushin, Alexander; Nickisch, Hannes; Pohmann, Rolf; Schölkopf, Bernhard
2015-04-01
Physiological nonrigid motion is inevitable when imaging, e.g., abdominal viscera, and can lead to serious deterioration of the image quality. Prospective techniques for motion correction can handle only special types of nonrigid motion, as they only allow global correction. Retrospective methods developed so far need guidance from navigator sequences or external sensors. We propose a fully retrospective nonrigid motion correction scheme that only needs raw data as an input. Our method is based on a forward model that describes the effects of nonrigid motion by partitioning the image into patches with locally rigid motion. Using this forward model, we construct an objective function that we can optimize with respect to both unknown motion parameters per patch and the underlying sharp image. We evaluate our method on both synthetic and real data in 2D and 3D. In vivo data was acquired using standard imaging sequences. The correction algorithm significantly improves the image quality. Our compute unified device architecture (CUDA)-enabled graphic processing unit implementation ensures feasible computation times. The presented technique is the first computationally feasible retrospective method that uses the raw data of standard imaging sequences, and allows to correct for nonrigid motion without guidance from external motion sensors. © 2014 Wiley Periodicals, Inc.
Motion Artifact Reduction in Pediatric Diffusion Tensor Imaging Using Fast Prospective Correction
Alhamud, A.; Taylor, Paul A.; Laughton, Barbara; van der Kouwe, André J.W.; Meintjes, Ernesta M.
2014-01-01
Purpose To evaluate the patterns of head motion in scans of young children and to examine the influence of corrective techniques, both qualitatively and quantitatively. We investigate changes that both retrospective (with and without diffusion table reorientation) and prospective (implemented with a short navigator sequence) motion correction induce in the resulting diffusion tensor measures. Materials and Methods Eighteen pediatric subjects (aged 5–6 years) were scanned using 1) a twice-refocused, 2D diffusion pulse sequence, 2) a prospectively motion-corrected, navigated diffusion sequence with reacquisition of a maximum of five corrupted diffusion volumes, and 3) a T1-weighted structural image. Mean fractional anisotropy (FA) values in white and gray matter regions, as well as tractography in the brainstem and projection fibers, were evaluated to assess differences arising from retrospective (via FLIRT in FSL) and prospective motion correction. In addition to human scans, a stationary phantom was also used for further evaluation. Results In several white and gray matter regions retrospective correction led to significantly (P < 0.05) reduced FA means and altered distributions compared to the navigated sequence. Spurious tractographic changes in the retrospectively corrected data were also observed in subject data, as well as in phantom and simulated data. Conclusion Due to the heterogeneity of brain structures and the comparatively low resolution (~2 mm) of diffusion data using 2D single shot sequencing, retrospective motion correction is susceptible to distortion from partial voluming. These changes often negatively bias diffusion tensor imaging parameters. Prospective motion correction was shown to produce smaller changes. PMID:24935904
Motion artifact reduction in pediatric diffusion tensor imaging using fast prospective correction.
Alhamud, A; Taylor, Paul A; Laughton, Barbara; van der Kouwe, André J W; Meintjes, Ernesta M
2015-05-01
To evaluate the patterns of head motion in scans of young children and to examine the influence of corrective techniques, both qualitatively and quantitatively. We investigate changes that both retrospective (with and without diffusion table reorientation) and prospective (implemented with a short navigator sequence) motion correction induce in the resulting diffusion tensor measures. Eighteen pediatric subjects (aged 5-6 years) were scanned using 1) a twice-refocused, 2D diffusion pulse sequence, 2) a prospectively motion-corrected, navigated diffusion sequence with reacquisition of a maximum of five corrupted diffusion volumes, and 3) a T1 -weighted structural image. Mean fractional anisotropy (FA) values in white and gray matter regions, as well as tractography in the brainstem and projection fibers, were evaluated to assess differences arising from retrospective (via FLIRT in FSL) and prospective motion correction. In addition to human scans, a stationary phantom was also used for further evaluation. In several white and gray matter regions retrospective correction led to significantly (P < 0.05) reduced FA means and altered distributions compared to the navigated sequence. Spurious tractographic changes in the retrospectively corrected data were also observed in subject data, as well as in phantom and simulated data. Due to the heterogeneity of brain structures and the comparatively low resolution (∼2 mm) of diffusion data using 2D single shot sequencing, retrospective motion correction is susceptible to distortion from partial voluming. These changes often negatively bias diffusion tensor imaging parameters. Prospective motion correction was shown to produce smaller changes. © 2014 Wiley Periodicals, Inc.
Blind retrospective motion correction of MR images.
Loktyushin, Alexander; Nickisch, Hannes; Pohmann, Rolf; Schölkopf, Bernhard
2013-12-01
Subject motion can severely degrade MR images. A retrospective motion correction algorithm, Gradient-based motion correction, which significantly reduces ghosting and blurring artifacts due to subject motion was proposed. The technique uses the raw data of standard imaging sequences; no sequence modifications or additional equipment such as tracking devices are required. Rigid motion is assumed. The approach iteratively searches for the motion trajectory yielding the sharpest image as measured by the entropy of spatial gradients. The vast space of motion parameters is efficiently explored by gradient-based optimization with a convergence guarantee. The method has been evaluated on both synthetic and real data in two and three dimensions using standard imaging techniques. MR images are consistently improved over different kinds of motion trajectories. Using a graphics processing unit implementation, computation times are in the order of a few minutes for a full three-dimensional volume. The presented technique can be an alternative or a complement to prospective motion correction methods and is able to improve images with strong motion artifacts from standard imaging sequences without requiring additional data. Copyright © 2013 Wiley Periodicals, Inc., a Wiley company.
Lee, Chang Kyung; Seo, Nieun; Kim, Bohyun; Huh, Jimi; Kim, Jeong Kon; Lee, Seung Soo; Kim, In Seong; Nickel, Dominik
2017-01-01
Objective To compare the breathing effects on dynamic contrast-enhanced (DCE)-MRI between controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-volumetric interpolated breath-hold examination (VIBE), radial VIBE with k-space-weighted image contrast view-sharing (radial-VIBE), and conventional VIBE (c-VIBE) sequences using a dedicated phantom experiment. Materials and Methods We developed a moving platform to simulate breathing motion. We conducted dynamic scanning on a 3T machine (MAGNETOM Skyra, Siemens Healthcare) using CAIPIRINHA-VIBE, radial-VIBE, and c-VIBE for six minutes per sequence. We acquired MRI images of the phantom in both static and moving modes, and we also obtained motion-corrected images for the motion mode. We compared the signal stability and signal-to-noise ratio (SNR) of each sequence according to motion state and used the coefficients of variation (CoV) to determine the degree of signal stability. Results With motion, CAIPIRINHA-VIBE showed the best image quality, and the motion correction aligned the images very well. The CoV (%) of CAIPIRINHA-VIBE in the moving mode (18.65) decreased significantly after the motion correction (2.56) (p < 0.001). In contrast, c-VIBE showed severe breathing motion artifacts that did not improve after motion correction. For radial-VIBE, the position of the phantom in the images did not change during motion, but streak artifacts significantly degraded image quality, also after motion correction. In addition, SNR increased in both CAIPIRINHA-VIBE (from 3.37 to 9.41, p < 0.001) and radial-VIBE (from 4.3 to 4.96, p < 0.001) after motion correction. Conclusion CAIPIRINHA-VIBE performed best for free-breathing DCE-MRI after motion correction, with excellent image quality. PMID:28246509
LCC demons with divergence term for liver MRI motion correction
NASA Astrophysics Data System (ADS)
Oh, Jihun; Martin, Diego; Skrinjar, Oskar
2010-03-01
Contrast-enhanced liver MR image sequences acquired at multiple times before and after contrast administration have been shown to be critically important for the diagnosis and monitoring of liver tumors and may be used for the quantification of liver inflammation and fibrosis. However, over multiple acquisitions, the liver moves and deforms due to patient and respiratory motion. In order to analyze contrast agent uptake one first needs to correct for liver motion. In this paper we present a method for the motion correction of dynamic contrastenhanced liver MR images. For this purpose we use a modified version of the Local Correlation Coefficient (LCC) Demons non-rigid registration method. Since the liver is nearly incompressible its displacement field has small divergence. For this reason we add a divergence term to the energy that is minimized in the LCC Demons method. We applied the method to four sequences of contrast-enhanced liver MR images. Each sequence had a pre-contrast scan and seven post-contrast scans. For each post-contrast scan we corrected for the liver motion relative to the pre-contrast scan. Quantitative evaluation showed that the proposed method improved the liver alignment relative to the non-corrected and translation-corrected scans and visual inspection showed no visible misalignment of the motion corrected contrast-enhanced scans and pre-contrast scan.
Planning and delivery of four-dimensional radiation therapy with multileaf collimators
NASA Astrophysics Data System (ADS)
McMahon, Ryan L.
This study is an investigation of the application of multileaf collimators (MLCs) to the treatment of moving anatomy with external beam radiation therapy. First, a method for delivering intensity modulated radiation therapy (IMRT) to moving tumors is presented. This method uses an MLC control algorithm that calculates appropriate MLC leaf speeds in response to feedback from real-time imaging. The algorithm does not require a priori knowledge of a tumor's motion, and is based on the concept of self-correcting DMLC leaf trajectories . This gives the algorithm the distinct advantage of allowing for correction of DMLC delivery errors without interrupting delivery. The algorithm is first tested for the case of one-dimensional (1D) rigid tumor motion in the beam's eye view (BEV). For this type of motion, it is shown that the real-time tracking algorithm results in more accurate deliveries, with respect to delivered intensity, than those which ignore motion altogether. This is followed by an appropriate extension of the algorithm to two-dimensional (2D) rigid motion in the BEV. For this type of motion, it is shown that the 2D real-time tracking algorithm results in improved accuracy (in the delivered intensity) in comparison to deliveries which ignore tumor motion or only account for tumor motion which is aligned with MLC leaf travel. Finally, a method is presented for designing DMLC leaf trajectories which deliver a specified intensity over a moving tumor without overexposing critical structures which exhibit motion patterns that differ from that of the tumor. In addition to avoiding overexposure of critical organs, the method can, in the case shown, produce deliveries that are superior to anything achievable using stationary anatomy. In this regard, the method represents a systematic way to include anatomical motion as a degree of freedom in the optimization of IMRT while producing treatment plans that are deliverable with currently available technology. These results, combined with those related to the real-time MLC tracking algorithm, show that an MLC is a promising tool to investigate for the delivery of four-dimensional radiation therapy.
Dynamic tumor tracking using the Elekta Agility MLC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fast, Martin F., E-mail: martin.fast@icr.ac.uk; Nill, Simeon, E-mail: simeon.nill@icr.ac.uk; Bedford, James L.
2014-11-01
Purpose: To evaluate the performance of the Elekta Agility multileaf collimator (MLC) for dynamic real-time tumor tracking. Methods: The authors have developed a new control software which interfaces to the Agility MLC to dynamically program the movement of individual leaves, the dynamic leaf guides (DLGs), and the Y collimators (“jaws”) based on the actual target trajectory. A motion platform was used to perform dynamic tracking experiments with sinusoidal trajectories. The actual target positions reported by the motion platform at 20, 30, or 40 Hz were used as shift vectors for the MLC in beams-eye-view. The system latency of the MLCmore » (i.e., the average latency comprising target device reporting latencies and MLC adjustment latency) and the geometric tracking accuracy were extracted from a sequence of MV portal images acquired during irradiation for the following treatment scenarios: leaf-only motion, jaw + leaf motion, and DLG + leaf motion. Results: The portal imager measurements indicated a clear dependence of the system latency on the target position reporting frequency. Deducting the effect of the target frequency, the leaf adjustment latency was measured to be 38 ± 3 ms for a maximum target speed v of 13 mm/s. The jaw + leaf adjustment latency was 53 ± 3 at a similar speed. The system latency at a target position frequency of 30 Hz was in the range of 56–61 ms for the leaves (v ≤ 31 mm/s), 71–78 ms for the jaw + leaf motion (v ≤ 25 mm/s), and 58–72 ms for the DLG + leaf motion (v ≤ 59 mm/s). The tracking accuracy showed a similar dependency on the target position frequency and the maximum target speed. For the leaves, the root-mean-squared error (RMSE) was between 0.6–1.5 mm depending on the maximum target speed. For the jaw + leaf (DLG + leaf) motion, the RMSE was between 0.7–1.5 mm (1.9–3.4 mm). Conclusions: The authors have measured the latency and geometric accuracy of the Agility MLC, facilitating its future use for clinical tracking applications.« less
McMahon, Ryan; Papiez, Lech; Rangaraj, Dharanipathy
2007-08-01
An algorithm is presented that allows for the control of multileaf collimation (MLC) leaves based entirely on real-time calculations of the intensity delivered over the target. The algorithm is capable of efficiently correcting generalized delivery errors without requiring the interruption of delivery (self-correcting trajectories), where a generalized delivery error represents anything that causes a discrepancy between the delivered and intended intensity profiles. The intensity actually delivered over the target is continually compared to its intended value. For each pair of leaves, these comparisons are used to guide the control of the following leaf and keep this discrepancy below a user-specified value. To demonstrate the basic principles of the algorithm, results of corrected delivery are shown for a leading leaf positional error during dynamic-MLC (DMLC) IMRT delivery over a rigid moving target. It is then shown that, with slight modifications, the algorithm can be used to track moving targets in real time. The primary results of this article indicate that the algorithm is capable of accurately delivering DMLC IMRT over a rigid moving target whose motion is (1) completely unknown prior to delivery and (2) not faster than the maximum MLC leaf velocity over extended periods of time. These capabilities are demonstrated for clinically derived intensity profiles and actual tumor motion data, including situations when the target moves in some instances faster than the maximum admissible MLC leaf velocity. The results show that using the algorithm while calculating the delivered intensity every 50 ms will provide a good level of accuracy when delivering IMRT over a rigid moving target translating along the direction of MLC leaf travel. When the maximum velocities of the MLC leaves and target were 4 and 4.2 cm/s, respectively, the resulting error in the two intensity profiles used was 0.1 +/- 3.1% and -0.5 +/- 2.8% relative to the maximum of the intensity profiles. For the same target motion, the error was shown to increase rapidly as (1) the maximum MLC leaf velocity was reduced below 75% of the maximum target velocity and (2) the system response time was increased.
Kong, X; Clausen, C; Wang, S
2012-06-01
Clinical experience for configuration, commission and implementation of SmartArc with MOSAIQ R&V system. SmartArc is Pinnacle's solution for VMAT. On July 2011 we updated to Pinnacle 9.0 and purchased SmartArc. A standalone Eclipse workstation has been used 3 years for VMAT planning. Our clinical setting: Mosaiq 2.2; Varian Trilogy driven by 4DiTC and Varian 21ex driven by sequencer. Some key physics parameters have been studied: machine dose rate; MLC leaf speed; Leaf motion per gantry rotation. Tabletop was created by user to improve the dose accuracy for planning. In-house sandwich phantom was used with MapCheck for planner dose verification. A PTW 0.6cc ion chamber was included for absolute dose comparison. A copy of current machine data with default highest dose rate is recommended. It is due to after 10th iteration of optimization, the default dose rate will kick in. 2.5cm/s is the constraint for Varian Millennium 120 MLC; a buffer zone of 10% is suggested to reduce the MLC error on treatment. 2.25cm/s is used in our configuration. This results in MLC interlock if not configured correct. Maximum leaf motion per gantry rotation of 0.46cm/degree has to be checked for planning with Mosaiq R&V. Otherwise, undeliverable plan will show up sometimes on 4DiTC.Tabletop was exported as a DICOM structure from Eclipse to Pinnacle; we created a ROI template based on the matched tabletop.QA using in-house phantom for different sites were tested. Results for both planner dose and absolute chamber measurement are satisfactory. Special attentions need to be paid for dose rate, MLC leaf speed, leaf motion per gantry rotation when configuring SmartArc. Varian 21ex is supported but is slow for clinical delivery. Users need to create your own tabletop to improve planning accuracy. Conventional commission procedures for RapidArc also apply for SmartArc. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Zhang, Ji; Li, Tao; Zheng, Shiqiang; Li, Yiyong
2015-03-01
To reduce the effects of respiratory motion in the quantitative analysis based on liver contrast-enhanced ultrasound (CEUS) image sequencesof single mode. The image gating method and the iterative registration method using model image were adopted to register liver contrast-enhanced ultrasound image sequences of single mode. The feasibility of the proposed respiratory motion correction method was explored preliminarily using 10 hepatocellular carcinomas CEUS cases. The positions of the lesions in the time series of 2D ultrasound images after correction were visually evaluated. Before and after correction, the quality of the weighted sum of transit time (WSTT) parametric images were also compared, in terms of the accuracy and spatial resolution. For the corrected and uncorrected sequences, their mean deviation values (mDVs) of time-intensity curve (TIC) fitting derived from CEUS sequences were measured. After the correction, the positions of the lesions in the time series of 2D ultrasound images were almost invariant. In contrast, the lesions in the uncorrected images all shifted noticeably. The quality of the WSTT parametric maps derived from liver CEUS image sequences were improved more greatly. Moreover, the mDVs of TIC fitting derived from CEUS sequences after the correction decreased by an average of 48.48+/-42.15. The proposed correction method could improve the accuracy of quantitative analysis based on liver CEUS image sequences of single mode, which would help in enhancing the differential diagnosis efficiency of liver tumors.
NASA Astrophysics Data System (ADS)
Chen, Ho-Hsing; Wu, Jay; Chuang, Keh-Shih; Kuo, Hsiang-Chi
2007-07-01
Intensity-modulated radiation therapy (IMRT) utilizes nonuniform beam profile to deliver precise radiation doses to a tumor while minimizing radiation exposure to surrounding normal tissues. However, the problem of intrafraction organ motion distorts the dose distribution and leads to significant dosimetric errors. In this research, we applied an aperture adaptive technique with a visual guiding system to toggle the problem of respiratory motion. A homemade computer program showing a cyclic moving pattern was projected onto the ceiling to visually help patients adjust their respiratory patterns. Once the respiratory motion becomes regular, the leaf sequence can be synchronized with the target motion. An oscillator was employed to simulate the patient's breathing pattern. Two simple fields and one IMRT field were measured to verify the accuracy. Preliminary results showed that after appropriate training, the amplitude and duration of volunteer's breathing can be well controlled by the visual guiding system. The sharp dose gradient at the edge of the radiation fields was successfully restored. The maximum dosimetric error in the IMRT field was significantly decreased from 63% to 3%. We conclude that the aperture adaptive technique with the visual guiding system can be an inexpensive and feasible alternative without compromising delivery efficiency in clinical practice.
Motion correction for functional MRI with three‐dimensional hybrid radial‐Cartesian EPI
McNab, Jennifer A.; Chiew, Mark; Miller, Karla L.
2016-01-01
Purpose Subject motion is a major source of image degradation for functional MRI (fMRI), especially when using multishot sequences like three‐dimensional (3D EPI). We present a hybrid radial‐Cartesian 3D EPI trajectory enabling motion correction in k‐space for functional MRI. Methods The EPI “blades” of the 3D hybrid radial‐Cartesian EPI sequence, called TURBINE, are rotated about the phase‐encoding axis to fill out a cylinder in 3D k‐space. Angular blades are acquired over time using a golden‐angle rotation increment, allowing reconstruction at flexible temporal resolution. The self‐navigating properties of the sequence are used to determine motion parameters from a high temporal‐resolution navigator time series. The motion is corrected in k‐space as part of the image reconstruction, and evaluated for experiments with both cued and natural motion. Results We demonstrate that the motion correction works robustly and that we can achieve substantial artifact reduction as well as improvement in temporal signal‐to‐noise ratio and fMRI activation in the presence of both severe and subtle motion. Conclusion We show the potential for hybrid radial‐Cartesian 3D EPI to substantially reduce artifacts for application in fMRI, especially for subject groups with significant head motion. The motion correction approach does not prolong the scan, and no extra hardware is required. Magn Reson Med 78:527–540, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27604503
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Y; Colvill, E; O’Brien, R
2015-06-15
Purpose Large intrafraction relative motion of multiple targets is common in advanced head and neck, lung, abdominal, gynaecological and urological cancer, jeopardizing the treatment outcomes. The objective of this study is to develop a real-time adaptation strategy, for the first time, to accurately correct for the relative motion of multiple targets by reshaping the treatment field using the multi-leaf collimator (MLC). Methods The principle of tracking the simultaneously treated but differentially moving tumor targets is to determine the new aperture shape that conforms to the shifted targets. Three dimensional volumes representing the individual targets are projected to the beam’s eyemore » view. The leaf openings falling inside each 2D projection will be shifted according to the measured motion of each target to form the new aperture shape. Based on the updated beam shape, new leaf positions will be determined with optimized trade-off between the target underdose and healthy tissue overdose, and considerations of the physical constraints of the MLC. Taking a prostate cancer patient with pelvic lymph node involvement as an example, a preliminary dosimetric study was conducted to demonstrate the potential treatment improvement compared to the state-of- art adaptation technique which shifts the whole beam to track only one target. Results The world-first intrafraction adaptation system capable of reshaping the beam to correct for the relative motion of multiple targets has been developed. The dose in the static nodes and small bowel are closer to the planned distribution and the V45 of small bowel is decreased from 110cc to 75cc, corresponding to a 30% reduction by this technique compared to the state-of-art adaptation technique. Conclusion The developed adaptation system to correct for intrafraction relative motion of multiple targets will guarantee the tumour coverage and thus enable PTV margin reduction to minimize the high target dose to the adjacent organs-at-risk. The authors acknowledge funding support from the Australian NHMRC Australia Fellowship and NHMRC Project Grant No. APP1042375.« less
Noseleaf dynamics during pulse emission in horseshoe bats.
Feng, Lin; Gao, Li; Lu, Hongwang; Müller, Rolf
2012-01-01
Horseshoe bats emit their biosonar pulses nasally and diffract the outgoing ultrasonic waves by conspicuous structures that surrounded the nostrils. Here, we report quantitative experimental data on the motion of a prominent component of these structures, the anterior leaf, using synchronized laser Doppler vibrometry and acoustic recordings in the greater horseshoe bat (Rhinolophus ferrumequinum). The vibrometry data has demonstrated non-random motion patterns in the anterior leaf. In these patterns, the outer rim of the walls of the anterior leaf twitches forward and inwards to decrease the aperture of the noseleaf and increase the curvature of its surfaces. Noseleaf displacements were correlated with the emitted ultrasonic pulses. After their onset, the inward displacements increased monotonically towards their maximum value which was always reached within the duration of the biosonar pulse, typically towards its end. In other words, the anterior leaf's surfaces were moving inwards during most of the pulse. Non-random motions were not present in all recorded pulse trains, but could apparently be switched on or off. Such switches happened between sequences of consecutive pulses but were never observed between individual pulses within a sequence. The amplitudes of the emitted biosonar pulse and accompanying noseleaf movement were not correlated in the analyzed data set. The measured velocities of the noseleaf surface were too small to induce Doppler shifts of a magnitude with a likely significance. However, the displacement amplitudes were significant in comparison with the overall size of the anterior leaf and the sound wavelengths. These results indicate the possibility that horseshoe bats use dynamic sensing principles on the emission side of their biosonar system. Given the already available evidence that such mechanisms exist for biosonar reception, it may be hypothesized that time-variant mechanisms play a pervasive role in the biosonar sensing of horseshoe bats.
SU-F-T-527: A Novel Dynamic Multileaf Collimator Leaf-Sequencing Algorithm in Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, J; Lin, H; Chow, J
Purpose: A novel leaf-sequencing algorithm is developed for generating arbitrary beam intensity profiles in discrete levels using dynamic multileaf collimator (MLC). The efficiency of this dynamic MLC leaf-sequencing method was evaluated using external beam treatment plans delivered by intensity modulated radiation therapy technique. Methods: To qualify and validate this algorithm, integral test for the beam segment of MLC generated by the CORVUS treatment planning system was performed with clinical intensity map experiments. The treatment plans were optimized and the fluence maps for all photon beams were determined. This algorithm started with the algebraic expression for the area under the beammore » profile. The coefficients in the expression can be transformed into the specifications for the leaf-setting sequence. The leaf optimization procedure was then applied and analyzed for clinical relevant intensity profiles in cancer treatment. Results: The macrophysical effect of this method can be described by volumetric plan evaluation tools such as dose-volume histograms (DVHs). The DVH results are in good agreement compared to those from the CORVUS treatment planning system. Conclusion: We developed a dynamic MLC method to examine the stability of leaf speed including effects of acceleration and deceleration of leaf motion in order to make sure the stability of leaf speed did not affect the intensity profile generated. It was found that the mechanical requirements were better satisfied using this method. The Project is sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.« less
Motion correction for functional MRI with three-dimensional hybrid radial-Cartesian EPI.
Graedel, Nadine N; McNab, Jennifer A; Chiew, Mark; Miller, Karla L
2017-08-01
Subject motion is a major source of image degradation for functional MRI (fMRI), especially when using multishot sequences like three-dimensional (3D EPI). We present a hybrid radial-Cartesian 3D EPI trajectory enabling motion correction in k-space for functional MRI. The EPI "blades" of the 3D hybrid radial-Cartesian EPI sequence, called TURBINE, are rotated about the phase-encoding axis to fill out a cylinder in 3D k-space. Angular blades are acquired over time using a golden-angle rotation increment, allowing reconstruction at flexible temporal resolution. The self-navigating properties of the sequence are used to determine motion parameters from a high temporal-resolution navigator time series. The motion is corrected in k-space as part of the image reconstruction, and evaluated for experiments with both cued and natural motion. We demonstrate that the motion correction works robustly and that we can achieve substantial artifact reduction as well as improvement in temporal signal-to-noise ratio and fMRI activation in the presence of both severe and subtle motion. We show the potential for hybrid radial-Cartesian 3D EPI to substantially reduce artifacts for application in fMRI, especially for subject groups with significant head motion. The motion correction approach does not prolong the scan, and no extra hardware is required. Magn Reson Med 78:527-540, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Nonrigid Autofocus Motion Correction for Coronary MR Angiography with a 3D Cones Trajectory
Ingle, R. Reeve; Wu, Holden H.; Addy, Nii Okai; Cheng, Joseph Y.; Yang, Phillip C.; Hu, Bob S.; Nishimura, Dwight G.
2014-01-01
Purpose: To implement a nonrigid autofocus motion correction technique to improve respiratory motion correction of free-breathing whole-heart coronary magnetic resonance angiography (CMRA) acquisitions using an image-navigated 3D cones sequence. Methods: 2D image navigators acquired every heartbeat are used to measure superior-inferior, anterior-posterior, and right-left translation of the heart during a free-breathing CMRA scan using a 3D cones readout trajectory. Various tidal respiratory motion patterns are modeled by independently scaling the three measured displacement trajectories. These scaled motion trajectories are used for 3D translational compensation of the acquired data, and a bank of motion-compensated images is reconstructed. From this bank, a gradient entropy focusing metric is used to generate a nonrigid motion-corrected image on a pixel-by-pixel basis. The performance of the autofocus motion correction technique is compared with rigid-body translational correction and no correction in phantom, volunteer, and patient studies. Results: Nonrigid autofocus motion correction yields improved image quality compared to rigid-body-corrected images and uncorrected images. Quantitative vessel sharpness measurements indicate superiority of the proposed technique in 14 out of 15 coronary segments from three patient and two volunteer studies. Conclusion: The proposed technique corrects nonrigid motion artifacts in free-breathing 3D cones acquisitions, improving image quality compared to rigid-body motion correction. PMID:24006292
Holdsworth, Samantha J; Aksoy, Murat; Newbould, Rexford D; Yeom, Kristen; Van, Anh T; Ooi, Melvyn B; Barnes, Patrick D; Bammer, Roland; Skare, Stefan
2012-10-01
To develop and implement a clinical DTI technique suitable for the pediatric setting that retrospectively corrects for large motion without the need for rescanning and/or reacquisition strategies, and to deliver high-quality DTI images (both in the presence and absence of large motion) using procedures that reduce image noise and artifacts. We implemented an in-house built generalized autocalibrating partially parallel acquisitions (GRAPPA)-accelerated diffusion tensor (DT) echo-planar imaging (EPI) sequence at 1.5T and 3T on 1600 patients between 1 month and 18 years old. To reconstruct the data, we developed a fully automated tailored reconstruction software that selects the best GRAPPA and ghost calibration weights; does 3D rigid-body realignment with importance weighting; and employs phase correction and complex averaging to lower Rician noise and reduce phase artifacts. For select cases we investigated the use of an additional volume rejection criterion and b-matrix correction for large motion. The DTI image reconstruction procedures developed here were extremely robust in correcting for motion, failing on only three subjects, while providing the radiologists high-quality data for routine evaluation. This work suggests that, apart from the rare instance of continuous motion throughout the scan, high-quality DTI brain data can be acquired using our proposed integrated sequence and reconstruction that uses a retrospective approach to motion correction. In addition, we demonstrate a substantial improvement in overall image quality by combining phase correction with complex averaging, which reduces the Rician noise that biases noisy data. Copyright © 2012 Wiley Periodicals, Inc.
Frequency-locked pulse sequencer for high-frame-rate monochromatic tissue motion imaging.
Azar, Reza Zahiri; Baghani, Ali; Salcudean, Septimiu E; Rohling, Robert
2011-04-01
To overcome the inherent low frame rate of conventional ultrasound, we have previously presented a system that can be implemented on conventional ultrasound scanners for high-frame-rate imaging of monochromatic tissue motion. The system employs a sector subdivision technique in the sequencer to increase the acquisition rate. To eliminate the delays introduced during data acquisition, a motion phase correction algorithm has also been introduced to create in-phase displacement images. Previous experimental results from tissue- mimicking phantoms showed that the system can achieve effective frame rates of up to a few kilohertz on conventional ultrasound systems. In this short communication, we present a new pulse sequencing strategy that facilitates high-frame-rate imaging of monochromatic motion such that the acquired echo signals are inherently in-phase. The sequencer uses the knowledge of the excitation frequency to synchronize the acquisition of the entire imaging plane to that of an external exciter. This sequencing approach eliminates any need for synchronization or phase correction and has applications in tissue elastography, which we demonstrate with tissue-mimicking phantoms. © 2011 IEEE
Noseleaf Dynamics during Pulse Emission in Horseshoe Bats
Feng, Lin; Gao, Li; Lu, Hongwang; Müller, Rolf
2012-01-01
Horseshoe bats emit their biosonar pulses nasally and diffract the outgoing ultrasonic waves by conspicuous structures that surrounded the nostrils. Here, we report quantitative experimental data on the motion of a prominent component of these structures, the anterior leaf, using synchronized laser Doppler vibrometry and acoustic recordings in the greater horseshoe bat (Rhinolophus ferrumequinum). The vibrometry data has demonstrated non-random motion patterns in the anterior leaf. In these patterns, the outer rim of the walls of the anterior leaf twitches forward and inwards to decrease the aperture of the noseleaf and increase the curvature of its surfaces. Noseleaf displacements were correlated with the emitted ultrasonic pulses. After their onset, the inward displacements increased monotonically towards their maximum value which was always reached within the duration of the biosonar pulse, typically towards its end. In other words, the anterior leaf’s surfaces were moving inwards during most of the pulse. Non-random motions were not present in all recorded pulse trains, but could apparently be switched on or off. Such switches happened between sequences of consecutive pulses but were never observed between individual pulses within a sequence. The amplitudes of the emitted biosonar pulse and accompanying noseleaf movement were not correlated in the analyzed data set. The measured velocities of the noseleaf surface were too small to induce Doppler shifts of a magnitude with a likely significance. However, the displacement amplitudes were significant in comparison with the overall size of the anterior leaf and the sound wavelengths. These results indicate the possibility that horseshoe bats use dynamic sensing principles on the emission side of their biosonar system. Given the already available evidence that such mechanisms exist for biosonar reception, it may be hypothesized that time-variant mechanisms play a pervasive role in the biosonar sensing of horseshoe bats. PMID:22574110
Automatic motion correction of clinical shoulder MR images
NASA Astrophysics Data System (ADS)
Manduca, Armando; McGee, Kiaran P.; Welch, Edward B.; Felmlee, Joel P.; Ehman, Richard L.
1999-05-01
A technique for the automatic correction of motion artifacts in MR images was developed. The algorithm uses only the raw (complex) data from the MR scanner, and requires no knowledge of the patient motion during the acquisition. It operates by searching over the space of possible patient motions and determining the motion which, when used to correct the image, optimizes the image quality. The performance of this algorithm was tested in coronal images of the rotator cuff in a series of 144 patients. A four observer comparison of the autocorrelated images with the uncorrected images demonstrated that motion artifacts were significantly reduced in 48% of the cases. The improvements in image quality were similar to those achieved with a previously reported navigator echo-based adaptive motion correction. The results demonstrate that autocorrelation is a practical technique for retrospectively reducing motion artifacts in a demanding clinical MRI application. It achieves performance comparable to a navigator based correction technique, which is significant because autocorrection does not require an imaging sequence that has been modified to explicitly track motion during acquisition. The approach is flexible and should be readily extensible to other types of MR acquisitions that are corrupted by global motion.
Johansson, Adam; Balter, James; Cao, Yue
2018-03-01
Respiratory motion can affect pharmacokinetic perfusion parameters quantified from liver dynamic contrast-enhanced MRI. Image registration can be used to align dynamic images after reconstruction. However, intra-image motion blur remains after alignment and can alter the shape of contrast-agent uptake curves. We introduce a method to correct for inter- and intra-image motion during image reconstruction. Sixteen liver dynamic contrast-enhanced MRI examinations of nine subjects were performed using a golden-angle stack-of-stars sequence. For each examination, an image time series with high temporal resolution but severe streak artifacts was reconstructed. Images were aligned using region-limited rigid image registration within a region of interest covering the liver. The transformations resulting from alignment were used to correct raw data for motion by modulating and rotating acquired lines in k-space. The corrected data were then reconstructed using view sharing. Portal-venous input functions extracted from motion-corrected images had significantly greater peak signal enhancements (mean increase: 16%, t-test, P < 0.001) than those from images aligned using image registration after reconstruction. In addition, portal-venous perfusion maps estimated from motion-corrected images showed fewer artifacts close to the edge of the liver. Motion-corrected image reconstruction restores uptake curves distorted by motion. Motion correction also reduces motion artifacts in estimated perfusion parameter maps. Magn Reson Med 79:1345-1353, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Zhu, Xinjian; Wu, Ruoyu; Li, Tao; Zhao, Dawei; Shan, Xin; Wang, Puling; Peng, Song; Li, Faqi; Wu, Baoming
2016-12-01
The time-intensity curve (TIC) from contrast-enhanced ultrasound (CEUS) image sequence of uterine fibroids provides important parameter information for qualitative and quantitative evaluation of efficacy of treatment such as high-intensity focused ultrasound surgery. However, respiration and other physiological movements inevitably affect the process of CEUS imaging, and this reduces the accuracy of TIC calculation. In this study, a method of TIC calculation for vascular perfusion of uterine fibroids based on subtraction imaging with motion correction is proposed. First, the fibroid CEUS recording video was decoded into frame images based on the record frame rate. Next, the Brox optical flow algorithm was used to estimate the displacement field and correct the motion between two frames based on warp technique. Then, subtraction imaging was performed to extract the positional distribution of vascular perfusion (PDOVP). Finally, the average gray of all pixels in the PDOVP from each image was determined, and this was considered the TIC of CEUS image sequence. Both the correlation coefficient and mutual information of the results with proposed method were larger than those determined using the original method. PDOVP extraction results have been improved significantly after motion correction. The variance reduction rates were all positive, indicating that the fluctuations of TIC had become less pronounced, and the calculation accuracy has been improved after motion correction. This proposed method can effectively overcome the influence of motion mainly caused by respiration and allows precise calculation of TIC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Chuan; Brady, Thomas J.; El Fakhri, Georges
2014-04-15
Purpose: Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. Methods: Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic{sup 18}F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking datamore » were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. Results: Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from −0.6% to 3.4% as compared to a bias ranging from −25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%–156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R{sup 2} = 0.978 ± 0.007 (0.588 ± 0.010, respectively). Conclusions: Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast.« less
Huang, Chuan; Ackerman, Jerome L.; Petibon, Yoann; Brady, Thomas J.; El Fakhri, Georges; Ouyang, Jinsong
2014-01-01
Purpose: Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. Methods: Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic 18F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking data were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. Results: Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from −0.6% to 3.4% as compared to a bias ranging from −25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%–156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R2 = 0.978 ± 0.007 (0.588 ± 0.010, respectively). Conclusions: Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast. PMID:24694141
Wu, Wenchuan; Fang, Sheng; Guo, Hua
2014-06-01
Aiming at motion artifacts and off-resonance artifacts in multi-shot diffusion magnetic resonance imaging (MRI), we proposed a joint correction method in this paper to correct the two kinds of artifacts simultaneously without additional acquisition of navigation data and field map. We utilized the proposed method using multi-shot variable density spiral sequence to acquire MRI data and used auto-focusing technique for image deblurring. We also used direct method or iterative method to correct motion induced phase errors in the process of deblurring. In vivo MRI experiments demonstrated that the proposed method could effectively suppress motion artifacts and off-resonance artifacts and achieve images with fine structures. In addition, the scan time was not increased in applying the proposed method.
Lobb, M L; Stern, J A
1986-08-01
Sequential patterns of eye and eyelid motion were identified in seven subjects performing a modified serial probe recognition task under drowsy conditions. Using simultaneous EOG and video recordings, eyelid motion was divided into components above, within, and below the pupil and the durations in sequence were recorded. A serial probe recognition task was modified to allow for distinguishing decision errors from attention errors. Decision errors were found to be more frequent following a downward shift in the gaze angle which the eyelid closing sequence was reduced from a five element to a three element sequence. The velocity of the eyelid moving over the pupil during decision errors was slow in the closing and fast in the reopening phase, while on decision correct trials it was fast in closing and slower in reopening. Due to the high variability of eyelid motion under drowsy conditions these findings were only marginally significant. When a five element blink occurred, the velocity of the lid over pupil motion component of these endogenous eye blinks was significantly faster on decision correct than on decision error trials. Furthermore, the highly variable, long duration closings associated with the decision response produced slow eye movements in the horizontal plane (SEM) which were more frequent and significantly longer in duration on decision error versus decision correct responses.
SU-E-T-01: 2-D Characterization of DLG Among All MLC Leaf Pairs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumaraswamy, L; Xu, Z; Podgorsak, M
Purpose: The aim of this study is to evaluate the variation of dosimetric leaf-gap (DLG) along the travel path of each MLC leaf pair. This study evaluates whether the spatial variations in DLG could cause dose differences between TPS-calculated and measured dose. Methods: The 6MV DLG values were measured for all leaf pairs in the direction of leaf motion using a 2-D diode array and 0.6cc ion chamber. These measurements were performed on two Varian Linacs, employing the Millennium 120-leaf MLC and a 2-D-DLG variation map was created via in-house software. Several test plans were created with sweeping MLC fieldsmore » using constant gaps from 2mm to 10mm and corrected for 2-D variation utilizing in-house software. Measurements were performed utilizing the MapCHECK at 5.0cm depth for plans with and without the 2-D DLG correction and compared to the TPS calculated dose via gamma analysis (3%/3mm). Results: The measured DLGs for the middle 40 MLC leaf pairs (0.5cm width) were very similar along the central superior-inferior axis, with maximum variation of 0.2mm. The outer 20 MLC leaf pairs (1.0cm width) have DLG values from 0.32mm (mean) to 0.65mm (maximum) lower than the central leaf-pair, depending on off-axis distance. Gamma pass rates for the 2mm, 4mm, and 6mm sweep plans increased by 23.2%, 28.7%, and 26.0% respectively using the 2-D-DLG correction. The most improved dose points occur in areas modulated by the 1.0cm leaf-pairs. The gamma pass rate for the 10mm sweep plan increased by only 7.7%, indicating that the 2D variation becomes less significant for dynamic plans with larger MLC gaps. Conclusion: Fluences residing significantly off-axis with narrow sweeping gaps may exhibit significant variations from planned dose due to large differences between the true DLG exhibited by the 1.0cm leaf-pairs versus the constant DLG value utilized by the TPS for dose calculation.« less
Huang, Ai-Mei; Nguyen, Truong
2009-04-01
In this paper, we address the problems of unreliable motion vectors that cause visual artifacts but cannot be detected by high residual energy or bidirectional prediction difference in motion-compensated frame interpolation. A correlation-based motion vector processing method is proposed to detect and correct those unreliable motion vectors by explicitly considering motion vector correlation in the motion vector reliability classification, motion vector correction, and frame interpolation stages. Since our method gradually corrects unreliable motion vectors based on their reliability, we can effectively discover the areas where no motion is reliable to be used, such as occlusions and deformed structures. We also propose an adaptive frame interpolation scheme for the occlusion areas based on the analysis of their surrounding motion distribution. As a result, the interpolated frames using the proposed scheme have clearer structure edges and ghost artifacts are also greatly reduced. Experimental results show that our interpolated results have better visual quality than other methods. In addition, the proposed scheme is robust even for those video sequences that contain multiple and fast motions.
PROMO – Real-time Prospective Motion Correction in MRI using Image-based Tracking
White, Nathan; Roddey, Cooper; Shankaranarayanan, Ajit; Han, Eric; Rettmann, Dan; Santos, Juan; Kuperman, Josh; Dale, Anders
2010-01-01
Artifacts caused by patient motion during scanning remain a serious problem in most MRI applications. The prospective motion correction technique attempts to address this problem at its source by keeping the measurement coordinate system fixed with respect to the patient throughout the entire scan process. In this study, a new image-based approach for prospective motion correction is described, which utilizes three orthogonal 2D spiral navigator acquisitions (SP-Navs) along with a flexible image-based tracking method based on the Extended Kalman Filter (EKF) algorithm for online motion measurement. The SP-Nav/EKF framework offers the advantages of image-domain tracking within patient-specific regions-of-interest and reduced sensitivity to off-resonance-induced corruption of rigid-body motion estimates. The performance of the method was tested using offline computer simulations and online in vivo head motion experiments. In vivo validation results covering a broad range of staged head motions indicate a steady-state error of the SP-Nav/EKF motion estimates of less than 10 % of the motion magnitude, even for large compound motions that included rotations over 15 degrees. A preliminary in vivo application in 3D inversion recovery spoiled gradient echo (IR-SPGR) and 3D fast spin echo (FSE) sequences demonstrates the effectiveness of the SP-Nav/EKF framework for correcting 3D rigid-body head motion artifacts prospectively in high-resolution 3D MRI scans. PMID:20027635
Low, D A; Sohn, J W; Klein, E E; Markman, J; Mutic, S; Dempsey, J F
2001-05-01
The characteristics of a commercial multileaf collimator (MLC) to deliver static and dynamic multileaf collimation (SMLC and DMLC, respectively) were investigated to determine their influence on intensity modulated radiation therapy (IMRT) treatment planning and quality assurance. The influence of MLC leaf positioning accuracy on sequentially abutted SMLC fields was measured by creating abutting fields with selected gaps and overlaps. These data were also used to measure static leaf positioning precision. The characteristics of high leaf-velocity DMLC delivery were measured with constant velocity leaf sequences starting with an open field and closing a single leaf bank. A range of 1-72 monitor units (MU) was used providing a range of leaf velocities. The field abutment measurements yielded dose errors (as a percentage of the open field max dose) of 16.7+/-0.7% mm(-1) and 12.8+/-0.7% mm(-1) for 6 MV and 18 MV photon beams, respectively. The MLC leaf positioning precision was 0.080+/-0.018 mm (single standard deviation) highlighting the excellent delivery hardware tolerances for the tested beam delivery geometry. The high leaf-velocity DMLC measurements showed delivery artifacts when the leaf sequence and selected monitor units caused the linear accelerator to move the leaves at their maximum velocity while modulating the accelerator dose rate to deliver the desired leaf and MU sequence (termed leaf-velocity limited delivery). According to the vendor, a unique feature to their linear accelerator and MLC is that the dose rate is reduced to provide the correct cm MU(-1) leaf velocity when the delivery is leaf-velocity limited. However, it was found that the system delivered roughly 1 MU per pulse when the delivery was leaf-velocity limited causing dose profiles to exhibit discrete steps rather than a smooth dose gradient. The root mean square difference between the steps and desired linear gradient was less than 3% when more than 4 MU were used. The average dose per MU was greater and less than desired for closing and opening leaf patterns, respectively, when the delivery was leaf-velocity limited. The results indicated that the dose delivery artifacts should be minor for most clinical cases, but limit the assumption of dose linearity when significantly reducing the delivered dose for dosimeter characterization studies or QA measurements.
NASA Astrophysics Data System (ADS)
Holmes, Timothy W.
2001-01-01
A detailed tomotherapy inverse treatment planning method is described which incorporates leakage and head scatter corrections during each iteration of the optimization process, allowing these effects to be directly accounted for in the optimized dose distribution. It is shown that the conventional inverse planning method for optimizing incident intensity can be extended to include a `concurrent' leaf sequencing operation from which the leakage and head scatter corrections are determined. The method is demonstrated using the steepest-descent optimization technique with constant step size and a least-squared error objective. The method was implemented using the MATLAB scientific programming environment and its feasibility demonstrated for 2D test cases simulating treatment delivery using a single coplanar rotation. The results indicate that this modification does not significantly affect convergence of the intensity optimization method when exposure times of individual leaves are stratified to a large number of levels (>100) during leaf sequencing. In general, the addition of aperture dependent corrections, especially `head scatter', reduces incident fluence in local regions of the modulated fan beam, resulting in increased exposure times for individual collimator leaves. These local variations can result in 5% or greater local variation in the optimized dose distribution compared to the uncorrected case. The overall efficiency of the modified intensity optimization algorithm is comparable to that of the original unmodified case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wisotzky, Eric, E-mail: eric.wisotzky@charite.de, E-mail: eric.wisotzky@ipk.fraunhofer.de; O’Brien, Ricky; Keall, Paul J., E-mail: paul.keall@sydney.edu.au
2016-01-15
Purpose: Multileaf collimator (MLC) tracking radiotherapy is complex as the beam pattern needs to be modified due to the planned intensity modulation as well as the real-time target motion. The target motion cannot be planned; therefore, the modified beam pattern differs from the original plan and the MLC sequence needs to be recomputed online. Current MLC tracking algorithms use a greedy heuristic in that they optimize for a given time, but ignore past errors. To overcome this problem, the authors have developed and improved an algorithm that minimizes large underdose and overdose regions. Additionally, previous underdose and overdose events aremore » taken into account to avoid regions with high quantity of dose events. Methods: The authors improved the existing MLC motion control algorithm by introducing a cumulative underdose/overdose map. This map represents the actual projection of the planned tumor shape and logs occurring dose events at each specific regions. These events have an impact on the dose cost calculation and reduce recurrence of dose events at each region. The authors studied the improvement of the new temporal optimization algorithm in terms of the L1-norm minimization of the sum of overdose and underdose compared to not accounting for previous dose events. For evaluation, the authors simulated the delivery of 5 conformal and 14 intensity-modulated radiotherapy (IMRT)-plans with 7 3D patient measured tumor motion traces. Results: Simulations with conformal shapes showed an improvement of L1-norm up to 8.5% after 100 MLC modification steps. Experiments showed comparable improvements with the same type of treatment plans. Conclusions: A novel leaf sequencing optimization algorithm which considers previous dose events for MLC tracking radiotherapy has been developed and investigated. Reductions in underdose/overdose are observed for conformal and IMRT delivery.« less
Turboprop IDEAL: a motion-resistant fat-water separation technique.
Huo, Donglai; Li, Zhiqiang; Aboussouan, Eric; Karis, John P; Pipe, James G
2009-01-01
Suppression of the fat signal in MRI is very important for many clinical applications. Multi-point water-fat separation methods, such as IDEAL (Iterative Decomposition of water and fat with Echo Asymmetry and Least-squares estimation), can robustly separate water and fat signal, but inevitably increase scan time, making separated images more easily affected by patient motions. PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) and Turboprop techniques offer an effective approach to correct for motion artifacts. By combining these techniques together, we demonstrate that the new TP-IDEAL method can provide reliable water-fat separation with robust motion correction. The Turboprop sequence was modified to acquire source images, and motion correction algorithms were adjusted to assure the registration between different echo images. Theoretical calculations were performed to predict the optimal shift and spacing of the gradient echoes. Phantom images were acquired, and results were compared with regular FSE-IDEAL. Both T1- and T2-weighted images of the human brain were used to demonstrate the effectiveness of motion correction. TP-IDEAL images were also acquired for pelvis, knee, and foot, showing great potential of this technique for general clinical applications.
Whole-heart coronary MRA with 3D affine motion correction using 3D image-based navigation.
Henningsson, Markus; Prieto, Claudia; Chiribiri, Amedeo; Vaillant, Ghislain; Razavi, Reza; Botnar, René M
2014-01-01
Robust motion correction is necessary to minimize respiratory motion artefacts in coronary MR angiography (CMRA). The state-of-the-art method uses a 1D feet-head translational motion correction approach, and data acquisition is limited to a small window in the respiratory cycle, which prolongs the scan by a factor of 2-3. The purpose of this work was to implement 3D affine motion correction for Cartesian whole-heart CMRA using a 3D navigator (3D-NAV) to allow for data acquisition throughout the whole respiratory cycle. 3D affine transformations for different respiratory states (bins) were estimated by using 3D-NAV image acquisitions which were acquired during the startup profiles of a steady-state free precession sequence. The calculated 3D affine transformations were applied to the corresponding high-resolution Cartesian image acquisition which had been similarly binned, to correct for respiratory motion between bins. Quantitative and qualitative comparisons showed no statistical difference between images acquired with the proposed method and the reference method using a diaphragmatic navigator with a narrow gating window. We demonstrate that 3D-NAV and 3D affine correction can be used to acquire Cartesian whole-heart 3D coronary artery images with 100% scan efficiency with similar image quality as with the state-of-the-art gated and corrected method with approximately 50% scan efficiency. Copyright © 2013 Wiley Periodicals, Inc.
Ozcan, H Nursun; Gormez, Ayşegul; Ozsurekci, Yasemin; Karakaya, Jale; Oguz, Berna; Unal, Sule; Cetin, Mualla; Ceyhan, Mehmet; Haliloglu, Mithat
2017-02-01
Computed tomography (CT) is commonly used to detect pulmonary infection in immunocompromised children. To compare MRI and multidetector CT findings of pulmonary abnormalities in immunocompromised children. Seventeen neutropaenic children (6 girls; ages 2-18 years) were included. Non-contrast-enhanced CT was performed with a 64-detector CT scanner. Axial and coronal non-enhanced thoracic MRI was performed using a 1.5-T scanner within 24 h of the CT examination (true fast imaging with steady-state free precession, fat-saturated T2-weighted turbo spin echo with motion correction, T2-weighted half-Fourier single-shot turbo spin echo [HASTE], fat-saturated T1-weighted spoiled gradient echo). Pulmonary abnormalities (nodules, consolidations, ground glass opacities, atelectasis, pleural effusion and lymph nodes) were evaluated and compared among MRI sequences and between MRI and CT. The relationship between MRI sequences and nodule sizes was examined by chi- square test. Of 256 CT lesions, 207 (81%, 95% confidence interval [CI] 76-85%) were detected at MRI. Of 202 CT-detected nodules, 157 (78%, 95% CI 71-83%) were seen at motion-corrected MRI. Of the 1-5-mm nodules, 69% were detected by motion-corrected T2-weighted MRI and 38% by HASTE MRI. Sensitivity of MRI (both axial fat-saturated T2-weighted turbo spin echo with variable phase encoding directions (BLADE) images and HASTE sequences) to detect pulmonary abnormalities is promising.
Foliage motion under wind, from leaf flutter to branch buffeting.
Tadrist, Loïc; Saudreau, Marc; Hémon, Pascal; Amandolese, Xavier; Marquier, André; Leclercq, Tristan; de Langre, Emmanuel
2018-05-01
The wind-induced motion of the foliage in a tree is an important phenomenon both for biological issues (photosynthesis, pathogens development or herbivory) and for more subtle effects such as on wi-fi transmission or animal communication. Such foliage motion results from a combination of the motion of the branches that support the leaves, and of the motion of the leaves relative to the branches. Individual leaf dynamics relative to the branch, and branch dynamics have usually been studied separately. Here, in an experimental study on a whole tree in a large-scale wind tunnel, we present the first empirical evidence that foliage motion is actually dominated by individual leaf flutter at low wind velocities, and by branch turbulence buffeting responses at higher velocities. The transition between the two regimes is related to a weak dependence of leaf flutter on wind velocity, while branch turbulent buffeting is strongly dependent on it. Quantitative comparisons with existing engineering-based models of leaf and branch motion confirm the prevalence of these two mechanisms. Simultaneous measurements of the wind-induced drag on the tree and of the light interception by the foliage show the role of an additional mechanism, reconfiguration, whereby leaves bend and overlap, limiting individual leaf flutter. We then discuss the consequences of these findings on the role of wind-mediated phenomena. © 2018 The Author(s).
A Novel Motion Compensation Method for Random Stepped Frequency Radar with M-sequence
NASA Astrophysics Data System (ADS)
Liao, Zhikun; Hu, Jiemin; Lu, Dawei; Zhang, Jun
2018-01-01
The random stepped frequency radar is a new kind of synthetic wideband radar. In the research, it has been found that it possesses a thumbtack-like ambiguity function which is considered to be the ideal one. This also means that only a precise motion compensation could result in the correct high resolution range profile. In this paper, we will introduce the random stepped frequency radar coded by M-sequence firstly and briefly analyse the effect of relative motion between target and radar on the distance imaging, which is called defocusing problem. Then, a novel motion compensation method, named complementary code cancellation, will be put forward to solve this problem. Finally, the simulated experiments will demonstrate its validity and the computational analysis will show up its efficiency.
Court, Laurence E; Tishler, Roy B; Petit, Joshua; Cormack, Robert; Chin, Lee
2006-05-21
This work looks at the feasibility of an online adaptive radiation therapy concept that would detect the daily position and shape of the patient, and would then correct the daily treatment to account for any changes compared with planning position. In particular, it looks at the possibility of developing algorithms to correct for large complicated shape change. For co-planar beams, the dose in an axial plane is approximately associated with the positions of a single multi-leaf collimator (MLC) pair. We start with a primary plan, and automatically generate several secondary plans with gantry angles offset by regular increments. MLC sequences for each plan are calculated keeping monitor units (MUs) and number of segments constant for a given beam (fluences are different). Bulk registration (3D) of planning and daily CT images gives global shifts. Slice-by-slice (2D) registration gives local shifts and rotations about the longitudinal axis for each axial slice. The daily MLC sequence is then created for each axial slice/MLC leaf pair combination, by taking the MLC positions from the pre-calculated plan with the nearest rotation, and shifting using a beam's-eye-view calculation to account for local linear shifts. A planning study was carried out using two head and neck region MR images of a healthy volunteer which were contoured to simulate a base-of-tongue treatment: one with the head straight (used to simulate the planning image) and the other with the head tilted to the left (the daily image). Head and neck treatment was chosen to evaluate this technique because of its challenging nature, with varying internal and external contours, and multiple degrees of freedom. Shape change was significant: on a slice-by-slice basis, local rotations in the daily image varied from 2 to 31 degrees, and local shifts ranged from -0.2 to 0.5 cm and -0.4 to 0.0 cm in right-left and posterior-anterior directions, respectively. The adapted treatment gave reasonable target coverage (100%, 90% and 80% of the base-of-tongue, left nodes and right nodes, respectively, receiving the daily prescription dose), and kept the daily cord dose below the limit used in the original plan (65%, equivalent to 46 Gy over 35 fractions). Most of the loss of coverage was due to one shoulder being raised more superior relative to the other shoulder compared with the plan. This type of skew-like motion is not accounted for by the proposed ART technique. In conclusion, this technique has potential to correct for fairly extreme daily changes in patient setup, but some control of the daily position would still be necessary. Importantly, it was possible to combine treatments from different plans (MLC sequences) to correct for position and shape change.
T1 weighted fat/water separated PROPELLER acquired with dual bandwidths.
Rydén, Henric; Berglund, Johan; Norbeck, Ola; Avventi, Enrico; Skare, Stefan
2018-04-24
To describe a fat/water separated dual receiver bandwidth (rBW) spin echo PROPELLER sequence that eliminates the dead time associated with single rBW sequences. A nonuniform noise whitening by regularization of the fat/water inverse problem is proposed, to enable dual rBW reconstructions. Bipolar, flyback, and dual spin echo sequences were developed. All sequences acquire two echoes with different rBW without dead time. Chemical shift displacement was corrected by performing the fat/water separation in k-space, prior to gridding. The proposed sequences were compared to fat saturation, and single rBW sequences, in terms of SNR and CNR efficiency, using clinically relevant acquisition parameters. The impact of motion was investigated. Chemical shift correction greatly improved the image quality, especially at high resolution acquired with low rBW, and also improved motion estimates. SNR efficiency of the dual spin echo sequence was up to 20% higher than the single rBW acquisition, while CNR efficiency was 50% higher for the bipolar acquisition. Noise whitening was deemed necessary for all dual rBW acquisitions, rendering high image quality with strong and homogenous fat suppression. Dual rBW sequences eliminate the dead time present in single rBW sequences, which improves SNR efficiency. In combination with the proposed regularization, this enables highly efficient T1-weighted PROPELLER images without chemical shift displacement. © 2018 International Society for Magnetic Resonance in Medicine.
Non-rigid Motion Correction in 3D Using Autofocusing with Localized Linear Translations
Cheng, Joseph Y.; Alley, Marcus T.; Cunningham, Charles H.; Vasanawala, Shreyas S.; Pauly, John M.; Lustig, Michael
2012-01-01
MR scans are sensitive to motion effects due to the scan duration. To properly suppress artifacts from non-rigid body motion, complex models with elements such as translation, rotation, shear, and scaling have been incorporated into the reconstruction pipeline. However, these techniques are computationally intensive and difficult to implement for online reconstruction. On a sufficiently small spatial scale, the different types of motion can be well-approximated as simple linear translations. This formulation allows for a practical autofocusing algorithm that locally minimizes a given motion metric – more specifically, the proposed localized gradient-entropy metric. To reduce the vast search space for an optimal solution, possible motion paths are limited to the motion measured from multi-channel navigator data. The novel navigation strategy is based on the so-called “Butterfly” navigators which are modifications to the spin-warp sequence that provide intrinsic translational motion information with negligible overhead. With a 32-channel abdominal coil, sufficient number of motion measurements were found to approximate possible linear motion paths for every image voxel. The correction scheme was applied to free-breathing abdominal patient studies. In these scans, a reduction in artifacts from complex, non-rigid motion was observed. PMID:22307933
Bull, Carolee T; Clarke, Christopher R; Cai, Rongman; Vinatzer, Boris A; Jardini, Teresa M; Koike, Steven T
2011-07-01
Since 2002, severe leaf spotting on parsley (Petroselinum crispum) has occurred in Monterey County, CA. Either of two different pathovars of Pseudomonas syringae sensu lato were isolated from diseased leaves from eight distinct outbreaks and once from the same outbreak. Fragment analysis of DNA amplified between repetitive sequence polymerase chain reaction; 16S rDNA sequence analysis; and biochemical, physiological, and host range tests identified the pathogens as Pseudomonas syringae pv. apii and P. syringae pv. coriandricola. Koch's postulates were completed for the isolates from parsley, and host range tests with parsley isolates and pathotype strains demonstrated that P. syringae pv. apii and P. syringae pv. coriandricola cause leaf spot diseases on parsley, celery, and coriander or cilantro. In a multilocus sequence typing (MLST) approach, four housekeeping gene fragments were sequenced from 10 strains isolated from parsley and 56 pathotype strains of P. syringae. Allele sequences were uploaded to the Plant-Associated Microbes Database and a phylogenetic tree was built based on concatenated sequences. Tree topology directly corresponded to P. syringae genomospecies and P. syringae pv. apii was allocated appropriately to genomospecies 3. This is the first demonstration that MLST can accurately allocate new pathogens directly to P. syringae sensu lato genomospecies. According to MLST, P. syringae pv. coriandricola is a member of genomospecies 9, P. cannabina. In a blind test, both P. syringae pv. coriandricola and P. syringae pv. apii isolates from parsley were correctly identified to pathovar. In both cases, MLST described diversity within each pathovar that was previously unknown.
Prospective motion correction using inductively coupled wireless RF coils.
Ooi, Melvyn B; Aksoy, Murat; Maclaren, Julian; Watkins, Ronald D; Bammer, Roland
2013-09-01
A novel prospective motion correction technique for brain MRI is presented that uses miniature wireless radio-frequency coils, or "wireless markers," for position tracking. Each marker is free of traditional cable connections to the scanner. Instead, its signal is wirelessly linked to the MR receiver via inductive coupling with the head coil. Real-time tracking of rigid head motion is performed using a pair of glasses integrated with three wireless markers. A tracking pulse-sequence, combined with knowledge of the markers' unique geometrical arrangement, is used to measure their positions. Tracking data from the glasses is then used to prospectively update the orientation and position of the image-volume so that it follows the motion of the head. Wireless-marker position measurements were comparable to measurements using traditional wired radio-frequency tracking coils, with the standard deviation of the difference < 0.01 mm over the range of positions measured inside the head coil. Wireless-marker safety was verified with B1 maps and temperature measurements. Prospective motion correction was demonstrated in a 2D spin-echo scan while the subject performed a series of deliberate head rotations. Prospective motion correction using wireless markers enables high quality images to be acquired even during bulk motions. Wireless markers are small, avoid radio-frequency safety risks from electrical cables, are not hampered by mechanical connections to the scanner, and require minimal setup times. These advantages may help to facilitate adoption in the clinic. Copyright © 2013 Wiley Periodicals, Inc.
Prospective Motion Correction using Inductively-Coupled Wireless RF Coils
Ooi, Melvyn B.; Aksoy, Murat; Maclaren, Julian; Watkins, Ronald D.; Bammer, Roland
2013-01-01
Purpose A novel prospective motion correction technique for brain MRI is presented that uses miniature wireless radio-frequency (RF) coils, or “wireless markers”, for position tracking. Methods Each marker is free of traditional cable connections to the scanner. Instead, its signal is wirelessly linked to the MR receiver via inductive coupling with the head coil. Real-time tracking of rigid head motion is performed using a pair of glasses integrated with three wireless markers. A tracking pulse-sequence, combined with knowledge of the markers’ unique geometrical arrangement, is used to measure their positions. Tracking data from the glasses is then used to prospectively update the orientation and position of the image-volume so that it follows the motion of the head. Results Wireless-marker position measurements were comparable to measurements using traditional wired RF tracking coils, with the standard deviation of the difference < 0.01 mm over the range of positions measured inside the head coil. RF safety was verified with B1 maps and temperature measurements. Prospective motion correction was demonstrated in a 2D spin-echo scan while the subject performed a series of deliberate head rotations. Conclusion Prospective motion correction using wireless markers enables high quality images to be acquired even during bulk motions. Wireless markers are small, avoid RF safety risks from electrical cables, are not hampered by mechanical connections to the scanner, and require minimal setup times. These advantages may help to facilitate adoption in the clinic. PMID:23813444
Lorenz, Kevin S.; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.
2013-01-01
Digital image analysis is a fundamental component of quantitative microscopy. However, intravital microscopy presents many challenges for digital image analysis. In general, microscopy volumes are inherently anisotropic, suffer from decreasing contrast with tissue depth, lack object edge detail, and characteristically have low signal levels. Intravital microscopy introduces the additional problem of motion artifacts, resulting from respiratory motion and heartbeat from specimens imaged in vivo. This paper describes an image registration technique for use with sequences of intravital microscopy images collected in time-series or in 3D volumes. Our registration method involves both rigid and non-rigid components. The rigid registration component corrects global image translations, while the non-rigid component manipulates a uniform grid of control points defined by B-splines. Each control point is optimized by minimizing a cost function consisting of two parts: a term to define image similarity, and a term to ensure deformation grid smoothness. Experimental results indicate that this approach is promising based on the analysis of several image volumes collected from the kidney, lung, and salivary gland of living rodents. PMID:22092443
Zhou, Ruixi; Huang, Wei; Yang, Yang; Chen, Xiao; Weller, Daniel S; Kramer, Christopher M; Kozerke, Sebastian; Salerno, Michael
2018-02-01
Cardiovascular magnetic resonance (CMR) stress perfusion imaging provides important diagnostic and prognostic information in coronary artery disease (CAD). Current clinical sequences have limited temporal and/or spatial resolution, and incomplete heart coverage. Techniques such as k-t principal component analysis (PCA) or k-t sparcity and low rank structure (SLR), which rely on the high degree of spatiotemporal correlation in first-pass perfusion data, can significantly accelerate image acquisition mitigating these problems. However, in the presence of respiratory motion, these techniques can suffer from significant degradation of image quality. A number of techniques based on non-rigid registration have been developed. However, to first approximation, breathing motion predominantly results in rigid motion of the heart. To this end, a simple robust motion correction strategy is proposed for k-t accelerated and compressed sensing (CS) perfusion imaging. A simple respiratory motion compensation (MC) strategy for k-t accelerated and compressed-sensing CMR perfusion imaging to selectively correct respiratory motion of the heart was implemented based on linear k-space phase shifts derived from rigid motion registration of a region-of-interest (ROI) encompassing the heart. A variable density Poisson disk acquisition strategy was used to minimize coherent aliasing in the presence of respiratory motion, and images were reconstructed using k-t PCA and k-t SLR with or without motion correction. The strategy was evaluated in a CMR-extended cardiac torso digital (XCAT) phantom and in prospectively acquired first-pass perfusion studies in 12 subjects undergoing clinically ordered CMR studies. Phantom studies were assessed using the Structural Similarity Index (SSIM) and Root Mean Square Error (RMSE). In patient studies, image quality was scored in a blinded fashion by two experienced cardiologists. In the phantom experiments, images reconstructed with the MC strategy had higher SSIM (p < 0.01) and lower RMSE (p < 0.01) in the presence of respiratory motion. For patient studies, the MC strategy improved k-t PCA and k-t SLR reconstruction image quality (p < 0.01). The performance of k-t SLR without motion correction demonstrated improved image quality as compared to k-t PCA in the setting of respiratory motion (p < 0.01), while with motion correction there is a trend of better performance in k-t SLR as compared with motion corrected k-t PCA. Our simple and robust rigid motion compensation strategy greatly reduces motion artifacts and improves image quality for standard k-t PCA and k-t SLR techniques in setting of respiratory motion due to imperfect breath-holding.
OMV: A simplified mathematical model of the orbital maneuvering vehicle
NASA Technical Reports Server (NTRS)
Teoh, W.
1984-01-01
A model of the orbital maneuvering vehicle (OMV) is presented which contains several simplications. A set of hand controller signals may be used to control the motion of the OMV. Model verification is carried out using a sequence of tests. The dynamic variables generated by the model are compared, whenever possible, with the corresponding analytical variables. The results of the tests show conclusively that the present model is behaving correctly. Further, this model interfaces properly with the state vector transformation module (SVX) developed previously. Correct command sentence sequences are generated by the OMV and and SVX system, and these command sequences can be used to drive the flat floor simulation system at MSFC.
Skorpil, M; Brynolfsson, P; Engström, M
2017-06-01
Multiparametric magnetic resonance imaging (MRI) and PI-RADS (Prostate Imaging - Reporting and Data System) has become the standard to determine a probability score for a lesion being a clinically significant prostate cancer. T2-weighted and diffusion-weighted imaging (DWI) are essential in PI-RADS, depending partly on visual assessment of signal intensity, while dynamic-contrast enhanced imaging is less important. To decrease inter-rater variability and further standardize image evaluation, complementary objective measures are in need. We here demonstrate a sequence enabling simultaneous quantification of apparent diffusion coefficient (ADC) and T2-relaxation, as well as calculation of the perfusion fraction f from low b-value intravoxel incoherent motion data. Expandable wait pulses were added to a FOCUS DW SE-EPI sequence, allowing the effective echo time to change at run time. To calculate both ADC and f, b-values 200s/mm 2 and 600s/mm 2 were chosen, and for T2-estimation 6 echo times between 64.9ms and 114.9ms were used. Three patients with prostate cancer were examined and all had significantly decreased ADC and T2-values, while f was significantly increased in 2 of 3 tumors. T2 maps obtained in phantom measurements and in a healthy volunteer were compared to T2 maps from a SE sequence with consecutive scans, showing good agreement. In addition, a motion correction procedure was implemented to reduce the effects of prostate motion, which improved T2-estimation. This sequence could potentially enable more objective tumor grading, and decrease the inter-rater variability in the PI-RADS classification. Copyright © 2017 Elsevier Inc. All rights reserved.
Lavrič, Martina; Eler, Klemen; Ferlan, Mitja; Vodnik, Dominik; Gričar, Jožica
2017-01-01
Intra-annual variations in leaf development, radial growth, including the phloem part, and sap flow have rarely been studied in deciduous trees from drought-prone environments. In order to understand better the chronological order and temporal course of these processes, we monitored leaf phenology, xylem and phloem formation and sap flow in Quercus pubescens from abandoned karst grasslands in Slovenia during the growing season of 2014. We found that the initial earlywood vessel formation started before bud opening at the beginning of April. Buds started to open in the second half of April and full leaf unfolding occurred by the end of May. LAI values increased correspondingly with leaf development. About 28% of xylem and 22% of phloem annual increment were formed by the time of bud break. Initial earlywood vessels were fully lignified and ready for water transport, indicating that they are essential to provide hydraulic conductivity for axial water flow during leaf development. Sap flow became active and increasing contemporarily with leaf development and LAI values. Similar early spring patterns of xylem sap flow and LAI denoted that water transport in oaks broadly followed canopy leaf area development. In the initial 3 weeks of radial growth, phloem growth preceded that of xylem, indicating its priority over xylem at the beginning of the growing season. This may be related to the fact that after bud break, the developing foliage is a very large sink for carbohydrates but, at the same time, represents a small transpirational area. Whether the interdependence of the chronological sequence of the studied processes is fixed in Q. pubescens needs to be confirmed with more data and several years of analyses, although the ‘correct sequence’ of processes is essential for synchronized plant performance and response to environmental stress. PMID:28321232
Vos, Sjoerd B; Micallef, Caroline; Barkhof, Frederik; Hill, Andrea; Winston, Gavin P; Ourselin, Sebastien; Duncan, John S
2018-03-02
T2-FLAIR is the single most sensitive MRI contrast to detect lesions underlying focal epilepsies but 3D sequences used to obtain isotropic high-resolution images are susceptible to motion artefacts. Prospective motion correction (PMC) - demonstrated to improve 3D-T1 image quality in a pediatric population - was applied to high-resolution 3D-T2-FLAIR scans in adult epilepsy patients to evaluate its clinical benefit. Coronal 3D-T2-FLAIR scans were acquired with a 1mm isotropic resolution on a 3T MRI scanner. Two expert neuroradiologists reviewed 40 scans without PMC and 40 with navigator-based PMC. Visual assessment addressed six criteria of image quality (resolution, SNR, WM-GM contrast, intensity homogeneity, lesion conspicuity, diagnostic confidence) on a seven-point Likert scale (from non-diagnostic to outstanding). SNR was also objectively quantified within the white matter. PMC scans had near-identical scores on the criteria of image quality to non-PMC scans, with the notable exception that intensity homogeneity was generally worse. Using PMC, the percentage of scans with bad image quality was substantially lower than without PMC (3.25% vs. 12.5%) on the other five criteria. Quantitative SNR estimates revealed that PMC and non-PMC had no significant difference in SNR (P=0.07). Application of prospective motion correction to 3D-T2-FLAIR sequences decreased the percentage of low-quality scans, reducing the number of scans that need to be repeated to obtain clinically useful data. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
McMahon, Ryan; Berbeco, Ross; Nishioka, Seiko; Ishikawa, Masayori; Papiez, Lech
2008-09-01
An MLC control algorithm for delivering intensity modulated radiation therapy (IMRT) to targets that are undergoing two-dimensional (2D) rigid motion in the beam's eye view (BEV) is presented. The goal of this method is to deliver 3D-derived fluence maps over a moving patient anatomy. Target motion measured prior to delivery is first used to design a set of planned dynamic-MLC (DMLC) sliding-window leaf trajectories. During actual delivery, the algorithm relies on real-time feedback to compensate for target motion that does not agree with the motion measured during planning. The methodology is based on an existing one-dimensional (ID) algorithm that uses on-the-fly intensity calculations to appropriately adjust the DMLC leaf trajectories in real-time during exposure delivery [McMahon et al., Med. Phys. 34, 3211-3223 (2007)]. To extend the 1D algorithm's application to 2D target motion, a real-time leaf-pair shifting mechanism has been developed. Target motion that is orthogonal to leaf travel is tracked by appropriately shifting the positions of all MLC leaves. The performance of the tracking algorithm was tested for a single beam of a fractionated IMRT treatment, using a clinically derived intensity profile and a 2D target trajectory based on measured patient data. Comparisons were made between 2D tracking, 1D tracking, and no tracking. The impact of the tracking lag time and the frequency of real-time imaging were investigated. A study of the dependence of the algorithm's performance on the level of agreement between the motion measured during planning and delivery was also included. Results demonstrated that tracking both components of the 2D motion (i.e., parallel and orthogonal to leaf travel) results in delivered fluence profiles that are superior to those that track the component of motion that is parallel to leaf travel alone. Tracking lag time effects may lead to relatively large intensity delivery errors compared to the other sources of error investigated. However, the algorithm presented is robust in the sense that it does not rely on a high level of agreement between the target motion measured during treatment planning and delivery.
Chang, Hing-Chiu; Chen, Nan-kuei
2016-01-01
Diffusion-weighted imaging (DWI) obtained with interleaved echo-planar imaging (EPI) pulse sequence has great potential of characterizing brain tissue properties at high spatial-resolution. However, interleaved EPI based DWI data may be corrupted by various types of aliasing artifacts. First, inconsistencies in k-space data obtained with opposite readout gradient polarities result in Nyquist artifact, which is usually reduced with 1D phase correction in post-processing. When there exist eddy current cross terms (e.g., in oblique-plane EPI), 2D phase correction is needed to effectively reduce Nyquist artifact. Second, minuscule motion induced phase inconsistencies in interleaved DWI scans result in image-domain aliasing artifact, which can be removed with reconstruction procedures that take shot-to-shot phase variations into consideration. In existing interleaved DWI reconstruction procedures, Nyquist artifact and minuscule motion-induced aliasing artifact are typically removed subsequently in two stages. Although the two-stage phase correction generally performs well for non-oblique plane EPI data obtained from well-calibrated system, the residual artifacts may still be pronounced in oblique-plane EPI data or when there exist eddy current cross terms. To address this challenge, here we report a new composite 2D phase correction procedure, which effective removes Nyquist artifact and minuscule motion induced aliasing artifact jointly in a single step. Our experimental results demonstrate that the new 2D phase correction method can much more effectively reduce artifacts in interleaved EPI based DWI data as compared with the existing two-stage artifact correction procedures. The new method robustly enables high-resolution DWI, and should prove highly valuable for clinical uses and research studies of DWI. PMID:27114342
NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data.
Pnevmatikakis, Eftychios A; Giovannucci, Andrea
2017-11-01
Motion correction is a challenging pre-processing problem that arises early in the analysis pipeline of calcium imaging data sequences. The motion artifacts in two-photon microscopy recordings can be non-rigid, arising from the finite time of raster scanning and non-uniform deformations of the brain medium. We introduce an algorithm for fast Non-Rigid Motion Correction (NoRMCorre) based on template matching. NoRMCorre operates by splitting the field of view (FOV) into overlapping spatial patches along all directions. The patches are registered at a sub-pixel resolution for rigid translation against a regularly updated template. The estimated alignments are subsequently up-sampled to create a smooth motion field for each frame that can efficiently approximate non-rigid artifacts in a piecewise-rigid manner. Existing approaches either do not scale well in terms of computational performance or are targeted to non-rigid artifacts arising just from the finite speed of raster scanning, and thus cannot correct for non-rigid motion observable in datasets from a large FOV. NoRMCorre can be run in an online mode resulting in comparable to or even faster than real time motion registration of streaming data. We evaluate its performance with simple yet intuitive metrics and compare against other non-rigid registration methods on simulated data and in vivo two-photon calcium imaging datasets. Open source Matlab and Python code is also made available. The proposed method and accompanying code can be useful for solving large scale image registration problems in calcium imaging, especially in the presence of non-rigid deformations. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Analysis of openings and wide of leaf on multileaf Colimators Using Gafchromic RTQA2 Film
NASA Astrophysics Data System (ADS)
Setiawati, Evi; Lailla Rachma, Assyifa; Hidayatullah, M.
2018-05-01
The research determined an excitence of correction openings leaf for treatment, and the distribution dose using Gafchromic RTQA2 film. This was about MLC’s correction based on result of movement leaf and field irradiating uniform was done. Methods of research was conduct an irradiating on Gafchromic RTQA2 film based on the index planning homogeneity philosophy, openings leaf and wide leaf. The result of film was lit later in scan. It was continued to include image of the software scanning into matlab. From this case, the image of films common to greyscale image and analysis on the rise in doses blackish films. In this step, we made a correlation between the doses and determine the homogenity to know film dosimetri used homogeneous, and correction of openings leaf and wide leaf. The result between pixel and doses was linear with the equation y = (-0,6)x+108 to low dose and y = (-0,28)x + 108 to high doses and the index of homogeneity range of 0,003 – 0,084. The result homogeneous and correction distribution doses at the openings leaf and wide leaf was around 5% with a value still into the suggested tolerance from ICRU No.50 was 10%.
SU-F-T-350: Continuous Leaf Optimization (CLO) for IMRT Leaf Sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, T; Chen, M; Jiang, S
Purpose: To study a new step-and-shoot IMRT leaf sequencing model that avoids the two main pitfalls of conventional leaf sequencing: (1) target fluence being stratified into a fixed number of discrete levels and/or (2) aperture leaf positions being restricted to a discrete set of locations. These assumptions induce error into the sequence or reduce the feasible region of potential plans, respectively. Methods: We develop a one-dimensional (single leaf pair) methodology that does not make assumptions (1) or (2) that can be easily extended to a multi-row model. The proposed continuous leaf optimization (CLO) methodology takes in an existing set ofmore » apertures and associated intensities, or solution “seed,” and improves the plan without the restrictiveness of 1or (2). It then uses a first-order descent algorithm to converge onto a locally optimal solution. A seed solution can come from models that assume (1) and (2), thus allowing the CLO model to improve upon existing leaf sequencing methodologies. Results: The CLO model was applied to 208 generated target fluence maps in one dimension. In all cases for all tested sequencing strategies, the CLO model made improvements on the starting seed objective function. The CLO model also was able to keep MUs low. Conclusion: The CLO model can improve upon existing leaf sequencing methods by avoiding the restrictions of (1) and (2). By allowing for more flexible leaf positioning, error can be reduced when matching some target fluence. This study lays the foundation for future models and solution methodologies that can incorporate continuous leaf positions explicitly into the IMRT treatment planning model. Supported by Cancer Prevention & Research Institute of Texas (CPRIT) - ID RP150485.« less
NASA Astrophysics Data System (ADS)
Petibon, Yoann; Guehl, Nicolas J.; Reese, Timothy G.; Ebrahimi, Behzad; Normandin, Marc D.; Shoup, Timothy M.; Alpert, Nathaniel M.; El Fakhri, Georges; Ouyang, Jinsong
2017-01-01
PET is an established modality for myocardial perfusion imaging (MPI) which enables quantification of absolute myocardial blood flow (MBF) using dynamic imaging and kinetic modeling. However, heart motion and partial volume effects (PVE) significantly limit the spatial resolution and quantitative accuracy of PET MPI. Simultaneous PET-MR offers a solution to the motion problem in PET by enabling MR-based motion correction of PET data. The aim of this study was to develop a motion and PVE correction methodology for PET MPI using simultaneous PET-MR, and to assess its impact on both static and dynamic PET MPI using 18F-Flurpiridaz, a novel 18F-labeled perfusion tracer. Two dynamic 18F-Flurpiridaz MPI scans were performed on healthy pigs using a PET-MR scanner. Cardiac motion was tracked using a dedicated tagged-MRI (tMR) sequence. Motion fields were estimated using non-rigid registration of tMR images and used to calculate motion-dependent attenuation maps. Motion correction of PET data was achieved by incorporating tMR-based motion fields and motion-dependent attenuation coefficients into image reconstruction. Dynamic and static PET datasets were created for each scan. Each dataset was reconstructed as (i) Ungated, (ii) Gated (end-diastolic phase), and (iii) Motion-Corrected (MoCo), each without and with point spread function (PSF) modeling for PVE correction. Myocardium-to-blood concentration ratios (MBR) and apparent wall thickness were calculated to assess image quality for static MPI. For dynamic MPI, segment- and voxel-wise MBF values were estimated by non-linear fitting of a 2-tissue compartment model to tissue time-activity-curves. MoCo and Gating respectively decreased mean apparent wall thickness by 15.1% and 14.4% and increased MBR by 20.3% and 13.6% compared to Ungated images (P < 0.01). Combined motion and PSF correction (MoCo-PSF) yielded 30.9% (15.7%) lower wall thickness and 82.2% (20.5%) higher MBR compared to Ungated data reconstructed without (with) PSF modeling (P < 0.01). For dynamic PET, mean MBF across all segments were comparable for MoCo (0.72 ± 0.21 ml/min/ml) and Gating (0.69 ± 0.18 ml/min/ml). Ungated data yielded significantly lower mean MBF (0.59 ± 0.16 ml/min/ml). Mean MBF for MoCo-PSF was 0.80 ± 0.22 ml/min/ml, which was 37.9% (25.0%) higher than that obtained from Ungated data without (with) PSF correction (P < 0.01). The developed methodology holds promise to improve the image quality and sensitivity of PET MPI studies performed using PET-MR.
Saotome, Kousaku; Matsushita, Akira; Matsumoto, Koji; Kato, Yoshiaki; Nakai, Kei; Murata, Koichi; Yamamoto, Tetsuya; Sankai, Yoshiyuki; Matsumura, Akira
2017-02-01
A fast spin-echo sequence based on the Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction (PROPELLER) technique is a magnetic resonance (MR) imaging data acquisition and reconstruction method for correcting motion during scans. Previous studies attempted to verify the in vivo capabilities of motion-corrected PROPELLER in real clinical situations. However, such experiments are limited by repeated, stray head motion by research participants during the prescribed and precise head motion protocol of a PROPELLER acquisition. Therefore, our purpose was to develop a brain phantom set for motion-corrected PROPELLER. The profile curves of the signal intensities on the in vivo T 2 -weighted image (T 2 WI) and 3-D rapid prototyping technology were used to produce the phantom. In addition, we used a homemade driver system to achieve in-plane motion at the intended timing. We calculated the Pearson's correlation coefficient (R 2 ) between the signal intensities of the in vivo T 2 WI and the phantom T 2 WI and clarified the rotation precision of the driver system. In addition, we used the phantom set to perform initial experiments to show the rotational angle and frequency dependences of PROPELLER. The in vivo and phantom T 2 WIs were visually congruent, with a significant correlation (R 2 ) of 0.955 (p<.001). The rotational precision of the driver system was within 1 degree of tolerance. The experiment on the rotational angle dependency showed image discrepancies between the rotational angles. The experiment on the rotational frequency dependency showed that the reconstructed images became increasingly blurred by the corruption of the blades as the number of motions increased. In this study, we developed a phantom that showed image contrasts and construction similar to the in vivo T 2 WI. In addition, our homemade driver system achieved precise in-plane motion at the intended timing. Our proposed phantom set could perform systematic experiments with a real clinical MR image, which to date has not been possible in in vivo studies. Further investigation should focus on the improvement of the motion-correction algorithm in PROPELLER using our phantom set for what would traditionally be considered problematic patients (children, emergency patients, elderly, those with dementia, and so on). Copyright © 2016 Elsevier Inc. All rights reserved.
Tracking colliding cells in vivo microscopy.
Nguyen, Nhat H; Keller, Steven; Norris, Eric; Huynh, Toan T; Clemens, Mark G; Shin, Min C
2011-08-01
Leukocyte motion represents an important component in the innate immune response to infection. Intravital microscopy is a powerful tool as it enables in vivo imaging of leukocyte motion. Under inflammatory conditions, leukocytes may exhibit various motion behaviors, such as flowing, rolling, and adhering. With many leukocytes moving at a wide range of speeds, collisions occur. These collisions result in abrupt changes in the motion and appearance of leukocytes. Manual analysis is tedious, error prone,time consuming, and could introduce technician-related bias. Automatic tracking is also challenging due to the noise inherent in in vivo images and abrupt changes in motion and appearance due to collision. This paper presents a method to automatically track multiple cells undergoing collisions by modeling the appearance and motion for each collision state and testing collision hypotheses of possible transitions between states. The tracking results are demonstrated using in vivo intravital microscopy image sequences.We demonstrate that 1)71% of colliding cells are correctly tracked; (2) the improvement of the proposed method is enhanced when the duration of collision increases; and (3) given good detection results, the proposed method can correctly track 88% of colliding cells. The method minimizes the tracking failures under collisions and, therefore, allows more robust analysis in the study of leukocyte behaviors responding to inflammatory conditions.
Spatial variation of dosimetric leaf gap and its impact on dose delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumaraswamy, Lalith K., E-mail: Lalith.Kumaraswamy@roswellpark.org; Schmitt, Jonathan D.; Bailey, Daniel W.
Purpose: During dose calculation, the Eclipse treatment planning system (TPS) retracts the multileaf collimator (MLC) leaf positions by half of the dosimetric leaf gap (DLG) value (measured at central axis) for all leaf positions in a dynamic MLC plan to accurately model the rounded leaf ends. The aim of this study is to map the variation of DLG along the travel path of each MLC leaf pair and quantify how this variation impacts delivered dose. Methods: 6 MV DLG values were measured for all MLC leaf pairs in increments of 1.0 cm (from the line intersecting the CAX and perpendicularmore » to MLC motion) to 13.0 cm off axis distance at dmax. The measurements were performed on two Varian linear accelerators, both employing the Millennium 120-leaf MLCs. The measurements were performed at several locations in the beam with both a Sun Nuclear MapCHECK device and a PTW pinpoint ion chamber. Results: The measured DLGs for the middle 40 MLC leaf pairs (each 0.5 cm width) at positions along a line through the CAX and perpendicular to MLC leaf travel direction were very similar, varying maximally by only 0.2 mm. The outer 20 MLC leaf pairs (each 1.0 cm width) have much lower DLG values, about 0.3–0.5 mm lower than the central MLC leaf pair, at their respective central line position. Overall, the mean and the maximum variation between the 0.5 cm width leaves and the 1.0 cm width leaf pairs are 0.32 and 0.65 mm, respectively. Conclusions: The spatial variation in DLG is caused by the variation of intraleaf transmission through MLC leaves. Fluences centered on the CAX would not be affected since DLG does not vary; but any fluences residing significantly off axis with narrow sweeping leaves may exhibit significant dose differences. This is due to the fact that there are differences in DLG between the true DLG exhibited by the 1.0 cm width outer leaves and the constant DLG value utilized by the TPS for dose calculation. Since there are large differences in DLG between the 0.5 cm width leaf pairs and 1.0 cm width leaf pairs, there is a need to correct the TPS plans, especially those with high modulation (narrow dynamic MLC gap), with 2D variation of DLG.« less
Kim, Seung-Won; Koh, Je-Sung; Lee, Jong-Gu; Ryu, Junghyun; Cho, Maenghyo; Cho, Kyu-Jin
2014-09-01
The Venus flytrap uses bistability, the structural characteristic of its leaf, to actuate the leaf's rapid closing motion for catching its prey. This paper presents a flytrap-inspired robot and novel actuation mechanism that exploits the structural characteristics of this structure and a developable surface. We focus on the concept of exploiting structural characteristics for actuation. Using shape memory alloy (SMA), the robot actuates artificial leaves made from asymmetrically laminated carbon fiber reinforced prepregs. We exploit two distinct structural characteristics of the leaves. First, the bistability acts as an implicit actuator enabling rapid morphing motion. Second, the developable surface has a kinematic constraint that constrains the curvature of the artificial leaf. Due to this constraint, the curved artificial leaf can be unbent by bending the straight edge orthogonal to the curve. The bending propagates from one edge to the entire surface and eventually generates an overall shape change. The curvature change of the artificial leaf is 18 m(-1) within 100 ms when closing. Experiments show that these actuation mechanisms facilitate the generation of a rapid and large morphing motion of the flytrap robot by one-way actuation of the SMA actuators at a local position.
Ahrenfeldt, Johanne; Skaarup, Carina; Hasman, Henrik; Pedersen, Anders Gorm; Aarestrup, Frank Møller; Lund, Ole
2017-01-05
Whole genome sequencing (WGS) is increasingly used in diagnostics and surveillance of infectious diseases. A major application for WGS is to use the data for identifying outbreak clusters, and there is therefore a need for methods that can accurately and efficiently infer phylogenies from sequencing reads. In the present study we describe a new dataset that we have created for the purpose of benchmarking such WGS-based methods for epidemiological data, and also present an analysis where we use the data to compare the performance of some current methods. Our aim was to create a benchmark data set that mimics sequencing data of the sort that might be collected during an outbreak of an infectious disease. This was achieved by letting an E. coli hypermutator strain grow in the lab for 8 consecutive days, each day splitting the culture in two while also collecting samples for sequencing. The result is a data set consisting of 101 whole genome sequences with known phylogenetic relationship. Among the sequenced samples 51 correspond to internal nodes in the phylogeny because they are ancestral, while the remaining 50 correspond to leaves. We also used the newly created data set to compare three different online available methods that infer phylogenies from whole-genome sequencing reads: NDtree, CSI Phylogeny and REALPHY. One complication when comparing the output of these methods with the known phylogeny is that phylogenetic methods typically build trees where all observed sequences are placed as leafs, even though some of them are in fact ancestral. We therefore devised a method for post processing the inferred trees by collapsing short branches (thus relocating some leafs to internal nodes), and also present two new measures of tree similarity that takes into account the identity of both internal and leaf nodes. Based on this analysis we find that, among the investigated methods, CSI Phylogeny had the best performance, correctly identifying 73% of all branches in the tree and 71% of all clades. We have made all data from this experiment (raw sequencing reads, consensus whole-genome sequences, as well as descriptions of the known phylogeny in a variety of formats) publicly available, with the hope that other groups may find this data useful for benchmarking and exploring the performance of epidemiological methods. All data is freely available at: https://cge.cbs.dtu.dk/services/evolution_data.php .
Perfusion CT to assess angiogenesis in colon cancer: technical limitations and practical challenges.
Dighe, S; Castellano, E; Blake, H; Jeyadevan, N; Koh, M U; Orten, M; Swift, I; Brown, G
2012-10-01
Perfusion CT may have the potential to quantify the degree of angiogenesis of solid tumours in vivo. This study aims to identify the practical and technical challenges inherent to the technique, and evaluate its feasibility in colorectal tumours. 51 patients from 2 institutions prospectively underwent a single perfusion CT on 2 different multidetector scanners. The patients were advised to breath-hold as long as possible, followed by shallow breathing, and were given intravenous buscopan to reduce movement. Numerous steps were explored to identify the challenges. 43 patients successfully completed the perfusion CT as per protocol. Inability to detect the tumour (n=3), misplacement of dynamic sequence co-ordinates (n=2), failure of contrast injection (n=2) and displacement of tumour (n=1) were the reasons for failure. In 14 cases excessive respiratory motion displaced the tumour out of the scanning field along the temporal sequence, leading to erroneous data capture. In nine patients, minor displacements of the tumour were corrected by repositioning the region of interest (ROI) to its original position after reviewing each dynamic sequence slice. In 20 patients the tumour was stable, and data captured from the ROI were representative, and could have been analysed by commercially available Body Tumor Perfusion 3.0® software (GE Healthcare, Waukesha, WI). Hence all data were manually analysed by MATLAB® processing software (MathWorks, Cambridge, UK). Perfusion CT in tumours susceptible to motion during acquisition makes accurate data capture challenging and requires meticulous attention to detail. Motion correction software is essential if perfusion CT is to be used routinely in colorectal cancer.
Bhatt, Bhavin S; Chahwala, Fenisha D; Rathod, Sangeeta; Singh, Achuit K
2016-05-01
Capsicum annuum (Chilli) is a perennial herbaceous plant that is cultivated as an annual crop throughout the world, including India. Chilli leaf curl disease (ChiLCD) is a major biotic constraint, causing major losses in chilli production. During 2014, leaf samples of chilli plants displaying leaf curl disease were collected from the Ahmedabad district of Gujarat, India. These samples were used to isolate, clone and sequence viral genomic DNA and an associated betasatellite DNA molecule. Sequence analysis showed 90.4 % nucleotide sequence identity to the previously reported chilli leaf curl virus-[India:Guntur:2009] (ChiLCV-[IN:Gun:09]. As per ICTV nomenclature rules, ChiLCV-Ahm represents a new species of begomovirus, and we therefore propose the name chilli leaf curl Ahmedabad virus-[India:Ahmedabad:2014] (ChiLCAV-[IN:Ahm:14]). The associated betasatellite DNA showed a maximum of 93.5 % nucleotide sequence identity to a previously reported tomato leaf curl Bangladesh betasatellite and may be named tomato leaf curl Bangladesh betasatellite-[India:Ahmedabad:Chilli:2014].
Urasaki, Naoya; Goeku, Satoko; Kaneshima, Risa; Takamine, Tomonori; Tarora, Kazuhiko; Takeuchi, Makoto; Moromizato, Chie; Yonamine, Kaname; Hosaka, Fumiko; Terakami, Shingo; Matsumura, Hideo; Yamamoto, Toshiya; Shoda, Moriyuki
2015-01-01
To explore genome-wide DNA polymorphisms and identify DNA markers for leaf margin phenotypes, a restriction-site-associated DNA sequencing analysis was employed to analyze three bulked DNAs of F1 progeny from a cross between a ‘piping-leaf-type’ cultivar, ‘Yugafu’, and a ‘spiny-tip-leaf-type’ variety, ‘Yonekura’. The parents were both Ananas comosus var. comosus. From the analysis, piping-leaf and spiny-tip-leaf gene-specific restriction-site-associated DNA sequencing tags were obtained and designated as PLSTs and STLSTs, respectively. The five PLSTs and two STSLTs were successfully converted to cleaved amplified polymorphic sequence (CAPS) or simple sequence repeat (SSR) markers using the sequence differences between alleles. Based on the genotyping of the F1 with two SSR and three CAPS markers, the five PLST markers were mapped in the vicinity of the P locus, with the closest marker, PLST1_SSR, being located 1.5 cM from the P locus. The two CAPS markers from STLST1 and STLST3 perfectly assessed the ‘spiny-leaf type’ as homozygotes of the recessive s allele of the S gene. The recombination value between the S locus and STLST loci was 2.4, and STLSTs were located 2.2 cM from the S locus. SSR and CAPS markers are applicable to marker-assisted selection of leaf margin phenotypes in pineapple breeding. PMID:26175625
Urasaki, Naoya; Goeku, Satoko; Kaneshima, Risa; Takamine, Tomonori; Tarora, Kazuhiko; Takeuchi, Makoto; Moromizato, Chie; Yonamine, Kaname; Hosaka, Fumiko; Terakami, Shingo; Matsumura, Hideo; Yamamoto, Toshiya; Shoda, Moriyuki
2015-06-01
To explore genome-wide DNA polymorphisms and identify DNA markers for leaf margin phenotypes, a restriction-site-associated DNA sequencing analysis was employed to analyze three bulked DNAs of F1 progeny from a cross between a 'piping-leaf-type' cultivar, 'Yugafu', and a 'spiny-tip-leaf-type' variety, 'Yonekura'. The parents were both Ananas comosus var. comosus. From the analysis, piping-leaf and spiny-tip-leaf gene-specific restriction-site-associated DNA sequencing tags were obtained and designated as PLSTs and STLSTs, respectively. The five PLSTs and two STSLTs were successfully converted to cleaved amplified polymorphic sequence (CAPS) or simple sequence repeat (SSR) markers using the sequence differences between alleles. Based on the genotyping of the F1 with two SSR and three CAPS markers, the five PLST markers were mapped in the vicinity of the P locus, with the closest marker, PLST1_SSR, being located 1.5 cM from the P locus. The two CAPS markers from STLST1 and STLST3 perfectly assessed the 'spiny-leaf type' as homozygotes of the recessive s allele of the S gene. The recombination value between the S locus and STLST loci was 2.4, and STLSTs were located 2.2 cM from the S locus. SSR and CAPS markers are applicable to marker-assisted selection of leaf margin phenotypes in pineapple breeding.
Simultaneous multi-slice combined with PROPELLER.
Norbeck, Ola; Avventi, Enrico; Engström, Mathias; Rydén, Henric; Skare, Stefan
2018-08-01
Simultaneous multi-slice (SMS) imaging is an advantageous method for accelerating MRI scans, allowing reduced scan time, increased slice coverage, or high temporal resolution with limited image quality penalties. In this work we combine the advantages of SMS acceleration with the motion correction and artifact reduction capabilities of the PROPELLER technique. A PROPELLER sequence was developed with support for CAIPIRINHA and phase optimized multiband radio frequency pulses. To minimize the time spent on acquiring calibration data, both in-plane-generalized autocalibrating partial parallel acquisition (GRAPPA) and slice-GRAPPA weights for all PROPELLER blade angles were calibrated on a single fully sampled PROPELLER blade volume. Therefore, the proposed acquisition included a single fully sampled blade volume, with the remaining blades accelerated in both the phase and slice encoding directions without additional auto calibrating signal lines. Comparison to 3D RARE was performed as well as demonstration of 3D motion correction performance on the SMS PROPELLER data. We show that PROPELLER acquisitions can be efficiently accelerated with SMS using a short embedded calibration. The potential in combining these two techniques was demonstrated with a high quality 1.0 × 1.0 × 1.0 mm 3 resolution T 2 -weighted volume, free from banding artifacts, and capable of 3D retrospective motion correction, with higher effective resolution compared to 3D RARE. With the combination of SMS acceleration and PROPELLER imaging, thin-sliced reformattable T 2 -weighted image volumes with 3D retrospective motion correction capabilities can be rapidly acquired with low sensitivity to flow and head motion. Magn Reson Med 80:496-506, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Visually Inexperienced Chicks Exhibit Spontaneous Preference for Biological Motion Patterns
Regolin, Lucia; Marconato, Fabio
2005-01-01
When only a small number of points of light attached to the torso and limbs of a moving organism are visible, the animation correctly conveys the animal's activity. Here we report that newly hatched chicks, reared and hatched in darkness, at their first exposure to point-light animation sequences, exhibit a spontaneous preference to approach biological motion patterns. Intriguingly, this predisposition is not specific for the motion of a hen, but extends to the pattern of motion of other vertebrates, even to that of a potential predator such as a cat. The predisposition seems to reflect the existence of a mechanism in the brain aimed at orienting the young animal towards objects that move semi-rigidly (as vertebrate animals do), thus facilitating learning, i.e., through imprinting, about their more specific features of motion. PMID:15934787
Song, Hao; Ruan, Dan; Liu, Wenyang; Stenger, V Andrew; Pohmann, Rolf; Fernández-Seara, Maria A; Nair, Tejas; Jung, Sungkyu; Luo, Jingqin; Motai, Yuichi; Ma, Jingfei; Hazle, John D; Gach, H Michael
2017-03-01
Respiratory motion prediction using an artificial neural network (ANN) was integrated with pseudocontinuous arterial spin labeling (pCASL) MRI to allow free-breathing perfusion measurements in the kidney. In this study, we evaluated the performance of the ANN to accurately predict the location of the kidneys during image acquisition. A pencil-beam navigator was integrated with a pCASL sequence to measure lung/diaphragm motion during ANN training and the pCASL transit delay. The ANN algorithm ran concurrently in the background to predict organ location during the 0.7-s 15-slice acquisition based on the navigator data. The predictions were supplied to the pulse sequence to prospectively adjust the axial slice acquisition to match the predicted organ location. Additional navigators were acquired immediately after the multislice acquisition to assess the performance and accuracy of the ANN. The technique was tested in eight healthy volunteers. The root-mean-square error (RMSE) and mean absolute error (MAE) for the eight volunteers were 1.91 ± 0.17 mm and 1.43 ± 0.17 mm, respectively, for the ANN. The RMSE increased with transit delay. The MAE typically increased from the first to last prediction in the image acquisition. The overshoot was 23.58% ± 3.05% using the target prediction accuracy of ± 1 mm. Respiratory motion prediction with prospective motion correction was successfully demonstrated for free-breathing perfusion MRI of the kidney. The method serves as an alternative to multiple breathholds and requires minimal effort from the patient. © 2017 American Association of Physicists in Medicine.
Motion correction in MRI of the brain
Godenschweger, F; Kägebein, U; Stucht, D; Yarach, U; Sciarra, A; Yakupov, R; Lüsebrink, F; Schulze, P; Speck, O
2016-01-01
Subject motion in MRI is a relevant problem in the daily clinical routine as well as in scientific studies. Since the beginning of clinical use of MRI, many research groups have developed methods to suppress or correct motion artefacts. This review focuses on rigid body motion correction of head and brain MRI and its application in diagnosis and research. It explains the sources and types of motion and related artefacts, classifies and describes existing techniques for motion detection, compensation and correction and lists established and experimental approaches. Retrospective motion correction modifies the MR image data during the reconstruction, while prospective motion correction performs an adaptive update of the data acquisition. Differences, benefits and drawbacks of different motion correction methods are discussed. PMID:26864183
Motion correction in MRI of the brain
NASA Astrophysics Data System (ADS)
Godenschweger, F.; Kägebein, U.; Stucht, D.; Yarach, U.; Sciarra, A.; Yakupov, R.; Lüsebrink, F.; Schulze, P.; Speck, O.
2016-03-01
Subject motion in MRI is a relevant problem in the daily clinical routine as well as in scientific studies. Since the beginning of clinical use of MRI, many research groups have developed methods to suppress or correct motion artefacts. This review focuses on rigid body motion correction of head and brain MRI and its application in diagnosis and research. It explains the sources and types of motion and related artefacts, classifies and describes existing techniques for motion detection, compensation and correction and lists established and experimental approaches. Retrospective motion correction modifies the MR image data during the reconstruction, while prospective motion correction performs an adaptive update of the data acquisition. Differences, benefits and drawbacks of different motion correction methods are discussed.
MR-assisted PET Motion Correction for eurological Studies in an Integrated MR-PET Scanner
Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B.; Michel, Christian J.; El Fakhri, Georges; Schmand, Matthias; Sorensen, A. Gregory
2011-01-01
Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MR data can be used for motion tracking. In this work, a novel data processing and rigid-body motion correction (MC) algorithm for the MR-compatible BrainPET prototype scanner is described and proof-of-principle phantom and human studies are presented. Methods To account for motion, the PET prompts and randoms coincidences as well as the sensitivity data are processed in the line or response (LOR) space according to the MR-derived motion estimates. After sinogram space rebinning, the corrected data are summed and the motion corrected PET volume is reconstructed from these sinograms and the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed and motion estimates were obtained using two high temporal resolution MR-based motion tracking techniques. Results After accounting for the physical mismatch between the two scanners, perfectly co-registered MR and PET volumes are reproducibly obtained. The MR output gates inserted in to the PET list-mode allow the temporal correlation of the two data sets within 0.2 s. The Hoffman phantom volume reconstructed processing the PET data in the LOR space was similar to the one obtained processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the novel MC algorithm. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 seconds and 20 ms, respectively. Substantially improved PET images with excellent delineation of specific brain structures were obtained after applying the MC using these MR-based estimates. Conclusion A novel MR-based MC algorithm was developed for the integrated MR-PET scanner. High temporal resolution MR-derived motion estimates (obtained while simultaneously acquiring anatomical or functional MR data) can be used for PET MC. An MR-based MC has the potential to improve PET as a quantitative method, increasing its reliability and reproducibility which could benefit a large number of neurological applications. PMID:21189415
A method of depth image based human action recognition
NASA Astrophysics Data System (ADS)
Li, Pei; Cheng, Wanli
2017-05-01
In this paper, we propose an action recognition algorithm framework based on human skeleton joint information. In order to extract the feature of human motion, we use the information of body posture, speed and acceleration of movement to construct spatial motion feature that can describe and reflect the joint. On the other hand, we use the classical temporal pyramid matching algorithm to construct temporal feature and describe the motion sequence variation from different time scales. Then, we use bag of words to represent these actions, which is to present every action in the histogram by clustering these extracted feature. Finally, we employ Hidden Markov Model to train and test the extracted motion features. In the experimental part, the correctness and effectiveness of the proposed model are comprehensively verified on two well-known datasets.
Novel methods for parameter-based analysis of myocardial tissue in MR images
NASA Astrophysics Data System (ADS)
Hennemuth, A.; Behrens, S.; Kuehnel, C.; Oeltze, S.; Konrad, O.; Peitgen, H.-O.
2007-03-01
The analysis of myocardial tissue with contrast-enhanced MR yields multiple parameters, which can be used to classify the examined tissue. Perfusion images are often distorted by motion, while late enhancement images are acquired with a different size and resolution. Therefore, it is common to reduce the analysis to a visual inspection, or to the examination of parameters related to the 17-segment-model proposed by the American Heart Association (AHA). As this simplification comes along with a considerable loss of information, our purpose is to provide methods for a more accurate analysis regarding topological and functional tissue features. In order to achieve this, we implemented registration methods for the motion correction of the perfusion sequence and the matching of the late enhancement information onto the perfusion image and vice versa. For the motion corrected perfusion sequence, vector images containing the voxel enhancement curves' semi-quantitative parameters are derived. The resulting vector images are combined with the late enhancement information and form the basis for the tissue examination. For the exploration of data we propose different modes: the inspection of the enhancement curves and parameter distribution in areas automatically segmented using the late enhancement information, the inspection of regions segmented in parameter space by user defined threshold intervals and the topological comparison of regions segmented with different settings. Results showed a more accurate detection of distorted regions in comparison to the AHA-model-based evaluation.
Shahid, M S; Yoshida, S; Khatri-Chhetri, G B; Briddon, R W; Natsuaki, K T
2013-06-01
Carica papaya (papaya) is a fruit crop that is cultivated mostly in kitchen gardens throughout Nepal. Leaf samples of C. papaya plants with leaf curling, vein darkening, vein thickening, and a reduction in leaf size were collected from a garden in Darai village, Rampur, Nepal in 2010. Full-length clones of a monopartite Begomovirus, a betasatellite and an alphasatellite were isolated. The complete nucleotide sequence of the Begomovirus showed the arrangement of genes typical of Old World begomoviruses with the highest nucleotide sequence identity (>99 %) to an isolate of Ageratum yellow vein virus (AYVV), confirming it as an isolate of AYVV. The complete nucleotide sequence of betasatellite showed greater than 89 % nucleotide sequence identity to an isolate of Tomato leaf curl Java betasatellite originating from Indonesian. The sequence of the alphasatellite displayed 92 % nucleotide sequence identity to Sida yellow vein China alphasatellite. This is the first identification of these components in Nepal and the first time they have been identified in papaya.
The influence of plan modulation on the interplay effect in VMAT liver SBRT treatments.
Hubley, Emily; Pierce, Greg
2017-08-01
Volumetric modulated arc therapy (VMAT) uses multileaf collimator (MLC) leaves, gantry speed, and dose rate to modulate beam fluence, producing the highly conformal doses required for liver radiotherapy. When targets that move with respiration are treated with a dynamic fluence, there exists the possibility for interplay between the target and leaf motions. This study employs a novel motion simulation technique to determine if VMAT liver SBRT plans with an increase in MLC leaf modulation are more susceptible to dosimetric differences in the GTV due to interplay effects. For ten liver SBRT patients, two VMAT plans with different amounts of MLC leaf modulation were created. Motion was simulated using a random starting point in the respiratory cycle for each fraction. To isolate the interplay effect, motion was also simulated using four specific starting points in the respiratory cycle. The dosimetric differences caused by different starting points were examined by subtracting resultant dose distributions from each other. When motion was simulated using random starting points for each fraction, or with specific starting points, there were significantly more dose differences in the GTV (maximum 100cGy) for more highly modulated plans, but the overall plan quality was not adversely affected. Plans with more MLC leaf modulation are more susceptible to interplay effects, but dose differences in the GTV are clinically negligible in magnitude. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Motion Correction in PROPELLER and Turboprop-MRI
Tamhane, Ashish A.; Arfanakis, Konstantinos
2009-01-01
PROPELLER and Turboprop-MRI are characterized by greatly reduced sensitivity to motion, compared to their predecessors, fast spin-echo and gradient and spin-echo, respectively. This is due to the inherent self-navigation and motion correction of PROPELLER-based techniques. However, it is unknown how various acquisition parameters that determine k-space sampling affect the accuracy of motion correction in PROPELLER and Turboprop-MRI. The goal of this work was to evaluate the accuracy of motion correction in both techniques, to identify an optimal rotation correction approach, and determine acquisition strategies for optimal motion correction. It was demonstrated that, blades with multiple lines allow more accurate estimation of motion than blades with fewer lines. Also, it was shown that Turboprop-MRI is less sensitive to motion than PROPELLER. Furthermore, it was demonstrated that the number of blades does not significantly affect motion correction. Finally, clinically appropriate acquisition strategies that optimize motion correction were discussed for PROPELLER and Turboprop-MRI. PMID:19365858
Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul
2011-07-01
In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a tgamma-test with a 3%/3 mm criterion. The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the gamma-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation. The delivery efficiency of moving average tracking was up to four times higher than that of real-time tracking and approached the efficiency of no compensation for all cases. The geometric accuracy and dosimetric accuracy of the moving average algorithm was between real-time tracking and no compensation, approximately half the percentage of dosimetric points failing the gamma-test compared with no compensation.
Dynamic behavioral strategies during sonar signal emission in roundleaf bats.
Feng, Lin; Li, Yitan; Lu, Hongwang
2013-10-02
For echolocating bats which emit biosonar pulses nasally, their nostrils are surrounded by fleshy appendages that diffract the outgoing ultrasonic waves. The posterior leaf, as a prominent part of the noseleaf, was mentioned in previous preliminary observations to move during flight in some species of bats, yet the detailed motion patterns and thus the possible functional role of the posterior leaf movement in biosonar systems remain unclear. In the current work, the motion of the posterior leaf of living pratt's roundleaf bats has been investigated quantitatively. Temporal characterizations of the noseleaf movement and the ultrasonic pulse emission were performed by virtue of synchronized laser vibrometry and sound recording. The results showed that the posterior leaf tilted forwards and restored to original position within tens of milliseconds. Noseleaf motions were temporally correlated with the emitted ultrasonic pulses. The surfaces of the posterior leaf were moving in the anterior direction in most of the pulse duration. The bats were able to switch the motions on or off. From the comparison with the previously reported noseleaf dynamics in horseshoe bat, we find similar ratio sizes and displacements of the noseleaves compared to the used wavelengths, implying that similar behavioral strategies are utilized by species of bats and it may be applied to different components of the signal emitting apparatus. It suggests that the dynamic sensing principles may widely play a role in the biosonar systems and the investigation on time-variant mechanisms is of capital importance to understand the biosonar sensing strategies used by echolocating bats. © 2013.
Moulin, Kevin; Croisille, Pierre; Feiweier, Thorsten; Delattre, Benedicte M A; Wei, Hongjiang; Robert, Benjamin; Beuf, Olivier; Viallon, Magalie
2016-07-01
In this study, we proposed an efficient free-breathing strategy for rapid and improved cardiac diffusion-weighted imaging (DWI) acquisition using a single-shot spin-echo echo planar imaging (SE-EPI) sequence. A real-time slice-following technique during free-breathing was combined with a sliding acquisition-window strategy prior Principal Component Analysis temporal Maximum Intensity Projection (PCAtMIP) postprocessing of in-plane co-registered diffusion-weighted images. This methodology was applied to 10 volunteers to quantify the performance of the motion correction technique and the reproducibility of diffusion parameters. The slice-following technique offers a powerful head-foot respiratory motion management solution for SE-EPI cDWI with the advantage of a 100% duty cycle scanning efficiency. The level of co-registration was further improved using nonrigid motion corrections and was evaluated with a co-registration index. Vascular fraction f and the diffusion coefficients D and D* were determined to be 0.122 ± 0.013, 1.41 ± 0.09 × 10(-3) mm(2) /s and 43.6 ± 9.2 × 10(-3) mm(2) /s, respectively. From the multidirectional dataset, the measured mean diffusivity was 1.72 ± 0.09 × 10(-3) mm(2) /s and the fractional anisotropy was 0.36 ± 0.02. The slice-following DWI SE-EPI sequence is a promising solution for clinical implementation, offering a robust improved workflow for further evaluation of DWI in cardiology. Magn Reson Med 76:70-82, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Automated Leaf Tracking using Multi-view Image Sequences of Maize Plants for Leaf-growth Monitoring
NASA Astrophysics Data System (ADS)
Das Choudhury, S.; Awada, T.; Samal, A.; Stoerger, V.; Bashyam, S.
2017-12-01
Extraction of phenotypes with botanical importance by analyzing plant image sequences has the desirable advantages of non-destructive temporal phenotypic measurements of a large number of plants with little or no manual intervention in a relatively short period of time. The health of a plant is best interpreted by the emergence timing and temporal growth of individual leaves. For automated leaf growth monitoring, it is essential to track each leaf throughout the life cycle of the plant. Plants are constantly changing organisms with increasing complexity in architecture due to variations in self-occlusions and phyllotaxy, i.e., arrangements of leaves around the stem. The leaf cross-overs pose challenges to accurately track each leaf using single view image sequence. Thus, we introduce a novel automated leaf tracking algorithm using a graph theoretic approach by multi-view image sequence analysis based on the determination of leaf-tips and leaf-junctions in the 3D space. The basis of the leaf tracking algorithm is: the leaves emerge using bottom-up approach in the case of a maize plant, and the direction of leaf emergence strictly alternates in terms of direction. The algorithm involves labeling of the individual parts of a plant, i.e., leaves and stem, following graphical representation of the plant skeleton, i.e., one-pixel wide connected line obtained from the binary image. The length of the leaf is measured by the number of pixels in the leaf skeleton. To evaluate the performance of the algorithm, a benchmark dataset is indispensable. Thus, we publicly release University of Nebraska-Lincoln Component Plant Phenotyping dataset-2 (UNL-CPPD-2) consisting of images of the 20 maize plants captured by visible light camera of the Lemnatec Scanalyzer 3D high throughout plant phenotyping facility once daily for 60 days from 10 different views. The dataset is aimed to facilitate the development and evaluation of leaf tracking algorithms and their uniform comparisons.
Tamhane, Ashish A; Arfanakis, Konstantinos
2009-07-01
Periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and Turboprop MRI are characterized by greatly reduced sensitivity to motion, compared to their predecessors, fast spin-echo (FSE) and gradient and spin-echo (GRASE), respectively. This is due to the inherent self-navigation and motion correction of PROPELLER-based techniques. However, it is unknown how various acquisition parameters that determine k-space sampling affect the accuracy of motion correction in PROPELLER and Turboprop MRI. The goal of this work was to evaluate the accuracy of motion correction in both techniques, to identify an optimal rotation correction approach, and determine acquisition strategies for optimal motion correction. It was demonstrated that blades with multiple lines allow more accurate estimation of motion than blades with fewer lines. Also, it was shown that Turboprop MRI is less sensitive to motion than PROPELLER. Furthermore, it was demonstrated that the number of blades does not significantly affect motion correction. Finally, clinically appropriate acquisition strategies that optimize motion correction are discussed for PROPELLER and Turboprop MRI. (c) 2009 Wiley-Liss, Inc.
SU-G-BRA-14: Dose in a Rigidly Moving Phantom with Jaw and MLC Compensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, E; Lucas, D
Purpose: To validate dose calculation for a rigidly moving object with jaw motion and MLC shifts to compensate for the motion in a TomoTherapy™ treatment delivery. Methods: An off-line version of the TomoTherapy dose calculator was extended to perform dose calculations for rigidly moving objects. A variety of motion traces were added to treatment delivery plans, along with corresponding jaw compensation and MLC shift compensation profiles. Jaw compensation profiles were calculated by shifting the jaws such that the center of the treatment beam moved by an amount equal to the motion in the longitudinal direction. Similarly, MLC compensation profiles weremore » calculated by shifting the MLC leaves by an amount that most closely matched the motion in the transverse direction. The same jaw and MLC compensation profiles were used during simulated treatment deliveries on a TomoTherapy system, and film measurements were obtained in a rigidly moving phantom. Results: The off-line TomoTherapy dose calculator accurately predicted dose profiles for a rigidly moving phantom along with jaw motion and MLC shifts to compensate for the motion. Calculations matched film measurements to within 2%/1 mm. Jaw and MLC compensation substantially reduced the discrepancy between the delivered dose distribution and the calculated dose with no motion. For axial motion, the compensated dose matched the no-motion dose within 2%/1mm. For transverse motion, the dose matched within 2%/3mm (approximately half the width of an MLC leaf). Conclusion: The off-line TomoTherapy dose calculator accurately computes dose delivered to a rigidly moving object, and accurately models the impact of moving the jaws and shifting the MLC leaf patterns to compensate for the motion. Jaw tracking and MLC leaf shifting can effectively compensate for the dosimetric impact of motion during a TomoTherapy treatment delivery.« less
Owor, Betty E; Shepherd, Dionne N; Taylor, Nigel J; Edema, Richard; Monjane, Adérito L; Thomson, Jennifer A; Martin, Darren P; Varsani, Arvind
2007-03-01
Leaf samples from 155 maize streak virus (MSV)-infected maize plants were collected from 155 farmers' fields in 23 districts in Uganda in May/June 2005 by leaf-pressing infected samples onto FTA Classic Cards. Viral DNA was successfully extracted from cards stored at room temperature for 9 months. The diversity of 127 MSV isolates was analysed by PCR-generated RFLPs. Six representative isolates having different RFLP patterns and causing either severe, moderate or mild disease symptoms, were chosen for amplification from FTA cards by bacteriophage phi29 DNA polymerase using the TempliPhi system. Full-length genomes were inserted into a cloning vector using a unique restriction enzyme site, and sequenced. The 1.3-kb PCR product amplified directly from FTA-eluted DNA and used for RFLP analysis was also cloned and sequenced. Comparison of cloned whole genome sequences with those of the original PCR products indicated that the correct virus genome had been cloned and that no errors were introduced by the phi29 polymerase. This is the first successful large-scale application of FTA card technology to the field, and illustrates the ease with which large numbers of infected samples can be collected and stored for downstream molecular applications such as diversity analysis and cloning of potentially new virus genomes.
Nakayama, Tomohiro; Nishie, Akihiro; Yoshiura, Takashi; Asayama, Yoshiki; Ishigami, Kousei; Kakihara, Daisuke; Obara, Makoto; Honda, Hiroshi
2015-12-01
To show the feasibility of motion-sensitized driven-equilibrium-balanced magnetic resonance cholangiopancreatography and to determine the optimal velocity encoding (VENC) value. Sixteen healthy volunteers underwent MRI study using a 1.5-T clinical unit and a 32-channel body array coil. For each volunteer, images were obtained using the following seven respiratory-triggered sequences: (1) balanced magnetic resonance cholangiopancreatography without motion-sensitized driven-equilibrium, and (2)-(7) balanced magnetic resonance cholangiopancreatography with motion-sensitized driven-equilibrium, with VENC=1, 3, 5, 7, 9 and ∞cm/s for the x-, y-, and z-directions, respectively. Quantitative evaluation was obtained by measuring the maximum signal intensity of the common hepatic duct, portal vein, liver tissue including visible peripheral vessels, and liver tissue excluding visible peripheral vessels that were evaluated. We compared the contrast ratios of portal vein/common hepatic duct, liver tissue including visible peripheral vessels/common hepatic duct and liver tissue excluding visible peripheral vessels/common hepatic duct among the five finite sequences (VENC=1, 3, 5, 7, and 9cm/s). Statistical comparisons were performed using the t-test for paired data with the Bonferroni correction. Suppression of blood vessel signals was achieved with motion-sensitized driven-equilibrium sequences. We found the optimal VENC values to be either 3 or 5cm/s with the best suppression of relative vessel signals to bile ducts. At a lower VENC value (1cm/s), the bile duct signal was reduced, presumably due to minimal biliary flow. The feasibility of motion-sensitized driven-equilibrium-balanced magnetic resonance cholangiopancreatography was suggested. The optimal VENC value was considered to be either 3 or 5cm/s. The clinical usefulness of this new magnetic resonance cholangiopancreatography sequence needs to be verified by further studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Eye-motion-corrected optical coherence tomography angiography using Lissajous scanning.
Chen, Yiwei; Hong, Young-Joo; Makita, Shuichi; Yasuno, Yoshiaki
2018-03-01
To correct eye motion artifacts in en face optical coherence tomography angiography (OCT-A) images, a Lissajous scanning method with subsequent software-based motion correction is proposed. The standard Lissajous scanning pattern is modified to be compatible with OCT-A and a corresponding motion correction algorithm is designed. The effectiveness of our method was demonstrated by comparing en face OCT-A images with and without motion correction. The method was further validated by comparing motion-corrected images with scanning laser ophthalmoscopy images, and the repeatability of the method was evaluated using a checkerboard image. A motion-corrected en face OCT-A image from a blinking case is presented to demonstrate the ability of the method to deal with eye blinking. Results show that the method can produce accurate motion-free en face OCT-A images of the posterior segment of the eye in vivo .
First Complete Squash leaf curl China virus Genomic Segment DNA-A Sequence from East Timor
Maina, Solomon; Edwards, Owain R.; de Almeida, Luis; Ximenes, Abel
2017-01-01
ABSTRACT We present here the first complete Squash leaf curl China virus (SLCCV) genomic segment DNA-A sequence from East Timor. It was isolated from a pumpkin plant. When compared with 15 complete SLCCV DNA-A genome sequences from other world regions, it most resembled the Malaysian isolate MC1 sequence. PMID:28619789
2011-01-01
Background Abiotic stresses, such as water deficit and soil salinity, result in changes in physiology, nutrient use, and vegetative growth in vines, and ultimately, yield and flavor in berries of wine grape, Vitis vinifera L. Large-scale expressed sequence tags (ESTs) were generated, curated, and analyzed to identify major genetic determinants responsible for stress-adaptive responses. Although roots serve as the first site of perception and/or injury for many types of abiotic stress, EST sequencing in root tissues of wine grape exposed to abiotic stresses has been extremely limited to date. To overcome this limitation, large-scale EST sequencing was conducted from root tissues exposed to multiple abiotic stresses. Results A total of 62,236 expressed sequence tags (ESTs) were generated from leaf, berry, and root tissues from vines subjected to abiotic stresses and compared with 32,286 ESTs sequenced from 20 public cDNA libraries. Curation to correct annotation errors, clustering and assembly of the berry and leaf ESTs with currently available V. vinifera full-length transcripts and ESTs yielded a total of 13,278 unique sequences, with 2302 singletons and 10,976 mapped to V. vinifera gene models. Of these, 739 transcripts were found to have significant differential expression in stressed leaves and berries including 250 genes not described previously as being abiotic stress responsive. In a second analysis of 16,452 ESTs from a normalized root cDNA library derived from roots exposed to multiple, short-term, abiotic stresses, 135 genes with root-enriched expression patterns were identified on the basis of their relative EST abundance in roots relative to other tissues. Conclusions The large-scale analysis of relative EST frequency counts among a diverse collection of 23 different cDNA libraries from leaf, berry, and root tissues of wine grape exposed to a variety of abiotic stress conditions revealed distinct, tissue-specific expression patterns, previously unrecognized stress-induced genes, and many novel genes with root-enriched mRNA expression for improving our understanding of root biology and manipulation of rootstock traits in wine grape. mRNA abundance estimates based on EST library-enriched expression patterns showed only modest correlations between microarray and quantitative, real-time reverse transcription-polymerase chain reaction (qRT-PCR) methods highlighting the need for deep-sequencing expression profiling methods. PMID:21592389
A biomechanical investigation of dual growing rods used for fusionless scoliosis correction.
Quick, M E; Grant, C A; Adam, C J; Askin, G N; Labrom, R D; Pearcy, M J
2015-01-01
The use of dual growing rods is a fusionless surgical approach to the treatment of early onset scoliosis which aims to harness potential growth and correct spinal deformity. The purpose of this study was to compare the in-vitro biomechanical response of two different dual rod designs under axial rotation loading. Six porcine spines were dissected into seven level thoracolumbar multi-segment units. Each specimen was mounted and tested in a biaxial Instron machine, undergoing nondestructive left and right axial rotation to peak moments of 4 Nm at a constant rotation rate of 8 deg. s(-1). A motion tracking system (Optotrak) measured 3D displacements of individual vertebrae. Each spine was tested in an un-instrumented state first and then with appropriately sized semi-constrained and 'rigid' growing rods in alternating sequence. The range of motion, neutral zone size and stiffness were calculated from the moment-rotation curves and intervertebral range of motion was calculated from Optotrak data. Irrespective of test sequence, rigid rods showed a significant reduction of total rotation across all instrumented levels (with increased stiffness) whilst semi-constrained rods exhibited similar rotational behavior to the un-instrumented spines (P<0.05). An 11.1% and 8.0% increase in stiffness for left and right axial rotation respectively and 14.9% reduction in total range of motion were recorded with dual rigid rods compared with semi-constrained rods. Based on these findings, the Semi-constrained growing rods were shown to not increase axial rotation stiffness compared with un-instrumented spines. This is thought to provide a more physiological environment for the growing spine compared to dual rigid rod constructs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Liu, Fubo; Li, Guangjun; Shen, Jiuling; Li, Ligin; Bai, Sen
2017-02-01
While radiation treatment to patients with tumors in thorax and abdomen is being performed, further improvement of radiation accuracy is restricted by the tumor intra-fractional motion due to respiration. Real-time tumor tracking radiation is an optimal solution to tumor intra-fractional motion. A review of the progress of real-time dynamic multi-leaf collimator(DMLC) tracking is provided in the present review, including DMLC tracking method, time lag of DMLC tracking system, and dosimetric verification.
MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner.
Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B; Michel, Christian J; El Fakhri, Georges; Schmand, Matthias; Sorensen, A Gregory
2011-01-01
Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI-based estimates. An MRI-based MC algorithm was implemented for an integrated MR-PET scanner. High-temporal-resolution MRI-derived motion estimates (obtained while simultaneously acquiring anatomic or functional MRI data) can be used for PET MC. An MRI-based MC method has the potential to improve PET image quality, increasing its reliability, reproducibility, and quantitative accuracy, and to benefit many neurologic applications.
Chui, Chen-Shou; Yorke, Ellen; Hong, Linda
2003-07-01
Intensity-modulated radiation therapy can be conveniently delivered with a multileaf collimator. With this method, the entire field is not delivered at once, but rather it is composed of many subfields defined by the leaf positions as a function of beam on time. At any given instant, only these subfields are delivered. During treatment, if the organ moves, part of the volume may move in or out of these subfields. Due to this interplay between organ motion and leaf motion the delivered dose may be different from what was planned. In this work, we present a method that calculates the effects of organ motion on delivered dose. The direction of organ motion may be parallel or perpendicular to the leaf motion, and the effect can be calculated for a single fraction or for multiple fractions. Three breast patients and four lung patients were included in this study,with the amplitude of the organ motion varying from +/- 3.5 mm to +/- 10 mm, and the period varying from 4 to 8 seconds. Calculations were made for these patients with and without organ motion, and results were examined in terms of isodose distribution and dose volume histograms. Each calculation was repeated ten times in order to estimate the statistical uncertainties. For selected patients, calculations were also made with conventional treatment technique. The effects of organ motion on conventional techniques were compared relative to that on IMRT techniques. For breast treatment, the effect of organ motion primarily broadened the penumbra at the posterior field edge. The dose in the rest of the treatment volume was not significantly affected. For lung treatment, the effect also broadened the penumbra and degraded the coverage of the planning target volume (PTV). However, the coverage of the clinical target volume (CTV) was not much affected, provided the PTV margin was adequate. The same effects were observed for both IMRT and conventional treatment techniques. For the IMRT technique, the standard deviations of ten samples of a 30-fraction calculation were very small for all patients, implying that over a typical treatment course of 30 fractions, the delivered dose was very close to the expected value. Hence, under typical clinical conditions, the effect of organ motion on delivered dose can be calculated without considering the interplay between the organ motion and the leaf motion. It can be calculated as the weighted average of the dose distribution without organ motion with the distribution of organ motion. Since the effects of organ motion on dose were comparable for both IMRT and conventional techniques, the PTV margin should remain the same for both techniques.
Brewer, Marin Talbot; Turner, Ashley N; Brannen, Phillip M; Cline, William O; Richardson, Elizabeth A
2014-01-01
Exobasidium leaf and fruit spot of blueberry (Vaccinium section Cyanococcus) is an emerging disease that has rapidly increased in prevalence throughout the southeastern USA. To determine whether this disease is caused by a new species of Exobasidium, we studied the morphology and phylogenetic relationship of the causal fungus compared with other members of the genus, including the type species E. vaccinii and other species that parasitize blueberry and cranberry (V. macrocarpon). Both scanning electron microscopy and light microscopy were used for morphological characterization. For phylogenetic analyses, we sequenced the large subunit of the rDNA (LSU) from 10 isolates collected from leaf or fruit spots of rabbiteye blueberry (V. virgatum), highbush blueberry (V. corymbosum) and southern highbush blueberry (Vaccinium interspecific hybrid) from Georgia and North Carolina and six isolates from leaf spots of lowbush blueberry (V. angustifolium) from Maine and Nova Scotia, Canada. LSU was sequenced from isolates causing red leaf disease of lowbush blueberry and red leaf spot (E. rostrupii) and red shoot (E. perenne) of cranberry. In addition, LSU sequences from GenBank, including sequences with high similarity to the emerging parasite and from Exobasidium spp. parasitizing other Vaccinium spp. and related hosts, were obtained. All sequences were aligned and subjected to phylogenetic analyses. Results indicated that the emerging parasite in the southeastern USA differs morphologically and phylogenetically from other described species and is described herein as Exobasidium maculosum. Within the southeastern USA, clustering based on host species, host tissue type (leaf or fruit) or geographic region was not detected; however, leaf spot isolates from lowbush blueberry were genetically different and likely represent a unique species. © 2014 by The Mycological Society of America.
Kumar, Jitendra; Gunapati, Samatha; Singh, Sudhir P; Kumar, Abhinav; Lalit, Adarsh; Sharma, Naresh C; Puranik, Rekha; Tuli, Rakesh
2013-06-01
A begomovirus and its associated alpha- and betasatellite were detected in tomato plants affected with leaf curl disease. Based on a nucleotide sequence identity of 99 %, this begomovirus was designated an isolate of cotton leaf curl Burewala virus (CLCuBuV). The alphasatellite exhibited 93 % sequence identity to cotton leaf curl Burewala alphasatellite (CLCuBuA) and is hence referred to here as a variant of CLCuBuA. The detected betasatellite was recombinant in nature and showed 70 % sequence identity to the known betasatellites. Inoculation of healthy tomato with CLCuBuV plus betasatellite, either in the presence or the absence of alphasatellite, led to typical leaf curling, while inoculation with CLCuBuV in the absence of betasatellite resulted in mild symptoms. This confirmed the role of the betasatellite in expression of disease symptoms. We propose to name the newly detected betasatellite tomato leaf curl Hajipur betasatellite (ToLCHJB).
Shahid, M S; Pudashini, B J; Khatri-Chhetri, G B; Briddon, R W; Natsuaki, K T
2017-04-01
Pea (Pisum sativum) plants exhibiting leaf distortion, yellowing, stunted growth and reduction in leaf size from Rampur, Nepal were shown to be infected by a begomovirus in association with betasatellites and alphasatellites. The begomovirus associated with the disease showed only low levels of nucleotide sequence identity (<91%) to previously characterized begomoviruses. This finding indicates that the pea samples were infected with an as yet undescribed begomovirus for which the name Pea leaf distortion virus (PLDV) is proposed. Two species of betasatellite were identified in association with PLDV. One group of sequences had high (>78%) nucleotide sequence identity to isolates of Ludwigia leaf distortion betasatellite (LuLDB), and the second group had less than 78% to all other betasatellite sequences. This showed PLDV to be associated with either LuLDB or a previously undescribed betasatellite for which the name Pea leaf distortion betasatellite is proposed. Two types of alphasatellites were identified in the PLDV-infected pea plants. The first type showed high levels of sequence identity to Ageratum yellow vein alphasatellite, and the second type showed high levels of identity to isolates of Sida yellow vein China alphasatellite. These are the first begomovirus, betasatellites and alphasatellites isolated from pea.
Optimisation of reconstruction--reprojection-based motion correction for cardiac SPECT.
Kangasmaa, Tuija S; Sohlberg, Antti O
2014-07-01
Cardiac motion is a challenging cause of image artefacts in myocardial perfusion SPECT. A wide range of motion correction methods have been developed over the years, and so far automatic algorithms based on the reconstruction--reprojection principle have proved to be the most effective. However, these methods have not been fully optimised in terms of their free parameters and implementational details. Two slightly different implementations of reconstruction--reprojection-based motion correction techniques were optimised for effective, good-quality motion correction and then compared with each other. The first of these methods (Method 1) was the traditional reconstruction-reprojection motion correction algorithm, where the motion correction is done in projection space, whereas the second algorithm (Method 2) performed motion correction in reconstruction space. The parameters that were optimised include the type of cost function (squared difference, normalised cross-correlation and mutual information) that was used to compare measured and reprojected projections, and the number of iterations needed. The methods were tested with motion-corrupt projection datasets, which were generated by adding three different types of motion (lateral shift, vertical shift and vertical creep) to motion-free cardiac perfusion SPECT studies. Method 2 performed slightly better overall than Method 1, but the difference between the two implementations was small. The execution time for Method 2 was much longer than for Method 1, which limits its clinical usefulness. The mutual information cost function gave clearly the best results for all three motion sets for both correction methods. Three iterations were sufficient for a good quality correction using Method 1. The traditional reconstruction--reprojection-based method with three update iterations and mutual information cost function is a good option for motion correction in clinical myocardial perfusion SPECT.
Tuo, D; Shen, W; Yan, P; Li, Ch; Gao, L; Li, X; Li, H; Zhou, P
2013-01-01
Papaya leaf distortion mosaic virus is highly destructive to commercial papaya production. Here, the complete genome sequence was determined for an isolate of papaya leaf distortion mosaic virus, designated PLDMV-DF, infecting the commercialized papaya ringspot virus (PRSV)-resistant transgenic papaya from China. Excluding the 3'-poly (A) tail, the sequence shares high sequence identity to several PLDMV isolates from Taiwan and Japan and is phylogenetically most closely related to the isolate from Japan. Infection of PLDMV-DF in transgenic PRSV-resistant papaya may indicate emergence of this disease in genetically engineered plants. The reported sequence for this isolate may help generate bi-transgenic papaya resistant to PRSV and PLDMV.
A new virus in Luteoviridae is associated with raspberry leaf curl disease
USDA-ARS?s Scientific Manuscript database
To determine the etiology of Raspberry Leaf Curl Disease (RLCD), which causes leaf curling, leaf distortion, leaf chlorosis, shoot dwarfing, shoot proliferation in raspberries and can kill plants within three years, a next generation sequences approach was applied. Two red raspberry plants collected...
A dual-Kinect approach to determine torso surface motion for respiratory motion correction in PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heß, Mirco, E-mail: mirco.hess@uni-muenster.de; Büther, Florian; Dawood, Mohammad
2015-05-15
Purpose: Respiratory gating is commonly used to reduce blurring effects and attenuation correction artifacts in positron emission tomography (PET). Established clinically available methods that employ body-attached hardware for acquiring respiration signals rely on the assumption that external surface motion and internal organ motion are well correlated. In this paper, the authors present a markerless method comprising two Microsoft Kinects for determining the motion on the whole torso surface and aim to demonstrate its validity and usefulness—including the potential to study the external/internal correlation and to provide useful information for more advanced correction approaches. Methods: The data of two Kinects aremore » used to calculate 3D representations of a patient’s torso surface with high spatial coverage. Motion signals can be obtained for any position by tracking the mean distance to a virtual camera with a view perpendicular to the surrounding surface. The authors have conducted validation experiments including volunteers and a moving high-precision platform to verify the method’s suitability for providing meaningful data. In addition, the authors employed it during clinical {sup 18}F-FDG-PET scans and exemplarily analyzed the acquired data of ten cancer patients. External signals of abdominal and thoracic regions as well as data-driven signals were used for gating and compared with respect to detected displacement of present lesions. Additionally, the authors quantified signal similarities and time shifts by analyzing cross-correlation sequences. Results: The authors’ results suggest a Kinect depth resolution of approximately 1 mm at 75 cm distance. Accordingly, valid signals could be obtained for surface movements with small amplitudes in the range of only few millimeters. In this small sample of ten patients, the abdominal signals were better suited for gating the PET data than the thoracic signals and the correlation of data-driven signals was found to be stronger with abdominal signals than with thoracic signals (average Pearson correlation coefficients of 0.74 ± 0.17 and 0.45 ± 0.23, respectively). In all cases, except one, the abdominal respiratory motion preceded the thoracic motion—a maximum delay of approximately 600 ms was detected. Conclusions: The method provides motion information with sufficiently high spatial and temporal resolution. Thus, it enables meaningful analysis in the form of comparisons between amplitudes and phase shifts of signals from different regions. In combination with a large field-of-view, as given by combining the data of two Kinect cameras, it yields surface representations that might be useful in the context of motion correction and motion modeling.« less
Mökkönen, Harri; Ala-Nissila, Tapio; Jónsson, Hannes
2016-09-07
The recrossing correction to the transition state theory estimate of a thermal rate can be difficult to calculate when the energy barrier is flat. This problem arises, for example, in polymer escape if the polymer is long enough to stretch between the initial and final state energy wells while the polymer beads undergo diffusive motion back and forth over the barrier. We present an efficient method for evaluating the correction factor by constructing a sequence of hyperplanes starting at the transition state and calculating the probability that the system advances from one hyperplane to another towards the product. This is analogous to what is done in forward flux sampling except that there the hyperplane sequence starts at the initial state. The method is applied to the escape of polymers with up to 64 beads from a potential well. For high temperature, the results are compared with direct Langevin dynamics simulations as well as forward flux sampling and excellent agreement between the three rate estimates is found. The use of a sequence of hyperplanes in the evaluation of the recrossing correction speeds up the calculation by an order of magnitude as compared with the traditional approach. As the temperature is lowered, the direct Langevin dynamics simulations as well as the forward flux simulations become computationally too demanding, while the harmonic transition state theory estimate corrected for recrossings can be calculated without significant increase in the computational effort.
SU-E-T-430: Modeling MLC Leaf End in 2D for Sliding Window IMRT and Arc Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, X; Zhu, T
2014-06-01
Purpose: To develop a 2D geometric model for MLC accounting for leaf end dose leakage for dynamic IMRT and Rapidarc therapy. Methods: Leaf-end dose leakage is one of the problems for MLC dose calculation and modeling. Dosimetric leaf gap used to model the MLC and to count for leakage in dose calculation, but may not be accurate for smaller leaf gaps. We propose another geometric modeling method to compensate for the MLC round-shape leaf ends dose leakage, and improve the accuracy of dose calculation and dose verification. A triangular function is used to geometrically model the MLC leaf end leakagemore » in the leaf motion direction, and a step function is used in the perpendicular direction. Dose measurements with different leaf gap, different window width, and different window height were conducted, and the results were used to fit the analytical model to get the model parameters. Results: Analytical models have been obtained for stop-and-shoot and dynamic modes for MLC motion. Parameters a=0.4, lw'=5.0 mm for 6X and a=0.54, lw'=4.1 mm for 15x were obtained from the fitting process. The proposed MLC leaf end model improves the dose profile at the two ends of the sliding window opening. This improvement is especially significant for smaller sliding window openings, which are commonly used for highly modulated IMRT plans and arc therapy plans. Conclusion: This work models the MLC round leaf end shape and movement pattern for IMRT dose calculation. The theory, as well as the results in this work provides a useful tool for photon beam IMRT dose calculation and verification.« less
Wang, Y S; Liu, Z Y; Li, Y F; Zhang, Y; Yang, X F; Feng, H
2013-04-02
Artistic diversiform leaf color is an important agronomic trait that affects the market value of ornamental kale. In the present study, genetic analysis showed that a single-dominant gene, Re (red leaf), determines the red leaf trait in ornamental kale. An F2 population consisting of 500 individuals from the cross of a red leaf double-haploid line 'D05' with a white leaf double-haploid line 'D10' was analyzed for the red leaf trait. By combining bulked segregant analysis and sequence-related amplified polymorphism technology, we identified 3 markers linked to the Re/re locus. A genetic map of the Re locus was constructed using these sequence-related amplified polymorphism markers. Two of the markers, Me8Em4 and Me8Em17, were located on one side of Re/re at distances of 2.2 and 6.4 cM, whereas the other marker, Me9Em11, was located on the other side of Re/re at a distance of 3.7 cM. These markers could be helpful for the subsequent cloning of the red trait gene and marker-assisted selection in ornamental kale breeding programs.
Fast leaf-fitting with generalized underdose/overdose constraints for real-time MLC tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Douglas, E-mail: douglas.moore@utsouthwestern.edu; Sawant, Amit; Ruan, Dan
2016-01-15
Purpose: Real-time multileaf collimator (MLC) tracking is a promising approach to the management of intrafractional tumor motion during thoracic and abdominal radiotherapy. MLC tracking is typically performed in two steps: transforming a planned MLC aperture in response to patient motion and refitting the leaves to the newly generated aperture. One of the challenges of this approach is the inability to faithfully reproduce the desired motion-adapted aperture. This work presents an optimization-based framework with which to solve this leaf-fitting problem in real-time. Methods: This optimization framework is designed to facilitate the determination of leaf positions in real-time while accounting for themore » trade-off between coverage of the PTV and avoidance of organs at risk (OARs). Derived within this framework, an algorithm is presented that can account for general linear transformations of the planned MLC aperture, particularly 3D translations and in-plane rotations. This algorithm, together with algorithms presented in Sawant et al. [“Management of three-dimensional intrafraction motion through real-time DMLC tracking,” Med. Phys. 35, 2050–2061 (2008)] and Ruan and Keall [Presented at the 2011 IEEE Power Engineering and Automation Conference (PEAM) (2011) (unpublished)], was applied to apertures derived from eight lung intensity modulated radiotherapy plans subjected to six-degree-of-freedom motion traces acquired from lung cancer patients using the kilovoltage intrafraction monitoring system developed at the University of Sydney. A quality-of-fit metric was defined, and each algorithm was evaluated in terms of quality-of-fit and computation time. Results: This algorithm is shown to perform leaf-fittings of apertures, each with 80 leaf pairs, in 0.226 ms on average as compared to 0.082 and 64.2 ms for the algorithms of Sawant et al., Ruan, and Keall, respectively. The algorithm shows approximately 12% improvement in quality-of-fit over the Sawant et al. approach, while performing comparably to Ruan and Keall. Conclusions: This work improves upon the quality of the Sawant et al. approach, but does so without sacrificing run-time performance. In addition, using this framework allows for complex leaf-fitting strategies that can be used to account for PTV/OAR trade-off during real-time MLC tracking.« less
Quantitative Evaluation of PET Respiratory Motion Correction Using MR Derived Simulated Data
NASA Astrophysics Data System (ADS)
Polycarpou, Irene; Tsoumpas, Charalampos; King, Andrew P.; Marsden, Paul K.
2015-12-01
The impact of respiratory motion correction on quantitative accuracy in PET imaging is evaluated using simulations for variable patient specific characteristics such as tumor uptake and respiratory pattern. Respiratory patterns from real patients were acquired, with long quiescent motion periods (type-1) as commonly observed in most patients and with long-term amplitude variability as is expected under conditions of difficult breathing (type-2). The respiratory patterns were combined with an MR-derived motion model to simulate real-time 4-D PET-MR datasets. Lung and liver tumors were simulated with diameters of 10 and 12 mm and tumor-to-background ratio ranging from 3:1 to 6:1. Projection data for 6- and 3-mm PET resolution were generated for the Philips Gemini scanner and reconstructed without and with motion correction using OSEM (2 iterations, 23 subsets). Motion correction was incorporated into the reconstruction process based on MR-derived motion fields. Tumor peak standardized uptake values (SUVpeak) were calculated from 30 noise realizations. Respiratory motion correction improves the quantitative performance with the greatest benefit observed for patients of breathing type-2. For breathing type-1 after applying motion correction, SUVpeak of 12-mm liver tumor with 6:1 contrast was increased by 46% for a current PET resolution (i.e., 6 mm) and by 47% for a higher PET resolution (i.e., 3 mm). Furthermore, the results of this study indicate that the benefit of higher scanner resolution is small unless motion correction is applied. In particular, for large liver tumor (12 mm) with low contrast (3:1) after motion correction, the SUVpeak was increased by 34% for 6-mm resolution and by 50% for a higher PET resolution (i.e., 3-mm resolution. This investigation indicates that there is a high impact of respiratory motion correction on tumor quantitative accuracy and that motion correction is important in order to benefit from the increased resolution of future PET scanners.
Magnetic Resonance-based Motion Correction for Quantitative PET in Simultaneous PET-MR Imaging.
Rakvongthai, Yothin; El Fakhri, Georges
2017-07-01
Motion degrades image quality and quantitation of PET images, and is an obstacle to quantitative PET imaging. Simultaneous PET-MR offers a tool that can be used for correcting the motion in PET images by using anatomic information from MR imaging acquired concurrently. Motion correction can be performed by transforming a set of reconstructed PET images into the same frame or by incorporating the transformation into the system model and reconstructing the motion-corrected image. Several phantom and patient studies have validated that MR-based motion correction strategies have great promise for quantitative PET imaging in simultaneous PET-MR. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wells, Jered R.; Segars, W. Paul; Kigongo, Christopher J. N.; Dobbins, James T., III
2011-03-01
This paper describes a recently developed post-acquisition motion correction strategy for application to lower-cost computed tomography (LCCT) for under-resourced regions of the world. Increased awareness regarding global health and its challenges has encouraged the development of more affordable healthcare options for underserved people worldwide. In regions such as sub-Saharan Africa, intermediate level medical facilities may serve millions with inadequate or antiquated equipment due to financial limitations. In response, the authors have proposed a LCCT design which utilizes a standard chest x-ray examination room with a digital flat panel detector (FPD). The patient rotates on a motorized stage between the fixed cone-beam source and FPD, and images are reconstructed using a Feldkamp algorithm for cone-beam scanning. One of the most important proofs-of-concept in determining the feasibility of this system is the successful correction of undesirable motion. A 3D motion correction algorithm was developed in order to correct for potential patient motion, stage instabilities and detector misalignments which can all lead to motion artifacts in reconstructed images. Motion will be monitored by the radiographic position of fiducial markers to correct for rigid body motion in three dimensions. Based on simulation studies, projection images corrupted by motion were re-registered with average errors of 0.080 mm, 0.32 mm and 0.050 mm in the horizontal, vertical and depth dimensions, respectively. The overall absence of motion artifacts in motion-corrected reconstructions indicates that reasonable amounts of motion may be corrected using this novel technique without significant loss of image quality.
NASA Astrophysics Data System (ADS)
Malagnini, Luca; Akinci, Aybige; Mayeda, Kevin; Munafo', Irene; Herrmann, Robert B.; Mercuri, Alessia
2011-01-01
Based only on weak-motion data, we carried out a combined study on region-specific source scaling and crustal attenuation in the Central Apennines (Italy). Our goal was to obtain a reappraisal of the existing predictive relationships for the ground motion, and to test them against the strong-motion data [peak ground acceleration (PGA), peak ground velocity (PGV) and spectral acceleration (SA)] gathered during the Mw 6.15 L'Aquila earthquake (2009 April 6, 01:32 UTC). The L'Aquila main shock was not part of the predictive study, and the validation test was an extrapolation to one magnitude unit above the largest earthquake of the calibration data set. The regional attenuation was determined through a set of regressions on a data set of 12 777 high-quality, high-gain waveforms with excellent S/N ratios (4259 vertical and 8518 horizontal time histories). Seismograms were selected from the recordings of 170 foreshocks and aftershocks of the sequence (the complete set of all earthquakes with ML≥ 3.0, from 2008 October 1 to 2010 May 10). All waveforms were downloaded from the ISIDe web page (), a web site maintained by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). Weak-motion data were used to obtain a moment tensor solution, as well as a coda-based moment-rate source spectrum, for each one of the 170 events of the L'Aquila sequence (2.8 ≤Mw≤ 6.15). Source spectra were used to verify the good agreement with the source scaling of the Colfiorito seismic sequence of 1997-1998 recently described by Malagnini (2008). Finally, results on source excitation and crustal attenuation were used to produce the absolute site terms for the 23 stations located within ˜80 km of the epicentral area. The complete set of spectral corrections (crustal attenuation and absolute site effects) was used to implement a fast and accurate tool for the automatic computation of moment magnitudes in the Central Apennines.
USDA-ARS?s Scientific Manuscript database
Mycosphaerella fijiensis, the causal agent of banana leaf streak disease (commonly known as black Sigatoka), is the most devastating pathogen attacking bananas (Musa spp). Recently the whole genome sequence of M. fijiensis became available. This sequence was screened for the presence of Variable Num...
Andres, Ryan J; Bowman, Daryl T; Kaur, Baljinder; Kuraparthy, Vasu
2014-01-01
A major leaf shape locus (L) was mapped with molecular markers and genomically targeted to a small region in the D-genome of cotton. By using expression analysis and candidate gene mapping, two LMI1 -like genes are identified as possible candidates for leaf shape trait in cotton. Leaf shape in cotton is an important trait that influences yield, flowering rates, disease resistance, lint trash, and the efficacy of foliar chemical application. The leaves of okra leaf cotton display a significantly enhanced lobing pattern, as well as ectopic outgrowths along the lobe margins when compared with normal leaf cotton. These phenotypes are the hallmark characteristics of mutations in various known modifiers of leaf shape that culminate in the mis/over-expression of Class I KNOX genes. To better understand the molecular and genetic processes underlying leaf shape in cotton, a normal leaf accession (PI607650) was crossed to an okra leaf breeding line (NC05AZ21). An F2 population of 236 individuals confirmed the incompletely dominant single gene nature of the okra leaf shape trait in Gossypium hirsutum L. Molecular mapping with simple sequence repeat markers localized the leaf shape gene to 5.4 cM interval in the distal region of the short arm of chromosome 15. Orthologous mapping of the closely linked markers with the sequenced diploid D-genome (Gossypium raimondii) tentatively resolved the leaf shape locus to a small genomic region. RT-PCR-based expression analysis and candidate gene mapping indicated that the okra leaf shape gene (L (o) ) in cotton might be an upstream regulator of Class I KNOX genes. The linked molecular markers and delineated genomic region in the sequenced diploid D-genome will assist in the future high-resolution mapping and map-based cloning of the leaf shape gene in cotton.
SU-E-T-151: Breathing Synchronized Delivery (BSD) Planning for RapicArc Treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, W; Chen, M; Jiang, S
2015-06-15
Purpose: To propose a workflow for breathing synchronized delivery (BSD) planning for RapicArc treatment. Methods: The workflow includes three stages: screening/simulation, planning, and delivery. In the screening/simulation stage, a 4D CT with the corresponding breathing pattern is acquired for each of the selected patients, who are able to follow their own breathing pattern. In the planning stage, one breathing phase is chosen as the reference, and contours are delineated on the reference image. Deformation maps to other phases are performed along with contour propagation. Based on the control points of the initial 3D plan for the reference phase and themore » respiration trace, the correlation with respiration phases, the leaf sequence and gantry angles is determined. The beamlet matrices are calculated with the corresponding breathing phase and deformed to the reference phase. Using the 4D dose evaluation tool and the original 3D plan DVHs criteria, the leaf sequence is further optimized to meet the planning objectives and the machine constraints. In the delivery stage, the patients are instructed to follow the programmed breathing patterns of their own, and all other parts are the same as the conventional Rapid-Arc delivery. Results: Our plan analysis is based on comparison of the 3D plan with a static target (SD), 3D plan with motion delivery (MD), and the BSD plan. Cyclic motion of range 0 cm to 3 cm was simulated for phantoms and lung CT. The gain of the BSD plan over MD is significant and concordant for both simulation and lung 4DCT, indicating the benefits of 4D planning. Conclusion: Our study shows that the BSD plan can approach the SD plan quality. However, such BSD scheme relies on the patient being able to follow the same breathing curve that is used in the planning stage during radiation delivery. Funded by Varian Medical Systems.« less
Kamel, Katarzyna A; Kroc, Magdalena; Święcicki, Wojciech
2015-01-01
Sequence tagged site (STS) markers are valuable tools for genetic and physical mapping that can be successfully used in comparative analyses among related species. Current challenges for molecular markers genotyping in plants include the lack of fast, sensitive and inexpensive methods suitable for sequence variant detection. In contrast, high resolution melting (HRM) is a simple and high-throughput assay, which has been widely applied in sequence polymorphism identification as well as in the studies of genetic variability and genotyping. The present study is the first attempt to use the HRM analysis to genotype STS markers in narrow-leafed lupin (Lupinus angustifolius L.). The sensitivity and utility of this method was confirmed by the sequence polymorphism detection based on melting curve profiles in the parental genotypes and progeny of the narrow-leafed lupin mapping population. Application of different approaches, including amplicon size and a simulated heterozygote analysis, has allowed for successful genetic mapping of 16 new STS markers in the narrow-leafed lupin genome.
Discovery of an unusual biosynthetic origin for circular proteins in legumes
Poth, Aaron G.; Colgrave, Michelle L.; Lyons, Russell E.; Daly, Norelle L.; Craik, David J.
2011-01-01
Cyclotides are plant-derived proteins that have a unique cyclic cystine knot topology and are remarkably stable. Their natural function is host defense, but they have a diverse range of pharmaceutically important activities, including uterotonic activity and anti-HIV activity, and have also attracted recent interest as templates in drug design. Here we report an unusual biosynthetic origin of a precursor protein of a cyclotide from the butterfly pea, Clitoria ternatea, a representative member of the Fabaceae plant family. Unlike all previously reported cyclotides, the domain corresponding to the mature cyclotide from this Fabaceae plant is embedded within an albumin precursor protein. We confirmed the expression and correct processing of the cyclotide encoded by the Cter M precursor gene transcript following extraction from C. ternatea leaf and sequencing by tandem mass spectrometry. The sequence was verified by direct chemical synthesis and the peptide was found to adopt a classic knotted cyclotide fold as determined by NMR spectroscopy. Seven additional cyclotide sequences were also identified from C. ternatea leaf and flower, five of which were unique. Cter M displayed insecticidal activity against the cotton budworm Helicoverpa armigera and bound to phospholipid membranes, suggesting its activity is modulated by membrane disruption. The Fabaceae is the third largest family of flowering plants and many Fabaceous plants are of huge significance for human nutrition. Knowledge of Fabaceae cyclotide gene transcripts should enable the production of modified cyclotides in crop plants for a variety of agricultural or pharmaceutical applications, including plant-produced designer peptide drugs. PMID:21593408
Gambarota, Giulio; Hitti, Eric; Leporq, Benjamin; Saint-Jalmes, Hervé; Beuf, Olivier
2017-01-01
Tissue perfusion measurements using intravoxel incoherent motion (IVIM) diffusion-MRI are of interest for investigations of liver pathologies. A confounding factor in the perfusion quantification is the partial volume between liver tissue and large blood vessels. The aim of this study was to assess and correct for this partial volume effect in the estimation of the perfusion fraction. MRI experiments were performed at 3 Tesla with a diffusion-MRI sequence at 12 b-values. Diffusion signal decays in liver were analyzed using the non-negative least square (NNLS) method and the biexponential fitting approach. In some voxels, the NNLS analysis yielded a very fast-decaying component that was assigned to partial volume with the blood flowing in large vessels. Partial volume correction was performed by biexponential curve fitting, where the first data point (b = 0 s/mm 2 ) was eliminated in voxels with a very fast-decaying component. Biexponential fitting with partial volume correction yielded parametric maps with perfusion fraction values smaller than biexponential fitting without partial volume correction. The results of the current study indicate that the NNLS analysis in combination with biexponential curve fitting allows to correct for partial volume effects originating from blood flow in IVIM perfusion fraction measurements. Magn Reson Med 77:310-317, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Kothari, Adit R; Burnett, Nicholas P
2017-09-01
In nature, plants regularly interact with herbivores and with wind. Herbivores can wound and alter the structure of plants, whereas wind can exert aerodynamic forces that cause the plants to flutter or sway. While herbivory has many negative consequences for plants, fluttering in wind can be beneficial for plants by facilitating gas exchange and loss of excess heat. Little is known about how herbivores affect plant motion in wind. We tested how the mass of an herbivore resting on a broad leaf of the tulip tree Liriodendron tulipifera , and the damage caused by herbivores, affected the motion of the leaf in wind. For this, we placed mimics of herbivores on the leaves, varying each herbivore's mass or position, and used high-speed video to measure how the herbivore mimics affected leaf movement and reconfiguration at two wind speeds inside a laboratory wind tunnel. In a similar setup, we tested how naturally occurring herbivore damage on the leaves affected leaf movement and reconfiguration. We found that the mass of an herbivore resting on a leaf can change that leaf's orientation relative to the wind and interfere with the ability of the leaf to reconfigure into a smaller, more streamlined shape. A large herbivore load slowed the leaf's fluttering frequency, while naturally occurring damage from herbivores increased the leaf's fluttering frequency. We conclude that herbivores can alter the physical interactions between wind and plants by two methods: (1) acting as a point mass on the plant while it is feeding and (2) removing tissue from the plant. Altering a plant's interaction with wind can have physical and physiological consequences for the plant. Thus, future studies of plants in nature should consider the effect of herbivory on plant-wind interactions, and vice versa.
Sequence of Changes in Maize Responding to Soil Water Deficit and Related Critical Thresholds
Ma, Xueyan; He, Qijin; Zhou, Guangsheng
2018-01-01
The sequence of changes in crop responding to soil water deficit and related critical thresholds are essential for better drought damage classification and drought monitoring indicators. This study was aimed to investigate the critical thresholds of maize growth and physiological characteristics responding to changing soil water and to reveal the sequence of changes in maize responding to soil water deficit both in seedling and jointing stages based on 2-year’s maize field experiment responding to six initial soil water statuses conducted in 2013 and 2014. Normal distribution tolerance limits were newly adopted to identify critical thresholds of maize growth and physiological characteristics to a wide range of soil water status. The results showed that in both stages maize growth characteristics related to plant water status [stem moisture content (SMC) and leaf moisture content (LMC)], leaf gas exchange [net photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs)], and leaf area were sensitive to soil water deficit, while biomass-related characteristics were less sensitive. Under the concurrent weather conditions and agronomic managements, the critical soil water thresholds in terms of relative soil moisture of 0–30 cm depth (RSM) of maize SMC, LMC, net Pn, Tr, Gs, and leaf area were 72, 65, 62, 60, 58, and 46%, respectively, in seedling stage, and 64, 64, 51, 53, 48, and 46%, respectively, in jointing stage. It indicated that there is a sequence of changes in maize responding to soil water deficit, i.e., their response sequences as soil water deficit intensified: SMC ≥ LMC > leaf gas exchange > leaf area in both stages. This sequence of changes in maize responding to soil water deficit and related critical thresholds may be better indicators of damage classification and drought monitoring. PMID:29765381
NASA Astrophysics Data System (ADS)
Ren, Silin; Jin, Xiao; Chan, Chung; Jian, Yiqiang; Mulnix, Tim; Liu, Chi; E Carson, Richard
2017-06-01
Data-driven respiratory gating techniques were developed to correct for respiratory motion in PET studies, without the help of external motion tracking systems. Due to the greatly increased image noise in gated reconstructions, it is desirable to develop a data-driven event-by-event respiratory motion correction method. In this study, using the Centroid-of-distribution (COD) algorithm, we established a data-driven event-by-event respiratory motion correction technique using TOF PET list-mode data, and investigated its performance by comparing with an external system-based correction method. Ten human scans with the pancreatic β-cell tracer 18F-FP-(+)-DTBZ were employed. Data-driven respiratory motions in superior-inferior (SI) and anterior-posterior (AP) directions were first determined by computing the centroid of all radioactive events during each short time frame with further processing. The Anzai belt system was employed to record respiratory motion in all studies. COD traces in both SI and AP directions were first compared with Anzai traces by computing the Pearson correlation coefficients. Then, respiratory gated reconstructions based on either COD or Anzai traces were performed to evaluate their relative performance in capturing respiratory motion. Finally, based on correlations of displacements of organ locations in all directions and COD information, continuous 3D internal organ motion in SI and AP directions was calculated based on COD traces to guide event-by-event respiratory motion correction in the MOLAR reconstruction framework. Continuous respiratory correction results based on COD were compared with that based on Anzai, and without motion correction. Data-driven COD traces showed a good correlation with Anzai in both SI and AP directions for the majority of studies, with correlation coefficients ranging from 63% to 89%. Based on the determined respiratory displacements of pancreas between end-expiration and end-inspiration from gated reconstructions, there was no significant difference between COD-based and Anzai-based methods. Finally, data-driven COD-based event-by-event respiratory motion correction yielded comparable results to that based on Anzai respiratory traces, in terms of contrast recovery and reduced motion-induced blur. Data-driven event-by-event respiratory motion correction using COD showed significant image quality improvement compared with reconstructions with no motion correction, and gave comparable results to the Anzai-based method.
Ren, Silin; Jin, Xiao; Chan, Chung; Jian, Yiqiang; Mulnix, Tim; Liu, Chi; Carson, Richard E
2017-06-21
Data-driven respiratory gating techniques were developed to correct for respiratory motion in PET studies, without the help of external motion tracking systems. Due to the greatly increased image noise in gated reconstructions, it is desirable to develop a data-driven event-by-event respiratory motion correction method. In this study, using the Centroid-of-distribution (COD) algorithm, we established a data-driven event-by-event respiratory motion correction technique using TOF PET list-mode data, and investigated its performance by comparing with an external system-based correction method. Ten human scans with the pancreatic β-cell tracer 18 F-FP-(+)-DTBZ were employed. Data-driven respiratory motions in superior-inferior (SI) and anterior-posterior (AP) directions were first determined by computing the centroid of all radioactive events during each short time frame with further processing. The Anzai belt system was employed to record respiratory motion in all studies. COD traces in both SI and AP directions were first compared with Anzai traces by computing the Pearson correlation coefficients. Then, respiratory gated reconstructions based on either COD or Anzai traces were performed to evaluate their relative performance in capturing respiratory motion. Finally, based on correlations of displacements of organ locations in all directions and COD information, continuous 3D internal organ motion in SI and AP directions was calculated based on COD traces to guide event-by-event respiratory motion correction in the MOLAR reconstruction framework. Continuous respiratory correction results based on COD were compared with that based on Anzai, and without motion correction. Data-driven COD traces showed a good correlation with Anzai in both SI and AP directions for the majority of studies, with correlation coefficients ranging from 63% to 89%. Based on the determined respiratory displacements of pancreas between end-expiration and end-inspiration from gated reconstructions, there was no significant difference between COD-based and Anzai-based methods. Finally, data-driven COD-based event-by-event respiratory motion correction yielded comparable results to that based on Anzai respiratory traces, in terms of contrast recovery and reduced motion-induced blur. Data-driven event-by-event respiratory motion correction using COD showed significant image quality improvement compared with reconstructions with no motion correction, and gave comparable results to the Anzai-based method.
System and method for generating motion corrected tomographic images
Gleason, Shaun S [Knoxville, TN; Goddard, Jr., James S.
2012-05-01
A method and related system for generating motion corrected tomographic images includes the steps of illuminating a region of interest (ROI) to be imaged being part of an unrestrained live subject and having at least three spaced apart optical markers thereon. Simultaneous images are acquired from a first and a second camera of the markers from different angles. Motion data comprising 3D position and orientation of the markers relative to an initial reference position is then calculated. Motion corrected tomographic data obtained from the ROI using the motion data is then obtained, where motion corrected tomographic images obtained therefrom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Chuan, E-mail: chuan.huang@stonybrookmedicine.edu; Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115; Departments of Radiology, Psychiatry, Stony Brook Medicine, Stony Brook, New York 11794
2015-02-15
Purpose: Degradation of image quality caused by cardiac and respiratory motions hampers the diagnostic quality of cardiac PET. It has been shown that improved diagnostic accuracy of myocardial defect can be achieved by tagged MR (tMR) based PET motion correction using simultaneous PET-MR. However, one major hurdle for the adoption of tMR-based PET motion correction in the PET-MR routine is the long acquisition time needed for the collection of fully sampled tMR data. In this work, the authors propose an accelerated tMR acquisition strategy using parallel imaging and/or compressed sensing and assess the impact on the tMR-based motion corrected PETmore » using phantom and patient data. Methods: Fully sampled tMR data were acquired simultaneously with PET list-mode data on two simultaneous PET-MR scanners for a cardiac phantom and a patient. Parallel imaging and compressed sensing were retrospectively performed by GRAPPA and kt-FOCUSS algorithms with various acceleration factors. Motion fields were estimated using nonrigid B-spline image registration from both the accelerated and fully sampled tMR images. The motion fields were incorporated into a motion corrected ordered subset expectation maximization reconstruction algorithm with motion-dependent attenuation correction. Results: Although tMR acceleration introduced image artifacts into the tMR images for both phantom and patient data, motion corrected PET images yielded similar image quality as those obtained using the fully sampled tMR images for low to moderate acceleration factors (<4). Quantitative analysis of myocardial defect contrast over ten independent noise realizations showed similar results. It was further observed that although the image quality of the motion corrected PET images deteriorates for high acceleration factors, the images were still superior to the images reconstructed without motion correction. Conclusions: Accelerated tMR images obtained with more than 4 times acceleration can still provide relatively accurate motion fields and yield tMR-based motion corrected PET images with similar image quality as those reconstructed using fully sampled tMR data. The reduction of tMR acquisition time makes it more compatible with routine clinical cardiac PET-MR studies.« less
Management of three-dimensional intrafraction motion through real-time DMLC tracking.
Sawant, Amit; Venkat, Raghu; Srivastava, Vikram; Carlson, David; Povzner, Sergey; Cattell, Herb; Keall, Paul
2008-05-01
Tumor tracking using a dynamic multileaf collimator (DMLC) represents a promising approach for intrafraction motion management in thoracic and abdominal cancer radiotherapy. In this work, we develop, empirically demonstrate, and characterize a novel 3D tracking algorithm for real-time, conformal, intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based radiation delivery to targets moving in three dimensions. The algorithm obtains real-time information of target location from an independent position monitoring system and dynamically calculates MLC leaf positions to account for changes in target position. Initial studies were performed to evaluate the geometric accuracy of DMLC tracking of 3D target motion. In addition, dosimetric studies were performed on a clinical linac to evaluate the impact of real-time DMLC tracking for conformal, step-and-shoot (S-IMRT), dynamic (D-IMRT), and VMAT deliveries to a moving target. The efficiency of conformal and IMRT delivery in the presence of tracking was determined. Results show that submillimeter geometric accuracy in all three dimensions is achievable with DMLC tracking. Significant dosimetric improvements were observed in the presence of tracking for conformal and IMRT deliveries to moving targets. A gamma index evaluation with a 3%-3 mm criterion showed that deliveries without DMLC tracking exhibit between 1.7 (S-IMRT) and 4.8 (D-IMRT) times more dose points that fail the evaluation compared to corresponding deliveries with tracking. The efficiency of IMRT delivery, as measured in the lab, was observed to be significantly lower in case of tracking target motion perpendicular to MLC leaf travel compared to motion parallel to leaf travel. Nevertheless, these early results indicate that accurate, real-time DMLC tracking of 3D tumor motion is feasible and can potentially result in significant geometric and dosimetric advantages leading to more effective management of intrafraction motion.
NASA Astrophysics Data System (ADS)
Polycarpou, Irene; Tsoumpas, Charalampos; King, Andrew P.; Marsden, Paul K.
2014-02-01
The aim of this study is to investigate the impact of respiratory motion correction and spatial resolution on lesion detectability in PET as a function of lesion size and tracer uptake. Real respiratory signals describing different breathing types are combined with a motion model formed from real dynamic MR data to simulate multiple dynamic PET datasets acquired from a continuously moving subject. Lung and liver lesions were simulated with diameters ranging from 6 to 12 mm and lesion to background ratio ranging from 3:1 to 6:1. Projection data for 6 and 3 mm PET scanner resolution were generated using analytic simulations and reconstructed without and with motion correction. Motion correction was achieved using motion compensated image reconstruction. The detectability performance was quantified by a receiver operating characteristic (ROC) analysis obtained using a channelized Hotelling observer and the area under the ROC curve (AUC) was calculated as the figure of merit. The results indicate that respiratory motion limits the detectability of lung and liver lesions, depending on the variation of the breathing cycle length and amplitude. Patients with large quiescent periods had a greater AUC than patients with regular breathing cycles and patients with long-term variability in respiratory cycle or higher motion amplitude. In addition, small (less than 10 mm diameter) or low contrast (3:1) lesions showed the greatest improvement in AUC as a result of applying motion correction. In particular, after applying motion correction the AUC is improved by up to 42% with current PET resolution (i.e. 6 mm) and up to 51% for higher PET resolution (i.e. 3 mm). Finally, the benefit of increasing the scanner resolution is small unless motion correction is applied. This investigation indicates high impact of respiratory motion correction on lesion detectability in PET and highlights the importance of motion correction in order to benefit from the increased resolution of future PET scanners.
MR-assisted PET motion correction in simultaneous PET/MRI studies of dementia subjects.
Chen, Kevin T; Salcedo, Stephanie; Chonde, Daniel B; Izquierdo-Garcia, David; Levine, Michael A; Price, Julie C; Dickerson, Bradford C; Catana, Ciprian
2018-03-08
Subject motion in positron emission tomography (PET) studies leads to image blurring and artifacts; simultaneously acquired magnetic resonance imaging (MRI) data provides a means for motion correction (MC) in integrated PET/MRI scanners. To assess the effect of realistic head motion and MR-based MC on static [ 18 F]-fluorodeoxyglucose (FDG) PET images in dementia patients. Observational study. Thirty dementia subjects were recruited. 3T hybrid PET/MR scanner where EPI-based and T 1 -weighted sequences were acquired simultaneously with the PET data. Head motion parameters estimated from high temporal resolution MR volumes were used for PET MC. The MR-based MC method was compared to PET frame-based MC methods in which motion parameters were estimated by coregistering 5-minute frames before and after accounting for the attenuation-emission mismatch. The relative changes in standardized uptake value ratios (SUVRs) between the PET volumes processed with the various MC methods, without MC, and the PET volumes with simulated motion were compared in relevant brain regions. The absolute value of the regional SUVR relative change was assessed with pairwise paired t-tests testing at the P = 0.05 level, comparing the values obtained through different MR-based MC processing methods as well as across different motion groups. The intraregion voxelwise variability of regional SUVRs obtained through different MR-based MC processing methods was also assessed with pairwise paired t-tests testing at the P = 0.05 level. MC had a greater impact on PET data quantification in subjects with larger amplitude motion (higher than 18% in the medial orbitofrontal cortex) and greater changes were generally observed for the MR-based MC method compared to the frame-based methods. Furthermore, a mean relative change of ∼4% was observed after MC even at the group level, suggesting the importance of routinely applying this correction. The intraregion voxelwise variability of regional SUVRs was also decreased using MR-based MC. All comparisons were significant at the P = 0.05 level. Incorporating temporally correlated MR data to account for intraframe motion has a positive impact on the FDG PET image quality and data quantification in dementia patients. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.
MRI-Based Nonrigid Motion Correction in Simultaneous PET/MRI
Chun, Se Young; Reese, Timothy G.; Ouyang, Jinsong; Guerin, Bastien; Catana, Ciprian; Zhu, Xuping; Alpert, Nathaniel M.; El Fakhri, Georges
2014-01-01
Respiratory and cardiac motion is the most serious limitation to whole-body PET, resulting in spatial resolution close to 1 cm. Furthermore, motion-induced inconsistencies in the attenuation measurements often lead to significant artifacts in the reconstructed images. Gating can remove motion artifacts at the cost of increased noise. This paper presents an approach to respiratory motion correction using simultaneous PET/MRI to demonstrate initial results in phantoms, rabbits, and nonhuman primates and discusses the prospects for clinical application. Methods Studies with a deformable phantom, a free-breathing primate, and rabbits implanted with radioactive beads were performed with simultaneous PET/MRI. Motion fields were estimated from concurrently acquired tagged MR images using 2 B-spline nonrigid image registration methods and incorporated into a PET list-mode ordered-subsets expectation maximization algorithm. Using the measured motion fields to transform both the emission data and the attenuation data, we could use all the coincidence data to reconstruct any phase of the respiratory cycle. We compared the resulting SNR and the channelized Hotelling observer (CHO) detection signal-to-noise ratio (SNR) in the motion-corrected reconstruction with the results obtained from standard gating and uncorrected studies. Results Motion correction virtually eliminated motion blur without reducing SNR, yielding images with SNR comparable to those obtained by gating with 5–8 times longer acquisitions in all studies. The CHO study in dynamic phantoms demonstrated a significant improvement (166%–276%) in lesion detection SNR with MRI-based motion correction as compared with gating (P < 0.001). This improvement was 43%–92% for large motion compared with lesion detection without motion correction (P < 0.001). CHO SNR in the rabbit studies confirmed these results. Conclusion Tagged MRI motion correction in simultaneous PET/MRI significantly improves lesion detection compared with respiratory gating and no motion correction while reducing radiation dose. In vivo primate and rabbit studies confirmed the improvement in PET image quality and provide the rationale for evaluation in simultaneous whole-body PET/MRI clinical studies. PMID:22743250
Correction for human head motion in helical x-ray CT
NASA Astrophysics Data System (ADS)
Kim, J.-H.; Sun, T.; Alcheikh, A. R.; Kuncic, Z.; Nuyts, J.; Fulton, R.
2016-02-01
Correction for rigid object motion in helical CT can be achieved by reconstructing from a modified source-detector orbit, determined by the object motion during the scan. This ensures that all projections are consistent, but it does not guarantee that the projections are complete in the sense of being sufficient for exact reconstruction. We have previously shown with phantom measurements that motion-corrected helical CT scans can suffer from data-insufficiency, in particular for severe motions and at high pitch. To study whether such data-insufficiency artefacts could also affect the motion-corrected CT images of patients undergoing head CT scans, we used an optical motion tracking system to record the head movements of 10 healthy volunteers while they executed each of the 4 different types of motion (‘no’, slight, moderate and severe) for 60 s. From these data we simulated 354 motion-affected CT scans of a voxelized human head phantom and reconstructed them with and without motion correction. For each simulation, motion-corrected (MC) images were compared with the motion-free reference, by visual inspection and with quantitative similarity metrics. Motion correction improved similarity metrics in all simulations. Of the 270 simulations performed with moderate or less motion, only 2 resulted in visible residual artefacts in the MC images. The maximum range of motion in these simulations would encompass that encountered in the vast majority of clinical scans. With severe motion, residual artefacts were observed in about 60% of the simulations. We also evaluated a new method of mapping local data sufficiency based on the degree to which Tuy’s condition is locally satisfied, and observed that areas with high Tuy values corresponded to the locations of residual artefacts in the MC images. We conclude that our method can provide accurate and artefact-free MC images with most types of head motion likely to be encountered in CT imaging, provided that the motion can be accurately determined.
Ganeshan, Seedhabadee; Sharma, Pallavi; Young, Lester; Kumar, Ashwani; Fowler, D Brian; Chibbar, Ravindra N
2011-03-01
Low-temperature (LT) tolerance in winter wheat (Triticum aestivum L.) is an economically important but complex trait. Four selected wheat genotypes, a winter hardy cultivar, Norstar, a tender spring cultivar, Manitou and two near-isogenic lines with Vrn-A1 (spring Norstar) and vrn-A1 (winter Manitou) alleles of Manitou and Norstar were cold-acclimated at 6°C and crown and leaf tissues were collected at 0, 2, 14, 21, 35, 42, 56 and 70 days of cold acclimation. cDNA-AFLP profiling was used to determine temporal expression profiles of transcripts during cold-acclimation in crown and leaf tissues, separately to determine if LT regulatory circuitries in crown and leaf tissues could be delineated using this approach. Screening 64 primer combinations identified 4,074 and 2,757 differentially expressed transcript-derived fragments (TDFs) out of which 38 and 16% were up-regulated as compared to 3 and 6% that were down-regulated in crown and leaf tissues, respectively. DNA sequencing of TDFs revealed sequences common to both tissues including genes coding for DEAD-box RNA helicase, choline-phosphate cytidylyltransferase and delta-1-pyrroline carboxylate synthetase. TDF specific to crown tissues included genes coding for phospahtidylinositol kinase, auxin response factor protein and brassinosteroid insensitive 1-associated receptor kinase. In leaf, genes such as methylene tetrahydrofolate reductase, NADH-cytochrome b5 reductase and malate dehydrogenase were identified. However, 30 and 14% of the DNA sequences from the crown and leaf tissues, respectively, were hypothetical or unknown proteins. Cluster analysis of up-, down-regulated and unique TDFs, DNA sequence and real-time PCR validation, infer that mechanisms operating in crown and leaf tissue in response to LT are differently regulated and warrant further studies.
Fish tracking by combining motion based segmentation and particle filtering
NASA Astrophysics Data System (ADS)
Bichot, E.; Mascarilla, L.; Courtellemont, P.
2006-01-01
In this paper, we suggest a new importance sampling scheme to improve a particle filtering based tracking process. This scheme relies on exploitation of motion segmentation. More precisely, we propagate hypotheses from particle filtering to blobs of similar motion to target. Hence, search is driven toward regions of interest in the state space and prediction is more accurate. We also propose to exploit segmentation to update target model. Once the moving target has been identified, a representative model is learnt from its spatial support. We refer to this model in the correction step of the tracking process. The importance sampling scheme and the strategy to update target model improve the performance of particle filtering in complex situations of occlusions compared to a simple Bootstrap approach as shown by our experiments on real fish tank sequences.
Scene-based nonuniformity correction with video sequences and registration.
Hardie, R C; Hayat, M M; Armstrong, E; Yasuda, B
2000-03-10
We describe a new, to our knowledge, scene-based nonuniformity correction algorithm for array detectors. The algorithm relies on the ability to register a sequence of observed frames in the presence of the fixed-pattern noise caused by pixel-to-pixel nonuniformity. In low-to-moderate levels of nonuniformity, sufficiently accurate registration may be possible with standard scene-based registration techniques. If the registration is accurate, and motion exists between the frames, then groups of independent detectors can be identified that observe the same irradiance (or true scene value). These detector outputs are averaged to generate estimates of the true scene values. With these scene estimates, and the corresponding observed values through a given detector, a curve-fitting procedure is used to estimate the individual detector response parameters. These can then be used to correct for detector nonuniformity. The strength of the algorithm lies in its simplicity and low computational complexity. Experimental results, to illustrate the performance of the algorithm, include the use of visible-range imagery with simulated nonuniformity and infrared imagery with real nonuniformity.
Draft genome sequence of rice orange leaf phytoplasma from Guangdong, China
USDA-ARS?s Scientific Manuscript database
The genome of rice orange leaf phytoplasma strain LD1 from Luoding City, Guangdong, P. R. China, was sequenced. The draft LD1genome is 599,264 bp with GC content of 28.2%, 647 predicted open reading frames and 33 RNA genes....
Zhang, Peipei; Liu, Yan; Liu, Wenwen; Cao, Mengji; Massart, Sebastien; Wang, Xifeng
2017-01-01
To identify the pathogens responsible for leaf yellowing symptoms on wheat samples collected from Jinan, China, we tested for the presence of three known barley/wheat yellow dwarf viruses (BYDV-GAV, -PAV, WYDV-GPV) (most likely pathogens) using RT-PCR. A sample that tested negative for the three viruses was selected for small RNA sequencing. Twenty-five million sequences were generated, among which 5% were of viral origin. A novel polerovirus was discovered and temporarily named wheat leaf yellowing-associated virus (WLYaV). The full genome of WLYaV corresponds to 5,772 nucleotides (nt), with six AUG-initiated open reading frames, one non-AUG-initiated open reading frame, and three untranslated regions, showing typical features of the family Luteoviridae. Sequence comparison and phylogenetic analyses suggested that WLYaV had the closest relationship with sugarcane yellow leaf virus (ScYLV), but the identities of full genomic nucleotides and deduced amino acid sequence of coat protein (CP) were 64.9 and 86.2%, respectively, below the species demarcation thresholds (90%) in the family Luteoviridae. Furthermore, agroinoculation of Nicotiana benthamiana leaves with a cDNA clone of WLYaV caused yellowing symptoms on the plant. Our study adds a new polerovirus that is associated with wheat leaf yellowing disease, which would help to identify and control pathogens of wheat. PMID:28932215
Zhang, Peipei; Liu, Yan; Liu, Wenwen; Cao, Mengji; Massart, Sebastien; Wang, Xifeng
2017-01-01
To identify the pathogens responsible for leaf yellowing symptoms on wheat samples collected from Jinan, China, we tested for the presence of three known barley/wheat yellow dwarf viruses (BYDV-GAV, -PAV, WYDV-GPV) (most likely pathogens) using RT-PCR. A sample that tested negative for the three viruses was selected for small RNA sequencing. Twenty-five million sequences were generated, among which 5% were of viral origin. A novel polerovirus was discovered and temporarily named wheat leaf yellowing-associated virus (WLYaV). The full genome of WLYaV corresponds to 5,772 nucleotides (nt), with six AUG-initiated open reading frames, one non-AUG-initiated open reading frame, and three untranslated regions, showing typical features of the family Luteoviridae . Sequence comparison and phylogenetic analyses suggested that WLYaV had the closest relationship with sugarcane yellow leaf virus (ScYLV), but the identities of full genomic nucleotides and deduced amino acid sequence of coat protein (CP) were 64.9 and 86.2%, respectively, below the species demarcation thresholds (90%) in the family Luteoviridae . Furthermore, agroinoculation of Nicotiana benthamiana leaves with a cDNA clone of WLYaV caused yellowing symptoms on the plant. Our study adds a new polerovirus that is associated with wheat leaf yellowing disease, which would help to identify and control pathogens of wheat.
Gillman, Ashley; Smith, Jye; Thomas, Paul; Rose, Stephen; Dowson, Nicholas
2017-12-01
Patient motion is an important consideration in modern PET image reconstruction. Advances in PET technology mean motion has an increasingly important influence on resulting image quality. Motion-induced artifacts can have adverse effects on clinical outcomes, including missed diagnoses and oversized radiotherapy treatment volumes. This review aims to summarize the wide variety of motion correction techniques available in PET and combined PET/CT and PET/MR, with a focus on the latter. A general framework for the motion correction of PET images is presented, consisting of acquisition, modeling, and correction stages. Methods for measuring, modeling, and correcting motion and associated artifacts, both in literature and commercially available, are presented, and their relative merits are contrasted. Identified limitations of current methods include modeling of aperiodic and/or unpredictable motion, attaining adequate temporal resolution for motion correction in dynamic kinetic modeling acquisitions, and maintaining availability of the MR in PET/MR scans for diagnostic acquisitions. Finally, avenues for future investigation are discussed, with a focus on improvements that could improve PET image quality, and that are practical in the clinical environment. © 2017 American Association of Physicists in Medicine.
General rigid motion correction for computed tomography imaging based on locally linear embedding
NASA Astrophysics Data System (ADS)
Chen, Mianyi; He, Peng; Feng, Peng; Liu, Baodong; Yang, Qingsong; Wei, Biao; Wang, Ge
2018-02-01
The patient motion can damage the quality of computed tomography images, which are typically acquired in cone-beam geometry. The rigid patient motion is characterized by six geometric parameters and are more challenging to correct than in fan-beam geometry. We extend our previous rigid patient motion correction method based on the principle of locally linear embedding (LLE) from fan-beam to cone-beam geometry and accelerate the computational procedure with the graphics processing unit (GPU)-based all scale tomographic reconstruction Antwerp toolbox. The major merit of our method is that we need neither fiducial markers nor motion-tracking devices. The numerical and experimental studies show that the LLE-based patient motion correction is capable of calibrating the six parameters of the patient motion simultaneously, reducing patient motion artifacts significantly.
Multi-Stage Target Tracking with Drift Correction and Position Prediction
NASA Astrophysics Data System (ADS)
Chen, Xin; Ren, Keyan; Hou, Yibin
2018-04-01
Most existing tracking methods are hard to combine accuracy and performance, and do not consider the shift between clarity and blur that often occurs. In this paper, we propound a multi-stage tracking framework with two particular modules: position prediction and corrective measure. We conduct tracking based on correlation filter with a corrective measure module to increase both performance and accuracy. Specifically, a convolutional network is used for solving the blur problem in realistic scene, training methodology that training dataset with blur images generated by the three blur algorithms. Then, we propose a position prediction module to reduce the computation cost and make tracker more capable of fast motion. Experimental result shows that our tracking method is more robust compared to others and more accurate on the benchmark sequences.
NASA Astrophysics Data System (ADS)
Tang, Jing; Wang, Xinhui; Gao, Xiangzhen; Segars, W. Paul; Lodge, Martin A.; Rahmim, Arman
2017-06-01
ECG gated cardiac PET imaging measures functional parameters such as left ventricle (LV) ejection fraction (EF), providing diagnostic and prognostic information for management of patients with coronary artery disease (CAD). Respiratory motion degrades spatial resolution and affects the accuracy in measuring the LV volumes for EF calculation. The goal of this study is to systematically investigate the effect of respiratory motion correction on the estimation of end-diastolic volume (EDV), end-systolic volume (ESV), and EF, especially on the separation of normal and abnormal EFs. We developed a respiratory motion incorporated 4D PET image reconstruction technique which uses all gated-frame data to acquire a motion-suppressed image. Using the standard XCAT phantom and two individual-specific volunteer XCAT phantoms, we simulated dual-gated myocardial perfusion imaging data for normally and abnormally beating hearts. With and without respiratory motion correction, we measured the EDV, ESV, and EF from the cardiac-gated reconstructed images. For all the phantoms, the estimated volumes increased and the biases significantly reduced with motion correction compared with those without. Furthermore, the improvement of ESV measurement in the abnormally beating heart led to better separation of normal and abnormal EFs. The simulation study demonstrated the significant effect of respiratory motion correction on cardiac imaging data with motion amplitude as small as 0.7 cm. The larger the motion amplitude the more improvement respiratory motion correction brought about on the EF measurement. Using data-driven respiratory gating, we also demonstrated the effect of respiratory motion correction on estimating the above functional parameters from list mode patient data. Respiratory motion correction has been shown to improve the accuracy of EF measurement in clinical cardiac PET imaging.
A Method for the Control of Multigrasp Myoelectric Prosthetic Hands
Dalley, Skyler Ashton; Varol, Huseyin Atakan; Goldfarb, Michael
2012-01-01
This paper presents the design and preliminary experimental validation of a multigrasp myoelectric controller. The described method enables direct and proportional control of multigrasp prosthetic hand motion among nine characteristic postures using two surface electromyography electrodes. To assess the efficacy of the control method, five nonamputee subjects utilized the multigrasp myoelectric controller to command the motion of a virtual prosthesis between random sequences of target hand postures in a series of experimental trials. For comparison, the same subjects also utilized a data glove, worn on their native hand, to command the motion of the virtual prosthesis for similar sequences of target postures during each trial. The time required to transition from posture to posture and the percentage of correctly completed transitions were evaluated to characterize the ability to control the virtual prosthesis using each method. The average overall transition times across all subjects were found to be 1.49 and 0.81 s for the multigrasp myoelectric controller and the native hand, respectively. The average transition completion rates for both were found to be the same (99.2%). Supplemental videos demonstrate the virtual prosthesis experiments, as well as a preliminary hardware implementation. PMID:22180515
An algebraic algorithm for nonuniformity correction in focal-plane arrays.
Ratliff, Bradley M; Hayat, Majeed M; Hardie, Russell C
2002-09-01
A scene-based algorithm is developed to compensate for bias nonuniformity in focal-plane arrays. Nonuniformity can be extremely problematic, especially for mid- to far-infrared imaging systems. The technique is based on use of estimates of interframe subpixel shifts in an image sequence, in conjunction with a linear-interpolation model for the motion, to extract information on the bias nonuniformity algebraically. The performance of the proposed algorithm is analyzed by using real infrared and simulated data. One advantage of this technique is its simplicity; it requires relatively few frames to generate an effective correction matrix, thereby permitting the execution of frequent on-the-fly nonuniformity correction as drift occurs. Additionally, the performance is shown to exhibit considerable robustness with respect to lack of the common types of temporal and spatial irradiance diversity that are typically required by statistical scene-based nonuniformity correction techniques.
An experimental comparison of conventional two-bank and novel four-bank dynamic MLC tracking.
Davies, G A; Clowes, P; McQuaid, D; Evans, P M; Webb, S; Poludniowski, G
2013-03-07
The AccuLeaf mMLC featuring four multileaf-collimator (MLC) banks has been used for the first time for an experimental comparison of conventional two-bank with novel four-bank dynamic MLC tracking of a two-dimensional sinusoidal respiratory motion. This comparison was performed for a square aperture, and for three conformal treatment apertures from clinical radiotherapy lung cancer patients. The system latency of this prototype tracking system was evaluated and found to be 1.0 s and the frequency at which MLC positions could be updated, 1 Hz, and therefore accurate MLC tracking of irregular patient motion would be difficult with the system in its current form. The MLC leaf velocity required for two-bank-MLC and four-bank-MLC tracking was evaluated for the apertures studied and a substantial decrease was found in the maximum MLC velocity required when four-banks were used for tracking rather than two. A dosimetric comparison of the two techniques was also performed and minimal difference was found between two-bank-MLC and four-bank-MLC tracking. The use of four MLC banks for dynamic MLC tracking is shown to be potentially advantageous for increasing the delivery efficiency compared with two-bank-MLC tracking where difficulties are encountered if large leaf shifts are required to track motion perpendicular to the direction of leaf travel.
van Dijk, Joris D; van Dalen, Jorn A; Mouden, Mohamed; Ottervanger, Jan Paul; Knollema, Siert; Slump, Cornelis H; Jager, Pieter L
2018-04-01
Correction of motion has become feasible on cadmium-zinc-telluride (CZT)-based SPECT cameras during myocardial perfusion imaging (MPI). Our aim was to quantify the motion and to determine the value of automatic correction using commercially available software. We retrospectively included 83 consecutive patients who underwent stress-rest MPI CZT-SPECT and invasive fractional flow reserve (FFR) measurement. Eight-minute stress acquisitions were reformatted into 1.0- and 20-second bins to detect respiratory motion (RM) and patient motion (PM), respectively. RM and PM were quantified and scans were automatically corrected. Total perfusion deficit (TPD) and SPECT interpretation-normal, equivocal, or abnormal-were compared between the noncorrected and corrected scans. Scans with a changed SPECT interpretation were compared with FFR, the reference standard. Average RM was 2.5 ± 0.4 mm and maximal PM was 4.5 ± 1.3 mm. RM correction influenced the diagnostic outcomes in two patients based on TPD changes ≥7% and in nine patients based on changed visual interpretation. In only four of these patients, the changed SPECT interpretation corresponded with FFR measurements. Correction for PM did not influence the diagnostic outcomes. Respiratory motion and patient motion were small. Motion correction did not appear to improve the diagnostic outcome and, hence, the added value seems limited in MPI using CZT-based SPECT cameras.
Pang, Chaoyou; Fan, Shuli; Song, Meizhen; Yu, Shuxun
2013-01-01
Background Cotton (Gossypium hirsutum L.) is one of the world’s most economically-important crops. However, its entire genome has not been sequenced, and limited resources are available in GenBank for understanding the molecular mechanisms underlying leaf development and senescence. Methodology/Principal Findings In this study, 9,874 high-quality ESTs were generated from a normalized, full-length cDNA library derived from pooled RNA isolated from throughout leaf development during the plant blooming stage. After clustering and assembly of these ESTs, 5,191 unique sequences, representative 1,652 contigs and 3,539 singletons, were obtained. The average unique sequence length was 682 bp. Annotation of these unique sequences revealed that 84.4% showed significant homology to sequences in the NCBI non-redundant protein database, and 57.3% had significant hits to known proteins in the Swiss-Prot database. Comparative analysis indicated that our library added 2,400 ESTs and 991 unique sequences to those known for cotton. The unigenes were functionally characterized by gene ontology annotation. We identified 1,339 and 200 unigenes as potential leaf senescence-related genes and transcription factors, respectively. Moreover, nine genes related to leaf senescence and eleven MYB transcription factors were randomly selected for quantitative real-time PCR (qRT-PCR), which revealed that these genes were regulated differentially during senescence. The qRT-PCR for three GhYLSs revealed that these genes express express preferentially in senescent leaves. Conclusions/Significance These EST resources will provide valuable sequence information for gene expression profiling analyses and functional genomics studies to elucidate their roles, as well as for studying the mechanisms of leaf development and senescence in cotton and discovering candidate genes related to important agronomic traits of cotton. These data will also facilitate future whole-genome sequence assembly and annotation in G. hirsutum and comparative genomics among Gossypium species. PMID:24146870
Litter Breakdown and Microbial Succession on Two Submerged Leaf Species in a Small Forested Stream
Newman, Molli M.; Liles, Mark R.; Feminella, Jack W.
2015-01-01
Microbial succession during leaf breakdown was investigated in a small forested stream in west-central Georgia, USA, using multiple culture-independent techniques. Red maple (Acer rubrum) and water oak (Quercus nigra) leaf litter were incubated in situ for 128 days, and litter breakdown was quantified by ash-free dry mass (AFDM) method and microbial assemblage composition using phospholipid fatty acid analysis (PLFA), ribosomal intergenic spacer analysis (RISA), denaturing gradient gel electrophoresis (DGGE), and bar-coded next-generation sequencing of 16S rRNA gene amplicons. Leaf breakdown was faster for red maple than water oak. PLFA revealed a significant time effect on microbial lipid profiles for both leaf species. Microbial assemblages on maple contained a higher relative abundance of bacterial lipids than oak, and oak microbial assemblages contained higher relative abundance of fungal lipids than maple. RISA showed that incubation time was more important in structuring bacterial assemblages than leaf physicochemistry. DGGE profiles revealed high variability in bacterial assemblages over time, and sequencing of DGGE-resolved amplicons indicated several taxa present on degrading litter. Next-generation sequencing revealed temporal shifts in dominant taxa within the phylum Proteobacteria, whereas γ-Proteobacteria dominated pre-immersion and α- and β-Proteobacteria dominated after 1 month of instream incubation; the latter groups contain taxa that are predicted to be capable of using organic material to fuel further breakdown. Our results suggest that incubation time is more important than leaf species physicochemistry in influencing leaf litter microbial assemblage composition, and indicate the need for investigation into seasonal and temporal dynamics of leaf litter microbial assemblage succession. PMID:26098687
Discovery of a New Nearby Star
NASA Technical Reports Server (NTRS)
Teegarden, B. J.; Pravdo, S. H.; Covey, K.; Frazier, O.; Hawley, S. L.; Hicks, M.; Lawrence, K.; McGlynn, T.; Reid, I. N.; Shaklan, S. B.
2003-01-01
We report the discovery of a nearby star with a very large proper motion of 5.06 +/- 0.03 arcsec/yr. The star is called SO025300.5+165258 and referred to herein as HPMS (high proper motion star). The discovery came as a result of a search of the SkyMorph database, a sensitive and persistent survey that is well suited for finding stars with high proper motions. There are currently only 7 known stars with proper motions greater than 5 arcsec/yr. We have determined a preliminary value for the parallax of pi = 0.43 +/- 0.13 arcsec. If this value holds our new star ranks behind only the Alpha Centauri system (including Proxima Centauri) and Barnard's star in the list of our nearest stellar neighbours. The spectrum and measured tangential velocity indicate that HPMS is a main-sequence star with spectral type M6.5. However, if our distance measurement is correct, the HPMS is underluminous by 1.2 +/- 0.7 mag.
Chauhan, Sushma; Rahman, Hifzur; Mastan, Shaik G; Pamidimarri, D V N Sudheer; Reddy, Muppala P
2018-07-20
Begomoviruses belong to the family Geminiviridae are associated with several disease symptoms, such as mosaic and leaf curling in Jatropha curcas. The molecular characterization of these viral strains will help in developing management strategies to control the disease. In this study, J. curcas that was infected with begomovirus and showed acute leaf curling symptoms were identified. DNA-A segment from pathogenic viral strain was isolated and sequenced. The sequenced genome was assembled and characterized in detail. The full-length DNA-A sequence was covered by primer walking. The genome sequence showed the general organization of DNA-A from begomovirus by the distribution of ORFs in both viral and anti-viral strands. The genome size ranged from 2844 bp-2852 bp. Three strains with minor nucleotide variations were identified, and a phylogenetic analysis was performed by comparing the DNA-A segments from other reported begomovirus isolates. The maximum sequence similarity was observed with Euphorbia yellow mosaic virus (FN435995). In the phylogenetic tree, no clustering was observed with previously reported begomovirus strains isolated from J. curcas host. The strains isolated in this study belong to new begomoviral strain that elicits symptoms of leaf curling in J. curcas. The results indicate that the probable origin of the strains is from Jatropha mosaic virus infecting J. gassypifolia. The strains isolated in this study are referred as Jatropha curcas leaf curl India virus (JCLCIV) based on the major symptoms exhibited by host J. curcas. Copyright © 2018 Elsevier B.V. All rights reserved.
Reilhac, Anthonin; Merida, Ines; Irace, Zacharie; Stephenson, Mary; Weekes, Ashley; Chen, Christopher; Totman, John; Townsend, David W; Fayad, Hadi; Costes, Nicolas
2018-04-13
Objective: Head motion occuring during brain PET studies leads to image blurring and to bias in measured local quantities. Our first objective was to implement an accurate list-mode-based rigid motion correction method for PET data acquired with the mMR synchronous Positron Emission Tomography/Magnetic Resonance (PET/MR) scanner. Our second objective was to optimize the correction for [ 11 C]-PIB scans using simulated and actual data with well-controlled motions. Results: An efficient list-mode based motion correction approach has been implemented, fully optimized and validated using simulated as well as actual PET data. The average spatial resolution loss induced by inaccuracies in motion parameter estimates as well as by the rebinning process was estimated to correspond to a 1 mm increase in Full Width Half Maximum (FWHM) with motion parameters estimated directly from the PET data with a temporal frequency of 20 secs. The results show that it can be safely applied to the [ 11 C]-PIB scans, allowing almost complete removal of motion induced artifacts.The application of the correction method on a large cohort of 11C-PIB scans led to the following observations: i) more than 21% of the scans were affected by a motion greater than 10 mm (39% for subjects with Mini-Mental State Examination -MMSE scores below 20) and ii), the correction led to quantitative changes in Alzheimer-specific cortical regions of up to 30%. Conclusion: The rebinner allows an accurate motion correction at a cost of minimal resolution reduction. The application of the correction to a large cohort of [ 11 C]-PIB scans confirmed the necessity to systematically correct for motion for quantitative results. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Source-Adaptation-Based Wireless Video Transport: A Cross-Layer Approach
NASA Astrophysics Data System (ADS)
Qu, Qi; Pei, Yong; Modestino, James W.; Tian, Xusheng
2006-12-01
Real-time packet video transmission over wireless networks is expected to experience bursty packet losses that can cause substantial degradation to the transmitted video quality. In wireless networks, channel state information is hard to obtain in a reliable and timely manner due to the rapid change of wireless environments. However, the source motion information is always available and can be obtained easily and accurately from video sequences. Therefore, in this paper, we propose a novel cross-layer framework that exploits only the motion information inherent in video sequences and efficiently combines a packetization scheme, a cross-layer forward error correction (FEC)-based unequal error protection (UEP) scheme, an intracoding rate selection scheme as well as a novel intraframe interleaving scheme. Our objective and subjective results demonstrate that the proposed approach is very effective in dealing with the bursty packet losses occurring on wireless networks without incurring any additional implementation complexity or delay. Thus, the simplicity of our proposed system has important implications for the implementation of a practical real-time video transmission system.
Akhtar, Sohail; Khan, Akhtar J; Singh, Achuit S; Briddon, Rob W
2014-05-01
Okra leaf curl disease (OLCD) is an important viral disease of okra in tropical and subtropical areas. The disease is caused by begomovirus-satellite complexes. A begomovirus and associated betasatellite and alphasatellite were identified in symptomatic okra plants from Barka, in the Al-Batinah region of Oman. Analysis of the begomovirus sequences showed them to represent a new begomovirus most closely related to cotton leaf curl Gezira virus (CLCuGeV), a begomovirus of African origin. The sequences showed less than 85 % nucleotide sequence identity to CLCuGeV isolates. The name okra leaf curl Oman virus (OLCOMV) is proposed for the new virus. Further analysis revealed that the OLCOMV is a recombinant begomovirus that evolved by the recombination of CLCuGeV isolates with tomato yellow leaf curl virus-Oman (TYLCV-OM). An alpha- and a betasatellite were also identified from the same plant sample, which were also unique when compared to sequences available in the databases. However, although the betasatellite appeared to be of African origin, the alphasatellite was most closely related to alphasatellites originating from South Asia. This is the first report of a begomovirus-satellite complex infecting okra in Oman.
Taylor, Paul A; Alhamud, A; van der Kouwe, Andre; Saleh, Muhammad G; Laughton, Barbara; Meintjes, Ernesta
2016-12-01
Diffusion tensor imaging (DTI) is susceptible to several artifacts due to eddy currents, echo planar imaging (EPI) distortion and subject motion. While several techniques correct for individual distortion effects, no optimal combination of DTI acquisition and processing has been determined. Here, the effects of several motion correction techniques are investigated while also correcting for EPI distortion: prospective correction, using navigation; retrospective correction, using two different popular packages (FSL and TORTOISE); and the combination of both methods. Data from a pediatric group that exhibited incidental motion in varying degrees are analyzed. Comparisons are carried while implementing eddy current and EPI distortion correction. DTI parameter distributions, white matter (WM) maps and probabilistic tractography are examined. The importance of prospective correction during data acquisition is demonstrated. In contrast to some previous studies, results also show that the inclusion of retrospective processing also improved ellipsoid fits and both the sensitivity and specificity of group tractographic results, even for navigated data. Matches with anatomical WM maps are highest throughout the brain for data that have been both navigated and processed using TORTOISE. The inclusion of both prospective and retrospective motion correction with EPI distortion correction is important for DTI analysis, particularly when studying subject populations that are prone to motion. Hum Brain Mapp 37:4405-4424, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Correction of patient motion in cone-beam CT using 3D-2D registration
NASA Astrophysics Data System (ADS)
Ouadah, S.; Jacobson, M.; Stayman, J. W.; Ehtiati, T.; Weiss, C.; Siewerdsen, J. H.
2017-12-01
Cone-beam CT (CBCT) is increasingly common in guidance of interventional procedures, but can be subject to artifacts arising from patient motion during fairly long (~5-60 s) scan times. We present a fiducial-free method to mitigate motion artifacts using 3D-2D image registration that simultaneously corrects residual errors in the intrinsic and extrinsic parameters of geometric calibration. The 3D-2D registration process registers each projection to a prior 3D image by maximizing gradient orientation using the covariance matrix adaptation-evolution strategy optimizer. The resulting rigid transforms are applied to the system projection matrices, and a 3D image is reconstructed via model-based iterative reconstruction. Phantom experiments were conducted using a Zeego robotic C-arm to image a head phantom undergoing 5-15 cm translations and 5-15° rotations. To further test the algorithm, clinical images were acquired with a CBCT head scanner in which long scan times were susceptible to significant patient motion. CBCT images were reconstructed using a penalized likelihood objective function. For phantom studies the structural similarity (SSIM) between motion-free and motion-corrected images was >0.995, with significant improvement (p < 0.001) compared to the SSIM values of uncorrected images. Additionally, motion-corrected images exhibited a point-spread function with full-width at half maximum comparable to that of the motion-free reference image. Qualitative comparison of the motion-corrupted and motion-corrected clinical images demonstrated a significant improvement in image quality after motion correction. This indicates that the 3D-2D registration method could provide a useful approach to motion artifact correction under assumptions of local rigidity, as in the head, pelvis, and extremities. The method is highly parallelizable, and the automatic correction of residual geometric calibration errors provides added benefit that could be valuable in routine use.
Collins, Nicholas C.; Consonni, Gabriella; Stanca, Antonio M.; Schulze-Lefert, Paul; Valè, Giampiero
2010-01-01
Background Leaf stripe disease on barley (Hordeum vulgare) is caused by the seed-transmitted hemi-biotrophic fungus Pyrenophora graminea. Race-specific resistance to leaf stripe is controlled by two known Rdg (Resistance to Drechslera graminea) genes: the H. spontaneum-derived Rdg1a and Rdg2a, identified in H. vulgare. The aim of the present work was to isolate the Rdg2a leaf stripe resistance gene, to characterize the Rdg2a locus organization and evolution and to elucidate the histological bases of Rdg2a-based leaf stripe resistance. Principal Findings We describe here the positional cloning and functional characterization of the leaf stripe resistance gene Rdg2a. At the Rdg2a locus, three sequence-related coiled-coil, nucleotide-binding site, and leucine-rich repeat (CC-NB-LRR) encoding genes were identified. Sequence comparisons suggested that paralogs of this resistance locus evolved through recent gene duplication, and were subjected to frequent sequence exchange. Transformation of the leaf stripe susceptible cv. Golden Promise with two Rdg2a-candidates under the control of their native 5′ regulatory sequences identified a member of the CC-NB-LRR gene family that conferred resistance against the Dg2 leaf stripe isolate, against which the Rdg2a-gene is effective. Histological analysis demonstrated that Rdg2a-mediated leaf stripe resistance involves autofluorescing cells and prevents pathogen colonization in the embryos without any detectable hypersensitive cell death response, supporting a cell wall reinforcement-based resistance mechanism. Conclusions This work reports about the cloning of a resistance gene effective against a seed borne disease. We observed that Rdg2a was subjected to diversifying selection which is consistent with a model in which the R gene co-evolves with a pathogen effector(s) gene. We propose that inducible responses giving rise to physical and chemical barriers to infection in the cell walls and intercellular spaces of the barley embryo tissues represent mechanisms by which the CC-NB-LRR-encoding Rdg2a gene mediates resistance to leaf stripe in the absence of hypersensitive cell death. PMID:20844752
IMRT sequencing for a six-bank multi-leaf system.
Topolnjak, R; van der Heide, U A; Lagendijk, J J W
2005-05-07
In this study, we present a sequencer for delivering step-and-shoot IMRT using a six-bank multi-leaf system. Such a system was proposed earlier and combines a high-resolution field-shaping ability with a large field size. It consists of three layers of two opposing leaf banks with 1 cm leaves. The layers are rotated relative to each other at 60 degrees . A low-resolution mode of sequencing is achieved by using one layer of leaves as primary MLC, while the other two are used to improve back-up collimation. For high-resolution sequencing, an algorithm is presented that creates segments shaped by all six banks. Compared to a hypothetical mini-MLC with 0.4 cm leaves, a similar performance can be achieved, but a trade-off has to be made between accuracy and the number of segments.
A head motion estimation algorithm for motion artifact correction in dental CT imaging
NASA Astrophysics Data System (ADS)
Hernandez, Daniel; Elsayed Eldib, Mohamed; Hegazy, Mohamed A. A.; Hye Cho, Myung; Cho, Min Hyoung; Lee, Soo Yeol
2018-03-01
A small head motion of the patient can compromise the image quality in a dental CT, in which a slow cone-beam scan is adopted. We introduce a retrospective head motion estimation method by which we can estimate the motion waveform from the projection images without employing any external motion monitoring devices. We compute the cross-correlation between every two successive projection images, which results in a sinusoid-like displacement curve over the projection view when there is no patient motion. However, the displacement curve deviates from the sinusoid-like form when patient motion occurs. We develop a method to estimate the motion waveform with a single parameter derived from the displacement curve with aid of image entropy minimization. To verify the motion estimation method, we use a lab-built micro-CT that can emulate major head motions during dental CT scans, such as tilting and nodding, in a controlled way. We find that the estimated motion waveform conforms well to the actual motion waveform. To further verify the motion estimation method, we correct the motion artifacts with the estimated motion waveform. After motion artifact correction, the corrected images look almost identical to the reference images, with structural similarity index values greater than 0.81 in the phantom and rat imaging studies.
[Association of phytoplasma with Bermuda grass white-leaf disease].
Tan, Weijun; Chen, Yong; Zhang, Wu; Han, Chengchou; Tan, Zhiyuan; Zhang, Juming
2008-10-01
Bermuda grass white leaf is an important disease on Bermuda grass all over the world. The aim of this research is to identify the pathogen which leads to Bermuda grass white leaf occurring on the Chinese mainland. PCR amplification technique, sequence analysis and Southern hybridization were used. A 1.3 kb fragment was amplified by PCR phytoplasma universal primers and total DNA sample extracted from ill Bermuda grass as the amplified template. Sequence analysis of the amplified fragment indicated it clustered into Candidatus Phytoplasm Cynodontis. Southern hybridization analysis showed differential cingulums. The pathogen of Bermuda grass white leaf on the Chinese mainland contains phytoplasma, which provides a scientific basis for further identification, prevention and control of the disease.
Repurposing the Microsoft Kinect for Windows v2 for external head motion tracking for brain PET.
Noonan, P J; Howard, J; Hallett, W A; Gunn, R N
2015-11-21
Medical imaging systems such as those used in positron emission tomography (PET) are capable of spatial resolutions that enable the imaging of small, functionally important brain structures. However, the quality of data from PET brain studies is often limited by subject motion during acquisition. This is particularly challenging for patients with neurological disorders or with dynamic research studies that can last 90 min or more. Restraining head movement during the scan does not eliminate motion entirely and can be unpleasant for the subject. Head motion can be detected and measured using a variety of techniques that either use the PET data itself or an external tracking system. Advances in computer vision arising from the video gaming industry could offer significant benefits when re-purposed for medical applications. A method for measuring rigid body type head motion using the Microsoft Kinect v2 is described with results presenting ⩽0.5 mm spatial accuracy. Motion data is measured in real-time at 30 Hz using the KinectFusion algorithm. Non-rigid motion is detected using the residual alignment energy data of the KinectFusion algorithm allowing for unreliable motion to be discarded. Motion data is aligned to PET listmode data using injected pulse sequences into the PET/CT gantry allowing for correction of rigid body motion. Pilot data from a clinical dynamic PET/CT examination is shown.
Repurposing the Microsoft Kinect for Windows v2 for external head motion tracking for brain PET
NASA Astrophysics Data System (ADS)
Noonan, P. J.; Howard, J.; Hallett, W. A.; Gunn, R. N.
2015-11-01
Medical imaging systems such as those used in positron emission tomography (PET) are capable of spatial resolutions that enable the imaging of small, functionally important brain structures. However, the quality of data from PET brain studies is often limited by subject motion during acquisition. This is particularly challenging for patients with neurological disorders or with dynamic research studies that can last 90 min or more. Restraining head movement during the scan does not eliminate motion entirely and can be unpleasant for the subject. Head motion can be detected and measured using a variety of techniques that either use the PET data itself or an external tracking system. Advances in computer vision arising from the video gaming industry could offer significant benefits when re-purposed for medical applications. A method for measuring rigid body type head motion using the Microsoft Kinect v2 is described with results presenting ⩽0.5 mm spatial accuracy. Motion data is measured in real-time at 30 Hz using the KinectFusion algorithm. Non-rigid motion is detected using the residual alignment energy data of the KinectFusion algorithm allowing for unreliable motion to be discarded. Motion data is aligned to PET listmode data using injected pulse sequences into the PET/CT gantry allowing for correction of rigid body motion. Pilot data from a clinical dynamic PET/CT examination is shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, L; Huang, B; Rowedder, B
Purpose: The Smart leaf motion calculator (SLMC) in Eclipse treatment planning system is an advanced fluence delivery modeling algorithm as it takes into account fine MLC features including inter-leaf leakage, rounded leaf tips, non-uniform leaf thickness, and the spindle cavity etc. In this study, SLMC and traditional Varian LMC (VLMC) algorithms were investigated, for the first time, in dosimetric characteristics and delivery accuracy of sliding window (SW) IMRT. Methods: The SW IMRT plans of 51 cancer cases were included to evaluate dosimetric characteristics and dose delivery accuracy from leaf motion calculated by SLMC and VLMC, respectively. All plans were deliveredmore » using a Varian TrueBeam Linac. The DVH and MUs of the plans were analyzed. Three patient specific QA tools - independent dose calculation software IMSure, Delta4 phantom, and EPID portal dosimetry were also used to measure the delivered dose distribution. Results: Significant differences in the MUs were observed between the two LMCs (p≤0.001).Gamma analysis shows an excellent agreement between the planned dose distribution calculated by both LMC algorithms and delivered dose distribution measured by three QA tools in all plans at 3%/3 mm, leading to a mean pass rate exceeding 97%. The mean fraction of pixels with gamma < 1 of SLMC is slightly lower than that of VLMC in the IMSure and Delta4 results, but higher in portal dosimetry (the highest spatial resolution), especially in complex cases such as nasopharynx. Conclusion: The study suggests that the two LMCs generates the similar target coverage and sparing patterns of critical structures. However, SLMC is modestly more accurate than VLMC in modeling advanced MLC features, which may lead to a more accurate dose delivery in SW IMRT. Current clinical QA tools might not be specific enough to differentiate the dosimetric discrepancies at the millimeter level calculated by these two LMC algorithms. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant Professorship.« less
YÜCEL, MERYEM A.; SELB, JULIETTE; COOPER, ROBERT J.; BOAS, DAVID A.
2014-01-01
As near-infrared spectroscopy (NIRS) broadens its application area to different age and disease groups, motion artifacts in the NIRS signal due to subject movement is becoming an important challenge. Motion artifacts generally produce signal fluctuations that are larger than physiological NIRS signals, thus it is crucial to correct for them before obtaining an estimate of stimulus evoked hemodynamic responses. There are various methods for correction such as principle component analysis (PCA), wavelet-based filtering and spline interpolation. Here, we introduce a new approach to motion artifact correction, targeted principle component analysis (tPCA), which incorporates a PCA filter only on the segments of data identified as motion artifacts. It is expected that this will overcome the issues of filtering desired signals that plagues standard PCA filtering of entire data sets. We compared the new approach with the most effective motion artifact correction algorithms on a set of data acquired simultaneously with a collodion-fixed probe (low motion artifact content) and a standard Velcro probe (high motion artifact content). Our results show that tPCA gives statistically better results in recovering hemodynamic response function (HRF) as compared to wavelet-based filtering and spline interpolation for the Velcro probe. It results in a significant reduction in mean-squared error (MSE) and significant enhancement in Pearson’s correlation coefficient to the true HRF. The collodion-fixed fiber probe with no motion correction performed better than the Velcro probe corrected for motion artifacts in terms of MSE and Pearson’s correlation coefficient. Thus, if the experimental study permits, the use of a collodion-fixed fiber probe may be desirable. If the use of a collodion-fixed probe is not feasible, then we suggest the use of tPCA in the processing of motion artifact contaminated data. PMID:25360181
Andreini, Daniele; Lin, Fay Y; Rizvi, Asim; Cho, Iksung; Heo, Ran; Pontone, Gianluca; Bartorelli, Antonio L; Mushtaq, Saima; Villines, Todd C; Carrascosa, Patricia; Choi, Byoung Wook; Bloom, Stephen; Wei, Han; Xing, Yan; Gebow, Dan; Gransar, Heidi; Chang, Hyuk-Jae; Leipsic, Jonathon; Min, James K
2018-06-01
Motion artifact can reduce the diagnostic accuracy of coronary CT angiography (CCTA) for coronary artery disease (CAD). The purpose of this study was to compare the diagnostic performance of an algorithm dedicated to correcting coronary motion artifact with the performance of standard reconstruction methods in a prospective international multicenter study. Patients referred for clinically indicated invasive coronary angiography (ICA) for suspected CAD prospectively underwent an investigational CCTA examination free from heart rate-lowering medications before they underwent ICA. Blinded core laboratory interpretations of motion-corrected and standard reconstructions for obstructive CAD (≥ 50% stenosis) were compared with ICA findings. Segments unevaluable owing to artifact were considered obstructive. The primary endpoint was per-subject diagnostic accuracy of the intracycle motion correction algorithm for obstructive CAD found at ICA. Among 230 patients who underwent CCTA with the motion correction algorithm and standard reconstruction, 92 (40.0%) had obstructive CAD on the basis of ICA findings. At a mean heart rate of 68.0 ± 11.7 beats/min, the motion correction algorithm reduced the number of nondiagnostic scans compared with standard reconstruction (20.4% vs 34.8%; p < 0.001). Diagnostic accuracy for obstructive CAD with the motion correction algorithm (62%; 95% CI, 56-68%) was not significantly different from that of standard reconstruction on a per-subject basis (59%; 95% CI, 53-66%; p = 0.28) but was superior on a per-vessel basis: 77% (95% CI, 74-80%) versus 72% (95% CI, 69-75%) (p = 0.02). The motion correction algorithm was superior in subgroups of patients with severely obstructive (≥ 70%) stenosis, heart rate ≥ 70 beats/min, and vessels in the atrioventricular groove. The motion correction algorithm studied reduces artifacts and improves diagnostic performance for obstructive CAD on a per-vessel basis and in selected subgroups on a per-subject basis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao Daliang; Earl, Matthew A.; Luan, Shuang
2006-04-15
A new leaf-sequencing approach has been developed that is designed to reduce the number of required beam segments for step-and-shoot intensity modulated radiation therapy (IMRT). This approach to leaf sequencing is called continuous-intensity-map-optimization (CIMO). Using a simulated annealing algorithm, CIMO seeks to minimize differences between the optimized and sequenced intensity maps. Two distinguishing features of the CIMO algorithm are (1) CIMO does not require that each optimized intensity map be clustered into discrete levels and (2) CIMO is not rule-based but rather simultaneously optimizes both the aperture shapes and weights. To test the CIMO algorithm, ten IMRT patient cases weremore » selected (four head-and-neck, two pancreas, two prostate, one brain, and one pelvis). For each case, the optimized intensity maps were extracted from the Pinnacle{sup 3} treatment planning system. The CIMO algorithm was applied, and the optimized aperture shapes and weights were loaded back into Pinnacle. A final dose calculation was performed using Pinnacle's convolution/superposition based dose calculation. On average, the CIMO algorithm provided a 54% reduction in the number of beam segments as compared with Pinnacle's leaf sequencer. The plans sequenced using the CIMO algorithm also provided improved target dose uniformity and a reduced discrepancy between the optimized and sequenced intensity maps. For ten clinical intensity maps, comparisons were performed between the CIMO algorithm and the power-of-two reduction algorithm of Xia and Verhey [Med. Phys. 25(8), 1424-1434 (1998)]. When the constraints of a Varian Millennium multileaf collimator were applied, the CIMO algorithm resulted in a 26% reduction in the number of segments. For an Elekta multileaf collimator, the CIMO algorithm resulted in a 67% reduction in the number of segments. An average leaf sequencing time of less than one minute per beam was observed.« less
Sequences of upper and lower extremity motions in javelin throwing.
Liu, Hui; Leigh, Steve; Yu, Bing
2010-11-01
Javelin throwing is technically demanding. Sequences of upper and lower extremity motions are important for javelin throwing performance. The purpose of this study was to determine the general sequences of upper and lower extremity motions of elite male and female javelin throwers. Three-dimensional kinematic data were collected for 32 female and 30 male elite javelin throwers during competitions. Shoulder, elbow, wrist, hip, knee, ankle, lower trunk, and upper trunk joint and segment angles were reduced for the best trial of each participant. Beginning times of 6 upper extremity and 10 lower extremity joint and segment angular motions were identified. Sequences of the upper and lower extremity motions were determined through statistical analyses. Upper and lower extremity motions of the male and female elite javelin throwers followed specific sequences (P ≤ 0.050). Upper extremity motions of the male and female elite javelin throwers did not follow a proximal-to-distal sequence as suggested in the literature. Male and female elite javelin throwers apparently employed different sequences for upper and lower extremity motions (P < 0.001). Further studies are needed to determine the effects of sequences of upper and lower extremity motions on javelin throwing performance.
Optimization of yttrium-90 PET for simultaneous PET/MR imaging: A phantom study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldib, Mootaz
2016-08-15
Purpose: Positron emission tomography (PET) imaging of yttrium-90 in the liver post radioembolization has been shown useful for personalized dosimetry calculations and evaluation of extrahepatic deposition. The purpose of this study was to quantify the benefits of several MR-based data correction approaches offered by using a combined PET/MR system to improve Y-90 PET imaging. In particular, the feasibility of motion and partial volume corrections were investigated in a controlled phantom study. Methods: The ACR phantom was filled with an initial concentration of 8 GBq of Y-90 solution resulting in a contrast of 10:1 between the hot cylinders and the background.more » Y-90 PET motion correction through motion estimates from MR navigators was evaluated by using a custom-built motion stage that simulated realistic amplitudes of respiration-induced liver motion. Finally, the feasibility of an MR-based partial volume correction method was evaluated using a wavelet decomposition approach. Results: Motion resulted in a large (∼40%) loss of contrast recovery for the 8 mm cylinder in the phantom, but was corrected for after MR-based motion correction was applied. Partial volume correction improved contrast recovery by 13% for the 8 mm cylinder. Conclusions: MR-based data correction improves Y-90 PET imaging on simultaneous PET/MR systems. Assessment of these methods must be studied further in the clinical setting.« less
Ahmed, Aqeel; Rippmann, Friedrich; Barnickel, Gerhard; Gohlke, Holger
2011-07-25
A three-step approach for multiscale modeling of protein conformational changes is presented that incorporates information about preferred directions of protein motions into a geometric simulation algorithm. The first two steps are based on a rigid cluster normal-mode analysis (RCNMA). Low-frequency normal modes are used in the third step (NMSim) to extend the recently introduced idea of constrained geometric simulations of diffusive motions in proteins by biasing backbone motions of the protein, whereas side-chain motions are biased toward favorable rotamer states. The generated structures are iteratively corrected regarding steric clashes and stereochemical constraint violations. The approach allows performing three simulation types: unbiased exploration of conformational space; pathway generation by a targeted simulation; and radius of gyration-guided simulation. When applied to a data set of proteins with experimentally observed conformational changes, conformational variabilities are reproduced very well for 4 out of 5 proteins that show domain motions, with correlation coefficients r > 0.70 and as high as r = 0.92 in the case of adenylate kinase. In 7 out of 8 cases, NMSim simulations starting from unbound structures are able to sample conformations that are similar (root-mean-square deviation = 1.0-3.1 Å) to ligand bound conformations. An NMSim generated pathway of conformational change of adenylate kinase correctly describes the sequence of domain closing. The NMSim approach is a computationally efficient alternative to molecular dynamics simulations for conformational sampling of proteins. The generated conformations and pathways of conformational transitions can serve as input to docking approaches or as starting points for more sophisticated sampling techniques.
MO-G-18C-05: Real-Time Prediction in Free-Breathing Perfusion MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, H; Liu, W; Ruan, D
Purpose: The aim is to minimize frame-wise difference errors caused by respiratory motion and eliminate the need for breath-holds in magnetic resonance imaging (MRI) sequences with long acquisitions and repeat times (TRs). The technique is being applied to perfusion MRI using arterial spin labeling (ASL). Methods: Respiratory motion prediction (RMP) using navigator echoes was implemented in ASL. A least-square method was used to extract the respiratory motion information from the 1D navigator. A generalized artificial neutral network (ANN) with three layers was developed to simultaneously predict 10 time points forward in time and correct for respiratory motion during MRI acquisition.more » During the training phase, the parameters of the ANN were optimized to minimize the aggregated prediction error based on acquired navigator data. During realtime prediction, the trained ANN was applied to the most recent estimated displacement trajectory to determine in real-time the amount of spatial Results: The respiratory motion information extracted from the least-square method can accurately represent the navigator profiles, with a normalized chi-square value of 0.037±0.015 across the training phase. During the 60-second training phase, the ANN successfully learned the respiratory motion pattern from the navigator training data. During real-time prediction, the ANN received displacement estimates and predicted the motion in the continuum of a 1.0 s prediction window. The ANN prediction was able to provide corrections for different respiratory states (i.e., inhalation/exhalation) during real-time scanning with a mean absolute error of < 1.8 mm. Conclusion: A new technique enabling free-breathing acquisition during MRI is being developed. A generalized ANN development has demonstrated its efficacy in predicting a continuum of motion profile for volumetric imaging based on navigator inputs. Future work will enhance the robustness of ANN and verify its effectiveness with human subjects. Research supported by National Institutes of Health National Cancer Institute Grant R01 CA159471-01.« less
Towards automated assistance for operating home medical devices.
Gao, Zan; Detyniecki, Marcin; Chen, Ming-Yu; Wu, Wen; Hauptmann, Alexander G; Wactlar, Howard D
2010-01-01
To detect errors when subjects operate a home medical device, we observe them with multiple cameras. We then perform action recognition with a robust approach to recognize action information based on explicitly encoding motion information. This algorithm detects interest points and encodes not only their local appearance but also explicitly models local motion. Our goal is to recognize individual human actions in the operations of a home medical device to see if the patient has correctly performed the required actions in the prescribed sequence. Using a specific infusion pump as a test case, requiring 22 operation steps from 6 action classes, our best classifier selects high likelihood action estimates from 4 available cameras, to obtain an average class recognition rate of 69%.
Fetal brain volumetry through MRI volumetric reconstruction and segmentation
Estroff, Judy A.; Barnewolt, Carol E.; Connolly, Susan A.; Warfield, Simon K.
2013-01-01
Purpose Fetal MRI volumetry is a useful technique but it is limited by a dependency upon motion-free scans, tedious manual segmentation, and spatial inaccuracy due to thick-slice scans. An image processing pipeline that addresses these limitations was developed and tested. Materials and methods The principal sequences acquired in fetal MRI clinical practice are multiple orthogonal single-shot fast spin echo scans. State-of-the-art image processing techniques were used for inter-slice motion correction and super-resolution reconstruction of high-resolution volumetric images from these scans. The reconstructed volume images were processed with intensity non-uniformity correction and the fetal brain extracted by using supervised automated segmentation. Results Reconstruction, segmentation and volumetry of the fetal brains for a cohort of twenty-five clinically acquired fetal MRI scans was done. Performance metrics for volume reconstruction, segmentation and volumetry were determined by comparing to manual tracings in five randomly chosen cases. Finally, analysis of the fetal brain and parenchymal volumes was performed based on the gestational age of the fetuses. Conclusion The image processing pipeline developed in this study enables volume rendering and accurate fetal brain volumetry by addressing the limitations of current volumetry techniques, which include dependency on motion-free scans, manual segmentation, and inaccurate thick-slice interpolation. PMID:20625848
Klén, Riku; Noponen, Tommi; Koikkalainen, Juha; Lötjönen, Jyrki; Thielemans, Kris; Hoppela, Erika; Sipilä, Hannu; Teräs, Mika; Knuuti, Juhani
2016-09-01
Dual gating is a method of dividing the data of a cardiac PET scan into smaller bins according to the respiratory motion and the ECG of the patient. It reduces the undesirable motion artefacts in images, but produces several images for interpretation and decreases the quality of single images. By using motion-correction techniques, the motion artefacts in the dual-gated images can be corrected and the images can be combined into a single motion-free image with good statistics. The aim of the present study is to develop and evaluate motion-correction methods for cardiac PET studies. We have developed and compared two different methods: computed tomography (CT)/PET-based and CT-only methods. The methods were implemented and tested with a cardiac phantom and three patient datasets. In both methods, anatomical information of CT images is used to create models for the cardiac motion. In the patient study, the CT-only method reduced motion (measured as the centre of mass of the myocardium) on average 43%, increased the contrast-to-noise ratio on average 6.0% and reduced the target size on average 10%. Slightly better figures (51, 6.9 and 28%) were obtained with the CT/PET-based method. Even better results were obtained in the phantom study for both the CT-only method (57, 68 and 43%) and the CT/PET-based method (61, 74 and 52%). We conclude that using anatomical information of CT for motion correction of cardiac PET images, both respiratory and pulsatile motions can be corrected with good accuracy.
Tokuda, Junichi; Mamata, Hatsuho; Gill, Ritu R; Hata, Nobuhiko; Kikinis, Ron; Padera, Robert F; Lenkinski, Robert E; Sugarbaker, David J; Hatabu, Hiroto
2011-04-01
To investigates the impact of nonrigid motion correction on pixel-wise pharmacokinetic analysis of free-breathing DCE-MRI in patients with solitary pulmonary nodules (SPNs). Misalignment of focal lesions due to respiratory motion in free-breathing dynamic contrast-enhanced MRI (DCE-MRI) precludes obtaining reliable time-intensity curves, which are crucial for pharmacokinetic analysis for tissue characterization. Single-slice 2D DCE-MRI was obtained in 15 patients. Misalignments of SPNs were corrected using nonrigid B-spline image registration. Pixel-wise pharmacokinetic parameters K(trans) , v(e) , and k(ep) were estimated from both original and motion-corrected DCE-MRI by fitting the two-compartment pharmacokinetic model to the time-intensity curve obtained in each pixel. The "goodness-of-fit" was tested with χ(2) -test in pixel-by-pixel basis to evaluate the reliability of the parameters. The percentages of reliable pixels within the SPNs were compared between the original and motion-corrected DCE-MRI. In addition, the parameters obtained from benign and malignant SPNs were compared. The percentage of reliable pixels in the motion-corrected DCE-MRI was significantly larger than the original DCE-MRI (P = 4 × 10(-7) ). Both K(trans) and k(ep) derived from the motion-corrected DCE-MRI showed significant differences between benign and malignant SPNs (P = 0.024, 0.015). The study demonstrated the impact of nonrigid motion correction technique on pixel-wise pharmacokinetic analysis of free-breathing DCE-MRI in SPNs. Copyright © 2011 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Malagnini, L.; Akinci, A.; Mayeda, K. M.; Munafo', I.; Herrmann, R. B.; Mercuri, A.
2010-12-01
Based only on weak-motion data, we carried out a combined study on region-specific source scaling and crustal attenuation in the Central Apennines (Italy). Our goal was to obtain a reappraisal of the existing predictive relationships for the ground motion, and to test them against the strong-motion data (Peak Ground Acceleration, PGA, Peak Ground Velocity, PGV, and Spectral Acceleration, SA) gathered during the Mw 6.15 L’Aquila earthquake (April 6, 2009, 01:32 UTC). The L’Aquila main-shock was not part of the predictive study, and the validation test was an extrapolation to one magnitude unit above the largest earthquake of the calibration data set. The regional attenuation was determined through a set of regressions on a data set of 12,777 high-quality, high-gain waveforms with excellent S/N ratios (4,259 vertical, and 8,518 horizontal time histories). Seismograms were selected from the recordings of 170 fore-shocks and after-shocks of the sequence (the complete set of all earthquakes with ML ≥ 3.0, from October 1, 2008, to May 10, 2010). All waveforms were downloaded from the ISIDe web page (http://iside.rm.ingv.it/iside/standard/index.jsp), a web site maintained by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). Weak-motion data were used to obtain a moment tensor solution, as well as a coda-based moment-rate source spectrum, for each one of the 170 events of the L’Aquila sequence (2.8 ≤ Mw ≤ 6.15). Source spectra were used to verify the good agreement with the source scaling of the Colfiorito seismic sequence of 1997-98 recently described by Malagnini et al. (2008). Finally, results on source excitation and crustal attenuation were used to produce the absolute site terms for the 23 stations located within ~ 80 km of the epicentral area. The complete set of spectral corrections (crustal attenuation and absolute site effects) was used to implement a fast and accurate tool for the automatic computation of moment magnitudes in the Central Apennines.
The enigma of effective path length for (18) O enrichment in leaf water of conifers.
Roden, John; Kahmen, Ansgar; Buchmann, Nina; Siegwolf, Rolf
2015-12-01
The Péclet correction is often used to predict leaf evaporative enrichment and requires an estimate of effective path length (L). Studies to estimate L in conifer needles have produced unexpected patterns based on Péclet theory and leaf anatomy. We exposed seedlings of six conifer species to different vapour pressure deficits (VPD) in controlled climate chambers to produce steady-state leaf water enrichment (in (18) O). We measured leaf gas exchange, stable oxygen isotopic composition (δ(18) O) of input and plant waters as well as leaf anatomical characteristics. Variation in bulk needle water δ(18) O was strongly related to VPD. Conifer needles had large amounts of water within the vascular strand that was potentially unenriched (up to 40%). Both standard Craig-Gordon and Péclet models failed to accurately predict conifer leaf water δ(18) O without taking into consideration the unenriched water in the vascular strand and variable L. Although L was linearly related to mesophyll thickness, large within-species variation prevented the development of generalizations that could allow a broader use of the Péclet effect in predictive models. Our results point to the importance of within needle water pools and isolating mechanisms that need further investigation in order to integrate Péclet corrections with 'two compartment' leaf water concepts. © 2015 John Wiley & Sons Ltd.
Sohrab, Sayed Sartaj
2016-03-01
Corchorus (Corchorus capsularis L. and Corchorus olitorius L.) is one of the most important fiber crops grown in tropical and subtropical regions throughout the world. Field survey was conducted and naturally infected leaf samples were collected from corchorus and tomato plants in Jeddah, Saudi Arabia. The causal virus was transmitted by whiteflies to tomato plants and begomovirus infection was confirmed by Polymerase chain reaction. The complete viral genome and associated betasatellites were amplified, cloned and sequenced from both corchorus and tomato samples. The genetic variability and phylogenetic relationships were determined for both isolates (corchorus and tomato). The complete genome sequences showed highest (99.5 % nt) similarity with tomato yellow leaf curl virus (TYLCV) and formed closest cluster with TYLCV-Tomato reported from Jizan and Al-Qasim, Saudi Arabia and betasatellites sequences showed highest similarity (99.8 % nt) with Tomato yellow leaf curl betasatellites-Jeddah followed by Tomato yellow leaf curl Oman betasatellites and formed closed cluster with TYLCV-Tomato. On the basis of results obtained from whiteflies transmission, sequence similarity and phylogenetic relationships; it is concluded that the identified virus could be a variant of TYLCV circulating in the Kingdom. The significance of this study demonstrated that the corchorus is serving as reservoir and alternative host and playing an important role in spreading the begomovirus associated disease in the Kingdom of Saudi Arabia.
A rigid motion correction method for helical computed tomography (CT)
NASA Astrophysics Data System (ADS)
Kim, J.-H.; Nuyts, J.; Kyme, A.; Kuncic, Z.; Fulton, R.
2015-03-01
We propose a method to compensate for six degree-of-freedom rigid motion in helical CT of the head. The method is demonstrated in simulations and in helical scans performed on a 16-slice CT scanner. Scans of a Hoffman brain phantom were acquired while an optical motion tracking system recorded the motion of the bed and the phantom. Motion correction was performed by restoring projection consistency using data from the motion tracking system, and reconstructing with an iterative fully 3D algorithm. Motion correction accuracy was evaluated by comparing reconstructed images with a stationary reference scan. We also investigated the effects on accuracy of tracker sampling rate, measurement jitter, interpolation of tracker measurements, and the synchronization of motion data and CT projections. After optimization of these aspects, motion corrected images corresponded remarkably closely to images of the stationary phantom with correlation and similarity coefficients both above 0.9. We performed a simulation study using volunteer head motion and found similarly that our method is capable of compensating effectively for realistic human head movements. To the best of our knowledge, this is the first practical demonstration of generalized rigid motion correction in helical CT. Its clinical value, which we have yet to explore, may be significant. For example it could reduce the necessity for repeat scans and resource-intensive anesthetic and sedation procedures in patient groups prone to motion, such as young children. It is not only applicable to dedicated CT imaging, but also to hybrid PET/CT and SPECT/CT, where it could also ensure an accurate CT image for lesion localization and attenuation correction of the functional image data.
Shih, S L; Kumar, S; Tsai, W S; Lee, L M; Green, S K
2009-01-01
Okra (Abelmoschus esculentus) is a major crop in Niger. In the fall of 2007, okra leaf curl disease was observed in Niger and the begomovirus and DNA-beta satellite were found associated with the disease. The complete nucleotide sequences of DNA-A (FJ469626 and FJ469627) and associated DNA-beta satellites (FJ469628 and FJ469629) were determined from two samples. This is the first report of molecular characterization of okra-infecting begomovirus and their associated DNA-beta from Niger. The begomovirus and DNA-beta have been identified as Cotton leaf curl Gezira virus and Cotton leaf curl Gezira betasatellite, respectively, which are reported to also infect okra in Egypt, Mali and Sudan.
Ikari, Yasuhiko; Nishio, Tomoyuki; Makishi, Yoko; Miya, Yukari; Ito, Kengo; Koeppe, Robert A; Senda, Michio
2012-08-01
Head motion during 30-min (six 5-min frames) brain PET scans starting 30 min post-injection of FDG was evaluated together with the effect of post hoc motion correction between frames in J-ADNI multicenter study carried out in 24 PET centers on a total of 172 subjects consisting of 81 normal subjects, 55 mild cognitive impairment (MCI) and 36 mild Alzheimer's disease (AD) patients. Based on the magnitude of the between-frame co-registration parameters, the scans were classified into six levels (A-F) of motion degree. The effect of motion and its correction was evaluated using between-frame variation of the regional FDG uptake values on ROIs placed over cerebral cortical areas. Although AD patients tended to present larger motion (motion level E or F in 22 % of the subjects) than MCI (3 %) and normal (4 %) subjects, unignorable motion was observed in a small number of subjects in the latter groups as well. The between-frame coefficient of variation (SD/mean) was 0.5 % in the frontal, 0.6 % in the parietal and 1.8 % in the posterior cingulate ROI for the scans of motion level 1. The respective values were 1.5, 1.4, and 3.6 % for the scans of motion level F, but reduced by the motion correction to 0.5, 0.4 and 0.8 %, respectively. The motion correction changed the ROI value for the posterior cingulate cortex by 11.6 % in the case of severest motion. Substantial head motion occurs in a fraction of subjects in a multicenter setup which includes PET centers lacking sufficient experience in imaging demented patients. A simple frame-by-frame co-registration technique that can be applied to any PET camera model is effective in correcting for motion and improving quantitative capability.
Rama Reddy, Nagaraja Reddy; Mehta, Rucha Harishbhai; Soni, Palak Harendrabhai; Makasana, Jayanti; Gajbhiye, Narendra Athamaram; Ponnuchamy, Manivel; Kumar, Jitendra
2015-01-01
Senna (Cassia angustifolia Vahl.) is a world's natural laxative medicinal plant. Laxative properties are due to sennosides (anthraquinone glycosides) natural products. However, little genetic information is available for this species, especially concerning the biosynthetic pathways of sennosides. We present here the transcriptome sequencing of young and mature leaf tissue of Cassia angustifolia using Illumina MiSeq platform that resulted in a total of 6.34 Gb of raw nucleotide sequence. The sequence assembly resulted in 42230 and 37174 transcripts with an average length of 1119 bp and 1467 bp for young and mature leaf, respectively. The transcripts were annotated using NCBI BLAST with 'green plant database (txid 33090)', Swiss Prot, Kyoto Encylcopedia of Genes & Genomes (KEGG), Cluster of Orthologous Gene (COG) and Gene Ontology (GO). Out of the total transcripts, 40138 (95.0%) and 36349 (97.7%) from young and mature leaf, respectively, were annotated by BLASTX against green plant database of NCBI. We used InterProscan to see protein similarity at domain level, a total of 34031 (young leaf) and 32077 (mature leaf) transcripts were annotated against the Pfam domains. All transcripts from young and mature leaf were assigned to 191 KEGG pathways. There were 166 and 159 CDS, respectively, from young and mature leaf involved in metabolism of terpenoids and polyketides. Many CDS encoding enzymes leading to biosynthesis of sennosides were identified. A total of 10,763 CDS differentially expressing in both young and mature leaf libraries of which 2,343 (21.7%) CDS were up-regulated in young compared to mature leaf. Several differentially expressed genes found functionally associated with sennoside biosynthesis. CDS encoding for many CYPs and TF families were identified having probable roles in metabolism of primary as well as secondary metabolites. We developed SSR markers for molecular breeding of senna. We have identified a set of putative genes involved in various secondary metabolite pathways, especially those related to the synthesis of sennosides which will serve as an important platform for public information about gene expression, genomics, and functional genomics in senna.
Rama Reddy, Nagaraja Reddy; Mehta, Rucha Harishbhai; Soni, Palak Harendrabhai; Makasana, Jayanti; Gajbhiye, Narendra Athamaram; Ponnuchamy, Manivel; Kumar, Jitendra
2015-01-01
Senna (Cassia angustifolia Vahl.) is a world’s natural laxative medicinal plant. Laxative properties are due to sennosides (anthraquinone glycosides) natural products. However, little genetic information is available for this species, especially concerning the biosynthetic pathways of sennosides. We present here the transcriptome sequencing of young and mature leaf tissue of Cassia angustifolia using Illumina MiSeq platform that resulted in a total of 6.34 Gb of raw nucleotide sequence. The sequence assembly resulted in 42230 and 37174 transcripts with an average length of 1119 bp and 1467 bp for young and mature leaf, respectively. The transcripts were annotated using NCBI BLAST with ‘green plant database (txid 33090)’, Swiss Prot, Kyoto Encylcopedia of Genes & Genomes (KEGG), Cluster of Orthologous Gene (COG) and Gene Ontology (GO). Out of the total transcripts, 40138 (95.0%) and 36349 (97.7%) from young and mature leaf, respectively, were annotated by BLASTX against green plant database of NCBI. We used InterProscan to see protein similarity at domain level, a total of 34031 (young leaf) and 32077 (mature leaf) transcripts were annotated against the Pfam domains. All transcripts from young and mature leaf were assigned to 191 KEGG pathways. There were 166 and 159 CDS, respectively, from young and mature leaf involved in metabolism of terpenoids and polyketides. Many CDS encoding enzymes leading to biosynthesis of sennosides were identified. A total of 10,763 CDS differentially expressing in both young and mature leaf libraries of which 2,343 (21.7%) CDS were up-regulated in young compared to mature leaf. Several differentially expressed genes found functionally associated with sennoside biosynthesis. CDS encoding for many CYPs and TF families were identified having probable roles in metabolism of primary as well as secondary metabolites. We developed SSR markers for molecular breeding of senna. We have identified a set of putative genes involved in various secondary metabolite pathways, especially those related to the synthesis of sennosides which will serve as an important platform for public information about gene expression, genomics, and functional genomics in senna. PMID:26098898
Khan, Akhtar J; Akhtar, Sohail; Singh, Achuit K; Al-Shehi, Adel A; Al-Matrushi, Abdulrahman M; Ammara, Ume; Briddon, Rob W
2014-03-01
For last two decades, begomoviruses (family Geminiviridae) have been a major constraint for tomato production in Oman, particularly in the Al-Batinah region, the major agricultural area of Oman. Farms in the Al-Batinah region were surveyed during January-March and November-December in 2012 and January-February in 2013. Leaf samples of tomato plants showing typical leaf curl disease symptoms were collected and analyzed for begomoviruses. Out of fifteen begomovirus clones sequenced, seven were shown to be tomato yellow leaf curl virus strain Oman (TYLCV-OM); three, chili leaf curl virus strain Oman (ChLCV-OM); and one, tomato leaf curl Oman virus (ToLCOMV) - viruses that have previously been shown to occur in Oman. Four sequences were shown to have relatively low percent identity values to known begomoviruses, with the highest (86 %) to isolates of pepper leaf curl Lahore virus, indicating that these should be included in a new species, for which the name "Tomato leaf curl Al Batinah virus" (ToLCABV) is proposed. Although the betasatellite tomato leaf curl betasatellite (ToLCB; 7 full-length sequences isolated) was identified with some isolates of ChLCV-OM, TYLCV-OM and ToLCOMV, it was not identified in association with any of the ToLCABV isolates. Analysis of the sequences of the TYLCV-OM and ToLCOMV isolates characterized here did not show them to differ significantly from previously characterized isolates of these viruses. The three isolates of ChLCV-OM characterized were shown to have a recombination pattern distinct from earlier characterized isolates. ToLCABV was shown to have resulted from recombination between ChLCV-OM and ToLCOMV. A clone of ToLCABV was infectious by Agrobacterium-mediated inoculation to Nicotiana benthamiana and tomato, inducing symptoms typical of those seen in tomato in the field. Additionally, ToLCABV was shown to be able to interact in planta with ToLCB, resulting in a change in symptom phenotype, although the betasatellite did not appear to affect viral DNA levels.
NASA Astrophysics Data System (ADS)
Wüthrich, Lorenz; Bliedtner, Marcel; Kathrin Schäfer, Imke; Zech, Jana; Shajari, Fatemeh; Gaar, Dorian; Preusser, Frank; Salazar, Gary; Szidat, Sönke; Zech, Roland
2017-12-01
We present the results of leaf wax analyses (long-chain n-alkanes) from the 6.8 m deep loess sequence of Möhlin, Switzerland, spanning the last ˜ 70 kyr. Leaf waxes are well preserved and occur in sufficient amounts only down to 0.4 m and below 1.8 m depth, so no paleoenvironmental reconstructions can be done for marine isotope stage (MIS) 2. Compound-specific δ2Hwax analyses yielded similar values for late MIS 3 compared to the uppermost samples, indicating that various effects (e.g., more negative values due to lower temperatures, more positive values due to an enriched moisture source) cancel each other out. A pronounced ˜ 30 ‰ shift towards more negative values probably reflects more humid conditions before ˜ 32 ka. Radiocarbon dating of the n-alkanes corroborates the stratigraphic integrity of leaf waxes and their potential for dating loess-paleosol sequences (LPS) back to ˜ 30 ka.
Correction And Use Of Jitter In Television Images
NASA Technical Reports Server (NTRS)
Diner, Daniel B.; Fender, Derek H.; Fender, Antony R. H.
1989-01-01
Proposed system stabilizes jittering television image and/or measures jitter to extract information on motions of objects in image. Alternative version, system controls lateral motion on camera to generate stereoscopic views to measure distances to objects. In another version, motion of camera controlled to keep object in view. Heart of system is digital image-data processor called "jitter-miser", which includes frame buffer and logic circuits to correct for jitter in image. Signals from motion sensors on camera sent to logic circuits and processed into corrections for motion along and across line of sight.
Advanced Respiratory Motion Compensation for Coronary MR Angiography
Henningsson, Markus; Botnar, Rene M.
2013-01-01
Despite technical advances, respiratory motion remains a major impediment in a substantial amount of patients undergoing coronary magnetic resonance angiography (CMRA). Traditionally, respiratory motion compensation has been performed with a one-dimensional respiratory navigator positioned on the right hemi-diaphragm, using a motion model to estimate and correct for the bulk respiratory motion of the heart. Recent technical advancements has allowed for direct respiratory motion estimation of the heart, with improved motion compensation performance. Some of these new methods, particularly using image-based navigators or respiratory binning, allow for more advanced motion correction which enables CMRA data acquisition throughout most or all of the respiratory cycle, thereby significantly reducing scan time. This review describes the three components typically involved in most motion compensation strategies for CMRA, including respiratory motion estimation, gating and correction, and how these processes can be utilized to perform advanced respiratory motion compensation. PMID:23708271
USDA-ARS?s Scientific Manuscript database
The surface area of the leaf mesophyll exposed to intercellular airspace per leaf area (Sm) is closely associated with CO2 diffusion and photosynthetic rates. Sm is typically estimated from two-dimensional (2D) leaf sections and corrected for the three-dimensional (3D) geometry of mesophyll cells, l...
Application and assessment of a robust elastic motion correction algorithm to dynamic MRI.
Herrmann, K-H; Wurdinger, S; Fischer, D R; Krumbein, I; Schmitt, M; Hermosillo, G; Chaudhuri, K; Krishnan, A; Salganicoff, M; Kaiser, W A; Reichenbach, J R
2007-01-01
The purpose of this study was to assess the performance of a new motion correction algorithm. Twenty-five dynamic MR mammography (MRM) data sets and 25 contrast-enhanced three-dimensional peripheral MR angiographic (MRA) data sets which were affected by patient motion of varying severeness were selected retrospectively from routine examinations. Anonymized data were registered by a new experimental elastic motion correction algorithm. The algorithm works by computing a similarity measure for the two volumes that takes into account expected signal changes due to the presence of a contrast agent while penalizing other signal changes caused by patient motion. A conjugate gradient method is used to find the best possible set of motion parameters that maximizes the similarity measures across the entire volume. Images before and after correction were visually evaluated and scored by experienced radiologists with respect to reduction of motion, improvement of image quality, disappearance of existing lesions or creation of artifactual lesions. It was found that the correction improves image quality (76% for MRM and 96% for MRA) and diagnosability (60% for MRM and 96% for MRA).
Hunter, Chad R R N; Klein, Ran; Beanlands, Rob S; deKemp, Robert A
2016-04-01
Patient motion is a common problem during dynamic positron emission tomography (PET) scans for quantification of myocardial blood flow (MBF). The purpose of this study was to quantify the prevalence of body motion in a clinical setting and evaluate with realistic phantoms the effects of motion on blood flow quantification, including CT attenuation correction (CTAC) artifacts that result from PET-CT misalignment. A cohort of 236 sequential patients was analyzed for patient motion under resting and peak stress conditions by two independent observers. The presence of motion, affected time-frames, and direction of motion was recorded; discrepancy between observers was resolved by consensus review. Based on these results, patient body motion effects on MBF quantification were characterized using the digital NURBS-based cardiac-torso phantom, with characteristic time activity curves (TACs) assigned to the heart wall (myocardium) and blood regions. Simulated projection data were corrected for attenuation and reconstructed using filtered back-projection. All simulations were performed without noise added, and a single CT image was used for attenuation correction and aligned to the early- or late-frame PET images. In the patient cohort, mild motion of 0.5 ± 0.1 cm occurred in 24% and moderate motion of 1.0 ± 0.3 cm occurred in 38% of patients. Motion in the superior/inferior direction accounted for 45% of all detected motion, with 30% in the superior direction. Anterior/posterior motion was predominant (29%) in the posterior direction. Left/right motion occurred in 24% of cases, with similar proportions in the left and right directions. Computer simulation studies indicated that errors in MBF can approach 500% for scans with severe patient motion (up to 2 cm). The largest errors occurred when the heart wall was shifted left toward the adjacent lung region, resulting in a severe undercorrection for attenuation of the heart wall. Simulations also indicated that the magnitude of MBF errors resulting from motion in the superior/inferior and anterior/posterior directions was similar (up to 250%). Body motion effects were more detrimental for higher resolution PET imaging (2 vs 10 mm full-width at half-maximum), and for motion occurring during the mid-to-late time-frames. Motion correction of the reconstructed dynamic image series resulted in significant reduction in MBF errors, but did not account for the residual PET-CTAC misalignment artifacts. MBF bias was reduced further using global partial-volume correction, and using dynamic alignment of the PET projection data to the CT scan for accurate attenuation correction during image reconstruction. Patient body motion can produce MBF estimation errors up to 500%. To reduce these errors, new motion correction algorithms must be effective in identifying motion in the left/right direction, and in the mid-to-late time-frames, since these conditions produce the largest errors in MBF, particularly for high resolution PET imaging. Ideally, motion correction should be done before or during image reconstruction to eliminate PET-CTAC misalignment artifacts.
Quantitative framework for prospective motion correction evaluation.
Pannetier, Nicolas A; Stavrinos, Theano; Ng, Peter; Herbst, Michael; Zaitsev, Maxim; Young, Karl; Matson, Gerald; Schuff, Norbert
2016-02-01
Establishing a framework to evaluate performances of prospective motion correction (PMC) MRI considering motion variability between MRI scans. A framework was developed to obtain quantitative comparisons between different motion correction setups, considering that varying intrinsic motion patterns between acquisitions can induce bias. Intrinsic motion was considered by replaying in a phantom experiment the recorded motion trajectories from subjects. T1-weighted MRI on five volunteers and two different marker fixations (mouth guard and nose bridge fixations) were used to test the framework. Two metrics were investigated to quantify the improvement of the image quality with PMC. Motion patterns vary between subjects as well as between repeated scans within a subject. This variability can be approximated by replaying the motion in a distinct phantom experiment and used as a covariate in models comparing motion corrections. We show that considering the intrinsic motion alters the statistical significance in comparing marker fixations. As an example, two marker fixations, a mouth guard and a nose bridge, were evaluated in terms of their effectiveness for PMC. A mouth guard achieved better PMC performance. Intrinsic motion patterns can bias comparisons between PMC configurations and must be considered for robust evaluations. A framework for evaluating intrinsic motion patterns in PMC is presented. © 2015 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
High-density genetic linkage maps are essential for fine mapping QTLs controlling disease resistance traits, such as early leaf spot (ELS), late leaf spot (LLS), and Tomato spotted wilt virus (TSWV). With completion of the genome sequences of two diploid ancestors of cultivated peanut, we could use ...
Draft genome sequence of Xylella fastidiosa pear leaf scorch strain in Taiwan
USDA-ARS?s Scientific Manuscript database
The draft genome sequence of Xylella fastidiosa pear leaf scorch strain (PLS229) isolated from pear cultivar Hengshan (Pyrus pyrifolia) in Taiwan is reported. The bacterium has a genome size of 2,733,013 bp with a G+C content of 53.1%. The PLS229 strain genome was annotated to have 3,259 open readin...
USDA-ARS?s Scientific Manuscript database
Citrus tatter leaf virus isolated from Meyer lemon trees (CTLV-ML) from California and Florida induces bud union incompatibility of citrus trees grafted on the widely used trifoliate and trifoliate hybrid rootstocks. The complete genome sequence of CTLV-ML was determined to be 6,495 nucleotides (nts...
NASA Astrophysics Data System (ADS)
Faber, T. L.; Raghunath, N.; Tudorascu, D.; Votaw, J. R.
2009-02-01
Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. Existing correction methods that use known patient motion obtained from tracking devices either require multi-frame acquisitions, detailed knowledge of the scanner, or specialized reconstruction algorithms. A deconvolution algorithm has been developed that alleviates these drawbacks by using the reconstructed image to estimate the original non-blurred image using maximum likelihood estimation maximization (MLEM) techniques. A high-resolution digital phantom was created by shape-based interpolation of the digital Hoffman brain phantom. Three different sets of 20 movements were applied to the phantom. For each frame of the motion, sinograms with attenuation and three levels of noise were simulated and then reconstructed using filtered backprojection. The average of the 20 frames was considered the motion blurred image, which was restored with the deconvolution algorithm. After correction, contrast increased from a mean of 2.0, 1.8 and 1.4 in the motion blurred images, for the three increasing amounts of movement, to a mean of 2.5, 2.4 and 2.2. Mean error was reduced by an average of 55% with motion correction. In conclusion, deconvolution can be used for correction of motion blur when subject motion is known.
Another Look at Strong Ground Motion Accelerations and Stress Drop
NASA Astrophysics Data System (ADS)
Baltay, A.; Prieto, G.; Ide, S.; Hanks, T. C.; Beroza, G. C.
2010-12-01
The relationship between earthquake stress drop and ground motion acceleration is central to seismic hazard analysis. We revisit measurements of root-mean-square (RMS) acceleration, arms, using KikNet accelerometer data from Japan. We directly measure RMS and peak acceleration, and estimate both apparent stress and corner frequencies using the empirical Green’s function (eGf) coda method of Baltay et al. [2010]. We predict armsfrom corner frequency and stress drop following McGuire and Hanks [1980] to compare with measurements. The theoretical relationship does a good job of predicting observed arms. We use four earthquake sequences in Japan to investigate the source parameters and accelerations: the 2008 Iwate-Miyagi earthquake; the off-Kamaishi repeating sequence; and the 2004 and 2007 Niigata events. In each data set, we choose events that are nearly co-located so that the path term to any station is constant. Small events are used as empirical Green’s functions to correct for propagation effects. For all sequences, we find that the apparent stress averages ~1 MPa for most events. Corner frequencies are consistent with Mo-1/3 scaling. We find the ratio of stress drop and apparent stress to be 5, consistent with the theoretical derivation of Singh and Ordaz [1994], using a Brune [1970] spectra. armsis theoretically proportional to stress drop and the inverse square root of the corner frequency. We show that this calculation can be used as a proxy for armsobservations from strong motion records, using recent data from the four earthquake sequences mentioned above. Even for the Iwate-Miyagi mainshock, which experienced over 4 g’s of acceleration, we find that apparent stress, stress drop and corner frequency follow expected scaling laws and support self-similarity.
Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data.
Jiao, Jieqing; Bousse, Alexandre; Thielemans, Kris; Burgos, Ninon; Weston, Philip S J; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Markiewicz, Pawel; Ourselin, Sebastien
2017-01-01
Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data. The proposed approach is formulated within the maximum likelihood framework, and efficient solutions are derived for estimating subject motion and kinetic parameters from raw PET photon count data. Results from evaluations on simulated [ 11 C]raclopride data using the Zubal brain phantom and real clinical [ 18 F]florbetapir data of a patient with Alzheimer's disease show that the proposed joint direct parametric reconstruction motion correction approach can improve the accuracy of quantifying dynamic PET data with large subject motion.
Feasibility of Measuring Mean Vertical Motion for Estimating Advection. Chapter 6
NASA Technical Reports Server (NTRS)
Vickers, Dean; Mahrt, L.
2005-01-01
Numerous recent studies calculate horizontal and vertical advection terms for budget studies of net ecosystem exchange of carbon. One potential uncertainty in such studies is the estimate of mean vertical motion. This work addresses the reliability of vertical advection estimates by contrasting the vertical motion obtained from the standard practise of measuring the vertical velocity and applying a tilt correction, to the vertical motion calculated from measurements of the horizontal divergence of the flow using a network of towers. Results are compared for three different tilt correction methods. Estimates of mean vertical motion are sensitive to the choice of tilt correction method. The short-term mean (10 to 60 minutes) vertical motion based on the horizontal divergence is more realistic compared to the estimates derived from the standard practise. The divergence shows long-term mean (days to months) sinking motion at the site, apparently due to the surface roughness change. Because all the tilt correction methods rely on the assumption that the long-term mean vertical motion is zero for a given wind direction, they fail to reproduce the vertical motion based on the divergence.
Draft Genome Sequence of Cercospora arachidicola, Cause of Early Leaf Spot in Peanut
USDA-ARS?s Scientific Manuscript database
Cercospora arachidicola and Cercosporidium personatum, causal agents of early and late leaf spot, respectively, are important fungal pathogens of peanut. Leaf spot disease is a major contributor to the economic losses experienced by peanut farmers and the industry. Though peanut germplasms with so...
Steer-PROP: a GRASE-PROPELLER sequence with interecho steering gradient pulses.
Srinivasan, Girish; Rangwala, Novena; Zhou, Xiaohong Joe
2018-05-01
This study demonstrates a novel PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) pulse sequence, termed Steer-PROP, based on gradient and spin echo (GRASE), to reduce the imaging times and address phase errors inherent to GRASE. The study also illustrates the feasibility of using Steer-PROP as an alternative to single-shot echo planar imaging (SS-EPI) to produce distortion-free diffusion images in all imaging planes. Steer-PROP uses a series of blip gradient pulses to produce N (N = 3-5) adjacent k-space blades in each repetition time, where N is the number of gradient echoes in a GRASE sequence. This sampling strategy enables a phase correction algorithm to systematically address the GRASE phase errors as well as the motion-induced phase inconsistency. Steer-PROP was evaluated on phantoms and healthy human subjects at both 1.5T and 3.0T for T 2 - and diffusion-weighted imaging. Steer-PROP produced similar image quality as conventional PROPELLER based on fast spin echo (FSE), while taking only a fraction (e.g., 1/3) of the scan time. The robustness against motion in Steer-PROP was comparable to that of FSE-based PROPELLER. Using Steer-PROP, high quality and distortion-free diffusion images were obtained from human subjects in all imaging planes, demonstrating a considerable advantage over SS-EPI. The proposed Steer-PROP sequence can substantially reduce the scan times compared with FSE-based PROPELLER while achieving adequate image quality. The novel k-space sampling strategy in Steer-PROP not only enables an integrated phase correction method that addresses various sources of phase errors, but also minimizes the echo spacing compared with alternative sampling strategies. Steer-PROP can also be a viable alternative to SS-EPI to decrease image distortion in all imaging planes. Magn Reson Med 79:2533-2541, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Modified echo peak correction for radial acquisition regime (RADAR).
Takizawa, Masahiro; Ito, Taeko; Itagaki, Hiroyuki; Takahashi, Tetsuhiko; Shimizu, Kanichirou; Harada, Junta
2009-01-01
Because radial sampling imposes many limitations on magnetic resonance (MR) imaging hardware, such as on the accuracy of the gradient magnetic field or the homogeneity of B(0), some correction of the echo signal is usually needed before image reconstruction. In our previous study, we developed an echo-peak-shift correction (EPSC) algorithm not easily affected by hardware performance. However, some artifacts remained in lung imaging, where tissue is almost absent, or in cardiac imaging, which is affected by blood flow. In this study, we modified the EPSC algorithm to improve the image quality of the radial aquisition regime (RADAR) and expand its application sequences. We assumed the artifacts were mainly caused by errors in the phase map for EPSC and used a phantom on a 1.5-tesla (T) MR scanner to investigate whether to modify the EPSC algorithm. To evaluate the effectiveness of EPSC, we compared results from T(1)- and T(2)-weighted images of a volunteer's lung region using the current and modified EPSC. We then applied the modified EPSC to RADAR spin echo (SE) and RADAR balanced steady-state acquisition with rewound gradient echo (BASG) sequence. The modified EPSC reduced phase discontinuity in the reference data used for EPSC and improved visualization of blood vessels in the lungs. Motion and blood flow caused no visible artifacts in the resulting images in either RADAR SE or RADAR BASG sequence. Use of the modified EPSC eliminated artifacts caused by signal loss in the reference data for EPSC. In addition, the modified EPSC was applied to RADAR SE and RADAR BASG sequences.
Luo, Lilan; Ando, Sayuri; Sasabe, Michiko; Machida, Chiyoko; Kurihara, Daisuke; Higashiyama, Tetsuya; Machida, Yasunori
2012-09-01
Leaf primordia with high division and developmental competencies are generated around the periphery of stem cells at the shoot apex. Arabidopsis ASYMMETRIC-LEAVES2 (AS2) protein plays a key role in the regulation of many genes responsible for flat symmetric leaf formation. The AS2 gene, expressed in leaf primordia, encodes a plant-specific nuclear protein containing an AS2/LOB domain with cysteine repeats (C-motif). AS2 proteins are present in speckles in and around the nucleoli, and in the nucleoplasm of some leaf epidermal cells. We used the tobacco cultured cell line BY-2 expressing the AS2-fused yellow fluorescent protein to examine subnuclear localization of AS2 in dividing cells. AS2 mainly localized to speckles (designated AS2 bodies) in cells undergoing mitosis and distributed in a pairwise manner during the separation of sets of daughter chromosomes. Few interphase cells contained AS2 bodies. Deletion analyses showed that a short stretch of the AS2 amino-terminal sequence and the C-motif play negative and positive roles, respectively, in localizing AS2 to the bodies. These results suggest that AS2 bodies function to properly distribute AS2 to daughter cells during cell division in leaf primordia; and this process is controlled at least partially by signals encoded by the AS2 sequence itself.
Electric tempest in a teacup: The tea leaf analogy to microfluidic blood plasma separation
NASA Astrophysics Data System (ADS)
Yeo, Leslie Y.; Friend, James R.; Arifin, Dian R.
2006-09-01
In a similar fashion to Einstein's tea leaf paradox, the rotational liquid flow induced by ionic wind above a liquid surface can trap suspended microparticles by a helical motion, spinning them down towards a bottom stagnation point. The motion is similar to Batchelor [Q. J. Mech. Appl. Math. 4, 29 (1951)] flows occurring between stationary and rotating disks and arises due to a combination of the primary azimuthal and secondary bulk meridional recirculation that produces a centrifugal and enhanced inward radial force near the chamber bottom. The technology is thus useful for microfluidic particle trapping/concentration; the authors demonstrate its potential for rapid erythrocyte/blood plasma separation for miniaturized medical diagnostic kits.
Automated registration of multispectral MR vessel wall images of the carotid artery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klooster, R. van 't; Staring, M.; Reiber, J. H. C.
2013-12-15
Purpose: Atherosclerosis is the primary cause of heart disease and stroke. The detailed assessment of atherosclerosis of the carotid artery requires high resolution imaging of the vessel wall using multiple MR sequences with different contrast weightings. These images allow manual or automated classification of plaque components inside the vessel wall. Automated classification requires all sequences to be in alignment, which is hampered by patient motion. In clinical practice, correction of this motion is performed manually. Previous studies applied automated image registration to correct for motion using only nondeformable transformation models and did not perform a detailed quantitative validation. The purposemore » of this study is to develop an automated accurate 3D registration method, and to extensively validate this method on a large set of patient data. In addition, the authors quantified patient motion during scanning to investigate the need for correction. Methods: MR imaging studies (1.5T, dedicated carotid surface coil, Philips) from 55 TIA/stroke patients with ipsilateral <70% carotid artery stenosis were randomly selected from a larger cohort. Five MR pulse sequences were acquired around the carotid bifurcation, each containing nine transverse slices: T1-weighted turbo field echo, time of flight, T2-weighted turbo spin-echo, and pre- and postcontrast T1-weighted turbo spin-echo images (T1W TSE). The images were manually segmented by delineating the lumen contour in each vessel wall sequence and were manually aligned by applying throughplane and inplane translations to the images. To find the optimal automatic image registration method, different masks, choice of the fixed image, different types of the mutual information image similarity metric, and transformation models including 3D deformable transformation models, were evaluated. Evaluation of the automatic registration results was performed by comparing the lumen segmentations of the fixed image and moving image after registration. Results: The average required manual translation per image slice was 1.33 mm. Translations were larger as the patient was longer inside the scanner. Manual alignment took 187.5 s per patient resulting in a mean surface distance of 0.271 ± 0.127 mm. After minimal user interaction to generate the mask in the fixed image, the remaining sequences are automatically registered with a computation time of 52.0 s per patient. The optimal registration strategy used a circular mask with a diameter of 10 mm, a 3D B-spline transformation model with a control point spacing of 15 mm, mutual information as image similarity metric, and the precontrast T1W TSE as fixed image. A mean surface distance of 0.288 ± 0.128 mm was obtained with these settings, which is very close to the accuracy of the manual alignment procedure. The exact registration parameters and software were made publicly available. Conclusions: An automated registration method was developed and optimized, only needing two mouse clicks to mark the start and end point of the artery. Validation on a large group of patients showed that automated image registration has similar accuracy as the manual alignment procedure, substantially reducing the amount of user interactions needed, and is multiple times faster. In conclusion, the authors believe that the proposed automated method can replace the current manual procedure, thereby reducing the time to analyze the images.« less
TH-A-9A-10: Prostate SBRT Delivery with Flattening-Filter-Free Mode: Benefit and Accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T; Yuan, L; Sheng, Y
Purpose: Flattening-filter-free (FFF) beam mode offered on TrueBeam™ linac enables delivering IMRT at 2400 MU/min dose rate. This study investigates the benefit and delivery accuracy of using high dose rate in the context of prostate SBRT. Methods: 8 prostate SBRT patients were retrospectively studied. In 5 cases treated with 600-MU/min dose rate, continuous prostate motion data acquired during radiation-beam-on was used to analyze motion range. In addition, the initial 1/3 of prostate motion trajectories during each radiation-beam-on was separated to simulate motion range if 2400-MU/min were used. To analyze delivery accuracy in FFF mode, MLC trajectory log files from anmore » additional 3 cases treated at 2400-MU/min were acquired. These log files record MLC expected and actual positions every 20ms, and therefore can be used to reveal delivery accuracy. Results: (1) Benefit. On average treatment at 600-MU/min takes 30s per beam; whereas 2400-MU/min requires only 11s. When shortening delivery time to ~1/3, the prostate motion range was significantly smaller (p<0.001). Largest motion reduction occurred in Sup-Inf direction, from [−3.3mm, 2.1mm] to [−1.7mm, 1.7mm], followed by reduction from [−2.1mm, 2.4mm] to [−1.0mm, 2.4mm] in Ant-Pos direction. No change observed in LR direction [−0.8mm, 0.6mm]. The combined motion amplitude (vector norm) confirms that average motion and ranges are significantly smaller when beam-on was limited to the 1st 1/3 of actual delivery time. (2) Accuracy. Trajectory log file analysis showed excellent delivery accuracy with at 2400 MU/min. Most leaf deviations during beam-on were within 0.07mm (99-percentile). Maximum leaf-opening deviations during each beam-on were all under 0.1mm for all leaves. Dose-rate was maintained at 2400-MU/min during beam-on without dipping. Conclusion: Delivery prostate SBRT with 2400 MU/min is both beneficial and accurate. High dose rates significantly reduced both treatment time and intra-beam prostate motion range. Excellent delivery accuracy was confirmed with very small leaf motion deviation.« less
SU-F-T-540: Comprehensive Fluence Delivery Optimization with Multileaf Collimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weppler, S; Villarreal-Barajas, J; Department of Medical Physics, Tom Baker Cancer Center, Calgary, Alberta
2016-06-15
Purpose: Multileaf collimator (MLC) leaf sequencing is performed via commercial black-box implementations, on which a user has limited to no access. We have developed an explicit, generic MLC sequencing model to serve as a tool for future investigations of fluence map optimization, fluence delivery optimization, and rotational collimator delivery methods. Methods: We have developed a novel, comprehensive model to effectively account for a variety of transmission and penumbra effects previously treated on an ad hoc basis in the literature. As the model is capable of quantifying a variety of effects, we utilize the asymmetric leakage intensity across each leaf tomore » deliver fluence maps with pixel size smaller than the narrowest leaf width. Developed using linear programming and mixed integer programming formulations, the model is implemented using state of the art open-source solvers. To demonstrate the versatility of the algorithm, a graphical user interface (GUI) was developed in MATLAB capable of accepting custom leaf specifications and transmission parameters. As a preliminary proof-ofconcept, we have sequenced the leaves of a Varian 120 Leaf Millennium MLC for five prostate cancer patient fields and one head and neck field. Predetermined fluence maps have been processed by data smoothing methods to obtain pixel sizes of 2.5 cm{sup 2}. The quality of output was analyzed using computer simulations. Results: For the prostate fields, an average root mean squared error (RMSE) of 0.82 and gamma (0.5mm/0.5%) of 91.4% were observed compared to RMSE and gamma (0.5mm/0.5%) values of 7.04 and 34.0% when the leakage considerations were omitted. Similar results were observed for the head and neck case. Conclusion: A model to sequence MLC leaves to optimality has been proposed. Future work will involve extensive testing and evaluation of the method on clinical MLCs and comparison with black-box leaf sequencing algorithms currently used by commercial treatment planning systems.« less
NASA Astrophysics Data System (ADS)
Rotenberg, David J.
Artifacts caused by head motion are a substantial source of error in fMRI that limits its use in neuroscience research and clinical settings. Real-time scan-plane correction by optical tracking has been shown to correct slice misalignment and non-linear spin-history artifacts, however residual artifacts due to dynamic magnetic field non-uniformity may remain in the data. A recently developed correction technique, PLACE, can correct for absolute geometric distortion using the complex image data from two EPI images, with slightly shifted k-space trajectories. We present a correction approach that integrates PLACE into a real-time scan-plane update system by optical tracking, applied to a tissue-equivalent phantom undergoing complex motion and an fMRI finger tapping experiment with overt head motion to induce dynamic field non-uniformity. Experiments suggest that including volume by volume geometric distortion correction by PLACE can suppress dynamic geometric distortion artifacts in a phantom and in vivo and provide more robust activation maps.
Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR).
Wong, Chung-Ki; Zotev, Vadim; Misaki, Masaya; Phillips, Raquel; Luo, Qingfei; Bodurka, Jerzy
2016-04-01
Head motions during functional magnetic resonance imaging (fMRI) impair fMRI data quality and introduce systematic artifacts that can affect interpretation of fMRI results. Electroencephalography (EEG) recordings performed simultaneously with fMRI provide high-temporal-resolution information about ongoing brain activity as well as head movements. Recently, an EEG-assisted retrospective motion correction (E-REMCOR) method was introduced. E-REMCOR utilizes EEG motion artifacts to correct the effects of head movements in simultaneously acquired fMRI data on a slice-by-slice basis. While E-REMCOR is an efficient motion correction approach, it involves an independent component analysis (ICA) of the EEG data and identification of motion-related ICs. Here we report an automated implementation of E-REMCOR, referred to as aE-REMCOR, which we developed to facilitate the application of E-REMCOR in large-scale EEG-fMRI studies. The aE-REMCOR algorithm, implemented in MATLAB, enables an automated preprocessing of the EEG data, an ICA decomposition, and, importantly, an automatic identification of motion-related ICs. aE-REMCOR has been used to perform retrospective motion correction for 305 fMRI datasets from 16 subjects, who participated in EEG-fMRI experiments conducted on a 3T MRI scanner. Performance of aE-REMCOR has been evaluated based on improvement in temporal signal-to-noise ratio (TSNR) of the fMRI data, as well as correction efficiency defined in terms of spike reduction in fMRI motion parameters. The results show that aE-REMCOR is capable of substantially reducing head motion artifacts in fMRI data. In particular, when there are significant rapid head movements during the scan, a large TSNR improvement and high correction efficiency can be achieved. Depending on a subject's motion, an average TSNR improvement over the brain upon the application of aE-REMCOR can be as high as 27%, with top ten percent of the TSNR improvement values exceeding 55%. The average correction efficiency over the 305 fMRI scans is 18% and the largest achieved efficiency is 71%. The utility of aE-REMCOR on the resting state fMRI connectivity of the default mode network is also examined. The motion-induced position-dependent error in the DMN connectivity analysis is shown to be reduced when aE-REMCOR is utilized. These results demonstrate that aE-REMCOR can be conveniently and efficiently used to improve fMRI motion correction in large clinical EEG-fMRI studies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cicala, L.; Angelino, C. V.; Ruatta, G.; Baccaglini, E.; Raimondo, N.
2015-08-01
Unmanned Aerial Vehicles (UAVs) are often employed to collect high resolution images in order to perform image mosaicking and/or 3D reconstruction. Images are usually stored on board and then processed with on-ground desktop software. In such a way the computational load, and hence the power consumption, is moved on ground, leaving on board only the task of storing data. Such an approach is important in the case of small multi-rotorcraft UAVs because of their low endurance due to the short battery life. Images can be stored on board with either still image or video data compression. Still image system are preferred when low frame rates are involved, because video coding systems are based on motion estimation and compensation algorithms which fail when the motion vectors are significantly long and when the overlapping between subsequent frames is very small. In this scenario, UAVs attitude and position metadata from the Inertial Navigation System (INS) can be employed to estimate global motion parameters without video analysis. A low complexity image analysis can be still performed in order to refine the motion field estimated using only the metadata. In this work, we propose to use this refinement step in order to improve the position and attitude estimation produced by the navigation system in order to maximize the encoder performance. Experiments are performed on both simulated and real world video sequences.
Systematic Error in Leaf Water Potential Measurements with a Thermocouple Psychrometer.
Rawlins, S L
1964-10-30
To allow for the error in measurement of water potentials in leaves, introduced by the presence of a water droplet in the chamber of the psychrometer, a correction must be made for the permeability of the leaf.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravindranath, B; Xiong, J; Happersett, L
2016-06-15
Purpose: To quantify and compare the dosimetric impact of motion management correction strategies during VMAT and IMRT for hypofractionated prostate treatment. Methods: Two arc VMAT and 9 field IMRT plans were generated for two prostate cancer patients undergoing hypofractionated radiotherapy (7.5Gy × 5 and 8Gy × 5). 212 motion traces were retrospectively extracted from treatment records of prostate cancer patients with implanted Calypso beacons. Dose to the CTV and normal tissues was reconstructed for each trace and plan taking into account the actual treatment delivery time. Following motion correction scenarios were simulated: (1) VMAT plan – (a) No correction, (b)more » correction between arcs, (c) correction every 20 degrees of gantry rotation and (2) IMRT plan - (a) No correction,(b) correction between fields. Two mm action threshold for position correction was assumed. The 5–95% confidence interval (CI) range was extracted from the family of DVHs for each correction scenario. Results: Treatment duration for 8Gy plan (VMAT vs IMRT) was 3 vs 12 mins and for 7.5Gy plan was 3 vs 9 mins. In the absence of correction, the VMAT 5–−95% CI dose spread was, on average, less than the IMRT dose spread by 2% for CTVD95, 9% for rectalwall (RW) D1cc and 9% for bladderwall (BW) D53. Further, VMAT b/w arcs correction strategy reduced the spread about the planned value compared to IMRT b/w fields correction by: 1% for CTVD95, 2.6% for RW1cc and 2% for BWD53. VMAT 20 degree strategy led to greater reduction in dose spread compared to IMRT by: 2% for CTVD95, 4.5% for RW1cc and 6.7% for BWD53. Conclusion: In the absence of a correction strategy, the limited motion during VMAT’s shorter delivery times translates into less motion-induced dosimetric degradation than IMRT. Performing limited periodic motion correction during VMAT can yield excellent conformity to planned values that is superior to IMRT. This work was partially supported by Varian Medical Systems.« less
Bilayer segmentation of webcam videos using tree-based classifiers.
Yin, Pei; Criminisi, Antonio; Winn, John; Essa, Irfan
2011-01-01
This paper presents an automatic segmentation algorithm for video frames captured by a (monocular) webcam that closely approximates depth segmentation from a stereo camera. The frames are segmented into foreground and background layers that comprise a subject (participant) and other objects and individuals. The algorithm produces correct segmentations even in the presence of large background motion with a nearly stationary foreground. This research makes three key contributions: First, we introduce a novel motion representation, referred to as "motons," inspired by research in object recognition. Second, we propose estimating the segmentation likelihood from the spatial context of motion. The estimation is efficiently learned by random forests. Third, we introduce a general taxonomy of tree-based classifiers that facilitates both theoretical and experimental comparisons of several known classification algorithms and generates new ones. In our bilayer segmentation algorithm, diverse visual cues such as motion, motion context, color, contrast, and spatial priors are fused by means of a conditional random field (CRF) model. Segmentation is then achieved by binary min-cut. Experiments on many sequences of our videochat application demonstrate that our algorithm, which requires no initialization, is effective in a variety of scenes, and the segmentation results are comparable to those obtained by stereo systems.
Costagli, Mauro; Waggoner, R Allen; Ueno, Kenichi; Tanaka, Keiji; Cheng, Kang
2009-04-15
In functional magnetic resonance imaging (fMRI), even subvoxel motion dramatically corrupts the blood oxygenation level-dependent (BOLD) signal, invalidating the assumption that intensity variation in time is primarily due to neuronal activity. Thus, correction of the subject's head movements is a fundamental step to be performed prior to data analysis. Most motion correction techniques register a series of volumes assuming that rigid body motion, characterized by rotational and translational parameters, occurs. Unlike the most widely used applications for fMRI data processing, which correct motion in the image domain by numerically estimating rotational and translational components simultaneously, the algorithm presented here operates in a three-dimensional k-space, to decouple and correct rotations and translations independently, offering new ways and more flexible procedures to estimate the parameters of interest. We developed an implementation of this method in MATLAB, and tested it on both simulated and experimental data. Its performance was quantified in terms of square differences and center of mass stability across time. Our data show that the algorithm proposed here successfully corrects for rigid-body motion, and its employment in future fMRI studies is feasible and promising.
Scene-based nonuniformity correction and enhancement: pixel statistics and subpixel motion.
Zhao, Wenyi; Zhang, Chao
2008-07-01
We propose a framework for scene-based nonuniformity correction (NUC) and nonuniformity correction and enhancement (NUCE) that is required for focal-plane array-like sensors to obtain clean and enhanced-quality images. The core of the proposed framework is a novel registration-based nonuniformity correction super-resolution (NUCSR) method that is bootstrapped by statistical scene-based NUC methods. Based on a comprehensive imaging model and an accurate parametric motion estimation, we are able to remove severe/structured nonuniformity and in the presence of subpixel motion to simultaneously improve image resolution. One important feature of our NUCSR method is the adoption of a parametric motion model that allows us to (1) handle many practical scenarios where parametric motions are present and (2) carry out perfect super-resolution in principle by exploring available subpixel motions. Experiments with real data demonstrate the efficiency of the proposed NUCE framework and the effectiveness of the NUCSR method.
Reich, Peter B; Falster, Daniel S; Ellsworth, David S; Wright, Ian J; Westoby, Mark; Oleksyn, Jacek; Lee, Tali D
2009-01-01
* Here, we evaluated how increased shading and declining net photosynthetic capacity regulate the decline in net carbon balance with increasing leaf age for 10 Australian woodland species. We also asked whether leaves at the age of their mean life-span have carbon balances that are positive, zero or negative. * The net carbon balances of 2307 leaves on 53 branches of the 10 species were estimated. We assessed three-dimensional architecture, canopy openness, photosynthetic light response functions and dark respiration rate across leaf age sequences on all branches. We used YPLANT to estimate light interception and to model carbon balance along the leaf age sequences. * As leaf age increased to the mean life-span, increasing shading and declining photosynthetic capacity each separately reduced daytime carbon gain by approximately 39% on average across species. Together, they reduced daytime carbon gain by 64% on average across species. * At the age of their mean life-span, almost all leaves had positive daytime carbon balances. These per leaf carbon surpluses were of a similar magnitude to the estimated whole-plant respiratory costs per leaf. Thus, the results suggest that a whole-plant economic framework, including respiratory costs, may be useful in assessing controls on leaf longevity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, Chad R. R. N.; Kemp, Robert A. de, E-mail: RAdeKemp@ottawaheart.ca; Klein, Ran
Purpose: Patient motion is a common problem during dynamic positron emission tomography (PET) scans for quantification of myocardial blood flow (MBF). The purpose of this study was to quantify the prevalence of body motion in a clinical setting and evaluate with realistic phantoms the effects of motion on blood flow quantification, including CT attenuation correction (CTAC) artifacts that result from PET–CT misalignment. Methods: A cohort of 236 sequential patients was analyzed for patient motion under resting and peak stress conditions by two independent observers. The presence of motion, affected time-frames, and direction of motion was recorded; discrepancy between observers wasmore » resolved by consensus review. Based on these results, patient body motion effects on MBF quantification were characterized using the digital NURBS-based cardiac-torso phantom, with characteristic time activity curves (TACs) assigned to the heart wall (myocardium) and blood regions. Simulated projection data were corrected for attenuation and reconstructed using filtered back-projection. All simulations were performed without noise added, and a single CT image was used for attenuation correction and aligned to the early- or late-frame PET images. Results: In the patient cohort, mild motion of 0.5 ± 0.1 cm occurred in 24% and moderate motion of 1.0 ± 0.3 cm occurred in 38% of patients. Motion in the superior/inferior direction accounted for 45% of all detected motion, with 30% in the superior direction. Anterior/posterior motion was predominant (29%) in the posterior direction. Left/right motion occurred in 24% of cases, with similar proportions in the left and right directions. Computer simulation studies indicated that errors in MBF can approach 500% for scans with severe patient motion (up to 2 cm). The largest errors occurred when the heart wall was shifted left toward the adjacent lung region, resulting in a severe undercorrection for attenuation of the heart wall. Simulations also indicated that the magnitude of MBF errors resulting from motion in the superior/inferior and anterior/posterior directions was similar (up to 250%). Body motion effects were more detrimental for higher resolution PET imaging (2 vs 10 mm full-width at half-maximum), and for motion occurring during the mid-to-late time-frames. Motion correction of the reconstructed dynamic image series resulted in significant reduction in MBF errors, but did not account for the residual PET–CTAC misalignment artifacts. MBF bias was reduced further using global partial-volume correction, and using dynamic alignment of the PET projection data to the CT scan for accurate attenuation correction during image reconstruction. Conclusions: Patient body motion can produce MBF estimation errors up to 500%. To reduce these errors, new motion correction algorithms must be effective in identifying motion in the left/right direction, and in the mid-to-late time-frames, since these conditions produce the largest errors in MBF, particularly for high resolution PET imaging. Ideally, motion correction should be done before or during image reconstruction to eliminate PET-CTAC misalignment artifacts.« less
Royer, Lucas; Krupa, Alexandre; Dardenne, Guillaume; Le Bras, Anthony; Marchand, Eric; Marchal, Maud
2017-01-01
In this paper, we present a real-time approach that allows tracking deformable structures in 3D ultrasound sequences. Our method consists in obtaining the target displacements by combining robust dense motion estimation and mechanical model simulation. We perform evaluation of our method through simulated data, phantom data, and real-data. Results demonstrate that this novel approach has the advantage of providing correct motion estimation regarding different ultrasound shortcomings including speckle noise, large shadows and ultrasound gain variation. Furthermore, we show the good performance of our method with respect to state-of-the-art techniques by testing on the 3D databases provided by MICCAI CLUST'14 and CLUST'15 challenges. Copyright © 2016 Elsevier B.V. All rights reserved.
Tisdall, M Dylan; Reuter, Martin; Qureshi, Abid; Buckner, Randy L; Fischl, Bruce; van der Kouwe, André J W
2016-02-15
Recent work has demonstrated that subject motion produces systematic biases in the metrics computed by widely used morphometry software packages, even when the motion is too small to produce noticeable image artifacts. In the common situation where the control population exhibits different behaviors in the scanner when compared to the experimental population, these systematic measurement biases may produce significant confounds for between-group analyses, leading to erroneous conclusions about group differences. While previous work has shown that prospective motion correction can improve perceived image quality, here we demonstrate that, in healthy subjects performing a variety of directed motions, the use of the volumetric navigator (vNav) prospective motion correction system significantly reduces the motion-induced bias and variance in morphometry. Copyright © 2015 Elsevier Inc. All rights reserved.
Leaf Photosynthetic Rate of Tropical Ferns Is Evolutionarily Linked to Water Transport Capacity
Cao, Kun-Fang; Hu, Hong; Zhang, Jiao-Lin
2014-01-01
Ferns usually have relatively lower photosynthetic potential than angiosperms. However, it is unclear whether low photosynthetic potential of ferns is linked to leaf water supply. We hypothesized that there is an evolutionary association of leaf water transport capacity with photosynthesis and stomatal density in ferns. In the present study, a series of functional traits relating to leaf anatomy, hydraulics and physiology were assessed in 19 terrestrial and 11 epiphytic ferns in a common garden, and analyzed by a comparative phylogenetics method. Compared with epiphytic ferns, terrestrial ferns had higher vein density (Dvein), stomatal density (SD), stomatal conductance (gs), and photosynthetic capacity (Amax), but lower values for lower epidermal thickness (LET) and leaf thickness (LT). Across species, all traits varied significantly, but only stomatal length (SL) showed strong phylogenetic conservatism. Amax was positively correlated with Dvein and gs with and without phylogenetic corrections. SD correlated positively with Amax, Dvein and gs, with the correlation between SD and Dvein being significant after phylogenetic correction. Leaf water content showed significant correlations with LET, LT, and mesophyll thickness. Our results provide evidence that Amax of the studied ferns is linked to leaf water transport capacity, and there was an evolutionary association between water supply and demand in ferns. These findings add new insights into the evolutionary correlations among traits involving carbon and water economy in ferns. PMID:24416265
Uematsu, Masahiro; Ito, Makiko; Hama, Yukihiro; Inomata, Takayuki; Fujii, Masahiro; Nishio, Teiji; Nakamura, Naoki; Nakagawa, Keiichi
2012-01-01
In this paper, we suggest a new method for verifying the motion of a binary multileaf collimator (MLC) in helical tomotherapy. For this we used a combination of a cylindrical scintillator and a general‐purpose camcorder. The camcorder records the light from the scintillator following photon irradiation, which we use to track the motion of the binary MLC. The purpose of this study is to demonstrate the feasibility of this method as a binary MLC quality assurance (QA) tool. First, the verification was performed using a simple binary MLC pattern with a constant leaf open time; secondly, verification using the binary MLC pattern used in a clinical setting was also performed. Sinograms of simple binary MLC patterns, in which leaves that were open were detected as “open” from the measured light, define the sensitivity which, in this case, was 1.000. On the other hand, the specificity, which gives the fraction of closed leaves detected as “closed”, was 0.919. The leaf open error identified by our method was −1.3±7.5%. The 68.6% of observed leaves were performed within ± 3% relative error. The leaf open error was expressed by the relative errors calculated on the sinogram. In the clinical binary MLC pattern, the sensitivity and specificity were 0.994 and 0.997, respectively. The measurement could be performed with −3.4±8.0% leaf open error. The 77.5% of observed leaves were performed within ± 3% relative error. With this method, we can easily verify the motion of the binary MLC, and the measurement unit developed was found to be an effective QA tool. PACS numbers: 87.56.Fc, 87.56.nk PMID:22231222
Ranade, Manisha K; Lynch, Bart D; Li, Jonathan G; Dempsey, James F
2006-01-01
We have developed an electronic portal imaging device (EPID) employing a fast scintillator and a high-speed camera. The device is designed to accurately and independently characterize the fluence delivered by a linear accelerator during intensity modulated radiation therapy (IMRT) with either step-and-shoot or dynamic multileaf collimator (MLC) delivery. Our aim is to accurately obtain the beam shape and fluence of all segments delivered during IMRT, in order to study the nature of discrepancies between the plan and the delivered doses. A commercial high-speed camera was combined with a terbium-doped gadolinium-oxy-sulfide (Gd2O2S:Tb) scintillator to form an EPID for the unaliased capture of two-dimensional fluence distributions of each beam in an IMRT delivery. The high speed EPID was synchronized to the accelerator pulse-forming network and gated to capture every possible pulse emitted from the accelerator, with an approximate frame rate of 360 frames-per-second (fps). A 62-segment beam from a head-and-neck IMRT treatment plan requiring 68 s to deliver was recorded with our high speed EPID producing approximately 6 Gbytes of imaging data. The EPID data were compared with the MLC instruction files and the MLC controller log files. The frames were binned to provide a frame rate of 72 fps with a signal-to-noise ratio that was sufficient to resolve leaf positions and segment fluence. The fractional fluence from the log files and EPID data agreed well. An ambiguity in the motion of the MLC during beam on was resolved. The log files reported leaf motions at the end of 33 of the 42 segments, while the EPID observed leaf motions in only 7 of the 42 segments. The static IMRT segment shapes observed by the high speed EPID were in good agreement with the shapes reported in the log files. The leaf motions observed during beam-on for step-and-shoot delivery were not temporally resolved by the log files.
Radiation camera motion correction system
Hoffer, P.B.
1973-12-18
The device determines the ratio of the intensity of radiation received by a radiation camera from two separate portions of the object. A correction signal is developed to maintain this ratio at a substantially constant value and this correction signal is combined with the camera signal to correct for object motion. (Official Gazette)
Verbeek, Martin; Dullemans, Annette M; van Raaij, Henry M G; Verhoeven, Jacobus Th J; van der Vlugt, René A A
2014-04-01
A new virus was isolated from a lettuce plant grown in an open field in the Netherlands in 2011. This plant was showing conspicuous symptoms that consisted of necrosis and moderate leaf curling. The virus was mechanically transferred to indicator plants, and a total RNA extract of one of these indicator plants was used for next-generation sequencing. Analysis of the sequences that were obtained and further biological studies showed that the virus was related to, but clearly distinct from, viruses belonging to the genus Torradovirus. The name "lettuce necrotic leaf curl virus" (LNLCV) is proposed for this new torradovirus.
Aghayee, Samira; Winkowski, Daniel E; Bowen, Zachary; Marshall, Erin E; Harrington, Matt J; Kanold, Patrick O; Losert, Wolfgang
2017-01-01
The application of 2-photon laser scanning microscopy (TPLSM) techniques to measure the dynamics of cellular calcium signals in populations of neurons is an extremely powerful technique for characterizing neural activity within the central nervous system. The use of TPLSM on awake and behaving subjects promises new insights into how neural circuit elements cooperatively interact to form sensory perceptions and generate behavior. A major challenge in imaging such preparations is unavoidable animal and tissue movement, which leads to shifts in the imaging location (jitter). The presence of image motion can lead to artifacts, especially since quantification of TPLSM images involves analysis of fluctuations in fluorescence intensities for each neuron, determined from small regions of interest (ROIs). Here, we validate a new motion correction approach to compensate for motion of TPLSM images in the superficial layers of auditory cortex of awake mice. We use a nominally uniform fluorescent signal as a secondary signal to complement the dynamic signals from genetically encoded calcium indicators. We tested motion correction for single plane time lapse imaging as well as multiplane (i.e., volume) time lapse imaging of cortical tissue. Our procedure of motion correction relies on locating the brightest neurons and tracking their positions over time using established techniques of particle finding and tracking. We show that our tracking based approach provides subpixel resolution without compromising speed. Unlike most established methods, our algorithm also captures deformations of the field of view and thus can compensate e.g., for rotations. Object tracking based motion correction thus offers an alternative approach for motion correction, one that is well suited for real time spike inference analysis and feedback control, and for correcting for tissue distortions.
Aghayee, Samira; Winkowski, Daniel E.; Bowen, Zachary; Marshall, Erin E.; Harrington, Matt J.; Kanold, Patrick O.; Losert, Wolfgang
2017-01-01
The application of 2-photon laser scanning microscopy (TPLSM) techniques to measure the dynamics of cellular calcium signals in populations of neurons is an extremely powerful technique for characterizing neural activity within the central nervous system. The use of TPLSM on awake and behaving subjects promises new insights into how neural circuit elements cooperatively interact to form sensory perceptions and generate behavior. A major challenge in imaging such preparations is unavoidable animal and tissue movement, which leads to shifts in the imaging location (jitter). The presence of image motion can lead to artifacts, especially since quantification of TPLSM images involves analysis of fluctuations in fluorescence intensities for each neuron, determined from small regions of interest (ROIs). Here, we validate a new motion correction approach to compensate for motion of TPLSM images in the superficial layers of auditory cortex of awake mice. We use a nominally uniform fluorescent signal as a secondary signal to complement the dynamic signals from genetically encoded calcium indicators. We tested motion correction for single plane time lapse imaging as well as multiplane (i.e., volume) time lapse imaging of cortical tissue. Our procedure of motion correction relies on locating the brightest neurons and tracking their positions over time using established techniques of particle finding and tracking. We show that our tracking based approach provides subpixel resolution without compromising speed. Unlike most established methods, our algorithm also captures deformations of the field of view and thus can compensate e.g., for rotations. Object tracking based motion correction thus offers an alternative approach for motion correction, one that is well suited for real time spike inference analysis and feedback control, and for correcting for tissue distortions. PMID:28860973
Humanoid assessing rehabilitative exercises.
Simonov, M; Delconte, G
2015-01-01
This article is part of the Focus Theme of Methods of Information in Medicine on "New Methodologies for Patients Rehabilitation". The article presents the approach in which the rehabilitative exercise prepared by healthcare professional is encoded as formal knowledge and used by humanoid robot to assist patients without involving other care actors. The main objective is the use of humanoids in rehabilitative care. An example is pulmonary rehabilitation in COPD patients. Another goal is the automated judgment functionality to determine how the rehabilitation exercise matches the pre-programmed correct sequence. We use the Aldebaran Robotics' NAO humanoid to set up artificial cognitive application. Pre-programmed NAO induces elderly patient to undertake humanoid-driven rehabilitation exercise, but needs to evaluate the human actions against the correct template. Patient is observed using NAO's eyes. We use the Microsoft Kinect SDK to extract motion path from the humanoid's recorded video. We compare human- and humanoid-operated process sequences by using the Dynamic Time Warping (DTW) and test the prototype. This artificial cognitive software showcases the use of DTW algorithm to enable humanoids to judge in near real-time about the correctness of rehabilitative exercises performed by patients following the robot's indications. One could enable better sustainable rehabilitative care services in remote residential settings by combining intelligent applications piloting humanoids with the DTW pattern matching algorithm applied at run time to compare humanoid- and human-operated process sequences. In turn, it will lower the need of human care.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung
Purpose: Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A secondmore » study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. Methods: In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image registration, each CBCT was registered twice to the gated CBCT, first aligned to spine, second to tumor in lung. Localization discrepancy was defined as the difference between tumor and spine registration. Agreement in tumor localization with the gated CBCT was further evaluated by calculating a normalized cross correlation (NCC) of pixel intensities within a volume-of-interest enclosing the tumor in lung. Results: Tumor localization discrepancy was reduced with RMC-CBCT(tx) in 17 out of 22 cases relative to no correction. If one considers cases in which tumor motion is 5 mm or more in the RCCT, tumor localization discrepancy is reduced with RMC-CBCT(tx) in 14 out of 17 cases (p = 0.04), and with RMC-CBCT(sim) in 13 out of 17 cases (p = 0.05). Differences in localization discrepancy between correction models [RMC-CBCT(sim) vs RMC-CBCT(tx)] were less than 2 mm. In 21 out of 22 cases, improvement in NCC was higher with RMC-CBCT(tx) relative to no correction (p < 0.0001). Differences in NCC between RMC-CBCT(sim) and RMC-CBCT(tx) were small. Conclusions: Motion-corrected CBCT improves lung tumor localization accuracy and reduces motion artifacts in nearly all cases. Motion correction at end expiration using RCCT acquired at simulation yields similar results to that using a RCCT on the treatment day (2–3 weeks after simulation)« less
Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung; Hu, Yu-Chi; Pham, Hai; Rimner, Andreas; Yorke, Ellen; Zhang, Qinghui; Mageras, Gig S
2014-10-01
Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A second study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image registration, each CBCT was registered twice to the gated CBCT, first aligned to spine, second to tumor in lung. Localization discrepancy was defined as the difference between tumor and spine registration. Agreement in tumor localization with the gated CBCT was further evaluated by calculating a normalized cross correlation (NCC) of pixel intensities within a volume-of-interest enclosing the tumor in lung. Tumor localization discrepancy was reduced with RMC-CBCT(tx) in 17 out of 22 cases relative to no correction. If one considers cases in which tumor motion is 5 mm or more in the RCCT, tumor localization discrepancy is reduced with RMC-CBCT(tx) in 14 out of 17 cases (p = 0.04), and with RMC-CBCT(sim) in 13 out of 17 cases (p = 0.05). Differences in localization discrepancy between correction models [RMC-CBCT(sim) vs RMC-CBCT(tx)] were less than 2 mm. In 21 out of 22 cases, improvement in NCC was higher with RMC-CBCT(tx) relative to no correction (p < 0.0001). Differences in NCC between RMC-CBCT(sim) and RMC-CBCT(tx) were small. Motion-corrected CBCT improves lung tumor localization accuracy and reduces motion artifacts in nearly all cases. Motion correction at end expiration using RCCT acquired at simulation yields similar results to that using a RCCT on the treatment day (2-3 weeks after simulation).
Types of diaphragmatic motion during hepatic angiography.
Katsuda, T; Kuroda, C; Fujita, M
1997-01-01
To determine the types and causes of diaphragmatic motion during hepatic angiography, the authors used transarterial cut-film portography (TAP) to study movement of the diaphragm during breath-holding. Thirty-three TAP sequences were studied, and the patients' diaphragmatic motions were classified into four categories according to the distance their diaphragms moved. Results showed that the diaphragm was stationary in 33% of the TAP studies, while perpetual motion occurred in 15% of the studies, early-phase motion occurred in 12% and late-phase motion occurred in 40%. Ten sequences showed diaphragmatic motion of more than 10 mm, with eight sequences showing caudal motion and two showing cranial motion. This article discusses the cause of diaphragmatic motion during breath-holding for hepatic angiography and presents suggestions to reduce motion artifacts during the exam.
Kyme, Andre; Meikle, Steven; Baldock, Clive; Fulton, Roger
2012-08-01
Motion-compensated radiotracer imaging of fully conscious rodents represents an important paradigm shift for preclinical investigations. In such studies, if motion tracking is performed through a transparent enclosure containing the awake animal, light refraction at the interface will introduce errors in stereo pose estimation. We have performed a thorough investigation of how this impacts the accuracy of pose estimates and the resulting motion correction, and developed an efficient method to predict and correct for refraction-based error. The refraction model underlying this study was validated using a state-of-the-art motion tracking system. Refraction-based error was shown to be dependent on tracking marker size, working distance, and interface thickness and tilt. Correcting for refraction error improved the spatial resolution and quantitative accuracy of motion-corrected positron emission tomography images. Since the methods are general, they may also be useful in other contexts where data are corrupted by refraction effects. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Robust sensorimotor representation to physical interaction changes in humanoid motion learning.
Shimizu, Toshihiko; Saegusa, Ryo; Ikemoto, Shuhei; Ishiguro, Hiroshi; Metta, Giorgio
2015-05-01
This paper proposes a learning from demonstration system based on a motion feature, called phase transfer sequence. The system aims to synthesize the knowledge on humanoid whole body motions learned during teacher-supported interactions, and apply this knowledge during different physical interactions between a robot and its surroundings. The phase transfer sequence represents the temporal order of the changing points in multiple time sequences. It encodes the dynamical aspects of the sequences so as to absorb the gaps in timing and amplitude derived from interaction changes. The phase transfer sequence was evaluated in reinforcement learning of sitting-up and walking motions conducted by a real humanoid robot and compatible simulator. In both tasks, the robotic motions were less dependent on physical interactions when learned by the proposed feature than by conventional similarity measurements. Phase transfer sequence also enhanced the convergence speed of motion learning. Our proposed feature is original primarily because it absorbs the gaps caused by changes of the originally acquired physical interactions, thereby enhancing the learning speed in subsequent interactions.
Lifetime return on investment increases with leaf lifespan among 10 Australian woodland species.
Falster, Daniel S; Reich, Peter B; Ellsworth, David S; Wright, Ian J; Westoby, Mark; Oleksyn, Jacek; Lee, Tali D
2012-01-01
• Co-occurring species often differ in their leaf lifespan (LL) and it remains unclear how such variation is maintained in a competitive context. Here we test the hypothesis that leaves of long-LL species yield a greater return in carbon (C) fixed per unit C or nutrient invested by the plant than those of short-LL species. • For 10 sympatric woodland species, we assessed three-dimensional shoot architecture, canopy openness, leaf photosynthetic light response, leaf dark respiration and leaf construction costs across leaf age sequences. We then used the YPLANT model to estimate light interception and C revenue along the measured leaf age sequences. This was done under a series of simulations that incorporated the potential covariates of LL in an additive fashion. • Lifetime return in C fixed per unit C, N or P invested increased with LL in all simulations. • In contrast to other recent studies, our results show that extended LL confers a fundamental economic advantage by increasing a plant's return on investment in leaves. This suggests that time-discounting effects, that is, the compounding of income that arises from quick reinvestment of C revenue, are key in allowing short-LL species to succeed in the face of this economic handicap. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Rodeghiero, Mirco; Niinemets, Ulo; Cescatti, Alessandro
2007-08-01
Estimates of leaf gas-exchange characteristics using standard clamp-on leaf chambers are prone to errors because of diffusion leaks. While some consideration has been given to CO(2) diffusion leaks, potential water vapour diffusion leaks through chamber gaskets have been neglected. We estimated diffusion leaks of two clamp-on Li-Cor LI-6400 (Li-Cor, Inc., Lincoln, NE, USA) leaf chambers with polymer foam gaskets and enclosing either 2 or 6 cm(2) leaf area, and conducted a sensitivity analysis of the diffusion leak effects on Farquhar et al. photosynthesis model parameters - the maximum carboxylase activity of ribulose 1 x 5-bisphosphate carboxylase/oxygenase (Rubisco) (V(cmax)), capacity for photosynthetic electron transport (J(max)) and non-photorespiratory respiration rate in light (R(d)). In addition, net assimilation rate (A(n)) versus intercellular CO(2) (C(i)) responses were measured in leaves of Mediterranean evergreen species Quercus ilex L. enclosing the whole leaf chamber in a polyvinyl fluoride bag flushed with the exhaust air of leaf chamber, thereby effectively reducing the CO(2) and water vapour gradients between ambient air and leaf chamber. For the empty chambers, average diffusion leak for CO(2), K(CO2), (molar flow rate corresponding to unit CO(2) mole fraction difference) was ca. 0.40 micromol s(-1). K(CO2) increased ca. 50% if a dead leaf was clamped between the leaf chamber. Average diffusion leak for H(2)O was ca. 5- to 10-fold larger than the diffusion leak for CO(2). Sensitivity analyses demonstrated that the consequence of a CO(2) diffusion leak was apparent enhancement of A(n) at high CO(2) mole fraction and reduction at lower CO(2) mole fraction, and overall compression of C(i) range. As the result of these modifications, Farquhar et al. model parameters were overestimated. The degree of overestimation increased in the order of V(cmax) < J(max) < R(d), and was larger for smaller chambers and for leaves with lower photosynthetic capacity, leading to overestimation of all three parameters by 70-290% for 2 cm(2), and by 10-60% for 6 cm(2) chamber. Significant diffusion corrections (5-36%) were even required for leaves with high photosynthetic capacity measured in largest chamber. Water vapour diffusion leaks further enhanced the overestimation of model parameters. For small chambers and low photosynthetic capacities, apparent C(i) was simulated to decrease with increasing A(n) because of simultaneous CO(2) and H(2)O diffusion leaks. Measurements in low photosynthetic capacity Quercus ilex leaves enclosed in 2 cm(2) leaf chamber exhibited negative apparent C(i) values at highest A(n). For the same leaves measured with the entire leaf chamber enclosed in the polyvinyl fluoride bag, C(i) and A(n) increased monotonically. While the measurements without the bag could be corrected for diffusion leaks, the required correction in A(n) and transpiration rates was 100-500%, and there was large uncertainty in Farquhar et al. model parameters derived from 'corrected'A(n)/C(i) response curves because of uncertainties in true diffusion leaks. These data demonstrate that both CO(2) and water vapour diffusion leaks need consideration in measurements with clamp-on leaf cuvettes. As plants in natural environments are often characterized by low photosynthetic capacities, cuvette designs need to be improved for reliable measurements in such species.
NASA Astrophysics Data System (ADS)
Dey, Joyoni; Segars, W. Paul; Pretorius, P. Hendrik; King, Michael A.
2015-08-01
Purpose: We investigate the differences without/with respiratory motion correction in apparent imaging agent localization induced in reconstructed emission images when the attenuation maps used for attenuation correction (from CT) are misaligned with the patient anatomy during emission imaging due to differences in respiratory state. Methods: We investigated use of attenuation maps acquired at different states of a 2 cm amplitude respiratory cycle (at end-expiration, at end-inspiration, the center map, the average transmission map, and a large breath-hold beyond range of respiration during emission imaging) to correct for attenuation in MLEM reconstruction for several anatomical variants of the NCAT phantom which included both with and without non-rigid motion between heart and sub-diaphragmatic regions (such as liver, kidneys etc). We tested these cases with and without emission motion correction and attenuation map alignment/non-alignment. Results: For the NCAT default male anatomy the false count-reduction due to breathing was largely removed upon emission motion correction for the large majority of the cases. Exceptions (for the default male) were for the cases when using the large-breathhold end-inspiration map (TI_EXT), when we used the end-expiration (TE) map, and to a smaller extent, the end-inspiration map (TI). However moving the attenuation maps rigidly to align the heart region, reduced the remaining count-reduction artifacts. For the female patient count-reduction remained post motion correction using rigid map-alignment due to the breast soft-tissue misalignment. Quantitatively, after the transmission (rigid) alignment correction, the polar-map 17-segment RMS error with respect to the reference (motion-less case) reduced by 46.5% on average for the extreme breathhold case. The reductions were 40.8% for end-expiration map and 31.9% for end-inspiration cases on the average, comparable to the semi-ideal case where each state uses its own attenuation map for correction. Conclusions: Two main conclusions are that even rigid emission motion correction to rigidly align the heart region to the attenuation map helps in average cases to reduce the count-reduction artifacts and secondly, within the limits of the study (ex. rigid correction) when there is lung tissue inferior to the heart as with the NCAT phantom employed in this study end-expiration maps (TE) might best be avoided as they may create more artifacts than the end-inspiration (TI) maps.
Chang, Guoping; Chang, Tingting; Pan, Tinsu; Clark, John W; Mawlawi, Osama R
2010-12-01
Respiratory motion artifacts and partial volume effects (PVEs) are two degrading factors that affect the accuracy of image quantification in PET/CT imaging. In this article, the authors propose a joint motion and PVE correction approach (JMPC) to improve PET quantification by simultaneously correcting for respiratory motion artifacts and PVE in patients with lung/thoracic cancer. The objective of this article is to describe this approach and evaluate its performance using phantom and patient studies. The proposed joint correction approach incorporates a model of motion blurring, PVE, and object size/shape. A motion blurring kernel (MBK) is then estimated from the deconvolution of the joint model, while the activity concentration (AC) of the tumor is estimated from the normalization of the derived MBK. To evaluate the performance of this approach, two phantom studies and eight patient studies were performed. In the phantom studies, two motion waveforms-a linear sinusoidal and a circular motion-were used to control the motion of a sphere, while in the patient studies, all participants were instructed to breathe regularly. For the phantom studies, the resultant MBK was compared to the true MBK by measuring a correlation coefficient between the two kernels. The measured sphere AC derived from the proposed method was compared to the true AC as well as the ACs in images exhibiting PVE only and images exhibiting both PVE and motion blurring. For the patient studies, the resultant MBK was compared to the motion extent derived from a 4D-CT study, while the measured tumor AC was compared to the AC in images exhibiting both PVE and motion blurring. For the phantom studies, the estimated MBK approximated the true MBK with an average correlation coefficient of 0.91. The tumor ACs following the joint correction technique were similar to the true AC with an average difference of 2%. Furthermore, the tumor ACs on the PVE only images and images with both motion blur and PVE effects were, on average, 75% and 47.5% (10%) of the true AC, respectively, for the linear (circular) motion phantom study. For the patient studies, the maximum and mean AC/SUV on the PET images following the joint correction are, on average, increased by 125.9% and 371.6%, respectively, when compared to the PET images with both PVE and motion. The motion extents measured from the derived MBK and 4D-CT exhibited an average difference of 1.9 mm. The proposed joint correction approach can improve the accuracy of PET quantification by simultaneously compensating for the respiratory motion artifacts and PVE in lung/thoracic PET/CT imaging.
Clinical implementation of target tracking by breathing synchronized delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tewatia, Dinesh; Zhang Tiezhi; Tome, Wolfgang
2006-11-15
Target-tracking techniques can be categorized based on the mechanism of the feedback loop. In real time tracking, breathing-delivery phase correlation is provided to the treatment delivery hardware. Clinical implementation of target tracking in real time requires major hardware modifications. In breathing synchronized delivery (BSD), the patient is guided to breathe in accordance with target motion derived from four-dimensional computed tomography (4D-CT). Violations of mechanical limitations of hardware are to be avoided at the treatment planning stage. Hardware modifications are not required. In this article, using sliding window IMRT delivery as an example, we have described step-by-step the implementation of targetmore » tracking by the BSD technique: (1) A breathing guide is developed from patient's normal breathing pattern. The patient tries to reproduce this guiding cycle by following the display in the goggles; (2) 4D-CT scans are acquired at all the phases of the breathing cycle; (3) The average tumor trajectory is obtained by deformable image registration of 4D-CT datasets and is smoothed by Fourier filtering; (4) Conventional IMRT planning is performed using the images at reference phase (full exhalation phase) and a leaf sequence based on optimized fluence map is generated; (5) Assuming the patient breathes with a reproducible breathing pattern and the machine maintains a constant dose rate, the treatment process is correlated with the breathing phase; (6) The instantaneous average tumor displacement is overlaid on the dMLC position at corresponding phase; and (7) DMLC leaf speed and acceleration are evaluated to ensure treatment delivery. A custom-built mobile phantom driven by a computer-controlled stepper motor was used in the dosimetry verification. A stepper motor was programmed such that the phantom moved according to the linear component of tumor motion used in BSD treatment planning. A conventional plan was delivered on the phantom with and without motion. The BSD plan was also delivered on the phantom that moved with the prescheduled pattern and synchronized with the delivery of each beam. Film dosimetry showed underdose and overdose in the superior and inferior regions of the target, respectively, if the tumor motion is not compensated during the delivery. BSD delivery resulted in a dose distribution very similar to the planned treatments.« less
Turbulence Measurements from Compliant Moorings. Part II: Motion Correction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilcher, Levi F.; Thomson, Jim; Harding, Samuel
2017-06-01
Acoustic Doppler velocimeters (ADVs) are a valuable tool for making highprecision measurements of turbulence, and moorings are a convenient and ubiquitous platform for making many kinds of measurements in the ocean. However—because of concerns that mooring motion can contaminate turbulence measurements and acoustic Doppler profilers are relatively easy to deploy—ADVs are not frequently deployed from moorings. This work details a method for measuring turbulence using moored ADVs that corrects for mooring motion using measurements from inertial motion sensors. Three distinct mooring platforms were deployed in a tidal channel with inertial motion-sensor-equipped ADVs. In each case, the motion correction based onmore » the inertial measurements dramatically reduced contamination from mooring motion. The spectra from these measurements have a shape that is consistent with other measurements in tidal channels, and have a f^(5/3) slope at high frequencies—consistent with Kolmogorov’s theory of isotropic turbulence. Motion correction also improves estimates of cross-spectra and Reynold’s stresses. Comparison of turbulence dissipation with flow speed and turbulence production indicates a bottom boundary layer production-dissipation balance during ebb and flood that is consistent with the strong tidal forcing at the site. These results indicate that inertial-motion-sensor-equipped ADVs are a valuable new tool for measuring turbulence from moorings.« less
Munoz, Camila; Kunze, Karl P; Neji, Radhouene; Vitadello, Teresa; Rischpler, Christoph; Botnar, René M; Nekolla, Stephan G; Prieto, Claudia
2018-05-12
Cardiac PET-MR has shown potential for the comprehensive assessment of coronary heart disease. However, image degradation due to physiological motion remains a challenge that could hinder the adoption of this technology in clinical practice. The purpose of this study was to validate a recently proposed respiratory motion-corrected PET-MR framework for the simultaneous visualisation of myocardial viability ( 18 F-FDG PET) and coronary artery anatomy (coronary MR angiography, CMRA) in patients with chronic total occlusion (CTO). A cohort of 14 patients was scanned with the proposed PET-CMRA framework. PET and CMRA images were reconstructed with and without the proposed motion correction approach for comparison purposes. Metrics of image quality including visible vessel length and sharpness were obtained for CMRA for both the right and left anterior descending coronary arteries (RCA, LAD), and relative increase in 18 F-FDG PET signal after motion correction for standard 17-segment polar maps was computed. Resulting coronary anatomy by CMRA and myocardial integrity by PET were visually compared against X-ray angiography and conventional Late Gadolinium Enhancement (LGE) MRI, respectively. Motion correction increased CMRA visible vessel length by 49.9% and 32.6% (RCA, LAD) and vessel sharpness by 12.3% and 18.9% (RCA, LAD) on average compared to uncorrected images. Coronary lumen delineation on motion-corrected CMRA images was in good agreement with X-ray angiography findings. For PET, motion correction resulted in an average 8% increase in 18 F-FDG signal in the inferior and inferolateral segments of the myocardial wall. An improved delineation of myocardial viability defects and reduced noise in the 18 F-FDG PET images was observed, improving correspondence to subendocardial LGE-MRI findings compared to uncorrected images. The feasibility of the PET-CMRA framework for simultaneous cardiac PET-MR imaging in a short and predictable scan time (~11 min) has been demonstrated in 14 patients with CTO. Motion correction increased visible length and sharpness of the coronary arteries by CMRA, and improved delineation of the myocardium by 18 F-FDG PET, resulting in good agreement with X-ray angiography and LGE-MRI.
Motion-induced phase error estimation and correction in 3D diffusion tensor imaging.
Van, Anh T; Hernando, Diego; Sutton, Bradley P
2011-11-01
A multishot data acquisition strategy is one way to mitigate B0 distortion and T2∗ blurring for high-resolution diffusion-weighted magnetic resonance imaging experiments. However, different object motions that take place during different shots cause phase inconsistencies in the data, leading to significant image artifacts. This work proposes a maximum likelihood estimation and k-space correction of motion-induced phase errors in 3D multishot diffusion tensor imaging. The proposed error estimation is robust, unbiased, and approaches the Cramer-Rao lower bound. For rigid body motion, the proposed correction effectively removes motion-induced phase errors regardless of the k-space trajectory used and gives comparable performance to the more computationally expensive 3D iterative nonlinear phase error correction method. The method has been extended to handle multichannel data collected using phased-array coils. Simulation and in vivo data are shown to demonstrate the performance of the method.
Hirokawa, Yuusuke; Isoda, Hiroyoshi; Maetani, Yoji S; Arizono, Shigeki; Shimada, Kotaro; Togashi, Kaori
2008-10-01
The purpose of this study was to evaluate the effectiveness of the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER [BLADE in the MR systems from Siemens Medical Solutions]) with a respiratory compensation technique for motion correction, image noise reduction, improved sharpness of liver edge, and image quality of the upper abdomen. Twenty healthy adult volunteers with a mean age of 28 years (age range, 23-42 years) underwent upper abdominal MRI with a 1.5-T scanner. For each subject, fat-saturated T2-weighted turbo spin-echo (TSE) sequences with respiratory compensation (prospective acquisition correction [PACE]) were performed with and without the BLADE technique. Ghosting artifact, artifacts except ghosting artifact such as respiratory motion and bowel movement, sharpness of liver edge, image noise, and overall image quality were evaluated visually by three radiologists using a 5-point scale for qualitative analysis. The Wilcoxon's signed rank test was used to determine whether a significant difference existed between images with and without BLADE. A p value less than 0.05 was considered to be statistically significant. In the BLADE images, image artifacts, sharpness of liver edge, image noise, and overall image quality were significantly improved (p < 0.001). With the BLADE technique, T2-weighted TSE images of the upper abdomen could provide reduced image artifacts including ghosting artifact and image noise and provide better image quality.
Ta, Casey N; Eghtedari, Mohammad; Mattrey, Robert F; Kono, Yuko; Kummel, Andrew C
2014-11-01
Contrast-enhanced ultrasound (CEUS) cines of focal liver lesions (FLLs) can be quantitatively analyzed to measure tumor perfusion on a pixel-by-pixel basis for diagnostic indication. However, CEUS cines acquired freehand and during free breathing cause nonuniform in-plane and out-of-plane motion from frame to frame. These motions create fluctuations in the time-intensity curves (TICs), reducing the accuracy of quantitative measurements. Out-of-plane motion cannot be corrected by image registration in 2-dimensional CEUS and degrades the quality of in-plane motion correction (IPMC). A 2-tier IPMC strategy and adaptive out-of-plane motion filter (OPMF) are proposed to provide a stable correction of nonuniform motion to reduce the impact of motion on quantitative analyses. A total of 22 cines of FLLs were imaged with dual B-mode and contrast specific imaging to acquire a 3-minute TIC. B-mode images were analyzed for motion, and the motion correction was applied to both B-mode and contrast images. For IPMC, the main reference frame was automatically selected for each cine, and subreference frames were selected in each respiratory cycle and sequentially registered toward the main reference frame. All other frames were sequentially registered toward the local subreference frame. Four OPMFs were developed and tested: subsample normalized correlation (NC), subsample sum of absolute differences, mean frame NC, and histogram. The frames that were most dissimilar to the OPMF reference frame using 1 of the 4 above criteria in each respiratory cycle were adaptively removed by thresholding against the low-pass filter of the similarity curve. Out-of-plane motion filter was quantitatively evaluated by an out-of-plane motion metric (OPMM) that measured normalized variance in the high-pass filtered TIC within the tumor region-of-interest with low OPMM being the goal. Results for IPMC and OPMF were qualitatively evaluated by 2 blinded observers who ranked the motion in the cines before and after various combinations of motion correction steps. Quantitative measurements showed that 2-tier IPMC and OPMF improved imaging stability. With IPMC, the NC B-mode metric increased from 0.504 ± 0.149 to 0.585 ± 0.145 over all cines (P < 0.001). Two-tier IPMC also produced better fits on the contrast-specific TIC than industry standard IPMC techniques did (P < 0.02). In-plane motion correction and OPMF were shown to improve goodness of fit for pixel-by-pixel analysis (P < 0.001). Out-of-plane motion filter reduced variance in the contrast-specific signal as shown by a median decrease of 49.8% in the OPMM. Two-tier IPMC and OPMF were also shown to qualitatively reduce motion. Observers consistently ranked cines with IPMC higher than the same cine before IPMC (P < 0.001) as well as ranked cines with OPMF higher than when they were uncorrected. The 2-tier sequential IPMC and adaptive OPMF significantly reduced motion in 3-minute CEUS cines of FLLs, thereby overcoming the challenges of drift and irregular breathing motion in long cines. The 2-tier IPMC strategy provided stable motion correction tolerant of out-of-plane motion throughout the cine by sequentially registering subreference frames that bypassed the motion cycles, thereby overcoming the lack of a nearly stationary reference point in long cines. Out-of-plane motion filter reduced apparent motion by adaptively removing frames imaged off-plane from the automatically selected OPMF reference frame, thereby tolerating nonuniform breathing motion. Selection of the best OPMF by minimizing OPMM effectively reduced motion under a wide variety of motion patterns applicable to clinical CEUS. These semiautomated processes only required user input for region-of-interest selection and can improve the accuracy of quantitative perfusion measurements.
Nyaka Ngobisa, A. I. C.; Zainal Abidin, M. A.; Wong, M. Y.; Wan Noordin, M. W. D.
2013-01-01
Hevea brasiliensis is a natural source of rubber and an important plantation tree species in Malaysia. Leaf blight disease caused by Fusicoccum substantially reduces the growth and performance of H. brasiliensis. The aim of this study was to use a combination of both morphological characteristics and molecular data to clarify the taxonomic position of the fungus associated with leaf blight disease. Fusicoccum species were isolated from infected leaves collected from plantations at 3 widely separated locations – Selangor, Perak, and Johor states – in Peninsular Malaysia in 2010. All the isolates were identified according to their conidial patterns and DNA sequences generated from internal transcribed spacers (ITS1 and ITS2), the 5.8S rRNA, and an unknown locus (BotF15) containing microsatellite repeats. Based on taxonomic and sequence data, Neofusicoccum ribis was identified as the main cause of leaf blight disease in H. brasiliensis in commercial plantations in Malaysia. A pathogenicity trial on detached leaves further confirmed that N. ribis causes leaf blight disease. N. ribis is an important leaf pathogen, and its detection in Malaysia has important implications for future planting of H. brasiliensis. PMID:25288924
Nyaka Ngobisa, A I C; Zainal Abidin, M A; Wong, M Y; Wan Noordin, M W D
2013-03-01
Hevea brasiliensis is a natural source of rubber and an important plantation tree species in Malaysia. Leaf blight disease caused by Fusicoccum substantially reduces the growth and performance of H. brasiliensis. The aim of this study was to use a combination of both morphological characteristics and molecular data to clarify the taxonomic position of the fungus associated with leaf blight disease. Fusicoccum species were isolated from infected leaves collected from plantations at 3 widely separated locations - Selangor, Perak, and Johor states - in Peninsular Malaysia in 2010. All the isolates were identified according to their conidial patterns and DNA sequences generated from internal transcribed spacers (ITS1 and ITS2), the 5.8S rRNA, and an unknown locus (BotF15) containing microsatellite repeats. Based on taxonomic and sequence data, Neofusicoccum ribis was identified as the main cause of leaf blight disease in H. brasiliensis in commercial plantations in Malaysia. A pathogenicity trial on detached leaves further confirmed that N. ribis causes leaf blight disease. N. ribis is an important leaf pathogen, and its detection in Malaysia has important implications for future planting of H. brasiliensis.
Li, Zhipeng; Henderson, Gemma; Yang, Yahan; Li, Guangyu
2017-01-01
Reductive acetogenesis by homoacetogens represents an alternative pathway to methanogenesis to remove metabolic hydrogen during rumen fermentation. In this study, we investigated the occurrence of homoacetogen in the rumens of pasture-fed roe deer (Capreolus pygargus) and sika deer (Cervus nippon) fed either oak-leaf-based (tannin-rich, 100 mg/kg dried matter), corn-stover-based, or corn-silage-based diets, by using formyltetrahydrofolate synthetase (FTHFS) gene sequences as a marker. The diversity and richness of FTHFS sequences was lowest in animals fed oak leaf, indicating that tannin-containing plants may affect rumen homoacetogen diversity. FTHFS amino acid sequences in the rumen of roe deer significantly differed from those of sika deer. The phylogenetic analyses showed that 44.8% of sequences in pasture-fed roe deer, and 72.1%, 81.1%, and 37.5% of sequences in sika deer fed oak-leaf-, corn-stover-, and corn-silage-based diets, respectively, may represent novel bacteria that have not yet been cultured. These results demonstrate that the rumens of roe deer and sika deer harbor potentially novel homoacetogens and that diet may influence homoacetogen community structure.
Lancet Dynamics in Greater Horseshoe Bats, Rhinolophus ferrumequinum
He, Weikai; Pedersen, Scott C.; Gupta, Anupam K.; Simmons, James A.; Müller, Rolf
2015-01-01
Echolocating greater horseshoe bats (Rhinolophus ferrumequinum) emit their biosonar pulses nasally, through nostrils surrounded by fleshy appendages (‘noseleaves’) that diffract the outgoing ultrasonic waves. Movements of one noseleaf part, the lancet, were measured in live bats using two synchronized high speed video cameras with 3D stereo reconstruction, and synchronized with pulse emissions recorded by an ultrasonic microphone. During individual broadcasts, the lancet briefly flicks forward (flexion) and is then restored to its original position. This forward motion lasts tens of milliseconds and increases the curvature of the affected noseleaf surfaces. Approximately 90% of the maximum displacements occurred within the duration of individual pulses, with 70% occurring towards the end. Similar lancet motions were not observed between individual pulses in a sequence of broadcasts. Velocities of the lancet motion were too small to induce Doppler shifts of a biologically-meaningful magnitude, but the maximum displacements were significant in comparison with the overall size of the lancet and the ultrasonic wavelengths. Three finite element models were made from micro-CT scans of the noseleaf post mortem to investigate the acoustic effects of lancet displacement. The broadcast beam shapes were found to be altered substantially by the observed small lancet movements. These findings demonstrate that—in addition to the previously described motions of the anterior leaf and the pinna—horseshoe bat biosonar has a third degree of freedom for fast changes that can happen on the time scale of the emitted pulses or the returning echoes and could provide a dynamic mechanism for the encoding of sensory information. PMID:25853738
Improved Analysis of Nanopore Sequence Data and Scanning Nanopore Techniques
NASA Astrophysics Data System (ADS)
Szalay, Tamas
The field of nanopore research has been driven by the need to inexpensively and rapidly sequence DNA. In order to help realize this goal, this thesis describes the PoreSeq algorithm that identifies and corrects errors in real-world nanopore sequencing data and improves the accuracy of de novo genome assembly with increasing coverage depth. The approach relies on modeling the possible sources of uncertainty that occur as DNA advances through the nanopore and then using this model to find the sequence that best explains multiple reads of the same region of DNA. PoreSeq increases nanopore sequencing read accuracy of M13 bacteriophage DNA from 85% to 99% at 100X coverage. We also use the algorithm to assemble E. coli with 30X coverage and the lambda genome at a range of coverages from 3X to 50X. Additionally, we classify sequence variants at an order of magnitude lower coverage than is possible with existing methods. This thesis also reports preliminary progress towards controlling the motion of DNA using two nanopores instead of one. The speed at which the DNA travels through the nanopore needs to be carefully controlled to facilitate the detection of individual bases. A second nanopore in close proximity to the first could be used to slow or stop the motion of the DNA in order to enable a more accurate readout. The fabrication process for a new pyramidal nanopore geometry was developed in order to facilitate the positioning of the nanopores. This thesis demonstrates that two of them can be placed close enough to interact with a single molecule of DNA, which is a prerequisite for being able to use the driving force of the pores to exert fine control over the motion of the DNA. Another strategy for reading the DNA is to trap it completely with one pore and to move the second nanopore instead. To that end, this thesis also shows that a single strand of immobilized DNA can be captured in a scanning nanopore and examined for a full hour, with data from many scans at many different voltages obtained in order to detect a bound protein placed partway along the molecule.
Xu, Wenjing; Shi, Lingling; Chan, Onchim; Li, Jiao; Casper, Peter; Zou, Xiaoming
2013-01-01
Although bacteria and fungi are well-known to be decomposers of leaf litter, few studies have examined their compositions and diversities during the decomposition process in tropical stream water. Xishuangbanna is a tropical region preserving one of the highest floristic diversity areas in China. In this study, leaf litter of four dominant plant species in Xishuangbanna was incubated in stream water for 42 days during which samples were taken regularly. Following DNA extraction, PCR-DGGE (denaturing gradient gel electrophoresis) and clone-sequencing analyses were performed using bacterial and fungal specific primers. Leaf species have slightly influences on bacterial community rather than fungal community. The richness and diversity of bacteria was higher than that of fungi, which increased towards the end of the 42-day-incubation. The bacterial community was initially more specific upon the type of leaves and gradually became similar at the later stage of decomposition with alpha-proteobacteria as major component. Sequences affiliated to methanotrophs were obtained that indicates potentially occurrence of methane oxidation and methanogenesis. For the fungal community, sequences affiliated to Aspergillus were predominant at the beginning and then shifted to Pleosporales. Our results suggest that the microorganisms colonizing leaf biofilm in tropical stream water were mostly generalists that could exploit the resources of leaves of various species equally well. PMID:24367682
Viswanathan, R; Balamuralikrishnan, M; Karuppaiah, R
2008-12-01
Sugarcane yellow leaf virus (SCYLV) that causes yellow leaf disease (YLD) in sugarcane (recently reported in India) belongs to Polerovirus. Detailed studies were conducted to characterize the virus based on partial open reading frames (ORFs) 1 and 2 and complete ORFs 3 and 4 sequences in their genome. Reverse-transcriptase polymerase chain reaction (RT-PCR) was performed on 48 sugarcane leaf samples to detect the virus using a specific set of primers. Of the 48 samples, 36 samples (field samples with and without foliar symptoms) including 10 meristem culture derived plants were found to be positive to SCYLV infection. Additionally, an aphid colony collected from symptomatic sugarcane in the field was also found to be SCYLV positive. The amplicons from 22 samples were cloned, sequenced and acronymed as SCYLV-CB isolates. The nucleotide (nt) and amino acid (aa) sequence comparison showed a significant variation between SCYLV-CB and the database sequences at nt (3.7-5.1%) and aa (3.2-5.3%) sequence level in the CP coding region. However, the database sequences comprising isolates of three reported genotypes, viz., BRA, PER and REU, were observed with least nt and aa sequence dissimilarities (0.0-1.6%). The phylogenetic analyses of the overlapping ORFs (ORF 3 and ORF 4) of SCYLV encoding CP and MP determined in this study and additional sequences of 26 other isolates including an Indian isolate (SCYLV-IND) available from GenBank were distributed in four phylogenetic clusters. The SCYLV-CB isolates from this study lineated in two clusters (C1 and C2) and all the other isolates from the worldwide locations into another two clusters (C3 and C4). The sequence variation of the isolates in this study with the database isolates, even in the least variable region of the SCYLV genome, showed that the population existing in India is significantly different from rest of the world. Further, comparison of partial sequences encoding for ORFs 1 and 2 revealed that YLD in sugarcane in India is caused by at least three genotypes, viz., CUB, IND and BRA-PER, of which a majority of the samples were found infected with Cuban genotype (CUB) and lesser by IND and BRA-PER genotypes. The genotype IND was identified as a new genotype from this study, and this was found to have significant variation with the reported genotypes.
On-Line Detection and Segmentation of Sports Motions Using a Wearable Sensor.
Kim, Woosuk; Kim, Myunggyu
2018-03-19
In sports motion analysis, observation is a prerequisite for understanding the quality of motions. This paper introduces a novel approach to detect and segment sports motions using a wearable sensor for supporting systematic observation. The main goal is, for convenient analysis, to automatically provide motion data, which are temporally classified according to the phase definition. For explicit segmentation, a motion model is defined as a sequence of sub-motions with boundary states. A sequence classifier based on deep neural networks is designed to detect sports motions from continuous sensor inputs. The evaluation on two types of motions (soccer kicking and two-handed ball throwing) verifies that the proposed method is successful for the accurate detection and segmentation of sports motions. By developing a sports motion analysis system using the motion model and the sequence classifier, we show that the proposed method is useful for observation of sports motions by automatically providing relevant motion data for analysis.
Livieratos, L; Stegger, L; Bloomfield, P M; Schafers, K; Bailey, D L; Camici, P G
2005-07-21
High-resolution cardiac PET imaging with emphasis on quantification would benefit from eliminating the problem of respiratory movement during data acquisition. Respiratory gating on the basis of list-mode data has been employed previously as one approach to reduce motion effects. However, it results in poor count statistics with degradation of image quality. This work reports on the implementation of a technique to correct for respiratory motion in the area of the heart at no extra cost for count statistics and with the potential to maintain ECG gating, based on rigid-body transformations on list-mode data event-by-event. A motion-corrected data set is obtained by assigning, after pre-correction for detector efficiency and photon attenuation, individual lines-of-response to new detector pairs with consideration of respiratory motion. Parameters of respiratory motion are obtained from a series of gated image sets by means of image registration. Respiration is recorded simultaneously with the list-mode data using an inductive respiration monitor with an elasticized belt at chest level. The accuracy of the technique was assessed with point-source data showing a good correlation between measured and true transformations. The technique was applied on phantom data with simulated respiratory motion, showing successful recovery of tracer distribution and contrast on the motion-corrected images, and on patient data with C15O and 18FDG. Quantitative assessment of preliminary C15O patient data showed improvement in the recovery coefficient at the centre of the left ventricle.
Liu, Hui; Leigh, Steve; Yu, Bing
2014-03-01
The purpose of this study was to determine the effects of sequences of the trunk and arm angular motions on the performance of javelin throwing. In this study, 32 male and 30 female elite javelin throwers participated and were separated into a short official distance group or a long official distance group in each gender. Three-dimensional coordinates of 21 body landmarks and 3 marks on the javelin in the best trial were collected for each subject. Joint center linear velocities and selected trunk and arm segment and joint angles and angular velocities were calculated. The times of the initiations of the selected segment and joint angular motions and maximum angular velocities were determined. The sequences of the initiations of the selected segment and joint angular motions and maximum angular velocities were compared between short and long official distance groups and between genders. The results demonstrated that short and long official distance groups employed similar sequences of the trunk and arm motions. Male and female javelin throwers employed different sequences of the trunk and arm motions. The sequences of the trunk and arm motions were different from those of the maximal joint center linear velocities.
Kumar, Dhananjay; Dutta, Summi; Singh, Dharmendra; Prabhu, Kumble Vinod; Kumar, Manish; Mukhopadhyay, Kunal
2017-01-01
Deep sequencing identified 497 conserved and 559 novel miRNAs in wheat, while degradome analysis revealed 701 targets genes. QRT-PCR demonstrated differential expression of miRNAs during stages of leaf rust progression. Bread wheat (Triticum aestivum L.) is an important cereal food crop feeding 30 % of the world population. Major threat to wheat production is the rust epidemics. This study was targeted towards identification and functional characterizations of micro(mi)RNAs and their target genes in wheat in response to leaf rust ingression. High-throughput sequencing was used for transcriptome-wide identification of miRNAs and their expression profiling in retort to leaf rust using mock and pathogen-inoculated resistant and susceptible near-isogenic wheat plants. A total of 1056 mature miRNAs were identified, of which 497 miRNAs were conserved and 559 miRNAs were novel. The pathogen-inoculated resistant plants manifested more miRNAs compared with the pathogen infected susceptible plants. The miRNA counts increased in susceptible isoline due to leaf rust, conversely, the counts decreased in the resistant isoline in response to pathogenesis illustrating precise spatial tuning of miRNAs during compatible and incompatible interaction. Stem-loop quantitative real-time PCR was used to profile 10 highly differentially expressed miRNAs obtained from high-throughput sequencing data. The spatio-temporal profiling validated the differential expression of miRNAs between the isolines as well as in retort to pathogen infection. Degradome analysis provided 701 predicted target genes associated with defense response, signal transduction, development, metabolism, and transcriptional regulation. The obtained results indicate that wheat isolines employ diverse arrays of miRNAs that modulate their target genes during compatible and incompatible interaction. Our findings contribute to increase knowledge on roles of microRNA in wheat-leaf rust interactions and could help in rust resistance breeding programs.
Cramer, C.H.; Kumar, A.
2003-01-01
Engineering seismoscope data collected at distances less than 300 km for the M 7.7 Bhuj, India, mainshock are compatible with ground-motion attenuation in eastern North America (ENA). The mainshock ground-motion data have been corrected to a common geological site condition using the factors of Joyner and Boore (2000) and a classification scheme of Quaternary or Tertiary sediments or rock. We then compare these data to ENA ground-motion attenuation relations. Despite uncertainties in recording method, geological site corrections, common tectonic setting, and the amount of regional seismic attenuation, the corrected Bhuj dataset agrees with the collective predictions by ENA ground-motion attenuation relations within a factor of 2. This level of agreement is within the dataset uncertainties and the normal variance for recorded earthquake ground motions.
In-plane "superresolution" MRI with phaseless sub-pixel encoding.
Hennel, Franciszek; Tian, Rui; Engel, Maria; Pruessmann, Klaas P
2018-04-15
Acquisition of high-resolution imaging data using multiple excitations without the sensitivity to fluctuations of the transverse magnetization phase, which is a major problem of multi-shot MRI. The concept of superresolution MRI based on microscopic tagging is analyzed using an analogy with the optical method of structured illumination. Sinusoidal tagging is shown to provide subpixel resolution by mixing of neighboring spatial frequency (k-space) bands. It represents a phaseless modulation added on top of the standard Fourier encoding, which allows the phase fluctuations to be discarded at an intermediate reconstruction step. Improvements are proposed to correct for tag distortions due to magnetic field inhomogeneity and to avoid the propagation of Gibbs ringing from intermediate low-resolution images to the final image. The method was applied to diffusion-weighted EPI. Artifact-free superresolution images can be obtained despite a finite duration of the tagging sequence and related pattern distortions by a field map based phase correction of band-wise reconstructed images. The ringing effect present in the intermediate images can be suppressed by partial overlapping of the mixed k-space bands in combination with an adapted filter. High-resolution diffusion-weighted images of the human head were obtained with a three-shot EPI sequence despite motion-related phase fluctuations between the shots. Due to its phaseless character, tagging-based sub-pixel encoding is an alternative to k-space segmenting in the presence of unknown phase fluctuations, in particular those due to motion under strong diffusion gradients. Proposed improvements render the method practicable in realistic conditions. © 2018 International Society for Magnetic Resonance in Medicine.
Non-model-based correction of respiratory motion using beat-to-beat 3D spiral fat-selective imaging.
Keegan, Jennifer; Gatehouse, Peter D; Yang, Guang-Zhong; Firmin, David N
2007-09-01
To demonstrate the feasibility of retrospective beat-to-beat correction of respiratory motion, without the need for a respiratory motion model. A high-resolution three-dimensional (3D) spiral black-blood scan of the right coronary artery (RCA) of six healthy volunteers was acquired over 160 cardiac cycles without respiratory gating. One spiral interleaf was acquired per cardiac cycle, prior to each of which a complete low-resolution fat-selective 3D spiral dataset was acquired. The respiratory motion (3D translation) on each cardiac cycle was determined by cross-correlating a region of interest (ROI) in the fat around the artery in the low-resolution datasets with that on a reference end-expiratory dataset. The measured translations were used to correct the raw data of the high-resolution spiral interleaves. Beat-to-beat correction provided consistently good results, with the image quality being better than that obtained with a fixed superior-inferior tracking factor of 0.6 and better than (N = 5) or equal to (N = 1) that achieved using a subject-specific retrospective 3D translation motion model. Non-model-based correction of respiratory motion using 3D spiral fat-selective imaging is feasible, and in this small group of volunteers produced better-quality images than a subject-specific retrospective 3D translation motion model. (c) 2007 Wiley-Liss, Inc.
Retrospective data-driven respiratory gating for PET/CT
NASA Astrophysics Data System (ADS)
Schleyer, Paul J.; O'Doherty, Michael J.; Barrington, Sally F.; Marsden, Paul K.
2009-04-01
Respiratory motion can adversely affect both PET and CT acquisitions. Respiratory gating allows an acquisition to be divided into a series of motion-reduced bins according to the respiratory signal, which is typically hardware acquired. In order that the effects of motion can potentially be corrected for, we have developed a novel, automatic, data-driven gating method which retrospectively derives the respiratory signal from the acquired PET and CT data. PET data are acquired in listmode and analysed in sinogram space, and CT data are acquired in cine mode and analysed in image space. Spectral analysis is used to identify regions within the CT and PET data which are subject to respiratory motion, and the variation of counts within these regions is used to estimate the respiratory signal. Amplitude binning is then used to create motion-reduced PET and CT frames. The method was demonstrated with four patient datasets acquired on a 4-slice PET/CT system. To assess the accuracy of the data-derived respiratory signal, a hardware-based signal was acquired for comparison. Data-driven gating was successfully performed on PET and CT datasets for all four patients. Gated images demonstrated respiratory motion throughout the bin sequences for all PET and CT series, and image analysis and direct comparison of the traces derived from the data-driven method with the hardware-acquired traces indicated accurate recovery of the respiratory signal.
Curves from Motion, Motion from Curves
2000-01-01
De linearum curvarum cum lineis rectis comparatione dissertatio geometrica - an appendix to a treatise by de Lalouv~re (this was the only publication... correct solution to the problem of motion in the gravity of a permeable rotating Earth, considered by Torricelli (see §3). If the Earth is a homogeneous...in 1686, which contains the correct solution as part of a remarkably comprehensive theory of orbital motions under centripetal forces. It is a
Li, Yongqiang; Deng, Congliang; Bian, Yong; Zhao, Xiaoli; Zhou, Qi
2017-04-01
Apple stem grooving virus (ASGV), apple chlorotic leaf spot virus (ACLSV), and prunus necrotic ringspot virus (PNRSV) were identified in a crab apple tree by small RNA deep sequencing. The complete genome sequence of ACLSV isolate BJ (ACLSV-BJ) was 7554 nucleotides and shared 67.0%-83.0% nucleotide sequence identity with other ACLSV isolates. A phylogenetic tree based on the complete genome sequence of all available ACLSV isolates showed that ACLSV-BJ clustered with the isolates SY01 from hawthorn, MO5 from apple, and JB, KMS and YH from pear. The complete nucleotide sequence of ASGV-BJ was 6509 nucleotides (nt) long and shared 78.2%-80.7% nucleotide sequence identity with other isolates. ASGV-BJ and the isolate ASGV_kfp clustered together in the phylogenetic tree as an independent clade. Recombination analysis showed that isolate ASGV-BJ was a naturally occurring recombinant.
Error analysis of motion correction method for laser scanning of moving objects
NASA Astrophysics Data System (ADS)
Goel, S.; Lohani, B.
2014-05-01
The limitation of conventional laser scanning methods is that the objects being scanned should be static. The need of scanning moving objects has resulted in the development of new methods capable of generating correct 3D geometry of moving objects. Limited literature is available showing development of very few methods capable of catering to the problem of object motion during scanning. All the existing methods utilize their own models or sensors. Any studies on error modelling or analysis of any of the motion correction methods are found to be lacking in literature. In this paper, we develop the error budget and present the analysis of one such `motion correction' method. This method assumes availability of position and orientation information of the moving object which in general can be obtained by installing a POS system on board or by use of some tracking devices. It then uses this information along with laser scanner data to apply correction to laser data, thus resulting in correct geometry despite the object being mobile during scanning. The major application of this method lie in the shipping industry to scan ships either moving or parked in the sea and to scan other objects like hot air balloons or aerostats. It is to be noted that the other methods of "motion correction" explained in literature can not be applied to scan the objects mentioned here making the chosen method quite unique. This paper presents some interesting insights in to the functioning of "motion correction" method as well as a detailed account of the behavior and variation of the error due to different sensor components alone and in combination with each other. The analysis can be used to obtain insights in to optimal utilization of available components for achieving the best results.
ERIC Educational Resources Information Center
Schnick, Jeffrey W.
1994-01-01
Presents an exercise that attempts to correct for the common discrepancies between theoretical and experimental predictions concerning projectile motion using a spring-loaded projectile ball launcher. Includes common correction factors for student use. (MVL)
Khan, Akhtar J; Akhtar, Sohail; Al-Zaidi, Amal M; Singh, Achuit K; Briddon, Rob W
2013-10-01
Tomato and pepper are widely grown in Oman for local consumption. A countrywide survey was conducted during 2010-2011 to collect samples and assess the diversity of begomoviruses associated with leaf curl disease of tomato and pepper. A virus previously only identified on the Indian subcontinent, chili leaf curl virus (ChLCV), was found associated with tomato and pepper diseases in all vegetable grown areas of Oman. Some of the infected plant samples were also found to contain a betasatellite. A total of 19 potentially full-length begomovirus and eight betasatellite clones were sequenced. The begomovirus clones showed >96% nucleotide sequence identity, showing them to represent a single species. Comparisons to sequences available in the databases showed the highest levels of nucleotide sequence identity (88.0-91.1%) to isolates of the "Pakistan" strain of ChLCV (ChLCV-PK), indicating the virus from Oman to be a distinct strain, for which the name Oman strain (ChLCV-OM) is proposed. An analysis for recombination showed ChLCV-OM likely to have originated by recombination between ChLCV-PK (the major parent), pepper leaf curl Lahore virus and a third strain of ChLCV. The betasatellite sequences obtained were shown to have high levels of identity to isolates of tomato leaf curl betasatellite (ToLCB) previous shown to be present in Oman. For the disease in tomato Koch's postulates were satisfied by Agrobacterium-mediated inoculation of virus and betasatellites clones. This showed the symptoms induced by the virus in the presence of the betasatellite to be enhanced, although viral DNA levels were not affected. ChLCV-OM is the fourth begomovirus identified in tomato in Oman and the first in Capsicum. The significance of these findings is discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Learned Non-Rigid Object Motion is a View-Invariant Cue to Recognizing Novel Objects
Chuang, Lewis L.; Vuong, Quoc C.; Bülthoff, Heinrich H.
2012-01-01
There is evidence that observers use learned object motion to recognize objects. For instance, studies have shown that reversing the learned direction in which a rigid object rotated in depth impaired recognition accuracy. This motion reversal can be achieved by playing animation sequences of moving objects in reverse frame order. In the current study, we used this sequence-reversal manipulation to investigate whether observers encode the motion of dynamic objects in visual memory, and whether such dynamic representations are encoded in a way that is dependent on the viewing conditions. Participants first learned dynamic novel objects, presented as animation sequences. Following learning, they were then tested on their ability to recognize these learned objects when their animation sequence was shown in the same sequence order as during learning or in the reverse sequence order. In Experiment 1, we found that non-rigid motion contributed to recognition performance; that is, sequence-reversal decreased sensitivity across different tasks. In subsequent experiments, we tested the recognition of non-rigidly deforming (Experiment 2) and rigidly rotating (Experiment 3) objects across novel viewpoints. Recognition performance was affected by viewpoint changes for both experiments. Learned non-rigid motion continued to contribute to recognition performance and this benefit was the same across all viewpoint changes. By comparison, learned rigid motion did not contribute to recognition performance. These results suggest that non-rigid motion provides a source of information for recognizing dynamic objects, which is not affected by changes to viewpoint. PMID:22661939
Srivastava, Ashish; Kumar, S; Jaidi, Meraj; Raj, S K
2015-05-01
During a survey in June 2011, severe leaf yellow mosaic disease was observed on about 45 % plants of Jatropha curcas growing in the Katerniaghat wildlife sanctuary in India. An association of a begomovirus with disease was detected in 15 out of 20 samples by PCR using begomovirus genus-specific primers and total DNA isolated from symptomatic leaf samples. For identification of the begomovirus, the complete genome was amplified using a Phi-29 DNA-polymerase-based rolling-circle amplification kit and total DNA from five representative samples and then digested with BamHI. The linearized RCA products were cloned and sequenced. Their GenBank accession numbers are JN698954 (SKRK1) and JN135236 (SKRK2). The sequences of the two begomovirus isolates were 97 % identical to each other and no more than 86 % to those of jatropha mosaic India virus (JMIV, HM230683) and other begomoviruses reported worldwide. In phylogenetic analysis, SKRK1 and SKRK2 clustered together and showed distant relationships to jatropha mosaic India virus, Jatropha curcas mosaic virus, Indian cassava mosaic virus, Sri Lankan cassava mosaic virus and other begomoviruses. Based on 86 % sequence identities and distant phylogenetic relationships to JMIV and other begomoviruses and the begomovirus species demarcation criteria of the ICTV (<89 % sequence identity of complete DNA-A genome), the begomovirus isolates associated with leaf yellow mosaic disease of J. curcas were identified as members of a new begomovirus species and provisionally designated as jatropha leaf yellow mosaic Katerniaghat virus (JLYMKV). Agroinfectious clones of the DNA molecule of the begomovirus isolate were also generated, and the fulfillment of Koch's postulates was demonstrated in J. curcas plants.
Theoretical and experimental errors for in situ measurements of plant water potential.
Shackel, K A
1984-07-01
Errors in psychrometrically determined values of leaf water potential caused by tissue resistance to water vapor exchange and by lack of thermal equilibrium were evaluated using commercial in situ psychrometers (Wescor Inc., Logan, UT) on leaves of Tradescantia virginiana (L.). Theoretical errors in the dewpoint method of operation for these sensors were demonstrated. After correction for these errors, in situ measurements of leaf water potential indicated substantial errors caused by tissue resistance to water vapor exchange (4 to 6% reduction in apparent water potential per second of cooling time used) resulting from humidity depletions in the psychrometer chamber during the Peltier condensation process. These errors were avoided by use of a modified procedure for dewpoint measurement. Large changes in apparent water potential were caused by leaf and psychrometer exposure to moderate levels of irradiance. These changes were correlated with relatively small shifts in psychrometer zero offsets (-0.6 to -1.0 megapascals per microvolt), indicating substantial errors caused by nonisothermal conditions between the leaf and the psychrometer. Explicit correction for these errors is not possible with the current psychrometer design.
Theoretical and Experimental Errors for In Situ Measurements of Plant Water Potential 1
Shackel, Kenneth A.
1984-01-01
Errors in psychrometrically determined values of leaf water potential caused by tissue resistance to water vapor exchange and by lack of thermal equilibrium were evaluated using commercial in situ psychrometers (Wescor Inc., Logan, UT) on leaves of Tradescantia virginiana (L.). Theoretical errors in the dewpoint method of operation for these sensors were demonstrated. After correction for these errors, in situ measurements of leaf water potential indicated substantial errors caused by tissue resistance to water vapor exchange (4 to 6% reduction in apparent water potential per second of cooling time used) resulting from humidity depletions in the psychrometer chamber during the Peltier condensation process. These errors were avoided by use of a modified procedure for dewpoint measurement. Large changes in apparent water potential were caused by leaf and psychrometer exposure to moderate levels of irradiance. These changes were correlated with relatively small shifts in psychrometer zero offsets (−0.6 to −1.0 megapascals per microvolt), indicating substantial errors caused by nonisothermal conditions between the leaf and the psychrometer. Explicit correction for these errors is not possible with the current psychrometer design. PMID:16663701
The effects of SENSE on PROPELLER imaging.
Chang, Yuchou; Pipe, James G; Karis, John P; Gibbs, Wende N; Zwart, Nicholas R; Schär, Michael
2015-12-01
To study how sensitivity encoding (SENSE) impacts periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) image quality, including signal-to-noise ratio (SNR), robustness to motion, precision of motion estimation, and image quality. Five volunteers were imaged by three sets of scans. A rapid method for generating the g-factor map was proposed and validated via Monte Carlo simulations. Sensitivity maps were extrapolated to increase the area over which SENSE can be performed and therefore enhance the robustness to head motion. The precision of motion estimation of PROPELLER blades that are unfolded with these sensitivity maps was investigated. An interleaved R-factor PROPELLER sequence was used to acquire data with similar amounts of motion with and without SENSE acceleration. Two neuroradiologists independently and blindly compared 214 image pairs. The proposed method of g-factor calculation was similar to that provided by the Monte Carlo methods. Extrapolation and rotation of the sensitivity maps allowed for continued robustness of SENSE unfolding in the presence of motion. SENSE-widened blades improved the precision of rotation and translation estimation. PROPELLER images with a SENSE factor of 3 outperformed the traditional PROPELLER images when reconstructing the same number of blades. SENSE not only accelerates PROPELLER but can also improve robustness and precision of head motion correction, which improves overall image quality even when SNR is lost due to acceleration. The reduction of SNR, as a penalty of acceleration, is characterized by the proposed g-factor method. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, K; Yu, Z; Chen, H
Purpose: To implement VMAT in RayStation with the Elekta Synergy linac with the new Agility MLC, and to utilize the same vendor softwares to determine the optimum Elekta VMAT machine parameters in RayStation for accurate modeling and robust delivery. Methods: iCOMCat is utilized to create various beam patterns with user defined dose rate, gantry, MLC and jaw speed for each control point. The accuracy and stability of the output and beam profile are qualified for each isolated functional component of VMAT delivery using ion chamber and Profiler2 with isocentric mounting fixture. Service graphing on linac console is used to verifymore » the mechanical motion accuracy. The determined optimum Elekta VMAT machine parameters were configured in RayStation v4.5.1. To evaluate the system overall performance, TG-119 test cases and nine retrospective VMAT patients were planned on RayStation, and validated using both ArcCHECK (with plug and ion chamber) and MapCHECK2. Results: Machine output and profile varies <0.3% when only variable is dose rate (35MU/min-600MU/min). <0.9% output and <0.3% profile variation are observed with additional gantry motion (0.53deg/s–5.8deg/s both directions). The output and profile variation are still <1% with additional slow leaf motion (<1.5cm/s both direction). However, the profile becomes less symmetric, and >1.5% output and 7% profile deviation is seen with >2.5cm/s leaf motion. All clinical cases achieved comparable plan quality as treated IMRT plans. The gamma passing rate is 99.5±0.5% on ArcCheck (<3% iso center dose deviation) and 99.1±0.8% on MapCheck2 using 3%/3mm gamma (10% lower threshold). Mechanical motion accuracy in all VMAT deliveries is <1°/1mm. Conclusion: Accurate RayStation modeling and robust VMAT delivery is achievable on Elekta Agility for <2.5cm/s leaf motion and full range of dose rate and gantry speed determined by the same vendor softwares. Our TG-119 and patient results have provided us with the confidence to use VMAT clinically.« less
Boesgaard, Kristine S; Mikkelsen, Teis N; Ro-Poulsen, Helge; Ibrom, Andreas
2013-07-01
There is an ongoing debate on how to correct leaf gas exchange measurements for the unavoidable diffusion leakage that occurs when measurements are done in non-ambient CO2 concentrations. In this study, we present a theory on how the CO2 diffusion gradient over the gasket is affected by leaf-mediated pores (LMP) and how LMP reduce diffusive exchange across the gaskets. Recent discussions have so far neglected the processes in the quasi-laminar boundary layer around the gasket. Counter intuitively, LMP reduce the leakage through gaskets, which can be explained by assuming that the boundary layer at the exterior of the cuvette is enriched with air from the inside of the cuvette. The effect can thus be reduced by reducing the boundary layer thickness. The theory clarifies conflicting results from earlier studies. We developed leaf adaptor frames that eliminate LMP during measurements on delicate plant material such as grass leaves with circular cross section, and the effectiveness is shown with respiration measurements on a harp of Deschampsia flexuosa leaves. We conclude that the best solution for measurements with portable photosynthesis systems is to avoid LMP rather than trying to correct for the effects. © 2013 John Wiley & Sons Ltd.
Fixing the reference frame for PPMXL proper motions using extragalactic sources
Grabowski, Kathleen; Carlin, Jeffrey L.; Newberg, Heidi Jo; ...
2015-05-27
In this study, we quantify and correct systematic errors in PPMXL proper motions using extragalactic sources from the first two LAMOST data releases and the Vèron-Cetty & Vèron Catalog of Quasars. Although the majority of the sources are from the Vèron catalog, LAMOST makes important contributions in regions that are not well-sampled by previous catalogs, particularly at low Galactic latitudes and in the south Galactic cap. We show that quasars in PPMXL have measurable and significant proper motions, which reflect the systematic zero-point offsets present in the catalog. We confirm the global proper motion shifts seen by Wu et al.,more » and additionally find smaller-scale fluctuations of the QSO-derived corrections to an absolute frame. Finally, we average the proper motions of 158 106 extragalactic objects in bins of 3° × 3° and present a table of proper motion corrections.« less
NASA Astrophysics Data System (ADS)
Miranda, Alan; Staelens, Steven; Stroobants, Sigrid; Verhaeghe, Jeroen
2017-03-01
Preclinical positron emission tomography (PET) imaging in small animals is generally performed under anesthesia to immobilize the animal during scanning. More recently, for rat brain PET studies, methods to perform scans of unrestrained awake rats are being developed in order to avoid the unwanted effects of anesthesia on the brain response. Here, we investigate the use of a projected structure stereo camera to track the motion of the rat head during the PET scan. The motion information is then used to correct the PET data. The stereo camera calculates a 3D point cloud representation of the scene and the tracking is performed by point cloud matching using the iterative closest point algorithm. The main advantage of the proposed motion tracking is that no intervention, e.g. for marker attachment, is needed. A manually moved microDerenzo phantom experiment and 3 awake rat [18F]FDG experiments were performed to evaluate the proposed tracking method. The tracking accuracy was 0.33 mm rms. After motion correction image reconstruction, the microDerenzo phantom was recovered albeit with some loss of resolution. The reconstructed FWHM of the 2.5 and 3 mm rods increased with 0.94 and 0.51 mm respectively in comparison with the motion-free case. In the rat experiments, the average tracking success rate was 64.7%. The correlation of relative brain regional [18F]FDG uptake between the anesthesia and awake scan reconstructions was increased from on average 0.291 (not significant) before correction to 0.909 (p < 0.0001) after motion correction. Markerless motion tracking using structured light can be successfully used for tracking of the rat head for motion correction in awake rat PET scans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumaraswamy, L; Xu, Z; Podgorsak, M
Purpose: Commercial dose calculation algorithms incorporate a single DLG value for a given beam energy that is applied across an entire treatment field. However, the physical processes associated with beam generation and dose delivery suggest that the DLG is not constant. The aim of this study is to evaluate the variation of DLG among all leaf pairs, to quantify how this variation impacts delivered dose, and to establish a novel method to correct dose distributions calculated using the approximation of constant DLG. Methods: A 2D diode array was used to measure the DLG for all 60 leaf pairs at severalmore » points along each leaf pair travel direction. This approach was validated by comparison to DLG values measured at select points using a 0.6 cc ion chamber with the standard formalism. In-house software was developed to enable incorporation of position dependent DLG values into dose distribution optimization and calculation. The accuracy of beam delivery of both the corrected and uncorrected treatment plans was studied through gamma pass rate evaluation. A comparison of DVH statistics in corrected and uncorrected treatment plans was made. Results: The outer 20 MLC leaf pairs (1.0 cm width) have DLG values that are 0.32 mm (mean) to 0.65 mm (maximum) lower than the central leaf-pair. VMAT plans using a large number of 1 cm wide leaves were more accurately delivered (gamma pass rate increased by 5%) and dose coverage was higher (D100 increased by 3%) when the 2D DLG was modeled. Conclusion: Using a constant DLG value for a given beam energy will result in dose optimization, dose calculation and treatment delivery inaccuracies that become significant for treatment plans with high modulation complexity scores delivered with 1 cm wide leaves.« less
Mahato, Ajay Kumar; Sharma, Nimisha; Singh, Akshay; Srivastav, Manish; Jaiprakash; Singh, Sanjay Kumar; Singh, Anand Kumar; Sharma, Tilak Raj; Singh, Nagendra Kumar
2016-01-01
Mango (Mangifera indica L.) is called "king of fruits" due to its sweetness, richness of taste, diversity, large production volume and a variety of end usage. Despite its huge economic importance genomic resources in mango are scarce and genetics of useful horticultural traits are poorly understood. Here we generated deep coverage leaf RNA sequence data for mango parental varieties 'Neelam', 'Dashehari' and their hybrid 'Amrapali' using next generation sequencing technologies. De-novo sequence assembly generated 27,528, 20,771 and 35,182 transcripts for the three genotypes, respectively. The transcripts were further assembled into a non-redundant set of 70,057 unigenes that were used for SSR and SNP identification and annotation. Total 5,465 SSR loci were identified in 4,912 unigenes with 288 type I SSR (n ≥ 20 bp). One hundred type I SSR markers were randomly selected of which 43 yielded PCR amplicons of expected size in the first round of validation and were designated as validated genic-SSR markers. Further, 22,306 SNPs were identified by aligning high quality sequence reads of the three mango varieties to the reference unigene set, revealing significantly enhanced SNP heterozygosity in the hybrid Amrapali. The present study on leaf RNA sequencing of mango varieties and their hybrid provides useful genomic resource for genetic improvement of mango.
Mahato, Ajay Kumar; Sharma, Nimisha; Singh, Akshay; Srivastav, Manish; Jaiprakash; Singh, Sanjay Kumar; Singh, Anand Kumar; Sharma, Tilak Raj; Singh, Nagendra Kumar
2016-01-01
Mango (Mangifera indica L.) is called “king of fruits” due to its sweetness, richness of taste, diversity, large production volume and a variety of end usage. Despite its huge economic importance genomic resources in mango are scarce and genetics of useful horticultural traits are poorly understood. Here we generated deep coverage leaf RNA sequence data for mango parental varieties ‘Neelam’, ‘Dashehari’ and their hybrid ‘Amrapali’ using next generation sequencing technologies. De-novo sequence assembly generated 27,528, 20,771 and 35,182 transcripts for the three genotypes, respectively. The transcripts were further assembled into a non-redundant set of 70,057 unigenes that were used for SSR and SNP identification and annotation. Total 5,465 SSR loci were identified in 4,912 unigenes with 288 type I SSR (n ≥ 20 bp). One hundred type I SSR markers were randomly selected of which 43 yielded PCR amplicons of expected size in the first round of validation and were designated as validated genic-SSR markers. Further, 22,306 SNPs were identified by aligning high quality sequence reads of the three mango varieties to the reference unigene set, revealing significantly enhanced SNP heterozygosity in the hybrid Amrapali. The present study on leaf RNA sequencing of mango varieties and their hybrid provides useful genomic resource for genetic improvement of mango. PMID:27736892
Liberti, D; Marais, A; Svanella-Dumas, L; Dulucq, M J; Alioto, D; Ragozzino, A; Rodoni, B; Candresse, T
2005-04-01
ABSTRACT A trichovirus closely related to Apple chlorotic leaf spot virus (ACLSV) was detected in symptomatic apricot and Japanese plum from Italy. The Sus2 isolate of this agent cross-reacted with anti-ACLSV polyclonal reagents but was not detected by broad-specificity anti- ACLSV monoclonal antibodies. It had particles with typical trichovirus morphology but, contrary to ACLSV, was unable to infect Chenopodium quinoa and C. amaranticolor. The sequence of its genome (7,494 nucleotides [nt], missing only approximately 30 to 40 nt of the 5' terminal sequence) and the partial sequence of another isolate were determined. The new virus has a genomic organization similar to that of ACLSV, with three open reading frames coding for a replication-associated protein (RNA-dependent RNA polymerase), a movement protein, and a capsid protein, respectively. However, it had only approximately 65 to 67% nucleotide identity with sequenced isolates of ACLSV. The differences in serology, host range, genome sequence, and phylogenetic reconstructions for all viral proteins support the idea that this agent should be considered a new virus, for which the name Apricot pseudo-chlorotic leaf spot virus (APCLSV) is proposed. APCLSV shows substantial sequence variability and has been recovered from various Prunus sources coming from seven countries, an indication that it is likely to have a wide geographical distribution.
Gowda, Malali
2016-01-01
Blast disease caused by the Magnaporthe species is a major factor affecting the productivity of rice, wheat and millets. This study was aimed at generating genomic information for rice and non-rice Magnaporthe isolates to understand the extent of genetic variation. We have sequenced the whole genome of the Magnaporthe isolates, infecting rice (leaf and neck), finger millet (leaf and neck), foxtail millet (leaf) and buffel grass (leaf). Rice and finger millet isolates infecting both leaf and neck tissues were sequenced, since the damage and yield loss caused due to neck blast is much higher as compared to leaf blast. The genome-wide comparison was carried out to study the variability in gene content, candidate effectors, repeat element distribution, genes involved in carbohydrate metabolism and SNPs. The analysis of repeat element footprints revealed some genes such as naringenin, 2-oxoglutarate 3-dioxygenase being targeted by Pot2 and Occan, in isolates from different host species. Some repeat insertions were host-specific while other insertions were randomly shared between isolates. The distributions of repeat elements, secretory proteins, CAZymes and SNPs showed significant variation across host-specific lineages of Magnaporthe indicating an independent genome evolution orchestrated by multiple genomic factors. PMID:27658241
Elimination of motion and pulsation artifacts using BLADE sequences in knee MR imaging.
Lavdas, Eleftherios; Mavroidis, Panayiotis; Hatzigeorgiou, Vasiliki; Roka, Violeta; Arikidis, Nikos; Oikonomou, Georgia; Andrianopoulos, Konstantinos; Notaras, Ioannis
2012-10-01
The purpose of this study is to evaluate the ability of proton density (PD)-BLADE sequences in reducing or even eliminating motion and pulsatile flow artifacts in knee magnetic resonance imaging examinations. Eighty consecutive patients, who had been routinely scanned for knee examination, participated in the study. The following pairs of sequences with and without BLADE were compared: (a) PD turbo spin echo (TSE) sagittal (SAG) fat saturation (FS) in 35 patients, (b) PD TSE coronal (COR) FS in 19 patients, (c) T2 TSE axial in 13 patients and (d) PD TSE SAG in 13 patients. Both qualitative and quantitative analyses were performed based on the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and relative contrast (ReCon) measures of normal anatomic structures. The qualitative analysis was performed by experienced radiologists. Also, the presence of image motion and pulsation artifacts was evaluated. Based on the results of the SNR, CRN and ReCon for the different sequences and anatomical structures, the BLADE sequences were significantly superior in 19 cases, whereas the corresponding conventional sequences were significantly superior in only 6 cases. BLADE sequences eliminated motion artifacts in all the cases. However, motion artifacts were shown in (a) six PD TSE SAG FS, (b) three PD TSE COR FS, (c) three PD TSE SAG and (d) two T2 TSE axial conventional sequences. In our results, it was found that, in PD FS sequences (sagittal and coronal), the differences between the BLADE and conventional sequences regarding the elimination of motion and pulsatile flow artifacts were statistically significant. In all the comparisons, the PD FS BLADE sequences (coronal and sagittal) were significantly superior to the corresponding conventional sequences regarding the classification of their image quality. In conclusion, this technique appears to be capable to potentially eliminate motion and pulsatile flow artifacts in MR images. Copyright © 2012 Elsevier Inc. All rights reserved.
A proteomic analysis of leaf sheaths from rice.
Shen, Shihua; Matsubae, Masami; Takao, Toshifumi; Tanaka, Naoki; Komatsu, Setsuko
2002-10-01
The proteins extracted from the leaf sheaths of rice seedlings were separated by 2-D PAGE, and analyzed by Edman sequencing and mass spectrometry, followed by database searching. Image analysis revealed 352 protein spots on 2-D PAGE after staining with Coomassie Brilliant Blue. The amino acid sequences of 44 of 84 proteins were determined; for 31 of these proteins, a clear function could be assigned, whereas for 12 proteins, no function could be assigned. Forty proteins did not yield amino acid sequence information, because they were N-terminally blocked, or the obtained sequences were too short and/or did not give unambiguous results. Fifty-nine proteins were analyzed by mass spectrometry; all of these proteins were identified by matching to the protein database. The amino acid sequences of 19 of 27 proteins analyzed by mass spectrometry were similar to the results of Edman sequencing. These results suggest that 2-D PAGE combined with Edman sequencing and mass spectrometry analysis can be effectively used to identify plant proteins.
Font, María Isabel; Rubio, Luis; Martínez-Culebras, Pedro Vicente; Jordá, Concepción
2007-09-01
The population structure and genetic variation of two begomoviruses: tomato yellow leaf curl Sardinia virus (TYLCSV) and tomato yellow leaf curl virus (TYLCV) in tomato crops of Spain were studied from 1997 until 2001. Restriction digestion of a genomic region comprised of the CP coat protein gene (CPR) of 358 TYLC virus isolates enabled us to classify them into 14 haplotypes. Nucleotide sequences of two genomic regions: CPR, and the surrounding intergenic region (SIR) were determined for at least two isolates per haplotype. SIR was more variable than CPR and showed multiple recombination events whereas no recombination was detected within CPR. In all geographic regions except Murcia, the population was, or evolved to be composed of one predominant haplotype with a low genetic diversity (<0.0180). In Murcia, two successive changes of the predominant haplotype were observed in the best studied population. Phylogenetic analysis showed that the TYLCSV sequences determined clustered with sequences obtained from the GenBank of other TYLCSV Spanish isolates which were clearly separated from TYLCSV Italian isolates. Most of our TYLCV sequences were similar to those of isolates from Japan and Portugal, and the sequences obtained from TYLCV isolates from the Canary island of Lanzarote were similar to those of Caribbean TYLCV isolates.
High performance MRI simulations of motion on multi-GPU systems.
Xanthis, Christos G; Venetis, Ioannis E; Aletras, Anthony H
2014-07-04
MRI physics simulators have been developed in the past for optimizing imaging protocols and for training purposes. However, these simulators have only addressed motion within a limited scope. The purpose of this study was the incorporation of realistic motion, such as cardiac motion, respiratory motion and flow, within MRI simulations in a high performance multi-GPU environment. Three different motion models were introduced in the Magnetic Resonance Imaging SIMULator (MRISIMUL) of this study: cardiac motion, respiratory motion and flow. Simulation of a simple Gradient Echo pulse sequence and a CINE pulse sequence on the corresponding anatomical model was performed. Myocardial tagging was also investigated. In pulse sequence design, software crushers were introduced to accommodate the long execution times in order to avoid spurious echoes formation. The displacement of the anatomical model isochromats was calculated within the Graphics Processing Unit (GPU) kernel for every timestep of the pulse sequence. Experiments that would allow simulation of custom anatomical and motion models were also performed. Last, simulations of motion with MRISIMUL on single-node and multi-node multi-GPU systems were examined. Gradient Echo and CINE images of the three motion models were produced and motion-related artifacts were demonstrated. The temporal evolution of the contractility of the heart was presented through the application of myocardial tagging. Better simulation performance and image quality were presented through the introduction of software crushers without the need to further increase the computational load and GPU resources. Last, MRISIMUL demonstrated an almost linear scalable performance with the increasing number of available GPU cards, in both single-node and multi-node multi-GPU computer systems. MRISIMUL is the first MR physics simulator to have implemented motion with a 3D large computational load on a single computer multi-GPU configuration. The incorporation of realistic motion models, such as cardiac motion, respiratory motion and flow may benefit the design and optimization of existing or new MR pulse sequences, protocols and algorithms, which examine motion related MR applications.
Fuin, Niccolo; Catalano, Onofrio Antonio; Scipioni, Michele; Canjels, Lisanne P W; Izquierdo, David; Pedemonte, Stefano; Catana, Ciprian
2018-01-25
Purpose: We present an approach for concurrent reconstruction of respiratory motion compensated abdominal DCE-MRI and PET data in an integrated PET/MR scanner. The MR and PET reconstructions share the same motion vector fields (MVFs) derived from radial MR data; the approach is robust to changes in respiratory pattern and do not increase the total acquisition time. Methods: PET and DCE-MRI data of 12 oncological patients were simultaneously acquired for 6 minutes on an integrated PET/MR system after administration of 18 F-FDG and gadoterate meglumine. Golden-angle radial MR data were continuously acquired simultaneously with PET data and sorted into multiple motion phases based on a respiratory signal derived directly from the radial MR data. The resulting multidimensional dataset was reconstructed using a compressed sensing approach that exploits sparsity among respiratory phases. MVFs obtained using the full 6-minute (MC_6-min) and only the last 1 minute (MC_1-min) of data were incorporated into the PET reconstruction to obtain motion-corrected PET images and in an MR iterative reconstruction algorithm to produce a series of motion-corrected DCE-MRI images (moco_GRASP). The motion-correction methods (MC_6-min and MC_1-min) were evaluated by qualitative analysis of the MR images and quantitative analysis of maximum and mean standardized uptake values (SUV max , SUVmean), contrast, signal-to-noise ratio (SNR) and lesion volume in the PET images. Results: Motion corrected MC_6-min PET images demonstrated 30%, 23%, 34% and 18% increases in average SUV max , SUVmean, contrast and SNR, and an average 40% reduction in lesion volume with respect to the non-motion-corrected PET images. The changes in these figures of merit were smaller but still substantial for the MC_1-min protocol: 19%, 10%, 15% and 9% increases in average SUV max , SUVmean, contrast and SNR; and a 28% reduction in lesion volume. Moco_GRASP images were deemed of acceptable or better diagnostic image quality with respect to conventional breath hold cartesian VIBE acquisitions. Conclusion: We presented a method that allows the simultaneous acquisition of respiratory motion-corrected diagnostic quality DCE-MRI and quantitatively accurate PET data in an integrated PET/MR scanner with negligible prolongation in acquisition time compared to routine PET/DCE-MRI protocols. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Local respiratory motion correction for PET/CT imaging: Application to lung cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamare, F., E-mail: frederic.lamare@chu-bordeaux.fr; Fernandez, P.; Fayad, H.
Purpose: Despite multiple methodologies already proposed to correct respiratory motion in the whole PET imaging field of view (FOV), such approaches have not found wide acceptance in clinical routine. An alternative can be the local respiratory motion correction (LRMC) of data corresponding to a given volume of interest (VOI: organ or tumor). Advantages of LRMC include the use of a simple motion model, faster execution times, and organ specific motion correction. The purpose of this study was to evaluate the performance of LMRC using various motion models for oncology (lung lesion) applications. Methods: Both simulated (NURBS based 4D cardiac-torso phantom)more » and clinical studies (six patients) were used in the evaluation of the proposed LRMC approach. PET data were acquired in list-mode and synchronized with respiration. The implemented approach consists first in defining a VOI on the reconstructed motion average image. Gated PET images of the VOI are subsequently reconstructed using only lines of response passing through the selected VOI and are used in combination with a center of gravity or an affine/elastic registration algorithm to derive the transformation maps corresponding to the respiration effects. Those are finally integrated in the reconstruction process to produce a motion free image over the lesion regions. Results: Although the center of gravity or affine algorithm achieved similar performance for individual lesion motion correction, the elastic model, applied either locally or to the whole FOV, led to an overall superior performance. The spatial tumor location was altered by 89% and 81% for the elastic model applied locally or to the whole FOV, respectively (compared to 44% and 39% for the center of gravity and affine models, respectively). This resulted in similar associated overall tumor volume changes of 84% and 80%, respectively (compared to 75% and 71% for the center of gravity and affine models, respectively). The application of the nonrigid deformation model in LRMC led to over an order of magnitude gain in computational efficiency of the correction relative to the application of the deformable model to the whole FOV. Conclusions: The results of this study support the use of LMRC as a flexible and efficient correction approach for respiratory motion effects for single lesions in the thoracic area.« less
Chan, Adrian C H; Adachi, Jonathan D; Papaioannou, Alexandra; Wong, Andy Kin On
Lower peripheral quantitative computed tomography (pQCT)-derived leg muscle density has been associated with fragility fractures in postmenopausal women. Limb movement during image acquisition may result in motion streaks in muscle that could dilute this relationship. This cross-sectional study examined a subset of women from the Canadian Multicentre Osteoporosis Study. pQCT leg scans were qualitatively graded (1-5) for motion severity. Muscle and motion streak were segmented using semi-automated (watershed) and fully automated (threshold-based) methods, computing area, and density. Binary logistic regression evaluated odds ratios (ORs) for fragility or all-cause fractures related to each of these measures with covariate adjustment. Among the 223 women examined (mean age: 72.7 ± 7.1 years, body mass index: 26.30 ± 4.97 kg/m 2 ), muscle density was significantly lower after removing motion (p < 0.001) for both methods. Motion streak areas segmented using the semi-automated method correlated better with visual motion grades (rho = 0.90, p < 0.01) compared to the fully automated method (rho = 0.65, p < 0.01). Although the analysis-reanalysis precision of motion streak area segmentation using the semi-automated method is above 5% error (6.44%), motion-corrected muscle density measures remained well within 2% analytical error. The effect of motion-correction on strengthening the association between muscle density and fragility fractures was significant when motion grade was ≥3 (p interaction <0.05). This observation was most dramatic for the semi-automated algorithm (OR: 1.62 [0.82,3.17] before to 2.19 [1.05,4.59] after correction). Although muscle density showed an overall association with all-cause fractures (OR: 1.49 [1.05,2.12]), the effect of motion-correction was again, most impactful within individuals with scans showing grade 3 or above motion. Correcting for motion in pQCT leg scans strengthened the relationship between muscle density and fragility fractures, particularly in scans with motion grades of 3 or above. Motion streaks are not confounders to the relationship between pQCT-derived leg muscle density and fractures, but may introduce heterogeneity in muscle density measurements, rendering associations with fractures to be weaker. Copyright © 2016. Published by Elsevier Inc.
Management of Osseous and Soft-Tissue Ankle Equinus During Total Ankle Replacement.
Roukis, Thomas S; Simonson, Devin C
2015-10-01
Obtaining functional alignment of a total ankle replacement, including physiologic sagittal plane range of motion, is paramount for a successful outcome. This article reviews the literature on techniques available for correction of osseous and soft-tissue equinus at the time of index total ankle replacement. These techniques include anterior tibiotalar joint cheilectomy, posterior superficial muscle compartment lengthening, posterior ankle capsule release, and release of the posterior portions of the medial and lateral collateral ligament complexes. The rationale for these procedures and the operative sequence of events for these procedures are presented. Copyright © 2015 Elsevier Inc. All rights reserved.
Schultz, Natalie M; Griffis, Timothy J; Lee, Xuhui; Baker, John M
2011-11-15
Plant water extracts typically contain organic materials that may cause spectral interference when using isotope ratio infrared spectroscopy (IRIS), resulting in errors in the measured isotope ratios. Manufacturers of IRIS instruments have developed post-processing software to identify the degree of contamination in water samples, and potentially correct the isotope ratios of water with known contaminants. Here, the correction method proposed by an IRIS manufacturer, Los Gatos Research, Inc., was employed and the results were compared with those obtained from isotope ratio mass spectrometry (IRMS). Deionized water was spiked with methanol and ethanol to create correction curves for δ(18)O and δ(2)H. The contamination effects of different sample types (leaf, stem, soil) and different species from agricultural fields, grasslands, and forests were compared. The average corrections in leaf samples ranged from 0.35 to 15.73‰ for δ(2)H and 0.28 to 9.27‰ for δ(18)O. The average corrections in stem samples ranged from 1.17 to 13.70‰ for δ(2)H and 0.47 to 7.97‰ for δ(18)O. There was no contamination observed in soil water. Cleaning plant samples with activated charcoal had minimal effects on the degree of spectral contamination, reducing the corrections, by on average, 0.44‰ for δ(2)H and 0.25‰ for δ(18)O. The correction method eliminated the discrepancies between IRMS and IRIS for δ(18)O, and greatly reduced the discrepancies for δ(2)H. The mean differences in isotope ratios between IRMS and the corrected IRIS method were 0.18‰ for δ(18)O, and -3.39‰ for δ(2)H. The inability to create an ethanol correction curve for δ(2)H probably caused the larger discrepancies. We conclude that ethanol and methanol are the primary compounds causing interference in IRIS analyzers, and that each individual analyzer will probably require customized correction curves. Copyright © 2011 John Wiley & Sons, Ltd.
Real-time 3D motion tracking for small animal brain PET
NASA Astrophysics Data System (ADS)
Kyme, A. Z.; Zhou, V. W.; Meikle, S. R.; Fulton, R. R.
2008-05-01
High-resolution positron emission tomography (PET) imaging of conscious, unrestrained laboratory animals presents many challenges. Some form of motion correction will normally be necessary to avoid motion artefacts in the reconstruction. The aim of the current work was to develop and evaluate a motion tracking system potentially suitable for use in small animal PET. This system is based on the commercially available stereo-optical MicronTracker S60 which we have integrated with a Siemens Focus-220 microPET scanner. We present measured performance limits of the tracker and the technical details of our implementation, including calibration and synchronization of the system. A phantom study demonstrating motion tracking and correction was also performed. The system can be calibrated with sub-millimetre accuracy, and small lightweight markers can be constructed to provide accurate 3D motion data. A marked reduction in motion artefacts was demonstrated in the phantom study. The techniques and results described here represent a step towards a practical method for rigid-body motion correction in small animal PET. There is scope to achieve further improvements in the accuracy of synchronization and pose measurements in future work.
Delgado Reyes, Lourdes M; Bohache, Kevin; Wijeakumar, Sobanawartiny; Spencer, John P
2018-04-01
Motion artifacts are often a significant component of the measured signal in functional near-infrared spectroscopy (fNIRS) experiments. A variety of methods have been proposed to address this issue, including principal components analysis (PCA), correlation-based signal improvement (CBSI), wavelet filtering, and spline interpolation. The efficacy of these techniques has been compared using simulated data; however, our understanding of how these techniques fare when dealing with task-based cognitive data is limited. Brigadoi et al. compared motion correction techniques in a sample of adult data measured during a simple cognitive task. Wavelet filtering showed the most promise as an optimal technique for motion correction. Given that fNIRS is often used with infants and young children, it is critical to evaluate the effectiveness of motion correction techniques directly with data from these age groups. This study addresses that problem by evaluating motion correction algorithms implemented in HomER2. The efficacy of each technique was compared quantitatively using objective metrics related to the physiological properties of the hemodynamic response. Results showed that targeted PCA (tPCA), spline, and CBSI retained a higher number of trials. These techniques also performed well in direct head-to-head comparisons with the other approaches using quantitative metrics. The CBSI method corrected many of the artifacts present in our data; however, this approach produced sometimes unstable HRFs. The targeted PCA and spline methods proved to be the most robust, performing well across all comparison metrics. When compared head to head, tPCA consistently outperformed spline. We conclude, therefore, that tPCA is an effective technique for correcting motion artifacts in fNIRS data from young children.
Frank, Lawrence R.; Jung, Youngkyoo; Inati, Souheil; Tyszka, J. Michael; Wong, Eric C.
2009-01-01
We present an acquisition and reconstruction method designed to acquire high resolution 3D fast spin echo diffusion tensor images while mitigating the major sources of artifacts in DTI - field distortions, eddy currents and motion. The resulting images, being 3D, are of high SNR, and being fast spin echoes, exhibit greatly reduced field distortions. This sequence utilizes variable density spiral acquisition gradients, which allow for the implementation of a self-navigation scheme by which both eddy current and motion artifacts are removed. The result is that high resolution 3D DTI images are produced without the need for eddy current compensating gradients or B0 field correction. In addition, a novel method for fast and accurate reconstruction of the non-Cartesian data is employed. Results are demonstrated in the brains of normal human volunteers. PMID:19778618
Highest Resolution In Vivo Human Brain MRI Using Prospective Motion Correction
Stucht, Daniel; Danishad, K. Appu; Schulze, Peter; Godenschweger, Frank; Zaitsev, Maxim; Speck, Oliver
2015-01-01
High field MRI systems, such as 7 Tesla (T) scanners, can deliver higher signal to noise ratio (SNR) than lower field scanners and thus allow for the acquisition of data with higher spatial resolution, which is often demanded by users in the fields of clinical and neuroscientific imaging. However, high resolution scans may require long acquisition times, which in turn increase the discomfort for the subject and the risk of subject motion. Even with a cooperative and trained subject, involuntary motion due to heartbeat, swallowing, respiration and changes in muscle tone can cause image artifacts that reduce the effective resolution. In addition, scanning with higher resolution leads to increased sensitivity to even very small movements. Prospective motion correction (PMC) at 3T and 7T has proven to increase image quality in case of subject motion. Although the application of prospective motion correction is becoming more popular, previous articles focused on proof of concept studies and technical descriptions, whereas this paper briefly describes the technical aspects of the optical tracking system, marker fixation and cross calibration and focuses on the application of PMC to very high resolution imaging without intentional motion. In this study we acquired in vivo MR images at 7T using prospective motion correction during long acquisitions. As a result, we present images among the highest, if not the highest resolution of in vivo human brain MRI ever acquired. PMID:26226146
Selb, Juliette; Yücel, Meryem A; Phillip, Dorte; Schytz, Henrik W; Iversen, Helle K; Vangel, Mark; Ashina, Messoud; Boas, David A
2015-05-01
Functional near-infrared spectroscopy is prone to contamination by motion artifacts (MAs). Motion correction algorithms have previously been proposed and their respective performance compared for evoked rain activation studies. We study instead the effect of MAs on "oscillation" data which is at the basis of functional connectivity and autoregulation studies. We use as our metric of interest the interhemispheric correlation (IHC), the correlation coefficient between symmetrical time series of oxyhemoglobin oscillations. We show that increased motion content results in a decreased IHC. Using a set of motion-free data on which we add real MAs, we find that the best motion correction approach consists of discarding the segments of MAs following a careful approach to minimize the contamination due to band-pass filtering of data from "bad" segments spreading into adjacent "good" segments. Finally, we compare the IHC in a stroke group and in a healthy group that we artificially contaminated with the MA content of the stroke group, in order to avoid the confounding effect of increased motion incidence in the stroke patients. After motion correction, the IHC remains lower in the stroke group in the frequency band around 0.1 and 0.04 Hz, suggesting a physiological origin for the difference. We emphasize the importance of considering MAs as a confounding factor in oscillation-based functional near-infrared spectroscopy studies.
The determination of high-resolution spatio-temporal glacier motion fields from time-lapse sequences
NASA Astrophysics Data System (ADS)
Schwalbe, Ellen; Maas, Hans-Gerd
2017-12-01
This paper presents a comprehensive method for the determination of glacier surface motion vector fields at high spatial and temporal resolution. These vector fields can be derived from monocular terrestrial camera image sequences and are a valuable data source for glaciological analysis of the motion behaviour of glaciers. The measurement concepts for the acquisition of image sequences are presented, and an automated monoscopic image sequence processing chain is developed. Motion vector fields can be derived with high precision by applying automatic subpixel-accuracy image matching techniques on grey value patterns in the image sequences. Well-established matching techniques have been adapted to the special characteristics of the glacier data in order to achieve high reliability in automatic image sequence processing, including the handling of moving shadows as well as motion effects induced by small instabilities in the camera set-up. Suitable geo-referencing techniques were developed to transform image measurements into a reference coordinate system.The result of monoscopic image sequence analysis is a dense raster of glacier surface point trajectories for each image sequence. Each translation vector component in these trajectories can be determined with an accuracy of a few centimetres for points at a distance of several kilometres from the camera. Extensive practical validation experiments have shown that motion vector and trajectory fields derived from monocular image sequences can be used for the determination of high-resolution velocity fields of glaciers, including the analysis of tidal effects on glacier movement, the investigation of a glacier's motion behaviour during calving events, the determination of the position and migration of the grounding line and the detection of subglacial channels during glacier lake outburst floods.
Ma, Xiaozhi; Sun, Xiaoqiu; Li, Chunmei; Huan, Rui; Sun, Changhui; Wang, Yang; Xiao, Fuliang; Wang, Qian; Chen, Purui; Ma, Furong; Zhang, Kuan; Wang, Pingrong; Deng, Xiaojian
2017-02-01
Leaf-color mutants have been extensively studied in rice, and many corresponding genes have been identified up to now. However, leaf-color mutation mechanisms are diverse and still need further research through identification of novel genes. In the present paper, we isolated a leaf-color mutant, ys83, in rice (Oryza sativa). The mutant displayed a yellow-green leaf phenotype at seedling stage, and then slowly turned into light-green leaf from late tillering stage. In its yellow leaves, photosynthetic pigment contents significantly decreased and the chloroplast development was retarded. The mutant phenotype was controlled by a recessive mutation in a nuclear gene on the short arm of rice chromosome 2. Map-based cloning and sequencing analysis suggested that the candidate gene was YS83 (LOC_Os02g05890) encoding a protein containing 165 amino acid residues. Gene YS83 was expressed in a wide range of tissues, and its encoded protein was targeted to the chloroplast. In the mutant, a T-to-A substitution occurred in coding sequence of gene YS83, which caused a premature translation of its encoded product. By introduction of the wild-type gene, the ys83 mutant recovered to normal green-leaf phenotype. Taken together, we successfully identified a novel yellow-green leaf gene YS83. In addition, number of productive panicles per plant and number of spikelets per panicle only reduced by 6.7% and 7.6%, respectively, meanwhile its seed setting rate and 1000-grain weight (seed size) were not significantly affected in the mutant, so leaf-color mutant gene ys83 could be used as a trait marker gene in commercial hybrid rice production. Copyright © 2016. Published by Elsevier Masson SAS.
Watanabe, Yuuki; Takahashi, Yuhei; Numazawa, Hiroshi
2014-02-01
We demonstrate intensity-based optical coherence tomography (OCT) angiography using the squared difference of two sequential frames with bulk-tissue-motion (BTM) correction. This motion correction was performed by minimization of the sum of the pixel values using axial- and lateral-pixel-shifted structural OCT images. We extract the BTM-corrected image from a total of 25 calculated OCT angiographic images. Image processing was accelerated by a graphics processing unit (GPU) with many stream processors to optimize the parallel processing procedure. The GPU processing rate was faster than that of a line scan camera (46.9 kHz). Our OCT system provides the means of displaying structural OCT images and BTM-corrected OCT angiographic images in real time.
Jahani, Sahar; Setarehdan, Seyed K; Boas, David A; Yücel, Meryem A
2018-01-01
Motion artifact contamination in near-infrared spectroscopy (NIRS) data has become an important challenge in realizing the full potential of NIRS for real-life applications. Various motion correction algorithms have been used to alleviate the effect of motion artifacts on the estimation of the hemodynamic response function. While smoothing methods, such as wavelet filtering, are excellent in removing motion-induced sharp spikes, the baseline shifts in the signal remain after this type of filtering. Methods, such as spline interpolation, on the other hand, can properly correct baseline shifts; however, they leave residual high-frequency spikes. We propose a hybrid method that takes advantage of different correction algorithms. This method first identifies the baseline shifts and corrects them using a spline interpolation method or targeted principal component analysis. The remaining spikes, on the other hand, are corrected by smoothing methods: Savitzky-Golay (SG) filtering or robust locally weighted regression and smoothing. We have compared our new approach with the existing correction algorithms in terms of hemodynamic response function estimation using the following metrics: mean-squared error, peak-to-peak error ([Formula: see text]), Pearson's correlation ([Formula: see text]), and the area under the receiver operator characteristic curve. We found that spline-SG hybrid method provides reasonable improvements in all these metrics with a relatively short computational time. The dataset and the code used in this study are made available online for the use of all interested researchers.
Sharma, Pradeep; Matsuda, N; Bajet, N B; Ikegami, M
2011-02-01
Three new begomovirus isolates and one betasatellite were obtained from a tomato plant exhibiting leaf curl symptom in Laguna, the Philippines. Typical begomovirus DNA components representing the three isolates (PH01, PH02 and PH03) were cloned, and their full-length sequences were determined to be 2754 to 2746 nucleotides. The genome organizations of these isolates were similar to those of other Old World monopartite begomoviruses. The sequence data indicated that PH01 and PH02 were variants of strain B of the species Tomato leaf curl Philippines virus, while PH03 was a variant of strain A of the species Tomato leaf curl Philippines virus. These isolates were designated ToLCPV-B[PH:Lag1:06], ToLCPV-B[PH:Lag2:06], and ToLCPV-A[PH:Lag3:06], respectively. Phylogenetic analysis revealed that the present isolates form a separate monophyletic cluster with indigenous begomoviruses reported earlier in the Philippines. A betasatellite isolated from same sample belongs to the betasatellite species Tomato leaf curl Philippines betasatellite and designated Tomato leaf curl Philippines betasatellite-[Philippines:Laguna1:2006], ToLCPHB-[PH:Lag1:06]. When co-inoculated with this betasatellite, tomato leaf curl Philippines virus induced severe symptoms in N. benthamiana and Solanum lycopersicum plants. Using a PVX-mediated transient assay, we found that the C4 and C2 proteins of tomato leaf curl Philippines virus and the βC1 protein of ToLCPHB-[PH:Lag1:06] function as a suppressor of RNA silencing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reid, J.A.; Plumley, P.W.; Schellekens, J.H.
1991-03-01
A paleomagnetic study of the essentially undeformed middle Tertiary carbonate sequence along the north coast of Puerto Rico reveals statistically significant pre-Pliocene discordance of characteristic component directions against those expected from cratonic North America for much of the section. Despite generally weak to moderately weak magnetic intensities, confirmation of the magnetization as primary in origin comes from the presence of two distinct components of magnetization, intrasite bipolarity, and/or the reproducibility of measurements. The mean geographic direction for the upper Oligocene to middle Miocene strata is 335.2{degree}/32.9{degree} and the corrected mean paleomagnetic pole is 207.6{degree}/66.5{degree}, (N = 3, {alpha}95 = 4.3{degree}).more » This suggests a counter-clockwise (CCW) block rotation of Puerto Rico and its microplate of 24.5{degrees} ({plus minus} 5.8{degrees}) during the late Miocene. Using a width of 250 km for the Northern Caribbean Plate Boundary Zone (NCPBZ) between the North American Plate and Caribbean Plate, the mean left lateral displacement implied is 1.8 to 2.4 cm/yr, which agrees fairly well with published relative motion rates for the two plates. Average rotation rate for 50 Ma to 20 Ma was 0.7{degree}/my but perhaps as great as 4{degree}/my in the Miocene. Resolution of mean paleolatitude indicates northward motion of a degree or less during the period of rotation. Causes of this short-lived rotation may include (1) tectonic escape from the inhibiting presence of the Bahama Banks and Beata Ridge during eastward motion of Puerto Rico along the sinistral transpressive Puerto Rico Trench and Muertos Trough fault systems or (2) changes in relative plate motions of the Caribbean and North American Plate during the late Miocene.« less
Hernández-Zepeda, Cecilia; Argüello-Astorga, Gerardo; Idris, Ali M; Carnevali, Germán; Brown, Judith K; Moreno-Valenzuela, Oscar A
2009-12-01
The complete DNA-A component sequence of Desmodium leaf distortion virus (DeLDV, Begomovirus) isolated in Yucatan was determined to be 2569 nucleotides (nt) in length, and it was most closely related to Cotton leaf crumple virus-California (CLCrV-[Cal]), at 76%. The complete DNA-B component sequence was 2514 nt in length, and shared its highest nucleotide identity (60%) with Potato yellow mosaic Trinidad virus (PYMTV). Phylogenetic analyses group the DeLDV DNA-A component in the SLCV clade, whereas, the DeLDV DNA-B was grouped with the Abutilon mosaic virus clade, which also contains PYMV, suggesting that the DeLDV components have distinct evolutionary histories, possibly as the result of recombination and reassortment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma Lijun, E-mail: lijunma@radonc.ucsf.ed; Sahgal, Arjun; Hossain, Sabbir
2009-11-15
Purpose: To characterize nonrandom intrafraction target motions for spine stereotactic body radiotherapy and to develop a method of correction via image guidance. The dependence of target motions, as well as the effectiveness of the correction strategy for lesions of different locations within the spine, was analyzed. Methods and Materials: Intrafraction target motions for 64 targets in 64 patients treated with a total of 233 fractions were analyzed. Based on the target location, the cases were divided into three groups, i.e., cervical (n = 20 patients), thoracic (n = 20 patients), or lumbar-sacrum (n = 24 patients) lesions. For each case,more » time-lag autocorrelation analysis was performed for each degree of freedom of motion that included both translations (x, y, and z shifts) and rotations (roll, yaw, and pitch). A general correction strategy based on periodic interventions was derived to determine the time interval required between two adjacent interventions, to overcome the patient-specific target motions. Results: Nonrandom target motions were detected for 100% of cases regardless of target locations. Cervical spine targets were found to possess the highest incidence of nonrandom target motion compared with thoracic and lumbar-sacral lesions (p < 0.001). The average time needed to maintain the target motion to within 1 mm of translation or 1 deg. of rotational deviation was 5.5 min, 5.9 min, and 7.1 min for cervical, thoracic, and lumbar-sacrum locations, respectively (at 95% confidence level). Conclusions: A high incidence of nonrandom intrafraction target motions was found for spine stereotactic body radiotherapy treatments. Periodic interventions at approximately every 5 minutes or less were needed to overcome such motions.« less
Chloroplast Response to Low Leaf Water Potentials
Boyer, J. S.; Potter, J. R.
1973-01-01
The effect of decreases in turgor on chloroplast activity was studied by measuring the photochemical activity of intact sunflower (Helianthus annuus L. cv. Russian Mammoth) leaves having low water potentials. Leaf turgor, calculated from leaf water potential and osmotic potential, was found to be affected by the dilution of cell contents by water in the cell walls, when osmotic potentials were measured with a thermocouple psychrometer. After the correction of measurements of leaf osmotic potential, both the thermocouple psychrometer and a pressure chamber indicated that turgor became zero in sunflower leaves at leaf water potentials of −10 bars. Since most of the loss in photochemical activity occurred at water potentials below −10 bars, it was concluded that turgor had little effect on the photochemical activity of the leaves. PMID:16658486
Chloroplast response to low leaf water potentials: I. Role of turgor.
Boyer, J S; Potter, J R
1973-06-01
The effect of decreases in turgor on chloroplast activity was studied by measuring the photochemical activity of intact sunflower (Helianthus annuus L. cv. Russian Mammoth) leaves having low water potentials. Leaf turgor, calculated from leaf water potential and osmotic potential, was found to be affected by the dilution of cell contents by water in the cell walls, when osmotic potentials were measured with a thermocouple psychrometer. After the correction of measurements of leaf osmotic potential, both the thermocouple psychrometer and a pressure chamber indicated that turgor became zero in sunflower leaves at leaf water potentials of -10 bars. Since most of the loss in photochemical activity occurred at water potentials below -10 bars, it was concluded that turgor had little effect on the photochemical activity of the leaves.
Li, Feng; Kitashiba, Hiroyasu; Inaba, Kiyofumi; Nishio, Takeshi
2009-01-01
For identification of genes responsible for varietal differences in flowering time and leaf morphological traits, we constructed a linkage map of Brassica rapa DNA markers including 170 EST-based markers, 12 SSR markers, and 59 BAC sequence-based markers, of which 151 are single nucleotide polymorphism (SNP) markers. By BLASTN, 223 markers were shown to have homologous regions in Arabidopsis thaliana, and these homologous loci covered nearly the whole genome of A. thaliana. Synteny analysis between B. rapa and A. thaliana revealed 33 large syntenic regions. Three quantitative trait loci (QTLs) for flowering time were detected. BrFLC1 and BrFLC2 were linked to the QTLs for bolting time, budding time, and flowering time. Three SNPs in the promoter, which may be the cause of low expression of BrFLC2 in the early-flowering parental line, were identified. For leaf lobe depth and leaf hairiness, one major QTL corresponding to a syntenic region containing GIBBERELLIN 20 OXIDASE 3 and one major QTL containing BrGL1, respectively, were detected. Analysis of nucleotide sequences and expression of these genes suggested possible involvement of these genes in leaf morphological traits. PMID:19884167
Sesbania bispinosa, a new host of a begomovirus-betasatellite complex in Pakistan
USDA-ARS?s Scientific Manuscript database
Severe leaf curling, yellowing and vein thickening symptoms, typical of begomoviruses infection, were observed on Sesbania bispinosa grown in cotton leaf curl disease affected cotton field in Pakistan. A begomovirus and its associated betasatellite were amplified and sequenced from these plants. Com...
Non-Cartesian Balanced SSFP Pulse Sequences for Real-Time Cardiac MRI
Feng, Xue; Salerno, Michael; Kramer, Christopher M.; Meyer, Craig H.
2015-01-01
Purpose To develop a new spiral-in/out balanced steady-state free precession (bSSFP) pulse sequence for real-time cardiac MRI and compare it with radial and spiral-out techniques. Methods Non-Cartesian sampling strategies are efficient and robust to motion and thus have important advantages for real-time bSSFP cine imaging. This study describes a new symmetric spiral-in/out sequence with intrinsic gradient moment compensation and SSFP refocusing at TE=TR/2. In-vivo real-time cardiac imaging studies were performed to compare radial, spiral-out, and spiral-in/out bSSFP pulse sequences. Furthermore, phase-based fat-water separation taking advantage of the refocusing mechanism of the spiral-in/out bSSFP sequence was also studied. Results The image quality of the spiral-out and spiral-in/out bSSFP sequences was improved with off-resonance and k-space trajectory correction. The spiral-in/out bSSFP sequence had the highest SNR, CNR, and image quality ratings, with spiral-out bSSFP sequence second in each category and the radial bSSFP sequence third. The spiral-in/out bSSFP sequence provides separated fat and water images with no additional scan time. Conclusions In this work a new spiral-in/out bSSFP sequence was developed and tested. The superiority of spiral bSSFP sequences over the radial bSSFP sequence in terms of SNR and reduced artifacts was demonstrated in real-time MRI of cardiac function without image acceleration. PMID:25960254
Sequence heterogeneity in the two 16S rRNA genes of Phormium yellow leaf phytoplasma.
Liefting, L W; Andersen, M T; Beever, R E; Gardner, R C; Forster, R L
1996-01-01
Phormium yellow leaf (PYL) phytoplasma causes a lethal disease of the monocotyledon, New Zealand flax (Phormium tenax). The 16S rRNA genes of PYL phytoplasma were amplified from infected flax by PCR and cloned, and the nucleotide sequences were determined. DNA sequencing and Southern hybridization analysis of genomic DNA indicated the presence of two copies of the 16S rRNA gene. The two 16S rRNA genes exhibited sequence heterogeneity in 4 nucleotide positions and could be distinguished by the restriction enzymes BpmI and BsrI. This is the first record in which sequence heterogeneity in the 16S rRNA genes of a phytoplasma has been determined by sequence analysis. A phylogenetic tree based on 16S rRNA gene sequences showed that PYL phytoplasma is most closely related to the stolbur and German grapevine yellows phytoplasmas, which form the stolbur subgroup of the aster yellows group. This phylogenetic position of PYL phytoplasma was supported by 16S/23S spacer region sequence data. PMID:8795200
Determining the 3-D structure and motion of objects using a scanning laser range sensor
NASA Technical Reports Server (NTRS)
Nandhakumar, N.; Smith, Philip W.
1993-01-01
In order for the EVAHR robot to autonomously track and grasp objects, its vision system must be able to determine the 3-D structure and motion of an object from a sequence of sensory images. This task is accomplished by the use of a laser radar range sensor which provides dense range maps of the scene. Unfortunately, the currently available laser radar range cameras use a sequential scanning approach which complicates image analysis. Although many algorithms have been developed for recognizing objects from range images, none are suited for use with single beam, scanning, time-of-flight sensors because all previous algorithms assume instantaneous acquisition of the entire image. This assumption is invalid since the EVAHR robot is equipped with a sequential scanning laser range sensor. If an object is moving while being imaged by the device, the apparent structure of the object can be significantly distorted due to the significant non-zero delay time between sampling each image pixel. If an estimate of the motion of the object can be determined, this distortion can be eliminated; but, this leads to the motion-structure paradox - most existing algorithms for 3-D motion estimation use the structure of objects to parameterize their motions. The goal of this research is to design a rigid-body motion recovery technique which overcomes this limitation. The method being developed is an iterative, linear, feature-based approach which uses the non-zero image acquisition time constraint to accurately recover the motion parameters from the distorted structure of the 3-D range maps. Once the motion parameters are determined, the structural distortion in the range images is corrected.
Senna leaf curl virus: a novel begomovirus identified in Senna occidentalis.
Kumar, Jitesh; Alok, Anshu; Kumar, Jitendra; Tuli, Rakesh
2016-09-01
Begomoviruses are whitefly-transmitted, single-stranded DNA viruses that infect a variety of cultivated (crop) and non-cultivated (weed) plants. The present study identified a novel begomovirus and satellites (alpha- and betasatellite) in Senna occidentalis (syn. Cassia occidentalis) showing leaf curl symptoms. The begomovirus shared a maximum sequence identity of 88.6 % with french bean leaf curl virus (JQ866297), whereas the alphasatellite and the betasatellite shared identities of 98 % and 90 % with ageratum yellow vein India alphasatellite (LK054802) and papaya leaf curl betasatellite (HM143906), respectively. No other begomovirus or satellites were detected in the suspected plants. We propose to name the virus "senna leaf curl virus" (SenLCuV).
TU-FG-201-04: Computer Vision in Autonomous Quality Assurance of Linear Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, H; Jenkins, C; Yu, S
Purpose: Routine quality assurance (QA) of linear accelerators represents a critical and costly element of a radiation oncology center. Recently, a system was developed to autonomously perform routine quality assurance on linear accelerators. The purpose of this work is to extend this system and contribute computer vision techniques for obtaining quantitative measurements for a monthly multi-leaf collimator (MLC) QA test specified by TG-142, namely leaf position accuracy, and demonstrate extensibility for additional routines. Methods: Grayscale images of a picket fence delivery on a radioluminescent phosphor coated phantom are captured using a CMOS camera. Collected images are processed to correct formore » camera distortions, rotation and alignment, reduce noise, and enhance contrast. The location of each MLC leaf is determined through logistic fitting and a priori modeling based on knowledge of the delivered beams. Using the data collected and the criteria from TG-142, a decision is made on whether or not the leaf position accuracy of the MLC passes or fails. Results: The locations of all MLC leaf edges are found for three different picket fence images in a picket fence routine to 0.1mm/1pixel precision. The program to correct for image alignment and determination of leaf positions requires a runtime of 21– 25 seconds for a single picket, and 44 – 46 seconds for a group of three pickets on a standard workstation CPU, 2.2 GHz Intel Core i7. Conclusion: MLC leaf edges were successfully found using techniques in computer vision. With the addition of computer vision techniques to the previously described autonomous QA system, the system is able to quickly perform complete QA routines with minimal human contribution.« less
Cross, Russell; Olivieri, Laura; O'Brien, Kendall; Kellman, Peter; Xue, Hui; Hansen, Michael
2016-02-25
Traditional cine imaging for cardiac functional assessment requires breath-holding, which can be problematic in some situations. Free-breathing techniques have relied on multiple averages or real-time imaging, producing images that can be spatially and/or temporally blurred. To overcome this, methods have been developed to acquire real-time images over multiple cardiac cycles, which are subsequently motion corrected and reformatted to yield a single image series displaying one cardiac cycle with high temporal and spatial resolution. Application of these algorithms has required significant additional reconstruction time. The use of distributed computing was recently proposed as a way to improve clinical workflow with such algorithms. In this study, we have deployed a distributed computing version of motion corrected re-binning reconstruction for free-breathing evaluation of cardiac function. Twenty five patients and 25 volunteers underwent cardiovascular magnetic resonance (CMR) for evaluation of left ventricular end-systolic volume (ESV), end-diastolic volume (EDV), and end-diastolic mass. Measurements using motion corrected re-binning were compared to those using breath-held SSFP and to free-breathing SSFP with multiple averages, and were performed by two independent observers. Pearson correlation coefficients and Bland-Altman plots tested agreement across techniques. Concordance correlation coefficient and Bland-Altman analysis tested inter-observer variability. Total scan plus reconstruction times were tested for significant differences using paired t-test. Measured volumes and mass obtained by motion corrected re-binning and by averaged free-breathing SSFP compared favorably to those obtained by breath-held SSFP (r = 0.9863/0.9813 for EDV, 0.9550/0.9685 for ESV, 0.9952/0.9771 for mass). Inter-observer variability was good with concordance correlation coefficients between observers across all acquisition types suggesting substantial agreement. Both motion corrected re-binning and averaged free-breathing SSFP acquisition and reconstruction times were shorter than breath-held SSFP techniques (p < 0.0001). On average, motion corrected re-binning required 3 min less than breath-held SSFP imaging, a 37% reduction in acquisition and reconstruction time. The motion corrected re-binning image reconstruction technique provides robust cardiac imaging that can be used for quantification that compares favorably to breath-held SSFP as well as multiple average free-breathing SSFP, but can be obtained in a fraction of the time when using cloud-based distributed computing reconstruction.
Genetical genomics of Populus leaf shape variation
Drost, Derek R.; Puranik, Swati; Novaes, Evandro; ...
2015-06-30
Leaf morphology varies extensively among plant species and is under strong genetic control. Mutagenic screens in model systems have identified genes and established molecular mechanisms regulating leaf initiation, development, and shape. However, it is not known whether this diversity across plant species is related to naturally occurring variation at these genes. Quantitative trait locus (QTL) analysis has revealed a polygenic control for leaf shape variation in different species suggesting that loci discovered by mutagenesis may only explain part of the naturally occurring variation in leaf shape. Here we undertook a genetical genomics study in a poplar intersectional pseudo-backcross pedigree tomore » identify genetic factors controlling leaf shape. Here, the approach combined QTL discovery in a genetic linkage map anchored to the Populus trichocarpa reference genome sequence and transcriptome analysis.« less
Improved motion correction in PROPELLER by using grouped blades as reference.
Liu, Zhe; Zhang, Zhe; Ying, Kui; Yuan, Chun; Guo, Hua
2014-03-01
To develop a robust reference generation method for improving PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) reconstruction. A new reference generation method, grouped-blade reference (GBR), is proposed for calculating rotation angle and translation shift in PROPELLER. Instead of using a single-blade reference (SBR) or combined-blade reference (CBR), our method classifies blades by their relative correlations and groups similar blades together as the reference to prevent inconsistent data from interfering the correction process. Numerical simulations and in vivo experiments were used to evaluate the performance of GBR for PROPELLER, which was further compared with SBR and CBR in terms of error level and computation cost. Both simulation and in vivo experiments demonstrate that GBR-based PROPELLER provides better correction for random motion or bipolar motion comparing with SBR or CBR. It not only produces images with lower error level but also needs less iteration steps to converge. A grouped-blade for reference selection was investigated for PROPELLER MRI. It helps to improve the accuracy and robustness of motion correction for various motion patterns. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Tu, Rui; Wang, Rongjiang; Zhang, Yong; Walter, Thomas R.
2014-06-01
The description of static displacements associated with earthquakes is traditionally achieved using GPS, EDM or InSAR data. In addition, displacement histories can be derived from strong-motion records, allowing an improvement of geodetic networks at a high sampling rate and a better physical understanding of earthquake processes. Strong-motion records require a correction procedure appropriate for baseline shifts that may be caused by rotational motion, tilting and other instrumental effects. Common methods use an empirical bilinear correction on the velocity seismograms integrated from the strong-motion records. In this study, we overcome the weaknesses of an empirically based bilinear baseline correction scheme by using a net-based criterion to select the timing parameters. This idea is based on the physical principle that low-frequency seismic waveforms at neighbouring stations are coherent if the interstation distance is much smaller than the distance to the seismic source. For a dense strong-motion network, it is plausible to select the timing parameters so that the correlation coefficient between the velocity seismograms of two neighbouring stations is maximized after the baseline correction. We applied this new concept to the KiK-Net and K-Net strong-motion data available for the 2011 Mw 9.0 Tohoku earthquake. We compared the derived coseismic static displacement with high-quality GPS data, and with the results obtained using empirical methods. The results show that the proposed net-based approach is feasible and more robust than the individual empirical approaches. The outliers caused by unknown problems in the measurement system can be easily detected and quantified.
Uniformly Processed Strong Motion Database for Himalaya and Northeast Region of India
NASA Astrophysics Data System (ADS)
Gupta, I. D.
2018-03-01
This paper presents the first uniformly processed comprehensive database on strong motion acceleration records for the extensive regions of western Himalaya, northeast India, and the alluvial plains juxtaposing the Himalaya. This includes 146 three components of old analog records corrected for the instrument response and baseline distortions and 471 three components of recent digital records corrected for baseline errors. The paper first provides a background of the evolution of strong motion data in India and the seismotectonics of the areas of recording, then describes the details of the recording stations and the contributing earthquakes, which is finally followed by the methodology used to obtain baseline corrected data in a uniform and consistent manner. Two different schemes in common use for baseline correction are based on the application of the Ormsby filter without zero pads (Trifunac 1971) and that on the Butterworth filter with zero pads at the start as well as at the end (Converse and Brady 1992). To integrate the advantages of both the schemes, Ormsby filter with zero pads at the start only is used in the present study. A large number of typical example results are presented to illustrate that the methodology adopted is able to provide realistic velocity and displacement records with much smaller number of zero pads. The present strong motion database of corrected acceleration records will be useful for analyzing the ground motion characteristics of engineering importance, developing prediction equations for various strong motion parameters, and calibrating the seismological source model approach for ground motion simulation for seismically active and risk prone areas of India.
Motion correction for improving the accuracy of dual-energy myocardial perfusion CT imaging
NASA Astrophysics Data System (ADS)
Pack, Jed D.; Yin, Zhye; Xiong, Guanglei; Mittal, Priya; Dunham, Simon; Elmore, Kimberly; Edic, Peter M.; Min, James K.
2016-03-01
Coronary Artery Disease (CAD) is the leading cause of death globally [1]. Modern cardiac computed tomography angiography (CCTA) is highly effective at identifying and assessing coronary blockages associated with CAD. The diagnostic value of this anatomical information can be substantially increased in combination with a non-invasive, low-dose, correlative, quantitative measure of blood supply to the myocardium. While CT perfusion has shown promise of providing such indications of ischemia, artifacts due to motion, beam hardening, and other factors confound clinical findings and can limit quantitative accuracy. In this paper, we investigate the impact of applying a novel motion correction algorithm to correct for motion in the myocardium. This motion compensation algorithm (originally designed to correct for the motion of the coronary arteries in order to improve CCTA images) has been shown to provide substantial improvements in both overall image quality and diagnostic accuracy of CCTA. We have adapted this technique for application beyond the coronary arteries and present an assessment of its impact on image quality and quantitative accuracy within the context of dual-energy CT perfusion imaging. We conclude that motion correction is a promising technique that can help foster the routine clinical use of dual-energy CT perfusion. When combined, the anatomical information of CCTA and the hemodynamic information from dual-energy CT perfusion should facilitate better clinical decisions about which patients would benefit from treatments such as stent placement, drug therapy, or surgery and help other patients avoid the risks and costs associated with unnecessary, invasive, diagnostic coronary angiography procedures.
In situ field measurement of leaf water potential using thermocouple psychrometers.
Savage, M J; Wiebe, H H; Cass, A
1983-11-01
Thermocouple psychrometers are the only instruments which can measure the in situ water potential of intact leaves, and which can possibly be used to monitor leaf water potential. Unfortunately, their usefulness is limited by a number of difficulties, among them fluctuating temperatures and temperature gradients within the psychrometer, sealing of the psychrometer chamber to the leaf, shading of the leaf by the psychrometer, and resistance to water vapor diffusion by the cuticle when the stomates are closed. Using Citrus jambhiri, we have tested several psychrometer design and operational modifications and showed that in situ psychrometric measurements compared favorably with simultaneous Scholander pressure chamber measurements on neighboring leaves when the latter were corrected for the osmotic potential.
Nilsson, Markus; Szczepankiewicz, Filip; van Westen, Danielle; Hansson, Oskar
2015-01-01
Conventional motion and eddy-current correction, where each diffusion-weighted volume is registered to a non diffusion-weighted reference, suffers from poor accuracy for high b-value data. An alternative approach is to extrapolate reference volumes from low b-value data. We aim to compare the performance of conventional and extrapolation-based correction of diffusional kurtosis imaging (DKI) data, and to demonstrate the impact of the correction approach on group comparison studies. DKI was performed in patients with Parkinson's disease dementia (PDD), and healthy age-matched controls, using b-values of up to 2750 s/mm2. The accuracy of conventional and extrapolation-based correction methods was investigated. Parameters from DTI and DKI were compared between patients and controls in the cingulum and the anterior thalamic projection tract. Conventional correction resulted in systematic registration errors for high b-value data. The extrapolation-based methods did not exhibit such errors, yielding more accurate tractography and up to 50% lower standard deviation in DKI metrics. Statistically significant differences were found between patients and controls when using the extrapolation-based motion correction that were not detected when using the conventional method. We recommend that conventional motion and eddy-current correction should be abandoned for high b-value data in favour of more accurate methods using extrapolation-based references.
NASA Technical Reports Server (NTRS)
Carlson, S.; Culler, T.; Muller, R. A.; Tetreault, M.; Perlmutter, S.
1994-01-01
The parallax of all stars of visual magnitude greater than about 6.5 has already been measured. If Nemesis is a main-sequence star 1 parsec away, this requires Nemesis's mass to be less than about 0.4 solar masses. If it were less than about 0.05 solar masses its gravity would be too weak to trigger a comet storm. If Nemesis is on the main sequence, this mass range requires it to be a red dwarf. A red dwarf companion would probably have been missed by standard astronomical surveys. Nearby stars are usually found because they are bright or have high proper motion. However, Nemesis's proper motion would now be 0.01 arcsec/yr, and if it is a red dwarf its magnitude is about 10 - too dim to attract attention. Unfortunately, standard four-color photometry does not distinguish between red dwarfs and giants. So although surveys such as the Dearborn Red Star Catalog list stars by magnitude and spectral type, they do not identify the dwarfs. Every star of the correct spectral type and magnitude must be scrutinized. Our candidate list is a hybrid; candidate red stars are identified in the astrometrically poor Dearborn Red Star Catalog and their positions are corrected using the Hubble Guide Star Catalog. When errors in the Dearborn catalog make it impossible to identify the corresponding Hubble star, the fields are split so that we have one centering on each possible candidate. We are currently scrutinizing 3098 fields, which we believe contain all possible red dwarf candidates in the northern hemisphere. Since our last report the analysis and database software has been completely rebuilt to take advantage of updated hardware, to make the data more accessible, and to implement improved methods of data analysis. The software is now completed and we are eliminating stars every clear night.
Registration Methods for IVUS: Transversal and Longitudinal Transducer Motion Compensation.
Talou, Gonzalo D Maso; Blanco, Pablo J; Larrabide, Ignacio; Bezerra, Cristiano Guedes; Lemos, Pedro A; Feijoo, Raul A
2017-04-01
Intravascular ultrasound (IVUS) is a fundamental imaging technique for atherosclerotic plaque assessment, interventionist guidance, and, ultimately, as a tissue characterization tool. The studies acquired by this technique present the spatial description of the vessel during the cardiac cycle. However, the study frames are not properly sorted. As gating methods deal with the cardiac phase classification of the frames, the gated studies lack motion compensation between vessel and catheter. In this study, we develop registration strategies to arrange the vessel data into its rightful spatial sequence. Registration is performed by compensating longitudinal and transversal relative motion between vessel and catheter. Transversal motion is identified through maximum likelihood estimator optimization, while longitudinal motion is estimated by a neighborhood similarity estimator among the study frames. A strongly coupled implementation is proposed to compensate for both motion components at once. Loosely coupled implementations (DLT and DTL) decouple the registration process, resulting in more computationally efficient algorithms in detriment of the size of the set of candidate solutions. The DTL outperforms DLT and coupled implementations in terms of accuracy by a factor of 1.9 and 1.4, respectively. Sensitivity analysis shows that perivascular tissue must be considered to obtain the best registration outcome. Evidences suggest that the method is able to measure axial strain along the vessel wall. The proposed registration sorts the IVUS frames for spatial location, which is crucial for a correct interpretation of the vessel wall kinematics along the cardiac phases.
Moving from spatially segregated to transparent motion: a modelling approach
Durant, Szonya; Donoso-Barrera, Alejandra; Tan, Sovira; Johnston, Alan
2005-01-01
Motion transparency, in which patterns of moving elements group together to give the impression of lacy overlapping surfaces, provides an important challenge to models of motion perception. It has been suggested that we perceive transparent motion when the shape of the velocity histogram of the stimulus is bimodal. To investigate this further, random-dot kinematogram motion sequences were created to simulate segregated (perceptually spatially separated) and transparent (perceptually overlapping) motion. The motion sequences were analysed using the multi-channel gradient model (McGM) to obtain the speed and direction at every pixel of each frame of the motion sequences. The velocity histograms obtained were found to be quantitatively similar and all were bimodal. However, the spatial and temporal properties of the velocity field differed between segregated and transparent stimuli. Transparent stimuli produced patches of rightward and leftward motion that varied in location over time. This demonstrates that we can successfully differentiate between these two types of motion on the basis of the time varying local velocity field. However, the percept of motion transparency cannot be based simply on the presence of a bimodal velocity histogram. PMID:17148338
Motion-Corrected 3D Sonic Anemometer for Tethersondes and Other Moving Platforms
NASA Technical Reports Server (NTRS)
Bognar, John
2012-01-01
To date, it has not been possible to apply 3D sonic anemometers on tethersondes or similar atmospheric research platforms due to the motion of the supporting platform. A tethersonde module including both a 3D sonic anemometer and associated motion correction sensors has been developed, enabling motion-corrected 3D winds to be measured from a moving platform such as a tethersonde. Blimps and other similar lifting systems are used to support tethersondes meteorological devices that fly on the tether of a blimp or similar platform. To date, tethersondes have been limited to making basic meteorological measurements (pressure, temperature, humidity, and wind speed and direction). The motion of the tethersonde has precluded the addition of 3D sonic anemometers, which can be used for high-speed flux measurements, thereby limiting what has been achieved to date with tethersondes. The tethersonde modules fly on a tether that can be constantly moving and swaying. This would introduce enormous error into the output of an uncorrected 3D sonic anemometer. The motion correction that is required must be implemented in a low-weight, low-cost manner to be suitable for this application. Until now, flux measurements using 3D sonic anemometers could only be made if the 3D sonic anemometer was located on a rigid, fixed platform such as a tower. This limited the areas in which they could be set up and used. The purpose of the innovation was to enable precise 3D wind and flux measurements to be made using tether - sondes. In brief, a 3D accelerometer and a 3D gyroscope were added to a tethersonde module along with a 3D sonic anemometer. This combination allowed for the necessary package motions to be measured, which were then mathematically combined with the measured winds to yield motion-corrected 3D winds. At the time of this reporting, no tethersonde has been able to make any wind measurement other than a basic wind speed and direction measurement. The addition of a 3D sonic anemometer is unique, as is the addition of the motion-correction sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Water, Steven van de, E-mail: s.vandewater@erasmusmc.nl; Valli, Lorella; Alma Mater Studiorum, Department of Physics and Astronomy, Bologna University, Bologna
Purpose: To investigate the dosimetric impact of intrafraction prostate motion and the effect of robot correction strategies for hypofractionated CyberKnife treatments with a simultaneously integrated boost. Methods and Materials: A total of 548 real-time prostate motion tracks from 17 patients were available for dosimetric simulations of CyberKnife treatments, in which various correction strategies were included. Fixed time intervals between imaging/correction (15, 60, 180, and 360 seconds) were simulated, as well as adaptive timing (ie, the time interval reduced from 60 to 15 seconds in case prostate motion exceeded 3 mm or 2° in consecutive images). The simulated extent of robot corrections was alsomore » varied: no corrections, translational corrections only, and translational corrections combined with rotational corrections up to 5°, 10°, and perfect rotational correction. The correction strategies were evaluated for treatment plans with a 0-mm or 3-mm margin around the clinical target volume (CTV). We recorded CTV coverage (V{sub 100%}) and dose-volume parameters of the peripheral zone (boost), rectum, bladder, and urethra. Results: Planned dose parameters were increasingly preserved with larger extents of robot corrections. A time interval between corrections of 60 to 180 seconds provided optimal preservation of CTV coverage. To achieve 98% CTV coverage in 98% of the treatments, translational and rotational corrections up to 10° were required for the 0-mm margin plans, whereas translational and rotational corrections up to 5° were required for the 3-mm margin plans. Rectum and bladder were spared considerably better in the 0-mm margin plans. Adaptive timing did not improve delivered dose. Conclusions: Intrafraction prostate motion substantially affected the delivered dose but was compensated for effectively by robot corrections using a time interval of 60 to 180 seconds. A 0-mm margin required larger extents of additional rotational corrections than a 3-mm margin but resulted in lower doses to rectum and bladder.« less
Gao, San-Ji; Lin, Yi-Hua; Pan, Yong-Bao; Damaj, Mona B; Wang, Qin-Nan; Mirkov, T Erik; Chen, Ru-Kai
2012-10-01
Sugarcane yellow leaf virus (SCYLV) (genus Polerovirus, family Luteoviridae), the causal agent of sugarcane yellow leaf disease (YLD), was first detected in China in 2006. To assess the distribution of SCYLV in the major sugarcane-growing Chinese provinces, leaf samples from 22 sugarcane clones (Saccharum spp. hybrid) showing YLD symptoms were collected and analyzed for infection by the virus using reverse transcription PCR (RT-PCR), quantitative RT-PCR, and immunological assays. A complete genomic sequence (5,879 nt) of the Chinese SCYLV isolate CHN-FJ1 and partial genomic sequences (2,915 nt) of 13 other Chinese SCYLV isolates from this study were amplified, cloned, and sequenced. The genomic sequence of the CHN-FJ1 isolate was found to share a high identity (98.4-99.1 %) with those of the Brazilian (BRA) genotype isolates and a low identity (86.5-86.9 %) with those of the CHN1 and Cuban (CUB) genotype isolates. The genetic diversity of these 14 Chinese SCYLV isolates was assessed along with that of 29 SCYLV isolates of worldwide origin reported in the GenBank database, based on the full or partial genomic sequence. Phylogenetic analysis demonstrated that all the 14 Chinese SCYLV isolates clustered into one large group with the BRA genotype and 12 other reported SCYLV isolates. In addition, five reported Chinese SCYLV isolates were grouped with the Peruvian (PER), CHN1 and CUB genotypes. We therefore speculated that at least four SCYLV genotypes, BRA, PER, CHN1, and CUB, are associated with YLD in China. Interestingly, a 39-nt deletion was detected in the sequence of the CHN-GD3 isolate, in the middle of the ORF1 region adjacent to the overlap between ORF1 and ORF2. This location is known to be one of the recombination breakpoints in the Luteoviridae family.
NASA Astrophysics Data System (ADS)
Freidlin, R. Z.; Kakareka, J. W.; Pohida, T. J.; Komlosh, M. E.; Basser, P. J.
2012-08-01
In vivo MRI data can be corrupted by motion. Motion artifacts are particularly troublesome in Diffusion Weighted MRI (DWI), since the MR signal attenuation due to Brownian motion can be much less than the signal loss due to dephasing from other types of complex tissue motion, which can significantly degrade the estimation of self-diffusion coefficients, diffusion tensors, etc. This paper describes a snapshot DWI sequence, which utilizes a novel single-sided bipolar diffusion sensitizing gradient pulse within a spin echo sequence. The proposed method shortens the diffusion time by applying a single refocused bipolar diffusion gradient on one side of a refocusing RF pulse, instead of a set of diffusion sensitizing gradients, separated by a refocusing RF pulse, while reducing the impact of magnetic field inhomogeneity by using a spin echo sequence. A novel MRI phantom that can exhibit a range of complex motions was designed to demonstrate the robustness of the proposed DWI sequence.
Gesteme-free context-aware adaptation of robot behavior in human-robot cooperation.
Nessi, Federico; Beretta, Elisa; Gatti, Cecilia; Ferrigno, Giancarlo; De Momi, Elena
2016-11-01
Cooperative robotics is receiving greater acceptance because the typical advantages provided by manipulators are combined with an intuitive usage. In particular, hands-on robotics may benefit from the adaptation of the assistant behavior with respect to the activity currently performed by the user. A fast and reliable classification of human activities is required, as well as strategies to smoothly modify the control of the manipulator. In this scenario, gesteme-based motion classification is inadequate because it needs the observation of a wide signal percentage and the definition of a rich vocabulary. In this work, a system able to recognize the user's current activity without a vocabulary of gestemes, and to accordingly adapt the manipulator's dynamic behavior is presented. An underlying stochastic model fits variations in the user's guidance forces and the resulting trajectories of the manipulator's end-effector with a set of Gaussian distribution. The high-level switching between these distributions is captured with hidden Markov models. The dynamic of the KUKA light-weight robot, a torque-controlled manipulator, is modified with respect to the classified activity using sigmoidal-shaped functions. The presented system is validated over a pool of 12 näive users in a scenario that addresses surgical targeting tasks on soft tissue. The robot's assistance is adapted in order to obtain a stiff behavior during activities that require critical accuracy constraint, and higher compliance during wide movements. Both the ability to provide the correct classification at each moment (sample accuracy) and the capability of correctly identify the correct sequence of activity (sequence accuracy) were evaluated. The proposed classifier is fast and accurate in all the experiments conducted (80% sample accuracy after the observation of ∼450ms of signal). Moreover, the ability of recognize the correct sequence of activities, without unwanted transitions is guaranteed (sequence accuracy ∼90% when computed far away from user desired transitions). Finally, the proposed activity-based adaptation of the robot's dynamic does not lead to a not smooth behavior (high smoothness, i.e. normalized jerk score <0.01). The provided system is able to dynamic assist the operator during cooperation in the presented scenario. Copyright © 2016 Elsevier B.V. All rights reserved.
Lavdas, Eleftherios; Mavroidis, Panayiotis; Kostopoulos, Spiros; Glotsos, Dimitrios; Roka, Violeta; Koutsiaris, Aristotle G; Batsikas, Georgios; Sakkas, Georgios K; Tsagkalis, Antonios; Notaras, Ioannis; Stathakis, Sotirios; Papanikolaou, Nikos; Vassiou, Katerina
2013-07-01
The purpose of this study is to evaluate the ability of T2 turbo spin echo (TSE) axial and sagittal BLADE sequences in reducing or even eliminating motion, pulsatile flow and cross-talk artifacts in lumbar spine MRI examinations. Forty four patients, who had routinely undergone a lumbar spine examination, participated in the study. The following pairs of sequences with and without BLADE were compared: a) T2 TSE Sagittal (SAG) in thirty two cases, and b) T2 TSE Axial (AX) also in thirty two cases. Both quantitative and qualitative analyses were performed based on measurements in different normal anatomical structures and examination of seven characteristics, respectively. The qualitative analysis was performed by experienced radiologists. Also, the presence of image motion, pulsatile flow and cross-talk artifacts was evaluated. Based on the results of the qualitative analysis for the different sequences and anatomical structures, the BLADE sequences were found to be significantly superior to the conventional ones in all the cases. The BLADE sequences eliminated the motion artifacts in all the cases. In our results, it was found that in the examined sequences (sagittal and axial) the differences between the BLADE and conventional sequences regarding the elimination of motion, pulsatile flow and cross-talk artifacts were statistically significant. In all the comparisons, the T2 TSE BLADE sequences were significantly superior to the corresponding conventional sequences regarding the classification of their image quality. In conclusion, this technique appears to be capable of potentially eliminating motion, pulsatile flow and cross-talk artifacts in lumbar spine MR images and producing high quality images in collaborative and non-collaborative patients. Copyright © 2013 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Beta vulgaris crop types represent highly diverged populations with distinct phenotypes resulting from long-term selection. Differential end use in the crop types includes: leaf quality (chard/leaf beet), root enlargement and biomass, (table beet, fodder beet, sugar beet), and secondary metabolite a...
Autocalibrating motion-corrected wave-encoding for highly accelerated free-breathing abdominal MRI.
Chen, Feiyu; Zhang, Tao; Cheng, Joseph Y; Shi, Xinwei; Pauly, John M; Vasanawala, Shreyas S
2017-11-01
To develop a motion-robust wave-encoding technique for highly accelerated free-breathing abdominal MRI. A comprehensive 3D wave-encoding-based method was developed to enable fast free-breathing abdominal imaging: (a) auto-calibration for wave-encoding was designed to avoid extra scan for coil sensitivity measurement; (b) intrinsic butterfly navigators were used to track respiratory motion; (c) variable-density sampling was included to enable compressed sensing; (d) golden-angle radial-Cartesian hybrid view-ordering was incorporated to improve motion robustness; and (e) localized rigid motion correction was combined with parallel imaging compressed sensing reconstruction to reconstruct the highly accelerated wave-encoded datasets. The proposed method was tested on six subjects and image quality was compared with standard accelerated Cartesian acquisition both with and without respiratory triggering. Inverse gradient entropy and normalized gradient squared metrics were calculated, testing whether image quality was improved using paired t-tests. For respiratory-triggered scans, wave-encoding significantly reduced residual aliasing and blurring compared with standard Cartesian acquisition (metrics suggesting P < 0.05). For non-respiratory-triggered scans, the proposed method yielded significantly better motion correction compared with standard motion-corrected Cartesian acquisition (metrics suggesting P < 0.01). The proposed methods can reduce motion artifacts and improve overall image quality of highly accelerated free-breathing abdominal MRI. Magn Reson Med 78:1757-1766, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Sequenced drive for rotary valves
Mittell, Larry C.
1981-01-01
A sequenced drive for rotary valves which provides the benefits of applying rotary and linear motions to the movable sealing element of the valve. The sequenced drive provides a close approximation of linear motion while engaging or disengaging the movable element with the seat minimizing wear and damage due to scrubbing action. The rotary motion of the drive swings the movable element out of the flowpath thus eliminating obstruction to flow through the valve.
Li, S; Cullen, D; Hjort, M; Spear, R; Andrews, J H
1996-01-01
Aureobasidium pullulans, a cosmopolitan yeast-like fungus, colonizes leaf surfaces and has potential as a biocontrol agent of pathogens. To assess the feasibility of rRNA as a target for A. pullulans-specific oligonucleotide probes, we compared the nucleotide sequences of the small-subunit rRNA (18S) genes of 12 geographically diverse A. pullulans strains. Extreme sequence conservation was observed. The consensus A. pullulans sequence was compared with other fungal sequences to identify potential probes. A 21-mer probe which hybridized to the 12 A. pullulans strains but not to 98 other fungi, including 82 isolates from the phylloplane, was identified. A 17-mer highly specific for Cladosporium herbarum was also identified. These probes have potential in monitoring and quantifying fungi in leaf surface and other microbial communities. PMID:8633850
Automated quantification of lumbar vertebral kinematics from dynamic fluoroscopic sequences
NASA Astrophysics Data System (ADS)
Camp, Jon; Zhao, Kristin; Morel, Etienne; White, Dan; Magnuson, Dixon; Gay, Ralph; An, Kai-Nan; Robb, Richard
2009-02-01
We hypothesize that the vertebra-to-vertebra patterns of spinal flexion and extension motion of persons with lower back pain will differ from those of persons who are pain-free. Thus, it is our goal to measure the motion of individual lumbar vertebrae noninvasively from dynamic fluoroscopic sequences. Two-dimensional normalized mutual information-based image registration was used to track frame-to-frame motion. Software was developed that required the operator to identify each vertebra on the first frame of the sequence using a four-point "caliper" placed at the posterior and anterior edges of the inferior and superior end plates of the target vertebrae. The program then resolved the individual motions of each vertebra independently throughout the entire sequence. To validate the technique, 6 cadaveric lumbar spine specimens were potted in polymethylmethacrylate and instrumented with optoelectric sensors. The specimens were then placed in a custom dynamic spine simulator and moved through flexion-extension cycles while kinematic data and fluoroscopic sequences were simultaneously acquired. We found strong correlation between the absolute flexionextension range of motion of each vertebra as recorded by the optoelectric system and as determined from the fluoroscopic sequence via registration. We conclude that this method is a viable way of noninvasively assessing twodimensional vertebral motion.
Marker-less multi-frame motion tracking and compensation in PET-brain imaging
NASA Astrophysics Data System (ADS)
Lindsay, C.; Mukherjee, J. M.; Johnson, K.; Olivier, P.; Song, X.; Shao, L.; King, M. A.
2015-03-01
In PET brain imaging, patient motion can contribute significantly to the degradation of image quality potentially leading to diagnostic and therapeutic problems. To mitigate the image artifacts resulting from patient motion, motion must be detected and tracked then provided to a motion correction algorithm. Existing techniques to track patient motion fall into one of two categories: 1) image-derived approaches and 2) external motion tracking (EMT). Typical EMT requires patients to have markers in a known pattern on a rigid too attached to their head, which are then tracked by expensive and bulky motion tracking camera systems or stereo cameras. This has made marker-based EMT unattractive for routine clinical application. Our main contributions are the development of a marker-less motion tracking system that uses lowcost, small depth-sensing cameras which can be installed in the bore of the imaging system. Our motion tracking system does not require anything to be attached to the patient and can track the rigid transformation (6-degrees of freedom) of the patient's head at a rate 60 Hz. We show that our method can not only be used in with Multi-frame Acquisition (MAF) PET motion correction, but precise timing can be employed to determine only the necessary frames needed for correction. This can speeds up reconstruction by eliminating the unnecessary subdivision of frames.
Abouei, Elham; Lee, Anthony M D; Pahlevaninezhad, Hamid; Hohert, Geoffrey; Cua, Michelle; Lane, Pierre; Lam, Stephen; MacAulay, Calum
2018-01-01
We present a method for the correction of motion artifacts present in two- and three-dimensional in vivo endoscopic images produced by rotary-pullback catheters. This method can correct for cardiac/breathing-based motion artifacts and catheter-based motion artifacts such as nonuniform rotational distortion (NURD). This method assumes that en face tissue imaging contains slowly varying structures that are roughly parallel to the pullback axis. The method reduces motion artifacts using a dynamic time warping solution through a cost matrix that measures similarities between adjacent frames in en face images. We optimize and demonstrate the suitability of this method using a real and simulated NURD phantom and in vivo endoscopic pulmonary optical coherence tomography and autofluorescence images. Qualitative and quantitative evaluations of the method show an enhancement of the image quality. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Astrophysics Data System (ADS)
Raghunath, N.; Faber, T. L.; Suryanarayanan, S.; Votaw, J. R.
2009-02-01
Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. When patient motion is known, deconvolution methods can be used to correct the reconstructed image and reduce motion blur. This paper describes the implementation and optimization of an iterative deconvolution method that uses an ordered subset approach to make it practical and clinically viable. We performed ten separate FDG PET scans using the Hoffman brain phantom and simultaneously measured its motion using the Polaris Vicra tracking system (Northern Digital Inc., Ontario, Canada). The feasibility and effectiveness of the technique was studied by performing scans with different motion and deconvolution parameters. Deconvolution resulted in visually better images and significant improvement as quantified by the Universal Quality Index (UQI) and contrast measures. Finally, the technique was applied to human studies to demonstrate marked improvement. Thus, the deconvolution technique presented here appears promising as a valid alternative to existing motion correction methods for PET. It has the potential for deblurring an image from any modality if the causative motion is known and its effect can be represented in a system matrix.
Motion Artefacts in MRI: a Complex Problem with Many Partial Solutions
Zaitsev, Maxim; Maclaren, Julian.; Herbst, Michael
2015-01-01
Subject motion during magnetic resonance imaging (MRI) has been problematic since its introduction as a clinical imaging modality. While sensitivity to particle motion or blood flow can be used to provide useful image contrast, bulk motion presents a considerable problem in the majority of clinical applications. It is one of the most frequent sources of artefacts. Over 30 years of research have produced numerous methods to mitigate or correct for motion artefacts, but no single method can be applied in all imaging situations. Instead, a ‘toolbox’ of methods exists, where each tool is suitable for some tasks, but not for others. This article reviews the origins of motion artefacts and presents current mitigation and correction methods. In some imaging situations, the currently available motion correction tools are highly effective; in other cases, appropriate tools still need to be developed. It seems likely that this multifaceted approach will be what eventually solves the motion sensitivity problem in MRI, rather than a single solution that is effective in all situations. This review places a strong emphasis on explaining the physics behind the occurrence of such artefacts, with the aim of aiding artefact detection and mitigation in particular clinical situations. PMID:25630632
Motion artifacts in MRI: A complex problem with many partial solutions.
Zaitsev, Maxim; Maclaren, Julian; Herbst, Michael
2015-10-01
Subject motion during magnetic resonance imaging (MRI) has been problematic since its introduction as a clinical imaging modality. While sensitivity to particle motion or blood flow can be used to provide useful image contrast, bulk motion presents a considerable problem in the majority of clinical applications. It is one of the most frequent sources of artifacts. Over 30 years of research have produced numerous methods to mitigate or correct for motion artifacts, but no single method can be applied in all imaging situations. Instead, a "toolbox" of methods exists, where each tool is suitable for some tasks, but not for others. This article reviews the origins of motion artifacts and presents current mitigation and correction methods. In some imaging situations, the currently available motion correction tools are highly effective; in other cases, appropriate tools still need to be developed. It seems likely that this multifaceted approach will be what eventually solves the motion sensitivity problem in MRI, rather than a single solution that is effective in all situations. This review places a strong emphasis on explaining the physics behind the occurrence of such artifacts, with the aim of aiding artifact detection and mitigation in particular clinical situations. © 2015 Wiley Periodicals, Inc.
High performance MRI simulations of motion on multi-GPU systems
2014-01-01
Background MRI physics simulators have been developed in the past for optimizing imaging protocols and for training purposes. However, these simulators have only addressed motion within a limited scope. The purpose of this study was the incorporation of realistic motion, such as cardiac motion, respiratory motion and flow, within MRI simulations in a high performance multi-GPU environment. Methods Three different motion models were introduced in the Magnetic Resonance Imaging SIMULator (MRISIMUL) of this study: cardiac motion, respiratory motion and flow. Simulation of a simple Gradient Echo pulse sequence and a CINE pulse sequence on the corresponding anatomical model was performed. Myocardial tagging was also investigated. In pulse sequence design, software crushers were introduced to accommodate the long execution times in order to avoid spurious echoes formation. The displacement of the anatomical model isochromats was calculated within the Graphics Processing Unit (GPU) kernel for every timestep of the pulse sequence. Experiments that would allow simulation of custom anatomical and motion models were also performed. Last, simulations of motion with MRISIMUL on single-node and multi-node multi-GPU systems were examined. Results Gradient Echo and CINE images of the three motion models were produced and motion-related artifacts were demonstrated. The temporal evolution of the contractility of the heart was presented through the application of myocardial tagging. Better simulation performance and image quality were presented through the introduction of software crushers without the need to further increase the computational load and GPU resources. Last, MRISIMUL demonstrated an almost linear scalable performance with the increasing number of available GPU cards, in both single-node and multi-node multi-GPU computer systems. Conclusions MRISIMUL is the first MR physics simulator to have implemented motion with a 3D large computational load on a single computer multi-GPU configuration. The incorporation of realistic motion models, such as cardiac motion, respiratory motion and flow may benefit the design and optimization of existing or new MR pulse sequences, protocols and algorithms, which examine motion related MR applications. PMID:24996972
Automated estimation of leaf distribution for individual trees based on TLS point clouds
NASA Astrophysics Data System (ADS)
Koma, Zsófia; Rutzinger, Martin; Bremer, Magnus
2017-04-01
Light Detection and Ranging (LiDAR) especially the ground based LiDAR (Terrestrial Laser Scanning - TLS) is an operational used and widely available measurement tool supporting forest inventory updating and research in forest ecology. High resolution point clouds from TLS already represent single leaves which can be used for a more precise estimation of Leaf Area Index (LAI) and for higher accurate biomass estimation. However, currently the methodology for extracting single leafs from the unclassified point clouds for individual trees is still missing. The aim of this study is to present a novel segmentation approach in order to extract single leaves and derive features related to leaf morphology (such as area, slope, length and width) of each single leaf from TLS point cloud data. For the study two exemplary single trees were scanned in leaf-on condition on the university campus of Innsbruck during calm wind conditions. A northern red oak (Quercus rubra) was scanned by a discrete return recording Optech ILRIS-3D TLS scanner and a tulip tree (Liliodendron tulpifera) with Riegl VZ-6000 scanner. During the scanning campaign a reference dataset was measured parallel to scanning. In this case 230 leaves were randomly collected around the lower branches of the tree and photos were taken. The developed workflow steps were the following: in the first step normal vectors and eigenvalues were calculated based on the user specified neighborhood. Then using the direction of the largest eigenvalue outliers i.e. ghost points were removed. After that region growing segmentation based on the curvature and angles between normal vectors was applied on the filtered point cloud. On each segment a RANSAC plane fitting algorithm was applied in order to extract the segment based normal vectors. Using the related features of the calculated segments the stem and branches were labeled as non-leaf and other segments were classified as leaf. The validation of the different segmentation parameters was evaluated as the following: i) the sum area of the collected leaves and the point cloud, ii) the segmented leaf length-width ratio iii) the distribution of the leaf area for the segmented and the reference-ones were compared and the ideal parameter-set was found. The results show that the leaves can be captured with the developed workflow and the slope can be determined robustly for the segmented leaves. However, area, length and width values are systematically depending on the angle and the distance from the scanner. For correction of the systematic underestimation, more systematic measurement or LiDAR simulation is required for further detailed analysis. The results of leaf segmentation algorithm show high potential in generating more precise tree models with correctly located leaves in order to extract more precise input model for biological modeling of LAI or atmospheric corrections studies. The presented workflow also can be used in monitoring the change of angle of the leaves due to sun irradiation, water balance, and day-night rhythm.
Pan, Xu; Cornelissen, Johannes H C; Zhao, Wei-Wei; Liu, Guo-Fang; Hu, Yu-Kun; Prinzing, Andreas; Dong, Ming; Cornwell, William K
2014-09-01
Leaf litter decomposability is an important effect trait for ecosystem functioning. However, it is unknown how this effect trait evolved through plant history as a leaf 'afterlife' integrator of the evolution of multiple underlying traits upon which adaptive selection must have acted. Did decomposability evolve in a Brownian fashion without any constraints? Was evolution rapid at first and then slowed? Or was there an underlying mean-reverting process that makes the evolution of extreme trait values unlikely? Here, we test the hypothesis that the evolution of decomposability has undergone certain mean-reverting forces due to strong constraints and trade-offs in the leaf traits that have afterlife effects on litter quality to decomposers. In order to test this, we examined the leaf litter decomposability and seven key leaf traits of 48 tree species in the temperate area of China and fitted them to three evolutionary models: Brownian motion model (BM), Early burst model (EB), and Ornstein-Uhlenbeck model (OU). The OU model, which does not allow unlimited trait divergence through time, was the best fit model for leaf litter decomposability and all seven leaf traits. These results support the hypothesis that neither decomposability nor the underlying traits has been able to diverge toward progressively extreme values through evolutionary time. These results have reinforced our understanding of the relationships between leaf litter decomposability and leaf traits in an evolutionary perspective and may be a helpful step toward reconstructing deep-time carbon cycling based on taxonomic composition with more confidence.
Event-by-Event Continuous Respiratory Motion Correction for Dynamic PET Imaging.
Yu, Yunhan; Chan, Chung; Ma, Tianyu; Liu, Yaqiang; Gallezot, Jean-Dominique; Naganawa, Mika; Kelada, Olivia J; Germino, Mary; Sinusas, Albert J; Carson, Richard E; Liu, Chi
2016-07-01
Existing respiratory motion-correction methods are applied only to static PET imaging. We have previously developed an event-by-event respiratory motion-correction method with correlations between internal organ motion and external respiratory signals (INTEX). This method is uniquely appropriate for dynamic imaging because it corrects motion for each time point. In this study, we applied INTEX to human dynamic PET studies with various tracers and investigated the impact on kinetic parameter estimation. The use of 3 tracers-a myocardial perfusion tracer, (82)Rb (n = 7); a pancreatic β-cell tracer, (18)F-FP(+)DTBZ (n = 4); and a tumor hypoxia tracer, (18)F-fluoromisonidazole ((18)F-FMISO) (n = 1)-was investigated in a study of 12 human subjects. Both rest and stress studies were performed for (82)Rb. The Anzai belt system was used to record respiratory motion. Three-dimensional internal organ motion in high temporal resolution was calculated by INTEX to guide event-by-event respiratory motion correction of target organs in each dynamic frame. Time-activity curves of regions of interest drawn based on end-expiration PET images were obtained. For (82)Rb studies, K1 was obtained with a 1-tissue model using a left-ventricle input function. Rest-stress myocardial blood flow (MBF) and coronary flow reserve (CFR) were determined. For (18)F-FP(+)DTBZ studies, the total volume of distribution was estimated with arterial input functions using the multilinear analysis 1 method. For the (18)F-FMISO study, the net uptake rate Ki was obtained with a 2-tissue irreversible model using a left-ventricle input function. All parameters were compared with the values derived without motion correction. With INTEX, K1 and MBF increased by 10% ± 12% and 15% ± 19%, respectively, for (82)Rb stress studies. CFR increased by 19% ± 21%. For studies with motion amplitudes greater than 8 mm (n = 3), K1, MBF, and CFR increased by 20% ± 12%, 30% ± 20%, and 34% ± 23%, respectively. For (82)Rb rest studies, INTEX had minimal effect on parameter estimation. The total volume of distribution of (18)F-FP(+)DTBZ and Ki of (18)F-FMISO increased by 17% ± 6% and 20%, respectively. Respiratory motion can have a substantial impact on dynamic PET in the thorax and abdomen. The INTEX method using continuous external motion data substantially changed parameters in kinetic modeling. More accurate estimation is expected with INTEX. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Lamare, F; Le Maitre, A; Dawood, M; Schäfers, K P; Fernandez, P; Rimoldi, O E; Visvikis, D
2014-07-01
Cardiac imaging suffers from both respiratory and cardiac motion. One of the proposed solutions involves double gated acquisitions. Although such an approach may lead to both respiratory and cardiac motion compensation there are issues associated with (a) the combination of data from cardiac and respiratory motion bins, and (b) poor statistical quality images as a result of using only part of the acquired data. The main objective of this work was to evaluate different schemes of combining binned data in order to identify the best strategy to reconstruct motion free cardiac images from dual gated positron emission tomography (PET) acquisitions. A digital phantom study as well as seven human studies were used in this evaluation. PET data were acquired in list mode (LM). A real-time position management system and an electrocardiogram device were used to provide the respiratory and cardiac motion triggers registered within the LM file. Acquired data were subsequently binned considering four and six cardiac gates, or the diastole only in combination with eight respiratory amplitude gates. PET images were corrected for attenuation, but no randoms nor scatter corrections were included. Reconstructed images from each of the bins considered above were subsequently used in combination with an affine or an elastic registration algorithm to derive transformation parameters allowing the combination of all acquired data in a particular position in the cardiac and respiratory cycles. Images were assessed in terms of signal-to-noise ratio (SNR), contrast, image profile, coefficient-of-variation (COV), and relative difference of the recovered activity concentration. Regardless of the considered motion compensation strategy, the nonrigid motion model performed better than the affine model, leading to higher SNR and contrast combined with a lower COV. Nevertheless, when compensating for respiration only, no statistically significant differences were observed in the performance of the two motion models considered. Superior image SNR and contrast were seen using the affine respiratory motion model in combination with the diastole cardiac bin in comparison to the use of the whole cardiac cycle. In contrast, when simultaneously correcting for cardiac beating and respiration, the elastic respiratory motion model outperformed the affine model. In this context, four cardiac bins associated with eight respiratory amplitude bins seemed to be adequate. Considering the compensation of respiratory motion effects only, both affine and elastic based approaches led to an accurate resizing and positioning of the myocardium. The use of the diastolic phase combined with an affine model based respiratory motion correction may therefore be a simple approach leading to significant quality improvements in cardiac PET imaging. However, the best performance was obtained with the combined correction for both cardiac and respiratory movements considering all the dual-gated bins independently through the use of an elastic model based motion compensation.
NASA Astrophysics Data System (ADS)
Lin, D.; Jarzabek-Rychard, M.; Schneider, D.; Maas, H.-G.
2018-05-01
An automatic building façade thermal texture mapping approach, using uncooled thermal camera data, is proposed in this paper. First, a shutter-less radiometric thermal camera calibration method is implemented to remove the large offset deviations caused by changing ambient environment. Then, a 3D façade model is generated from a RGB image sequence using structure-from-motion (SfM) techniques. Subsequently, for each triangle in the 3D model, the optimal texture is selected by taking into consideration local image scale, object incident angle, image viewing angle as well as occlusions. Afterwards, the selected textures can be further corrected using thermal radiant characteristics. Finally, the Gauss filter outperforms the voted texture strategy at the seams smoothing and thus for instance helping to reduce the false alarm rate in façade thermal leakages detection. Our approach is evaluated on a building row façade located at Dresden, Germany.
Registration of adaptive optics corrected retinal nerve fiber layer (RNFL) images
Ramaswamy, Gomathy; Lombardo, Marco; Devaney, Nicholas
2014-01-01
Glaucoma is the leading cause of preventable blindness in the western world. Investigation of high-resolution retinal nerve fiber layer (RNFL) images in patients may lead to new indicators of its onset. Adaptive optics (AO) can provide diffraction-limited images of the retina, providing new opportunities for earlier detection of neuroretinal pathologies. However, precise processing is required to correct for three effects in sequences of AO-assisted, flood-illumination images: uneven illumination, residual image motion and image rotation. This processing can be challenging for images of the RNFL due to their low contrast and lack of clearly noticeable features. Here we develop specific processing techniques and show that their application leads to improved image quality on the nerve fiber bundles. This in turn improves the reliability of measures of fiber texture such as the correlation of Gray-Level Co-occurrence Matrix (GLCM). PMID:24940551
Registration of adaptive optics corrected retinal nerve fiber layer (RNFL) images.
Ramaswamy, Gomathy; Lombardo, Marco; Devaney, Nicholas
2014-06-01
Glaucoma is the leading cause of preventable blindness in the western world. Investigation of high-resolution retinal nerve fiber layer (RNFL) images in patients may lead to new indicators of its onset. Adaptive optics (AO) can provide diffraction-limited images of the retina, providing new opportunities for earlier detection of neuroretinal pathologies. However, precise processing is required to correct for three effects in sequences of AO-assisted, flood-illumination images: uneven illumination, residual image motion and image rotation. This processing can be challenging for images of the RNFL due to their low contrast and lack of clearly noticeable features. Here we develop specific processing techniques and show that their application leads to improved image quality on the nerve fiber bundles. This in turn improves the reliability of measures of fiber texture such as the correlation of Gray-Level Co-occurrence Matrix (GLCM).
NASA Technical Reports Server (NTRS)
Tang, Tony K. (Inventor); Kaiser, William J. (Inventor); Bartman, Randall K. (Inventor); Wilcox, Jaroslava Z. (Inventor); Gutierrez, Roman C. (Inventor); Calvet, Robert J. (Inventor)
1999-01-01
When embodied in a microgyroscope, the invention is comprised of a silicon, four-leaf clover structure with a post attached to the center. The whole structure is suspended by four silicon cantilevers or springs. The device is electrostatically actuated and capacitively detects Coriolis induced motions of the leaves of the leaf clover structure. In the case where the post is not symmetric with the plane of the clover leaves, the device can is usable as an accelerometer. If the post is provided in the shape of a dumb bell or an asymmetric post, the center of gravity is moved out of the plane of clover leaf structure and a hybrid device is provided. When the clover leaf structure is used without a center mass, it performs as a high Q resonator usable as a sensor of any physical phenomena which can be coupled to the resonant performance.
Motion compensation for cone-beam CT using Fourier consistency conditions
NASA Astrophysics Data System (ADS)
Berger, M.; Xia, Y.; Aichinger, W.; Mentl, K.; Unberath, M.; Aichert, A.; Riess, C.; Hornegger, J.; Fahrig, R.; Maier, A.
2017-09-01
In cone-beam CT, involuntary patient motion and inaccurate or irreproducible scanner motion substantially degrades image quality. To avoid artifacts this motion needs to be estimated and compensated during image reconstruction. In previous work we showed that Fourier consistency conditions (FCC) can be used in fan-beam CT to estimate motion in the sinogram domain. This work extends the FCC to 3\\text{D} cone-beam CT. We derive an efficient cost function to compensate for 3\\text{D} motion using 2\\text{D} detector translations. The extended FCC method have been tested with five translational motion patterns, using a challenging numerical phantom. We evaluated the root-mean-square-error and the structural-similarity-index between motion corrected and motion-free reconstructions. Additionally, we computed the mean-absolute-difference (MAD) between the estimated and the ground-truth motion. The practical applicability of the method is demonstrated by application to respiratory motion estimation in rotational angiography, but also to motion correction for weight-bearing imaging of knees. Where the latter makes use of a specifically modified FCC version which is robust to axial truncation. The results show a great reduction of motion artifacts. Accurate estimation results were achieved with a maximum MAD value of 708 μm and 1184 μm for motion along the vertical and horizontal detector direction, respectively. The image quality of reconstructions obtained with the proposed method is close to that of motion corrected reconstructions based on the ground-truth motion. Simulations using noise-free and noisy data demonstrate that FCC are robust to noise. Even high-frequency motion was accurately estimated leading to a considerable reduction of streaking artifacts. The method is purely image-based and therefore independent of any auxiliary data.
Suen, Garret; Holt, Carson; Abouheif, Ehab; Bornberg-Bauer, Erich; Bouffard, Pascal; Caldera, Eric J.; Cash, Elizabeth; Cavanaugh, Amy; Denas, Olgert; Elhaik, Eran; Favé, Marie-Julie; Gadau, Jürgen; Gibson, Joshua D.; Graur, Dan; Grubbs, Kirk J.; Hagen, Darren E.; Harkins, Timothy T.; Helmkampf, Martin; Hu, Hao; Johnson, Brian R.; Kim, Jay; Marsh, Sarah E.; Moeller, Joseph A.; Muñoz-Torres, Mónica C.; Murphy, Marguerite C.; Naughton, Meredith C.; Nigam, Surabhi; Overson, Rick; Rajakumar, Rajendhran; Reese, Justin T.; Scott, Jarrod J.; Smith, Chris R.; Tao, Shu; Tsutsui, Neil D.; Viljakainen, Lumi; Wissler, Lothar; Yandell, Mark D.; Zimmer, Fabian; Taylor, James; Slater, Steven C.; Clifton, Sandra W.; Warren, Wesley C.; Elsik, Christine G.; Smith, Christopher D.; Weinstock, George M.; Gerardo, Nicole M.; Currie, Cameron R.
2011-01-01
Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host–microbe symbioses. PMID:21347285
The cell-cycle interactome: a source of growth regulators?
Blomme, Jonas; Inzé, Dirk; Gonzalez, Nathalie
2014-06-01
When plants develop, cell proliferation and cell expansion are tightly controlled in order to generate organs with a determinate final size such as leaves. Several studies have demonstrated the importance of the cell proliferation phase for leaf growth, illustrating that cell-cycle regulation is crucial for correct leaf development. A large and complex set of interacting proteins that constitute the cell-cycle interactome controls the transition from one cell-cycle phase to another. Here, we review the current knowledge on cell-cycle regulators from this interactome affecting final leaf size when their expression is altered, mainly in Arabidopsis. In addition to the description of mutants of CYCLIN-DEPENDENT KINASES (CDKs), CYCLINS (CYCs), and their transcriptional and post-translational regulators, a phenotypic analysis of gain- and loss-of-function mutants for 27 genes encoding proteins that interact with cell-cycle proteins is presented. This compilation of information shows that when cell-cycle-related genes are mis-expressed, leaf growth is often altered and that, seemingly, three main trends appear to be crucial in the regulation of final organ size by cell-cycle-related genes: (i) cellular compensation; (ii) gene dosage; and (iii) correct transition through the G2/M phase by ANAPHASE PROMOTING COMPLEX/CYCLOSOME (APC/C) activation. In conclusion, this meta-analysis shows that the cell-cycle interactome is enriched in leaf growth regulators, and illustrates the potential to identify new leaf growth regulators among putative new cell-cycle regulators. © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Turbulence Measurements from Compliant Moorings. Part II: Motion Correction
Kilcher, Levi F.; Thomson, Jim; Harding, Samuel; ...
2017-06-20
Acoustic Doppler velocimeters (ADVs) are a valuable tool for making high-precision measurements of turbulence, and moorings are a convenient and ubiquitous platform for making many kinds of measurements in the ocean. However, because of concerns that mooring motion can contaminate turbulence measurements and that acoustic Doppler profilers make middepth velocity measurements relatively easy, ADVs are not frequently deployed from moorings. This work demonstrates that inertial motion measurements can be used to reduce motion contamination from moored ADV velocity measurements. Three distinct mooring platforms were deployed in a tidal channel with inertial-motion-sensor-equipped ADVs. In each case, motion correction based on themore » inertial measurements reduces mooring motion contamination of velocity measurements. The spectra from these measurements are consistent with other measurements in tidal channels and have an f –5/3 slope at high frequencies - consistent with Kolmogorov's theory of isotropic turbulence. Motion correction also improves estimates of cross spectra and Reynolds stresses. A comparison of turbulence dissipation with flow speed and turbulence production indicates a bottom boundary layer production-dissipation balance during ebb and flood that is consistent with the strong tidal forcing at the site. Finally, these results indicate that inertial-motion-sensor-equipped ADVs are a valuable new tool for making high-precision turbulence measurements from moorings.« less
Woo, Jonghye; Tamarappoo, Balaji; Dey, Damini; Nakazato, Ryo; Le Meunier, Ludovic; Ramesh, Amit; Lazewatsky, Joel; Germano, Guido; Berman, Daniel S; Slomka, Piotr J
2011-11-01
The authors aimed to develop an image-based registration scheme to detect and correct patient motion in stress and rest cardiac positron emission tomography (PET)/CT images. The patient motion correction was of primary interest and the effects of patient motion with the use of flurpiridaz F 18 and (82)Rb were demonstrated. The authors evaluated stress/rest PET myocardial perfusion imaging datasets in 30 patients (60 datasets in total, 21 male and 9 female) using a new perfusion agent (flurpiridaz F 18) (n = 16) and (82)Rb (n = 14), acquired on a Siemens Biograph-64 scanner in list mode. Stress and rest images were reconstructed into 4 ((82)Rb) or 10 (flurpiridaz F 18) dynamic frames (60 s each) using standard reconstruction (2D attenuation weighted ordered subsets expectation maximization). Patient motion correction was achieved by an image-based registration scheme optimizing a cost function using modified normalized cross-correlation that combined global and local features. For comparison, visual scoring of motion was performed on the scale of 0 to 2 (no motion, moderate motion, and large motion) by two experienced observers. The proposed registration technique had a 93% success rate in removing left ventricular motion, as visually assessed. The maximum detected motion extent for stress and rest were 5.2 mm and 4.9 mm for flurpiridaz F 18 perfusion and 3.0 mm and 4.3 mm for (82)Rb perfusion studies, respectively. Motion extent (maximum frame-to-frame displacement) obtained for stress and rest were (2.2 ± 1.1, 1.4 ± 0.7, 1.9 ± 1.3) mm and (2.0 ± 1.1, 1.2 ±0 .9, 1.9 ± 0.9) mm for flurpiridaz F 18 perfusion studies and (1.9 ± 0.7, 0.7 ± 0.6, 1.3 ± 0.6) mm and (2.0 ± 0.9, 0.6 ± 0.4, 1.2 ± 1.2) mm for (82)Rb perfusion studies, respectively. A visually detectable patient motion threshold was established to be ≥2.2 mm, corresponding to visual user scores of 1 and 2. After motion correction, the average increases in contrast-to-noise ratio (CNR) from all frames for larger than the motion threshold were 16.2% in stress flurpiridaz F 18 and 12.2% in rest flurpiridaz F 18 studies. The average increases in CNR were 4.6% in stress (82)Rb studies and 4.3% in rest (82)Rb studies. Fully automatic motion correction of dynamic PET frames can be performed accurately, potentially allowing improved image quantification of cardiac PET data.
NASA Technical Reports Server (NTRS)
Durden, S.; Haddad, Z.
1998-01-01
Observations of Doppler velocity of hydrometeors form airborne Doppler weather radars normally contains a component due to the aircraft motion. Accurate hydrometeor velocity measurements thus require correction by subtracting this velocity from the observed velocity.
Wei, Chunhua; Chen, Xiner; Wang, Zhongyuan; Liu, Qiyan; Li, Hao; Zhang, Yong; Ma, Jianxiang; Yang, Jianqiang
2017-01-01
The lobed leaf character is a unique morphologic trait in crops, featuring many potential advantages for agricultural productivity. Although the majority of watermelon varieties feature lobed leaves, the genetic factors responsible for lobed leaf formation remain elusive. The F2:3 leaf shape segregating population offers the opportunity to study the underlying mechanism of lobed leaf formation in watermelon. Genetic analysis revealed that a single dominant allele (designated ClLL1) controlled the lobed leaf trait. A large-sized F3:4 population derived from F2:3 individuals was used to map ClLL1. A total of 5,966 reliable SNPs and indels were identified genome-wide via a combination of BSA and RNA-seq. Using the validated SNP and indel markers, the location of ClLL1 was narrowed down to a 127.6-kb region between markers W08314 and W07061, containing 23 putative ORFs. Expression analysis via qRT-PCR revealed differential expression patterns (fold-changes above 2-fold or below 0.5-fold) of three ORFs (ORF3, ORF11, and ORF18) between lobed and non-lobed leaf plants. Based on gene annotation and expression analysis, ORF18 (encoding an uncharacterized protein) and ORF22 (encoding a homeobox-leucine zipper-like protein) were considered as most likely candidate genes. Furthermore, sequence analysis revealed no polymorphisms in cDNA sequences of ORF18; however, two notable deletions were identified in ORF22. This study is the first report to map a leaf shape gene in watermelon and will facilitate cloning and functional characterization of ClLL1 in future studies. PMID:28704497
Wei, Chunhua; Chen, Xiner; Wang, Zhongyuan; Liu, Qiyan; Li, Hao; Zhang, Yong; Ma, Jianxiang; Yang, Jianqiang; Zhang, Xian
2017-01-01
The lobed leaf character is a unique morphologic trait in crops, featuring many potential advantages for agricultural productivity. Although the majority of watermelon varieties feature lobed leaves, the genetic factors responsible for lobed leaf formation remain elusive. The F2:3 leaf shape segregating population offers the opportunity to study the underlying mechanism of lobed leaf formation in watermelon. Genetic analysis revealed that a single dominant allele (designated ClLL1) controlled the lobed leaf trait. A large-sized F3:4 population derived from F2:3 individuals was used to map ClLL1. A total of 5,966 reliable SNPs and indels were identified genome-wide via a combination of BSA and RNA-seq. Using the validated SNP and indel markers, the location of ClLL1 was narrowed down to a 127.6-kb region between markers W08314 and W07061, containing 23 putative ORFs. Expression analysis via qRT-PCR revealed differential expression patterns (fold-changes above 2-fold or below 0.5-fold) of three ORFs (ORF3, ORF11, and ORF18) between lobed and non-lobed leaf plants. Based on gene annotation and expression analysis, ORF18 (encoding an uncharacterized protein) and ORF22 (encoding a homeobox-leucine zipper-like protein) were considered as most likely candidate genes. Furthermore, sequence analysis revealed no polymorphisms in cDNA sequences of ORF18; however, two notable deletions were identified in ORF22. This study is the first report to map a leaf shape gene in watermelon and will facilitate cloning and functional characterization of ClLL1 in future studies.
Motion video analysis using planar parallax
NASA Astrophysics Data System (ADS)
Sawhney, Harpreet S.
1994-04-01
Motion and structure analysis in video sequences can lead to efficient descriptions of objects and their motions. Interesting events in videos can be detected using such an analysis--for instance independent object motion when the camera itself is moving, figure-ground segregation based on the saliency of a structure compared to its surroundings. In this paper we present a method for 3D motion and structure analysis that uses a planar surface in the environment as a reference coordinate system to describe a video sequence. The motion in the video sequence is described as the motion of the reference plane, and the parallax motion of all the non-planar components of the scene. It is shown how this method simplifies the otherwise hard general 3D motion analysis problem. In addition, a natural coordinate system in the environment is used to describe the scene which can simplify motion based segmentation. This work is a part of an ongoing effort in our group towards video annotation and analysis for indexing and retrieval. Results from a demonstration system being developed are presented.
Thoracic respiratory motion estimation from MRI using a statistical model and a 2-D image navigator.
King, A P; Buerger, C; Tsoumpas, C; Marsden, P K; Schaeffter, T
2012-01-01
Respiratory motion models have potential application for estimating and correcting the effects of motion in a wide range of applications, for example in PET-MR imaging. Given that motion cycles caused by breathing are only approximately repeatable, an important quality of such models is their ability to capture and estimate the intra- and inter-cycle variability of the motion. In this paper we propose and describe a technique for free-form nonrigid respiratory motion correction in the thorax. Our model is based on a principal component analysis of the motion states encountered during different breathing patterns, and is formed from motion estimates made from dynamic 3-D MRI data. We apply our model using a data-driven technique based on a 2-D MRI image navigator. Unlike most previously reported work in the literature, our approach is able to capture both intra- and inter-cycle motion variability. In addition, the 2-D image navigator can be used to estimate how applicable the current motion model is, and hence report when more imaging data is required to update the model. We also use the motion model to decide on the best positioning for the image navigator. We validate our approach using MRI data acquired from 10 volunteers and demonstrate improvements of up to 40.5% over other reported motion modelling approaches, which corresponds to 61% of the overall respiratory motion present. Finally we demonstrate one potential application of our technique: MRI-based motion correction of real-time PET data for simultaneous PET-MRI acquisition. Copyright © 2011 Elsevier B.V. All rights reserved.
Xu, Yilei; Roy-Chowdhury, Amit K
2007-05-01
In this paper, we present a theory for combining the effects of motion, illumination, 3D structure, albedo, and camera parameters in a sequence of images obtained by a perspective camera. We show that the set of all Lambertian reflectance functions of a moving object, at any position, illuminated by arbitrarily distant light sources, lies "close" to a bilinear subspace consisting of nine illumination variables and six motion variables. This result implies that, given an arbitrary video sequence, it is possible to recover the 3D structure, motion, and illumination conditions simultaneously using the bilinear subspace formulation. The derivation builds upon existing work on linear subspace representations of reflectance by generalizing it to moving objects. Lighting can change slowly or suddenly, locally or globally, and can originate from a combination of point and extended sources. We experimentally compare the results of our theory with ground truth data and also provide results on real data by using video sequences of a 3D face and the entire human body with various combinations of motion and illumination directions. We also show results of our theory in estimating 3D motion and illumination model parameters from a video sequence.
Zanotti-Fregonara, Paolo; Liow, Jeih-San; Comtat, Claude; Zoghbi, Sami S; Zhang, Yi; Pike, Victor W; Fujita, Masahiro; Innis, Robert B
2012-09-01
Image-derived input function (IDIF) from carotid arteries is an elegant alternative to full arterial blood sampling for brain PET studies. However, a recent study using blood-free IDIFs found that this method is particularly vulnerable to patient motion. The present study used both simulated and clinical [11C](R)-rolipram data to assess the robustness of a blood-based IDIF method (a method that is ultimately normalized with blood samples) with regard to motion artifacts. The impact of motion on the accuracy of IDIF was first assessed with an analytical simulation of a high-resolution research tomograph using a numerical phantom of the human brain, equipped with internal carotids. Different degrees of translational (from 1 to 20 mm) and rotational (from 1 to 15°) motions were tested. The impact of motion was then tested on the high-resolution research tomograph dynamic scans of three healthy volunteers, reconstructed with and without an online motion correction system. IDIFs and Logan-distribution volume (VT) values derived from simulated and clinical scans with motion were compared with those obtained from the scans with motion correction. In the phantom scans, the difference in the area under the curve (AUC) for the carotid time-activity curves was up to 19% for rotations and up to 66% for translations compared with the motionless simulation. However, for the final IDIFs, which were fitted to blood samples, the AUC difference was 11% for rotations and 8% for translations. Logan-VT errors were always less than 10%, except for the maximum translation of 20 mm, in which the error was 18%. Errors in the clinical scans without motion correction appeared to be minor, with differences in AUC and Logan-VT always less than 10% compared with scans with motion correction. When a blood-based IDIF method is used for neurological PET studies, the motion of the patient affects IDIF estimation and kinetic modeling only minimally.
Motion Estimation Using the Firefly Algorithm in Ultrasonic Image Sequence of Soft Tissue
Chao, Chih-Feng; Horng, Ming-Huwi; Chen, Yu-Chan
2015-01-01
Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA) searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA) via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method. PMID:25873987
Motion estimation using the firefly algorithm in ultrasonic image sequence of soft tissue.
Chao, Chih-Feng; Horng, Ming-Huwi; Chen, Yu-Chan
2015-01-01
Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA) searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA) via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method.
Tracking prominent points in image sequences
NASA Astrophysics Data System (ADS)
Hahn, Michael
1994-03-01
Measuring image motion and inferring scene geometry and camera motion are main aspects of image sequence analysis. The determination of image motion and the structure-from-motion problem are tasks that can be addressed independently or in cooperative processes. In this paper we focus on tracking prominent points. High stability, reliability, and accuracy are criteria for the extraction of prominent points. This implies that tracking should work quite well with those features; unfortunately, the reality looks quite different. In the experimental investigations we processed a long sequence of 128 images. This mono sequence is taken in an outdoor environment at the experimental field of Mercedes Benz in Rastatt. Different tracking schemes are explored and the results with respect to stability and quality are reported.
ERIC Educational Resources Information Center
Portland Project Committee, OR.
This teacher's guide is for the second year of the Portland Project, a three-year integrated secondary science curriculum sequence. The first of two parts in this volume, "Motion and Energy," begins with the study of motion, going from the quantitative description to a consideration of what causes motion and a discussion of Newton's…
Wagner, Lucas; Schmal, Christoph; Staiger, Dorothee; Danisman, Selahattin
2017-01-01
The analysis of circadian leaf movement rhythms is a simple yet effective method to study effects of treatments or gene mutations on the circadian clock of plants. Currently, leaf movements are analysed using time lapse photography and subsequent bioinformatics analyses of leaf movements. Programs that are used for this purpose either are able to perform one function (i.e. leaf tip detection or rhythm analysis) or their function is limited to specific computational environments. We developed a leaf movement analysis tool-PALMA-that works in command line and combines image extraction with rhythm analysis using Fast Fourier transformation and non-linear least squares fitting. We validated PALMA in both simulated time series and in experiments using the known short period mutant sensitivity to red light reduced 1 ( srr1 - 1 ). We compared PALMA with two established leaf movement analysis tools and found it to perform equally well. Finally, we tested the effect of reduced iron conditions on the leaf movement rhythms of wild type plants. Here, we found that PALMA successfully detected period lengthening under reduced iron conditions. PALMA correctly estimated the period of both simulated and real-life leaf movement experiments. As a platform-independent console-program that unites both functions needed for the analysis of circadian leaf movements it is a valid alternative to existing leaf movement analysis tools.
Multiseasonal Tree Crown Structure Mapping with Point Clouds from OTS Quadrocopter Systems
NASA Astrophysics Data System (ADS)
Hese, S.; Behrendt, F.
2017-08-01
OTF (Off The Shelf) quadro copter systems provide a cost effective (below 2000 Euro), flexible and mobile platform for high resolution point cloud mapping. Various studies showed the full potential of these small and flexible platforms. Especially in very tight and complex 3D environments the automatic obstacle avoidance, low copter weight, long flight times and precise maneuvering are important advantages of these small OTS systems in comparison with larger octocopter systems. This study examines the potential of the DJI Phantom 4 pro series and the Phantom 3A series for within-stand and forest tree crown 3D point cloud mapping using both within stand oblique imaging in different altitude levels and data captured from a nadir perspective. On a test site in Brandenburg/Germany a beach crown was selected and measured with 3 different altitude levels in Point Of Interest (POI) mode with oblique data capturing and deriving one nadir mosaic created with 85/85 % overlap using Drone Deploy automatic mapping software. Three different flight campaigns were performed, one in September 2016 (leaf-on), one in March 2017 (leaf-off) and one in May 2017 (leaf-on) to derive point clouds from different crown structure and phenological situations - covering the leaf-on and leafoff status of the tree crown. After height correction, the point clouds where used with GPS geo referencing to calculate voxel based densities on 50 × 10 × 10 cm voxel definitions using a topological network of chessboard image objects in 0,5 m height steps in an object based image processing environment. Comparison between leaf-off and leaf-on status was done on volume pixel definitions comparing the attributed point densities per volume and plotting the resulting values as a function of distance to the crown center. In the leaf-off status SFM (structure from motion) algorithms clearly identified the central stem and also secondary branch systems. While the penetration into the crown structure is limited in the leaf-on status (the point cloud is a mainly a description of the interpolated crown surface) - the visibility of the internal crown structure in leaf-off status allows to map also the internal tree structure up to and stopping at the secondary branch level system. When combined the leaf-on and leaf-off point clouds generate a comprehensive tree crown structure description that allows a low cost and detailed 3D crown structure mapping and potentially precise biomass mapping and/or internal structural differentiation of deciduous tree species types. Compared to TLS (Terrestrial Laser Scanning) based measurements the costs are neglectable and in the range of 1500-2500 €. This suggests the approach for low cost but fine scale in-situ applications and/or projects where TLS measurements cannot be derived and for less dense forest stands where POI flights can be performed. This study used the in-copter GPS measurements for geo referencing. Better absolute geo referencing results will be obtained with DGPS reference points. The study however clearly demonstrates the potential of OTS very low cost copter systems and the image attributed GPS measurements of the copter for the automatic calculation of complex 3D point clouds in a multi temporal tree crown mapping context.
Electrowetting on a lotus leaf
Feng, Jiang-Tao; Wang, Feng-Chao; Zhao, Ya-Pu
2009-01-01
Electrowetting on dielectrics has been widely used to manipulate and control microliter or nanoliter liquids in micro-total-analysis systems and laboratory on a chip. We carried out experiments on electrowetting on a lotus leaf, which is quite different from the equipotential plate used in conventional electrowetting. This has not been reported in the past. The lotus leaf is superhydrophobic and a weak conductor, so the droplet can be easily actuated on it through electrical potential gradient. The capillary motion of the droplet was recorded by a high-speed camera. The droplet moved toward the counterelectrode to fulfill the actuation. The actuation speed could be of the order of 10 mm∕s. The actuation time is of the order of 10 ms. PMID:19693341
POCS-enhanced correction of motion artifacts in parallel MRI.
Samsonov, Alexey A; Velikina, Julia; Jung, Youngkyoo; Kholmovski, Eugene G; Johnson, Chris R; Block, Walter F
2010-04-01
A new method for correction of MRI motion artifacts induced by corrupted k-space data, acquired by multiple receiver coils such as phased arrays, is presented. In our approach, a projections onto convex sets (POCS)-based method for reconstruction of sensitivity encoded MRI data (POCSENSE) is employed to identify corrupted k-space samples. After the erroneous data are discarded from the dataset, the artifact-free images are restored from the remaining data using coil sensitivity profiles. The error detection and data restoration are based on informational redundancy of phased-array data and may be applied to full and reduced datasets. An important advantage of the new POCS-based method is that, in addition to multicoil data redundancy, it can use a priori known properties about the imaged object for improved MR image artifact correction. The use of such information was shown to improve significantly k-space error detection and image artifact correction. The method was validated on data corrupted by simulated and real motion such as head motion and pulsatile flow.
Kim, Mi Jung; Jin, Jingjing; Zheng, Junshi
2015-01-01
Stevia (Stevia rebaudiana) produces not only a group of diterpenoid glycosides known as steviol glycosides (SGs), but also other labdane-type diterpenoids that may be spatially separated from SGs. However, their biosynthetic routes and spatial distribution in leaf tissues have not yet been elucidated. Here, we integrate metabolome and transcriptome analyses of Stevia to explore the biosynthetic capacity of leaf tissues for diterpenoid metabolism. Tissue-specific chemical analyses confirmed that SGs were accumulated in leaf cells but not in trichomes. On the other hand, Stevia leaf trichomes stored other labdane-type diterpenoids such as oxomanoyl oxide and agatholic acid. RNA sequencing analyses from two different tissues of Stevia provided a comprehensive overview of dynamic metabolic activities in trichomes and leaf without trichomes. These metabolite-guided transcriptomics and phylogenetic and gene expression analyses clearly identified specific gene members encoding enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate pathway and the biosynthesis of steviol or other labdane-type diterpenoids. Additionally, our RNA sequencing analysis uncovered copalyl diphosphate synthase (SrCPS) and kaurene synthase1 (SrKS1) homologs, SrCPS2 and KS-like (SrKSL), which were specifically expressed in trichomes. In vitro and in planta assays showed that unlike SrCPS and SrKS1, SrCPS2 synthesized labda-13-en-8-ol diphosphate and successively catalyzed the formation of manoyl oxide and epi-manoyl oxide in combination with SrKSL. Our findings suggest that Stevia may have evolved to use distinct metabolic pathways to avoid metabolic interferences in leaf tissues for efficient production of diverse secondary metabolites. PMID:26438788
MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.
Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik
2016-01-01
Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.
NASA Astrophysics Data System (ADS)
Imanishi, K.; Uchide, T.; Takeda, N.
2014-12-01
We propose a method to determine focal mechanisms of non-volcanic tremors (NVTs) based on S-wave polarization angles. The successful retrieval of polarization angles in low S/N tremor signals owes much to the observation that NVTs propagate slowly and therefore they do not change their location immediately. This feature of NVTs enables us to use a longer window to compute a polarization angle (e.g., one minute or longer), resulting in a stack of particle motions. Following Zhang and Schwartz (1994), we first correct for the splitting effect to recover the source polarization angle (anisotropy-corrected angle). This is a key step, because shear-wave splitting distorts the particle motion excited by a seismic source. We then determine the best double-couple solution using anisotropy-corrected angles of multiple stations. The present method was applied to a tremor sequence at Kii Peninsula, southwest Japan, which occurred at the beginning of April 2013. A standard splitting and polarization analysis were subject to a one-minute-long moving window to determine the splitting parameters as well as anisotropy-corrected angles. A grid search approach was performed at each hour to determine the best double-couple solution satisfying one-hour average polarization angles. Most solutions show NW-dipping low-angle planes consistent with the plate boundary or SE-dipping high-angle planes. Because of 180 degrees ambiguity in polarization angles, the present method alone cannot distinguish compressional quadrant from dilatational one. Together with the observation of very low-frequency earthquakes near the present study area (Ito et al., 2007), it is reasonable to consider that they represent shear slip on low-angle thrust faults. It is also noted that some of solutions contain strike-slip component. Acknowledgements: Seismograph stations used in this study include permanent stations operated by NIED (Hi-net), JMA, Earthquake Research Institute, together with Geological Survey of Japan, AIST. This work was supported by JSPS KAKENHI Grant Number 24540463.
Oxidative stress: A link between drought and aflatoxin contamination in maize
USDA-ARS?s Scientific Manuscript database
Host resistance to diseases, such as early leaf spot (ELS), late leaf spot (LLS) and Tomato spotted wilt virus (TSWV), is critical for increasing the yield and reducing the cost for peanut farmers. With the completion of the genome sequences of two diploid ancestors of cultivated peanut, we could ge...
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa is a Gram-negative bacterium causing diseases in many economically important crops mostly in the Americas but also in Asia and Europe. A strain of X. fastidiosa was found to cause pear leaf scorch (PLS) disease in Taiwan in 1992. Because of nutritional fastidiousness, characteriza...
USDA-ARS?s Scientific Manuscript database
Blueberry bacterial leaf scorch (BBLS) disease, a threat to blueberry production in the Southern USA and potentially elsewhere, is caused by Xylella fastidiosa. Efficient control of BBLS requires knowledge of the pathogen. However, this is challenging because Xylella fastidiosa is difficult to cultu...
USDA-ARS?s Scientific Manuscript database
Cercospora beticola causes Cercospora leaf spot of sugarbeet. Cercospora leaf spot management measures often include application of the sterol demethylation inhibitor (DMI) class of fungicides. The reliance on DMIs and the consequent selection pressures imposed by their widespread use has led to th...
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa is a Gram negative, nutritionally fastidious plant pathogenic bacterium that causes many economically important diseases including almond leaf scorch disease (ALSD) and Pierce’s disease of grape in California, as well as citrus variegated chlorosis in South America. Genome inform...
Zhang, Xiaodong; Allan, Andrew C.; Li, Caixia; Wang, Yuanzhong; Yao, Qiuyang
2015-01-01
Gentiana rigescens is an important medicinal herb in China. The main validated medicinal component gentiopicroside is synthesized in shoots, but is mainly found in the plant’s roots. The gentiopicroside biosynthetic pathway and its regulatory control remain to be elucidated. Genome resources of gentian are limited. Next-generation sequencing (NGS) technologies can aid in supplying global gene expression profiles. In this study we present sequence and transcript abundance data for the root and leaf transcriptome of G. rigescens, obtained using the Illumina Hiseq2000. Over fifty million clean reads were obtained from leaf and root libraries. This yields 76,717 unigenes with an average length of 753 bp. Among these, 33,855 unigenes were identified as putative homologs of annotated sequences in public protein and nucleotide databases. Digital abundance analysis identified 3306 unigenes differentially enriched between leaf and root. Unigenes found in both tissues were categorized according to their putative functional categories. Of the differentially expressed genes, over 130 were annotated as related to terpenoid biosynthesis. This work is the first study of global transcriptome analyses in gentian. These sequences and putative functional data comprise a resource for future investigation of terpenoid biosynthesis in Gentianaceae species and annotation of the gentiopicroside biosynthetic pathway and its regulatory mechanisms. PMID:26006235
Zhang, Hui; Ma, Xin-ying; Qian, Ya-juan; Zhou, Xue-ping
2010-02-01
Papaya leaf curl China virus (PaLCuCNV) was previously reported as a distinct begomovirus infecting papaya in southern China. Based on molecular diagnostic survey, 13 PaLCuCNV isolates were obtained from tomato plants showing leaf curl symptoms in Henan and Guangxi Provinces of China. Complete nucleotide sequences of 5 representative isolates (AJ558116, AJ558117, AJ704604, FN256260, and FN297834) were determined to be 2738-2751 nucleotides, which share 91.7%-97.9% sequence identities with PaLCuCNV isolate G2 (AJ558123). DNA-beta was not found to be associated with PaLCuCNV isolates. To investigate the infectivity of PaLCuCNV, an infectious clone of PaLCuCNV-[CN:HeNZM1] was constructed and agro-inoculated into Nicotiana benthamiana, N. tabacum Samsun, N. glutinosa, Solanum lycopersicum and Petunia hybrida plants, which induced severe leaf curling and crinkling symptoms in these plants. Southern blot analysis and polymerase chain reaction (PCR) indicated a systemic infection of test plants by the agro-infectious clone.
Yang, Minglei; Ding, Hui; Zhu, Lei; Wang, Guangzhi
2016-12-01
Ultrasound fusion imaging is an emerging tool and benefits a variety of clinical applications, such as image-guided diagnosis and treatment of hepatocellular carcinoma and unresectable liver metastases. However, respiratory liver motion-induced misalignment of multimodal images (i.e., fusion error) compromises the effectiveness and practicability of this method. The purpose of this paper is to develop a subject-specific liver motion model and automatic registration-based method to correct the fusion error. An online-built subject-specific motion model and automatic image registration method for 2D ultrasound-3D magnetic resonance (MR) images were combined to compensate for the respiratory liver motion. The key steps included: 1) Build a subject-specific liver motion model for current subject online and perform the initial registration of pre-acquired 3D MR and intra-operative ultrasound images; 2) During fusion imaging, compensate for liver motion first using the motion model, and then using an automatic registration method to further correct the respiratory fusion error. Evaluation experiments were conducted on liver phantom and five subjects. In the phantom study, the fusion error (superior-inferior axis) was reduced from 13.90±2.38mm to 4.26±0.78mm by using the motion model only. The fusion error further decreased to 0.63±0.53mm by using the registration method. The registration method also decreased the rotation error from 7.06±0.21° to 1.18±0.66°. In the clinical study, the fusion error was reduced from 12.90±9.58mm to 6.12±2.90mm by using the motion model alone. Moreover, the fusion error decreased to 1.96±0.33mm by using the registration method. The proposed method can effectively correct the respiration-induced fusion error to improve the fusion image quality. This method can also reduce the error correction dependency on the initial registration of ultrasound and MR images. Overall, the proposed method can improve the clinical practicability of ultrasound fusion imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.
In Situ Field Measurement of Leaf Water Potential Using Thermocouple Psychrometers 1
Savage, Michael J.; Wiebe, Herman H.; Cass, Alfred
1983-01-01
Thermocouple psychrometers are the only instruments which can measure the in situ water potential of intact leaves, and which can possibly be used to monitor leaf water potential. Unfortunately, their usefulness is limited by a number of difficulties, among them fluctuating temperatures and temperature gradients within the psychrometer, sealing of the psychrometer chamber to the leaf, shading of the leaf by the psychrometer, and resistance to water vapor diffusion by the cuticle when the stomates are closed. Using Citrus jambhiri, we have tested several psychrometer design and operational modifications and showed that in situ psychrometric measurements compared favorably with simultaneous Scholander pressure chamber measurements on neighboring leaves when the latter were corrected for the osmotic potential. PMID:16663267
Advanced diffusion MRI and biomarkers in the central nervous system: a new approach.
Martín Noguerol, T; Martínez Barbero, J P
The introduction of diffusion-weighted sequences has revolutionized the detection and characterization of central nervous system (CNS) disease. Nevertheless, the assessment of diffusion studies of the CNS is often limited to qualitative estimation. Moreover, the pathophysiological complexity of the different entities that affect the CNS cannot always be correctly explained through classical models. The development of new models for the analysis of diffusion sequences provides numerous parameters that enable a quantitative approach to both diagnosis and prognosis as well as to monitoring the response to treatment; these parameters can be considered potential biomarkers of health and disease. In this update, we review the physical bases underlying diffusion studies and diffusion tensor imaging, advanced models for their analysis (intravoxel coherent motion and kurtosis), and the biological significance of the parameters derived. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Varun, Priyanka; Saxena, Sangeeta
2018-05-01
Papaya leaf curl is an economically important disease occurring in papaya growing tropical and subtropical areas. Papaya leaf curl virus, a begomovirus, is the main causative agent for the disease, but many other begomoviruses as well as betasatellites have also been reported on papaya leaf curl disease. Rapidly evolving host range of begomoviruses is a major issue for developing successful resistance strategies against begomoviral infection considering their expanding host range and mixed infection. In our study, we have identified the presence of begomovirus and associated satellite molecule on papaya showing severe leaf curl symptoms in Lucknow, India. Analysis of complete DNA-A component of this isolate (MG757245) revealed the highest similarity (91%) with tomato leaf curl Gujarat virus (ToLCuGuV), while sequence data of betasatellite (MG478451) showed maximum (89%) identity with tomato leaf curl Bangladesh betasatellite (ToLCuBB). This is the first report on identification of ToLCuGuV and ToLCuBB coinfecting papaya plants in Lucknow, Uttar Pradesh (India).
Shah, Syed Tariq; Pang, Chaoyou; Fan, Shuli; Song, Meizhen; Arain, Saima; Yu, Shuxun
2013-12-01
NAC (NAM, ATAF, and CUC) is a plant-specific transcription factor family with diverse roles in plant development and stress regulation. In this report, stress-responsive NAC genes (GhNAC8-GhNAC17) isolated from cotton (Gossypium hirsutum L.) were characterised in the context of leaf senescence and stress tolerance. The characterisation of NAC genes during leaf senescence has not yet been reported for cotton. Based on the sequence characterisation, these GhNACs could be classified into three groups belonging to three known NAC sub-families. Their predicted amino acid sequences exhibited similarities to NAC genes from other plant species. Senescent leaves were the sites of maximum expression for all GhNAC genes except GhNAC10 and GhNAC13, which showed maximum expression in fibres, collected from 25 days post anthesis (DPA) plants. The ten GhNAC genes displayed differential expression patterns and levels during natural and induced leaf senescence. Quantitative RT-PCR and promoter analyses suggest that these genes are induced by ABA, ethylene, drought, salinity, cold, heat, and other hormonal treatments. These results support a role for cotton GhNAC genes in transcriptional regulation of leaf senescence, stress tolerance and other developmental stages of cotton. © 2013.
Effects of root-zone acidity on utilization of nitrate and ammonium in tobacco plants
NASA Technical Reports Server (NTRS)
Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)
1989-01-01
Tobacco (Nicotiana tabacum L., cv. 'Coker 319') plants were grown for 28 days in flowing nutrient culture containing either 1.0 mM NO3- or 1.0 mM NH4+ as the nitrogen source in a complete nutrient solution. Acidities of the solutions were controlled at pH 6.0 or 4.0 for each nitrogen source. Plants were sampled at intervals of 6 to 8 days for determination of dry matter and nitrogen accumulation. Specific rates of NO3- or NH4+ uptake (rate of uptake per unit root mass) were calculated from these data. Net photosynthetic rates per unit leaf area were measured on attached leaves by infrared gas analysis. When NO3- [correction of NO-] was the sole nitrogen source, root growth and nitrogen uptake rate were unaffected by pH of the solution, and photosynthetic activity of leaves and accumulation of dry matter and nitrogen in the whole plant were similar. When NH4+ was the nitrogen source, photosynthetic rate of leaves and accumulation of dry matter and nitrogen in the whole plant were not statistically different from NO3(-) -fed plants when acidity of the solution was controlled at pH 6.0. When acidity for NH4(+) -fed plants was increased to pH 4.0, however, specific rate of NH4+ uptake decreased by about 50% within the first 6 days of treatment. The effect of acidity on root function was associated with a decreased rate of accumulation of nitrogen in shoots that was accompanied by a rapid cessation of leaf development between days 6 and 13. The decline in leaf growth rate of NH4(+) -fed plants at pH 4.0 was followed by reductions in photosynthetic rate per unit leaf area. These responses of NH4(+) -fed plants to increased root-zone acidity are characteristic of the sequence of responses that occur during onset of nitrogen stress.
NASA Astrophysics Data System (ADS)
Germino, Mary; Gallezot, Jean-Dominque; Yan, Jianhua; Carson, Richard E.
2017-07-01
Parametric images for dynamic positron emission tomography (PET) are typically generated by an indirect method, i.e. reconstructing a time series of emission images, then fitting a kinetic model to each voxel time activity curve. Alternatively, ‘direct reconstruction’, incorporates the kinetic model into the reconstruction algorithm itself, directly producing parametric images from projection data. Direct reconstruction has been shown to achieve parametric images with lower standard error than the indirect method. Here, we present direct reconstruction for brain PET using event-by-event motion correction of list-mode data, applied to two tracers. Event-by-event motion correction was implemented for direct reconstruction in the Parametric Motion-compensation OSEM List-mode Algorithm for Resolution-recovery reconstruction. The direct implementation was tested on simulated and human datasets with tracers [11C]AFM (serotonin transporter) and [11C]UCB-J (synaptic density), which follow the 1-tissue compartment model. Rigid head motion was tracked with the Vicra system. Parametric images of K 1 and distribution volume (V T = K 1/k 2) were compared to those generated by the indirect method by regional coefficient of variation (CoV). Performance across count levels was assessed using sub-sampled datasets. For simulated and real datasets at high counts, the two methods estimated K 1 and V T with comparable accuracy. At lower count levels, the direct method was substantially more robust to outliers than the indirect method. Compared to the indirect method, direct reconstruction reduced regional K 1 CoV by 35-48% (simulated dataset), 39-43% ([11C]AFM dataset) and 30-36% ([11C]UCB-J dataset) across count levels (averaged over regions at matched iteration); V T CoV was reduced by 51-58%, 54-60% and 30-46%, respectively. Motion correction played an important role in the dataset with larger motion: correction increased regional V T by 51% on average in the [11C]UCB-J dataset. Direct reconstruction of dynamic brain PET with event-by-event motion correction is achievable and dramatically more robust to noise in V T images than the indirect method.
Kim, Kio; Habas, Piotr A.; Rajagopalan, Vidya; Scott, Julia A.; Corbett-Detig, James M.; Rousseau, Francois; Barkovich, A. James; Glenn, Orit A.; Studholme, Colin
2012-01-01
A common solution to clinical MR imaging in the presence of large anatomical motion is to use fast multi-slice 2D studies to reduce slice acquisition time and provide clinically usable slice data. Recently, techniques have been developed which retrospectively correct large scale 3D motion between individual slices allowing the formation of a geometrically correct 3D volume from the multiple slice stacks. One challenge, however, in the final reconstruction process is the possibility of varying intensity bias in the slice data, typically due to the motion of the anatomy relative to imaging coils. As a result, slices which cover the same region of anatomy at different times may exhibit different sensitivity. This bias field inconsistency can induce artifacts in the final 3D reconstruction that can impact both clinical interpretation of key tissue boundaries and the automated analysis of the data. Here we describe a framework to estimate and correct the bias field inconsistency in each slice collectively across all motion corrupted image slices. Experiments using synthetic and clinical data show that the proposed method reduces intensity variability in tissues and improves the distinction between key tissue types. PMID:21511561
Kim, Kio; Habas, Piotr A; Rajagopalan, Vidya; Scott, Julia A; Corbett-Detig, James M; Rousseau, Francois; Barkovich, A James; Glenn, Orit A; Studholme, Colin
2011-09-01
A common solution to clinical MR imaging in the presence of large anatomical motion is to use fast multislice 2D studies to reduce slice acquisition time and provide clinically usable slice data. Recently, techniques have been developed which retrospectively correct large scale 3D motion between individual slices allowing the formation of a geometrically correct 3D volume from the multiple slice stacks. One challenge, however, in the final reconstruction process is the possibility of varying intensity bias in the slice data, typically due to the motion of the anatomy relative to imaging coils. As a result, slices which cover the same region of anatomy at different times may exhibit different sensitivity. This bias field inconsistency can induce artifacts in the final 3D reconstruction that can impact both clinical interpretation of key tissue boundaries and the automated analysis of the data. Here we describe a framework to estimate and correct the bias field inconsistency in each slice collectively across all motion corrupted image slices. Experiments using synthetic and clinical data show that the proposed method reduces intensity variability in tissues and improves the distinction between key tissue types.
Sohrab, Sayed Sartaj; Daur, Ihsanullah
2018-02-01
Mentha is a very important crop grown and used extensively for many purposes in the Kingdom of Saudi Arabia. Begomoviruses are whitefly-transmitted viruses causing serious disease in many important plants exhibiting variable symptoms with significant economic loss globally. During farmers' field survey, yellow vein mosaic disease was observed in Mentha longifolia plants growing near tomato fields in Saudi Arabia. The causative agent was identified in 11 out of 19 samples using begomovirus-specific primers and the association of begomovirus with yellow vein mosaic disease in M. longifolia was confirmed. The full-length viral genome and betasatellite were amplified, cloned, and sequenced bidirectionally. The full DNA-A genome was found to have 2785 nucleotides with 1365 bp-associated betasatellite molecule. An attempt was made to amplify DNA-B, but none of the samples produced any positive amplicon of expected size which indicated the presence of monopartite begomovirus. The sequence identity matrix and phylogenetic analysis, based on full genome showed the highest identity (99.6%) with Tomato yellow leaf curl virus (TYLCV) and in phylogenetic analysis it formed a closed cluster with Tomato leaf curl virus infecting tomato and Corchorus crop in Saudi Arabia. The sequence analysis results of betasatellites showed the highest identity (98.9%) with Tomato yellow leaf curl betasatellites infecting tomato and phylogenetic analysis using betasatellites formed a close cluster with Tomato yellow leaf curl betasatellites infecting tomato and Corchorus crops, which has already been reported to cause yellow vein mosaic and leaf curl disease in many cultivated and weed crops growing in Saudi Arabia. The identified begomovirus associated with yellow vein mosaic disease in mentha could be a mutated strain of TYLCV and tentatively designated as TYLCV-Mentha isolate. Based on published data and latest information, this is the first report of identification of Tomato yellow leaf curl virus associated with yellow vein mosaic disease of M. longifolia from Saudi Arabia.
NASA Astrophysics Data System (ADS)
Wagner, Martin G.; Laeseke, Paul F.; Schubert, Tilman; Slagowski, Jordan M.; Speidel, Michael A.; Mistretta, Charles A.
2017-03-01
Fluoroscopic image guidance for minimally invasive procedures in the thorax and abdomen suffers from respiratory and cardiac motion, which can cause severe subtraction artifacts and inaccurate image guidance. This work proposes novel techniques for respiratory motion tracking in native fluoroscopic images as well as a model based estimation of vessel deformation. This would allow compensation for respiratory motion during the procedure and therefore simplify the workflow for minimally invasive procedures such as liver embolization. The method first establishes dynamic motion models for both the contrast-enhanced vasculature and curvilinear background features based on a native (non-contrast) and a contrast-enhanced image sequence acquired prior to device manipulation, under free breathing conditions. The model of vascular motion is generated by applying the diffeomorphic demons algorithm to an automatic segmentation of the subtraction sequence. The model of curvilinear background features is based on feature tracking in the native sequence. The two models establish the relationship between the respiratory state, which is inferred from curvilinear background features, and the vascular morphology during that same respiratory state. During subsequent fluoroscopy, curvilinear feature detection is applied to determine the appropriate vessel mask to display. The result is a dynamic motioncompensated vessel mask superimposed on the fluoroscopic image. Quantitative evaluation of the proposed methods was performed using a digital 4D CT-phantom (XCAT), which provides realistic human anatomy including sophisticated respiratory and cardiac motion models. Four groups of datasets were generated, where different parameters (cycle length, maximum diaphragm motion and maximum chest expansion) were modified within each image sequence. Each group contains 4 datasets consisting of the initial native and contrast enhanced sequences as well as a sequence, where the respiratory motion is tracked. The respiratory motion tracking error was between 1.00 % and 1.09 %. The estimated dynamic vessel masks yielded a Sørensen-Dice coefficient between 0.94 and 0.96. Finally, the accuracy of the vessel contours was measured in terms of the 99th percentile of the error, which ranged between 0.64 and 0.96 mm. The presented results show that the approach is feasible for respiratory motion tracking and compensation and could therefore considerably improve the workflow of minimally invasive procedures in the thorax and abdomen
Predicting 2D target velocity cannot help 2D motion integration for smooth pursuit initiation.
Montagnini, Anna; Spering, Miriam; Masson, Guillaume S
2006-12-01
Smooth pursuit eye movements reflect the temporal dynamics of bidimensional (2D) visual motion integration. When tracking a single, tilted line, initial pursuit direction is biased toward unidimensional (1D) edge motion signals, which are orthogonal to the line orientation. Over 200 ms, tracking direction is slowly corrected to finally match the 2D object motion during steady-state pursuit. We now show that repetition of line orientation and/or motion direction does not eliminate the transient tracking direction error nor change the time course of pursuit correction. Nonetheless, multiple successive presentations of a single orientation/direction condition elicit robust anticipatory pursuit eye movements that always go in the 2D object motion direction not the 1D edge motion direction. These results demonstrate that predictive signals about target motion cannot be used for an efficient integration of ambiguous velocity signals at pursuit initiation.
Estimating non-circular motions in barred galaxies using numerical N-body simulations
NASA Astrophysics Data System (ADS)
Randriamampandry, T. H.; Combes, F.; Carignan, C.; Deg, N.
2015-12-01
The observed velocities of the gas in barred galaxies are a combination of the azimuthally averaged circular velocity and non-circular motions, primarily caused by gas streaming along the bar. These non-circular flows must be accounted for before the observed velocities can be used in mass modelling. In this work, we examine the performance of the tilted-ring method and the DISKFIT algorithm for transforming velocity maps of barred spiral galaxies into rotation curves (RCs) using simulated data. We find that the tilted-ring method, which does not account for streaming motions, under-/overestimates the circular motions when the bar is parallel/perpendicular to the projected major axis. DISKFIT, which does include streaming motions, is limited to orientations where the bar is not aligned with either the major or minor axis of the image. Therefore, we propose a method of correcting RCs based on numerical simulations of galaxies. We correct the RC derived from the tilted-ring method based on a numerical simulation of a galaxy with similar properties and projections as the observed galaxy. Using observations of NGC 3319, which has a bar aligned with the major axis, as a test case, we show that the inferred mass models from the uncorrected and corrected RCs are significantly different. These results show the importance of correcting for the non-circular motions and demonstrate that new methods of accounting for these motions are necessary as current methods fail for specific bar alignments.
Naqvi, Shahid A; D'Souza, Warren D
2005-04-01
Current methods to calculate dose distributions with organ motion can be broadly classified as "dose convolution" and "fluence convolution" methods. In the former, a static dose distribution is convolved with the probability distribution function (PDF) that characterizes the motion. However, artifacts are produced near the surface and around inhomogeneities because the method assumes shift invariance. Fluence convolution avoids these artifacts by convolving the PDF with the incident fluence instead of the patient dose. In this paper we present an alternative method that improves the accuracy, generality as well as the speed of dose calculation with organ motion. The algorithm starts by sampling an isocenter point from a parametrically defined space curve corresponding to the patient-specific motion trajectory. Then a photon is sampled in the linac head and propagated through the three-dimensional (3-D) collimator structure corresponding to a particular MLC segment chosen randomly from the planned IMRT leaf sequence. The photon is then made to interact at a point in the CT-based simulation phantom. Randomly sampled monoenergetic kernel rays issued from this point are then made to deposit energy in the voxels. Our method explicitly accounts for MLC-specific effects (spectral hardening, tongue-and-groove, head scatter) as well as changes in SSD with isocentric displacement, assuming that the body moves rigidly with the isocenter. Since the positions are randomly sampled from a continuum, there is no motion discretization, and the computation takes no more time than a static calculation. To validate our method, we obtained ten separate film measurements of an IMRT plan delivered on a phantom moving sinusoidally, with each fraction starting with a random phase. For 2 cm motion amplitude, we found that a ten-fraction average of the film measurements gave an agreement with the calculated infinite fraction average to within 2 mm in the isodose curves. The results also corroborate the existing notion that the interfraction dose variability due to the interplay between the MLC motion and breathing motion averages out over typical multifraction treatments. Simulation with motion waveforms more representative of real breathing indicate that the motion can produce penumbral spreading asymmetric about the static dose distributions. Such calculations can help a clinician decide to use, for example, a larger margin in the superior direction than in the inferior direction. In the paper we demonstrate that a 15 min run on a single CPU can readily illustrate the effect of a patient-specific breathing waveform, and can guide the physician in making informed decisions about margin expansion and dose escalation.
Biliouris, Dimitrios; Verstraeten, Willem W.; Dutré, Phillip; van Aardt, Jan A.N.; Muys, Bart; Coppin, Pol
2007-01-01
The design and calibration of a new hyperspectral Compact Laboratory Spectro-Goniometer (CLabSpeG) is presented. CLabSpeG effectively measures the bidirectional reflectance Factor (BRF) of a sample, using a halogen light source and an Analytical Spectral Devices (ASD) spectroradiometer. The apparatus collects 4356 reflectance data readings covering the spectrum from 350 nm to 2500 nm by independent positioning of the sensor, sample holder, and light source. It has an azimuth and zenith resolution of 30 and 15 degrees, respectively. CLabSpeG is used to collect BRF data and extract Bidirectional Reflectance Distribution Function (BRDF) data of non-isotropic vegetation elements such as bark, soil, and leaves. Accurate calibration has ensured robust geometric accuracy of the apparatus, correction for the conicality of the light source, while sufficient radiometric stability and repeatability between measurements are obtained. The bidirectional reflectance data collection is automated and remotely controlled and takes approximately two and half hours for a BRF measurement cycle over a full hemisphere with 125 cm radius and 2.4 minutes for a single BRF acquisition. A specific protocol for vegetative leaf collection and measurement was established in order to investigate the possibility to extract BRDF values from Fagus sylvatica L. leaves under laboratory conditions. Drying leaf effects induce a reflectance change during the BRF measurements due to the laboratory illumination source. Therefore, the full hemisphere could not be covered with one leaf. Instead 12 BRF measurements per leaf were acquired covering all azimuth positions for a single light source zenith position. Data are collected in radiance format and reflectance is calculated by dividing the leaf cycle measurement with a radiance cycle of a Spectralon reference panel, multiplied by a Spectralon reflectance correction factor and a factor to correct for the conical effect of the light source. BRF results of measured leaves are presented. PMID:28903201
NASA Astrophysics Data System (ADS)
Jin, Xiao; Chan, Chung; Mulnix, Tim; Panin, Vladimir; Casey, Michael E.; Liu, Chi; Carson, Richard E.
2013-08-01
Whole-body PET/CT scanners are important clinical and research tools to study tracer distribution throughout the body. In whole-body studies, respiratory motion results in image artifacts. We have previously demonstrated for brain imaging that, when provided with accurate motion data, event-by-event correction has better accuracy than frame-based methods. Therefore, the goal of this work was to develop a list-mode reconstruction with novel physics modeling for the Siemens Biograph mCT with event-by-event motion correction, based on the MOLAR platform (Motion-compensation OSEM List-mode Algorithm for Resolution-Recovery Reconstruction). Application of MOLAR for the mCT required two algorithmic developments. First, in routine studies, the mCT collects list-mode data in 32 bit packets, where averaging of lines-of-response (LORs) by axial span and angular mashing reduced the number of LORs so that 32 bits are sufficient to address all sinogram bins. This degrades spatial resolution. In this work, we proposed a probabilistic LOR (pLOR) position technique that addresses axial and transaxial LOR grouping in 32 bit data. Second, two simplified approaches for 3D time-of-flight (TOF) scatter estimation were developed to accelerate the computationally intensive calculation without compromising accuracy. The proposed list-mode reconstruction algorithm was compared to the manufacturer's point spread function + TOF (PSF+TOF) algorithm. Phantom, animal, and human studies demonstrated that MOLAR with pLOR gives slightly faster contrast recovery than the PSF+TOF algorithm that uses the average 32 bit LOR sinogram positioning. Moving phantom and a whole-body human study suggested that event-by-event motion correction reduces image blurring caused by respiratory motion. We conclude that list-mode reconstruction with pLOR positioning provides a platform to generate high quality images for the mCT, and to recover fine structures in whole-body PET scans through event-by-event motion correction.
Jin, Xiao; Chan, Chung; Mulnix, Tim; Panin, Vladimir; Casey, Michael E.; Liu, Chi; Carson, Richard E.
2013-01-01
Whole-body PET/CT scanners are important clinical and research tools to study tracer distribution throughout the body. In whole-body studies, respiratory motion results in image artifacts. We have previously demonstrated for brain imaging that, when provided accurate motion data, event-by-event correction has better accuracy than frame-based methods. Therefore, the goal of this work was to develop a list-mode reconstruction with novel physics modeling for the Siemens Biograph mCT with event-by-event motion correction, based on the MOLAR platform (Motion-compensation OSEM List-mode Algorithm for Resolution-Recovery Reconstruction). Application of MOLAR for the mCT required two algorithmic developments. First, in routine studies, the mCT collects list-mode data in 32-bit packets, where averaging of lines of response (LORs) by axial span and angular mashing reduced the number of LORs so that 32 bits are sufficient to address all sinogram bins. This degrades spatial resolution. In this work, we proposed a probabilistic assignment of LOR positions (pLOR) that addresses axial and transaxial LOR grouping in 32-bit data. Second, two simplified approaches for 3D TOF scatter estimation were developed to accelerate the computationally intensive calculation without compromising accuracy. The proposed list-mode reconstruction algorithm was compared to the manufacturer's point spread function + time-of-flight (PSF+TOF) algorithm. Phantom, animal, and human studies demonstrated that MOLAR with pLOR gives slightly faster contrast recovery than the PSF+TOF algorithm that uses the average 32-bit LOR sinogram positioning. Moving phantom and a whole-body human study suggested that event-by-event motion correction reduces image blurring caused by respiratory motion. We conclude that list-mode reconstruction with pLOR positioning provides a platform to generate high quality images for the mCT, and to recover fine structures in whole-body PET scans through event-by-event motion correction. PMID:23892635
Zhang, Senhao; Shi, Yinghua; Cheng, Ningning; Du, Hongqi; Fan, Wenna; Wang, Chengzhang
2015-01-01
Alfalfa (Medicago sativa L.) is one of the most widely cultivated perennial forage legumes worldwide. Fall dormancy is an adaptive character related to the biomass production and winter survival in alfalfa. The physiological, biochemical and molecular mechanisms causing fall dormancy and the related genes have not been well studied. In this study, we sequenced two standard varieties of alfalfa (dormant and non-dormant) at two time points and generated approximately 160 million high quality paired-end sequence reads using sequencing by synthesis (SBS) technology. The de novo transcriptome assembly generated a set of 192,875 transcripts with an average length of 856 bp representing about 165.1 Mb of the alfalfa leaf transcriptome. After assembly, 111,062 (57.6%) transcripts were annotated against the NCBI non-redundant database. A total of 30,165 (15.6%) transcripts were mapped to 323 Kyoto Encyclopedia of Genes and Genomes pathways. We also identified 41,973 simple sequence repeats, which can be used to generate markers for alfalfa, and 1,541 transcription factors were identified across 1,350 transcripts. Gene expression between dormant and non-dormant alfalfa at different time points were performed, and we identified several differentially expressed genes potentially related to fall dormancy. The Gene Ontology and pathways information were also identified. We sequenced and assembled the leaf transcriptome of alfalfa related to fall dormancy, and also identified some genes of interest involved in the fall dormancy mechanism. Thus, our research focused on studying fall dormancy in alfalfa through transcriptome sequencing. The sequencing and gene expression data generated in this study may be used further to elucidate the complete mechanisms governing fall dormancy in alfalfa.
Cheng, Ningning; Du, Hongqi; Fan, Wenna; Wang, Chengzhang
2015-01-01
Alfalfa (Medicago sativa L.) is one of the most widely cultivated perennial forage legumes worldwide. Fall dormancy is an adaptive character related to the biomass production and winter survival in alfalfa. The physiological, biochemical and molecular mechanisms causing fall dormancy and the related genes have not been well studied. In this study, we sequenced two standard varieties of alfalfa (dormant and non-dormant) at two time points and generated approximately 160 million high quality paired-end sequence reads using sequencing by synthesis (SBS) technology. The de novo transcriptome assembly generated a set of 192,875 transcripts with an average length of 856 bp representing about 165.1 Mb of the alfalfa leaf transcriptome. After assembly, 111,062 (57.6%) transcripts were annotated against the NCBI non-redundant database. A total of 30,165 (15.6%) transcripts were mapped to 323 Kyoto Encyclopedia of Genes and Genomes pathways. We also identified 41,973 simple sequence repeats, which can be used to generate markers for alfalfa, and 1,541 transcription factors were identified across 1,350 transcripts. Gene expression between dormant and non-dormant alfalfa at different time points were performed, and we identified several differentially expressed genes potentially related to fall dormancy. The Gene Ontology and pathways information were also identified. We sequenced and assembled the leaf transcriptome of alfalfa related to fall dormancy, and also identified some genes of interest involved in the fall dormancy mechanism. Thus, our research focused on studying fall dormancy in alfalfa through transcriptome sequencing. The sequencing and gene expression data generated in this study may be used further to elucidate the complete mechanisms governing fall dormancy in alfalfa. PMID:25799491
Sound radiation of a railway rail in close proximity to the ground
NASA Astrophysics Data System (ADS)
Zhang, Xianying; Squicciarini, Giacomo; Thompson, David J.
2016-02-01
The sound radiation of a railway in close to proximity to a ground (both rigid and absorptive) is predicted by the boundary element method (BEM) in two dimensions (2D). Results are given in terms of the radiation ratio for both vertical and lateral motion of the rail, when the effects of the acoustic boundary conditions due to the sleepers and ballast are taken into account in the numerical models. Allowance is made for the effect of wave propagation along the rail by applying a correction in the 2D modelling. It is shown that the 2D correction is necessary at low frequency, for both vertical and lateral motion of an unsupported rail, especially in the vicinity of the corresponding critical frequency. However, this correction is not applicable for a supported rail; for vertical motion no correction is needed to the 2D result while for lateral motion the corresponding correction would depend on the pad stiffness. Finally, the corresponding numerical predictions of the sound radiation from a rail are verified by comparison with experimental results obtained using a 1/5 scale rail model in different configurations.
Hahn, Andrew D; Rowe, Daniel B
2012-02-01
As more evidence is presented suggesting that the phase, as well as the magnitude, of functional MRI (fMRI) time series may contain important information and that there are theoretical drawbacks to modeling functional response in the magnitude alone, removing noise in the phase is becoming more important. Previous studies have shown that retrospective correction of noise from physiologic sources can remove significant phase variance and that dynamic main magnetic field correction and regression of estimated motion parameters also remove significant phase fluctuations. In this work, we investigate the performance of physiologic noise regression in a framework along with correction for dynamic main field fluctuations and motion regression. Our findings suggest that including physiologic regressors provides some benefit in terms of reduction in phase noise power, but it is small compared to the benefit of dynamic field corrections and use of estimated motion parameters as nuisance regressors. Additionally, we show that the use of all three techniques reduces phase variance substantially, removes undesirable spatial phase correlations and improves detection of the functional response in magnitude and phase. Copyright © 2011 Elsevier Inc. All rights reserved.
Braaf, Boy; Donner, Sabine; Nam, Ahhyun S.; Bouma, Brett E.; Vakoc, Benjamin J.
2018-01-01
Complex differential variance (CDV) provides phase-sensitive angiographic imaging for optical coherence tomography (OCT) with immunity to phase-instabilities of the imaging system and small-scale axial bulk motion. However, like all angiographic methods, measurement noise can result in erroneous indications of blood flow that confuse the interpretation of angiographic images. In this paper, a modified CDV algorithm that corrects for this noise-bias is presented. This is achieved by normalizing the CDV signal by analytically derived upper and lower limits. The noise-bias corrected CDV algorithm was implemented into an experimental 1 μm wavelength OCT system for retinal imaging that used an eye tracking scanner laser ophthalmoscope at 815 nm for compensation of lateral eye motions. The noise-bias correction improved the CDV imaging of the blood flow in tissue layers with a low signal-to-noise ratio and suppressed false indications of blood flow outside the tissue. In addition, the CDV signal normalization suppressed noise induced by galvanometer scanning errors and small-scale lateral motion. High quality cross-section and motion-corrected en face angiograms of the retina and choroid are presented. PMID:29552388
Braaf, Boy; Donner, Sabine; Nam, Ahhyun S; Bouma, Brett E; Vakoc, Benjamin J
2018-02-01
Complex differential variance (CDV) provides phase-sensitive angiographic imaging for optical coherence tomography (OCT) with immunity to phase-instabilities of the imaging system and small-scale axial bulk motion. However, like all angiographic methods, measurement noise can result in erroneous indications of blood flow that confuse the interpretation of angiographic images. In this paper, a modified CDV algorithm that corrects for this noise-bias is presented. This is achieved by normalizing the CDV signal by analytically derived upper and lower limits. The noise-bias corrected CDV algorithm was implemented into an experimental 1 μm wavelength OCT system for retinal imaging that used an eye tracking scanner laser ophthalmoscope at 815 nm for compensation of lateral eye motions. The noise-bias correction improved the CDV imaging of the blood flow in tissue layers with a low signal-to-noise ratio and suppressed false indications of blood flow outside the tissue. In addition, the CDV signal normalization suppressed noise induced by galvanometer scanning errors and small-scale lateral motion. High quality cross-section and motion-corrected en face angiograms of the retina and choroid are presented.
Ionospheric Correction of InSAR for Accurate Ice Motion Mapping at High Latitudes
NASA Astrophysics Data System (ADS)
Liao, H.; Meyer, F. J.
2016-12-01
Monitoring the motion of the large ice sheets is of great importance for determining ice mass balance and its contribution to sea level rise. Recently the first comprehensive ice motion of the Greenland and the Antarctica have been generated with InSAR. However, these studies have indicated that the performance of InSAR-based ice motion mapping is limited by the presence of the ionosphere. This is particularly true at high latitudes and for low-frequency SAR data. Filter-based and empirical methods (e.g., removing polynomials), which have often been used to mitigate ionospheric effects, are often ineffective in these areas due to the typically strong spatial variability of ionospheric phase delay in high latitudes and due to the risk of removing true deformation signals from the observations. In this study, we will first present an outline of our split-spectrum InSAR-based ionospheric correction approach and particularly highlight how our method improves upon published techniques, such as the multiple sub-band approach to boost estimation accuracy as well as advanced error correction and filtering algorithms. We applied our work flow to a large number of ionosphere-affected dataset over the large ice sheets to estimate the benefit of ionospheric correction on ice motion mapping accuracy. Appropriate test sites over Greenland and the Antarctic have been chosen through cooperation with authors (UW, Ian Joughin) of previous ice motion studies. To demonstrate the magnitude of ionospheric noise and to showcase the performance of ionospheric correction, we will show examples of ionospheric-affected InSAR data and our ionosphere corrected result for comparison in visual. We also compared the corrected phase data to known ice velocity fields quantitatively for the analyzed areas from experts in ice velocity mapping. From our studies we found that ionospheric correction significantly reduces biases in ice velocity estimates and boosts accuracy by a factor that depends on a set of system (range bandwidth, temporal and spatial baseline) and processing parameters (e.g., filtering strength and sub-band configuration). A case study in Greenland is attached below.
Pan, Xu; Cornelissen, Johannes H C; Zhao, Wei-Wei; Liu, Guo-Fang; Hu, Yu-Kun; Prinzing, Andreas; Dong, Ming; Cornwell, William K
2014-01-01
Leaf litter decomposability is an important effect trait for ecosystem functioning. However, it is unknown how this effect trait evolved through plant history as a leaf ‘afterlife’ integrator of the evolution of multiple underlying traits upon which adaptive selection must have acted. Did decomposability evolve in a Brownian fashion without any constraints? Was evolution rapid at first and then slowed? Or was there an underlying mean-reverting process that makes the evolution of extreme trait values unlikely? Here, we test the hypothesis that the evolution of decomposability has undergone certain mean-reverting forces due to strong constraints and trade-offs in the leaf traits that have afterlife effects on litter quality to decomposers. In order to test this, we examined the leaf litter decomposability and seven key leaf traits of 48 tree species in the temperate area of China and fitted them to three evolutionary models: Brownian motion model (BM), Early burst model (EB), and Ornstein-Uhlenbeck model (OU). The OU model, which does not allow unlimited trait divergence through time, was the best fit model for leaf litter decomposability and all seven leaf traits. These results support the hypothesis that neither decomposability nor the underlying traits has been able to diverge toward progressively extreme values through evolutionary time. These results have reinforced our understanding of the relationships between leaf litter decomposability and leaf traits in an evolutionary perspective and may be a helpful step toward reconstructing deep-time carbon cycling based on taxonomic composition with more confidence. PMID:25535551
Qin, Ran; Zeng, Dongdong; Liang, Rong; Yang, Chengcong; Akhter, Delara; Alamin, Md; Jin, Xiaoli; Shi, Chunhai
2017-09-05
A new mutant named sdl (stripe and drooping leaf) was characterized from indica cultivar Zhenong 34 by ethylmethane sulfonate (EMS) mutagenesis. The mutant sdl exhibited development defects including stripe and drooping leaf, dwarfism and deformed floral organs. The gene SDL was found allelic to RNRS1 by map-based cloning, which was homologous to Arabidopsis TSO2 encoding the small subunit of ribonucleotide reductase. The gDNA sequencing results of sdl in mutant showed that there was a repetitive sequence insertion of 138-bp at the 475 th bp in the exon. The redundant sequence was conserved in SDL homologous proteins, which contained the active site (tyrosine), as well as two amino acids glutamate and histidine involved in the binding of iron. There were fewer chloroplasts and grana lamellas in sdl leaf compared with those of wild-type. Additionally, the stripe leaves of sdl seedlings were highly sensitive to temperature, since the chlorophyll content was increased with the temperature rising. The drooping leaf of sdl might be resulted from the disappearance of vascular bundles and mesophyll cells in both leaf midrib and lateral veins. Fittingly to the phenotypes of mutant sdl, the expression levels of genes associated with photosynthesis and chlorophyll synthesis were found to be down- or up-regulated at different temperatures in mutant sdl. Also, the transcriptional levels of genes related to plant height and floral organ formation showed obvious differences between wild-type and sdl. The "SDL/RNRS1" was, hence, required for the chlorophyll biosynthesis and also played pleiotropic roles in the regulation of plant development. Copyright © 2017. Published by Elsevier B.V.
Local collective motion analysis for multi-probe dynamic imaging and microrheology
NASA Astrophysics Data System (ADS)
Khan, Manas; Mason, Thomas G.
2016-08-01
Dynamical artifacts, such as mechanical drift, advection, and hydrodynamic flow, can adversely affect multi-probe dynamic imaging and passive particle-tracking microrheology experiments. Alternatively, active driving by molecular motors can cause interesting non-Brownian motion of probes in local regions. Existing drift-correction techniques, which require large ensembles of probes or fast temporal sampling, are inadequate for handling complex spatio-temporal drifts and non-Brownian motion of localized domains containing relatively few probes. Here, we report an analytical method based on local collective motion (LCM) analysis of as few as two probes for detecting the presence of non-Brownian motion and for accurately eliminating it to reveal the underlying Brownian motion. By calculating an ensemble-average, time-dependent, LCM mean square displacement (MSD) of two or more localized probes and comparing this MSD to constituent single-probe MSDs, we can identify temporal regimes during which either thermal or athermal motion dominates. Single-probe motion, when referenced relative to the moving frame attached to the multi-probe LCM trajectory, provides a true Brownian MSD after scaling by an appropriate correction factor that depends on the number of probes used in LCM analysis. We show that LCM analysis can be used to correct many different dynamical artifacts, including spatially varying drifts, gradient flows, cell motion, time-dependent drift, and temporally varying oscillatory advection, thereby offering a significant improvement over existing approaches.
Evaluation of respiratory and cardiac motion correction schemes in dual gated PET/CT cardiac imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamare, F., E-mail: frederic.lamare@chu-bordeaux.fr; Fernandez, P.; CNRS, INCIA, UMR 5287, F-33400 Talence
Purpose: Cardiac imaging suffers from both respiratory and cardiac motion. One of the proposed solutions involves double gated acquisitions. Although such an approach may lead to both respiratory and cardiac motion compensation there are issues associated with (a) the combination of data from cardiac and respiratory motion bins, and (b) poor statistical quality images as a result of using only part of the acquired data. The main objective of this work was to evaluate different schemes of combining binned data in order to identify the best strategy to reconstruct motion free cardiac images from dual gated positron emission tomography (PET)more » acquisitions. Methods: A digital phantom study as well as seven human studies were used in this evaluation. PET data were acquired in list mode (LM). A real-time position management system and an electrocardiogram device were used to provide the respiratory and cardiac motion triggers registered within the LM file. Acquired data were subsequently binned considering four and six cardiac gates, or the diastole only in combination with eight respiratory amplitude gates. PET images were corrected for attenuation, but no randoms nor scatter corrections were included. Reconstructed images from each of the bins considered above were subsequently used in combination with an affine or an elastic registration algorithm to derive transformation parameters allowing the combination of all acquired data in a particular position in the cardiac and respiratory cycles. Images were assessed in terms of signal-to-noise ratio (SNR), contrast, image profile, coefficient-of-variation (COV), and relative difference of the recovered activity concentration. Results: Regardless of the considered motion compensation strategy, the nonrigid motion model performed better than the affine model, leading to higher SNR and contrast combined with a lower COV. Nevertheless, when compensating for respiration only, no statistically significant differences were observed in the performance of the two motion models considered. Superior image SNR and contrast were seen using the affine respiratory motion model in combination with the diastole cardiac bin in comparison to the use of the whole cardiac cycle. In contrast, when simultaneously correcting for cardiac beating and respiration, the elastic respiratory motion model outperformed the affine model. In this context, four cardiac bins associated with eight respiratory amplitude bins seemed to be adequate. Conclusions: Considering the compensation of respiratory motion effects only, both affine and elastic based approaches led to an accurate resizing and positioning of the myocardium. The use of the diastolic phase combined with an affine model based respiratory motion correction may therefore be a simple approach leading to significant quality improvements in cardiac PET imaging. However, the best performance was obtained with the combined correction for both cardiac and respiratory movements considering all the dual-gated bins independently through the use of an elastic model based motion compensation.« less
Samal, Pinaki; Patra, R C; Gupta, A R; Mishra, S K; Jena, D; Satapathy, D
2016-10-01
The main objective of the study was to determine the deleterious effect of fluoride on plasma trace minerals of fluorotic cattle and to evaluate the effect of Tamarindus indica leaf powder toward correction of the same. A total of 30 cattle exhibiting chronic sign of fluorosis and 10 healthy cattle from nonfluorotic area were incorporated in this study. Fluorotic cattle were divided into three equal groups consisting of 10 cattle each. Group I from fluoride free area served as healthy control. The Group II received no treatment and served as disease control. Groups III and IV were supplemented with tamarind leaf powder at 15 g and 30 g/day with feed for 60 days. Plasma mineral status was evaluated after 60 days of treatment with double beam atomic absorption spectrophotometer. Statistical analysis of data revealed a significant (p<0.05) decrease in mean plasma copper (Cu) (0.344±0.007 ppm), zinc (Zn) (0.692±0.06 ppm), and iron (Fe) concentration (1.100±0.01 ppm) in fluorotic cattle in comparison to healthy cattle (0.58±0.010, 2.342±0.04, 1.406±0.04 ppm, respectively). Significant (p<0.05) increase in Cu, Zn, and Fe was recorded after supplementation of tamarind leaf powder to the fluorotic cattle. It was concluded that fluorotic cattle might be supplemented with T. indica leaf powder with feed for the correction of the decreased level of certain plasma minerals.
ERIC Educational Resources Information Center
Fogarty, Ian; Geelan, David
2013-01-01
Students in 4 Canadian high school physics classes completed instructional sequences in two key physics topics related to motion--Straight Line Motion and Newton's First Law. Different sequences of laboratory investigation, teacher explanation (lecture) and the use of computer-based scientific visualizations (animations and simulations) were…
Gondim Teixeira, P A; Bravetti, M; Hossu, G; Lecocq, S; Petit, D; Loeuille, D; Blum, A
2017-12-01
To evaluate the impact of coil design and motion-resistant sequences on the quality of sacroiliac magnetic resonance imaging (MRI) examination in patients with spondyloarthropathy. One hundred and twenty-one patients with suspected sacroiliitis and referred for MRI of the sacroiliac joints were retrospectively evaluated with MRI at 3-Tesla. There were 78 women and 43 men with a mean age of 36.7±11.5 (SD) years (range: 15.8-78.4 years). Conventional and motion-resistant fat-saturated fast-spin echo T2-weighted sequences were performed with two different coils. Image quality was subjectively evaluated by two independent readers (R1 and R2) using a four-point scale. Confidence in the identification of bone marrow edema pattern (BMEP) was also evaluated subjectively using a three-point scale. Phased array body coil yielded improved image quality compared to surface coil (14.1 to 30.4% for R1 and 14.6 to 25.7% for R2; P<0.0001). The impact of the sequence type on quality was also statistically significant (P=0.0046). BMEP was identified in 40 patients and best inter-reader agreement was obtained using the combination of phased-array body coil with motion-resistant T2-weighted sequence (kappa 0.990). The smallest number of indeterminate BMEP zones was seen on MRI set acquired with the phased-array body coil and motion-resistant T2-weighted sequence. Phased array body coil and motion-resistant T2-weighted sequences perform better than surface coil and conventional T2-weighted sequences for the evaluation of sacroiliac joints, increasing confidence in the identification of BMEP. Copyright © 2017 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Shea, Tuathan P., E-mail: tuathan.oshea@icr.ac.uk; Bamber, Jeffrey C.; Harris, Emma J.
Purpose: Ultrasound-based motion estimation is an expanding subfield of image-guided radiation therapy. Although ultrasound can detect tissue motion that is a fraction of a millimeter, its accuracy is variable. For controlling linear accelerator tracking and gating, ultrasound motion estimates must remain highly accurate throughout the imaging sequence. This study presents a temporal regularization method for correlation-based template matching which aims to improve the accuracy of motion estimates. Methods: Liver ultrasound sequences (15–23 Hz imaging rate, 2.5–5.5 min length) from ten healthy volunteers under free breathing were used. Anatomical features (blood vessels) in each sequence were manually annotated for comparison withmore » normalized cross-correlation based template matching. Five sequences from a Siemens Acuson™ scanner were used for algorithm development (training set). Results from incremental tracking (IT) were compared with a temporal regularization method, which included a highly specific similarity metric and state observer, known as the α–β filter/similarity threshold (ABST). A further five sequences from an Elekta Clarity™ system were used for validation, without alteration of the tracking algorithm (validation set). Results: Overall, the ABST method produced marked improvements in vessel tracking accuracy. For the training set, the mean and 95th percentile (95%) errors (defined as the difference from manual annotations) were 1.6 and 1.4 mm, respectively (compared to 6.2 and 9.1 mm, respectively, for IT). For each sequence, the use of the state observer leads to improvement in the 95% error. For the validation set, the mean and 95% errors for the ABST method were 0.8 and 1.5 mm, respectively. Conclusions: Ultrasound-based motion estimation has potential to monitor liver translation over long time periods with high accuracy. Nonrigid motion (strain) and the quality of the ultrasound data are likely to have an impact on tracking performance. A future study will investigate spatial uniformity of motion and its effect on the motion estimation errors.« less
Hayashi, Norio; Miyati, Tosiaki; Minami, Takashi; Takeshita, Yumie; Ryu, Yasuji; Matsuda, Tsuyoshi; Ohno, Naoki; Hamaguchi, Takashi; Kato, Kenichiro; Takamura, Toshinari; Matsui, Osamu
2013-01-01
The focus of this study was on the investigation of the accuracy of the fat fraction of the liver by use of single-breath-holding magnetic resonance spectroscopy (MRS) with T (2) correction. Single-voxel proton MRS was performed with several TE values, and the fat fraction was determined with and without T (2) correction. MRS was also performed with use of the point-resolved spectroscopy sequence in single breath holding. The T (2) values of both water and fat were determined separately at the same time, and the effect of T (2) on the fat fraction was corrected. In addition, MRS-based fat fractions were compared with the degree of hepatic steatosis (HS) by liver biopsy in human subjects. With T (2) correction, the MRI-derived fat fractions were in good agreement with the fat fractions in all phantoms, but the fat fractions were overestimated without T (2) correction. R (2) values were in good agreement with the preset iron concentrations in the phantoms. The MRI-derived fat fraction was well correlated with the degree of HS. Iron deposited in the liver affects the signal strength when proton MRS is used for detection of the fat signal in the liver. However, the fat signal can be evaluated more accurately when the T (2) correction is applied. Breath-holding MRS minimizes the respiratory motion, and it can be more accurate in the quantification of the hepatic fat fraction.
Human movement analysis with image processing in real time
NASA Astrophysics Data System (ADS)
Fauvet, Eric; Paindavoine, Michel; Cannard, F.
1991-04-01
In the field of the human sciences, a lot of applications needs to know the kinematic characteristics of the human movements Psycology is associating the characteristics with the control mechanism, sport and biomechariics are associating them with the performance of the sportman or of the patient. So the trainers or the doctors can correct the gesture of the subject to obtain a better performance if he knows the motion properties. Roherton's studies show the children motion evolution2 . Several investigations methods are able to measure the human movement But now most of the studies are based on image processing. Often the systems are working at the T.V. standard (50 frame per secund ). they permit only to study very slow gesture. A human operator analyses the digitizing sequence of the film manually giving a very expensive, especially long and unprecise operation. On these different grounds many human movement analysis systems were implemented. They consist of: - markers which are fixed to the anatomical interesting points on the subject in motion, - Image compression which is the art to coding picture data. Generally the compression Is limited to the centroid coordinates calculation tor each marker. These systems differ from one other in image acquisition and markers detection.
Afacan, Onur; Gholipour, Ali; Mulkern, Robert V; Barnewolt, Carol E; Estroff, Judy A; Connolly, Susan A; Parad, Richard B; Bairdain, Sigrid; Warfield, Simon K
2016-12-01
To evaluate the feasibility of using diffusion-weighted magnetic resonance imaging (DW-MRI) to assess the fetal lung apparent diffusion coefficient (ADC) at 3 Tesla (T). Seventy-one pregnant women (32 second trimester, 39 third trimester) were scanned with a twice-refocused Echo-planar diffusion-weighted imaging sequence with 6 different b-values in 3 orthogonal diffusion orientations at 3T. After each scan, a region-of-interest (ROI) mask was drawn to select a region in the fetal lung and an automated robust maximum likelihood estimation algorithm was used to compute the ADC parameter. The amount of motion in each scan was visually rated. When scans with unacceptable levels of motion were eliminated, the lung ADC values showed a strong association with gestational age (P < 0.01), increasing dramatically between 16 and 27 weeks and then achieving a plateau around 27 weeks. We show that to get reliable estimates of ADC values of fetal lungs, a multiple b-value acquisition, where motion is either corrected or considered, can be performed. J. Magn. Reson. Imaging 2016;44:1650-1655. © 2016 International Society for Magnetic Resonance in Medicine.
Kelly, John J.; Bansal, Amit; Winkelman, Jonathan; Janus, Lori R.; Hell, Shannon; Wencel, Marie; Belt, Patricia; Kuehn, Kevin A.; Rier, Steven T.; Tuchman, Nancy C.
2010-01-01
Elevated atmospheric CO2 can cause increased carbon fixation and altered foliar chemical composition in a variety of plants, which has the potential to impact forested headwater streams because they are detritus-based ecosystems that rely on leaf litter as their primary source of organic carbon. Fungi and bacteria play key roles in the entry of terrestrial carbon into aquatic food webs, as they decompose leaf litter and serve as a source of nutrition for invertebrate consumers. This study tested the hypothesis that changes in leaf chemistry caused by elevated atmospheric CO2 would result in changes in the size and composition of microbial communities colonizing leaves in a woodland stream. Three tree species, Populus tremuloides, Salix alba, and Acer saccharum, were grown under ambient (360 ppm) or elevated (720 ppm) CO2, and their leaves were incubated in a woodland stream. Elevated-CO2 treatment resulted in significant increases in the phenolic and tannin contents and C/N ratios of leaves. Microbial effects, which occurred only for P. tremuloides leaves, included decreased fungal biomass and decreased bacterial counts. Analysis of fungal and bacterial communities on P. tremuloides leaves via terminal restriction fragment length polymorphism (T-RFLP) and clone library sequencing revealed that fungal community composition was mostly unchanged by the elevated-CO2 treatment, whereas bacterial communities showed a significant shift in composition and a significant increase in diversity. Specific changes in bacterial communities included increased numbers of alphaproteobacterial and cytophaga-flavobacter-bacteroides (CFB) group sequences and decreased numbers of betaproteobacterial and firmicutes sequences, as well as a pronounced decrease in overall Gram-positive bacterial sequences. PMID:20543045
Kelly, John J; Bansal, Amit; Winkelman, Jonathan; Janus, Lori R; Hell, Shannon; Wencel, Marie; Belt, Patricia; Kuehn, Kevin A; Rier, Steven T; Tuchman, Nancy C
2010-08-01
Elevated atmospheric CO(2) can cause increased carbon fixation and altered foliar chemical composition in a variety of plants, which has the potential to impact forested headwater streams because they are detritus-based ecosystems that rely on leaf litter as their primary source of organic carbon. Fungi and bacteria play key roles in the entry of terrestrial carbon into aquatic food webs, as they decompose leaf litter and serve as a source of nutrition for invertebrate consumers. This study tested the hypothesis that changes in leaf chemistry caused by elevated atmospheric CO(2) would result in changes in the size and composition of microbial communities colonizing leaves in a woodland stream. Three tree species, Populus tremuloides, Salix alba, and Acer saccharum, were grown under ambient (360 ppm) or elevated (720 ppm) CO(2), and their leaves were incubated in a woodland stream. Elevated-CO(2) treatment resulted in significant increases in the phenolic and tannin contents and C/N ratios of leaves. Microbial effects, which occurred only for P. tremuloides leaves, included decreased fungal biomass and decreased bacterial counts. Analysis of fungal and bacterial communities on P. tremuloides leaves via terminal restriction fragment length polymorphism (T-RFLP) and clone library sequencing revealed that fungal community composition was mostly unchanged by the elevated-CO(2) treatment, whereas bacterial communities showed a significant shift in composition and a significant increase in diversity. Specific changes in bacterial communities included increased numbers of alphaproteobacterial and cytophaga-flavobacter-bacteroides (CFB) group sequences and decreased numbers of betaproteobacterial and firmicutes sequences, as well as a pronounced decrease in overall gram-positive bacterial sequences.
DMLC tracking and gating can improve dose coverage for prostate VMAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colvill, E.; Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065; School of Physics, University of Sydney, NSW 2006
2014-09-15
Purpose: To assess and compare the dosimetric impact of dynamic multileaf collimator (DMLC) tracking and gating as motion correction strategies to account for intrafraction motion during conventionally fractionated prostate radiotherapy. Methods: A dose reconstruction method was used to retrospectively assess the dose distributions delivered without motion correction during volumetric modulated arc therapy fractions for 20 fractions of five prostate cancer patients who received conventionally fractionated radiotherapy. These delivered dose distributions were compared with the dose distributions which would have been delivered had DMLC tracking or gating motion correction strategies been implemented. The delivered dose distributions were constructed by incorporating themore » observed prostate motion with the patient's original treatment plan to simulate the treatment delivery. The DMLC tracking dose distributions were constructed using the same dose reconstruction method with the addition of MLC positions from Linac log files obtained during DMLC tracking simulations with the observed prostate motions input to the DMLC tracking software. The gating dose distributions were constructed by altering the prostate motion to simulate the application of a gating threshold of 3 mm for 5 s. Results: The delivered dose distributions showed that dosimetric effects of intrafraction prostate motion could be substantial for some fractions, with an estimated dose decrease of more than 19% and 34% from the planned CTVD{sub 99%} and PTV D{sub 95%} values, respectively, for one fraction. Evaluation of dose distributions for DMLC tracking and gating deliveries showed that both interventions were effective in improving the CTV D{sub 99%} for all of the selected fractions to within 4% of planned value for all fractions. For the delivered dose distributions the difference in rectum V{sub 65%} for the individual fractions from planned ranged from −44% to 101% and for the bladder V{sub 65%} the range was −61% to 26% from planned. The application of tracking decreased the maximum rectum and bladder V{sub 65%} difference to 6% and 4%, respectively. Conclusions: For the first time, the dosimetric impact of DMLC tracking and gating to account for intrafraction motion during prostate radiotherapy has been assessed and compared with no motion correction. Without motion correction intrafraction prostate motion can result in a significant decrease in target dose coverage for a small number of individual fractions. This is unlikely to effect the overall treatment for most patients undergoing conventionally fractionated treatments. Both DMLC tracking and gating demonstrate dose distributions for all assessed fractions that are robust to intrafraction motion.« less
USDA-ARS?s Scientific Manuscript database
Cultivated peanut (Arachis hypogaea L.) is one of the most important food legume crops grown worldwide, and is a major source for edible oil and protein. However, due to low genetic variation, peanut is very vulnerable to a variety of pathogens, such as early leaf spot, late leaf spot, rust and Toma...
USDA-ARS?s Scientific Manuscript database
Wheat is grown around the world and has been plagued by three rust fungi for centuries. Leaf rust, stripe rust, and stem rust each cause significant damage and can adapt quickly to overcome resistance that is present in wheat cultivars. Using advanced DNA sequencing technology, the genomes of leaf ...
USDA-ARS?s Scientific Manuscript database
Bacterial leaf spot of lettuce, caused by Xanthomonas campestris pv. vitians, is a devastating disease of lettuce worldwide. Since there are no chemicals available for effective control of the disease, host-plant resistance is highly desirable to protect lettuce production. A total of 179 lettuce ge...
Dynamic visual attention: motion direction versus motion magnitude
NASA Astrophysics Data System (ADS)
Bur, A.; Wurtz, P.; Müri, R. M.; Hügli, H.
2008-02-01
Defined as an attentive process in the context of visual sequences, dynamic visual attention refers to the selection of the most informative parts of video sequence. This paper investigates the contribution of motion in dynamic visual attention, and specifically compares computer models designed with the motion component expressed either as the speed magnitude or as the speed vector. Several computer models, including static features (color, intensity and orientation) and motion features (magnitude and vector) are considered. Qualitative and quantitative evaluations are performed by comparing the computer model output with human saliency maps obtained experimentally from eye movement recordings. The model suitability is evaluated in various situations (synthetic and real sequences, acquired with fixed and moving camera perspective), showing advantages and inconveniences of each method as well as preferred domain of application.
Animation control of surface motion capture.
Tejera, Margara; Casas, Dan; Hilton, Adrian
2013-12-01
Surface motion capture (SurfCap) of actor performance from multiple view video provides reconstruction of the natural nonrigid deformation of skin and clothing. This paper introduces techniques for interactive animation control of SurfCap sequences which allow the flexibility in editing and interactive manipulation associated with existing tools for animation from skeletal motion capture (MoCap). Laplacian mesh editing is extended using a basis model learned from SurfCap sequences to constrain the surface shape to reproduce natural deformation. Three novel approaches for animation control of SurfCap sequences, which exploit the constrained Laplacian mesh editing, are introduced: 1) space–time editing for interactive sequence manipulation; 2) skeleton-driven animation to achieve natural nonrigid surface deformation; and 3) hybrid combination of skeletal MoCap driven and SurfCap sequence to extend the range of movement. These approaches are combined with high-level parametric control of SurfCap sequences in a hybrid surface and skeleton-driven animation control framework to achieve natural surface deformation with an extended range of movement by exploiting existing MoCap archives. Evaluation of each approach and the integrated animation framework are presented on real SurfCap sequences for actors performing multiple motions with a variety of clothing styles. Results demonstrate that these techniques enable flexible control for interactive animation with the natural nonrigid surface dynamics of the captured performance and provide a powerful tool to extend current SurfCap databases by incorporating new motions from MoCap sequences.
Blair, Matthew W; Hurtado, Natalia; Chavarro, Carolina M; Muñoz-Torres, Monica C; Giraldo, Martha C; Pedraza, Fabio; Tomkins, Jeff; Wing, Rod
2011-03-22
Sequencing of cDNA libraries for the development of expressed sequence tags (ESTs) as well as for the discovery of simple sequence repeats (SSRs) has been a common method of developing microsatellites or SSR-based markers. In this research, our objective was to further sequence and develop common bean microsatellites from leaf and root cDNA libraries derived from the Andean gene pool accession G19833 and the Mesoamerican gene pool accession DOR364, mapping parents of a commonly used reference map. The root libraries were made from high and low phosphorus treated plants. A total of 3,123 EST sequences from leaf and root cDNA libraries were screened and used for direct simple sequence repeat discovery. From these EST sequences we found 184 microsatellites; the majority containing tri-nucleotide motifs, many of which were GC rich (ACC, AGC and AGG in particular). Di-nucleotide motif microsatellites were about half as common as the tri-nucleotide motif microsatellites but most of these were AGn microsatellites with a moderate number of ATn microsatellites in root ESTs followed by few ACn and no GCn microsatellites. Out of the 184 new SSR loci, 120 new microsatellite markers were developed in the BMc (Bean Microsatellites from cDNAs) series and these were evaluated for their capacity to distinguish bean diversity in a germplasm panel of 18 genotypes. We developed a database with images of the microsatellites and their polymorphism information content (PIC), which averaged 0.310 for polymorphic markers. The present study produced information about microsatellite frequency in root and leaf tissues of two important genotypes for common bean genomics: namely G19833, the Andean genotype selected for whole genome shotgun sequencing from race Peru, and DOR364 a race Mesoamerica subgroup 2 genotype that is a small-red seeded, released variety in Central America. Both race Peru and Mesoamerica subgroup 2 (small red beans) have been understudied in comparison to race Nueva Granada and Mesoamerica subgroup 1 (black beans) both with regards to gene expression and as sources of markers. However, we found few differences between SSR type and frequency between the G19833 leaf and DOR364 root tissue-derived ESTs. Overall, our work adds to the analysis of microsatellite frequency evaluation for common bean and provides a new set of 120 BMc markers which combined with the 248 previously developed BMc markers brings the total in this series to 368 markers. Once we include BMd markers, which are derived from GenBank sequences, the current total of gene-based markers from our laboratory surpasses 500 markers. These markers are basic for studies of the transcriptome of common bean and can form anchor points for genetic mapping studies in the future.
Dornbusch, Tino; Michaud, Olivier; Xenarios, Ioannis; Fankhauser, Christian
2014-10-01
In contrast to vastly studied hypocotyl growth, little is known about diel regulation of leaf growth and its coordination with movements such as changes in leaf elevation angle (hyponasty). We developed a 3D live-leaf growth analysis system enabling simultaneous monitoring of growth and movements. Leaf growth is maximal several hours after dawn, requires light, and is regulated by daylength, suggesting coupling between growth and metabolism. We identify both blade and petiole positioning as important components of leaf movements in Arabidopsis thaliana and reveal a temporal delay between growth and movements. In hypocotyls, the combination of circadian expression of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 and their light-regulated protein stability drives rhythmic hypocotyl elongation with peak growth at dawn. We find that PIF4 and PIF5 are not essential to sustain rhythmic leaf growth but influence their amplitude. Furthermore, EARLY FLOWERING3, a member of the evening complex (EC), is required to maintain the correct phase between growth and movement. Our study shows that the mechanisms underlying rhythmic hypocotyl and leaf growth differ. Moreover, we reveal the temporal relationship between leaf elongation and movements and demonstrate the importance of the EC for the coordination of these phenotypic traits. © 2014 American Society of Plant Biologists. All rights reserved.
Photometric and Structural Properties of NGC 6544: A Combined VVV-Hubble Space Telescope Study
NASA Astrophysics Data System (ADS)
Cohen, Roger E.; Mauro, Francesco; Geisler, Doug; Moni Bidin, Christian; Dotter, Aaron; Bonatto, Charles
2014-07-01
We combine archival Hubble Space Telescope imaging with wide-field near-infrared photometry to study the neglected metal-poor Galactic globular cluster NGC 6544. A high spatial resolution map of differential reddening over the inner portion of the cluster is constructed, revealing variations of up to half of the total reddening, and the resulting corrected color-magnitude diagrams reveal a sparse blue horizontal branch and centrally concentrated blue straggler population, verified via relative proper motions. Using the corrected photometry to investigate the cluster distance, reddening, and age via direct comparison to well-calibrated photometry of clusters with similar metallicities, we estimate (m - M)0 = 11.96, E(B - V) = 0.79, and an age coeval with M13 to within the relevant uncertainties. Although our data are insufficient to place tight constraints on the reddening law toward NGC 6544, we find no strong evidence that it is non-standard at optical or near-infrared wavelengths. We also provide near-infrared fiducial sequences extending nearly 2 mag below the cluster main sequence turnoff, generated from a statistically decontaminated sample of cluster stars. Lastly, we redetermine the cluster center and construct a radial number density profile which is well fit by an atypically flat power law with a slope of about 1.7. We discuss this result, together with a flattened main sequence luminosity function and inverted mass function, in the context of mass segregation and tidal stripping via interactions with Milky Way potential.
NASA Astrophysics Data System (ADS)
Baka, N.; Lelieveldt, B. P. F.; Schultz, C.; Niessen, W.; van Walsum, T.
2015-05-01
During percutaneous coronary interventions (PCI) catheters and arteries are visualized by x-ray angiography (XA) sequences, using brief contrast injections to show the coronary arteries. If we could continue visualizing the coronary arteries after the contrast agent passed (thus in non-contrast XA frames), we could potentially lower contrast use, which is advantageous due to the toxicity of the contrast agent. This paper explores the possibility of such visualization in mono-plane XA acquisitions with a special focus on respiratory based coronary artery motion estimation. We use the patient specific coronary artery centerlines from pre-interventional 3D CTA images to project on the XA sequence for artery visualization. To achieve this, a framework for registering the 3D centerlines with the mono-plane 2D + time XA sequences is presented. During the registration the patient specific cardiac and respiratory motion is learned. We investigate several respiratory motion estimation strategies with respect to accuracy, plausibility and ease of use for motion prediction in XA frames with and without contrast. The investigated strategies include diaphragm motion based prediction, and respiratory motion extraction from the guiding catheter tip motion. We furthermore compare translational and rigid respiratory based heart motion. We validated the accuracy of the 2D/3D registration and the respiratory and cardiac motion estimations on XA sequences of 12 interventions. The diaphragm based motion model and the catheter tip derived motion achieved 1.58 mm and 1.83 mm median 2D accuracy, respectively. On a subset of four interventions we evaluated the artery visualization accuracy for non-contrast cases. Both diaphragm, and catheter tip based prediction performed similarly, with about half of the cases providing satisfactory accuracy (median error < 2 mm).
Thought Speed, Mood, and the Experience of Mental Motion.
Pronin, Emily; Jacobs, Elana
2008-11-01
This article presents a theoretical account relating thought speed to mood and psychological experience. Thought sequences that occur at a fast speed generally induce more positive affect than do those that occur slowly. Thought speed constitutes one aspect of mental motion. Another aspect involves thought variability, or the degree to which thoughts in a sequence either vary widely from or revolve closely around a theme. Thought sequences possessing more motion (occurring fast and varying widely) generally produce more positive affect than do sequences possessing little motion (occurring slowly and repetitively). When speed and variability oppose each other, such that one is low and the other is high, predictable psychological states also emerge. For example, whereas slow, repetitive thinking can prompt dejection, fast, repetitive thinking can prompt anxiety. This distinction is related to the fact that fast thinking involves greater actual and felt energy than slow thinking does. Effects of mental motion occur independent of the specific content of thought. Their consequences for mood and energy hold psychotherapeutic relevance. © 2008 Association for Psychological Science.
Clinical measurement of the dart throwing motion of the wrist: variability, accuracy and correction.
Vardakastani, Vasiliki; Bell, Hannah; Mee, Sarah; Brigstocke, Gavin; Kedgley, Angela E
2018-01-01
Despite being functionally important, the dart throwing motion is difficult to assess accurately through goniometry. The objectives of this study were to describe a method for reliably quantifying the dart throwing motion using goniometric measurements within a healthy population. Wrist kinematics of 24 healthy participants were assessed using goniometry and optical motion tracking. Three wrist angles were measured at the starting and ending points of the motion: flexion-extension, radial-ulnar deviation and dart throwing motion angle. The orientation of the dart throwing motion plane relative to the flexion-extension axis ranged between 28° and 57° among the tested population. Plane orientations derived from optical motion capture differed from those calculated through goniometry by 25°. An equation to correct the estimation of the plane from goniometry measurements was derived. This was applied and differences in the orientation of the plane were reduced to non-significant levels, enabling the dart throwing motion to be measured using goniometry alone.
TH-E-BRE-04: An Online Replanning Algorithm for VMAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahunbay, E; Li, X; Moreau, M
2014-06-15
Purpose: To develop a fast replanning algorithm based on segment aperture morphing (SAM) for online replanning of volumetric modulated arc therapy (VMAT) with flattening filtered (FF) and flattening filter free (FFF) beams. Methods: A software tool was developed to interface with a VMAT planning system ((Monaco, Elekta), enabling the output of detailed beam/machine parameters of original VMAT plans generated based on planning CTs for FF or FFF beams. A SAM algorithm, previously developed for fixed-beam IMRT, was modified to allow the algorithm to correct for interfractional variations (e.g., setup error, organ motion and deformation) by morphing apertures based on themore » geometric relationship between the beam's eye view of the anatomy from the planning CT and that from the daily CT for each control point. The algorithm was tested using daily CTs acquired using an in-room CT during daily IGRT for representative prostate cancer cases along with their planning CTs. The algorithm allows for restricted MLC leaf travel distance between control points of the VMAT delivery to prevent SAM from increasing leaf travel, and therefore treatment delivery time. Results: The VMAT plans adapted to the daily CT by SAM were found to improve the dosimetry relative to the IGRT repositioning plans for both FF and FFF beams. For the adaptive plans, the changes in leaf travel distance between control points were < 1cm for 80% of the control points with no restriction. When restricted to the original plans' maximum travel distance, the dosimetric effect was minimal. The adaptive plans were delivered successfully with similar delivery times as the original plans. The execution of the SAM algorithm was < 10 seconds. Conclusion: The SAM algorithm can quickly generate deliverable online-adaptive VMAT plans based on the anatomy of the day for both FF and FFF beams.« less
Schilmiller, Anthony L; Miner, Dennis P; Larson, Matthew; McDowell, Eric; Gang, David R; Wilkerson, Curtis; Last, Robert L
2010-07-01
Shotgun proteomics analysis allows hundreds of proteins to be identified and quantified from a single sample at relatively low cost. Extensive DNA sequence information is a prerequisite for shotgun proteomics, and it is ideal to have sequence for the organism being studied rather than from related species or accessions. While this requirement has limited the set of organisms that are candidates for this approach, next generation sequencing technologies make it feasible to obtain deep DNA sequence coverage from any organism. As part of our studies of specialized (secondary) metabolism in tomato (Solanum lycopersicum) trichomes, 454 sequencing of cDNA was combined with shotgun proteomics analyses to obtain in-depth profiles of genes and proteins expressed in leaf and stem glandular trichomes of 3-week-old plants. The expressed sequence tag and proteomics data sets combined with metabolite analysis led to the discovery and characterization of a sesquiterpene synthase that produces beta-caryophyllene and alpha-humulene from E,E-farnesyl diphosphate in trichomes of leaf but not of stem. This analysis demonstrates the utility of combining high-throughput cDNA sequencing with proteomics experiments in a target tissue. These data can be used for dissection of other biochemical processes in these specialized epidermal cells.
Schilmiller, Anthony L.; Miner, Dennis P.; Larson, Matthew; McDowell, Eric; Gang, David R.; Wilkerson, Curtis; Last, Robert L.
2010-01-01
Shotgun proteomics analysis allows hundreds of proteins to be identified and quantified from a single sample at relatively low cost. Extensive DNA sequence information is a prerequisite for shotgun proteomics, and it is ideal to have sequence for the organism being studied rather than from related species or accessions. While this requirement has limited the set of organisms that are candidates for this approach, next generation sequencing technologies make it feasible to obtain deep DNA sequence coverage from any organism. As part of our studies of specialized (secondary) metabolism in tomato (Solanum lycopersicum) trichomes, 454 sequencing of cDNA was combined with shotgun proteomics analyses to obtain in-depth profiles of genes and proteins expressed in leaf and stem glandular trichomes of 3-week-old plants. The expressed sequence tag and proteomics data sets combined with metabolite analysis led to the discovery and characterization of a sesquiterpene synthase that produces β-caryophyllene and α-humulene from E,E-farnesyl diphosphate in trichomes of leaf but not of stem. This analysis demonstrates the utility of combining high-throughput cDNA sequencing with proteomics experiments in a target tissue. These data can be used for dissection of other biochemical processes in these specialized epidermal cells. PMID:20431087
Methods to detect, characterize, and remove motion artifact in resting state fMRI
Power, Jonathan D; Mitra, Anish; Laumann, Timothy O; Snyder, Abraham Z; Schlaggar, Bradley L; Petersen, Steven E
2013-01-01
Head motion systematically alters correlations in resting state functional connectivity fMRI (RSFC). In this report we examine impact of motion on signal intensity and RSFC correlations. We find that motion-induced signal changes (1) are often complex and variable waveforms, (2) are often shared across nearly all brain voxels, and (3) often persist more than 10 seconds after motion ceases. These signal changes, both during and after motion, increase observed RSFC correlations in a distance-dependent manner. Motion-related signal changes are not removed by a variety of motion-based regressors, but are effectively reduced by global signal regression. We link several measures of data quality to motion, changes in signal intensity, and changes in RSFC correlations. We demonstrate that improvements in data quality measures during processing may represent cosmetic improvements rather than true correction of the data. We demonstrate a within-subject, censoring-based artifact removal strategy based on volume censoring that reduces group differences due to motion to chance levels. We note conditions under which group-level regressions do and do not correct motion-related effects. PMID:23994314
Vienola, Kari V; Damodaran, Mathi; Braaf, Boy; Vermeer, Koenraad A; de Boer, Johannes F
2018-02-01
Retinal motion detection with an accuracy of 0.77 arcmin corresponding to 3.7 µm on the retina is demonstrated with a novel digital micromirror device based ophthalmoscope. By generating a confocal image as a reference, eye motion could be measured from consecutively measured subsampled frames. The subsampled frames provide 7.7 millisecond snapshots of the retina without motion artifacts between the image points of the subsampled frame, distributed over the full field of view. An ophthalmoscope pattern projection speed of 130 Hz enabled a motion detection bandwidth of 65 Hz. A model eye with a scanning mirror was built to test the performance of the motion detection algorithm. Furthermore, an in vivo motion trace was obtained from a healthy volunteer. The obtained eye motion trace clearly shows the three main types of fixational eye movements. Lastly, the obtained eye motion trace was used to correct for the eye motion in consecutively obtained subsampled frames to produce an averaged confocal image correct for motion artefacts.
Vienola, Kari V.; Damodaran, Mathi; Braaf, Boy; Vermeer, Koenraad A.; de Boer, Johannes F.
2018-01-01
Retinal motion detection with an accuracy of 0.77 arcmin corresponding to 3.7 µm on the retina is demonstrated with a novel digital micromirror device based ophthalmoscope. By generating a confocal image as a reference, eye motion could be measured from consecutively measured subsampled frames. The subsampled frames provide 7.7 millisecond snapshots of the retina without motion artifacts between the image points of the subsampled frame, distributed over the full field of view. An ophthalmoscope pattern projection speed of 130 Hz enabled a motion detection bandwidth of 65 Hz. A model eye with a scanning mirror was built to test the performance of the motion detection algorithm. Furthermore, an in vivo motion trace was obtained from a healthy volunteer. The obtained eye motion trace clearly shows the three main types of fixational eye movements. Lastly, the obtained eye motion trace was used to correct for the eye motion in consecutively obtained subsampled frames to produce an averaged confocal image correct for motion artefacts. PMID:29552396
Real-time film recording from stroke-written CRT's
NASA Technical Reports Server (NTRS)
Hunt, R.; Grunwald, A. J.
1980-01-01
Real-time simulation studies often require motion-picture recording of events directly from stroke written cathode-ray tubes (CRT's). Difficulty presented is prevention of "flicker," which results from lack of synchronization between display sequence on CRT and shutter motion of camera. Programmable method has been devised for phasing display sequence to shutter motion, ensuring flicker-free recordings.
Motion of 1/3⟨111⟩ dislocations on Σ3 {112} twin boundaries in nanotwinned copper
NASA Astrophysics Data System (ADS)
Lu, N.; Du, K.; Lu, L.; Ye, H. Q.
2014-01-01
The atomic structure of Σ3 {112} ITBs in nanotwinned Cu is investigated by using aberration-corrected high resolution transmission electron microscopy (HRTEM) and in situ HRTEM observations. The Σ3 {112} ITBs are consisted of periodically repeated three partial dislocations. The in situ HRTEM results show that 1/3[111] partial dislocation moves on the Σ3 {112} incoherent twin boundary (ITB), which was accompanied by a migration of the ITB. A dislocation reaction mechanism is proposed for the motion of 1/3[111] Frank partial dislocation, in which the 1/3[111] partial dislocation exchanges its position with twin boundary dislocations in sequence. In this way, the 1/3[111] dislocation can move on the incoherent twin boundary in metals with low stacking fault energy. Meanwhile, the ITB will migrate in its normal direction accordingly. These results provide insight into the reaction mechanism of 1/3[111] dislocations and ITBs and the associated migration of ITBs.
Quantitative measurement of MLC leaf displacements using an electronic portal image device
NASA Astrophysics Data System (ADS)
Yang, Yong; Xing, Lei
2004-04-01
The success of an IMRT treatment relies on the positioning accuracy of the MLC (multileaf collimator) leaves for both step-and-shoot and dynamic deliveries. In practice, however, there exists no effective and quantitative means for routine MLC QA and this has become one of the bottleneck problems in IMRT implementation. In this work we present an electronic portal image device (EPID) based method for fast and accurate measurement of MLC leaf positions at arbitrary locations within the 40 cm × 40 cm radiation field. The new technique utilizes the fact that the integral signal in a small region of interest (ROI) is a sensitive and reliable indicator of the leaf displacement. In this approach, the integral signal at a ROI was expressed as a weighted sum of the contributions from the displacements of the leaf above the point and the adjacent leaves. The weighting factors or linear coefficients of the system equations were determined by fitting the integral signal data for a group of pre-designed MLC leaf sequences to the known leaf displacements that were intentionally introduced during the creation of the leaf sequences. Once the calibration is done, the system can be used for routine MLC leaf positioning QA to detect possible leaf errors. A series of tests was carried out to examine the functionality and accuracy of the technique. Our results show that the proposed technique is potentially superior to the conventional edge-detecting approach in two aspects: (i) it deals with the problem in a systematic approach and allows us to take into account the influence of the adjacent MLC leaves effectively; and (ii) it may improve the signal-to-noise ratio and is thus capable of quantitatively measuring extremely small leaf positional displacements. Our results indicate that the technique can detect a leaf positional error as small as 0.1 mm at an arbitrary point within the field in the absence of EPID set-up error and 0.3 mm when the uncertainty is considered. Given its simplicity, efficiency and accuracy, we believe that the technique is ideally suitable for routine MLC leaf positioning QA. This work was presented at the 45th Annual Meeting of American Society of Therapeutic Radiology and Oncology (ASTRO), Salt Lake City, UT, 2003. A US Patent is pending (application no. 10/197,232).
Kim, Mi Jung; Jin, Jingjing; Zheng, Junshi; Wong, Limsoon; Chua, Nam-Hai; Jang, In-Cheol
2015-12-01
Stevia (Stevia rebaudiana) produces not only a group of diterpenoid glycosides known as steviol glycosides (SGs), but also other labdane-type diterpenoids that may be spatially separated from SGs. However, their biosynthetic routes and spatial distribution in leaf tissues have not yet been elucidated. Here, we integrate metabolome and transcriptome analyses of Stevia to explore the biosynthetic capacity of leaf tissues for diterpenoid metabolism. Tissue-specific chemical analyses confirmed that SGs were accumulated in leaf cells but not in trichomes. On the other hand, Stevia leaf trichomes stored other labdane-type diterpenoids such as oxomanoyl oxide and agatholic acid. RNA sequencing analyses from two different tissues of Stevia provided a comprehensive overview of dynamic metabolic activities in trichomes and leaf without trichomes. These metabolite-guided transcriptomics and phylogenetic and gene expression analyses clearly identified specific gene members encoding enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate pathway and the biosynthesis of steviol or other labdane-type diterpenoids. Additionally, our RNA sequencing analysis uncovered copalyl diphosphate synthase (SrCPS) and kaurene synthase1 (SrKS1) homologs, SrCPS2 and KS-like (SrKSL), which were specifically expressed in trichomes. In vitro and in planta assays showed that unlike SrCPS and SrKS1, SrCPS2 synthesized labda-13-en-8-ol diphosphate and successively catalyzed the formation of manoyl oxide and epi-manoyl oxide in combination with SrKSL. Our findings suggest that Stevia may have evolved to use distinct metabolic pathways to avoid metabolic interferences in leaf tissues for efficient production of diverse secondary metabolites. © 2015 American Society of Plant Biologists. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Jiao, Jieqing; Salinas, Cristian A.; Searle, Graham E.; Gunn, Roger N.; Schnabel, Julia A.
2012-02-01
Dynamic Positron Emission Tomography is a powerful tool for quantitative imaging of in vivo biological processes. The long scan durations necessitate motion correction, to maintain the validity of the dynamic measurements, which can be particularly challenging due to the low signal-to-noise ratio (SNR) and spatial resolution, as well as the complex tracer behaviour in the dynamic PET data. In this paper we develop a novel automated expectation-maximisation image registration framework that incorporates temporal tracer kinetic information to correct for inter-frame subject motion during dynamic PET scans. We employ the Zubal human brain phantom to simulate dynamic PET data using SORTEO (a Monte Carlo-based simulator), in order to validate the proposed method for its ability to recover imposed rigid motion. We have conducted a range of simulations using different noise levels, and corrupted the data with a range of rigid motion artefacts. The performance of our motion correction method is compared with pairwise registration using normalised mutual information as a voxel similarity measure (an approach conventionally used to correct for dynamic PET inter-frame motion based solely on intensity information). To quantify registration accuracy, we calculate the target registration error across the images. The results show that our new dynamic image registration method based on tracer kinetics yields better realignment of the simulated datasets, halving the target registration error when compared to the conventional method at small motion levels, as well as yielding smaller residuals in translation and rotation parameters. We also show that our new method is less affected by the low signal in the first few frames, which the conventional method based on normalised mutual information fails to realign.
Tsoumpas, C; Polycarpou, I; Thielemans, K; Buerger, C; King, A P; Schaeffter, T; Marsden, P K
2013-03-21
Following continuous improvement in PET spatial resolution, respiratory motion correction has become an important task. Two of the most common approaches that utilize all detected PET events to motion-correct PET data are the reconstruct-transform-average method (RTA) and motion-compensated image reconstruction (MCIR). In RTA, separate images are reconstructed for each respiratory frame, subsequently transformed to one reference frame and finally averaged to produce a motion-corrected image. In MCIR, the projection data from all frames are reconstructed by including motion information in the system matrix so that a motion-corrected image is reconstructed directly. Previous theoretical analyses have explained why MCIR is expected to outperform RTA. It has been suggested that MCIR creates less noise than RTA because the images for each separate respiratory frame will be severely affected by noise. However, recent investigations have shown that in the unregularized case RTA images can have fewer noise artefacts, while MCIR images are more quantitatively accurate but have the common salt-and-pepper noise. In this paper, we perform a realistic numerical 4D simulation study to compare the advantages gained by including regularization within reconstruction for RTA and MCIR, in particular using the median-root-prior incorporated in the ordered subsets maximum a posteriori one-step-late algorithm. In this investigation we have demonstrated that MCIR with proper regularization parameters reconstructs lesions with less bias and root mean square error and similar CNR and standard deviation to regularized RTA. This finding is reproducible for a variety of noise levels (25, 50, 100 million counts), lesion sizes (8 mm, 14 mm diameter) and iterations. Nevertheless, regularized RTA can also be a practical solution for motion compensation as a proper level of regularization reduces both bias and mean square error.
Application of side-oblique image-motion blur correction to Kuaizhou-1 agile optical images.
Sun, Tao; Long, Hui; Liu, Bao-Cheng; Li, Ying
2016-03-21
Given the recent development of agile optical satellites for rapid-response land observation, side-oblique image-motion (SOIM) detection and blur correction have become increasingly essential for improving the radiometric quality of side-oblique images. The Chinese small-scale agile mapping satellite Kuaizhou-1 (KZ-1) was developed by the Harbin Institute of Technology and launched for multiple emergency applications. Like other agile satellites, KZ-1 suffers from SOIM blur, particularly in captured images with large side-oblique angles. SOIM detection and blur correction are critical for improving the image radiometric accuracy. This study proposes a SOIM restoration method based on segmental point spread function detection. The segment region width is determined by satellite parameters such as speed, height, integration time, and side-oblique angle. The corresponding algorithms and a matrix form are proposed for SOIM blur correction. Radiometric objective evaluation indices are used to assess the restoration quality. Beijing regional images from KZ-1 are used as experimental data. The radiometric quality is found to increase greatly after SOIM correction. Thus, the proposed method effectively corrects image motion for KZ-1 agile optical satellites.
Keller, Sune H; Sibomana, Merence; Olesen, Oline V; Svarer, Claus; Holm, Søren; Andersen, Flemming L; Højgaard, Liselotte
2012-03-01
Many authors have reported the importance of motion correction (MC) for PET. Patient motion during scanning disturbs kinetic analysis and degrades resolution. In addition, using misaligned transmission for attenuation and scatter correction may produce regional quantification bias in the reconstructed emission images. The purpose of this work was the development of quality control (QC) methods for MC procedures based on external motion tracking (EMT) for human scanning using an optical motion tracking system. Two scans with minor motion and 5 with major motion (as reported by the optical motion tracking system) were selected from (18)F-FDG scans acquired on a PET scanner. The motion was measured as the maximum displacement of the markers attached to the subject's head and was considered to be major if larger than 4 mm and minor if less than 2 mm. After allowing a 40- to 60-min uptake time after tracer injection, we acquired a 6-min transmission scan, followed by a 40-min emission list-mode scan. Each emission list-mode dataset was divided into 8 frames of 5 min. The reconstructed time-framed images were aligned to a selected reference frame using either EMT or the AIR (automated image registration) software. The following 3 QC methods were used to evaluate the EMT and AIR MC: a method using the ratio between 2 regions of interest with gray matter voxels (GM) and white matter voxels (WM), called GM/WM; mutual information; and cross correlation. The results of the 3 QC methods were in agreement with one another and with a visual subjective inspection of the image data. Before MC, the QC method measures varied significantly in scans with major motion and displayed limited variations on scans with minor motion. The variation was significantly reduced and measures improved after MC with AIR, whereas EMT MC performed less well. The 3 presented QC methods produced similar results and are useful for evaluating tracer-independent external-tracking motion-correction methods for human brain scans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Z; Wang, I; Yao, R
Purpose: This study is to use plan parameters optimization (Dose rate, collimator angle, couch angle, initial starting phase) to improve the performance of conformal arc radiotherapy plans with motion tracking by increasing the plan performance score (PPS). Methods: Two types of 3D conformal arc plans were created based on QUASAR respiratory motion phantom with spherical and cylindrical targets. Sinusoidal model was applied to the MLC leaves to generate motion tracking plans. A MATLAB program was developed to calculate PPS of each plan (ranges from 0–1) and optimize plan parameters. We first selected the dose rate for motion tracking plans andmore » then used simulated annealing algorithm to search for the combination of the other parameters that resulted in the plan of the maximal PPS. The optimized motion tracking plan was delivered by Varian Truebeam Linac. In-room cameras and stopwatch were used for starting phase selection and synchronization between phantom motion and plan delivery. Gaf-EBT2 dosimetry films were used to measure the dose delivered to the target in QUASAR phantom. Dose profiles and Truebeam trajectory log files were used for plan delivery performance evaluation. Results: For spherical target, the maximal PPS (PPSsph) of the optimized plan was 0.79: (Dose rate: 500MU/min, Collimator: 90°, Couch: +10°, starting phase: 0.83π). For cylindrical target, the maximal PPScyl was 0.75 (Dose rate: 300MU/min, Collimator: 87°, starting phase: 0.97π) with couch at 0°. Differences of dose profiles between motion tracking plans (with the maximal and the minimal PPS) and 3D conformal plans were as follows: PPSsph=0.79: %ΔFWHM: 8.9%, %Dmax: 3.1%; PPSsph=0.52: %ΔFWHM: 10.4%, %Dmax: 6.1%. PPScyl=0.75: %ΔFWHM: 4.7%, %Dmax: 3.6%; PPScyl=0.42: %ΔFWHM: 12.5%, %Dmax: 9.6%. Conclusion: By achieving high plan performance score through parameters optimization, we can improve target dose conformity of motion tracking plan by decreasing total MLC leaf travel distance and leaf speed.« less
Scafaro, Andrew P; Gallé, Alexander; Van Rie, Jeroen; Carmo-Silva, Elizabete; Salvucci, Michael E; Atwell, Brian J
2016-08-01
The mechanistic basis of tolerance to heat stress was investigated in Oryza sativa and two wild rice species, Oryza meridionalis and Oryza australiensis. The wild relatives are endemic to the hot, arid Australian savannah. Leaf elongation rates and gas exchange were measured during short periods of supra-optimal heat, revealing species differences. The Rubisco activase (RCA) gene from each species was sequenced. Using expressed recombinant RCA and leaf-extracted RCA, the kinetic properties of the two isoforms were studied under high temperatures. Leaf elongation was undiminished at 45°C in O. australiensis. The net photosynthetic rate was almost 50% slower in O. sativa at 45°C than at 28°C, while in O. australiensis it was unaffected. Oryza meridionalis exhibited intermediate heat tolerance. Based on previous reports that RCA is heat-labile, the Rubisco activation state was measured. It correlated positively with leaf elongation rates across all three species and four periods of exposure to 45°C. Sequence analysis revealed numerous polymorphisms in the RCA amino acid sequence from O. australiensis. The O. australiensis RCA enzyme was thermally stable up to 42°C, contrasting with RCA from O. sativa, which was inhibited at 36°C. We attribute heat tolerance in the wild species to thermal stability of RCA, enabling Rubisco to remain active. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Seepiban, Channarong; Charoenvilaisiri, Saengsoon; Warin, Nuchnard; Bhunchoth, Anjana; Phironrit, Namthip; Phuangrat, Bencharong; Chatchawankanphanich, Orawan; Attathom, Supat; Gajanandana, Oraprapai
2017-05-30
Tomato yellow leaf curl Thailand virus, TYLCTHV, is a begomovirus that causes severe losses of tomato crops in Thailand as well as several countries in Southeast and East Asia. The development of monoclonal antibodies (MAbs) and serological methods for detecting TYLCTHV is essential for epidemiological studies and screening for virus-resistant cultivars. The recombinant coat protein (CP) of TYLCTHV was expressed in Escherichia coli and used to generate MAbs against TYLCTHV through hybridoma technology. The MAbs were characterized and optimized to develop triple antibody sandwich enzyme-linked immunosorbent assays (TAS-ELISAs) for begomovirus detection. The efficiency of TAS-ELISAs for begomovirus detection was evaluated with tomato, pepper, eggplant, okra and cucurbit plants collected from several provinces in Thailand. Molecular identification of begomoviruses in these samples was also performed through PCR and DNA sequence analysis of the CP gene. Two MAbs (M1 and D2) were generated and used to develop TAS-ELISAs for begomovirus detection. The results of begomovirus detection in 147 field samples indicated that MAb M1 reacted with 2 begomovirus species, TYLCTHV and Tobacco leaf curl Yunnan virus (TbLCYnV), whereas MAb D2 reacted with 4 begomovirus species, TYLCTHV, TbLCYnV, Tomato leaf curl New Delhi virus (ToLCNDV) and Squash leaf curl China virus (SLCCNV). Phylogenetic analyses of CP amino acid sequences from these begomoviruses revealed that the CP sequences of begomoviruses recognized by the narrow-spectrum MAb M1 were highly conserved, sharing 93% identity with each other but only 72-81% identity with MAb M1-negative begomoviruses. The CP sequences of begomoviruses recognized by the broad-spectrum MAb D2 demonstrated a wider range of amino acid sequence identity, sharing 78-96% identity with each other and 72-91% identity with those that were not detected by MAb D2. TAS-ELISAs using the narrow-specificity MAb M1 proved highly efficient for the detection of TYLCTHV and TbLCYnV, whereas TAS-ELISAs using the broad-specificity MAb D2 were highly efficient for the detection of TYLCTHV, TbLCYnV, ToLCNDV and SLCCNV. Both newly developed assays allow for sensitive, inexpensive, high-throughput detection of begomoviruses in field plant samples, as well as screening for virus-resistant cultivars.
Revisions to some parameters used in stochastic-method simulations of ground motion
Boore, David; Thompson, Eric M.
2015-01-01
The stochastic method of ground‐motion simulation specifies the amplitude spectrum as a function of magnitude (M) and distance (R). The manner in which the amplitude spectrum varies with M and R depends on physical‐based parameters that are often constrained by recorded motions for a particular region (e.g., stress parameter, geometrical spreading, quality factor, and crustal amplifications), which we refer to as the seismological model. The remaining ingredient for the stochastic method is the ground‐motion duration. Although the duration obviously affects the character of the ground motion in the time domain, it also significantly affects the response of a single‐degree‐of‐freedom oscillator. Recently published updates to the stochastic method include a new generalized double‐corner‐frequency source model, a new finite‐fault correction, a new parameterization of duration, and a new duration model for active crustal regions. In this article, we augment these updates with a new crustal amplification model and a new duration model for stable continental regions. Random‐vibration theory (RVT) provides a computationally efficient method to compute the peak oscillator response directly from the ground‐motion amplitude spectrum and duration. Because the correction factor used to account for the nonstationarity of the ground motion depends on the ground‐motion amplitude spectrum and duration, we also present new RVT correction factors for both active and stable regions.
Improved frame-based estimation of head motion in PET brain imaging.
Mukherjee, J M; Lindsay, C; Mukherjee, A; Olivier, P; Shao, L; King, M A; Licho, R
2016-05-01
Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type.
Strategies to minimize sedation in pediatric body magnetic resonance imaging.
Jaimes, Camilo; Gee, Michael S
2016-05-01
The high soft-tissue contrast of MRI and the absence of ionizing radiation make it a valuable tool for assessment of body pathology in children. Infants and young children are often unable to cooperate with awake MRI so sedation or general anesthesia might be required. However, given recent data on the costs and potential risks of anesthesia in young children, there is a need to try to decrease or avoid sedation in this population when possible. Child life specialists in radiology frequently use behavioral techniques and audiovisual support devices, and they practice with children and families using mock scanners to improve child compliance with MRI. Optimization of the MR scanner environment is also important to create a child-friendly space. If the child can remain inside the MRI scanner, a variety of emerging techniques can reduce the effect of involuntary motion. Using sequences with short acquisition times such as single-shot fast spin echo and volumetric gradient echo can decrease artifacts and improve image quality. Breath-holding, respiratory triggering and signal averaging all reduce respiratory motion. Emerging techniques such as radial and multislice k-space acquisition, navigator motion correction, as well as parallel imaging and compressed sensing reconstruction methods can further accelerate acquisition and decrease motion. Collaboration among radiologists, anesthesiologists, technologists, child life specialists and families is crucial for successful performance of MRI in young children.
Motion detection and compensation in infrared retinal image sequences.
Scharcanski, J; Schardosim, L R; Santos, D; Stuchi, A
2013-01-01
Infrared image data captured by non-mydriatic digital retinography systems often are used in the diagnosis and treatment of the diabetic macular edema (DME). Infrared illumination is less aggressive to the patient retina, and retinal studies can be carried out without pupil dilation. However, sequences of infrared eye fundus images of static scenes, tend to present pixel intensity fluctuations in time, and noisy and background illumination changes pose a challenge to most motion detection methods proposed in the literature. In this paper, we present a retinal motion detection method that is adaptive to background noise and illumination changes. Our experimental results indicate that this method is suitable for detecting retinal motion in infrared image sequences, and compensate the detected motion, which is relevant in retinal laser treatment systems for DME. Copyright © 2013 Elsevier Ltd. All rights reserved.
Skornitzke, S; Fritz, F; Klauss, M; Pahn, G; Hansen, J; Hirsch, J; Grenacher, L; Kauczor, H-U
2015-01-01
Objective: To compare six different scenarios for correcting for breathing motion in abdominal dual-energy CT (DECT) perfusion measurements. Methods: Rigid [RRComm(80 kVp)] and non-rigid [NRComm(80 kVp)] registration of commercially available CT perfusion software, custom non-rigid registration [NRCustom(80 kVp], demons algorithm) and a control group [CG(80 kVp)] without motion correction were evaluated using 80 kVp images. Additionally, NRCustom was applied to dual-energy (DE)-blended [NRCustom(DE)] and virtual non-contrast [NRCustom(VNC)] images, yielding six evaluated scenarios. After motion correction, perfusion maps were calculated using a combined maximum slope/Patlak model. For qualitative evaluation, three blinded radiologists independently rated motion correction quality and resulting perfusion maps on a four-point scale (4 = best, 1 = worst). For quantitative evaluation, relative changes in metric values, R2 and residuals of perfusion model fits were calculated. Results: For motion-corrected images, mean ratings differed significantly [NRCustom(80 kVp) and NRCustom(DE), 3.3; NRComm(80 kVp), 3.1; NRCustom(VNC), 2.9; RRComm(80 kVp), 2.7; CG(80 kVp), 2.7; all p < 0.05], except when comparing NRCustom(80 kVp) with NRCustom(DE) and RRComm(80 kVp) with CG(80 kVp). NRCustom(80 kVp) and NRCustom(DE) achieved the highest reduction in metric values [NRCustom(80 kVp), 48.5%; NRCustom(DE), 45.6%; NRComm(80 kVp), 29.2%; NRCustom(VNC), 22.8%; RRComm(80 kVp), 0.6%; CG(80 kVp), 0%]. Regarding perfusion maps, NRCustom(80 kVp) and NRCustom(DE) were rated highest [NRCustom(80 kVp), 3.1; NRCustom(DE), 3.0; NRComm(80 kVp), 2.8; NRCustom(VNC), 2.6; CG(80 kVp), 2.5; RRComm(80 kVp), 2.4] and had significantly higher R2 and lower residuals. Correlation between qualitative and quantitative evaluation was low to moderate. Conclusion: Non-rigid motion correction improves spatial alignment of the target region and fit of CT perfusion models. Using DE-blended and DE-VNC images for deformable registration offers no significant improvement. Advances in knowledge: Non-rigid algorithms improve the quality of abdominal CT perfusion measurements but do not benefit from DECT post processing. PMID:25465353
Motion magnification using the Hermite transform
NASA Astrophysics Data System (ADS)
Brieva, Jorge; Moya-Albor, Ernesto; Gomez-Coronel, Sandra L.; Escalante-Ramírez, Boris; Ponce, Hiram; Mora Esquivel, Juan I.
2015-12-01
We present an Eulerian motion magnification technique with a spatial decomposition based on the Hermite Transform (HT). We compare our results to the approach presented in.1 We test our method in one sequence of the breathing of a newborn baby and on an MRI left ventricle sequence. Methods are compared using quantitative and qualitative metrics after the application of the motion magnification algorithm.
USDA-ARS?s Scientific Manuscript database
Fusarium graminaerum (Fusarium head blight; FHB) and Puccinia recondita Roberge ex Desmaz. f. sp. tritici Eriks. & E. Henn (leaf rust; LR) are two major fungal pathogens threatening the wheat crop; consequently identifying resistance genes from various sources is always of importance to wheat breede...
USDA-ARS?s Scientific Manuscript database
Leaf rust, caused by Puccinia triticina Eriks., is one of the most widespread diseases of wheat worldwide and breeding for resistance is one of the most effective methods of control. Lr16 is a wheat leaf rust resistance gene that provides resistance at both the seedling and adult stages. Simple s...
USDA-ARS?s Scientific Manuscript database
Abscission, which is the process of organ separation, is a highly regulated process occurring as a final stage of organ development. In the tomato (Solanum lycopersicum) system, flower and leaf abscission was induced by flower removal or leaf deblading, leading to auxin depletion which results in in...
76 FR 64115 - Privacy Act of 1974; Privacy Act System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-17
...-leaf binders or file folders, and in electronic media, including NASA's Ethics Program Tracking System... documents, electronic media, micrographic media, photographs, or motion pictures film, and various medical....; General Accounting Office's General Policies/Procedures and Communications Manual, Chapter 7; Treasury...
Brown, Judith K; Ur-Rehman, Muhammad Zia; Avelar, Sofia; Chingandu, N; Hameed, Usman; Haider, Saleem; Ilyas, Muhammad
2017-09-15
At least five begomoviral species that cause leaf curl disease of cotton have emerged recently in Asia and Africa, reducing fiber quality and yield. The potential for the spread of these viruses to other cotton-vegetable growing regions throughout the world is extensive, owing to routine, global transport of alternative hosts of the leaf curl viruses, especially ornamentals. The research reported here describes the design and validation of polymerase chain reaction (PCR) primers undertaken to facilitate molecular detection of the two most-prevalent leaf curl-associated begomovirus-betasatellite complexes in the Indian Subcontinent and Africa, the Cotton leaf curl Kokhran virus-Burewala strain and Cotton leaf curl Gezira virus, endemic to Asia and Africa, respectively. Ongoing genomic diversification of these begomoviral-satellite complexes was evident based on nucleotide sequence alignments, and analysis of single nucleotide polymorphisms, both factors that created new challenges for primer design. The additional requirement for species and strain-specific, and betasatellite-specific primer design, imposes further constraints on primer design and validation due to the large number of related species and strains extant in 'core leaf curl virus complex', now with expanded distribution in south Asia, the Pacific region, and Africa-Arabian Peninsula that have relatively highly conserved coding and non-coding regions, which precludes much of the genome-betasatellite sequence when selecting primer 'targets'. Here, PCR primers were successfully designed and validated for detection of cloned viral genomes and betasatellites for representative 'core leaf curl' strains and species, distant relatives, and total DNA isolated from selected plant species. The application of molecular diagnostics to screen plant imports prior to export or release from ports of entry is expected to greatly reduce the likelihood of exotic leaf curl virus introductions that could dramatically affect the production of cotton as well as vegetable and ornamental crop hosts. Copyright © 2017 Elsevier B.V. All rights reserved.
Richards, Lisa M.; Towle, Erica L.; Fox, Douglas J.; Dunn, Andrew K.
2014-01-01
Abstract. Although multiple intraoperative cerebral blood flow (CBF) monitoring techniques are currently available, a quantitative method that allows for continuous monitoring and that can be easily integrated into the surgical workflow is still needed. Laser speckle contrast imaging (LSCI) is an optical imaging technique with a high spatiotemporal resolution that has been recently demonstrated as feasible and effective for intraoperative monitoring of CBF during neurosurgical procedures. This study demonstrates the impact of retrospective motion correction on the quantitative analysis of intraoperatively acquired LSCI images. LSCI images were acquired through a surgical microscope during brain tumor resection procedures from 10 patients under baseline conditions and after a cortical stimulation in three of those patients. The patient’s electrocardiogram (ECG) was recorded during acquisition for postprocess correction of pulsatile artifacts. Automatic image registration was retrospectively performed to correct for tissue motion artifacts, and the performance of rigid and nonrigid transformations was compared. In baseline cases, the original images had 25%±27% noise across 16 regions of interest (ROIs). ECG filtering moderately reduced the noise to 20%±21%, while image registration resulted in a further noise reduction of 15%±4%. Combined ECG filtering and image registration significantly reduced the noise to 6.2%±2.6% (p<0.05). Using the combined motion correction, accuracy and sensitivity to small changes in CBF were improved in cortical stimulation cases. There was also excellent agreement between rigid and nonrigid registration methods (15/16 ROIs with <3% difference). Results from this study demonstrate the importance of motion correction for improved visualization of CBF changes in clinical LSCI images. PMID:26157974
Motion correction options in PET/MRI.
Catana, Ciprian
2015-05-01
Subject motion is unavoidable in clinical and research imaging studies. Breathing is the most important source of motion in whole-body PET and MRI studies, affecting not only thoracic organs but also those in the upper and even lower abdomen. The motion related to the pumping action of the heart is obviously relevant in high-resolution cardiac studies. These two sources of motion are periodic and predictable, at least to a first approximation, which means certain techniques can be used to control the motion (eg, by acquiring the data when the organ of interest is relatively at rest). Additionally, nonperiodic and unpredictable motion can also occur during the scan. One obvious limitation of methods relying on external devices (eg, respiratory bellows or the electrocardiogram signal to monitor the respiratory or cardiac cycle, respectively) to trigger or gate the data acquisition is that the complex motion of internal organs cannot be fully characterized. However, detailed information can be obtained using either the PET or MRI data (or both) allowing the more complete characterization of the motion field so that a motion model can be built. Such a model and the information derived from simple external devices can be used to minimize the effects of motion on the collected data. In the ideal case, all the events recorded during the PET scan would be used to generate a motion-free or corrected PET image. The detailed motion field can be used for this purpose by applying it to the PET data before, during, or after the image reconstruction. Integrating all these methods for motion control, characterization, and correction into a workflow that can be used for routine clinical studies is challenging but could potentially be extremely valuable given the improvement in image quality and reduction of motion-related image artifacts. Copyright © 2015 Elsevier Inc. All rights reserved.
QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.).
Liu, Kaiye; Xu, Hao; Liu, Gang; Guan, Panfeng; Zhou, Xueyao; Peng, Huiru; Yao, Yingyin; Ni, Zhongfu; Sun, Qixin; Du, Jinkun
2018-04-01
QTL controlling flag leaf length, flag leaf width, flag leaf area and flag leaf angle were mapped in wheat. This study aimed to advance our understanding of the genetic mechanisms underlying morphological traits of the flag leaves of wheat (Triticum aestivum L.). A recombinant inbred line (RIL) population derived from ND3331 and the Tibetan semi-wild wheat Zang1817 was used to identify quantitative trait loci (QTLs) controlling flag leaf length (FLL), flag leaf width (FLW), flag leaf area (FLA), and flag leaf angle (FLANG). Using an available simple sequence repeat genetic linkage map, 23 putative QTLs for FLL, FLW, FLA, and FLANG were detected on chromosomes 1B, 2B, 3A, 3D, 4B, 5A, 6B, 7B, and 7D. Individual QTL explained 4.3-68.52% of the phenotypic variance in different environments. Four QTLs for FLL, two for FLW, four for FLA, and five for FLANG were detected in at least two environments. Positive alleles of 17 QTLs for flag leaf-related traits originated from ND3331 and 6 originated from Zang1817. QTLs with pleiotropic effects or multiple linked QTL were also identified on chromosomes 1B, 4B, and 5A; these are potential target regions for fine-mapping and marker-assisted selection in wheat breeding programs.
Skyrmionic spin Seebeck effect via dissipative thermomagnonic torques
NASA Astrophysics Data System (ADS)
Kovalev, Alexey A.
2014-06-01
We derive thermomagnonic torque and its "β-type" dissipative correction from the stochastic Landau-Lifshitz-Gilbert equation. The β-type dissipative correction describes viscous coupling between magnetic dynamics and magnonic current and it stems from spin mistracking of the magnetic order. We show that thermomagnonic torque is important for describing temperature gradient induced motion of skyrmions in helical magnets while dissipative correction plays an essential role in generating transverse Magnus force. We propose to detect such skyrmionic motion by employing the transverse spin Seebeck effect geometry.
A Proper-Motion Corrected, Cross-Matched Catalog Of M Dwarfs In SDSS And FIRST
NASA Astrophysics Data System (ADS)
Arai, Erin; West, A. A.; Thyagarajan, N.; Agüeros, M.; Helfand, D.
2011-05-01
We present a preliminary analysis of M dwarfs identified in both the Sloan Digital Sky Survey (SDSS) and the Very Large Array's (VLA) Faint Images of the Radio Sky at Twenty-centimeters survey (FIRST). The presence of magnetic fields is often associated with indirect magnetic activity measurements, such as H-alpha or X-ray emission. Radio emission, in contrast, is directly proportional to the magnetic field strength in addition to being another measure of activity. We search for stellar radio emission by cross-matching the SDSS DR7 M dwarf sample with the FIRST catalog. The SDSS data allow us to examine the spectra of our objects and correlate the magnetic activity (H-alpha) with the magnetic field strength (radio emission). Accurate positions and proper motions are important for obtaining a complete list of overlapping targets. Positions in FIRST and SDSS need to be proper motion corrected in order to ensure unique target matches since nearby M dwarfs can have significant proper motions (up to 1'' per year). Some previous studies have neglected the significance of proper motions in identifying overlapping targets between SDSS and FIRST; we correct for some of these previous oversights. In addition the FIRST data were taken in multiple epochs; individual images need to be proper motion corrected before the images can be co-added. Our cross-match catalog puts important constraints on models of magnetic field generation in low-mass stars in addition to the true habitability of attending planets.
Holdsworth, Samantha J; Yeom, Kristen W; Moseley, Michael E; Skare, S
2015-05-01
Susceptibility-weighted imaging (SWI) in neuroimaging can be challenging due to long scan times of three-dimensional (3D) gradient recalled echo (GRE), while faster techniques such as 3D interleaved echo-planar imaging (iEPI) are prone to motion artifacts. Here we outline and implement a 3D short-axis propeller echo-planar imaging (SAP-EPI) trajectory as a faster, motion-correctable approach for SWI. Experiments were conducted on a 3T MRI system. The 3D SAP-EPI, 3D iEPI, and 3D GRE SWI scans were acquired on two volunteers. Controlled motion experiments were conducted to test the motion-correction capability of 3D SAP-EPI. The 3D SAP-EPI SWI data were acquired on two pediatric patients as a potential alternative to 2D GRE used clinically. The 3D GRE images had a better target resolution (0.47 × 0.94 × 2 mm, scan time = 5 min), iEPI and SAP-EPI images (resolution = 0.94 × 0.94 × 2 mm) were acquired in a faster scan time (1:52 min) with twice the brain coverage. SAP-EPI showed motion-correction capability and some immunity to undersampling from rejected data. While 3D SAP-EPI suffers from some geometric distortion, its short scan time and motion-correction capability suggest that SAP-EPI may be a useful alternative to GRE and iEPI for use in SWI, particularly in uncooperative patients. © 2014 Wiley Periodicals, Inc.
Statistical learning of movement.
Ongchoco, Joan Danielle Khonghun; Uddenberg, Stefan; Chun, Marvin M
2016-12-01
The environment is dynamic, but objects move in predictable and characteristic ways, whether they are a dancer in motion, or a bee buzzing around in flight. Sequences of movement are comprised of simpler motion trajectory elements chained together. But how do we know where one trajectory element ends and another begins, much like we parse words from continuous streams of speech? As a novel test of statistical learning, we explored the ability to parse continuous movement sequences into simpler element trajectories. Across four experiments, we showed that people can robustly parse such sequences from a continuous stream of trajectories under increasingly stringent tests of segmentation ability and statistical learning. Observers viewed a single dot as it moved along simple sequences of paths, and were later able to discriminate these sequences from novel and partial ones shown at test. Observers demonstrated this ability when there were potentially helpful trajectory-segmentation cues such as a common origin for all movements (Experiment 1); when the dot's motions were entirely continuous and unconstrained (Experiment 2); when sequences were tested against partial sequences as a more stringent test of statistical learning (Experiment 3); and finally, even when the element trajectories were in fact pairs of trajectories, so that abrupt directional changes in the dot's motion could no longer signal inter-trajectory boundaries (Experiment 4). These results suggest that observers can automatically extract regularities in movement - an ability that may underpin our capacity to learn more complex biological motions, as in sport or dance.
Correcting bulk in-plane motion artifacts in MRI using the point spread function.
Lin, Wei; Wehrli, Felix W; Song, Hee Kwon
2005-09-01
A technique is proposed for correcting both translational and rotational motion artifacts in magnetic resonance imaging without the need to collect additional navigator data or to perform intensive postprocessing. The method is based on measuring the point spread function (PSF) by attaching one or two point-sized markers to the main imaging object. Following the isolation of a PSF marker from the acquired image, translational motion could be corrected directly from the modulation transfer function, without the need to determine the object's positions during the scan, although the shifts could be extracted if desired. Rotation is detected by analyzing the relative displacements of two such markers. The technique was evaluated with simulations, phantom and in vivo experiments.
Directivity in NGA earthquake ground motions: Analysis using isochrone theory
Spudich, P.; Chiou, B.S.J.
2008-01-01
We present correction factors that may be applied to the ground motion prediction relations of Abrahamson and Silva, Boore and Atkinson, Campbell and Bozorgnia, and Chiou and Youngs (all in this volume) to model the azimuthally varying distribution of the GMRotI50 component of ground motion (commonly called 'directivity') around earthquakes. Our correction factors may be used for planar or nonplanar faults having any dip or slip rake (faulting mechanism). Our correction factors predict directivity-induced variations of spectral acceleration that are roughly half of the strike-slip variations predicted by Somerville et al. (1997), and use of our factors reduces record-to-record sigma by about 2-20% at 5 sec or greater period. ?? 2008, Earthquake Engineering Research Institute.
Samal, Pinaki; Patra, R. C.; Gupta, A. R.; Mishra, S. K.; Jena, D.; Satapathy, D.
2016-01-01
Aim: The main objective of the study was to determine the deleterious effect of fluoride on plasma trace minerals of fluorotic cattle and to evaluate the effect of Tamarindus indica leaf powder toward correction of the same. Materials and Methods: A total of 30 cattle exhibiting chronic sign of fluorosis and 10 healthy cattle from nonfluorotic area were incorporated in this study. Fluorotic cattle were divided into three equal groups consisting of 10 cattle each. Group I from fluoride free area served as healthy control. The Group II received no treatment and served as disease control. Groups III and IV were supplemented with tamarind leaf powder at 15 g and 30 g/day with feed for 60 days. Plasma mineral status was evaluated after 60 days of treatment with double beam atomic absorption spectrophotometer. Results: Statistical analysis of data revealed a significant (p<0.05) decrease in mean plasma copper (Cu) (0.344±0.007 ppm), zinc (Zn) (0.692±0.06 ppm), and iron (Fe) concentration (1.100±0.01 ppm) in fluorotic cattle in comparison to healthy cattle (0.58±0.010, 2.342±0.04, 1.406±0.04 ppm, respectively). Significant (p<0.05) increase in Cu, Zn, and Fe was recorded after supplementation of tamarind leaf powder to the fluorotic cattle. Conclusion: It was concluded that fluorotic cattle might be supplemented with T. indica leaf powder with feed for the correction of the decreased level of certain plasma minerals. PMID:27847422
Efficient error correction for next-generation sequencing of viral amplicons
2012-01-01
Background Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing. Results In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones. Conclusions Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses. The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm PMID:22759430
Efficient error correction for next-generation sequencing of viral amplicons.
Skums, Pavel; Dimitrova, Zoya; Campo, David S; Vaughan, Gilberto; Rossi, Livia; Forbi, Joseph C; Yokosawa, Jonny; Zelikovsky, Alex; Khudyakov, Yury
2012-06-25
Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing. In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones. Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses.The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm.
Usual and unusual development of the dicot leaf: involvement of transcription factors and hormones.
Fambrini, Marco; Pugliesi, Claudio
2013-06-01
Morphological diversity exhibited by higher plants is essentially related to the tremendous variation of leaf shape. With few exceptions, leaf primordia are initiated postembryonically at the flanks of a group of undifferentiated and proliferative cells within the shoot apical meristem (SAM) in characteristic position for the species and in a regular phyllotactic sequence. Auxin is critical for this process, because genes involved in auxin biosynthesis, transport, and signaling are required for leaf initiation. Down-regulation of transcription factors (TFs) and cytokinins are also involved in the light-dependent leaf initiation pathway. Furthermore, mechanical stresses in SAM determine the direction of cell division and profoundly influence leaf initiation suggesting a link between physical forces, gene regulatory networks and biochemical gradients. After the leaf is initiated, its further growth depends on cell division and cell expansion. Temporal and spatial regulation of these processes determines the size and the shape of the leaf, as well as the internal structure. A complex array of intrinsic signals, including phytohormones and TFs control the appropriate cell proliferation and differentiation to elaborate the final shape and complexity of the leaf. Here, we highlight the main determinants involved in leaf initiation, epidermal patterning, and elaboration of lamina shape to generate small marginal serrations, more deep lobes or a dissected compound leaf. We also outline recent advances in our knowledge of regulatory networks involved with the unusual pattern of leaf development in epiphyllous plants as well as leaf morphology aberrations, such as galls after pathogenic attacks of pests.
The enigma of effective pathlength for 18O enrichment in leaf water of conifers
NASA Astrophysics Data System (ADS)
Roden, J. S.; Kahmen, A.; Buchmann, N. C.; Siegwolf, R. T.
2013-12-01
The stable isotopes of oxygen (δ18O) in tree ring cellulose provide valuable proxy information about past environments and climate. Mechanistic models have been used to clarify the important drivers of isotope fractionation and help interpret δ18O variation in tree rings. A critical component to these models is an estimate of leaf water enrichment. However, standard models seldom accurately predict 18O enrichment in conifer needles and Péclet corrections often require effective pathlengths (L) that seem unreasonable from the perspective of needle morphology (>0.5 m). To analyze the potential role of path length on the Péclet effect in conifers we carried out experiments in controlled environment chambers. We exposed seedlings of six species of conifer (Abies alba, Larix decidua, Picea abies, Pinus cembra, P. sylvestris, Taxus bacata), that differ in needle morphology, to four different vapor pressure deficits (VPD), in order to modify transpiration rates (E) and leaf water 18O enrichment. Environmental and δ18O data (leaf, stem and chamber water vapor) were collected to parameterize leaf water models. Cross-sections of needles were sampled for an analysis of needle anatomy. Conifer needles have a single strand of vascular tissue making pathlength determinations through anatomical assessments possible. The six species differed in mesophyll distance (measured from endodermis to epidermis) and cell number, with Pinus and Picea species having the shortest distance and Abies and Taxus the longest (flat needle morphology). Other anatomical measures (transfusion distance, cell size etc.) did not differ significantly. A suberized strip was apparent in the endodermis of all species except Taxus and Abies. Conifer needles have a large proportion (from 0.2 to 0.4) of needle cross-sectional area in vascular tissues that may not be subject to evaporative enrichment. As expected, leaf water δ18O and E responded strongly to VPD and standard models (Craig-Gordon) overestimated leaf water δ18O. A single species-specific value for L could not be determined as the fractional difference between modeled and measured leaf water δ18O did not increase with E as theory predicts. Accounting for potentially unenriched water in vascular and transfusion tissues as well as a Péclet correction that allows the value for L to change with E (as in Song et al., 2013) produced accurate predictions of leaf water δ18O. Estimates of L (for a given E) were positively correlated with mean mesophyll thickness, which to our knowledge is the first time L has been related to a leaf anatomical measure. We repeated the experiment using young needles with much higher values for E, and found a continuing trend of reduced fractional difference with E, implying that Péclet corrections may need to be modified to predict conifer needle water over the range of needle phenology and physiology. Our study will help to better quantify effective pathlength and needle water δ18O in conifers, which are some of the most important organisms used for paleoclimate reconstruction.
Effects of motion and b-matrix correction for high resolution DTI with short-axis PROPELLER-EPI
Aksoy, Murat; Skare, Stefan; Holdsworth, Samantha; Bammer, Roland
2010-01-01
Short-axis PROPELLER-EPI (SAP-EPI) has been proven to be very effective in providing high-resolution diffusion-weighted and diffusion tensor data. The self-navigation capabilities of SAP-EPI allow one to correct for motion, phase errors, and geometric distortion. However, in the presence of patient motion, the change in the effective diffusion-encoding direction (i.e. the b-matrix) between successive PROPELLER ‘blades’ can decrease the accuracy of the estimated diffusion tensors, which might result in erroneous reconstruction of white matter tracts in the brain. In this study, we investigate the effects of alterations in the b-matrix as a result of patient motion on the example of SAP-EPI DTI and eliminate these effects by incorporating our novel single-step non-linear diffusion tensor estimation scheme into the SAP-EPI post-processing procedure. Our simulations and in-vivo studies showed that, in the presence of patient motion, correcting the b-matrix is necessary in order to get more accurate diffusion tensor and white matter pathway reconstructions. PMID:20222149
NASA Astrophysics Data System (ADS)
Authemayou, Christine; Pedoja, Kevin; Heddar, Aicha; Molliex, Stéphane; Boudiaf, Azzedine; Ghaleb, Bassam; Van Vliet Lanoe, Brigitte; Delcaillau, Bernard; Djellit, Hamou; Yelles, Karim; Nexer, Maelle
2017-01-01
The North Africa passive margin is affected by the ongoing convergence between the African and Eurasian plates. This convergence is responsible for coastal uplift, folding, and reverse faulting on new and reactivated faults on the margin. The active deformation is diffuse and thus rather difficult to locate precisely. We aim to determine how a coastal landscape evolve in this geodynamic setting and gain insights into active tectonics. More particularly, we evidence and quantify coastal uplift pattern of the Chenoua, Sahel, and Algiers reliefs (Algeria), using sequences of marine terraces and rasas and computing several morphometric indices from the drainage pattern. Upper and Middle Pleistocene uplift rates are obtained by fossil shoreline mapping and preliminary U/Th dating of associated coastal deposits. Extrapolation of these rates combined to analyses of sea-level referential data and spatial relationships between marine terraces/rasas and other geological markers lead us to tentatively propose an age for the highest coastal indicators (purported the oldest). Values of morphometric indices showing correlations with uplift rate allow us to analyze uplift variation on area devoid of coastal sequence. Geological and geomorphological data suggest that coastal uplift probably occurred since the Middle Miocene. It resulted in the emergence of the Algiers massif, followed by the Sahel ridge massif. The Sahel ridge has asymmetrically grown by folding from west to east and was affected by temporal variation of uplift. Compared to previous study, the location of the Sahel fold axis has been shifted offshore, near the coast. The Chenoua fault vertical motion does not offset significantly the coastal sequence. Mean apparent uplift rates and corrected uplift rates since 120 ka are globally steady all along the coast with a mean value of 0.055 ± 0.015 mm/year (apparent) and of 0.005 ± 0.045 mm/year (corrected for eustasy). Mean apparent coastal uplift rates between 120 and 400 ka increase eastward from 0.045 ± 0.025 to 0.19 ± 0.12 mm/year (without correction for eustasy) or from 0.06 ± 0.06 to 0.2 ± 0.15 mm/year (with correction for eustasy). In addition, the combination of structural and geomorphic data suggests a low uplift rate for the southern part of the Algiers massif.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eley, John G.; Hogstrom, Kenneth R.; Matthews, Kenneth L.
2011-12-15
Purpose: The purpose of this work was to investigate the potential of discrete Gaussian edge feathering of the higher energy electron fields for improving abutment dosimetry in the planning volume when using an electron multileaf collimator (eMLC) to deliver segmented-field electron conformal therapy (ECT). Methods: A discrete (five-step) Gaussian edge spread function was used to match dose penumbras of differing beam energies (6-20 MeV) at a specified depth in a water phantom. Software was developed to define the leaf eMLC positions of an eMLC that most closely fit each electron field shape. The effect of 1D edge feathering of themore » higher energy field on dose homogeneity was computed and measured for segmented-field ECT treatment plans for three 2D PTVs in a water phantom, i.e., depth from the water surface to the distal PTV surface varied as a function of the x-axis (parallel to leaf motion) and remained constant along the y-axis (perpendicular to leaf motion). Additionally, the effect of 2D edge feathering was computed and measured for one radially symmetric, 3D PTV in a water phantom, i.e., depth from the water surface to the distal PTV surface varied as a function of both axes. For the 3D PTV, the feathering scheme was evaluated for 0.1-1.0-cm leaf widths. Dose calculations were performed using the pencil beam dose algorithm in the Pinnacle{sup 3} treatment planning system. Dose verification measurements were made using a prototype eMLC (1-cm leaf width). Results: 1D discrete Gaussian edge feathering reduced the standard deviation of dose in the 2D PTVs by 34, 34, and 39%. In the 3D PTV, the broad leaf width (1 cm) of the eMLC hindered the 2D application of the feathering solution to the 3D PTV, and the standard deviation of dose increased by 10%. However, 2D discrete Gaussian edge feathering with simulated eMLC leaf widths of 0.1-0.5 cm reduced the standard deviation of dose in the 3D PTV by 33-28%, respectively. Conclusions: A five-step discrete Gaussian edge spread function applied in 2D improves the abutment dosimetry but requires an eMLC leaf resolution better than 1 cm.« less
Creveaux, Thomas; Sevrez, Violaine; Dumas, Raphaël; Chèze, Laurence; Rogowski, Isabelle
2018-03-01
The aim of this study was to examine the respective aptitudes of three rotation sequences (Y t X f 'Y h '', Z t X f 'Y h '', and X t Z f 'Y h '') to effectively describe the orientation of the humerus relative to the thorax during a movement involving a large horizontal abduction/adduction component: the tennis forehand drive. An optoelectronic system was used to record the movements of eight elite male players, each performing ten forehand drives. The occurrences of gimbal lock, phase angle discontinuity and incoherency in the time course of the three angles defining humerothoracic rotation were examined for each rotation sequence. Our results demonstrated that no single sequence effectively describes humerothoracic motion without discontinuities throughout the forehand motion. The humerothoracic joint angles can nevertheless be described without singularities when considering the backswing/forward-swing and the follow-through phases separately. Our findings stress that the sequence choice may have implications for the report and interpretation of 3D joint kinematics during large shoulder range of motion. Consequently, the use of Euler/Cardan angles to represent 3D orientation of the humerothoracic joint in sport tasks requires the evaluation of the rotation sequence regarding singularity occurrence before analysing the kinematic data, especially when the task involves a large shoulder range of motion in the horizontal plane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xinmin; Belcher, Andrew H.; Grelewicz, Zachary
Purpose: To develop a control system to correct both translational and rotational head motion deviations in real-time during frameless stereotactic radiosurgery (SRS). Methods: A novel feedback control with a feed-forward algorithm was utilized to correct for the coupling of translation and rotation present in serial kinematic robotic systems. Input parameters for the algorithm include the real-time 6DOF target position, the frame pitch pivot point to target distance constant, and the translational and angular Linac beam off (gating) tolerance constants for patient safety. Testing of the algorithm was done using a 4D (XY Z + pitch) robotic stage, an infrared headmore » position sensing unit and a control computer. The measured head position signal was processed and a resulting command was sent to the interface of a four-axis motor controller, through which four stepper motors were driven to perform motion compensation. Results: The control of the translation of a brain target was decoupled with the control of the rotation. For a phantom study, the corrected position was within a translational displacement of 0.35 mm and a pitch displacement of 0.15° 100% of the time. For a volunteer study, the corrected position was within displacements of 0.4 mm and 0.2° over 98.5% of the time, while it was 10.7% without correction. Conclusions: The authors report a control design approach for both translational and rotational head motion correction. The experiments demonstrated that control performance of the 4D robotic stage meets the submillimeter and subdegree accuracy required by SRS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubley, Emily; Pierce, Greg; Ploquin, Nicolas
Purpose: To develop and validate a computational method to simulate craniocaudal respiratory motion in a VMAT treatment plan. Methods: Three 4DCTs of the QUASAR respiratory motion phantom were acquired with a 2cm water-density spherical tumour embedded in cedar to simulate lung. The phantom was oscillating sinusoidally with an amplitude of 2cm and periods of 3, 4, and 5 seconds. An ITV was contoured and 5mm PTV margin was added. High and a low modulation factor VMAT plans were created for each scan. An in-house program was developed to simulate respiratory motion in the treatment plans by shifting the MLC leafmore » positions relative to the phantom. Each plan was delivered to the phantom and the dose was measured using Gafchromic film. The measured and calculated plans were compared using an absolute dose gamma analysis (3%/3mm). Results: The average gamma pass rate for the low modulation plan and high modulation plans were 91.1% and 51.4% respectively. The difference between the high and low modulation plans gamma pass rates is likely related to the different sampling frequency of the respiratory curve and the higher MLC leaf speeds in the high modulation plan. A high modulation plan has a slower gantry speed and therefore samples the breathing cycle at a coarser frequency leading to inaccuracies between the measured and planned doses. Conclusion: A simple program, including a novel method for increasing sampling frequency beyond the control point frequency, has been developed to simulate respiratory motion in VMAT plans by shifting the MLC leaf positions.« less
Recent progress and outstanding issues in motion correction in resting state fMRI
Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E
2014-01-01
The purpose of this review is to communicate and synthesize recent findings related to motion artifact in resting state fMRI. In 2011, three groups reported that small head movements produced spurious but structured noise in brain scans, causing distance-dependent changes in signal correlations. This finding has prompted both methods development and the re-examination of prior findings with more stringent motion correction. Since 2011, over a dozen papers have been published specifically on motion artifact in resting state fMRI. We will attempt to distill these papers to their most essential content. We will point out some aspects of motion artifact that are easily or often overlooked. Throughout the review, we will highlight gaps in current knowledge and avenues for future research. PMID:25462692
The evolution, morphology, and development of fern leaves
Vasco, Alejandra; Moran, Robbin C.; Ambrose, Barbara A.
2013-01-01
Leaves are lateral determinate structures formed in a predictable sequence (phyllotaxy) on the flanks of an indeterminate shoot apical meristem. The origin and evolution of leaves in vascular plants has been widely debated. Being the main conspicuous organ of nearly all vascular plants and often easy to recognize as such, it seems surprising that leaves have had multiple origins. For decades, morphologists, anatomists, paleobotanists, and systematists have contributed data to this debate. More recently, molecular genetic studies have provided insight into leaf evolution and development mainly within angiosperms and, to a lesser extent, lycophytes. There has been recent interest in extending leaf evolutionary developmental studies to other species and lineages, particularly in lycophytes and ferns. Therefore, a review of fern leaf morphology, evolution and development is timely. Here we discuss the theories of leaf evolution in ferns, morphology, and diversity of fern leaves, and experimental results of fern leaf development. We summarize what is known about the molecular genetics of fern leaf development and what future studies might tell us about the evolution of fern leaf development. PMID:24027574
The use of the logistic model in space motion sickness prediction
NASA Technical Reports Server (NTRS)
Lin, Karl K.; Reschke, Millard F.
1987-01-01
The one-equation and the two-equation logistic models were used to predict subjects' susceptibility to motion sickness in KC-135 parabolic flights using data from other ground-based motion sickness tests. The results show that the logistic models correctly predicted substantially more cases (an average of 13 percent) in the data subset used for model building. Overall, the logistic models ranged from 53 to 65 percent predictions of the three endpoint parameters, whereas the Bayes linear discriminant procedure ranged from 48 to 65 percent correct for the cross validation sample.
Respiratory motion correction in emission tomography image reconstruction.
Reyes, Mauricio; Malandain, Grégoire; Koulibaly, Pierre Malick; González Ballester, Miguel A; Darcourt, Jacques
2005-01-01
In Emission Tomography imaging, respiratory motion causes artifacts in lungs and cardiac reconstructed images, which lead to misinterpretations and imprecise diagnosis. Solutions like respiratory gating, correlated dynamic PET techniques, list-mode data based techniques and others have been tested with improvements over the spatial activity distribution in lungs lesions, but with the disadvantages of requiring additional instrumentation or discarding part of the projection data used for reconstruction. The objective of this study is to incorporate respiratory motion correction directly into the image reconstruction process, without any additional acquisition protocol consideration. To this end, we propose an extension to the Maximum Likelihood Expectation Maximization (MLEM) algorithm that includes a respiratory motion model, which takes into account the displacements and volume deformations produced by the respiratory motion during the data acquisition process. We present results from synthetic simulations incorporating real respiratory motion as well as from phantom and patient data.
NASA Astrophysics Data System (ADS)
Xiao, Peng; Fink, Mathias; Boccara, A. Claude
2016-03-01
A Full-Field OCT (FFOCT) setup coupled to a compact transmissive liquid crystal spatial light modulator (LCSLM) is used to induce or correct aberrations and simulate eye examinations. To reduce the system complexity, strict pupil conjugation was abandoned. During our work on quantifying the effect of geometrical aberrations on FFOCT images, we found that the image resolution is almost insensitive to aberrations. Indeed if the object channel PSF is distorted, its interference with the reference channel conserves the main feature of an unperturbed PSF with only a reduction of the signal level. This unique behavior is specific to the use of a spatially incoherent illumination. Based on this, the FFOCT image intensity was used as the metric for our wavefront sensorless correction. Aberration correction was first conducted on an USAF resolution target with the LSCLM as both aberration generator and corrector. A random aberration mask was induced, and the low-order Zernike Modes were corrected sequentially according to the intensity metric function optimization. A Ficus leaf and a fixed mouse brain tissue slice were also imaged to demonstrate the correction of sample self-induced wavefront distortions. After optimization, more structured information appears for the leaf imaging. And the high-signal fiber-like myelin fiber structures were resolved much more clearly after the whole correction process for mouse brain imaging. Our experiment shows the potential of this compact AO-FFOCT system for aberration correction imaging. This preliminary approach that simulates eyes aberrations correction also opens the path to a simple implementation of FFOCT adaptive optics for retinal examinations.
Power, Jonathan D; Plitt, Mark; Kundu, Prantik; Bandettini, Peter A; Martin, Alex
2017-01-01
Head motion can be estimated at any point of fMRI image processing. Processing steps involving temporal interpolation (e.g., slice time correction or outlier replacement) often precede motion estimation in the literature. From first principles it can be anticipated that temporal interpolation will alter head motion in a scan. Here we demonstrate this effect and its consequences in five large fMRI datasets. Estimated head motion was reduced by 10-50% or more following temporal interpolation, and reductions were often visible to the naked eye. Such reductions make the data seem to be of improved quality. Such reductions also degrade the sensitivity of analyses aimed at detecting motion-related artifact and can cause a dataset with artifact to falsely appear artifact-free. These reduced motion estimates will be particularly problematic for studies needing estimates of motion in time, such as studies of dynamics. Based on these findings, it is sensible to obtain motion estimates prior to any image processing (regardless of subsequent processing steps and the actual timing of motion correction procedures, which need not be changed). We also find that outlier replacement procedures change signals almost entirely during times of motion and therefore have notable similarities to motion-targeting censoring strategies (which withhold or replace signals entirely during times of motion).
Plitt, Mark; Kundu, Prantik; Bandettini, Peter A.; Martin, Alex
2017-01-01
Head motion can be estimated at any point of fMRI image processing. Processing steps involving temporal interpolation (e.g., slice time correction or outlier replacement) often precede motion estimation in the literature. From first principles it can be anticipated that temporal interpolation will alter head motion in a scan. Here we demonstrate this effect and its consequences in five large fMRI datasets. Estimated head motion was reduced by 10–50% or more following temporal interpolation, and reductions were often visible to the naked eye. Such reductions make the data seem to be of improved quality. Such reductions also degrade the sensitivity of analyses aimed at detecting motion-related artifact and can cause a dataset with artifact to falsely appear artifact-free. These reduced motion estimates will be particularly problematic for studies needing estimates of motion in time, such as studies of dynamics. Based on these findings, it is sensible to obtain motion estimates prior to any image processing (regardless of subsequent processing steps and the actual timing of motion correction procedures, which need not be changed). We also find that outlier replacement procedures change signals almost entirely during times of motion and therefore have notable similarities to motion-targeting censoring strategies (which withhold or replace signals entirely during times of motion). PMID:28880888
Paximadis, M; Rey, M E
2001-12-01
The complete DNA A of the begomovirus Tobacco leaf curl Zimbabwe virus (TbLCZWV) was sequenced: it comprises 2767 nucleotides with six major open reading frames encoding proteins with molecular masses greater than 9 kDa. Full-length TbLCZWV DNA A tandem dimers, cloned in binary vectors (pBin19 and pBI121) and transformed into Agrobacterium tumefaciens, were systemically infectious upon agroinoculation of tobacco and tomato. Efforts to identify a DNA B component were unsuccessful. These findings suggest that TbLCZWV is a new member of the monopartite group of begomoviruses. Phylogenetic analysis identified TbLCZWV as a distinct begomovirus with its closest relative being Chayote mosaic virus. Abutting primer PCR amplified ca. 1300 bp molecules, and cloning and sequencing of two of these molecules revealed them to be subgenomic defective DNA molecules originating from TbLCZWV DNA A. Variable symptom severity associated with tobacco leaf curl disease and TbLCZWV is discussed.
Vakanski, A; Ferguson, JM; Lee, S
2016-01-01
Objective The objective of the proposed research is to develop a methodology for modeling and evaluation of human motions, which will potentially benefit patients undertaking a physical rehabilitation therapy (e.g., following a stroke or due to other medical conditions). The ultimate aim is to allow patients to perform home-based rehabilitation exercises using a sensory system for capturing the motions, where an algorithm will retrieve the trajectories of a patient’s exercises, will perform data analysis by comparing the performed motions to a reference model of prescribed motions, and will send the analysis results to the patient’s physician with recommendations for improvement. Methods The modeling approach employs an artificial neural network, consisting of layers of recurrent neuron units and layers of neuron units for estimating a mixture density function over the spatio-temporal dependencies within the human motion sequences. Input data are sequences of motions related to a prescribed exercise by a physiotherapist to a patient, and recorded with a motion capture system. An autoencoder subnet is employed for reducing the dimensionality of captured sequences of human motions, complemented with a mixture density subnet for probabilistic modeling of the motion data using a mixture of Gaussian distributions. Results The proposed neural network architecture produced a model for sets of human motions represented with a mixture of Gaussian density functions. The mean log-likelihood of observed sequences was employed as a performance metric in evaluating the consistency of a subject’s performance relative to the reference dataset of motions. A publically available dataset of human motions captured with Microsoft Kinect was used for validation of the proposed method. Conclusion The article presents a novel approach for modeling and evaluation of human motions with a potential application in home-based physical therapy and rehabilitation. The described approach employs the recent progress in the field of machine learning and neural networks in developing a parametric model of human motions, by exploiting the representational power of these algorithms to encode nonlinear input-output dependencies over long temporal horizons. PMID:28111643
Vakanski, A; Ferguson, J M; Lee, S
2016-12-01
The objective of the proposed research is to develop a methodology for modeling and evaluation of human motions, which will potentially benefit patients undertaking a physical rehabilitation therapy (e.g., following a stroke or due to other medical conditions). The ultimate aim is to allow patients to perform home-based rehabilitation exercises using a sensory system for capturing the motions, where an algorithm will retrieve the trajectories of a patient's exercises, will perform data analysis by comparing the performed motions to a reference model of prescribed motions, and will send the analysis results to the patient's physician with recommendations for improvement. The modeling approach employs an artificial neural network, consisting of layers of recurrent neuron units and layers of neuron units for estimating a mixture density function over the spatio-temporal dependencies within the human motion sequences. Input data are sequences of motions related to a prescribed exercise by a physiotherapist to a patient, and recorded with a motion capture system. An autoencoder subnet is employed for reducing the dimensionality of captured sequences of human motions, complemented with a mixture density subnet for probabilistic modeling of the motion data using a mixture of Gaussian distributions. The proposed neural network architecture produced a model for sets of human motions represented with a mixture of Gaussian density functions. The mean log-likelihood of observed sequences was employed as a performance metric in evaluating the consistency of a subject's performance relative to the reference dataset of motions. A publically available dataset of human motions captured with Microsoft Kinect was used for validation of the proposed method. The article presents a novel approach for modeling and evaluation of human motions with a potential application in home-based physical therapy and rehabilitation. The described approach employs the recent progress in the field of machine learning and neural networks in developing a parametric model of human motions, by exploiting the representational power of these algorithms to encode nonlinear input-output dependencies over long temporal horizons.
Peng, Zhen; Genewein, Tim; Braun, Daniel A.
2014-01-01
Complexity is a hallmark of intelligent behavior consisting both of regular patterns and random variation. To quantitatively assess the complexity and randomness of human motion, we designed a motor task in which we translated subjects' motion trajectories into strings of symbol sequences. In the first part of the experiment participants were asked to perform self-paced movements to create repetitive patterns, copy pre-specified letter sequences, and generate random movements. To investigate whether the degree of randomness can be manipulated, in the second part of the experiment participants were asked to perform unpredictable movements in the context of a pursuit game, where they received feedback from an online Bayesian predictor guessing their next move. We analyzed symbol sequences representing subjects' motion trajectories with five common complexity measures: predictability, compressibility, approximate entropy, Lempel-Ziv complexity, as well as effective measure complexity. We found that subjects' self-created patterns were the most complex, followed by drawing movements of letters and self-paced random motion. We also found that participants could change the randomness of their behavior depending on context and feedback. Our results suggest that humans can adjust both complexity and regularity in different movement types and contexts and that this can be assessed with information-theoretic measures of the symbolic sequences generated from movement trajectories. PMID:24744716
USDA-ARS?s Scientific Manuscript database
The Spodoptera littoralis multiple nucleopolyhedrovirus (SpliMNPV), a pathogen of the Egyptian cotton leaf worm Spodoptera littoralis, was subjected to sequencing of its entire DNA genome and bioassay analysis comparing its virulence to that of other baculoviruses. The annotated SpliMNPV genome of...
Processing Motion Signals in Complex Environments
NASA Technical Reports Server (NTRS)
Verghese, Preeti
2000-01-01
Motion information is critical for human locomotion and scene segmentation. Currently we have excellent neurophysiological models that are able to predict human detection and discrimination of local signals. Local motion signals are insufficient by themselves to guide human locomotion and to provide information about depth, object boundaries and surface structure. My research is aimed at understanding the mechanisms underlying the combination of motion signals across space and time. A target moving on an extended trajectory amidst noise dots in Brownian motion is much more detectable than the sum of signals generated by independent motion energy units responding to the trajectory segments. This result suggests that facilitation occurs between motion units tuned to similar directions, lying along the trajectory path. We investigated whether the interaction between local motion units along the motion direction is mediated by contrast. One possibility is that contrast-driven signals from motion units early in the trajectory sequence are added to signals in subsequent units. If this were the case, then units later in the sequence would have a larger signal than those earlier in the sequence. To test this possibility, we compared contrast discrimination thresholds for the first and third patches of a triplet of sequentially presented Gabor patches, aligned along the motion direction. According to this simple additive model, contrast increment thresholds for the third patch should be higher than thresholds for the first patch.The lack of a measurable effect on contrast thresholds for these various manipulations suggests that the pooling of signals along a trajectory is not mediated by contrast-driven signals. Instead, these results are consistent with models that propose that the facilitation of trajectory signals is achieved by a second-level network that chooses the strongest local motion signals and combines them if they occur in a spatio-temporal sequence consistent with a trajectory. These results parallel the lack of increased apparent contrast along a static contour made up of similarly oriented elements.
Chan, Rachel W; von Deuster, Constantin; Giese, Daniel; Stoeck, Christian T; Harmer, Jack; Aitken, Andrew P; Atkinson, David; Kozerke, Sebastian
2014-07-01
Diffusion tensor imaging (DTI) of moving organs is gaining increasing attention but robust performance requires sequence modifications and dedicated correction methods to account for system imperfections. In this study, eddy currents in the "unipolar" Stejskal-Tanner and the velocity-compensated "bipolar" spin-echo diffusion sequences were investigated and corrected for using a magnetic field monitoring approach in combination with higher-order image reconstruction. From the field-camera measurements, increased levels of second-order eddy currents were quantified in the unipolar sequence relative to the bipolar diffusion sequence while zeroth and linear orders were found to be similar between both sequences. Second-order image reconstruction based on field-monitoring data resulted in reduced spatial misalignment artifacts and residual displacements of less than 0.43 mm and 0.29 mm (in the unipolar and bipolar sequences, respectively) after second-order eddy-current correction. Results demonstrate the need for second-order correction in unipolar encoding schemes but also show that bipolar sequences benefit from second-order reconstruction to correct for incomplete intrinsic cancellation of eddy-currents. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Stochastic ground-motion simulations for the 2016 Kumamoto, Japan, earthquake
NASA Astrophysics Data System (ADS)
Zhang, Long; Chen, Guangqi; Wu, Yanqiang; Jiang, Han
2016-11-01
On April 15, 2016, Kumamoto, Japan, was struck by a large earthquake sequence, leading to severe casualty and building damage. The stochastic finite-fault method based on a dynamic corner frequency has been applied to perform ground-motion simulations for the 2016 Kumamoto earthquake. There are 53 high-quality KiK-net stations available in the Kyushu region, and we employed records from all stations to determine region-specific source, path and site parameters. The calculated S-wave attenuation for the Kyushu region beneath the volcanic and non-volcanic areas can be expressed in the form of Q s = (85.5 ± 1.5) f 0.68±0.01 and Q s = (120 ± 5) f 0.64±0.05, respectively. The effects of lateral S-wave velocity and attenuation heterogeneities on the ground-motion simulations were investigated. Site amplifications were estimated using the corrected cross-spectral ratios technique. Zero-distance kappa filter was obtained to be the value of 0.0514 ± 0.0055 s, using the spectral decay method. The stress drop of the mainshock based on the USGS slip model was estimated optimally to have a value of 64 bars. Our finite-fault model with optimized parameters was validated through the good agreement of observations and simulations at all stations. The attenuation characteristics of the simulated peak ground accelerations were also successfully captured by the ground-motion prediction equations. Finally, the ground motions at two destructively damaged regions, Kumamoto Castle and Minami Aso village, were simulated. We conclude that the stochastic finite-fault method with well-determined parameters can reproduce the ground-motion characteristics of the 2016 Kumamoto earthquake in both the time and frequency domains. This work is necessary for seismic hazard assessment and mitigation.[Figure not available: see fulltext.
Lu, Y; Qi, Y X; Zhang, H; Zhang, H Q; Pu, J J; Xie, Y X
2013-12-19
To establish a proteomic reference map of Musa acuminate Colla (banana) leaf, we separated and identified leaf proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Tryptic digests of 44 spots were subjected to peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. Three spots that were not identified by MALDI-TOF MS analysis were identified by searching against the NCBInr, SwissProt, and expressed sequence tag (EST) databases. We identified 41 unique proteins. The majority of the identified leaf proteins were found to be involved in energy metabolism. The results indicate that 2D-PAGE is a sensitive and powerful technique for the separation and identification of Musa leaf proteins. A summary of the identified proteins and their putative functions is discussed.
Chou, C C; Yu, R C
1984-01-01
Ground powder of the leaf and fruit of Piper betle L., a tropical spice plant grown in Southeast Asia, was prepared and extracted by chloroform, ethanol and water with one solvent only or with 3 solvents in sequence. The betel powder and various extracts were added to YES broth to determine their effects on the growth and aflatoxin production by Aspergillus parasiticus. Results showed that betel leaf powder exhibited higher antimycotic activity than fruit. One half percent of ground leaf powder completely inhibited the growth and aflatoxin production by A. parasiticus. Among the solvent extracts, chloroform and ethanol extracts of betel leaf prepared from a single solvent extraction showed more antimycotic activity. The ethanol extract of betel leaf at the level of 450 micrograms/ml would eliminate A. parasiticus growth and aflatoxin production. The antimycotic activity of this ethanol extract was most pronounced at pH 4.
Yan, Chao-Gan; Cheung, Brian; Kelly, Clare; Colcombe, Stan; Craddock, R. Cameron; Di Martino, Adriana; Li, Qingyang; Zuo, Xi-Nian; Castellanos, F. Xavier; Milham, Michael P.
2014-01-01
Functional connectomics is one of the most rapidly expanding areas of neuroimaging research. Yet, concerns remain regarding the use of resting-state fMRI (R-fMRI) to characterize inter-individual variation in the functional connectome. In particular, recent findings that “micro” head movements can introduce artifactual inter-individual and group-related differences in R-fMRI metrics have raised concerns. Here, we first build on prior demonstrations of regional variation in the magnitude of framewise displacements associated with a given head movement, by providing a comprehensive voxel-based examination of the impact of motion on the BOLD signal (i.e., motion-BOLD relationships). Positive motion-BOLD relationships were detected in primary and supplementary motor areas, particularly in low motion datasets. Negative motion-BOLD relationships were most prominent in prefrontal regions, and expanded throughout the brain in high motion datasets (e.g., children). Scrubbing of volumes with FD > 0.2 effectively removed negative but not positive correlations; these findings suggest that positive relationships may reflect neural origins of motion while negative relationships are likely to originate from motion artifact. We also examined the ability of motion correction strategies to eliminate artifactual differences related to motion among individuals and between groups for a broad array of voxel-wise R-fMRI metrics. Residual relationships between motion and the examined R-fMRI metrics remained for all correction approaches, underscoring the need to covary motion effects at the group-level. Notably, global signal regression reduced relationships between motion and inter-individual differences in correlation-based R-fMRI metrics; Z-standardization (mean-centering and variance normalization) of subject-level maps for R-fMRI metrics prior to group-level analyses demonstrated similar advantages. Finally, our test-retest (TRT) analyses revealed significant motion effects on TRT reliability for R-fMRI metrics. Generally, motion compromised reliability of R-fMRI metrics, with the exception of those based on frequency characteristics – particularly, amplitude of low frequency fluctuations (ALFF). The implications of our findings for decision-making regarding the assessment and correction of motion are discussed, as are insights into potential differences among volume-based metrics of motion. PMID:23499792
Ghosh, Payel; Chandler, Adam G; Altinmakas, Emre; Rong, John; Ng, Chaan S
2016-01-01
The aim of this study was to investigate the feasibility of shuttle-mode computed tomography (CT) technology for body perfusion applications by quantitatively assessing and correcting motion artifacts. Noncontrast shuttle-mode CT scans (10 phases, 2 nonoverlapping bed locations) were acquired from 4 patients on a GE 750HD CT scanner. Shuttling effects were quantified using Euclidean distances (between-phase and between-bed locations) of corresponding fiducial points on the shuttle and reference phase scans (prior to shuttle mode). Motion correction with nonrigid registration was evaluated using sum-of-squares differences and distances between centers of segmented volumes of interest on shuttle and references images. Fiducial point analysis showed an average shuttling motion of 0.85 ± 1.05 mm (between-bed) and 1.18 ± 1.46 mm (between-phase), respectively. The volume-of-interest analysis of the nonrigid registration results showed improved sum-of-squares differences from 2950 to 597, between-bed distance from 1.64 to 1.20 mm, and between-phase distance from 2.64 to 1.33 mm, respectively, averaged over all cases. Shuttling effects introduced during shuttle-mode CT acquisitions can be computationally corrected for body perfusion applications.
NASA Astrophysics Data System (ADS)
Hu, Xiao-Su; Arredondo, Maria M.; Gomba, Megan; Confer, Nicole; DaSilva, Alexandre F.; Johnson, Timothy D.; Shalinsky, Mark; Kovelman, Ioulia
2015-12-01
Motion artifacts are the most significant sources of noise in the context of pediatric brain imaging designs and data analyses, especially in applications of functional near-infrared spectroscopy (fNIRS), in which it can completely affect the quality of the data acquired. Different methods have been developed to correct motion artifacts in fNIRS data, but the relative effectiveness of these methods for data from child and infant subjects (which is often found to be significantly noisier than adult data) remains largely unexplored. The issue is further complicated by the heterogeneity of fNIRS data artifacts. We compared the efficacy of the six most prevalent motion artifact correction techniques with fNIRS data acquired from children participating in a language acquisition task, including wavelet, spline interpolation, principal component analysis, moving average (MA), correlation-based signal improvement, and combination of wavelet and MA. The evaluation of five predefined metrics suggests that the MA and wavelet methods yield the best outcomes. These findings elucidate the varied nature of fNIRS data artifacts and the efficacy of artifact correction methods with pediatric populations, as well as help inform both the theory and practice of optical brain imaging analysis.
An Argument Against Augmenting the Lagrangean for Nonholonomic Systems
NASA Technical Reports Server (NTRS)
Roithmayr, Carlos M.; Hodges, Dewey H.
2009-01-01
Although it is known that correct dynamical equations of motion for a nonholonomic system cannot be obtained from a Lagrangean that has been augmented with a sum of the nonholonomic constraint equations weighted with multipliers, previous publications suggest otherwise. An example has been proposed in support of augmentation and purportedly demonstrates that an accepted method fails to produce correct equations of motion whereas augmentation leads to correct equations; this paper shows that in fact the opposite is true. The correct equations, previously discounted on the basis of a flawed application of the Newton-Euler method, are verified by using Kane's method and a new approach to determining the directions of constraint forces. A correct application of the Newton-Euler method reproduces valid equations.
Wyrwa, Katarzyna; Książkiewicz, Michał; Szczepaniak, Anna; Susek, Karolina; Podkowiński, Jan; Naganowska, Barbara
2016-09-01
Narrow-leafed lupin (Lupinus angustifolius L.) has recently been considered a reference genome for the Lupinus genus. In the present work, genetic and cytogenetic maps of L. angustifolius were supplemented with 30 new molecular markers representing lupin genome regions, harboring genes involved in nitrogen fixation during the symbiotic interaction of legumes and soil bacteria (Rhizobiaceae). Our studies resulted in the precise localization of bacterial artificial chromosomes (BACs) carrying sequence variants for early nodulin 40, nodulin 26, nodulin 45, aspartate aminotransferase P2, asparagine synthetase, cytosolic glutamine synthetase, and phosphoenolpyruvate carboxylase. Together with previously mapped chromosomes, the integrated L. angustifolius map encompasses 73 chromosome markers, including 5S ribosomal DNA (rDNA) and 45S rDNA, and anchors 20 L. angustifolius linkage groups to corresponding chromosomes. Chromosomal identification using BAC fluorescence in situ hybridization identified two BAC clones as narrow-leafed lupin centromere-specific markers, which served as templates for preliminary studies of centromere composition within the genus. Bioinformatic analysis of these two BACs revealed that centromeric/pericentromeric regions of narrow-leafed lupin chromosomes consisted of simple sequence repeats ordered into tandem repeats containing the trinucleotide and pentanucleotide simple sequence repeats AGG and GATAC, structured into long arrays. Moreover, cross-genus microsynteny analysis revealed syntenic patterns of 31 single-locus BAC clones among several legume species. The gene and chromosome level findings provide evidence of ancient duplication events that must have occurred very early in the divergence of papilionoid lineages. This work provides a strong foundation for future comparative mapping among legumes and may facilitate understanding of mechanisms involved in shaping legume chromosomes.
González-Carranza, Zinnia Haydé; Whitelaw, Catherine Ann; Swarup, Ranjan; Roberts, Jeremy Alan
2002-01-01
During leaf abscission in oilseed rape (Brassica napus), cell wall degradation is brought about by the action of several hydrolytic enzymes. One of these is thought to be polygalacturonase (PG). Degenerate primers were used to isolate a PG cDNA fragment by reverse transcriptase-polymerase chain reaction from RNA extracted from ethylene-promoted leaf abscission zones (AZs), and in turn a full-length clone (CAW471) from an oilseed rape AZ cDNA library. The highest homology of this cDNA (82%) was to an Arabidopsis sequence that was predicted to encode a PG protein. Analysis of expression revealed that CAW471 mRNA accumulated in the AZ of leaves and reached a peak 24 h after ethylene treatment. Ethylene-promoted leaf abscission in oilseed rape was not apparent until 42 h after exposure to the gas, reaching 50% at 48 h and 100% by 56 h. In floral organ abscission, expression of CAW471 correlated with cell separation. Genomic libraries from oilseed rape and Arabidopsis were screened with CAW471 and the respective genomic clones PGAZBRAN and PGAZAT isolated. Characterization of these PG genes revealed that they had substantial homology within both the coding regions and in the 5′-upstream sequences. Fusion of a 1,476-bp 5′-upstream sequence of PGAZAT to β-glucuronidase or green fluorescent protein and transformation of Arabidopsis revealed that this fragment was sufficient to drive expression of these reporter genes in the AZs at the base of the anther filaments, petals, and sepals. PMID:11842157
Ding, Tao; Melcher, Ulrich
2016-01-01
Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant’s growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species. PMID:26974817
Ding, Tao; Melcher, Ulrich
2016-01-01
Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.
Fast automatic correction of motion artifacts in shoulder MRI
NASA Astrophysics Data System (ADS)
Manduca, Armando; McGee, Kiaran P.; Welch, Edward B.; Felmlee, Joel P.; Ehman, Richard L.
2001-07-01
The ability to correct certain types of MR images for motion artifacts from the raw data alone by iterative optimization of an image quality measure has recently been demonstrated. In the first study on a large data set of clinical images, we showed that such an autocorrection technique significantly improved the quality of clinical rotator cuff images, and performed almost as well as navigator echo correction while never degrading an image. One major criticism of such techniques is that they are computationally intensive, and reports of the processing time required have ranged form a few minutes to tens of minutes per slice. In this paper we describe a variety of improvements to our algorithm as well as approaches to correct sets of adjacent slices efficiently. The resulting algorithm is able to correct 256x256x20 clinical shoulder data sets for motion at an effective rate of 1 second/image on a standard commercial workstation. Future improvements in processor speeds and/or the use of specialized hardware will translate directly to corresponding reductions in this calculation time.
Joint PET-MR respiratory motion models for clinical PET motion correction
NASA Astrophysics Data System (ADS)
Manber, Richard; Thielemans, Kris; Hutton, Brian F.; Wan, Simon; McClelland, Jamie; Barnes, Anna; Arridge, Simon; Ourselin, Sébastien; Atkinson, David
2016-09-01
Patient motion due to respiration can lead to artefacts and blurring in positron emission tomography (PET) images, in addition to quantification errors. The integration of PET with magnetic resonance (MR) imaging in PET-MR scanners provides complementary clinical information, and allows the use of high spatial resolution and high contrast MR images to monitor and correct motion-corrupted PET data. In this paper we build on previous work to form a methodology for respiratory motion correction of PET data, and show it can improve PET image quality whilst having minimal impact on clinical PET-MR protocols. We introduce a joint PET-MR motion model, using only 1 min per PET bed position of simultaneously acquired PET and MR data to provide a respiratory motion correspondence model that captures inter-cycle and intra-cycle breathing variations. In the model setup, 2D multi-slice MR provides the dynamic imaging component, and PET data, via low spatial resolution framing and principal component analysis, provides the model surrogate. We evaluate different motion models (1D and 2D linear, and 1D and 2D polynomial) by computing model-fit and model-prediction errors on dynamic MR images on a data set of 45 patients. Finally we apply the motion model methodology to 5 clinical PET-MR oncology patient datasets. Qualitative PET reconstruction improvements and artefact reduction are assessed with visual analysis, and quantitative improvements are calculated using standardised uptake value (SUVpeak and SUVmax) changes in avid lesions. We demonstrate the capability of a joint PET-MR motion model to predict respiratory motion by showing significantly improved image quality of PET data acquired before the motion model data. The method can be used to incorporate motion into the reconstruction of any length of PET acquisition, with only 1 min of extra scan time, and with no external hardware required.
Unilateral cleft nasal deformity correction using conchal cartilage lily flower graft.
Hwang, Kun; Kim, Han Joon; Paik, Moo Hyun
2012-11-01
We present a conchal cartilage lily flower graft for correcting depressed and laterally displaced alar cartilage for correction of unilateral cleft nasal deformity.After making a V incision at the base of the columellar and then marginal incisions, the alar cartilages were exposed. A fusiform-shaped cartilage larger than 2.5 cm in length and 1 cm in width was obtained. The midline long axis was scored with a No. 15 knife, and the lateral one third was split. Two-thirds length portions were folded in half, and they became straightened in the shape of a stalk of a lily flower. Two symmetrical one-third length portions were fanned out bilaterally in the shape of the leaf of a lily flower. The stalk portion was positioned in a pocket between the medial crura, and the 2 leaf portions were placed on the dome of the alar cartilages. The marked points of the cleft side and contralateral side were secured with sutures. The V incision at the base of the columellar and the marginal incisions were closed with a V-Y shape. In this technique, the 2 leaf portions were placed on the dome of the alar cartilages and sutured; therefore, the suture holds the dome of the cleft side to the contralateral side without peaking.Thirteen patients (6 male and 7 female subjects; age range, 13-30 years) were operated. Among them, 6 patients were very satisfied, and 5 patients were satisfied with the results. Two patients felt they were improved.We think the conchal cartilage lily flower graft might be a good method for correction of depressed and laterally displaced alar cartilage in unilateral cleft nasal deformity.
Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing
2016-01-01
In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: 1) the reconstruction algorithms do not make full use of projection statistics; and 2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10 to 40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET. PMID:27385378
NASA Astrophysics Data System (ADS)
Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing
2016-08-01
In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10-40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET.
NASA Astrophysics Data System (ADS)
de Moura, Yhasmin Mendes; Galvão, Lênio Soares; Hilker, Thomas; Wu, Jin; Saleska, Scott; do Amaral, Cibele Hummel; Nelson, Bruce Walker; Lopes, Aline Pontes; Wiedeman, Kenia K.; Prohaska, Neill; de Oliveira, Raimundo Cosme; Machado, Carolyne Bueno; Aragão, Luiz E. O. C.
2017-09-01
The association between spectral reflectance and canopy processes remains challenging for quantifying large-scale canopy phenological cycles in tropical forests. In this study, we used a tower-mounted hyperspectral camera in an eastern Amazon forest to assess how canopy spectral signals of three species are linked with phenological processes in the 2012 dry season. We explored different approaches to disentangle the spectral components of canopy phenology processes and analyze their variations over time using 17 images acquired by the camera. The methods included linear spectral mixture analysis (SMA); principal component analysis (PCA); continuum removal (CR); and first-order derivative analysis. In addition, three vegetation indices potentially sensitive to leaf flushing, leaf loss and leaf area index (LAI) were calculated: the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and the entitled Green-Red Normalized Difference (GRND) index. We inspected also the consistency of the camera observations using Moderate Resolution Imaging Spectroradiometer (MODIS) and available phenological data on new leaf production and LAI of young, mature and old leaves simulated by a leaf demography-ontogeny model. The results showed a diversity of phenological responses during the 2012 dry season with related changes in canopy structure and greenness values. Because of the differences in timing and intensity of leaf flushing and leaf shedding, Erisma uncinatum, Manilkara huberi and Chamaecrista xinguensis presented different green vegetation (GV) and non-photosynthetic vegetation (NPV) SMA fractions; distinct PCA scores; changes in depth, width and area of the 681-nm chlorophyll absorption band; and variations over time in the EVI, GRND and NDVI. At the end of dry season, GV increased for Erisma uncinatum, while NPV increased for Chamaecrista xinguensis. For Manilkara huberi, the NPV first increased in the beginning of August and then decreased toward September with new foliage. Variations in red-edge position were not statistically significant between the species and across dates at the 95% confidence level. The camera data were affected by view-illumination effects, which reduced the SMA shade fraction over time. When MODIS data were corrected for these effects using the Multi-Angle Implementation of Atmospheric Correction Algorithm (MAIAC), we observed an EVI increase toward September that closely tracked the modeled LAI of mature leaves (3-5 months). Compared to the EVI, the GRND was a better indicator of leaf flushing because the modeled production of new leaves peaked in August and then declined in September following the GRND closely. While the EVI was more related to changes in mature leaf area, the GRND was more associated with new leaf flushing.
Choi, Jang-Hwan; Maier, Andreas; Keil, Andreas; Pal, Saikat; McWalter, Emily J; Beaupré, Gary S; Gold, Garry E; Fahrig, Rebecca
2014-06-01
A C-arm CT system has been shown to be capable of scanning a single cadaver leg under loaded conditions by virtue of its highly flexible acquisition trajectories. In Part I of this study, using the 4D XCAT-based numerical simulation, the authors predicted that the involuntary motion in the lower body of subjects in weight-bearing positions would seriously degrade image quality and the authors suggested three motion compensation methods by which the reconstructions could be corrected to provide diagnostic image quality. Here, the authors demonstrate that a flat-panel angiography system is appropriate for scanning both legs of subjects in vivo under weight-bearing conditions and further evaluate the three motion-correction algorithms using in vivo data. The geometry of a C-arm CT system for a horizontal scan trajectory was calibrated using the PDS-2 phantom. The authors acquired images of two healthy volunteers while lying supine on a table, standing, and squatting at several knee flexion angles. In order to identify the involuntary motion of the lower body, nine 1-mm-diameter tantalum fiducial markers were attached around the knee. The static mean marker position in 3D, a reference for motion compensation, was estimated by back-projecting detected markers in multiple projections using calibrated projection matrices and identifying the intersection points in 3D of the back-projected rays. Motion was corrected using three different methods (described in detail previously): (1) 2D projection shifting, (2) 2D deformable projection warping, and (3) 3D rigid body warping. For quantitative image quality analysis, SSIM indices for the three methods were compared using the supine data as a ground truth. A 2D Euclidean distance-based metric of subjects' motion ranged from 0.85 mm (±0.49 mm) to 3.82 mm (±2.91 mm) (corresponding to 2.76 to 12.41 pixels) resulting in severe motion artifacts in 3D reconstructions. Shifting in 2D, 2D warping, and 3D warping improved the SSIM in the central slice by 20.22%, 16.83%, and 25.77% in the data with the largest motion among the five datasets (SCAN5); improvement in off-center slices was 18.94%, 29.14%, and 36.08%, respectively. The authors showed that C-arm CT control can be implemented for nonstandard horizontal trajectories which enabled us to scan and successfully reconstruct both legs of volunteers in weight-bearing positions. As predicted using theoretical models, the proposed motion correction methods improved image quality by reducing motion artifacts in reconstructions; 3D warping performed better than the 2D methods, especially in off-center slices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jang-Hwan; Maier, Andreas; Keil, Andreas
2014-06-15
Purpose: A C-arm CT system has been shown to be capable of scanning a single cadaver leg under loaded conditions by virtue of its highly flexible acquisition trajectories. In Part I of this study, using the 4D XCAT-based numerical simulation, the authors predicted that the involuntary motion in the lower body of subjects in weight-bearing positions would seriously degrade image quality and the authors suggested three motion compensation methods by which the reconstructions could be corrected to provide diagnostic image quality. Here, the authors demonstrate that a flat-panel angiography system is appropriate for scanning both legs of subjectsin vivo undermore » weight-bearing conditions and further evaluate the three motion-correction algorithms using in vivo data. Methods: The geometry of a C-arm CT system for a horizontal scan trajectory was calibrated using the PDS-2 phantom. The authors acquired images of two healthy volunteers while lying supine on a table, standing, and squatting at several knee flexion angles. In order to identify the involuntary motion of the lower body, nine 1-mm-diameter tantalum fiducial markers were attached around the knee. The static mean marker position in 3D, a reference for motion compensation, was estimated by back-projecting detected markers in multiple projections using calibrated projection matrices and identifying the intersection points in 3D of the back-projected rays. Motion was corrected using three different methods (described in detail previously): (1) 2D projection shifting, (2) 2D deformable projection warping, and (3) 3D rigid body warping. For quantitative image quality analysis, SSIM indices for the three methods were compared using the supine data as a ground truth. Results: A 2D Euclidean distance-based metric of subjects’ motion ranged from 0.85 mm (±0.49 mm) to 3.82 mm (±2.91 mm) (corresponding to 2.76 to 12.41 pixels) resulting in severe motion artifacts in 3D reconstructions. Shifting in 2D, 2D warping, and 3D warping improved the SSIM in the central slice by 20.22%, 16.83%, and 25.77% in the data with the largest motion among the five datasets (SCAN5); improvement in off-center slices was 18.94%, 29.14%, and 36.08%, respectively. Conclusions: The authors showed that C-arm CT control can be implemented for nonstandard horizontal trajectories which enabled us to scan and successfully reconstruct both legs of volunteers in weight-bearing positions. As predicted using theoretical models, the proposed motion correction methods improved image quality by reducing motion artifacts in reconstructions; 3D warping performed better than the 2D methods, especially in off-center slices.« less
Markerless EPID image guided dynamic multi-leaf collimator tracking for lung tumors
NASA Astrophysics Data System (ADS)
Rottmann, J.; Keall, P.; Berbeco, R.
2013-06-01
Compensation of target motion during the delivery of radiotherapy has the potential to improve treatment accuracy, dose conformity and sparing of healthy tissue. We implement an online image guided therapy system based on soft tissue localization (STiL) of the target from electronic portal images and treatment aperture adaptation with a dynamic multi-leaf collimator (DMLC). The treatment aperture is moved synchronously and in real time with the tumor during the entire breathing cycle. The system is implemented and tested on a Varian TX clinical linear accelerator featuring an AS-1000 electronic portal imaging device (EPID) acquiring images at a frame rate of 12.86 Hz throughout the treatment. A position update cycle for the treatment aperture consists of four steps: in the first step at time t = t0 a frame is grabbed, in the second step the frame is processed with the STiL algorithm to get the tumor position at t = t0, in a third step the tumor position at t = ti + δt is predicted to overcome system latencies and in the fourth step, the DMLC control software calculates the required leaf motions and applies them at time t = ti + δt. The prediction model is trained before the start of the treatment with data representing the tumor motion. We analyze the system latency with a dynamic chest phantom (4D motion phantom, Washington University). We estimate the average planar position deviation between target and treatment aperture in a clinical setting by driving the phantom with several lung tumor trajectories (recorded from fiducial tracking during radiotherapy delivery to the lung). DMLC tracking for lung stereotactic body radiation therapy without fiducial markers was successfully demonstrated. The inherent system latency is found to be δt = (230 ± 11) ms for a MV portal image acquisition frame rate of 12.86 Hz. The root mean square deviation between tumor and aperture position is smaller than 1 mm. We demonstrate the feasibility of real-time markerless DMLC tracking with a standard LINAC-mounted (EPID).
TH-EF-207A-05: Feasibility of Applying SMEIR Method On Small Animal 4D Cone Beam CT Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Y; Zhang, Y; Shao, Y
Purpose: Small animal cone beam CT imaging has been widely used in preclinical research. Due to the higher respiratory rate and heat beats of small animals, motion blurring is inevitable and needs to be corrected in the reconstruction. Simultaneous motion estimation and image reconstruction (SMEIR) method, which uses projection images of all phases, proved to be effective in motion model estimation and able to reconstruct motion-compensated images. We demonstrate the application of SMEIR for small animal 4D cone beam CT imaging by computer simulations on a digital rat model. Methods: The small animal CBCT imaging system was simulated with themore » source-to-detector distance of 300 mm and the source-to-object distance of 200 mm. A sequence of rat phantom were generated with 0.4 mm{sup 3} voxel size. The respiratory cycle was taken as 1.0 second and the motions were simulated with a diaphragm motion of 2.4mm and an anterior-posterior expansion of 1.6 mm. The projection images were calculated using a ray-tracing method, and 4D-CBCT were reconstructed using SMEIR and FDK methods. The SMEIR method iterates over two alternating steps: 1) motion-compensated iterative image reconstruction by using projections from all respiration phases and 2) motion model estimation from projections directly through a 2D-3D deformable registration of the image obtained in the first step to projection images of other phases. Results: The images reconstructed using SMEIR method reproduced the features in the original phantom. Projections from the same phase were also reconstructed using FDK method. Compared with the FDK results, the images from SMEIR method substantially improve the image quality with minimum artifacts. Conclusion: We demonstrate that it is viable to apply SMEIR method to reconstruct small animal 4D-CBCT images.« less
NASA Astrophysics Data System (ADS)
Hayashi, Yoshikatsu; Tamura, Yurie; Sase, Kazuya; Sugawara, Ken; Sawada, Yasuji
Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.
New nearby white dwarfs from Gaia DR1 TGAS and UCAC5/URAT
NASA Astrophysics Data System (ADS)
Scholz, R.-D.; Meusinger, H.; Jahreiß, H.
2018-05-01
Aims: Using an accurate Tycho-Gaia Astrometric Solution (TGAS) 25 pc sample that is nearly complete for GK stars and selecting common proper motion (CPM) candidates from the 5th United States Naval Observatory CCD Astrograph Catalog (UCAC5), we search for new white dwarf (WD) companions around nearby stars with relatively small proper motions. Methods: To investigate known CPM systems in TGAS and to select CPM candidates in TGAS+UCAC5, we took into account the expected effect of orbital motion on the proper motion and proper motion catalogue errors. Colour-magnitude diagrams (CMDs) MJ /J - Ks and MG /G - J were used to verify CPM candidates from UCAC5. Assuming their common distance with a given TGAS star, we searched for candidates that occupied similar regions in the CMDs as the few known nearby WDs (four in TGAS) and WD companions (three in TGAS+UCAC5). The CPM candidates with colours and absolute magnitudes corresponding neither to the main sequence nor to the WD sequence were considered as doubtful or subdwarf candidates. Results: With a minimum proper motion of 60 mas yr-1, we selected three WD companion candidates; two of which are also confirmed by their significant parallaxes measured in URAT data, whereas the third may also be a chance alignment of a distant halo star with a nearby TGAS star that has an angular separation of about 465 arcsec. One additional nearby WD candidate was found from its URAT parallax and GJKs photometry. With HD 166435 B orbiting a well-known G1 star at ≈24.6 pc with a projected physical separation of ≈700 AU, we discovered one of the hottest WDs, classified by us as DA2.0 ± 0.2, in the solar neighbourhood. We also found TYC 3980-1081-1 B, a strong cool WD companion candidate around a recently identified new solar neighbour with a TGAS parallax corresponding to a distance of ≈8.3 pc and our photometric classification as ≈M2 dwarf. This raises the question of whether previous assumptions on the completeness of the WD sample to a distance of 13 pc were correct. Partly based on observations with the 2.2 m telescope of the German-Spanish Astronomical Centre at Calar Alto, Spain