Science.gov

Sample records for motor control circuit

  1. Control Circuit For Two Stepping Motors

    NASA Technical Reports Server (NTRS)

    Ratliff, Roger; Rehmann, Kenneth; Backus, Charles

    1990-01-01

    Control circuit operates two independent stepping motors, one at a time. Provides following operating features: After selected motor stepped to chosen position, power turned off to reduce dissipation; Includes two up/down counters that remember at which one of eight steps each motor set. For selected motor, step indicated by illumination of one of eight light-emitting diodes (LED's) in ring; Selected motor advanced one step at time or repeatedly at rate controlled; Motor current - 30 mA at 90 degree positions, 60 mA at 45 degree positions - indicated by high or low intensity of LED that serves as motor-current monitor; Power-on reset feature provides trouble-free starts; To maintain synchronism between control circuit and motors, stepping of counters inhibited when motor power turned off.

  2. Motor power control circuit for ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A motor power control of the type which functions by controlling the power factor wherein one of the parameters of power factor current on time is determined by the on time of a triac through which current is supplied to the motor. By means of a positive feedback circuit, a wider range of control is effected.

  3. Integrated-Circuit Controller For Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Le, Dong Tuan

    1994-01-01

    Generic circuit performs commutation-logic and power-switching functions for control of brushless dc motor. Controller includes commutation-logic and associated control circuitry, power supply, and inverters containing power transistors. Major advantages of controller are size, weight, and power consumption can be made less than other brushless-dc-motor controllers.

  4. Motor neurons control locomotor circuit function retrogradely via gap junctions.

    PubMed

    Song, Jianren; Ampatzis, Konstantinos; Björnfors, E Rebecka; El Manira, Abdeljabbar

    2016-01-21

    Motor neurons are the final stage of neural processing for the execution of motor behaviours. Traditionally, motor neurons have been viewed as the 'final common pathway', serving as passive recipients merely conveying to the muscles the final motor program generated by upstream interneuron circuits. Here we reveal an unforeseen role of motor neurons in controlling the locomotor circuit function via gap junctions in zebrafish. These gap junctions mediate a retrograde analogue propagation of voltage fluctuations from motor neurons to control the synaptic release and recruitment of the upstream V2a interneurons that drive locomotion. Selective inhibition of motor neurons during ongoing locomotion de-recruits V2a interneurons and strongly influences locomotor circuit function. Rather than acting as separate units, gap junctions unite motor neurons and V2a interneurons into functional ensembles endowed with a retrograde analogue computation essential for locomotor rhythm generation. These results show that motor neurons are not a passive recipient of motor commands but an integral component of the neural circuits responsible for motor behaviour.

  5. Fluid logic control circuit operates nutator actuator motor

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Fluid logic control circuit operates a pneumatic nutator actuator motor. It has no moving parts and consists of connected fluid interaction devices. The operation of this circuit demonstrates the ability of fluid interaction devices to operate in a complex combination of series and parallel logic sequence.

  6. Induction motor control system with voltage controlled oscillator circuit

    NASA Technical Reports Server (NTRS)

    Nola, F. J.; Currie, J. R.; Reid, H., Jr. (Inventor)

    1973-01-01

    A voltage controlled oscillator circuit is reported in which there are employed first and second differential amplifiers. The first differential amplifier, being employed as an integrator, develops equal and opposite slopes proportional to an input voltage, and the second differential amplifier functions as a comparator to detect equal amplitude positive and negative selected limits and provides switching signals which gate a transistor switch. The integrating differential amplifier is switched between charging and discharging modes to provide an output of the first differential amplifier which upon the application of wave shaping provides a substantially sinusoidal output signal. A two phased version with a second integrator provides a second 90 deg phase shifted output for induction motor control.

  7. Four quadrant control circuit for a brushless three-phase dc motor

    NASA Technical Reports Server (NTRS)

    Nola, Frank J. (Inventor)

    1987-01-01

    A control circuit is provided for a brushless three-phase dc motor which affords four quadrant control from a single command. The control circuit probes acceleration of the motor in both clockwise and counterclockwise directions and braking and generation in both clockwise and counterclockwise directions. In addition to turning on individual transistors of the transistor pairs connected to the phase windings of the motor for 120 deg periods while the other transistor of that pair is off, the control circuit also provides, in a future mode of operation, turning the two transistors of each pair on and off alternately at a phase modulation frequency during such a 120 deg period. A feedback signal is derived which is proportional to the motor current and which has a polarity consistent with the command signal, such that negative feedback results.

  8. The role of spinal GABAergic circuits in the control of phrenic nerve motor output

    PubMed Central

    Ghali, Michael G. Z.; Rogers, Robert F.

    2015-01-01

    While supraspinal mechanisms underlying respiratory pattern formation are well characterized, the contribution of spinal circuitry to the same remains poorly understood. In this study, we tested the hypothesis that intraspinal GABAergic circuits are involved in shaping phrenic motor output. To this end, we performed bilateral phrenic nerve recordings in anesthetized adult rats and observed neurogram changes in response to knocking down expression of both isoforms (65 and 67 kDa) of glutamate decarboxylase (GAD65/67) using microinjections of anti-GAD65/67 short-interference RNA (siRNA) in the phrenic nucleus. The number of GAD65/67-positive cells was drastically reduced on the side of siRNA microinjections, especially in the lateral aspects of Rexed's laminae VII and IX in the ventral horn of cervical segment C4, but not contralateral to microinjections. We hypothesize that intraspinal GABAergic control of phrenic output is primarily phasic, but also plays an important role in tonic regulation of phrenic discharge. Also, we identified respiration-modulated GABAergic interneurons (both inspiratory and expiratory) located slightly dorsal to the phrenic nucleus. Our data provide the first direct evidence for the existence of intraspinal GABAergic circuits contributing to the formation of phrenic output. The physiological role of local intraspinal inhibition, independent of descending direct bulbospinal control, is discussed. PMID:25833937

  9. Power control for ac motor

    NASA Technical Reports Server (NTRS)

    Dabney, R. W. (Inventor)

    1984-01-01

    A motor controller employing a triac through which power is supplied to a motor is described. The open circuit voltage appearing across the triac controls the operation of a timing circuit. This timing circuit triggers on the triac at a time following turn off which varies inversely as a function of the amplitude of the open circuit voltage of the triac.

  10. Emergence of Motor Circuit Activity

    PubMed Central

    Law, Chris; Paquet, Michel; Kania, Artur

    2014-01-01

    In the developing nervous system, ordered neuronal activity patterns can occur even in the absence of sensory input and to investigate how these arise, we have used the model system of the embryonic chicken spinal motor circuit, focusing on motor neurons of the lateral motor column (LMC). At the earliest stages of their molecular differentiation, we can detect differences between medial and lateral LMC neurons in terms of expression of neurotransmitter receptor subunits, including CHRNA5, CHRNA7, GRIN2A, GRIK1, HTR1A and HTR1B, as well as the KCC2 transporter. Using patch-clamp recordings we also demonstrate that medial and lateral LMC motor neurons have subtly different activity patterns that reflect the differential expression of neurotransmitter receptor subunits. Using a combination of patch-clamp recordings in single neurons and calcium-imaging of motor neuron populations, we demonstrate that inhibition of nicotinic, muscarinic or GABA-ergic activity, has profound effects of motor circuit activity during the initial stages of neuromuscular junction formation. Finally, by analysing the activity of large populations of motor neurons at different developmental stages, we show that the asynchronous, disordered neuronal activity that occurs at early stages of circuit formation develops into organised, synchronous activity evident at the stage of LMC neuron muscle innervation. In light of the considerable diversity of neurotransmitter receptor expression, activity patterns in the LMC are surprisingly similar between neuronal types, however the emergence of patterned activity, in conjunction with the differential expression of transmitter systems likely leads to the development of near-mature patterns of locomotor activity by perinatal ages. PMID:24722186

  11. Speed control for synchronous motors

    NASA Technical Reports Server (NTRS)

    Packard, H.; Schott, J.

    1981-01-01

    Feedback circuit controls fluctuations in speed of synchronous ac motor. Voltage proportional to phase angle is developed by phase detector, rectified, amplified, compared to threshold, and reapplied positively or negatively to motor excitation circuit. Speed control reduces wow and flutter of audio turntables and tape recorders, and enhances hunting in gyroscope motors.

  12. Identification of a spinal circuit for light touch and fine motor control

    PubMed Central

    Bourane, Steeve; Grossmann, Katja S.; Britz, Olivier; Dalet, Antoine; Del Barrio, Marta Garcia; Stam, Floor J.; Garcia-Campmany, Lidia; Koch, Stephanie; Goulding, Martyn

    2015-01-01

    Sensory circuits in the dorsal spinal cord integrate and transmit multiple cutaneous sensory modalities including the sense of light touch. Here we identify a population of excitatory interneurons (INs) in the dorsal horn that are important for transmitting innocuous light touch sensation. These neurons express the ROR alpha (RORα) nuclear orphan receptor and are selectively innervated by cutaneous low threshold mechanoreceptors (LTMs). Targeted removal of RORα INs in the dorsal spinal cord leads a marked reduction in behavioral responsiveness to light touch without affecting responses to noxious and itch stimuli. RORα IN-deficient mice also display a selective deficit in corrective foot movements. This phenotype, together with our demonstration that the RORα INs are innervated by corticospinal and vestibulospinal projection neurons, argues that the RORα INs direct corrective reflex movements by integrating touch information with descending motor commands from the cortex and cerebellum. PMID:25635458

  13. Plasticity in the brainstem vagal circuits controlling gastric motor function triggered by corticotropin releasing factor.

    PubMed

    Browning, Kirsteen N; Babic, Tanja; Toti, Luca; Holmes, Gregory M; Coleman, F Holly; Travagli, R Alberto

    2014-10-15

    Stress impairs gastric emptying, reduces stomach compliance and induces early satiety via vagal actions. We have shown recently that the ability of the anti-stress neuropeptide oxytocin (OXT) to modulate vagal brainstem circuits undergoes short-term plasticity via alterations in cAMP levels subsequent to vagal afferent fibre-dependent activation of metabotropic glutamate receptors. The aim of the present study was to test the hypothesis that the OXT-induced gastric response undergoes plastic changes in the presence of the prototypical stress hormone, corticotropin releasing factor (CRF). Whole cell patch clamp recordings showed that CRF increased inhibitory GABAergic synaptic transmission to identified corpus-projecting dorsal motor nucleus of the vagus (DMV) neurones. In naive brainstem slices, OXT perfusion had no effect on inhibitory synaptic transmission; following exposure to CRF (and recovery from its actions), however, re-application of OXT inhibited GABAergic transmission in the majority of neurones tested. This uncovering of the OXT response was antagonized by pretreatment with protein kinase A or adenylate cyclase inhibitors, H89 and di-deoxyadenosine, respectively, indicating a cAMP-mediated mechanism. In naive animals, OXT microinjection in the dorsal vagal complex induced a NO-mediated corpus relaxation. Following CRF pretreatment, however, microinjection of OXT attenuated or, at times reversed, the gastric relaxation which was insensitive to l-NAME but was antagonized by pretreatment with a VIP antagonist. Immunohistochemical analyses of vagal motoneurones showed an increased number of oxytocin receptors present on GABAergic terminals of CRF-treated or stressed vs. naive rats. These results indicate that CRF alters vagal inhibitory circuits that uncover the ability of OXT to modulate GABAergic currents and modifies the gastric corpus motility response to OXT. PMID:25128570

  14. Motor control for a brushless DC motor

    NASA Technical Reports Server (NTRS)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  15. Variability in action: Contributions of a songbird cortical-basal ganglia circuit to vocal motor learning and control.

    PubMed

    Woolley, S C; Kao, M H

    2015-06-18

    Many motor behaviors, from walking to speaking, are acquired through experience, in particular, through trial-and-error learning. The acquisition and maintenance of such motor behaviors in a wide range of species, including humans, appear to depend on cortical-basal ganglia circuits. In this review, we discuss recent studies in songbirds that have been pivotal in informing our current understanding of motor learning and cortical-basal ganglia function. Songbirds are important ethological model systems for the study of motor learning because young songbirds naturally develop and refine their songs through trial-and-error learning. In addition, reinforcement mechanisms are hypothesized to be important for the maintenance and plasticity of structured adult song. Computational and experimental studies highlight the importance of vocal motor variability as the substrate upon which reinforcement mechanisms could operate to shape developing song and to maintain adult song. Recent studies in songbirds indicate that this vocal motor variability is actively generated and modulated by a highly specialized cortical-basal ganglia circuit evolved for a single behavior, song. We argue that these and other recent findings illustrate how the tight association between a specialized neural circuit and a natural behavior make songbirds a unique and powerful model in which to investigate the neural substrates of motor learning and plasticity.

  16. Torque control for electric motors

    NASA Technical Reports Server (NTRS)

    Bernard, C. A.

    1980-01-01

    Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.

  17. Motor Controllers

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Kollmorgen Corporation's Mermaid II two person submersible is propeller-driven by a system of five DC brushless motors with new electronic controllers that originated in work performed in a NASA/DOE project managed by Lewis Research Center. A key feature of the system is electric commutation rather than mechanical commutation for converting AC current to DC.

  18. Circuits and control processes for combining direct converters and inverter motors

    NASA Astrophysics Data System (ADS)

    Mehne, Michael

    1992-09-01

    A method for inferior and superior engine speed range definition of a synchronous machine is proposed and conditions for operation interchange of direct converters and inverter motors are demonstrated. Several configurations of direct/inverse converters used as inverter motors with multiple intermediate devices were compared by simulation. It is established that the machine frequency must be chosen in the interval 5 to 12.5 Hz. The spectrum of network currents in direct operation was calculated from the simulated time curves and is found to be similar to this one of a comparable direct inverter. A higher network connection voltage is shown to be necessary for high numbers of revolution and the direct/inverse converter is found to have a lower power factor in direct operating for equal number of revolutions. It is concluded that direct/inverse converters are a powerful alternative to the well known starting processes of invertor motors and they make superfluous a system separation between direct converter and inverter motor for high power drive in any engine speed range.

  19. Closed-Loop Motor-Speed Control

    NASA Technical Reports Server (NTRS)

    Smith, Matthew A.; Delcher, Ray C.; Huston, Steven W.

    1989-01-01

    Electronic motor-speed control circuit designed to operate in electrically noisy environment. Includes optoelectronic pick-up device, placed inside motor housing to provide speed feedback signal. Automatically maintains speed motor at commanded value. Measures speed of motor in terms of frequency of pulses of infrared light chopped by fan blades of motor. Difference between measured and commanded speeds serves as control signal for external amplifier driving motor. Major advantage of circuit is low cost.

  20. Equivalent Circuit Modeling of Hysteresis Motors

    SciTech Connect

    Nitao, J J; Scharlemann, E T; Kirkendall, B A

    2009-08-31

    We performed a literature review and found that many equivalent circuit models of hysteresis motors in use today are incorrect. The model by Miyairi and Kataoka (1965) is the correct one. We extended the model by transforming it to quadrature coordinates, amenable to circuit or digital simulation. 'Hunting' is an oscillatory phenomenon often observed in hysteresis motors. While several works have attempted to model the phenomenon with some partial success, we present a new complete model that predicts hunting from first principles.

  1. Circuit increases capability of hysteresis synchronous motor

    NASA Technical Reports Server (NTRS)

    Markowitz, I. N.

    1967-01-01

    Frequency and phase detector circuit enables a hysteresis synchronous motor to drive a load of given torque value at a precise speed determined by a stable reference. This technique permits driving larger torque loads with smaller motors and lower power drain.

  2. Circuit For Control Of Electromechanical Prosthetic Hand

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Proposed circuit for control of electromechanical prosthetic hand derives electrical control signals from shoulder movements. Updated, electronic version of prosthesis, that includes two hooklike fingers actuated via cables from shoulder harness. Circuit built around favored shoulder harness, provides more dexterous movement, without incurring complexity of computer-controlled "bionic" or hydraulically actuated devices. Additional harness and potentiometer connected to similar control circuit mounted on other shoulder. Used to control stepping motor rotating hand about prosthetic wrist to one of number of angles consistent with number of digital outputs. Finger-control signals developed by circuit connected to first shoulder harness transmitted to prosthetic hand via sliprings at prosthetic wrist joint.

  3. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b)...

  4. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b)...

  5. Method and apparatus for controlling multiple motors

    DOEpatents

    Jones, Rollin G.; Kortegaard, Bert L.; Jones, David F.

    1987-01-01

    A method and apparatus are provided for simultaneously controlling a plurality of stepper motors. Addressing circuitry generates address data for each motor in a periodic address sequence. Memory circuits respond to the address data for each motor by accessing a corresponding memory location containing a first operational data set functionally related to a direction for moving the motor, speed data, and rate of speed change. First logic circuits respond to the first data set to generate a motor step command. Second logic circuits respond to the command from the first logic circuits to generate a third data set for replacing the first data set in memory with a current operational motor status, which becomes the first data set when the motor is next addressed.

  6. Motor control of fly feeding.

    PubMed

    McKellar, Claire E

    2016-06-01

    Following considerable progress on the molecular and cellular basis of taste perception in fly sensory neurons, the time is now ripe to explore how taste information, integrated with hunger and satiety, undergo a sensorimotor transformation to lead to the motor actions of feeding behavior. I examine what is known of feeding circuitry in adult flies from more than 250 years of work in larger flies and from newer work in Drosophila. I review the anatomy of the proboscis, its muscles and their functions (where known), its motor neurons, interneurons known to receive taste inputs, interneurons that diverge from taste circuitry to provide information to other circuits, interneurons from other circuits that converge on feeding circuits, proprioceptors that influence the motor control of feeding, and sites of integration of hunger and satiety on feeding circuits. In spite of the several neuron types now known, a connected pathway from taste inputs to feeding motor outputs has yet to be found. We are on the threshold of an era where these individual components will be assembled into circuits, revealing how nervous system architecture leads to the control of behavior. PMID:27309215

  7. ELECTRONIC PHASE CONTROL CIRCUIT

    DOEpatents

    Salisbury, J.D.; Klein, W.W.; Hansen, C.F.

    1959-04-21

    An electronic circuit is described for controlling the phase of radio frequency energy applied to a multicavity linear accelerator. In one application of the circuit two cavities are excited from a single radio frequency source, with one cavity directly coupled to the source and the other cavity coupled through a delay line of special construction. A phase detector provides a bipolar d-c output signal proportional to the difference in phase between the voltage in the two cavities. This d-c signal controls a bias supply which provides a d-c output for varying the capacitnce of voltage sensitive capacitors in the delay line. The over-all operation of the circuit is completely electronic, overcoming the time response limitations of the electromechanical control systems, and the relative phase relationship of the radio frequency voltages in the two caviiies is continuously controlled to effect particle acceleration.

  8. Three phase AC motor controller

    DOEpatents

    Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.

    1984-03-20

    A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

  9. Inrush Current Control Circuit

    NASA Technical Reports Server (NTRS)

    Cole, Steven W. (Inventor)

    2002-01-01

    An inrush current control circuit having an input terminal connected to a DC power supply and an output terminal connected to a load capacitor limits the inrush current that charges up the load capacitor during power up of a system. When the DC power supply applies a DC voltage to the input terminal, the inrush current control circuit produces a voltage ramp at the load capacitor instead of an abrupt DC voltage. The voltage ramp results in a constant low level current to charge up the load capacitor, greatly reducing the current drain on the DC power supply.

  10. Automatic level control circuit

    NASA Technical Reports Server (NTRS)

    Toole, P. C.; Mccarthy, D. M. (Inventor)

    1983-01-01

    An automatic level control circuit for an operational amplifier for minimizing spikes or instantaneous gain of the amplifier at a low period wherein no signal is received on the input is provided. The apparatus includes a multibranch circuit which is connected between an output terminal and a feedback terminal. A pair of zener diodes are connected back to back in series with a capacitor provided in one of the branches. A pair of voltage dividing resistors are connected in another of the branches and a second capacitor is provided in the remaining branch of controlling the high frequency oscillations of the operational amplifier.

  11. Precision stop control for motors

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Montenegro, Justino (Inventor)

    2000-01-01

    An improved stop control system and method are provided for a motor having a drive mechanism in which the motor is coupled to a motor controller that controls the speed and position of the drive mechanism using a first signal indicative of a commanded position of the drive mechanism, a second signal indicative of the actual speed of the drive mechanism and a third signal indicative of the actual position of the drive mechanism. The improved system/method uses a first circuit that receives the first and third signal and generates an error signal indicative of a difference therebetween. A second circuit receives the error signal and compares same with a threshold position error. The result of this comparison is used to selectively supply the second signal (i.e., speed) to the motor controller at least whenever the error signal is less than the threshold position error so that the motor controller can use the second signal in conjunction with the third signal to stop the motor.

  12. DETAIL OF THE OPERATING MOTOR FOR THE OIL CIRCUIT BREAKER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE OPERATING MOTOR FOR THE OIL CIRCUIT BREAKER SWITCH. - Wilson Dam & Hydroelectric Plant, Three Phase Tri Level Circuit Breaker, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL

  13. Breathing and vocal control: the respiratory system as both a driver and a target of telencephalic vocal motor circuits in songbirds.

    PubMed

    Schmidt, Marc F; McLean, Judith; Goller, Franz

    2012-04-01

    The production of vocalizations is intimately linked to the respiratory system. Despite our understanding of neural circuits that generate normal respiratory patterns, very little is understood regarding how these pontomedullary circuits become engaged during vocal production. Songbirds offer a potentially powerful model system for addressing this relationship. Songs dramatically alter the respiratory pattern in ways that are often highly predictable, and songbirds have a specialized telencephalic vocal motor circuit that provides massive innervation to a brainstem respiratory network that shares many similarities with its mammalian counterpart. In this review, we highlight interactions between the song motor circuit and the respiratory system, describing how both systems are likely to interact to produce the complex respiratory patterns that are observed during vocalization. We also discuss how the respiratory system, through its bilateral bottom-up projections to thalamus, might play a key role in sending precisely timed signals that synchronize premotor activity in both hemispheres.

  14. Fine motor control

    MedlinePlus

    ... out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To have fine motor control, children need: Awareness and planning Coordination Muscle ...

  15. Cortical Motor Circuits after Piano Training in Adulthood: Neurophysiologic Evidence.

    PubMed

    Houdayer, Elise; Cursi, Marco; Nuara, Arturo; Zanini, Sonia; Gatti, Roberto; Comi, Giancarlo; Leocani, Letizia

    2016-01-01

    The neuronal mechanisms involved in brain plasticity after skilled motor learning are not completely understood. We aimed to study the short-term effects of keyboard training in music-naive subjects on the motor/premotor cortex activity and interhemispheric interactions, using electroencephalography and transcranial magnetic stimulation (TMS). Twelve subjects (experimental group) underwent, before and after a two week-piano training: (1) hand-motor function tests: Jamar, grip and nine-hole peg tests; (2) electroencephalography, evaluating the mu rhythm task-related desynchronization (TRD) during keyboard performance; and (3) TMS, targeting bilateral abductor pollicis brevis (APB) and abductor digiti minimi (ADM), to obtain duration and area of ipsilateral silent period (ISP) during simultaneous tonic contraction of APB and ADM. Data were compared with 13 controls who underwent twice these measurements, in a two-week interval, without undergoing piano training. Every subject in the experimental group improved keyboard performance and left-hand nine-hole peg test scores. Pre-training, ISP durations were asymmetrical, left being longer than right. Post-training, right ISPAPB increased, leading to symmetrical ISPAPB. Mu TRD during motor performance became more focal and had a lesser amplitude than in pre-training, due to decreased activity over ventral premotor cortices. No such changes were evidenced in controls. We demonstrated that a 10-day piano-training was associated with balanced interhemispheric interactions both at rest and during motor activation. Piano training, in a short timeframe, may reshape local and inter-hemispheric motor cortical circuits.

  16. Demodulation circuit for AC motor current spectral analysis

    DOEpatents

    Hendrix, Donald E.; Smith, Stephen F.

    1990-12-18

    A motor current analysis method for the remote, noninvasive inspection of electric motor-operated systems. Synchronous amplitude demodulation and phase demodulation circuits are used singly and in combination along with a frequency analyzer to produce improved spectral analysis of load-induced frequencies present in the electric current flowing in a motor-driven system.

  17. Dual-circuit segmented rail phased induction motor

    DOEpatents

    Marder, Barry M.; Cowan, Jr., Maynard

    2002-01-01

    An improved linear motor utilizes two circuits, rather that one circuit and an opposed plate, to gain efficiency. The powered circuit is a flat conductive coil. The opposed segmented rail circuit is either a plurality of similar conductive coils that are shorted, or a plurality of ladders formed of opposed conductive bars connected by a plurality of spaced conductors. In each embodiment, the conductors are preferably cables formed from a plurality of intertwined insulated wires to carry current evenly.

  18. Compensated gain control circuit for buck regulator command charge circuit

    DOEpatents

    Barrett, D.M.

    1996-11-05

    A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit. 5 figs.

  19. Compensated gain control circuit for buck regulator command charge circuit

    DOEpatents

    Barrett, David M.

    1996-01-01

    A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit.

  20. Stepping motor controller

    DOEpatents

    Bourret, S.C.; Swansen, J.E.

    1982-07-02

    A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  1. Stepping motor controller

    DOEpatents

    Bourret, Steven C.; Swansen, James E.

    1984-01-01

    A stepping motor is microprocessingly controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  2. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Overcurrent protection for motors and motor branch... Potentials of 50 Volts Or More on Vessels of Less Than 100 Gross Tons § 169.684 Overcurrent protection for motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each...

  3. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Overcurrent protection for motors and motor branch... Potentials of 50 Volts Or More on Vessels of Less Than 100 Gross Tons § 169.684 Overcurrent protection for motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each...

  4. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Overcurrent protection for motors and motor branch... Potentials of 50 Volts Or More on Vessels of Less Than 100 Gross Tons § 169.684 Overcurrent protection for motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each...

  5. Controller for a High-Power, Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Fleming, David J.; Makdad, Terence A.

    1987-01-01

    Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.

  6. Electronic control circuits: A compilation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A compilation of technical R and D information on circuits and modular subassemblies is presented as a part of a technology utilization program. Fundamental design principles and applications are given. Electronic control circuits discussed include: anti-noise circuit; ground protection device for bioinstrumentation; temperature compensation for operational amplifiers; hybrid gatling capacitor; automatic signal range control; integrated clock-switching control; and precision voltage tolerance detector.

  7. Cortical Motor Circuits after Piano Training in Adulthood: Neurophysiologic Evidence

    PubMed Central

    Nuara, Arturo; Zanini, Sonia; Gatti, Roberto; Comi, Giancarlo; Leocani, Letizia

    2016-01-01

    The neuronal mechanisms involved in brain plasticity after skilled motor learning are not completely understood. We aimed to study the short-term effects of keyboard training in music-naive subjects on the motor/premotor cortex activity and interhemispheric interactions, using electroencephalography and transcranial magnetic stimulation (TMS). Twelve subjects (experimental group) underwent, before and after a two week-piano training: (1) hand-motor function tests: Jamar, grip and nine-hole peg tests; (2) electroencephalography, evaluating the mu rhythm task-related desynchronization (TRD) during keyboard performance; and (3) TMS, targeting bilateral abductor pollicis brevis (APB) and abductor digiti minimi (ADM), to obtain duration and area of ipsilateral silent period (ISP) during simultaneous tonic contraction of APB and ADM. Data were compared with 13 controls who underwent twice these measurements, in a two-week interval, without undergoing piano training. Every subject in the experimental group improved keyboard performance and left-hand nine-hole peg test scores. Pre-training, ISP durations were asymmetrical, left being longer than right. Post-training, right ISPAPB increased, leading to symmetrical ISPAPB. Mu TRD during motor performance became more focal and had a lesser amplitude than in pre-training, due to decreased activity over ventral premotor cortices. No such changes were evidenced in controls. We demonstrated that a 10-day piano-training was associated with balanced interhemispheric interactions both at rest and during motor activation. Piano training, in a short timeframe, may reshape local and inter-hemispheric motor cortical circuits. PMID:27309353

  8. Cortical Motor Circuits after Piano Training in Adulthood: Neurophysiologic Evidence.

    PubMed

    Houdayer, Elise; Cursi, Marco; Nuara, Arturo; Zanini, Sonia; Gatti, Roberto; Comi, Giancarlo; Leocani, Letizia

    2016-01-01

    The neuronal mechanisms involved in brain plasticity after skilled motor learning are not completely understood. We aimed to study the short-term effects of keyboard training in music-naive subjects on the motor/premotor cortex activity and interhemispheric interactions, using electroencephalography and transcranial magnetic stimulation (TMS). Twelve subjects (experimental group) underwent, before and after a two week-piano training: (1) hand-motor function tests: Jamar, grip and nine-hole peg tests; (2) electroencephalography, evaluating the mu rhythm task-related desynchronization (TRD) during keyboard performance; and (3) TMS, targeting bilateral abductor pollicis brevis (APB) and abductor digiti minimi (ADM), to obtain duration and area of ipsilateral silent period (ISP) during simultaneous tonic contraction of APB and ADM. Data were compared with 13 controls who underwent twice these measurements, in a two-week interval, without undergoing piano training. Every subject in the experimental group improved keyboard performance and left-hand nine-hole peg test scores. Pre-training, ISP durations were asymmetrical, left being longer than right. Post-training, right ISPAPB increased, leading to symmetrical ISPAPB. Mu TRD during motor performance became more focal and had a lesser amplitude than in pre-training, due to decreased activity over ventral premotor cortices. No such changes were evidenced in controls. We demonstrated that a 10-day piano-training was associated with balanced interhemispheric interactions both at rest and during motor activation. Piano training, in a short timeframe, may reshape local and inter-hemispheric motor cortical circuits. PMID:27309353

  9. 2. ELEVATOR DRIVE, CABLE MOTOR, CIRCUIT BOX, Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ELEVATOR DRIVE, CABLE MOTOR, CIRCUIT BOX, - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  10. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly utilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilizes induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  11. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  12. Optically controllable molecular logic circuits

    SciTech Connect

    Nishimura, Takahiro Fujii, Ryo; Ogura, Yusuke; Tanida, Jun

    2015-07-06

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals.

  13. Power-Conserving Stepping-Motor Drive Circuits

    NASA Technical Reports Server (NTRS)

    Nola, Frank J.; Howard, David E.

    1994-01-01

    Two improved drive circuits for sinusoidally commutated stepping motor include feedback loops reducing unnecessary consumption of power by reducing drive-current amplitude, I, when motor operates under light load. Basic design strategy attempts to supply only little more current than minimum needed to overcome friction in lightly loaded condition. In this sinusoidally commutated two-phase stepping motor, magnetic field generated by drive currents in phase-A and phase-B stator windings urges rotor toward commanded angle x.

  14. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... circuits through circuit controller. 236.13 Section 236.13 Transportation Other Regulations Relating to...; selection of signal control circuits through circuit controller. The control circuits of signals governing... circuit controller, or through the contacts of relay repeating the position of such circuit...

  15. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... circuits through circuit controller. 236.13 Section 236.13 Transportation Other Regulations Relating to...; selection of signal control circuits through circuit controller. The control circuits of signals governing... circuit controller, or through the contacts of relay repeating the position of such circuit...

  16. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... circuits through circuit controller. 236.13 Section 236.13 Transportation Other Regulations Relating to...; selection of signal control circuits through circuit controller. The control circuits of signals governing... circuit controller, or through the contacts of relay repeating the position of such circuit...

  17. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... circuits through circuit controller. 236.13 Section 236.13 Transportation Other Regulations Relating to...; selection of signal control circuits through circuit controller. The control circuits of signals governing... circuit controller, or through the contacts of relay repeating the position of such circuit...

  18. Motor “Dexterity”?: Evidence that Left Hemisphere Lateralization of Motor Circuit Connectivity Is Associated with Better Motor Performance in Children

    PubMed Central

    Srinivasan, Priti; Joel, Suresh E.; Caffo, Brian S.; Pekar, James J.; Mostofsky, Stewart H.

    2012-01-01

    Motor control relies on well-established motor circuits, which are critical for typical child development. Although many imaging studies have examined task activation during motor performance, none have examined the relationship between functional intrinsic connectivity and motor ability. The current study investigated the relationship between resting state functional connectivity within the motor network and motor performance assessment outside of the scanner in 40 typically developing right-handed children. Better motor performance correlated with greater left-lateralized (mean left hemisphere—mean right hemisphere) motor circuit connectivity. Speed, rhythmicity, and control of movements were associated with connectivity within different individual region pairs: faster speed was associated with more left-lateralized putamen–thalamus connectivity, less overflow with more left-lateralized supplementary motor–primary motor connectivity, and less dysrhythmia with more left-lateralized supplementary motor–anterior cerebellar connectivity. These findings suggest that for right-handed children, superior motor development depends on the establishment of left-hemisphere dominance in intrinsic motor network connectivity. PMID:21613469

  19. 18. Station Service Control and Motor Control Center #2, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Station Service Control and Motor Control Center #2, view to the northeast. Note the circuit breaker switch on cart in left corner of photograph. This switch is part of the motor control center which has been temporarily removed from the slot marked with a tag that is visible at lower left end of control center. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  20. Efficient Power Amplifier for Motor Control

    NASA Technical Reports Server (NTRS)

    Brown, R. J.

    1986-01-01

    Pulse-width-modulated amplifier supplies high current as efficiently as low current needed for starting and running motor. Key to efficiency of motor-control amplifier is V-channel metal-oxide/semiconductor transistor Q1. Device has low saturation resistance. However, has large gate input capacitance and small margin between its turn-on voltage and maximum allowable gate-to-source voltage. Circuits for output stages overcome limitations of VMOS device.

  1. Pulsed thyristor trigger control circuit

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A trigger control circuit is provided for producing firing pulses for the thyristor of a thyristor control system such as a power factor controller. The control circuit overcomes thyristor triggering problems involved with the current lag associated with controlling inductive loads and utilizes a phase difference signal, already present in the power factor controller, in deriving a signal for inhibiting generation of a firing pulse until no load current is flowing from the preceding half cycle and thereby ensuring that the thyristor is triggered on during each half cycle.

  2. Electric vehicle motors and controllers

    NASA Astrophysics Data System (ADS)

    Secunde, R. R.

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  3. Electric vehicle motors and controllers

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1981-01-01

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  4. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  5. DC motor proportional control system for orthotic devices

    NASA Technical Reports Server (NTRS)

    Blaise, H. T.; Allen, J. R.

    1972-01-01

    Multi-channel proportional control system for operation of dc motors for use with externally-powered orthotic arm braces is described. Components of circuitry and principles of operation are described. Schematic diagram of control circuit is provided.

  6. 49 CFR 236.731 - Controller, circuit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Controller, circuit. A device for opening and closing electric circuits. ... 49 Transportation 4 2013-10-01 2013-10-01 false Controller, circuit. 236.731 Section 236.731 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD...

  7. Chua's Circuit: Control and Synchronization

    NASA Astrophysics Data System (ADS)

    Irimiciuc, Stefan-Andrei; Vasilovici, Ovidiu; Dimitriu, Dan-Gheorghe

    Chaos-based data encryption is one of the most reliable methods used in secure communications. This implies a good control of a chaotic system and a good synchronization between the involved systems. Here, experimental results are shown on the control and synchronization of Chua's circuits. The control of the chaotic circuit was achieved by using the switching method. The influence of the control signal characteristics (amplitude, frequency and shape) on the system's states was also investigated. The synchronization of two similar chaotic circuits was studied, emphasizing the importance of the chaotic state characteristics of the Master system in respect to those of Slave system. It was shown that the synchronization does not depend on the chaotic state type, neither on the dimension (x, y or z) used for synchronization.

  8. Motor activity is modulated via different neuronal circuits in rats with chronic liver failure than in normal rats.

    PubMed

    Cauli, Omar; Mlili, Nisrin; Llansola, Marta; Felipo, Vicente

    2007-04-01

    The mechanisms by which liver failure alters motor function remain unclear. It has been suggested that liver disease alters the neuronal circuit between basal ganglia and cortex that modulates motor function. Activation of group I metabotropic glutamate receptors in the nucleus accumbens (NAcc) by injecting (S)-3,5-dihydroxyphenylglycine (DHPG) activates this circuit and induces locomotion We analysed by in vivo brain microdialysis the function of the circuits that modulate motor function in rats with liver failure due to portacaval shunt (PCS). We inserted cannulae in the NAcc and microdialysis probes in the NAcc, ventral pallidum (VP), substantia nigra pars reticulata (SNr), medio-dorsal thalamus (MDT), ventro-medial thalamus (VMT) or prefrontal cortex (PFCx). We injected DHPG in the NAcc and analysed extracellular neurotransmitters concentration in these areas. The results indicate that in control rats DHPG induces locomotion by activating the 'normal' neuronal circuit: NAcc --> VP --> MDT --> PFCx. In PCS rats this circuit is not activated. In PCS rats, DHPG injection activates an 'alternative' circuit: NAcc --> SNr --> VMT --> PFCx. This circuit is not activated in control rats. DHPG injection increases dopamine in the NAcc of control but not of PCS rats, and glutamate in PCS but not in control rats. DHPG-induced increase in dopamine would activate the 'normal' neuronal circuit, while an increase in glutamate would activate the 'alternative' circuit. The identification of the mechanisms responsible for altered motor function and coordination in liver disease would allow designing treatments to improve motor function in patients with hepatic encephalopathy.

  9. A Drive Circuit of Switched Reluctance Motors using Three-phase Power Modules

    NASA Astrophysics Data System (ADS)

    Goto, Hiroki; Guo, Hai-Jiao; Ichinokura, Osamu

    Switched Reluctance(SR) motors have several advantages for industrial applications. However, their drive circuits are not necessarily suitable. The drive circuit of a 3-phase SR motor has 6 switches and 6 diodes such as general 3-phase inverter, but its connection is different. So, a general 3-phase power module such as Intelligent Power Module(IPM) can't be used. We proposed a novel drive circuit for SR motors, which can be constructed using general a 3-phase power module without external inductors or devices. This drive method has several advantages including low cost, high efficiency, and compactness. It was simulated on SPICE including the controller and the driving performances were investigated. The new drive circuit allowed phase current to flow bi-directionally. So, the reluctance torque of SR motors is not affected by current direction. Then, we developed the new drive circuit for a 6/4 SR motor using a conventional 3-phase IPM. The results of the experiments indicated same performances as conventional way and higher efficiency than conventional way.

  10. Circuits controlling vertebrate locomotion: moving in a new direction

    PubMed Central

    Goulding, Martyn

    2010-01-01

    Neurobiologists have long sought to understand how circuits in the nervous system are organized and generate the precise neural outputs that underlie particular behaviors. The motor circuits in the spinal cord that control locomotion and are commonly referred to as central pattern generator (CPG) networks, provide an experimentally tractable model system for investigating how moderately complex ensembles of neurons generate select motor behaviors. The advent of novel molecular genetic techniques coupled with recent advances in our knowledge of spinal cord development means that a comprehensive understanding of how the motor circuitry is organized and operates may now be within our grasp. PMID:19543221

  11. Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits

    PubMed Central

    Jiang, Yu-Qiu; Zaaimi, Boubker

    2016-01-01

    Injury to the mature motor system drives significant spontaneous axonal sprouting instead of axon regeneration. Knowing the circuit-level determinants of axonal sprouting is important for repairing motor circuits after injury to achieve functional rehabilitation. Competitive interactions are known to shape corticospinal tract axon outgrowth and withdrawal during development. Whether and how competition contributes to reorganization of mature spinal motor circuits is unclear. To study this question, we examined plastic changes in corticospinal axons in response to two complementary proprioceptive afferent manipulations: (1) enhancing proprioceptive afferents activity by electrical stimulation; or (2) diminishing their input by dorsal rootlet rhizotomy. Experiments were conducted in adult rats. Electrical stimulation produced proprioceptive afferent sprouting that was accompanied by significant corticospinal axon withdrawal and a decrease in corticospinal connections on cholinergic interneurons in the medial intermediate zone and C boutons on motoneurons. In contrast, dorsal rootlet rhizotomy led to a significant increase in corticospinal connections, including those on cholinergic interneurons; C bouton density increased correspondingly. Motor cortex-evoked muscle potentials showed parallel changes to those of corticospinal axons, suggesting that reciprocal corticospinal axon changes are functional. Using the two complementary models, we showed that competitive interactions between proprioceptive and corticospinal axons are an important determinant in the organization of mature corticospinal axons and spinal motor circuits. The activity- and synaptic space-dependent properties of the competition enables prediction of the remodeling of spared corticospinal connection and spinal motor circuits after injury and informs the target-specific control of corticospinal connections to promote functional recovery. SIGNIFICANCE STATEMENT Neuroplasticity is limited in maturity

  12. Power factor control system for ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1981-01-01

    A power control circuit for an induction motor is disclosed in which a servo loop is used to control power input by controlling the power factor of motor operation. The power factor is measured by summing the voltage and current derived square wave signals.

  13. Low distortion automatic phase control circuit

    NASA Technical Reports Server (NTRS)

    Hauge, G.; Pederson, C. W.

    1972-01-01

    Circuit for generation and demodulation of quadrature double side band signals in frequency division multiplexing system is described. Circuit is designed to produce low distortion automatic phase control. Illustration of circuit and components is included.

  14. Heritability of motor control and motor learning

    PubMed Central

    Missitzi, Julia; Gentner, Reinhard; Misitzi, Angelica; Geladas, Nickos; Politis, Panagiotis; Klissouras, Vassilis; Classen, Joseph

    2013-01-01

    Abstract The aim of this study was to elucidate the relative contribution of genes and environment on individual differences in motor control and acquisition of a force control task, in view of recent association studies showing that several candidate polymorphisms may have an effect on them. Forty‐four healthy female twins performed brisk isometric abductions with their right thumb. Force was recorded by a transducer and fed back to the subject on a computer screen. The task was to place the tracing of the peak force in a force window defined between 30% and 40% of the subject's maximum force, as determined beforehand. The initial level of proficiency was defined as the number of attempts reaching the force window criterion within the first 100 trials. The difference between the number of successful trials within the last and the first 100 trials was taken as a measure of motor learning. For motor control, defined by the initial level of proficiency, the intrapair differences in monozygotic (MZ) and dizygotic (DZ) twins were 6.8 ± 7.8 and 13.8 ± 8.4, and the intrapair correlations 0.77 and 0.39, respectively. Heritability was estimated at 0.68. Likewise for motor learning intrapair differences in the increment of the number of successful trials in MZ and DZ twins were 5.4 ± 5.2 and 12.8 ± 7, and the intrapair correlations 0.58 and 0.19. Heritability reached 0.70. The present findings suggest that heredity accounts for a major part of existing differences in motor control and motor learning, but uncertainty remains which gene polymorphisms may be responsible. PMID:24744865

  15. Overlapping connections within the motor cortico-basal ganglia circuit: fMRI-tractography analysis.

    PubMed

    Oguri, Takuya; Sawamoto, Nobukatsu; Tabu, Hayato; Urayama, Shin-ichi; Matsuhashi, Masao; Matsukawa, Noriyuki; Ojika, Kosei; Fukuyama, Hidenao

    2013-09-01

    Contribution of the subcortical nuclei to the coordination of human behavior is dependent on the existence of appropriate anatomical architecture. Interpretations of available data have led to opposing 'information funneling' and 'parallel processing' hypotheses. Using motor circuit as a model, we examined whether cortico-subcortical circuits, especially cortico-basal ganglia circuits, are funneled or parallel in the control of volitional movement. Twenty-five healthy subjects underwent functional magnetic resonance imaging (fMRI). Activated clusters during self-initiated, sequential finger-to-thumb opposition movements of the left hand were identified in the bilateral supplementary motor area (SMA), right lateral premotor cortex (PM) and primary motor cortex (M1), and in the right striatum and thalamus. These functionally defined clusters were applied to probabilistic tractography based on diffusion-weighted MRI to examine patterns of connectivity. Striatal and thalamic sub-regions with high probabilities of connection to the motor cortices partially overlapped, with connection to the two premotor areas outspreading rostrally relative to M1. We suggest that, on a macroscopic anatomical level, there is overlap as well as segregation among connections of the motor cortices with the striatum and thalamus. This supports the notion that neuronal information of the motor cortices is funneled, and parallel processing is not an exclusive principle in the basal ganglia.

  16. CONTROL AND FAULT DETECTOR CIRCUIT

    DOEpatents

    Winningstad, C.N.

    1958-04-01

    A power control and fault detectcr circuit for a radiofrequency system is described. The operation of the circuit controls the power output of a radio- frequency power supply to automatically start the flow of energizing power to the radio-frequency power supply and to gradually increase the power to a predetermined level which is below the point where destruction occurs upon the happening of a fault. If the radio-frequency power supply output fails to increase during such period, the control does not further increase the power. On the other hand, if the output of the radio-frequency power supply properly increases, then the control continues to increase the power to a maximum value. After the maximumn value of radio-frequency output has been achieved. the control is responsive to a ''fault,'' such as a short circuit in the radio-frequency system being driven, so that the flow of power is interrupted for an interval before the cycle is repeated.

  17. Circuit Mechanisms Underlying Motor Memory Formation in the Cerebellum

    PubMed Central

    Lee, Ka Hung; Mathews, Paul J.; Reeves, Alexander M.B.; Choe, Katrina Y.; Jami, Shekib A.; Serrano, Raul E.; Otis, Thomas S.

    2015-01-01

    SUMMARY The cerebellum stores associative motor memories essential for properly timed movement; however, the mechanisms by which these memories form and are acted upon remain unclear. To determine how cerebellar activity relates to movement and motor learning, we used optogenetics to manipulate spontaneously firing Purkinje neurons (PNs) in mouse simplex lobe. Using high-speed videography and motion tracking, we found that altering PN activity produced rapid forelimb movement. PN inhibition drove movements time-locked to stimulus onset, whereas PN excitation drove delayed movements time-locked to stimulus offset. Pairing either PN inhibition or excitation with sensory stimuli triggered the formation of robust, associative motor memories; however, PN excitation led to learned movements whose timing more closely matched training intervals. These findings implicate inhibition of PNs as a teaching signal, consistent with a model whereby learning leads first to reductions in PN firing that subsequently instruct circuit changes in the cerebellar nucleus. PMID:25843404

  18. Control system for an induction motor with energy recovery

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A control circuit for an induction motor powered system is disclosed in which a power factor controlled servo loop is used to control, via the phase angle of firing of a triac, the power input to the motor, as a function of load placed on the motor by machinery of the powered system. Then, upon application of torque by this machinery to the motor, which tends to overspeed the motor, the firing angle of the triac is automatically set to a fixed, and relatively short, firing angle.

  19. A circuit for motor cortical modulation of auditory cortical activity.

    PubMed

    Nelson, Anders; Schneider, David M; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan; Mooney, Richard

    2013-09-01

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity. PMID:24005287

  20. Control system for a wound-rotor motor

    DOEpatents

    Ellis, James N.

    1983-01-01

    A load switching circuit for switching two or more transformer taps under load carrying conditions includes first and second parallel connected bridge rectifier circuits which control the selective connection of a direct current load to taps of a transformer. The first bridge circuit is normally conducting so that the load is connected to a first tap through the first bridge circuit. To transfer the load to the second tap, a switch is operable to connect the second bridge circuit to a second tap, and when the second bridge circuit begins to conduct, the first bridge circuit ceases conduction because the potential at the second tap is higher than the potential at the first tap, and the load is thus connected to the second tap through the second bridge circuit. The load switching circuit is applicable in a motor speed controller for a wound-rotor motor for effecting tap switching as a function of motor speed while providing a stepless motor speed control characteristic.

  1. Advanced motor and motor control development

    NASA Astrophysics Data System (ADS)

    Wuertz, Kenneth L.; Beauchamp, Edward D.

    1988-08-01

    The capability of operating a high speed permanent magnet brushless dc motor with electronic controller over a wide load and speed range was demonstrated. A centrifugal pump was used as the loading mechanism and hydraulic fluid was pumped in simulation of an aircraft engine fuel pump requirement. A motor speed of 45,000 rpm was reached and a maximum output of 68.5 hp was demonstrated. The response of the system to step commands for speed change was established. Reduction of size and weight of electronic control was established as a primary future goal. The program system concept with minor rotating machine improvements is viable for high speed drive applications up to 100-hp level.

  2. 49 CFR 234.203 - Control circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Control circuits. 234.203 Section 234.203 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Maintenance Standards § 234.203 Control circuits. All control circuits that...

  3. 49 CFR 236.721 - Circuit, control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Circuit, control. 236.721 Section 236.721..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.721 Circuit, control. An electrical circuit between a source of electric energy and a device which it operates....

  4. 49 CFR 236.721 - Circuit, control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Circuit, control. 236.721 Section 236.721..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.721 Circuit, control. An electrical circuit between a source of electric energy and a device which it operates....

  5. 49 CFR 236.721 - Circuit, control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit, control. 236.721 Section 236.721..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.721 Circuit, control. An electrical circuit between a source of electric energy and a device which it operates....

  6. 49 CFR 234.203 - Control circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Control circuits. 234.203 Section 234.203 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Maintenance Standards § 234.203 Control circuits. All control circuits that...

  7. Microcomputer controlled soft start of motor

    NASA Astrophysics Data System (ADS)

    Gao, Miao; Wang, Yanpeng; Li, Shian

    2005-12-01

    Improving the starting characteristics of a motor is an important part of the motor control. An intelligent soft starting technique was adopted in the starter and used in the present study because of its many advantages compared with conventional starting processes. The core of the soft starter was a single chip (Atmel 8098), its soul was the software and its control object was a Silicon Controlled Rectifier (SCR). The starter achieved not only current-limit starting, but also closed-loop control with a stator current detection circuit. In conclusion, as a result of digital control, starting characteristic can be conveniently chosen according to the load. In addition the starter is of small size, and starting is smooth and reliable due to current feedback.

  8. 49 CFR 236.731 - Controller, circuit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Controller, circuit. 236.731 Section 236.731 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Controller, circuit. A device for opening and closing electric circuits....

  9. 49 CFR 234.203 - Control circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Control circuits. 234.203 Section 234.203 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... circuits. All control circuits that affect the safe operation of a highway-rail grade crossing...

  10. 49 CFR 234.203 - Control circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Control circuits. 234.203 Section 234.203 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... circuits. All control circuits that affect the safe operation of a highway-rail grade crossing...

  11. 49 CFR 236.721 - Circuit, control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Circuit, control. 236.721 Section 236.721 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Circuit, control. An electrical circuit between a source of electric energy and a device which it operates....

  12. 49 CFR 236.731 - Controller, circuit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Controller, circuit. 236.731 Section 236.731 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Controller, circuit. A device for opening and closing electric circuits....

  13. 49 CFR 236.721 - Circuit, control.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Circuit, control. 236.721 Section 236.721 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Circuit, control. An electrical circuit between a source of electric energy and a device which it operates....

  14. 49 CFR 236.731 - Controller, circuit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Controller, circuit. 236.731 Section 236.731 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Controller, circuit. A device for opening and closing electric circuits....

  15. 49 CFR 236.731 - Controller, circuit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Controller, circuit. 236.731 Section 236.731 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Controller, circuit. A device for opening and closing electric circuits....

  16. 49 CFR 234.203 - Control circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF TRANSPORTATION GRADE CROSSING SAFETY, INCLUDING SIGNAL SYSTEMS, STATE ACTION PLANS, AND... circuits. All control circuits that affect the safe operation of a highway-rail grade crossing...

  17. Remote control for motor vehicle

    NASA Technical Reports Server (NTRS)

    Johnson, Dale R. (Inventor); Ciciora, John A. (Inventor)

    1984-01-01

    A remote controller is disclosed for controlling the throttle, brake and steering mechanism of a conventional motor vehicle, with the remote controller being particularly advantageous for use by severely handicapped individuals. The controller includes a remote manipulator which controls a plurality of actuators through interfacing electronics. The remote manipulator is a two-axis joystick which controls a pair of linear actuators and a rotary actuator, with the actuators being powered by electric motors to effect throttle, brake and steering control of a motor vehicle adapted to include the controller. The controller enables the driver to control the adapted vehicle from anywhere in the vehicle with one hand with minimal control force and range of motion. In addition, even though a conventional vehicle is adapted for use with the remote controller, the vehicle may still be operated in the normal manner.

  18. The Periaqueductal Gray Orchestrates Sensory and Motor Circuits at Multiple Levels of the Neuraxis

    PubMed Central

    Koutsikou, Stella; Watson, Thomas C.; Crook, Jonathan J.; Leith, J. Lianne; Lawrenson, Charlotte L.; Lumb, Bridget M.

    2015-01-01

    The periaqueductal gray (PAG) coordinates behaviors essential to survival, including striking changes in movement and posture (e.g., escape behaviors in response to noxious stimuli vs freezing in response to fear-evoking stimuli). However, the neural circuits underlying the expression of these behaviors remain poorly understood. We demonstrate in vivo in rats that activation of the ventrolateral PAG (vlPAG) affects motor systems at multiple levels of the neuraxis through the following: (1) differential control of spinal neurons that forward sensory information to the cerebellum via spino-olivo-cerebellar pathways (nociceptive signals are reduced while proprioceptive signals are enhanced); (2) alterations in cerebellar nuclear output as revealed by changes in expression of Fos-like immunoreactivity; and (3) regulation of spinal reflex circuits, as shown by an increase in α-motoneuron excitability. The capacity to coordinate sensory and motor functions is demonstrated in awake, behaving rats, in which natural activation of the vlPAG in fear-conditioned animals reduced transmission in spino-olivo-cerebellar pathways during periods of freezing that were associated with increased muscle tone and thus motor outflow. The increase in spinal motor reflex excitability and reduction in transmission of ascending sensory signals via spino-olivo-cerebellar pathways occurred simultaneously. We suggest that the interactions revealed in the present study between the vlPAG and sensorimotor circuits could form the neural substrate for survival behaviors associated with vlPAG activation. SIGNIFICANCE STATEMENT Neural circuits that coordinate survival behaviors remain poorly understood. We demonstrate in rats that the periaqueductal gray (PAG) affects motor systems at the following multiple levels of the neuraxis: (1) through altering transmission in spino-olivary pathways that forward sensory signals to the cerebellum, reducing and enhancing transmission of nociceptive and

  19. Early experience modifies the postnatal assembly of autonomic emotional motor circuits in rats.

    PubMed

    Card, J Patrick; Levitt, Pat; Gluhovsky, Maxim; Rinaman, Linda

    2005-10-01

    Rat pups that are repeatedly handled and separated from their dam exhibit altered adult behavioral, endocrine, and autonomic responses to stress, but the extent to which early handling and/or maternal separation (H/S) alters the development of circuits that underlie these responses is unknown. The present study tested the hypothesis that early H/S alters the postnatal assembly of synapses within preautonomic emotional motor circuits. Circuit development was traced by synapse-dependent retrograde transneuronal transport of pseudorabies virus (PRV) from the stomach wall. Control and H/S rats were analyzed between postnatal day 6 (P6) and P10, a period of rapid synaptic assembly among preautonomic circuit components. Pups in H/S groups were removed from their dam daily for either 15 min or 3 h beginning on P1, and were injected with virus on P8 and perfused on P10. Quantitative analyses of primary and transsynaptic PRV immunolabeling confirmed an age-dependent assembly of hypothalamic, limbic, and cortical inputs to autonomic nuclei. Circuit assembly was significantly altered in H/S pups, in which fewer neurons in the central amygdala, the bed nucleus of the stria terminalis, and visceral cortices were infected compared with age-matched controls. In contrast, H/S did not alter the assembly of paraventricular hypothalamic inputs to gastric autonomic neurons. H/S-related reductions in limbic and cortical transneuronal infection were similar in pups exposed daily to 15 min or 3 h maternal separation. These findings support the view that environmental events during early postnatal life can influence the formation of neural circuits that provide limbic and cortical control over autonomic emotional motor output.

  20. A universal computer control system for motors

    NASA Technical Reports Server (NTRS)

    Szakaly, Zoltan F. (Inventor)

    1991-01-01

    A control system for a multi-motor system such as a space telerobot, having a remote computational node and a local computational node interconnected with one another by a high speed data link is described. A Universal Computer Control System (UCCS) for the telerobot is located at each node. Each node is provided with a multibus computer system which is characterized by a plurality of processors with all processors being connected to a common bus, and including at least one command processor. The command processor communicates over the bus with a plurality of joint controller cards. A plurality of direct current torque motors, of the type used in telerobot joints and telerobot hand-held controllers, are connected to the controller cards and responds to digital control signals from the command processor. Essential motor operating parameters are sensed by analog sensing circuits and the sensed analog signals are converted to digital signals for storage at the controller cards where such signals can be read during an address read/write cycle of the command processing processor.

  1. A versatile stepping motor controller for systems with many motors

    SciTech Connect

    Feng, S.K.; Siddons, D.P.

    1989-01-01

    A versatile system for controlling beamlines or complex experimental setups is described. The system as currently configured can control up to 32 motors, with all motors capable of full speed operation concurrently. There are 2 limit switch inputs for each motor, and a further input to accept a reference position marker. The motors can be controlled via a front panel keyboard with display, or by a host computer over an IEEE-488 interface. Both methods can be used together if required. There is an emergency stop'' key on the front panel keyboard to stop the motion of all motors without losing track of the motors' position. 3 refs., 4 figs., 1 tab.

  2. Regulation of sensory motor circuits used in C. elegans male intromission behavior.

    PubMed

    García, L René

    2014-09-01

    Intromission of a male's copulatory organ into his mate's genital orifice is a behavioral step that is conserved in most terrestrial mating behaviors. The behavior serves to anchor the male to his mate and aids in the transmission of the male's gametes into the female. In all animals, the successful execution of intromission likely involves coordinated sensory/motor regulation coupled with constant self-monitoring. The compact male C. elegans reproductive nervous system provides an accessible experimental model for identification and dissection of the molecular and cellular circuit components that promote different motor outputs required for the transfer of the male's genetic material into the self-fertilizing hermaphrodite. The C. elegans male tail contains forty-one sex-specific muscles and 81 sex-specific neurons, which promote different steps of mating behavior. In this review, I will outline the functional contributions of the male-specific sensory-motor neurons and their postsynaptic muscles that control the motions of the male copulatory spicules during the various phases of intromission behavior and ejaculation. In addition, I will summarize the roles of neurotransmitter receptors and ion channels that regulate the outputs of individual circuit components and describe how the intromission circuit uses these molecules to regulate reproductive behavior during male aging and nutritional deprivation.

  3. Comparison of Alternative Equivalent Circuits of Induction Motor with Real Machine Data

    NASA Astrophysics Data System (ADS)

    Bradna, J.; Bauer, J.; Fligl, S.; Hlinovsky, V.

    The algorithms based on separated control of the motor flux and torque is used in order to gain the maximum performance from the induction machine. To push the efficiency and dynamics limits of the IM to its limits mostly FOC or DTC control strategies are used. Both are based on the knowledge of the hardly measurable variable-machine flux. To obtain the information about inner machine flux models based on the machine equivalent circuit are mostly used. Therefore the accuracy of the equivalent circuits has direct influence on the accuracy of the machine control. To reduce the complexity of the mathematical model the resistances and inductances are concentrated to one component and three phase winding is assumed to be symmetrical. In order to design control strategy for the induction motor, system equations and equivalent circuit must be established at first. This paper examines and compares some of the issues of adequate machine modeling and attempts to provide a firmer basis for selection of an appropriate model and to confirm or disprove the equivalence of different approaches. The results of the IM model run up are then compared to the results obtained from the measurements on the real machine and the equivalency is discussed.

  4. A centre for accommodative vergence motor control

    NASA Technical Reports Server (NTRS)

    Wilson, D.

    1973-01-01

    Latencies in accommodation, accommodative-vergence, and pupil-diameter responses to changing accommodation stimuli, as well as latencies in pupil response to light-intensity changes were measured. From the information obtained, a block diagram has been derived that uses the least number of blocks for representing the accommodation, accommodative-vergence, and pupil systems. The signal transmission delays over the various circuits of the model have been determined and compared to known experimental physiological-delay data. The results suggest the existence of a motor center that controls the accommodative vergence and is completely independent of the accommodation system.

  5. Variable current speed controller for eddy current motors

    DOEpatents

    Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

    1982-03-12

    A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

  6. Motor Experience Reprograms Development of a Genetically-Altered Bilateral Corticospinal Motor Circuit

    PubMed Central

    Serradj, Najet

    2016-01-01

    Evidence suggests that motor experience plays a role in shaping development of the corticospinal system and voluntary motor control, which is a key motor function of the system. Here we used a mouse model with conditional forebrain deletion of the gene for EphA4 (Emx1-Cre:EphA4tm2Kldr), which regulates development of the laterality of corticospinal tract (CST). We combined study of Emx1-Cre:EphA4tm2Kldr with unilateral forelimb constraint during development to expand our understanding of experience-dependent CST development from both basic and translational perspectives. This mouse develops dense ipsilateral CST projections, a bilateral motor cortex motor representation, and bilateral motor phenotypes. Together these phenotypes can be used as readouts of corticospinal system organization and function and the changes brought about by experience. The Emx1-Cre:EphA4tm2Kldr mouse shares features with the common developmental disorder cerebral palsy: bilateral voluntary motor impairments and bilateral CST miswiring. Emx1-Cre:EphA4tm2Kldr mice with typical motor experiences during development display the bilateral phenotype of “mirror” reaching, because of a strongly bilateral motor cortex motor representation and a bilateral CST. By contrast, Emx1-Cre:EphA4tm2Kldr mice that experienced unilateral forelimb constraint from P1 to P30 and tested at maturity had a more contralateral motor cortex motor representation in each hemisphere; more lateralized CST projections; and substantially more lateralized/independent reaching movements. Changes in CST organization and function in this model can be explained by reduced synaptic competition of the CST from the side without developmental forelimb motor experiences. Using this model we show that unilateral constraint largely abrogated the effects of the genetic mutation on CST projections and thus demonstrates how robust and persistent experience-dependent development can be for the establishment of corticospinal system

  7. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Design of control circuits on closed circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on closed circuit principle. All control circuits the functioning of which affects safety of train...

  8. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Design of control circuits on closed circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on closed circuit principle. All control circuits the functioning of which affects safety of train...

  9. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Design of control circuits on closed circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on closed circuit principle. All control circuits the functioning of which affects safety of train...

  10. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Design of control circuits on closed circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on closed circuit principle. All control circuits the functioning of which affects safety of train...

  11. 46 CFR 111.70-7 - Remote control, interlock, and indicator circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-7... disconnected from all sources of potential by a disconnect device independent of the motor and controller disconnect device. The two independent devices must be adjacent to each other, and a fixed sign, warning...

  12. Minimum Principles in Motor Control.

    PubMed

    Engelbrecht, Sascha E.

    2001-06-01

    Minimum (or minimal) principles are mathematical laws that were first used in physics: Hamilton's principle and Fermat's principle of least time are two famous example. In the past decade, a number of motor control theories have been proposed that are formally of the same kind as the minimum principles of physics, and some of these have been quite successful at predicting motor performance in a variety of tasks. The present paper provides a comprehensive review of this work. Particular attention is given to the relation between minimum theories in motor control and those used in other disciplines. Other issues around which the review is organized include: (1) the relation between minimum principles and structural models of motor planning and motor control, (2) the empirically-driven development of minimum principles and the danger of circular theorizing, and (3) the design of critical tests for minimum theories. Some perspectives for future research are discussed in the concluding section of the paper. Copyright 2001 Academic Press. PMID:11401453

  13. Improving Control of Two Motor Controllers

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.

    2004-01-01

    A computer program controls motors that drive translation stages in a metrology system that consists of a pair of two-axis cathetometers. This program is specific to Compumotor Gemini (or equivalent) motors and the Compumotor 6K-series (or equivalent) motor controller. Relative to the software supplied with the controller, this program affords more capabilities and is easier to use. Written as a Virtual Instrument in the LabVIEW software system, the program presents an imitation control panel that the user can manipulate by use of a keyboard and mouse. There are three modes of operation: command, movement, and joystick. In command mode, single commands are sent to the controller for troubleshooting. In movement mode, distance, speed, and/or acceleration commands are sent to the controller. Position readouts from the motors and from position encoders on the translation stages are displayed in marked fields. At any time, the position readouts can be recorded in a file named by the user. In joystick mode, the program yields control of the motors to a joystick. The program sends commands to, and receives data from, the controller via a serial cable connection, using the serial-communication portion of the software supplied with the controller.

  14. Electronic switches and control circuits: A compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The innovations in this updated series of compilations dealing with electronic technology represents a carefully selected collection of items on electronic switches and control circuits. Most of the items are based on well-known circuit design concepts that have been simplified or refined to meet NASA's demanding requirement for reliability, simplicity, fail-safe characteristics, and the capability of withstanding environmental extremes.

  15. A programmable heater control circuit for spacecraft

    NASA Technical Reports Server (NTRS)

    Nguyen, D. D.; Owen, J. W.; Smith, D. A.; Lewter, W. J.

    1994-01-01

    Spacecraft thermal control is accomplished for many components through use of multilayer insulation systems, electrical heaters, and radiator systems. The heaters are commanded to maintain component temperatures within design specifications. The programmable heater control circuit (PHCC) was designed to obtain an effective and efficient means of spacecraft thermal control. The hybrid circuit provides use of control instrumentation as temperature data, available to the spacecraft central data system, reprogramming capability of the local microprocessor during the spacecraft's mission, and the elimination of significant spacecraft wiring. The hybrid integrated circuit has a temperature sensing and conditioning circuit, a microprocessor, and a heater power and control circuit. The device is miniature and housed in a volume which allows physical integration with the component to be controlled. Applications might include alternate battery-powered logic-circuit configurations. A prototype unit with appropriate physical and functional interfaces was procured for testing. The physical functionality and the feasibility of fabrication of the hybrid integrated circuit were successfully verified. The remaining work to develop a flight-qualified device includes fabrication and testing of a Mil-certified part. An option for completing the PHCC flight qualification testing is to enter into a joint venture with industry.

  16. Ketamine-Induced Oscillations in the Motor Circuit of the Rat Basal Ganglia

    PubMed Central

    Alegre, Manuel; Pérez-Alcázar, Marta; Iriarte, Jorge; Artieda, Julio

    2011-01-01

    Oscillatory activity can be widely recorded in the cortex and basal ganglia. This activity may play a role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of psychiatric and neurological diseases like schizophrenia or Parkinson's disease. Ketamine administration has been shown to cause an increase in gamma activity in cortical and subcortical structures, and an increase in 150 Hz oscillations in the nucleus accumbens in healthy rats, together with hyperlocomotion. We recorded local field potentials from motor cortex, caudate-putamen (CPU), substantia nigra pars reticulata (SNr) and subthalamic nucleus (STN) in 20 awake rats before and after the administration of ketamine at three different subanesthetic doses (10, 25 and 50 mg/Kg), and saline as control condition. Motor behavior was semiautomatically quantified by custom-made software specifically developed for this setting. Ketamine induced coherent oscillations in low gamma (50 Hz), high gamma (80 Hz) and high frequency (HFO, 150 Hz) bands, with different behavior in the four structures studied. While oscillatory activity at these three peaks was widespread across all structures, interactions showed a different pattern for each frequency band. Imaginary coherence at 150 Hz was maximum between motor cortex and the different basal ganglia nuclei, while low gamma coherence connected motor cortex with CPU and high gamma coherence was more constrained to the basal ganglia nuclei. Power at three bands correlated with the motor activity of the animal, but only coherence values in the HFO and high gamma range correlated with movement. Interactions in the low gamma band did not show a direct relationship to movement. These results suggest that the motor effects of ketamine administration may be primarily mediated by the induction of coherent widespread high-frequency activity in the motor circuit of the basal ganglia, together with a frequency-specific pattern of

  17. Magnetic Circuit Model of PM Motor-Generator to Predict Radial Forces

    NASA Technical Reports Server (NTRS)

    McLallin, Kerry (Technical Monitor); Kascak, Peter E.; Dever, Timothy P.; Jansen, Ralph H.

    2004-01-01

    A magnetic circuit model is developed for a PM motor for flywheel applications. A sample motor is designed and modeled. Motor configuration and selection of materials is discussed, and the choice of winding configuration is described. A magnetic circuit model is described, which includes the stator back iron, rotor yoke, permanent magnets, air gaps and the stator teeth. Iterative solution of this model yields flux linkages, back EMF, torque, power, and radial force at the rotor caused by eccentricity. Calculated radial forces are then used to determine motor negative stiffness.

  18. Circuit-based interrogation of sleep control.

    PubMed

    Weber, Franz; Dan, Yang

    2016-10-01

    Sleep is a fundamental biological process observed widely in the animal kingdom, but the neural circuits generating sleep remain poorly understood. Understanding the brain mechanisms controlling sleep requires the identification of key neurons in the control circuits and mapping of their synaptic connections. Technical innovations over the past decade have greatly facilitated dissection of the sleep circuits. This has set the stage for understanding how a variety of environmental and physiological factors influence sleep. The ability to initiate and terminate sleep on command will also help us to elucidate its functions within and beyond the brain.

  19. Electrochemically controlled charging circuit for storage batteries

    DOEpatents

    Onstott, E.I.

    1980-06-24

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  20. Ultra-Compact Motor Controller

    NASA Technical Reports Server (NTRS)

    Townsend, William T.; Crowell, Adam; Hauptman, Traveler; Pratt, Gill Andrews

    2012-01-01

    This invention is an electronically commutated brushless motor controller that incorporates Hall-array sensing in a small, 42-gram package that provides 4096 absolute counts per motor revolution position sensing. The unit is the size of a miniature hockey puck, and is a 44-pin male connector that provides many I/O channels, including CANbus, RS-232 communications, general-purpose analog and digital I/O (GPIO), analog and digital Hall inputs, DC power input (18-90 VDC, 0-l0 A), three-phase motor outputs, and a strain gauge amplifier. This controller replaces air cooling with conduction cooling via a high-thermal-conductivity epoxy casting. A secondary advantage of the relatively good heat conductivity that comes with ultra-small size is that temperature differences within the controller become smaller, so that it is easier to measure the hottest temperature in the controller with fewer temperature sensors, or even one temperature sensor. Another size-sensitive design feature is in the approach to electrical noise immunity. At a very small size, where conduction paths are much shorter than in conventional designs, the ground becomes essentially isopotential, and so certain (space-consuming) electrical noise control components become unnecessary, which helps make small size possible. One winding-current sensor, applied to all of the windings in fast sequence, is smaller and wastes less power than the two or more sensors conventionally used to sense and control winding currents. An unexpected benefit of using only one current sensor is that it actually improves the precision of current control by using the "same" sensors to read each of the three phases. Folding the encoder directly into the controller electronics eliminates a great deal of redundant electronics, packaging, connectors, and hook-up wiring. The reduction of wires and connectors subtracts substantial bulk and eliminates their role in behaving as EMI (electro-magnetic interference) antennas. A shared

  1. Analog circuit for controlling acoustic transducer arrays

    DOEpatents

    Drumheller, Douglas S.

    1991-01-01

    A simplified ananlog circuit is presented for controlling electromechanical transducer pairs in an acoustic telemetry system. The analog circuit of this invention comprises a single electrical resistor which replaces all of the digital components in a known digital circuit. In accordance with this invention, a first transducer in a transducer pair of array is driven in series with the resistor. The voltage drop across this resistor is then amplified and used to drive the second transducer. The voltage drop across the resistor is proportional and in phase with the current to the transducer. This current is approximately 90 degrees out of phase with the driving voltage to the transducer. This phase shift replaces the digital delay required by the digital control circuit of the prior art.

  2. A Flight Sensory-Motor to Olfactory Processing Circuit in the Moth Manduca sexta.

    PubMed

    Bradley, Samual P; Chapman, Phillip D; Lizbinski, Kristyn M; Daly, Kevin C; Dacks, Andrew M

    2016-01-01

    Neural circuits projecting information from motor to sensory pathways are common across sensory domains. These circuits typically modify sensory function as a result of motor pattern activation; this is particularly so in cases where the resultant behavior affects the sensory experience or its processing. However, such circuits have not been observed projecting to an olfactory pathway in any species despite well characterized active sampling behaviors that produce reafferent mechanical stimuli, such as sniffing in mammals and wing beating in the moth Manduca sexta. In this study we characterize a circuit that connects a flight sensory-motor center to an olfactory center in Manduca. This circuit consists of a single pair of histamine immunoreactive (HA-ir) neurons that project from the mesothoracic ganglion to innervate a subset of ventral antennal lobe (AL) glomeruli. Furthermore, within the AL we show that the M. sexta histamine B receptor (MsHisClB) is exclusively expressed by a subset of GABAergic and peptidergic LNs, which broadly project to all olfactory glomeruli. Finally, the HA-ir cell pair is present in fifth stage instar larvae; however, the absence of MsHisClB-ir in the larval antennal center indicates that the circuit is incomplete prior to metamorphosis and importantly prior to the expression of flight behavior. Although the functional consequences of this circuit remain unknown, these results provide the first detailed description of a circuit that interconnects an olfactory system with motor centers driving flight behaviors including odor-guided flight. PMID:26909026

  3. A Flight Sensory-Motor to Olfactory Processing Circuit in the Moth Manduca sexta

    PubMed Central

    Bradley, Samual P.; Chapman, Phillip D.; Lizbinski, Kristyn M.; Daly, Kevin C.; Dacks, Andrew M.

    2016-01-01

    Neural circuits projecting information from motor to sensory pathways are common across sensory domains. These circuits typically modify sensory function as a result of motor pattern activation; this is particularly so in cases where the resultant behavior affects the sensory experience or its processing. However, such circuits have not been observed projecting to an olfactory pathway in any species despite well characterized active sampling behaviors that produce reafferent mechanical stimuli, such as sniffing in mammals and wing beating in the moth Manduca sexta. In this study we characterize a circuit that connects a flight sensory-motor center to an olfactory center in Manduca. This circuit consists of a single pair of histamine immunoreactive (HA-ir) neurons that project from the mesothoracic ganglion to innervate a subset of ventral antennal lobe (AL) glomeruli. Furthermore, within the AL we show that the M. sexta histamine B receptor (MsHisClB) is exclusively expressed by a subset of GABAergic and peptidergic LNs, which broadly project to all olfactory glomeruli. Finally, the HA-ir cell pair is present in fifth stage instar larvae; however, the absence of MsHisClB-ir in the larval antennal center indicates that the circuit is incomplete prior to metamorphosis and importantly prior to the expression of flight behavior. Although the functional consequences of this circuit remain unknown, these results provide the first detailed description of a circuit that interconnects an olfactory system with motor centers driving flight behaviors including odor-guided flight. PMID:26909026

  4. A Flight Sensory-Motor to Olfactory Processing Circuit in the Moth Manduca sexta.

    PubMed

    Bradley, Samual P; Chapman, Phillip D; Lizbinski, Kristyn M; Daly, Kevin C; Dacks, Andrew M

    2016-01-01

    Neural circuits projecting information from motor to sensory pathways are common across sensory domains. These circuits typically modify sensory function as a result of motor pattern activation; this is particularly so in cases where the resultant behavior affects the sensory experience or its processing. However, such circuits have not been observed projecting to an olfactory pathway in any species despite well characterized active sampling behaviors that produce reafferent mechanical stimuli, such as sniffing in mammals and wing beating in the moth Manduca sexta. In this study we characterize a circuit that connects a flight sensory-motor center to an olfactory center in Manduca. This circuit consists of a single pair of histamine immunoreactive (HA-ir) neurons that project from the mesothoracic ganglion to innervate a subset of ventral antennal lobe (AL) glomeruli. Furthermore, within the AL we show that the M. sexta histamine B receptor (MsHisClB) is exclusively expressed by a subset of GABAergic and peptidergic LNs, which broadly project to all olfactory glomeruli. Finally, the HA-ir cell pair is present in fifth stage instar larvae; however, the absence of MsHisClB-ir in the larval antennal center indicates that the circuit is incomplete prior to metamorphosis and importantly prior to the expression of flight behavior. Although the functional consequences of this circuit remain unknown, these results provide the first detailed description of a circuit that interconnects an olfactory system with motor centers driving flight behaviors including odor-guided flight.

  5. Motor Control: The Heart of Kinesiology

    ERIC Educational Resources Information Center

    Latash, Mark L.

    2008-01-01

    This brief review presents the subjective view of the author on the history of motor control and its current state among the subdisciplines of kinesiology. It summarizes the current controversies and challenges in motor control and emphasizes the necessity for an adequate set of notions that would make motor control (and kinesiology) a science.…

  6. Motorized control for mirror mount apparatus

    DOEpatents

    Cutburth, Ronald W.

    1989-01-01

    A motorized control and automatic braking system for adjusting mirror mount apparatus is disclosed. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.

  7. TRIAC/SCR proportional control circuit

    DOEpatents

    Hughes, W.J.

    1999-04-06

    A power controller device is disclosed which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the ``reset`` input of a R-S flip flop, while an ``0`` crossing detector controls the ``set`` input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the ``reset`` and ``set`` inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations. 9 figs.

  8. TRIAC/SCR proportional control circuit

    DOEpatents

    Hughes, Wallace J.

    1999-01-01

    A power controller device which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the "reset" input of a R-S flip flop, while an "0" crossing detector controls the "set" input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the "reset" and "set" inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations.

  9. Quantum circuits cannot control unknown operations

    NASA Astrophysics Data System (ADS)

    Araújo, Mateus; Feix, Adrien; Costa, Fabio; Brukner, Časlav

    2014-09-01

    One of the essential building blocks of classical computer programs is the ‘if’ clause, which executes a subroutine depending on the value of a control variable. Similarly, several quantum algorithms rely on applying a unitary operation conditioned on the state of a control system. Here we show that this control cannot be performed by a quantum circuit if the unitary is completely unknown. The task remains impossible even if we allow the control to be done modulo a global phase. However, this no-go theorem does not prevent implementing quantum control of unknown unitaries in practice, as any physical implementation of an unknown unitary provides additional information that makes the control possible. We then argue that one should extend the quantum circuit formalism to capture this possibility in a straightforward way. This is done by allowing unknown unitaries to be applied to subspaces and not only to subsystems.

  10. Computer-controlled warmup circuit

    NASA Technical Reports Server (NTRS)

    Daeges, J. J.

    1980-01-01

    Filament of high-power radio transmitter is brought to operating temperature automatically. Pushbotton reduces operator's role to one-step command and is compatible with various forms of computer control. Filiament shutdown is initiated by "down" command from operator, failure of cooling systems, or power failure for more than few seconds.

  11. 49 CFR 236.205 - Signal control circuits; requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Signal control circuits; requirements. 236.205... Block Signal Systems Standards § 236.205 Signal control circuits; requirements. The circuits shall be so... fouling point derail equipped with switch circuit controller is not in derailing position, (d) When...

  12. 49 CFR 236.205 - Signal control circuits; requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Signal control circuits; requirements. 236.205... Block Signal Systems Standards § 236.205 Signal control circuits; requirements. The circuits shall be so... fouling point derail equipped with switch circuit controller is not in derailing position, (d) When...

  13. 49 CFR 236.205 - Signal control circuits; requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Signal control circuits; requirements. 236.205... Block Signal Systems Standards § 236.205 Signal control circuits; requirements. The circuits shall be so... fouling point derail equipped with switch circuit controller is not in derailing position, (d) When...

  14. 49 CFR 236.205 - Signal control circuits; requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Signal control circuits; requirements. 236.205... Block Signal Systems Standards § 236.205 Signal control circuits; requirements. The circuits shall be so... fouling point derail equipped with switch circuit controller is not in derailing position, (d) When...

  15. Phase control circuits using frequency multiplications for phased array antennas

    NASA Technical Reports Server (NTRS)

    Mailloux, R. J.; Caron, P. R. (Inventor)

    1973-01-01

    A phase control coupling circuit for use with a phased array antenna is described. The coupling circuit includes a combining circuit which is coupled to a transmission line, a frequency multiplier circuit which is coupled to the combining circuit, and a recombining circuit which is coupled between the frequency multiplier circuit and phased array antenna elements. In a doubler embodiment, the frequency multiplier circuit comprises frequency doublers and the combining and recombining circuits comprise four-port hybrid power dividers. In a generalized embodiment, the multiplier circuit comprises frequency multiplier elements which multiply to the Nth power, the combining circuit comprises four-part hybrid power dividers, and the recombinding circuit comprises summing circuits.

  16. Pain relativity in motor control.

    PubMed

    Kurniawan, I T; Seymour, B; Vlaev, I; Trommershäuser, J; Dolan, R J; Chater, N

    2010-06-01

    Motivational theories of pain highlight its role in people's choices of actions that avoid bodily damage. By contrast, little is known regarding how pain influences action implementation. To explore this less-understood area, we conducted a study in which participants had to rapidly point to a target area to win money while avoiding an overlapping penalty area that would cause pain in their contralateral hand. We found that pain intensity and target-penalty proximity repelled participants' movement away from pain and that motor execution was influenced not by absolute pain magnitudes but by relative pain differences. Our results indicate that the magnitude and probability of pain have a precise role in guiding motor control and that representations of pain that guide action are, at least in part, relative rather than absolute. Additionally, our study shows that the implicit monetary valuation of pain, like many explicit valuations (e.g., patients' use of rating scales in medical contexts), is unstable, a finding that has implications for pain treatment in clinical contexts.

  17. Pain relativity in motor control.

    PubMed

    Kurniawan, I T; Seymour, B; Vlaev, I; Trommershäuser, J; Dolan, R J; Chater, N

    2010-06-01

    Motivational theories of pain highlight its role in people's choices of actions that avoid bodily damage. By contrast, little is known regarding how pain influences action implementation. To explore this less-understood area, we conducted a study in which participants had to rapidly point to a target area to win money while avoiding an overlapping penalty area that would cause pain in their contralateral hand. We found that pain intensity and target-penalty proximity repelled participants' movement away from pain and that motor execution was influenced not by absolute pain magnitudes but by relative pain differences. Our results indicate that the magnitude and probability of pain have a precise role in guiding motor control and that representations of pain that guide action are, at least in part, relative rather than absolute. Additionally, our study shows that the implicit monetary valuation of pain, like many explicit valuations (e.g., patients' use of rating scales in medical contexts), is unstable, a finding that has implications for pain treatment in clinical contexts. PMID:20435952

  18. Packaging Of Control Circuits In A Robot Arm

    NASA Technical Reports Server (NTRS)

    Kast, William

    1994-01-01

    Packaging system houses and connects control circuitry mounted on circuit boards within shoulder, upper section, and lower section of seven-degree-of-freedom robot arm. Has modular design that incorporates surface-mount technology, multilayer circuit boards, large-scale integrated circuits, and multi-layer flat cables between sections for compactness. Three sections of robot arm contain circuit modules in form of stardardized circuit boards. Each module contains two printed-circuit cards, one of each face.

  19. Symmetry Based Control of Induction Motor

    NASA Astrophysics Data System (ADS)

    Monika, M.; Singh, N. M.; Bhil, S. K.

    2008-10-01

    In this paper symmetry based control of induction motor is proposed. The fifth order model of Induction motor is reduced to the base coordinates which is decoupled from the fiber dynamics by using a regular static feedback. This makes the control of Induction motor similar to the control of separately excited D.C. motor. This paper shows that the selection of a particular frame of reference for the two phase equivalent model depends on the control objectives which are to be taken as the base coordinates.

  20. Neural circuits underlying motor facilitation during observation of implied motion.

    PubMed

    Concerto, Carmen; Al Sawah, Mohomad; Infortuna, Carmenrita; Freedberg, David; Chusid, Eileen; Aguglia, Eugenio; Battaglia, Fortunato

    2015-01-01

    In the present study we used single and paired-pulse Transcranial Magnetic Stimulation (TMS) to evaluate the effect of implied motion on primary motor cortex microcircuits. We found that observation of the implied motion of a static image increases MEP amplitude and reduces short-interval intracortical inhibition (SICI), without significant modulation of intracortical facilitation and sensory-motor integration. Our results add to the existing literature on the activation of the observation-execution matching system and describe a selective modulation of GABAergic cortical microcircuits during observation of implied motion.

  1. Hybrid sliding mode position control for a piston air motor ball screw table.

    PubMed

    Lu, Chia-Hua; Hwang, Yean-Ren

    2012-05-01

    Air motors have been generally applied in the automation industry. Since air motors operate without electricity, they will not produce sparks, explosions or short circuit phenomenon. The purpose of this paper is to analyze the behavior of a ball screw table actuated by a piston air motor and design a hybrid (backstepping and fuzzy) sliding mode controller for accomplishing accurate position performance. The experimental results validate the proposed position control strategy.

  2. Distributed Motor Controller (DMC) for Operation in Extreme Environments

    NASA Technical Reports Server (NTRS)

    McKinney, Colin M.; Yager, Jeremy A.; Mojarradi, Mohammad M.; Some, Rafi; Sirota, Allen; Kopf, Ted; Stern, Ryan; Hunter, Don

    2012-01-01

    This paper presents an extreme environment capable Distributed Motor Controller (DMC) module suitable for operation with a distributed architecture of future spacecraft systems. This motor controller is designed to be a bus-based electronics module capable of operating a single Brushless DC motor in extreme space environments: temperature (-120 C to +85 C required, -180 C to +100 C stretch goal); radiation (>;20K required, >;100KRad stretch goal); >;360 cycles of operation. Achieving this objective will result in a scalable modular configuration for motor control with enhanced reliability that will greatly lower cost during the design, fabrication and ATLO phases of future missions. Within the heart of the DMC lies a pair of cold-capable Application Specific Integrated Circuits (ASICs) and a Field Programmable Gate Array (FPGA) that enable its miniaturization and operation in extreme environments. The ASICs are fabricated in the IBM 0.5 micron Silicon Germanium (SiGe) BiCMOS process and are comprised of Analog circuitry to provide telemetry information, sensor interface, and health and status of DMC. The FPGA contains logic to provide motor control, status monitoring and spacecraft interface. The testing and characterization of these ASICs have yielded excellent functionality in cold temperatures (-135 C). The DMC module has demonstrated successful operation of a motor at temperature.

  3. 46 CFR 111.70-7 - Remote control, interlock, and indicator circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... overcurrent device is not more than 300 percent of the current-carrying capacity of the control, interlock, or... or setting of not more than 300 percent of the current-carrying capacity of the control, electrical... used for vital auxiliary circuits, a nameplate must be affixed to the vital auxiliary motor...

  4. 46 CFR 111.70-7 - Remote control, interlock, and indicator circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... overcurrent device is not more than 300 percent of the current-carrying capacity of the control, interlock, or... or setting of not more than 300 percent of the current-carrying capacity of the control, electrical... used for vital auxiliary circuits, a nameplate must be affixed to the vital auxiliary motor...

  5. 46 CFR 111.70-7 - Remote control, interlock, and indicator circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... overcurrent device is not more than 300 percent of the current-carrying capacity of the control, interlock, or... or setting of not more than 300 percent of the current-carrying capacity of the control, electrical... used for vital auxiliary circuits, a nameplate must be affixed to the vital auxiliary motor...

  6. 46 CFR 111.70-7 - Remote control, interlock, and indicator circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... overcurrent device is not more than 300 percent of the current-carrying capacity of the control, interlock, or... or setting of not more than 300 percent of the current-carrying capacity of the control, electrical... used for vital auxiliary circuits, a nameplate must be affixed to the vital auxiliary motor...

  7. Advanced dc motor controller for battery-powered electric vehicles

    NASA Technical Reports Server (NTRS)

    Belsterling, C. A.

    1981-01-01

    A motor generation set is connected to run from the dc source and generate a voltage in the traction motor armature circuit that normally opposes the source voltage. The functional feasibility of the concept is demonstrated with tests on a Proof of Principle System. An analog computer simulation is developed, validated with the results of the tests, applied to predict the performance of a full scale Functional Model dc Controller. The results indicate high efficiencies over wide operating ranges and exceptional recovery of regenerated energy. The new machine integrates both motor and generator on a single two bearing shaft. The control strategy produces a controlled bidirectional plus or minus 48 volts dc output from the generator permitting full control of a 96 volt dc traction motor from a 48 volt battery, was designed to control a 20 hp traction motor. The controller weighs 63.5 kg (140 lb.) and has a peak efficiency of 90% in random driving modes and 96% during the SAE J 227a/D driving cycle.

  8. System and method for monitoring and controlling stator winding temperature in a de-energized AC motor

    DOEpatents

    Lu, Bin; Luebke, Charles John; Habetler, Thomas G.; Zhang, Pinjia; Becker, Scott K.

    2011-12-27

    A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.

  9. Controller for computer control of brushless dc motors

    NASA Astrophysics Data System (ADS)

    Hieda, L. S.

    1981-02-01

    A motor speed and torque controller for brushless d.c. motors provides an unusually smooth torque control arrangement. The controller provides a means for controlling a current waveform in each winding of a brushless dc motor by synchronization of an excitation pulse train from a programmable oscillator. Sensing of torque for synchronization is provided by a light beam chopper mounted on the motor rotor shaft. Speed and duty cycle are independently controlled by controlling the frequency and pulse width output of the programmable oscillator. A means is also provided so that current transitions from one motor winding to another is effected without abrupt changes in output torque.

  10. Controller for computer control of brushless dc motors. [automobile engines

    NASA Technical Reports Server (NTRS)

    Hieda, L. S. (Inventor)

    1981-01-01

    A motor speed and torque controller for brushless d.c. motors provides an unusually smooth torque control arrangement. The controller provides a means for controlling a current waveform in each winding of a brushless dc motor by synchronization of an excitation pulse train from a programmable oscillator. Sensing of torque for synchronization is provided by a light beam chopper mounted on the motor rotor shaft. Speed and duty cycle are independently controlled by controlling the frequency and pulse width output of the programmable oscillator. A means is also provided so that current transitions from one motor winding to another is effected without abrupt changes in output torque.

  11. Precision electronic speed controller for an alternating-current motor

    DOEpatents

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  12. Motor Control Research Requires Nonlinear Dynamics

    ERIC Educational Resources Information Center

    Guastello, Stephen J.

    2006-01-01

    The author comments on the original article "The Cinderella of psychology: The neglect of motor control in the science of mental life and behavior," by D. A. Rosenbaum. Rosenbaum draws attention to the study of motor control and evaluates seven possible explanations for why the topic has been relatively neglected. The point of this comment is that…

  13. Advanced dc-Traction-Motor Control System

    NASA Technical Reports Server (NTRS)

    Vittone, O.

    1985-01-01

    Motor-control concept for battery-powered vehicles includes stateof-the-art power-transistor switching and separate excitation of motor windings in traction and regenerative braking. Switching transistors and other components of power-conditioning subsystem operate under control of computer that coordinates traction, braking, and protective functions.

  14. Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin.

    PubMed

    Pivetta, Chiara; Esposito, Maria Soledad; Sigrist, Markus; Arber, Silvia

    2014-01-30

    Accurate motor-task execution relies on continuous comparison of planned and performed actions. Motor-output pathways establish internal circuit collaterals for this purpose. Here we focus on motor collateral organization between spinal cord and upstream neurons in the brainstem. We used a newly developed mouse genetic tool intersectionally with viruses to uncover the connectivity rules of these ascending pathways by capturing the transient expression of neuronal subpopulation determinants. We reveal a widespread and diverse network of spinal dual-axon neurons, with coincident input to forelimb motor neurons and the lateral reticular nucleus (LRN) in the brainstem. Spinal information to the LRN is not segregated by motor pool or neurotransmitter identity. Instead, it is organized according to the developmental domain origin of the progenitor cells. Thus, excerpts of most spinal information destined for action are relayed to supraspinal centers through exquisitely organized ascending connectivity modules, enabling precise communication between command and execution centers of movement.

  15. Distinct cortical circuit mechanisms for complex forelimb movement and motor map topography.

    PubMed

    Harrison, Thomas C; Ayling, Oliver G S; Murphy, Timothy H

    2012-04-26

    Cortical motor maps are the basis of voluntary movement, but they have proven difficult to understand in the context of their underlying neuronal circuits. We applied light-based motor mapping of Channelrhodopsin-2 mice to reveal a functional subdivision of the forelimb motor cortex based on the direction of movement evoked by brief (10 ms) pulses. Prolonged trains of electrical or optogenetic stimulation (100-500 ms) targeted to anterior or posterior subregions of motor cortex evoked reproducible complex movements of the forelimb to distinct positions in space. Blocking excitatory cortical synaptic transmission did not abolish basic motor map topography, but the site-specific expression of complex movements was lost. Our data suggest that the topography of movement maps arises from their segregated output projections, whereas complex movements evoked by prolonged stimulation require intracortical synaptic transmission.

  16. Fuzzy control of small servo motors

    NASA Technical Reports Server (NTRS)

    Maor, Ron; Jani, Yashvant

    1993-01-01

    To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.

  17. 49 CFR 236.342 - Switch circuit controller.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Switch circuit controller. 236.342 Section 236.342 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Instructions § 236.342 Switch circuit controller. Switch circuit controller connected at the point to...

  18. 49 CFR 236.342 - Switch circuit controller.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Switch circuit controller. 236.342 Section 236.342 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Instructions § 236.342 Switch circuit controller. Switch circuit controller connected at the point to...

  19. 49 CFR 236.342 - Switch circuit controller.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Switch circuit controller. 236.342 Section 236.342 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Instructions § 236.342 Switch circuit controller. Switch circuit controller connected at the point to...

  20. 49 CFR 236.342 - Switch circuit controller.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Switch circuit controller. 236.342 Section 236.342 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Instructions § 236.342 Switch circuit controller. Switch circuit controller connected at the point to...

  1. Ultra-Compact Motor Controller

    NASA Technical Reports Server (NTRS)

    Townsend, William T.; Cromwell, Adam; Hauptman, Traveler; Pratt, Gill Andrews

    2012-01-01

    This invention is an electronically commutated brushless motor contro ller that incorporates Hall-array sensing in a small, 42-gram packag e that provides 4096 absolute counts per motor revolution position s ensing. The unit is the size of a miniature hockey puck, and is a 44 -pin male connector that provides many I/O channels, including CANbus , RS-232 communications, general-purpose analog and digital I/O (GPI O), analog and digital Hall inputs, DC power input (18-90 VDC, 0-l0 A), three-phase motor outputs, and a strain gauge amplifier.

  2. Realistic simulation of the Aplysia siphon-withdrawal reflex circuit: roles of circuit elements in producing motor output.

    PubMed

    Lieb, J R; Frost, W N

    1997-03-01

    The circuitry underlying the Aplysia siphon-elicited siphon-withdrawal reflex has been widely used to study the cellular substrates of simple forms of learning and memory. Nonetheless, the functional roles of the different neurons and synaptic connections modified with learning have yet to be firmly established. In this study we constructed a realistic computer simulation of the best-understood component of this network to better understand how the siphon-withdrawal circuit works. We used an integrate-and-fire scheme to simulate four neuron types (LFS, L29, L30, L34) and 10 synaptic connections. Each of these circuit components was individually constructed to match the mean or typical example of its biological counterpart on the basis of group measurements of each circuit element. Once each cell and synapse was modeled, its free parameters were fixed and not subject to further manipulation. The LFS motor neurons respond to sensory input with a brief phasic burst followed by a long-lasting period of tonic firing. We found that the assembled model network responded to sensory input in a qualitatively similar fashion, suggesting that many of the interneurons important for producing the LFS firing response have now been identified. By selectively removing different circuit elements, we determined the contribution of each of the LFS firing pattern. Our first finding was that the monosynaptic sensory neuron to motor neuron pathway contributed only to the initial brief burst of the LFS firing response, whereas the polysynaptic pathway determined the overall duration of LFS firing. By making more selective deletions, we found that the circuit elements responsible for transforming brief sensory neuron discharges into long-lasting LFS firing were the slow components of the L29-LFS fast/slow excitatory postsynaptic potentials. The inhibitory L30 neurons exerted a significant braking action on the flow of excitatory information through the circuit. Interestingly, L30 lost its

  3. Oscillation control system for electric motor drive

    DOEpatents

    Slicker, James M.; Sereshteh, Ahmad

    1988-01-01

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

  4. Oscillation control system for electric motor drive

    DOEpatents

    Slicker, J.M.; Sereshteh, A.

    1988-08-30

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

  5. Computerized Torque Control for Large dc Motors

    NASA Technical Reports Server (NTRS)

    Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.

    1987-01-01

    Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.

  6. 49 CFR 236.732 - Controller, circuit; switch.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Controller, circuit; switch. 236.732 Section 236.732 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by...

  7. 49 CFR 236.732 - Controller, circuit; switch.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Controller, circuit; switch. 236.732 Section 236.732 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by...

  8. 49 CFR 236.732 - Controller, circuit; switch.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Controller, circuit; switch. 236.732 Section 236.732 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by...

  9. 49 CFR 236.732 - Controller, circuit; switch.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by a... 49 Transportation 4 2013-10-01 2013-10-01 false Controller, circuit; switch. 236.732 Section 236.732 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  10. 49 CFR 236.732 - Controller, circuit; switch.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Controller, circuit; switch. 236.732 Section 236.732 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by...

  11. The peptidergic control circuit for sighing.

    PubMed

    Li, Peng; Janczewski, Wiktor A; Yackle, Kevin; Kam, Kaiwen; Pagliardini, Silvia; Krasnow, Mark A; Feldman, Jack L

    2016-02-18

    Sighs are long, deep breaths expressing sadness, relief or exhaustion. Sighs also occur spontaneously every few minutes to reinflate alveoli, and sighing increases under hypoxia, stress, and certain psychiatric conditions. Here we use molecular, genetic, and pharmacologic approaches to identify a peptidergic sigh control circuit in murine brain. Small neural subpopulations in a key breathing control centre, the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG), express bombesin-like neuropeptide genes neuromedin B (Nmb) or gastrin-releasing peptide (Grp). These project to the preBötzinger Complex (preBötC), the respiratory rhythm generator, which expresses NMB and GRP receptors in overlapping subsets of ~200 neurons. Introducing either neuropeptide into preBötC or onto preBötC slices, induced sighing or in vitro sigh activity, whereas elimination or inhibition of either receptor reduced basal sighing, and inhibition of both abolished it. Ablating receptor-expressing neurons eliminated basal and hypoxia-induced sighing, but left breathing otherwise intact initially. We propose that these overlapping peptidergic pathways comprise the core of a sigh control circuit that integrates physiological and perhaps emotional input to transform normal breaths into sighs.

  12. The peptidergic control circuit for sighing

    PubMed Central

    Kam, Kaiwen; Pagliardini, Silvia; Krasnow, Mark A.; Feldman, Jack L.

    2016-01-01

    Sighs are long, deep breaths expressing sadness, relief, or exhaustion. Sighs also occur spontaneously every few minutes to reinflate alveoli, and sighing increases under hypoxia, stress, and certain psychiatric conditions. Here we use molecular, genetic, and pharmacologic approaches to identify a peptidergic sigh control circuit in murine brain. Small neural subpopulations in a key breathing control center (RTN/pFRG) express bombesin-like neuropeptide genes neuromedin B (Nmb) or gastrin releasing peptide (Grp). These project to the preBötzinger Complex (preBötC), the respiratory rhythm generator, which expresses NMB and GRP receptors in overlapping subsets of ~200 neurons. Introducing either neuropeptide into preBötC, or onto preBötC slices, induced sighing, whereas elimination or inhibition of either receptor reduced basal sighing and inhibition of both abolished it. Ablating receptor-expressing neurons eliminated basal and hypoxia-induced sighing, but left breathing otherwise intact initially. We propose these overlapping peptidergic pathways comprise the core of a sigh control circuit that integrates physiological and perhaps emotional input to transform normal breaths into sighs. PMID:26855425

  13. Timing control by redundant inhibitory neuronal circuits

    SciTech Connect

    Tristan, I. Rulkov, N. F.; Huerta, R.; Rabinovich, M.

    2014-03-15

    Rhythms and timing control of sequential activity in the brain is fundamental to cognition and behavior. Although experimental and theoretical studies support the understanding that neuronal circuits are intrinsically capable of generating different time intervals, the dynamical origin of the phenomenon of functionally dependent timing control is still unclear. Here, we consider a new mechanism that is related to the multi-neuronal cooperative dynamics in inhibitory brain motifs consisting of a few clusters. It is shown that redundancy and diversity of neurons within each cluster enhances the sensitivity of the timing control with the level of neuronal excitation of the whole network. The generality of the mechanism is shown to work on two different neuronal models: a conductance-based model and a map-based model.

  14. Timing control by redundant inhibitory neuronal circuits

    NASA Astrophysics Data System (ADS)

    Tristan, I.; Rulkov, N. F.; Huerta, R.; Rabinovich, M.

    2014-03-01

    Rhythms and timing control of sequential activity in the brain is fundamental to cognition and behavior. Although experimental and theoretical studies support the understanding that neuronal circuits are intrinsically capable of generating different time intervals, the dynamical origin of the phenomenon of functionally dependent timing control is still unclear. Here, we consider a new mechanism that is related to the multi-neuronal cooperative dynamics in inhibitory brain motifs consisting of a few clusters. It is shown that redundancy and diversity of neurons within each cluster enhances the sensitivity of the timing control with the level of neuronal excitation of the whole network. The generality of the mechanism is shown to work on two different neuronal models: a conductance-based model and a map-based model.

  15. Efficient foot motor control by Neymar's brain.

    PubMed

    Naito, Eiichi; Hirose, Satoshi

    2014-01-01

    How very long-term (over many years) motor skill training shapes internal motor representation remains poorly understood. We provide valuable evidence that the football brain of Neymar da Silva Santos Júnior (the Brasilian footballer) recruits very limited neural resources in the motor-cortical foot regions during foot movements. We scanned his brain activity with a 3-tesla functional magnetic resonance imaging (fMRI) while he rotated his right ankle at 1 Hz. We also scanned brain activity when three other age-controlled professional footballers, two top-athlete swimmers and one amateur footballer performed the identical task. A comparison was made between Neymar's brain activity with that obtained from the others. We found activations in the left medial-wall foot motor regions during the foot movements consistently across all participants. However, the size and intensity of medial-wall activity was smaller in the four professional footballers than in the three other participants, despite no difference in amount of foot movement. Surprisingly, the reduced recruitment of medial-wall foot motor regions became apparent in Neymar. His medial-wall activity was smallest among all participants with absolutely no difference in amount of foot movement. Neymar may efficiently control given foot movements probably by largely conserving motor-cortical neural resources. We discuss this possibility in terms of over-years motor skill training effect, use-dependent plasticity, and efficient motor control.

  16. Taking control of the flagellar motor

    NASA Astrophysics Data System (ADS)

    Gauthier, Mathieu; Truchon, Dany; Rainville, Simon

    2008-06-01

    Numerous types of bacteria swim in their environment by rotating long helical filaments. At the base of each filament is a tiny rotary motor called the bacterial flagellar motor. A lot is already known about the structure, assembly and function of this splendid molecular machine of nanoscopic dimensions. Nevertheless many fundamental questions remain open and the study of the flagellar motor is a very exciting area of current research. We are developing an in vitro assay to enable studies of the bacterial flagellar motor in precisely controlled conditions and to gain direct access to the inner components of the motor. We partly squeeze a filamentous E. coli bacterium inside a micropipette, leaving a working flagellar motor outside. We then punch a hole through the cell wall at the end of the bacterium located inside the micropipette using a brief train of ultrashort (~60 fs) laser pulses. This enables us to control the rotation of the motor with an external voltage (for at least 15 minutes). In parallel, new methods to monitor the speed of rotation of the motor in the low load (high speed) regime are being developed using various nanoparticules.

  17. Four quadrant control of induction motors

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1991-01-01

    Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.

  18. Optogenetic Control of Cells and Circuits

    PubMed Central

    Miesenböck, Gero

    2013-01-01

    The absorption of light by bound or diffusible chromophores causes conformational rearrangements in natural and artificial photoreceptor proteins. These rearrangements are coupled to the opening or closing of ion transport pathways, the association or dissociation of binding partners, the enhancement or suppression of catalytic activity, or the transcription or repression of genetic information. Illumination of cells, tissues, or organisms engineered genetically to express photoreceptor proteins can thus be used to perturb biochemical and electrical signaling with exquisite cellular and molecular specificity. First demonstrated in 2002, this principle of optogenetic control has had a profound impact on neuroscience, where it provides a direct and stringent means of probing the organization of neural circuits and of identifying the neural substrates of behavior. The impact of optogenetic control is also beginning to be felt in other areas of cell and organismal biology. PMID:21819234

  19. Multiple neuropeptides in cholinergic motor neurons of Aplysia: evidence for modulation intrinsic to the motor circuit

    SciTech Connect

    Cropper, E.C.; Lloyd, P.E.; Reed, W.; Tenenbaum, R.; Kupfermann, I.; Weiss, K.R.

    1987-05-01

    Changes in Aplysia biting responses during food arousal are partially mediated by the serotonergic metacerebral cells (MCCs). The MCCs potentiate contractions of a muscle utilized in biting, the accessory radula closer (ARCM), when contractions are elicited by stimulation of either of the two cholinergic motor neurons B15 or B16 that innervate the muscle. The authors have now shown that ARCM contractions may also be potentiated by peptide cotransmitters in the ARCM motor neurons. They found that motor neuron B15 contains small cardioactive peptides A and B (SCP/sub A/ and SCP/sub B/) i.e., whole B15 neurons were bioactive on the SCP-sensitive Helix heart, as were reverse-phase HPLC fractions of B15 neurons that eluted like synthetic SCP/sub A/ and SCP/sub B/. Furthermore, (/sup 35/S)methionine-labeled B15 peptides precisely coeluted with synthetic SCP/sub A/ and SCP/sub B/. SCP/sub B/-like immunoreactivity was associated with dense-core vesicles in the soma of B15 and in neuritic varicosities and terminals in the ARCM. B16 motor neurons did not contain SCP/sub A/ or SCP/sub B/ but contained an unidentified bioactive peptide. RP-HPLC of (/sup 35/S)methionine-labeled B16s resulted in one major peak of radioactivity that did not coelute with either SCP and which, when subject to Edman degradation, yielded (/sup 35/S)methionine in positions where there is no methionine in the SCPs. Exogenously applied B16 peptide potentiated ARCM contractions elicited by stimulation of B15 or B16 neurons. Thus, in this system there appear to be two types of modulation; one type arises from the MCCs and is extrinsic to the motor system, whereas the second type arises from the motor neurons themselves and hence is intrinsic.

  20. Two Archetypes of Motor Control Research

    PubMed Central

    Latash, Mark L.

    2010-01-01

    This reply to the Commentaries is focused on two archetypes of motor control research, one based on physics and physiology and the other based on control theory and ideas of neural computations. The former approach, represented by the equilibrium-point hypothesis, strives to discover the physical laws and salient physiological variables that make purposeful coordinated movements possible. The latter approach, represented by the ideas of internal models and optimal control, tries to apply methods of control developed for man-made inanimate systems to the human body. Specific issues related to control with subthreshold membrane depolarization, motor redundancy, and the idea of synergies are briefly discussed. PMID:21479107

  1. Thickness Minimized Magnetic Circuit for Rotary-Type Voice Coil Motor

    NASA Astrophysics Data System (ADS)

    Jeong, Jaehwa; Lee, Jun-Hee; Yoon, Hyoung-Kil; Gweon, Dae-Gab

    2005-03-01

    As the demand for small-form-factor disk drives for mobile devices increases, the miniaturization of voice coil motor (VCM) actuators playing important roles in track seeking and track following is an issue. In this study, we have determined that a multisegmented magnet array (MSMA) can reduce the total thickness of the magnetic circuit for a rotary-type VCM without changing the coil and air gap parameters.

  2. Multilevel modulation of a sensory motor circuit during C. elegans sleep and arousal

    PubMed Central

    Cho, Julie Y.; Sternberg, Paul W.

    2014-01-01

    Sleep is characterized by behavioral quiescence, homeostasis, increased arousal threshold, and rapid reversibility. Understanding how these properties are encoded by a neuronal circuit has been difficult, and no single molecular or neuronal pathway has been shown to be responsible for the regulation of sleep. Taking advantage of the well-mapped neuronal connections of Caenorhabditis elegans and the sleep-like states in this animal, we demonstrate the changed properties of both sensory neurons and downstream interneurons that mediate sleep and arousal. The ASH sensory neuron displays reduced sensitivity to stimuli in the sleep-like state, and the activity of the corresponding interneurons in ASH’s motor circuit becomes asynchronous. Restoration of interneuron synchrony is sufficient for arousal. The multilevel circuit depression revealed provides an elegant strategy to promote a robust decrease in arousal while allowing for rapid reversibility of the sleep state. PMID:24439380

  3. Stepper motor control that adjusts to motor loading

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Nola, Frank J. (Inventor)

    2000-01-01

    A system and method are provided for controlling a stepper motor having a rotor and a multi-phase stator. Sinusoidal command signals define a commanded position of the motor's rotor. An actual position of the rotor is sensed as a function of an electrical angle between the actual position and the commanded position. The actual position is defined by sinusoidal position signals. An adjustment signal is generated using the sinusoidal command signals and sinusoidal position signals. The adjustment signal is defined as a function of the cosine of the electrical angle. The adjustment signal is multiplied by each sinusoidal command signal to generate a corresponding set of excitation signals, each of which is applied to a corresponding phase of the multi-phase stator.

  4. FUZZY LOGIC CONTROL OF ELECTRIC MOTORS AND MOTOR DRIVES: FEASIBILITY STUDY

    EPA Science Inventory

    The report gives results of a study (part 1) of fuzzy logic motor control (FLMC). The study included: 1) reviews of existing applications of fuzzy logic, of motor operation, and of motor control; 2) a description of motor control schemes that can utilize FLMC; 3) selection of a m...

  5. Fast recovery, high voltage silicon diodes for AC motor controllers

    NASA Technical Reports Server (NTRS)

    Balodis, V.; Berman, A. H.; Gaugh, C.

    1982-01-01

    The fabrication and characterization of a high voltage, high current, fast recovery silicon diode for use in AC motor controllers, originally developed for NASA for use in avionics power supplies, is presented. The diode utilizes a positive bevel PIN mesa structure with glass passivation and has the following characteristics: peak inverse voltage - 1200 volts, forward voltage at 50 amperes - 1.5 volts, reverse recovery time of 200 nanoseconds. Characterization data for the diode, included in a table, show agreement with design concepts developed for power diodes. Circuit diagrams of the diode are also given.

  6. Method and apparatus for large motor control

    DOEpatents

    Rose, Chris R.; Nelson, Ronald O.

    2003-08-12

    Apparatus and method for providing digital signal processing method for controlling the speed and phase of a motor involves inputting a reference signal having a frequency and relative phase indicative of a time based signal; modifying the reference signal to introduce a slew-rate limited portion of each cycle of the reference signal; inputting a feedback signal having a frequency and relative phase indicative of the operation of said motor; modifying the feedback signal to introduce a slew-rate limited portion of each cycle of the feedback signal; analyzing the modified reference signal and the modified feedback signal to determine the frequency of the modified reference signal and of the modified feedback signal and said relative phase between said modified reference signal and said modified feedback signal; and outputting control signals to the motor for adjusting said speed and phase of the motor based on the frequency determination and determination of the relative phase.

  7. THE EFFECTS OF BRAIN LATERALIZATION ON MOTOR CONTROL AND ADAPTATION

    PubMed Central

    Mutha, Pratik K.; Haaland, Kathleen Y.; Sainburg, Robert L.

    2012-01-01

    Lateralization of mechanisms mediating functions such as language and perception is widely accepted as a fundamental feature of neural organization. Recent research has revealed that a similar organization exists for the control of motor actions, in that each brain hemisphere contributes unique control mechanisms to the movements of each arm. We now review current research that addresses the nature of the control mechanisms that are lateralized to each hemisphere and how they impact motor adaptation and learning. In general, the studies reviewed here suggest an enhanced role for the left hemisphere during adaptation, and the learning of new sequences and skills. We suggest that this specialization emerges from a left hemisphere specialization for predictive control – the ability to effectively plan and coordinate motor actions, possibly by optimizing certain cost functions. In contrast, right hemisphere circuits appear to be important for updating ongoing actions and stopping at a goal position, through modulation of sensorimotor stabilization mechanisms such as reflexes. We also propose that each brain hemisphere contributes its mechanism to the control of both arms. We conclude by examining the potential advantages of such a lateralized control system. PMID:23237468

  8. The neural optimal control hierarchy for motor control

    NASA Astrophysics Data System (ADS)

    DeWolf, T.; Eliasmith, C.

    2011-10-01

    Our empirical, neuroscientific understanding of biological motor systems has been rapidly growing in recent years. However, this understanding has not been systematically mapped to a quantitative characterization of motor control based in control theory. Here, we attempt to bridge this gap by describing the neural optimal control hierarchy (NOCH), which can serve as a foundation for biologically plausible models of neural motor control. The NOCH has been constructed by taking recent control theoretic models of motor control, analyzing the required processes, generating neurally plausible equivalent calculations and mapping them on to the neural structures that have been empirically identified to form the anatomical basis of motor control. We demonstrate the utility of the NOCH by constructing a simple model based on the identified principles and testing it in two ways. First, we perturb specific anatomical elements of the model and compare the resulting motor behavior with clinical data in which the corresponding area of the brain has been damaged. We show that damaging the assigned functions of the basal ganglia and cerebellum can cause the movement deficiencies seen in patients with Huntington's disease and cerebellar lesions. Second, we demonstrate that single spiking neuron data from our model's motor cortical areas explain major features of single-cell responses recorded from the same primate areas. We suggest that together these results show how NOCH-based models can be used to unify a broad range of data relevant to biological motor control in a quantitative, control theoretic framework.

  9. Study on self-tuning pole assignment speed control of an ultrasonic motor.

    PubMed

    Shi, Jingzhuo; Bo, Liu; Yu, Zhang

    2011-10-01

    Ultrasonic motors have a heavy nonlinearity, which varies with driving conditions. The nonlinearity is a problem as an accurate motion actuator for industrial applications and it is important to eliminate the nonlinearity in order to improve the control performance. In general, complicated control strategies are used to deal with the nonlinearity of ultrasonic motors. This paper proposes a new speed control scheme for ultrasonic motors to overcome the nonlinearity employing a simplified self-tuning control. The speed control model which can reflect the main nonlinear characteristics is obtained using a system identification method based on the step response. Then, a pole assignment speed controller is designed. To avoid the influence of the motor's nonlinearity on the speed control performance, a control parameters' on-line self-tuning strategy utilizing the gain of the model is designed. The proposed control strategy is realized using a DSP circuit, and experiments prove the validity of the proposed speed control scheme.

  10. PHARYNGEAL MOTOR CONTROL AND THE PATHOGENESIS OF OBSTRUCTIVE SLEEP APNEA

    PubMed Central

    Jordan, Amy S; White, David P

    2008-01-01

    The upper airway in patients with obstructive sleep apnea (OSA) is thought to collapse during sleep at least in part, because of a sleep related reduction in upper airway dilator muscle activity. Therefore a comprehensive understanding of the neural regulation of these muscles is warranted. The dilator muscles can be classified in two broad categories; those that have respiratory related activity and those that fire constantly throughout the respiratory cycle. The motor control of these two groups likely differs with the former receiving input from respiratory neurons and negative pressure reflex circuits. The activity of both muscle groups is reduced shortly after sleep onset, indicating that both receive input from brainstem neurons involved in sleep regulation. In the apnea patient, this may lead to pharyngeal airway collapse. This review briefly describes the currently proposed sleep and respiratory neural pathways and how these circuits interact with the upper airway dilator muscle motorneurones, including recent evidence from animal studies. PMID:17869188

  11. High accuracy motor controller for positioning optical filters in the CLAES Spectrometer

    NASA Technical Reports Server (NTRS)

    Thatcher, John B.

    1989-01-01

    The Etalon Drive Motor (EDM), a precision etalon control system designed for accurate positioning of etalon filters in the IR spectrometer of the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment is described. The EDM includes a brushless dc torque motor, which has an infinite resolution for setting an etalon filter to any desired angle, a four-filter etalon wheel, and an electromechanical resolver for angle information. An 18-bit control loop provides high accuracy, resolution, and stability. Dynamic computer interaction allows the user to optimize the step response. A block diagram of the motor controller is presented along with a schematic of the digital/analog converter circuit.

  12. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... incorporated by reference; see 46 CFR 110.10-1), as appropriate, for the location where it is installed. In... (incorporated by reference; see 46 CFR 110.10-1) provides guidance on the differences between devices meeting... 46 Shipping 4 2011-10-01 2011-10-01 false Motor controllers and motor-control centers....

  13. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... incorporated by reference; see 46 CFR 110.10-1), as appropriate, for the location where it is installed. In... (incorporated by reference; see 46 CFR 110.10-1) provides guidance on the differences between devices meeting... 46 Shipping 4 2010-10-01 2010-10-01 false Motor controllers and motor-control centers....

  14. Neural Control Adaptation to Motor Noise Manipulation.

    PubMed

    Hasson, Christopher J; Gelina, Olga; Woo, Garrett

    2016-01-01

    Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g., delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability. PMID:26973487

  15. Neural Control Adaptation to Motor Noise Manipulation

    PubMed Central

    Hasson, Christopher J.; Gelina, Olga; Woo, Garrett

    2016-01-01

    Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g., delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability. PMID:26973487

  16. Spinal metaplasticity in respiratory motor control

    PubMed Central

    Fields, Daryl P.; Mitchell, Gordon S.

    2015-01-01

    A hallmark feature of the neural system controlling breathing is its ability to exhibit plasticity. Less appreciated is the ability to exhibit metaplasticity, a change in the capacity to express plasticity (i.e., “plastic plasticity”). Recent advances in our understanding of cellular mechanisms giving rise to respiratory motor plasticity lay the groundwork for (ongoing) investigations of metaplasticity. This detailed understanding of respiratory metaplasticity will be essential as we harness metaplasticity to restore breathing capacity in clinical disorders that compromise breathing, such as cervical spinal injury, motor neuron disease and other neuromuscular diseases. In this brief review, we discuss key examples of metaplasticity in respiratory motor control, and our current understanding of mechanisms giving rise to spinal plasticity and metaplasticity in phrenic motor output; particularly after pre-conditioning with intermittent hypoxia. Progress in this area has led to the realization that similar mechanisms are operative in other spinal motor networks, including those governing limb movement. Further, these mechanisms can be harnessed to restore respiratory and non-respiratory motor function after spinal injury. PMID:25717292

  17. Opposing regulation of dopaminergic activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits.

    PubMed

    Patel, Jyoti C; Rossignol, Elsa; Rice, Margaret E; Machold, Robert P

    2012-01-01

    Dopamine transmission is critical for exploratory motor behaviour. A key regulator is acetylcholine; forebrain acetylcholine regulates striatal dopamine release, whereas brainstem cholinergic inputs regulate the transition of dopamine neurons from tonic to burst firing modes. How these sources of cholinergic activity combine to control dopamine efflux and exploratory motor behaviour is unclear. Here we show that mice lacking total forebrain acetylcholine exhibit enhanced frequency-dependent striatal dopamine release and are hyperactive in a novel environment, whereas mice lacking rostral brainstem acetylcholine are hypoactive. Exploratory motor behaviour is normalized by the removal of both cholinergic sources. Involvement of dopamine in the exploratory motor phenotypes observed in these mutants is indicated by their altered sensitivity to the dopamine D2 receptor antagonist raclopride. These results support a model in which forebrain and brainstem cholinergic systems act in tandem to regulate striatal dopamine signalling for proper control of motor activity.

  18. Control of oscillations in a discharge circuit

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1972-01-01

    Development of electric discharge circuit damping element which increases in resistance with current and time is described. Damping element is resistor made of tungsten wire which has large resistance-temperature coefficient. Specifications of tungsten resistor and incorporation into circuit are explained.

  19. Test and inspection for process control of monolithic circuits

    NASA Technical Reports Server (NTRS)

    Spangenberg, E.

    1967-01-01

    Report details the test and inspection procedures for the mass production of high reliability integrated circuits. It covers configuration control, basic fundamentals of quality control, control charts, wafer process evaluation, general process evaluation, evaluation score system, and diffusion evaluation.

  20. Deep networks for motor control functions

    PubMed Central

    Berniker, Max; Kording, Konrad P.

    2015-01-01

    The motor system generates time-varying commands to move our limbs and body. Conventional descriptions of motor control and learning rely on dynamical representations of our body's state (forward and inverse models), and control policies that must be integrated forward to generate feedforward time-varying commands; thus these are representations across space, but not time. Here we examine a new approach that directly represents both time-varying commands and the resulting state trajectories with a function; a representation across space and time. Since the output of this function includes time, it necessarily requires more parameters than a typical dynamical model. To avoid the problems of local minima these extra parameters introduce, we exploit recent advances in machine learning to build our function using a stacked autoencoder, or deep network. With initial and target states as inputs, this deep network can be trained to output an accurate temporal profile of the optimal command and state trajectory for a point-to-point reach of a non-linear limb model, even when influenced by varying force fields. In a manner that mirrors motor babble, the network can also teach itself to learn through trial and error. Lastly, we demonstrate how this network can learn to optimize a cost objective. This functional approach to motor control is a sharp departure from the standard dynamical approach, and may offer new insights into the neural implementation of motor control. PMID:25852530

  1. Modulation of Cortical Inhibitory Circuits after Cathodal Transcranial Direct Current Stimulation over the Primary Motor Cortex

    PubMed Central

    Sasaki, Ryoki; Miyaguchi, Shota; Kotan, Shinichi; Kojima, Sho; Kirimoto, Hikari; Onishi, Hideaki

    2016-01-01

    Here, we aimed to evaluate whether cathodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) and primary somatosensory cortex (S1) can modulate cortical inhibitory circuits. Sixteen healthy subjects participated in this study. Cathodal tDCS was positioned over the left M1 (M1 cathodal) or left S1 (S1 cathodal) with an intensity of 1 mA for 10 min. Sham tDCS was applied for 10 min over the left M1 (sham). Motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) were recorded from the right abductor pollicis brevis (APB) muscle before the intervention (pre) and 10 and 30 min after the intervention (post 1 and post 2, respectively). Cortical inhibitory circuits were evaluated using short-interval intracortical inhibition (SICI) and short-latency afferent inhibition (SAI). M1 cathodal decreased single-pulse MEP amplitudes at post 1 and decreased SAI at post 1 and post 2; however, SICI did not exhibit any change. S1 cathodal and sham did not show any changes in MEP amplitudes at any of the three time points. These results demonstrated that cathodal tDCS over the M1 not only decreases the M1 excitability but also affects the cortical inhibitory circuits related to SAI. PMID:26869909

  2. Nature of motor control: perspectives and issues.

    PubMed

    Turvey, Michael T; Fonseca, Sergio

    2009-01-01

    Four perspectives on motor control provide the framework for developing a comprehensive theory of motor control in biological systems. The four perspectives, of decreasing orthodoxy, are distinguished by their sources of inspiration: neuroanatomy, robotics, self-organization, and ecological realities. Twelve major issues that commonly constrain (either explicitly or implicitly) the understanding of the control and coordination of movement are identified and evaluated within the framework of the four perspectives. The issues are as follows: (1) Is control strictly neural? (2) Is there a divide between planning and execution? (3) Does control entail a frequently involved knowledgeable executive? (4) Do analytical internal models mediate control? (5) Is anticipation necessarily model dependent? (6) Are movements preassembled? (7) Are the participating components context independent? (8) Is force transmission strictly myotendinous? (9) Is afference a matter of local linear signaling? (10) Is neural noise an impediment? (11) Do standard variables (of mechanics and physiology) suffice? (12) Is the organization of control hierarchical?

  3. Summary of electric vehicle dc motor-controller tests

    NASA Technical Reports Server (NTRS)

    Mcbrien, E. F.; Tryon, H. B.

    1982-01-01

    The differences in the performance of dc motors are evaluated when operating with chopper type controllers, and when operating on direct current. The interactions between the motor and the controller which cause these differences are investigated. Motor-controlled tests provided some of the data the quantified motor efficiency variations for both ripple free and chopper modes of operation.

  4. Field oriented control of induction motors

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Zinger, Don S.; Roth, Mary Ellen

    1990-01-01

    Induction motors have always been known for their simple rugged construction, but until lately were not suitable for variable speed or servo drives due to the inherent complexity of the controls. With the advent of field oriented control (FOC), however, the induction motor has become an attractive option for these types of drive systems. An FOC system which utilizes the pulse population modulation method to synthesize the motor drive frequencies is examined. This system allows for a variable voltage to frequency ratio and enables the user to have independent control of both the speed and torque of an induction motor. A second generation of the control boards were developed and tested with the next point of focus being the minimization of the size and complexity of these controls. Many options were considered with the best approach being the use of a digital signal processor (DSP) due to its inherent ability to quickly evaluate control algorithms. The present test results of the system and the status of the optimization process using a DSP are discussed.

  5. Control System for Bearingless Motor-generator

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E. (Inventor); Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor)

    2008-01-01

    A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.

  6. Control system for bearingless motor-generator

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E. (Inventor); Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor)

    2010-01-01

    A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.

  7. Prototype Motor Controllers Demonstrated for the James Webb Space Telescope Cryogenic Environment

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammond, Ahmad

    2004-01-01

    NASA is in the process of designing the James Webb Space Telescope. This telescope will investigate images of objects in deep space (stars, galaxies, etc.) by using light in the infrared region of the light spectrum. To make such observations, the telescope must have light sensors that operate at very cold temperatures, near absolute zero. To achieve this low-temperature tolerance, designers must place the light sensors behind a Sun shield that will prevent sunlight, and its heat, from reaching the sensors. In this cold region inside the telescope, electric motors and some motor controls must operate at temperatures near 40 K (40 degrees above absolute zero). These motors will be used to position light filters needed by the telescope. There are motors that operate at the low temperatures, but there is little technology for low-temperature motor-control electronics. The drawing shows how the motors and their controls are positioned behind the Sun shield. Simplified version of the layout of the motor and control electronics that are located, as dictated by mission requirements, in the cold zone of the James Webb Space Telescope. A Sun shield provides protection and isolation of these electronics from the heat of the rays of the sun. Room temperature compoenets (control computer, motor select command, motor phase drive, power supply, parallel to serial, and sun shield) as well as 40-kelvin components (motor select, serial to parallel, and motors) are shown. The Low Temperature Electronics Group at the NASA Glenn Research Center has been working to develop motor control electronics that will operate at a temperature of 40 K. The group conducted tests to determine which electronic components will operate at such very low temperatures. Then, components that were determined to operate successfully at the low temperatures were used to design low-temperature motor-controller circuits. A prototype motor controller circuit was built, evaluated, and demonstrated to operate at

  8. Neuronal connectome of a sensory-motor circuit for visual navigation

    PubMed Central

    Randel, Nadine; Asadulina, Albina; Bezares-Calderón, Luis A; Verasztó, Csaba; Williams, Elizabeth A; Conzelmann, Markus; Shahidi, Réza; Jékely, Gáspár

    2014-01-01

    Animals use spatial differences in environmental light levels for visual navigation; however, how light inputs are translated into coordinated motor outputs remains poorly understood. Here we reconstruct the neuronal connectome of a four-eye visual circuit in the larva of the annelid Platynereis using serial-section transmission electron microscopy. In this 71-neuron circuit, photoreceptors connect via three layers of interneurons to motorneurons, which innervate trunk muscles. By combining eye ablations with behavioral experiments, we show that the circuit compares light on either side of the body and stimulates body bending upon left-right light imbalance during visual phototaxis. We also identified an interneuron motif that enhances sensitivity to different light intensity contrasts. The Platynereis eye circuit has the hallmarks of a visual system, including spatial light detection and contrast modulation, illustrating how image-forming eyes may have evolved via intermediate stages contrasting only a light and a dark field during a simple visual task. DOI: http://dx.doi.org/10.7554/eLife.02730.001 PMID:24867217

  9. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... incorporated by reference; see 46 CFR 110.10-1), as appropriate, for the location where it is installed. In... (incorporated by reference; see 46 CFR 110.10-1) provides guidance on the differences between devices meeting NEMA and those meeting IEC for motor service. (b) Low-voltage release. Each motor controller for a...

  10. A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs.

    PubMed

    Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J; Paz-Vicente, Rafael; Civit-Balcells, Anton

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control.

  11. A Neuro-Inspired Spike-Based PID Motor Controller for Multi-Motor Robots with Low Cost FPGAs

    PubMed Central

    Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J.; Paz-Vicente, Rafael; Civit-Balcells, Anton

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control. PMID:22666004

  12. A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs.

    PubMed

    Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J; Paz-Vicente, Rafael; Civit-Balcells, Anton

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control. PMID:22666004

  13. Neuroplasticity in respiratory motor control.

    PubMed

    Mitchell, Gordon S; Johnson, Stephen M

    2003-01-01

    Although recent evidence demonstrates considerable neuroplasticity in the respiratory control system, a comprehensive conceptual framework is lacking. Our goals in this review are to define plasticity (and related neural properties) as it pertains to respiratory control and to discuss potential sites, mechanisms, and known categories of respiratory plasticity. Respiratory plasticity is defined as a persistent change in the neural control system based on prior experience. Plasticity may involve structural and/or functional alterations (most commonly both) and can arise from multiple cellular/synaptic mechanisms at different sites in the respiratory control system. Respiratory neuroplasticity is critically dependent on the establishment of necessary preconditions, the stimulus paradigm, the balance between opposing modulatory systems, age, gender, and genetics. Respiratory plasticity can be induced by hypoxia, hypercapnia, exercise, injury, stress, and pharmacological interventions or conditioning and occurs during development as well as in adults. Developmental plasticity is induced by experiences (e.g., altered respiratory gases) during sensitive developmental periods, thereby altering mature respiratory control. The same experience later in life has little or no effect. In adults, neuromodulation plays a prominent role in several forms of respiratory plasticity. For example, serotonergic modulation is thought to initiate and/or maintain respiratory plasticity following intermittent hypoxia, repeated hypercapnic exercise, spinal sensory denervation, spinal cord injury, and at least some conditioned reflexes. Considerable work is necessary before we fully appreciate the biological significance of respiratory plasticity, its underlying cellular/molecular and network mechanisms, and the potential to harness respiratory plasticity as a therapeutic tool. PMID:12486024

  14. Control circuit maintains unity power factor of reactive load

    NASA Technical Reports Server (NTRS)

    Kramer, M.; Martinage, L. H.

    1966-01-01

    Circuit including feedback control elements automatically corrects the power factor of a reactive load. It maintains power supply efficiency where negative load reactance changes and varies by providing corrective error signals to the control windings of a power supply transformer.

  15. Electronic circuit provides automatic level control for liquid nitrogen traps

    NASA Technical Reports Server (NTRS)

    Turvy, R. R.

    1968-01-01

    Electronic circuit, based on the principle of increased thermistor resistance corresponding to decreases in temperature provides an automatic level control for liquid nitrogen cold traps. The electronically controlled apparatus is practically service-free, requiring only occasional reliability checks.

  16. [Spinal circuit motor plasticity mechanisms in long-term sports activity adaptation].

    PubMed

    Andriianova, E Iu; Lanskaia, O V

    2014-01-01

    Man interacts with the environment through motor activities getting considerable sensor information from numerous internal and external sources. There is significant evidence of I-a afferents sensor information being critical in initiating of functional and morphological transformations in the periods of both development and maturation of cortex and spinal cord. Ia fibers ability to transmit sensor information, generated by muscle and motor activities, causes plastic changes in the central nervous system, enabling man to acquire new skills and movements and develop them. Therefore, understanding of activity-dependent neural plasticity mechanisms is of great importance in developing methods to perfect motor function, for example, in doing sports. This article presents the results of investigation of activity-dependent changes in spinal cord circuits in athletes. There are new data of cervical and lumbosacral motor spinal system plasticity as a result of various longterm sports activities. It is shown, in particular, that, in comparison with non-athletes, in the spinal cord of ski-racers and basketball-players the representation area of upper and lower extremities muscles alpha-motorneurons with high reflex excitability is extended. Moreover,.the direction of the extension was specified by the upper segments activity. Besides, the volume of some revealed signs of cervical and lumbosacral spinal cord plasticity in the ski-racers, involved into moderate cyclic activity, was higher than that in the basketball-players, whose movements are more various.

  17. Neuromodulation of lower limb motor control in restorative neurology

    PubMed Central

    Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried

    2012-01-01

    One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. PMID:22464657

  18. Motor Control Theories and Their Applications

    PubMed Central

    Latash, Mark L.; Levin, Mindy F.; Scholz, John P.; Schöner, Gregor

    2010-01-01

    Summary We describe several influential hypotheses in the field of motor control including the equilibrium-point (referent configuration) hypothesis, the uncontrolled manifold hypothesis, and the idea of synergies based on the principle of motor abundance. The equilibrium-point hypothesis is based on the idea of control with thresholds for activation of neuronal pools; it provides a framework for analysis of both voluntary and involuntary movements. In particular, control of a single muscle can be adequately described with changes in the threshold of motor unit recruitment during slow muscle stretch (threshold of the tonic stretch reflex). Unlike the ideas of internal models, the equilibrium-point hypothesis does not assume neural computations of mechanical variables. The uncontrolled manifold hypothesis is based on the dynamic system approach to movements; it offers a toolbox to analyze synergic changes within redundant sets of elements related to stabilization of potentially important performance variables. The referent configuration hypothesis and the principle of abundance can be naturally combined into a single coherent scheme of control of multi-element systems. A body of experimental data on healthy persons and patients with movement disorders are reviewed in support of the mentioned hypotheses. In particular, movement disorders associated with spasticity are considered as consequences of an impaired ability to shift threshold of the tonic stretch reflex within the whole normal range. Technical details and applications of the mentioned hypotheses to studies of motor learning are described. We view the mentioned hypotheses as the most promising ones in the field of motor control, based on a solid physical and neurophysiological foundation. PMID:20944446

  19. DC Motor control using motor-generator set with controlled generator field

    DOEpatents

    Belsterling, Charles A.; Stone, John

    1982-01-01

    A d.c. generator is connected in series opposed to the polarity of a d.c. power source supplying a d.c. drive motor. The generator is part of a motor-generator set, the motor of which is supplied from the power source connected to the motor. A generator field control means varies the field produced by at least one of the generator windings in order to change the effective voltage output. When the generator voltage is exactly equal to the d.c. voltage supply, no voltage is applied across the drive motor. As the field of the generator is reduced, the drive motor is supplied greater voltage until the full voltage of the d.c. power source is supplied when the generator has zero field applied. Additional voltage may be applied across the drive motor by reversing and increasing the reversed field on the generator. The drive motor may be reversed in direction from standstill by increasing the generator field so that a reverse voltage is applied across the d.c. motor.

  20. Sampling and Control Circuit Board for an Inertial Measurement Unit

    NASA Technical Reports Server (NTRS)

    Chelmins, David T (Inventor); Powis, Richard T., Jr. (Inventor); Sands, Obed (Inventor)

    2016-01-01

    A circuit board that serves as a control and sampling interface to an inertial measurement unit ("IMU") is provided. The circuit board is also configured to interface with a local oscillator and an external trigger pulse. The circuit board is further configured to receive the external trigger pulse from an external source that time aligns the local oscillator and initiates sampling of the inertial measurement device for data at precise time intervals based on pulses from the local oscillator. The sampled data may be synchronized by the circuit board with other sensors of a navigation system via the trigger pulse.

  1. Field-Oriented Control Of Induction Motors

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Roth, Mary Ellen; Zinger, Don S.

    1993-01-01

    Field-oriented control system provides for feedback control of torque or speed or both. Developed for use with commercial three-phase, 400-Hz, 208-V, 5-hp motor. Systems include resonant power supply operating at 20 kHz. Pulse-population-modulation subsystem selects individual pulses of 20-kHz single-phase waveform as needed to synthesize three waveforms of appropriate lower frequency applied to three phase windings of motor. Electric actuation systems using technology currently being built to peak powers of 70 kW. Amplitude of voltage of effective machine-frequency waveform determined by momentary frequency of pulses, while machine frequency determined by rate of repetition of overall temporal pattern of pulses. System enables independent control of both voltage and frequency.

  2. Circuit Controls Turn-On Current

    NASA Technical Reports Server (NTRS)

    Holmes, K. G.

    1972-01-01

    Single choke used in primary circuit with diode arrangement, maintaining dc current flow through choke and setting up a unidirectional magnetic field, limits turn-on current of transformer-rectifier power supply. Technique reduces number and weight of components and minimizes effect of initial inrush surge current on source.

  3. Two distinct auditory-motor circuits for monitoring speech production as revealed by content-specific suppression of auditory cortex.

    PubMed

    Ylinen, Sari; Nora, Anni; Leminen, Alina; Hakala, Tero; Huotilainen, Minna; Shtyrov, Yury; Mäkelä, Jyrki P; Service, Elisabet

    2015-06-01

    Speech production, both overt and covert, down-regulates the activation of auditory cortex. This is thought to be due to forward prediction of the sensory consequences of speech, contributing to a feedback control mechanism for speech production. Critically, however, these regulatory effects should be specific to speech content to enable accurate speech monitoring. To determine the extent to which such forward prediction is content-specific, we recorded the brain's neuromagnetic responses to heard multisyllabic pseudowords during covert rehearsal in working memory, contrasted with a control task. The cortical auditory processing of target syllables was significantly suppressed during rehearsal compared with control, but only when they matched the rehearsed items. This critical specificity to speech content enables accurate speech monitoring by forward prediction, as proposed by current models of speech production. The one-to-one phonological motor-to-auditory mappings also appear to serve the maintenance of information in phonological working memory. Further findings of right-hemispheric suppression in the case of whole-item matches and left-hemispheric enhancement for last-syllable mismatches suggest that speech production is monitored by 2 auditory-motor circuits operating on different timescales: Finer grain in the left versus coarser grain in the right hemisphere. Taken together, our findings provide hemisphere-specific evidence of the interface between inner and heard speech.

  4. 49 CFR 236.303 - Control circuits for signals, selection through circuit controller operated by switch points or...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-point frogs and derails shall be selected through circuit controller operated directly by switch points... switch, movable-point frog, and derail in the routes governed by such signal. Circuits shall be arranged... when each switch, movable-point frog, and derail in the route is in proper position....

  5. 49 CFR 236.303 - Control circuits for signals, selection through circuit controller operated by switch points or...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-point frogs and derails shall be selected through circuit controller operated directly by switch points... switch, movable-point frog, and derail in the routes governed by such signal. Circuits shall be arranged... when each switch, movable-point frog, and derail in the route is in proper position....

  6. 49 CFR 236.303 - Control circuits for signals, selection through circuit controller operated by switch points or...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-point frogs and derails shall be selected through circuit controller operated directly by switch points... switch, movable-point frog, and derail in the routes governed by such signal. Circuits shall be arranged... when each switch, movable-point frog, and derail in the route is in proper position....

  7. 49 CFR 236.303 - Control circuits for signals, selection through circuit controller operated by switch points or...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-point frogs and derails shall be selected through circuit controller operated directly by switch points... switch, movable-point frog, and derail in the routes governed by such signal. Circuits shall be arranged... when each switch, movable-point frog, and derail in the route is in proper position....

  8. 49 CFR 236.303 - Control circuits for signals, selection through circuit controller operated by switch points or...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-point frogs and derails shall be selected through circuit controller operated directly by switch points... switch, movable-point frog, and derail in the routes governed by such signal. Circuits shall be arranged... when each switch, movable-point frog, and derail in the route is in proper position....

  9. Power factor control system for AC induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1977-01-01

    A power factor control system for use with ac induction motors was designed which samples lines voltage and current through the motor and decreases power input to the motor proportional to the detected phase displacement between current and voltage. This system provides, less power to the motor, as it is less loaded.

  10. Integrated Control of Axonemal Dynein AAA+ Motors

    PubMed Central

    King, Stephen M.

    2012-01-01

    Axonemal dyneins are AAA+ enzymes that convert ATP hydrolysis to mechanical work. This leads to the sliding of doublet microtubules with respect to each other and ultimately the generation of ciliary/flagellar beating. However, in order for useful work to be generated, the action of individual dynein motors must be precisely controlled. In addition, cells modulate the motility of these organelles through a variety of second messenger systems and these signals too must be integrated by the dynein motors to yield an appropriate output. This review describes the current status of efforts to understand dynein control mechanisms and their connectivity focusing mainly on studies of the outer dynein arm from axonemes of the unicellular biflagellate green alga Chlamydomonas. PMID:22406539

  11. A hybrid electrical/chemical circuit in the spinal cord generates a transient embryonic motor behavior.

    PubMed

    Knogler, Laura D; Ryan, Joel; Saint-Amant, Louis; Drapeau, Pierre

    2014-07-16

    Spontaneous network activity is a highly stereotyped early feature of developing circuits throughout the nervous system, including in the spinal cord. Spinal locomotor circuits produce a series of behaviors during development before locomotion that reflect the continual integration of spinal neurons into a functional network, but how the circuitry is reconfigured is not understood. The first behavior of the zebrafish embryo (spontaneous coiling) is mediated by an electrical circuit that subsequently generates mature locomotion (swimming) as chemical neurotransmission develops. We describe here a new spontaneous behavior, double coiling, that consists of two alternating contractions of the tail in rapid succession. Double coiling was glutamate-dependent and required descending hindbrain excitation, similar to but preceding swimming, making it a discrete intermediary developmental behavior. At the cellular level, motoneurons had a distinctive glutamate-dependent activity pattern that correlated with double coiling. Two glutamatergic interneurons, CoPAs and CiDs, had different activity profiles during this novel behavior. CoPA neurons failed to show changes in activity patterns during the period in which double coiling appears, whereas CiD neurons developed a glutamate-dependent activity pattern that correlated with double coiling and they innervated motoneurons at that time. Additionally, double coils were modified after pharmacological reduction of glycinergic neurotransmission such that embryos produced three or more rapidly alternating coils. We propose that double coiling behavior represents an important transition of the motor network from an electrically coupled spinal cord circuit that produces simple periodic coils to a spinal network driven by descending chemical neurotransmission, which generates more complex behaviors.

  12. Artificial Intelligent Controller for a DC Motor

    NASA Astrophysics Data System (ADS)

    Delavari, Hadi; Ranjbar Noiey, Abolzafl; Minagar, Sara

    The Speed and position control of DC motors is addressed in this paper. An optimal intelligent control scheme is proposed for the system. Preliminary a PID controller is designed using Genetic Algorithms (GA). The proposed controller is implemented by using optimal integral state feedback control with GA and Kalman filter. In the proposed scheme, performance depends on choosing weighting matrices Q and R in the cost function, and accordingly GA is used to find these proper weighting matrices. In order to reduce the control performance degradation due to system parameters variation, a Kalman filter is gained. The performance of the proposed technique (ISF) is compared with PID controller. Computer simulation validates the effectiveness of the proposed scheme even in presence of uncertainties.

  13. The Development of Oral Motor Control and Language

    ERIC Educational Resources Information Center

    Alcock, Katie

    2006-01-01

    Motor control has long been associated with language skill, in deficits, both acquired and developmental, and in typical development. Most evidence comes from limb praxis however; the link between oral motor control and speech and language has been neglected, despite the fact that most language users talk with their mouths. Oral motor control is…

  14. A neural command circuit for grooming movement control.

    PubMed

    Hampel, Stefanie; Franconville, Romain; Simpson, Julie H; Seeds, Andrew M

    2015-09-07

    Animals perform many stereotyped movements, but how nervous systems are organized for controlling specific movements remains unclear. Here we use anatomical, optogenetic, behavioral, and physiological techniques to identify a circuit in Drosophila melanogaster that can elicit stereotyped leg movements that groom the antennae. Mechanosensory chordotonal neurons detect displacements of the antennae and excite three different classes of functionally connected interneurons, which include two classes of brain interneurons and different parallel descending neurons. This multilayered circuit is organized such that neurons within each layer are sufficient to specifically elicit antennal grooming. However, we find differences in the durations of antennal grooming elicited by neurons in the different layers, suggesting that the circuit is organized to both command antennal grooming and control its duration. As similar features underlie stimulus-induced movements in other animals, we infer the possibility of a common circuit organization for movement control that can be dissected in Drosophila.

  15. Sensor and Sensorless Fault Tolerant Control for Induction Motors Using a Wavelet Index

    PubMed Central

    Gaeid, Khalaf Salloum; Ping, Hew Wooi; Khalid, Mustafa; Masaoud, Ammar

    2012-01-01

    Fault Tolerant Control (FTC) systems are crucial in industry to ensure safe and reliable operation, especially of motor drives. This paper proposes the use of multiple controllers for a FTC system of an induction motor drive, selected based on a switching mechanism. The system switches between sensor vector control, sensorless vector control, closed-loop voltage by frequency (V/f) control and open loop V/f control. Vector control offers high performance, while V/f is a simple, low cost strategy with high speed and satisfactory performance. The faults dealt with are speed sensor failures, stator winding open circuits, shorts and minimum voltage faults. In the event of compound faults, a protection unit halts motor operation. The faults are detected using a wavelet index. For the sensorless vector control, a novel Boosted Model Reference Adaptive System (BMRAS) to estimate the motor speed is presented, which reduces tuning time. Both simulation results and experimental results with an induction motor drive show the scheme to be a fast and effective one for fault detection, while the control methods transition smoothly and ensure the effectiveness of the FTC system. The system is also shown to be flexible, reverting rapidly back to the dominant controller if the motor returns to a healthy state. PMID:22666016

  16. Balanced-Bridge Feedback Control Of Motor

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J.

    1990-01-01

    Sensitivity to variations in electrical and mechanical characteristics reduced. Proposed control system for motor-driven rotary actuator includes three nested feedback loops which, when properly designed, decoupled from each other. Intended to increase accuracy of control by mitigating such degrading effects as vibrations and variations in electrical and mechanical characteristics of structure rotated. Lends itself to optimization of performance via independent optimization of each of three loops. Includes outer, actuator, and driver feedback loops, configured so that actuator is subsystem, and driver is subsystem of actuator.

  17. Efflux Pump Control Alters Synthetic Gene Circuit Function.

    PubMed

    Diao, Junchen; Charlebois, Daniel A; Nevozhay, Dmitry; Bódi, Zoltán; Pál, Csaba; Balázsi, Gábor

    2016-07-15

    Synthetic biology aims to design new biological systems for predefined purposes, such as the controlled secretion of biofuels, pharmaceuticals, or other chemicals. Synthetic gene circuits regulating an efflux pump from the ATP-binding cassette (ABC) protein family could achieve this. However, ABC efflux pumps can also drive out intracellular inducer molecules that control the gene circuits. This will introduce an implicit feedback that could alter gene circuit function in ways that are poorly understood. Here, we used two synthetic gene circuits inducible by tetracycline family molecules to regulate the expression of a yeast ABC pump (Pdr5p) that pumps out the inducer. Pdr5p altered the dose-responses of the original gene circuits substantially in Saccharomyces cerevisiae. While one aspect of the change could be attributed to the efflux pumping function of Pdr5p, another aspect remained unexplained. Quantitative modeling indicated that reduced regulator gene expression in addition to efflux pump function could fully explain the altered dose-responses. These predictions were validated experimentally. Overall, we highlight how efflux pumps can alter gene circuit dynamics and demonstrate the utility of mathematical modeling in understanding synthetic gene circuit function in new circumstances.

  18. Match explosionproof motors with variable-frequency controllers

    SciTech Connect

    Petro, D.; Basso, D.

    1995-10-01

    The correct application of variable-frequency drive controllers to AC induction motors can be difficult, even for relatively simple applications. When using a variable-frequency controller (inverter), the non-pure sine-wave power output cases additional motor heating, primarily because of harmonics and below-base-speed operation. Add to that a hazardous environment requiring an explosion proof (XP) motor and the selection of a suitable, as well as efficient, motor and variable-frequency controller combination, and selection becomes even more complicated. Hazardous locations are found in a wide range of chemical process industries (CPI) plants, including chemical, petrochemical textile, rubber-making,, agriculture, food-processing, and metalworking facilities. Because standard constant-speed XP motors are not designed of use with variable-frequency controllers in these potentially explosive applications, it is necessary to understand how drive controllers affect motor performance. The multitude of motors and controllers--which can be purchased separately--and the numerous hazardous-application restrictions make it difficult to select the right XP motor/controller combination. The paper discusses how variable frequency affects motors, hazardous environments as found in UL 674 and UL 1836, matching XP motors with variable-frequency controllers, preventing motor overheating, motor and controller packaging, and non-thermostat applications in the CPI.

  19. Enriched environment restricted to gestation accelerates the development of sensory and motor circuits in the rat pup.

    PubMed

    Cárdenas, Lorena; García-García, Fabio; Santiago-Roque, Isela; Martínez, Armando J; Coria-Ávila, Genaro A; Corona-Morales, Aleph A

    2015-04-01

    The effects of stimulating environments on the neural plasticity of the adult brain have been well explored; however, how an enriched environment (EE) affects the mother-fetus interaction is poorly understood. We hypothesized that an enriched environment restricted to pregnancy will succeed in accelerating the development of sensory and motor circuits in the offspring. Pregnant Wistar rats were maintained either under a standard condition - two animals per standard cage- or an enriched environment - eight subjects in larger cages with different physical configurations-. After birth, litters from both groups (n=16 per group) were cross-fostered with mothers that were simultaneously maintained under standard environment during pregnancy. Sensory and motor development were studied in the pups of both groups with a battery of reflex and physical tests. Auditory and gait reflexes appeared two days earlier in the offspring of EE rats as compared to control subjects (p<0.05). In addition, EE pups displayed a better performance in righting reflex, inclined board and geotaxis tests (p<0.05). Differences were found even three weeks after birth. We conclude that EE limited to the phase of pregnancy stimulates the development of pups inutero so that they are born with a higher grade of development.

  20. Active parallel redundancy for electronic integrator-type control circuits

    NASA Technical Reports Server (NTRS)

    Peterson, R. A.

    1971-01-01

    Circuit extends concept of redundant feedback control from type-0 to type-1 control systems. Inactive channels are slaves to the active channel, if latter fails, it is rejected and slave channel is activated. High reliability and elimination of single-component catastrophic failure are important in closed-loop control systems.

  1. Injuries in professional motor car racing drivers at a racing circuit between 1996 and 2000

    PubMed Central

    Minoyama, O; Tsuchida, H

    2004-01-01

    Background: Research on injuries in racing drivers is limited. Objective: To gain more information about such injuries. Methods: Injuries recorded during and after races between 1996 and 2000 were investigated using the medical charts from the circuit medical centre at Fuji Speedway, which is one of the biggest circuits in Japan. Races were in either single seat/formula cars or saloon cars. Results: Data were obtained from 39 races in single seat cars (1030 participating cars) and 42 races in saloon cars (1577 cars). Fifty injuries were recorded during the single seat car races, and 62 during the saloon car races (injury rate 1.2 per 1000 competitors per race and 0.9 per 1000 competitors per race respectively). Thirteen injuries were recorded after the race, 12 of them in saloon car racing. Bruises were the major injury in single seat car racing (58%). Lower limb bruising was more common than upper limb bruising. Most of the injuries in saloon car racing (53.2%) were neck sprains. The incidence of concussion was high in both groups compared with other high risk sports. Conclusions: There were some differences in injuries between the two types of car. No serious injuries occurred except for one death. However, the driver's body is subjected to large forces in a crash, hence the high incidence of concussion. The injuries recorded after the race emphasise that motor racing is a demanding sport. PMID:15388550

  2. Spatial constancy mechanisms in motor control.

    PubMed

    Medendorp, W Pieter

    2011-02-27

    The success of the human species in interacting with the environment depends on the ability to maintain spatial stability despite the continuous changes in sensory and motor inputs owing to movements of eyes, head and body. In this paper, I will review recent advances in the understanding of how the brain deals with the dynamic flow of sensory and motor information in order to maintain spatial constancy of movement goals. The first part summarizes studies in the saccadic system, showing that spatial constancy is governed by a dynamic feed-forward process, by gaze-centred remapping of target representations in anticipation of and across eye movements. The subsequent sections relate to other oculomotor behaviour, such as eye-head gaze shifts, smooth pursuit and vergence eye movements, and their implications for feed-forward mechanisms for spatial constancy. Work that studied the geometric complexities in spatial constancy and saccadic guidance across head and body movements, distinguishing between self-generated and passively induced motion, indicates that both feed-forward and sensory feedback processing play a role in spatial updating of movement goals. The paper ends with a discussion of the behavioural mechanisms of spatial constancy for arm motor control and their physiological implications for the brain. Taken together, the emerging picture is that the brain computes an evolving representation of three-dimensional action space, whose internal metric is updated in a nonlinear way, by optimally integrating noisy and ambiguous afferent and efferent signals. PMID:21242137

  3. One hand clapping: lateralization of motor control

    PubMed Central

    Welniarz, Quentin; Dusart, Isabelle; Gallea, Cécile; Roze, Emmanuel

    2015-01-01

    Lateralization of motor control refers to the ability to produce pure unilateral or asymmetric movements. It is required for a variety of coordinated activities, including skilled bimanual tasks and locomotion. Here we discuss the neuroanatomical substrates and pathophysiological underpinnings of lateralized motor outputs. Significant breakthroughs have been made in the past few years by studying the two known conditions characterized by the inability to properly produce unilateral or asymmetric movements, namely human patients with congenital “mirror movements” and model rodents with a “hopping gait”. Whereas mirror movements are associated with altered interhemispheric connectivity and abnormal corticospinal projections, abnormal spinal cord interneurons trajectory is responsible for the “hopping gait”. Proper commissural axon guidance is a critical requirement for these mechanisms. Interestingly, the analysis of these two conditions reveals that the production of asymmetric movements involves similar anatomical and functional requirements but in two different structures: (i) lateralized activation of the brain or spinal cord through contralateral silencing by cross-midline inhibition; and (ii) unilateral transmission of this activation, resulting in lateralized motor output. PMID:26082690

  4. Spatial constancy mechanisms in motor control

    PubMed Central

    Medendorp, W. Pieter

    2011-01-01

    The success of the human species in interacting with the environment depends on the ability to maintain spatial stability despite the continuous changes in sensory and motor inputs owing to movements of eyes, head and body. In this paper, I will review recent advances in the understanding of how the brain deals with the dynamic flow of sensory and motor information in order to maintain spatial constancy of movement goals. The first part summarizes studies in the saccadic system, showing that spatial constancy is governed by a dynamic feed-forward process, by gaze-centred remapping of target representations in anticipation of and across eye movements. The subsequent sections relate to other oculomotor behaviour, such as eye–head gaze shifts, smooth pursuit and vergence eye movements, and their implications for feed-forward mechanisms for spatial constancy. Work that studied the geometric complexities in spatial constancy and saccadic guidance across head and body movements, distinguishing between self-generated and passively induced motion, indicates that both feed-forward and sensory feedback processing play a role in spatial updating of movement goals. The paper ends with a discussion of the behavioural mechanisms of spatial constancy for arm motor control and their physiological implications for the brain. Taken together, the emerging picture is that the brain computes an evolving representation of three-dimensional action space, whose internal metric is updated in a nonlinear way, by optimally integrating noisy and ambiguous afferent and efferent signals. PMID:21242137

  5. Regulatory Circuits Controlling Vascular Cell Calcification

    PubMed Central

    Sallam, Tamer; Cheng, Henry; Demer, Linda L.; Tintut, Yin

    2013-01-01

    Vascular calcification is a common feature of chronic kidney disease, cardiovascular disease, and aging. Such abnormal calcium deposition occurs in medial and/or intimal layers of blood vessels as well as in cardiac valves. Once considered a passive and inconsequential finding, the presence of calcium deposits in the vasculature is widely accepted as a predictor of increased morbidity and mortality. Recognition of the importance of vascular calcification in health is driving research into mechanisms that govern its development, progression, and regression. Diverse, but highly interconnected factors, have been implicated, including disturbances in lipid metabolism, oxidative stress, inflammatory cytokines, and mineral and hormonal balances, which can lead to formation of osteoblast-like cells in the artery wall. A tight balance of procalcific and anticalcific regulators dictates the extent of disease. In this review, we focus on the main regulatory circuits modulating vascular cell calcification. PMID:23269436

  6. A model for reverberating circuits with controlled feedback

    NASA Astrophysics Data System (ADS)

    Rodrigues, Vanessa de Freitas; de Castro, Maria Clícia Stelling; Wedemann, Roseli Suzi; Cortez, Celia Martins

    2015-12-01

    We studied the behavior of a mathematic-computational model for a reverberating neuronal circuit with controlled feedback, verifying the output pattern of the circuit, by means simulations using a program in language C++. Using values obtained from surveying the literature from animal experiments, we observed that the model was able to reproduce the polissynaptic activity of a neuron group of a vigil rat, with looping time of three neurons of the order of magnitude of 102 ms.

  7. Integrating motor control and motor learning concepts with neuropsychological perspectives on apraxia and developmental dyspraxia.

    PubMed

    Goodgold-Edwards, S A; Cermak, S A

    1990-05-01

    This paper reviews selected pertinent literature on the learning and performance of skilled motor acts. Information on normal motor performance is integrated with that on adult apraxia and related to common problems observed in children with developmental dyspraxia. The process of motor skill acquisition is outlined, and aspects of styles of motor organization, modes of control, premovement organization, sensory organization, and analysis of the types of errors are presented. Recommendations for clinicians working with children with developmental dyspraxia are offered.

  8. Interaction of plasticity and circuit organization during the acquisition of cerebellum-dependent motor learning.

    PubMed

    Yang, Yan; Lisberger, Stephen G

    2013-01-01

    Motor learning occurs through interactions between the cerebellar circuit and cellular plasticity at different sites. Previous work has established plasticity in brain slices and suggested plausible sites of behavioral learning. We now reveal what actually happens in the cerebellum during short-term learning. We monitor the expression of plasticity in the simple-spike firing of cerebellar Purkinje cells during trial-over-trial learning in smooth pursuit eye movements of monkeys. Our findings imply that: 1) a single complex-spike response driven by one instruction for learning causes short-term plasticity in a Purkinje cell's mossy fiber/parallel-fiber input pathways; 2) complex-spike responses and simple-spike firing rate are correlated across the Purkinje cell population; and 3) simple-spike firing rate at the time of an instruction for learning modulates the probability of a complex-spike response, possibly through a disynaptic feedback pathway to the inferior olive. These mechanisms may participate in long-term motor learning. DOI: http://dx.doi.org/10.7554/eLife.01574.001.

  9. Laminar Analysis of Excitatory Local Circuits in Vibrissal Motor and Sensory Cortical Areas

    PubMed Central

    Hooks, B. M.; Hires, S. Andrew; Zhang, Ying-Xin; Huber, Daniel; Petreanu, Leopoldo; Svoboda, Karel; Shepherd, Gordon M. G.

    2011-01-01

    Rodents move their whiskers to locate and identify objects. Cortical areas involved in vibrissal somatosensation and sensorimotor integration include the vibrissal area of the primary motor cortex (vM1), primary somatosensory cortex (vS1; barrel cortex), and secondary somatosensory cortex (S2). We mapped local excitatory pathways in each area across all cortical layers using glutamate uncaging and laser scanning photostimulation. We analyzed these maps to derive laminar connectivity matrices describing the average strengths of pathways between individual neurons in different layers and between entire cortical layers. In vM1, the strongest projection was L2/3→L5. In vS1, strong projections were L2/3→L5 and L4→L3. L6 input and output were weak in both areas. In S2, L2/3→L5 exceeded the strength of the ascending L4→L3 projection, and local input to L6 was prominent. The most conserved pathways were L2/3→L5, and the most variable were L4→L2/3 and pathways involving L6. Local excitatory circuits in different cortical areas are organized around a prominent descending pathway from L2/3→L5, suggesting that sensory cortices are elaborations on a basic motor cortex-like plan. PMID:21245906

  10. Design of a Mode Conversion Ultrasonic Motor for Position Control

    NASA Technical Reports Server (NTRS)

    LeLetty, Ronan; Bouchilloux, Philippe; Claeyssen, Frank; Lhermet, Nicolas

    1996-01-01

    The many useful characteristics of ultrasonic motors, such as high holding torques, and high torque at low speeds, have made them the subject of increasing interest. In addition, several of their characteristics make them attractive for aerospace applications: they have a torque to weight ratio, and they require neither gearing mechanisms nor lubrication. Moreover, they create negligible magnetic fields, and conversely, they are not affected by external magnetic fields. Ultrasonic motors based on bolt-tightened structures offer simplicity and high stress capability. They use the inverse piezoelectric effect in the stator to produce vibrational energy, which is transferred to the rotor by friction. We designed a bolt-tightened ultrasonic motor using numerical modelling tools (finite element and electromechanical circuit analyses), creating an equivalent circuit model that takes into account the electromechanical energy conversion in the stator and the contact between the stator and the rotor. Analysis of the circuit gives insight into the behavior of the motor and allows its performance to be calculated. Two prototypes of the motor were built; their transient responses and other quantities, such as starting torque, were measured. In this paper, we discuss the numerical and the experimental results, and demonstrate the usefulness of numerical analysis in designing ultrasonic motors and estimating their performance.

  11. Powerline Coupler for Windmill Motor/Generators

    NASA Technical Reports Server (NTRS)

    Nola, F.

    1985-01-01

    Efficiency at low windspeed increased by firing-angle control. Power coupled from wind-driven induction motor/generator to ac powerline with help from circuit. Circuit reduces power consumed by field windings thereby improving efficiency at low windspeeds. Circuit includes zerocrossing detector, ramp generator and comparator similar to those used to set firing angles for thyristors in power factor motor controllers.

  12. A voice coil motor based measuring force control system for tactile scanning profiler

    NASA Astrophysics Data System (ADS)

    Feng, Shengdong; Liu, Xiaojun; Chen, Liangzhou; Zhou, Liping; Lu, Wenlong

    2015-02-01

    In tactile scanning profiler, the measuring force would change in a wide range when it was used for profile measurement in a large range, which could possibly destroy the measured surface. To solve the problem, measuring force control system for tactile scanning profiler was needed. In the paper, a voice coil motor-based measuring force control system for tactile scanning profiler was designed. In the design, a low stiffness coefficient spring was used to provide contact force, while a voice coil motor (VCM) to balance the spring force so that the contact force could be kept for constant measuring force. A VCM was designed specially, and for active measuring force control, a precision current source circuit under the control of a DSP unit was designed to drive the VCM. The performance of voice coil motor based measuring force control system had been tested, and its good characteristics were verified.

  13. Rapid Mechanically Controlled Rewiring of Neuronal Circuits

    PubMed Central

    Magdesian, Margaret H.; Lopez-Ayon, G. Monserratt; Mori, Megumi; Boudreau, Dominic; Goulet-Hanssens, Alexis; Sanz, Ricardo; Miyahara, Yoichi; Barrett, Christopher J.; Fournier, Alyson E.; De Koninck, Yves

    2016-01-01

    CNS injury may lead to permanent functional deficits because it is still not possible to regenerate axons over long distances and accurately reconnect them with an appropriate target. Using rat neurons, microtools, and nanotools, we show that new, functional neurites can be created and precisely positioned to directly (re)wire neuronal networks. We show that an adhesive contact made onto an axon or dendrite can be pulled to initiate a new neurite that can be mechanically guided to form new synapses at up to 0.8 mm distance in <1 h. Our findings challenge current understanding of the limits of neuronal growth and have direct implications for the development of new therapies and surgical techniques to achieve functional regeneration. SIGNIFICANCE STATEMENT Brain and spinal cord injury may lead to permanent disability and death because it is still not possible to regenerate neurons over long distances and accurately reconnect them with an appropriate target. Using microtools and nanotools we have developed a new method to rapidly initiate, elongate, and precisely connect new functional neuronal circuits over long distances. The extension rates achieved are ≥60 times faster than previously reported. Our findings have direct implications for the development of new therapies and surgical techniques to achieve functional regeneration after trauma and in neurodegenerative diseases. It also opens the door for the direct wiring of robust brain–machine interfaces as well as for investigations of fundamental aspects of neuronal signal processing and neuronal function. PMID:26791225

  14. Reducing Stepping-Motor Power Consumption

    NASA Technical Reports Server (NTRS)

    Williams, C. J.

    1985-01-01

    Direct-current stepping motors used in computer peripherals, process control, and precision remote-positioning equipment constantly dissipate power and create heat even when not moving. Circuit design energizes stepper motor only when pulses are present on control input.

  15. Method and apparatus for pulse width modulation control of an AC induction motor

    DOEpatents

    Geppert, Steven; Slicker, James M.

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  16. Method and apparatus for pulse width modulation control of an AC induction motor

    NASA Technical Reports Server (NTRS)

    Geppert, Steven (Inventor); Slicker, James M. (Inventor)

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.

  17. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Heater circuits. 111.70-5 Section 111.70-5 Shipping... REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-5 Heater circuits. (a) If an enclosure for a... from a separate circuit, the heater circuit must be disconnected from its source of potential by...

  18. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Heater circuits. 111.70-5 Section 111.70-5 Shipping... REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-5 Heater circuits. (a) If an enclosure for a... from a separate circuit, the heater circuit must be disconnected from its source of potential by...

  19. Operation Method for AC Motor Control during Power Interruption in Direct AC/AC Converter System

    NASA Astrophysics Data System (ADS)

    Shizu, Keiichiro; Azuma, Satoshi

    Direct AC/AC converters have been studied due to their potential use in power converters with no DC-link capacitor, which can contribute to the miniaturization of power converters. However, the absence of a DC-link capacitor makes it difficult to control the AC motor during power interruption. First, this paper proposes a system that realizes AC motor control during power interruption by utilizing a clamp capacitor. In general, direct AC/AC converters have a clamp circuit consisting of a rectifier diode(s) and a clamp capacitor in order to avoid over-voltages. In the proposed system, there is an additional semiconductor switch reverse-parallel to the rectifier diode(s), and the clamp capacitor voltage can be utilized for AC motor control by turning on the additional switch. Second, this paper discusses an operation method for AC motor control and clamp capacitor voltage control during power interruption. In the proposed method “DC-link voltage control”, the kinetic energy in the AC motor is transformed into electrical energy and stored in the clamp capacitor; the clamp capacitor is therefore charged and the capacitor voltage is controlled to remain constant at an instruction value. Third, this paper discusses a switching operation during power interruption. A dead-time is introduced between the operation of turning off all switches on the rectifier side and the operation of turning on the additional switch, which prevents the occurrence of a short circuit between the interrupted power source and the clamp capacitor. Finally, experimental results are presented. During power interruptions, an output current was continuously obtained and the clamp capacitor voltage was maintained to be equal to the instruction value of the capacitor voltage. These results indicate that both AC motor control and capacitor voltage control were successfully achieved by using the proposed system.

  20. Real Time Flux Control in PM Motors

    SciTech Connect

    Otaduy, P.J.

    2005-09-27

    Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the magnets instead of

  1. Functional reorganization of motor and limbic circuits after exercise training in a rat model of bilateral parkinsonism.

    PubMed

    Wang, Zhuo; Myers, Kalisa G; Guo, Yumei; Ocampo, Marco A; Pang, Raina D; Jakowec, Michael W; Holschneider, Daniel P

    2013-01-01

    Exercise training is widely used for neurorehabilitation of Parkinson's disease (PD). However, little is known about the functional reorganization of the injured brain after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise in a rat model of dopaminergic deafferentation (bilateral, dorsal striatal 6-hydroxydopamine lesions). One week after training, cerebral perfusion was mapped during treadmill walking or at rest using [(14)C]-iodoantipyrine autoradiography. Regional cerebral blood flow-related tissue radioactivity (rCBF) was analyzed in three-dimensionally reconstructed brains by statistical parametric mapping. In non-exercised rats, lesions resulted in persistent motor deficits. Compared to sham-lesioned rats, lesioned rats showed altered functional brain activation during walking, including: 1. hypoactivation of the striatum and motor cortex; 2. hyperactivation of non-lesioned areas in the basal ganglia-thalamocortical circuit; 3. functional recruitment of the red nucleus, superior colliculus and somatosensory cortex; 4. hyperactivation of the ventrolateral thalamus, cerebellar vermis and deep nuclei, suggesting recruitment of the cerebellar-thalamocortical circuit; 5. hyperactivation of limbic areas (amygdala, hippocampus, ventral striatum, septum, raphe, insula). These findings show remarkable similarities to imaging findings reported in PD patients. Exercise progressively improved motor deficits in lesioned rats, while increasing activation in dorsal striatum and rostral secondary motor cortex, attenuating a hyperemia of the zona incerta and eliciting a functional reorganization of regions participating in the cerebellar-thalamocortical circuit. Both lesions and exercise increased activation in mesolimbic areas (amygdala, hippocampus, ventral striatum, laterodorsal tegmental n., ventral pallidum), as well as in related paralimbic regions (septum, raphe, insula). Exercise, but not lesioning, resulted in decreases

  2. Roles of the orexin system in central motor control.

    PubMed

    Hu, Bo; Yang, Nian; Qiao, Qi-Cheng; Hu, Zhi-An; Zhang, Jun

    2015-02-01

    The neuropeptides orexin-A and orexin-B are produced by one group of neurons located in the lateral hypothalamic/perifornical area. However, the orexins are widely released in entire brain including various central motor control structures. Especially, the loss of orexins has been demonstrated to associate with several motor deficits. Here, we first summarize the present knowledge that describes the anatomical and morphological connections between the orexin system and various central motor control structures. In the next section, the direct influence of orexins on related central motor control structures is reviewed at molecular, cellular, circuitry, and motor activity levels. After the summarization, the characteristic and functional relevance of the orexin system's direct influence on central motor control function are demonstrated and discussed. We also propose a hypothesis as to how the orexin system orchestrates central motor control in a homeostatic regulation manner. Besides, the importance of the orexin system's phasic modulation on related central motor control structures is highlighted in this regulation manner. Finally, a scheme combining the homeostatic regulation of orexin system on central motor control and its effects on other brain functions is presented to discuss the role of orexin system beyond the pure motor activity level, but at the complex behavioral level.

  3. A Microcomputer Interface for External Circuit Control.

    ERIC Educational Resources Information Center

    Gorham, D. A.

    1983-01-01

    Describes an interface designed to meet the requirements of an instrumentation teaching laboratory, particularly to develop computer-controlled digital circuitry while exploiting electrical drive properties of common transistor-transistor logic (TTL) devices, minimizing cost/number of components. Discusses decoding for Pet, switches, lights, and…

  4. 49 CFR 236.201 - Track-circuit control of signals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Track-circuit control of signals. 236.201 Section... Block Signal Systems Standards § 236.201 Track-circuit control of signals. The control circuits for home... automatically by track circuits extending through the entire block....

  5. 49 CFR 236.201 - Track-circuit control of signals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Track-circuit control of signals. 236.201 Section... Block Signal Systems Standards § 236.201 Track-circuit control of signals. The control circuits for home... automatically by track circuits extending through the entire block....

  6. 49 CFR 236.201 - Track-circuit control of signals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Track-circuit control of signals. 236.201 Section... Block Signal Systems Standards § 236.201 Track-circuit control of signals. The control circuits for home... automatically by track circuits extending through the entire block....

  7. 49 CFR 236.201 - Track-circuit control of signals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Track-circuit control of signals. 236.201 Section... Block Signal Systems Standards § 236.201 Track-circuit control of signals. The control circuits for home... automatically by track circuits extending through the entire block....

  8. ACCELERATOR TARGET POSITIONER AND CONTROL CIRCUIT THEREFOR

    DOEpatents

    Stone, K.F.; Force, R.J.; Olson, W.W.; Cagle, D.S.

    1959-12-15

    An apparatus is described for inserting and retracting a target material with respect to the internal beam of a charged particle accelerator and to circuitry for controlling the timing and motion of the target placement. Two drive coils are mounted on the shaft of a target holder arm and disposed within the accelerator magnetic field with one coil at right angles to the other. Control circuitry alternately connects each coil to a current source and to a varying shorting resistance whereby the coils interchangeably produce driving and braking forces which swing the target arm within a ninety degree arc. The target is thus moved into the beam and away from it at high speeds and is brought to rest after each movement without whiplash or vibration.

  9. Dynamic analysis of radial force density in brushless DC motor using 3-D equivalent magnetic circuit network method

    SciTech Connect

    Hur, J.; Chun, Y.D.; Lee, J.; Hyun, D.S.

    1998-09-01

    The distribution of radial force density in brushless permanent magnet DC motor is not uniform in axial direction. The analysis of radial force density has to consider the 3-D shape of teeth and overhand, because the radial force density causes vibration and acts on the surface of teeth inconstantly. For the analysis, a new 3-D equivalent magnetic circuit network method is used to account the rotor movement without remesh. The radial force density is calculated and analyzed by Maxwell stress tensor and discrete Fourier transform (DFT) respectively. The results of 3-D equivalent magnetic circuit method have been compared with the results of 3-D FEM.

  10. Motor control of Drosophila courtship song.

    PubMed

    Shirangi, Troy R; Stern, David L; Truman, James W

    2013-11-14

    Many animals utilize acoustic signals-or songs-to attract mates. During courtship, Drosophila melanogaster males vibrate a wing to produce trains of pulses and extended tone, called pulse and sine song, respectively. Courtship songs in the genus Drosophila are exceedingly diverse, and different song features appear to have evolved independently of each other. How the nervous system allows such diversity to evolve is not understood. Here, we identify a wing muscle in D. melanogaster (hg1) that is uniquely male-enlarged. The hg1 motoneuron and the sexually dimorphic development of the hg1 muscle are required specifically for the sine component of the male song. In contrast, the motoneuron innervating a sexually monomorphic wing muscle, ps1, is required specifically for a feature of pulse song. Thus, individual wing motor pathways can control separate aspects of courtship song and may provide a "modular" anatomical substrate for the evolution of diverse songs.

  11. Controlling High Power Devices with Computers or TTL Logic Circuits

    ERIC Educational Resources Information Center

    Carlton, Kevin

    2002-01-01

    Computers are routinely used to control experiments in modern science laboratories. This should be reflected in laboratories in an educational setting. There is a mismatch between the power that can be delivered by a computer interfacing card or a TTL logic circuit and that required by many practical pieces of laboratory equipment. One common way…

  12. Control circuit ensures solar cell operation at maximum power

    NASA Technical Reports Server (NTRS)

    Paulkovich, J.

    1967-01-01

    Control circuit enables a solar cell power supply to deliver maximum electrical power to a load. It senses the magnitude of the slope of the voltage-current characteristic curve and compares it to a reference voltage which represents the slope corresponding to the desired operating limits.

  13. 3-D analysis of permanent magnet linear synchronous motor with magnet arrangement using equivalent magnetic circuit network method

    SciTech Connect

    Jung, I.S.; Hur, J.; Hyun, D.S.

    1999-09-01

    Permanent magnet linear synchronous motors (PMLSM's) are proposed for many applications ranging from ground transportation to servo system and conveyance system. In this paper, the fields and forces of permanent magnet linear synchronous motor (PMLSM) with segmented or skewed magnet arrangement are analyzed according to length of segment or skew. And, the effects according to the lateral overhang of magnet are investigated. For the analysis, 3-dimensional equivalent magnetic circuit network (3-D EMCN) method is used. The analysis results are compared with the experimental ones and shown a reasonable agreement.

  14. Amygdala inhibitory circuits and the control of fear memory.

    PubMed

    Ehrlich, Ingrid; Humeau, Yann; Grenier, François; Ciocchi, Stephane; Herry, Cyril; Lüthi, Andreas

    2009-06-25

    Classical fear conditioning is a powerful behavioral paradigm that is widely used to study the neuronal substrates of learning and memory. Previous studies have clearly identified the amygdala as a key brain structure for acquisition and storage of fear memory traces. Whereas the majority of this work has focused on principal cells and glutamatergic transmission and its plasticity, recent studies have started to shed light on the intricate roles of local inhibitory circuits. Here, we review current understanding and emerging concepts of how local inhibitory circuits in the amygdala control the acquisition, expression, and extinction of conditioned fear at different levels.

  15. Control of electrostatic damage to electronic circuits

    SciTech Connect

    Kirk, W.J. Jr.

    1980-03-01

    Static is caused by the flow of materials and people within an environment. The static voltages generated by these movements can degrade or destroy many solid state devices currently being used in sophisticated electronic equipment. Discharge of static voltages through these sensitive devices during assembly operations can lead to a nonfunctional assembly fabricated from parts which previously were acceptable or to later failure of an assembly which was functional after fabrication. Sources of electrostatic charges, equipment and methods for minimizing the generation of electrostatic voltages during the production, assembly and packaging of solid state electronic equipment, and the sensitivity of solid state devices to electrostatic damage are discussed. It is concluded that static awareness is the key to an effective electrostatic damage (ESD) control program, and that production facilities must incorporate electrostatic protection facilities, materials, and processes so that workers can concentrate on producing a high-quality product without having to be overly concerned about ESD procedures. (LCL)

  16. Safety control circuit for a neutronic reactor

    DOEpatents

    Ellsworth, Howard C.

    2004-04-27

    A neutronic reactor comprising an active portion containing material fissionable by neutrons of thermal energy, means to control a neutronic chain reaction within the reactor comprising a safety device and a regulating device, a safety device including means defining a vertical channel extending into the reactor from an aperture in the upper surface of the reactor, a rod containing neutron-absorbing materials slidably disposed within the channel, means for maintaining the safety rod in a withdrawn position relative to the active portion of the reactor including means for releasing said rod on actuation thereof, a hopper mounted above the active portion of the reactor having a door disposed at the bottom of the hopper opening into the vertical channel, a plurality of bodies of neutron-absorbing materials disposed within the hopper, and means responsive to the failure of the safety rod on actuation thereof to enter the active portion of the reactor for opening the door in the hopper.

  17. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    NASA Astrophysics Data System (ADS)

    Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman

    2016-02-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.

  18. Control technology for integrated circuit fabrication at Micro-Circuit Engineering, Incorporated, West Palm Beach, Florida

    NASA Astrophysics Data System (ADS)

    Mihlan, G. I.; Mitchell, R. I.; Smith, R. K.

    1984-07-01

    A survey to assess control technology for integrated circuit fabrication was conducted. Engineering controls included local and general exhaust ventilation, shielding, and personal protective equipment. Devices or work stations that contained toxic materials that were potentially dangerous were controlled by local exhaust ventilation. Less hazardous areas were controlled by general exhaust ventilation. Process isolation was used in the plasma etching, low pressure chemical vapor deposition, and metallization operations. Shielding was used in ion implantation units to control X-ray emissions, in contact mask alignes to limit ultraviolet (UV) emissions, and in plasma etching units to control radiofrequency and UV emissions. Most operations were automated. Use of personal protective equipment varied by job function.

  19. Coordination and Fine Motor Control Depends on Drosophila TRPγ

    PubMed Central

    Akitake, Bradley; Ren, Qiuting; Boiko, Nina; Ni, Jinfei; Sokabe, Takaaki; Stockand, James D.; Eaton, Benjamin A.; Montell, Craig

    2015-01-01

    Motor coordination is broadly divided into gross and fine motor control, both of which depend on proprioceptive organs. However, the channels that function specifically in fine motor control are unknown. Here, we show that mutations in trpγ disrupt fine motor control while leaving gross motor proficiency intact. The mutants are unable to coordinate precise leg movements during walking, and are ineffective in traversing large gaps due to an inability in making subtle postural adaptations that are requisite for this task. TRPγ is expressed in proprioceptive organs, and is required in both neurons and glia for gap crossing. We expressed TRPγ in vitro, and found that its activity is promoted by membrane stretch. A mutation eliminating the Na+/Ca2+ exchanger suppresses the gap crossing phenotype of trpγ flies. Our findings indicate that TRPγ contributes to fine motor control through mechanical activation in proprioceptive organs, thereby promoting Ca2+ influx, which is required for function. PMID:26028119

  20. Parallel circuits control temperature preference in Drosophila during ageing.

    PubMed

    Shih, Hsiang-Wen; Wu, Chia-Lin; Chang, Sue-Wei; Liu, Tsung-Ho; Lai, Jason Sih-Yu; Fu, Tsai-Feng; Fu, Chien-Chung; Chiang, Ann-Shyn

    2015-01-01

    The detection of environmental temperature and regulation of body temperature are integral determinants of behaviour for all animals. These functions become less efficient in aged animals, particularly during exposure to cold environments, yet the cellular and molecular mechanisms are not well understood. Here, we identify an age-related change in the temperature preference of adult fruit flies that results from a shift in the relative contributions of two parallel mushroom body (MB) circuits—the β'- and β-systems. The β'-circuit primarily controls cold avoidance through dopamine signalling in young flies, whereas the β-circuit increasingly contributes to cold avoidance as adult flies age. Elevating dopamine levels in β'-afferent neurons of aged flies restores cold sensitivity, suggesting that the alteration of cold avoidance behaviour with ageing is functionally reversible. These results provide a framework for investigating how molecules and individual neural circuits modulate homeostatic alterations during the course of senescence.

  1. Neuro-fuzzy speed control of traveling-wave type ultrasonic motor drive using frequency and phase modulation.

    PubMed

    Chen, Tien-Chi; Yu, Chih-Hsien; Chen, Chun-Jung; Tsai, Mi-Ching

    2008-07-01

    This paper presents a Fuzzy Neural Network (FNN) control system for a traveling-wave ultrasonic motor (TWUSM) driven by a dual mode modulation non-resonant driving circuit. First, the motor configuration and the proposed driving circuit of a TWUSM are introduced. To drive a TWUSM effectively, a novel driving circuit, that simultaneously employs both the driving frequency and phase modulation control scheme, is proposed to provide two-phase balance voltage for a TWUSM. Since the dynamic characteristics and motor parameters of the TWUSM are highly nonlinear and time-varying, a FNN control system is therefore investigated to achieve high-precision speed control. The proposed FNN control system incorporates neuro-fuzzy control and the driving frequency and phase modulation to solve the problem of nonlinearities and variations. The proposed control system is digitally implemented by a low-cost digital signal processor based microcontroller, hence reducing the system hardware size and cost. The effectiveness of the proposed driving circuit and control system is verified with hardware experiments under the occurrence of uncertainties. In addition, the advantages of the proposed control scheme are indicated in comparison with a conventional proportional-integral control system.

  2. A neural command circuit for grooming movement control

    PubMed Central

    Hampel, Stefanie; Franconville, Romain; Simpson, Julie H; Seeds, Andrew M

    2015-01-01

    Animals perform many stereotyped movements, but how nervous systems are organized for controlling specific movements remains unclear. Here we use anatomical, optogenetic, behavioral, and physiological techniques to identify a circuit in Drosophila melanogaster that can elicit stereotyped leg movements that groom the antennae. Mechanosensory chordotonal neurons detect displacements of the antennae and excite three different classes of functionally connected interneurons, which include two classes of brain interneurons and different parallel descending neurons. This multilayered circuit is organized such that neurons within each layer are sufficient to specifically elicit antennal grooming. However, we find differences in the durations of antennal grooming elicited by neurons in the different layers, suggesting that the circuit is organized to both command antennal grooming and control its duration. As similar features underlie stimulus-induced movements in other animals, we infer the possibility of a common circuit organization for movement control that can be dissected in Drosophila. DOI: http://dx.doi.org/10.7554/eLife.08758.001 PMID:26344548

  3. Debris control design achievements of the booster separation motors

    NASA Technical Reports Server (NTRS)

    Smith, G. W.; Chase, C. A.

    1985-01-01

    The stringent debris control requirements imposed on the design of the Space Shuttle booster separation motor are described along with the verification program implemented to ensure compliance with debris control objectives. The principal areas emphasized in the design and development of the Booster Separation Motor (BSM) relative to debris control were the propellant formulation and nozzle closures which protect the motors from aerodynamic heating and moisture. A description of the motor design requirements, the propellant formulation and verification program, and the nozzle closures design and verification are presented.

  4. Thin-disc piezoceramic ultrasonic motor. Part II: system construction and control.

    PubMed

    Yen, Chi Yung; Wen, Fuh Liang; Ouyang, Minsun

    2003-08-01

    Design and performance evaluation of an ultrasonic motor was discussed in [Wen et al., Thin-disc piezoelectric ultrasonic motor. Part I: design and performance evaluation, Ultrasonics]. Higher precision position control of piezoceramic ultrasonic motor depends on mechanical design and servo control of a very precise and adequate metrology. This paper proposes the design of a driving circuit and controller to deal with non-linearities behavior in the model of piezoceramic-driving ultrasonic motor. The performance of the driver and the effectiveness of the proposed controller are demonstrated by command inputs of sinusoidal and step signals. For comparison purpose, the ultrasonic motor is controlled using two methods: i.e., proportional-integral-derivative (PID) and sliding-mode control (SMC). It was proven that SMC would compensate automatically for unmodeled behaviors such as piezoceramic non-linearities and mechanical stick-slip phenomena. Furthermore, SMC scheme has been successfully applied to position tracking to demonstrate the excellent robust performance in noise rejection.

  5. Stepping-Motion Motor-Control Subsystem For Testing Bearings

    NASA Technical Reports Server (NTRS)

    Powers, Charles E.

    1992-01-01

    Control subsystem closed-loop angular-position-control system causing motor and bearing under test to undergo any of variety of continuous or stepping motions. Also used to test bearing-and-motor assemblies, motors, angular-position sensors including rotating shafts, and like. Monitoring subsystem gathers data used to evaluate performance of bearing or other article under test. Monitoring subsystem described in article, "Monitoring Subsystem For Testing Bearings" (GSC-13432).

  6. Introduction to the Control of Electric Motors.

    ERIC Educational Resources Information Center

    Spencer, Frederick

    The fundamentals of electric circuits and electric machines are presented in the text, with an emphasis on the practical operation rather than on mathematical analyses of theories involved. The material contained in the text includes the fundamentals of both D.C. and A.C. circuits together with the principles of magnetism and electro-magnetic…

  7. Neuronal control of turtle hindlimb motor rhythms.

    PubMed

    Stein, P S G

    2005-03-01

    The turtle, Trachemys scripta elegans, uses its hindlimb during the rhythmic motor behaviors of walking, swimming, and scratching. For some tasks, one or more motor strategies or forms may be produced, e.g., forward swimming or backpaddling. This review discusses experiments that reveal characteristics of the spinal neuronal networks producing these motor behaviors. Limb-movement studies show shared properties such as rhythmic alternation between hip flexion and hip extension, as well as variable properties such as the timing of knee extension in the cycle of hip movements. Motor-pattern studies show shared properties such as rhythmic alternation between hip flexor and hip extensor motor activities, as well as variable properties such as modifiable timing of knee extensor motor activity in the cycle of hip motor activity. Motor patterns also display variations such as the hip-extensor deletion of rostral scratching. Neuronal-network studies reveal mechanisms responsible for movement and motor-pattern properties. Some interneurons in the spinal cord have shared activities, e.g., each unit is active during more than one behavior, and have distinct characteristics, e.g., each unit is most excited during a specific behavior. Interneuronal recordings during variations support the concept of modular organization of central pattern generators in the spinal cord.

  8. System and method to determine electric motor efficiency using an equivalent circuit

    SciTech Connect

    Lu, Bin; Habetler, Thomas G.

    2015-10-27

    A system and method for determining electric motor efficiency includes a monitoring system having a processor programmed to determine efficiency of an electric motor under load while the electric motor is online. The determination of motor efficiency is independent of a rotor speed measurement. Further, the efficiency is based on a determination of stator winding resistance, an input voltage, and an input current. The determination of the stator winding resistance occurs while the electric motor under load is online.

  9. System and method to determine electric motor efficiency using an equivalent circuit

    DOEpatents

    Lu, Bin; Habetler, Thomas G.

    2011-06-07

    A system and method for determining electric motor efficiency includes a monitoring system having a processor programmed to determine efficiency of an electric motor under load while the electric motor is online. The determination of motor efficiency is independent of a rotor speed measurement. Further, the efficiency is based on a determination of stator winding resistance, an input voltage, and an input current. The determination of the stator winding resistance occurs while the electric motor under load is online.

  10. Similar Motor Cortical Control Mechanisms for Precise Limb Control during Reaching and Locomotion

    PubMed Central

    Yakovenko, Sergiy

    2015-01-01

    Throughout the course of evolution there has been a parallel development of the complexity and flexibility of the nervous system and the skeletomuscular system that it controls. This development is particularly evident for the cerebral cortical areas and the transformation of the use of the upper limbs from a purely locomotor function to one including, or restricted to, reaching and grasping. This study addresses the issue of whether the control of reaching has involved the development of new cortical circuits or whether the same neurons are used to control both locomotion and reaching. We recorded the activity of pyramidal tract neurons in the motor cortex of the cat both during voluntary gait modifications and during reaching. All cells showed generally similar patterns of activity in both tasks. More specifically, we showed that, in many cases, cells maintained a constant temporal relationship to the activity of synergistic muscle groups in each task. In addition, in some cells the relationship between the intensity of the cell discharge activity and the magnitude of the EMG activity was equally constant during gait modifications and reaching. As such, the results are compatible with the hypothesis that the corticospinal circuits used to control reaching evolved from those used to precisely modify gait. SIGNIFICANCE STATEMENT In an article in 1989, Georgopoulos and Grillner (1989) proposed that the corticospinal control mechanisms used for reaching movements in primates may have evolved from those used to control precise modifications of gait during quadrupedal locomotion. In this article, we provide a test of this hypothesis by recording the activity of individual motor cortical cells during both behaviors. Our results are compatible with the hypothesis in that they demonstrate that individual cortical neurons exhibit similar qualitative and quantitative patterns during each behavior. Beyond a general similarity of activity patterns, we show that some cortical

  11. A digital control system of brushless DC motor based on programmable logic device

    NASA Astrophysics Data System (ADS)

    Li, Jianke; Liu, Gang; Fang, Jiancheng

    2006-11-01

    A digital control system of brushless DC motor based on programmable Logic Device GAL16V8 and DSP is researched, and the principle and every element of the control system such as DSP2407,Logic handling segment, power driving circuit are analyzed. Compared with the software communication of BLDCM based on DSP, the control system has fast dynamic response, high reliability. The experimental result shows that the system has satisfied the spacecraft's demands on the BLDCM driving flywheel. In the end, the problem exited in the control system is analyzed on theory.

  12. Electrifying the motor engram: effects of tDCS on motor learning and control

    PubMed Central

    de Xivry, Jean-Jacques Orban; Shadmehr, Reza

    2014-01-01

    Learning to control our movements accompanies neuroplasticity of motor areas of the brain. The mechanisms of neuroplasticity are diverse and produce what is referred to as the motor engram, i.e. the neural trace of the motor memory. Transcranial direct current stimulation (tDCS) alters the neural and behavioral correlates of motor learning, but its precise influence on the motor engram is unknown. In this review, we summarize the effects of tDCS on neural activity and suggest a few key principles: 1) firing rates are increased by anodal polarization and decreased by cathodal polarization, 2) anodal polarization strengthens newly formed associations, and 3) polarization modulates the memory of new/preferred firing patterns. With these principles in mind, we review the effects of tDCS on motor control, motor learning, and clinical applications. The increased spontaneous and evoked firing rates may account for the modulation of dexterity in non-learning tasks by tDCS. The facilitation of new association may account for the effect of tDCS on learning in sequence tasks while the ability of tDCS to strengthen memories of new firing patterns may underlie the effect of tDCS on consolidation of skills. We then describe the mechanisms of neuroplasticity of motor cortical areas and how they might be influenced by tDCS. We end with current challenges for the fields of brain stimulation and motor learning. PMID:25200178

  13. 26. LOOKING SOUTH AT THE MOTOR CONTROL SWITCHING PANEL FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. LOOKING SOUTH AT THE MOTOR CONTROL SWITCHING PANEL FOR BASIC OXYGEN FURNACE No. 2 IN THE BOP SHOP'S MOTOR CONTROL CENTER No. 2 ON THE GROUND FLOOR OF THE FURNACE AISLE. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  14. EFFICIENCY OPTIMIZATIN CONTROL OF AC INDUCTION MOTORS: INITIAL LABORATORY RESULTS

    EPA Science Inventory

    The report discusses the development of a fuzzy logic, energy-optimizing controller to improve the efficiency of motor/drive combinations that operate at varying loads and speeds. This energy optimizer is complemented by a sensorless speed controller that maintains motor shaft re...

  15. 78 FR 20881 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... AGENCY 40 CFR Part 80 RIN 2060-AQ86 Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle... hearings to be held for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule is hereinafter referred to as ``Tier 3''),...

  16. Measurement of control system response using an analog operational circuit

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.

    1978-01-01

    Ten basic steps are established for an analog method that measures control system response parameters. An example shows how these steps were used on a speed control portion of an auxiliary power unit. The equations and calculations necessary to describe this subsystem are given. The mechanization schematic and simulation diagram for obtaining the measured response parameters of the control system using an analog circuit are explained. Methods for investigating the various effects of the control parameters are described. It is concluded that the optimum system should be underdamped enough to be slightly oscillatory during transients.

  17. Multifrequency control pulses for multilevel superconducting quantum circuits

    SciTech Connect

    Forney, Anne M.; Jackson, Steven R.; Strauch, Frederick W.

    2010-01-15

    Superconducting quantum circuits, such as the superconducting phase qubit, have multiple quantum states that can interfere with ideal qubit operation. The use of multiple frequency control pulses, resonant with the energy differences of the multistate system, is theoretically explored. An analytical method to design such control pulses is developed, using a generalization of the Floquet method to multiple frequency controls. This method is applicable to optimizing the control of both superconducting qubits and qudits and is found to be in excellent agreement with time-dependent numerical simulations.

  18. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-5 Heater circuits. (a) If an enclosure for a motor, master switch, or other equipment has an electric heater inside the enclosure that is energized.... (b) If the location of the enclosure for a motor, master switch, or other equipment for...

  19. Similar Motor Cortical Control Mechanisms for Precise Limb Control during Reaching and Locomotion.

    PubMed

    Yakovenko, Sergiy; Drew, Trevor

    2015-10-28

    Throughout the course of evolution there has been a parallel development of the complexity and flexibility of the nervous system and the skeletomuscular system that it controls. This development is particularly evident for the cerebral cortical areas and the transformation of the use of the upper limbs from a purely locomotor function to one including, or restricted to, reaching and grasping. This study addresses the issue of whether the control of reaching has involved the development of new cortical circuits or whether the same neurons are used to control both locomotion and reaching. We recorded the activity of pyramidal tract neurons in the motor cortex of the cat both during voluntary gait modifications and during reaching. All cells showed generally similar patterns of activity in both tasks. More specifically, we showed that, in many cases, cells maintained a constant temporal relationship to the activity of synergistic muscle groups in each task. In addition, in some cells the relationship between the intensity of the cell discharge activity and the magnitude of the EMG activity was equally constant during gait modifications and reaching. As such, the results are compatible with the hypothesis that the corticospinal circuits used to control reaching evolved from those used to precisely modify gait.

  20. DC torque motor actuated anti-lock brake controller

    SciTech Connect

    Agarwal, P.D.; Kade, A.

    1989-02-21

    A wheel lock control system is described for limiting the brake pressure applied to the brake of a vehicle wheel traveling over a road surface, the system comprising: an actuator for controlling the brake pressure to the brake of the wheel, the actuator including a torque motor for generating a motor torque in response to motor current to control the applied brake pressure in accordance with the value of the motor torque, the motor torque having a value proportional to the value of the motor current; means for determining the tire torque tending to accelerate the wheel during the application of brake pressure; means for storing the value of motor current corresponding to the maximum determined value of tire torque; means for detecting an incipient wheel lockup condition; and means for establishing the motor current following a detected incipient wheel lockup condition at a value having a predetermined relationship to the stored value of motor current to control the brake pressure at a predetermined braking condition.

  1. Controllable 3D atomic Brownian motor in optical lattices

    NASA Astrophysics Data System (ADS)

    Dion, C. M.; Sjölund, P.; Petra, S. J. H.; Jonsell, S.; Nylén, M.; Sanchez-Palencia, L.; Kastberg, A.

    2008-06-01

    We study a Brownian motor, based on cold atoms in optical lattices, where atomic motion can be induced in a controlled manner in an arbitrary direction, by rectification of isotropic random fluctuations. In contrast with ratchet mechanisms, our Brownian motor operates in a potential that is spatially and temporally symmetric, in apparent contradiction to the Curie principle. Simulations, based on the Fokker-Planck equation, allow us to gain knowledge on the qualitative behaviour of our Brownian motor. Studies of Brownian motors, and in particular ones with unique control properties, are of fundamental interest because of the role they play in protein motors and their potential applications in nanotechnology. In particular, our system opens the way to the study of quantum Brownian motors.

  2. Pneumatic oscillator circuits for timing and control of integrated microfluidics.

    PubMed

    Duncan, Philip N; Nguyen, Transon V; Hui, Elliot E

    2013-11-01

    Frequency references are fundamental to most digital systems, providing the basis for process synchronization, timing of outputs, and waveform synthesis. Recently, there has been growing interest in digital logic systems that are constructed out of microfluidics rather than electronics, as a possible means toward fully integrated laboratory-on-a-chip systems that do not require any external control apparatus. However, the full realization of this goal has not been possible due to the lack of on-chip frequency references, thus requiring timing signals to be provided from off-chip. Although microfluidic oscillators have been demonstrated, there have been no reported efforts to characterize, model, or optimize timing accuracy, which is the fundamental metric of a clock. Here, we report pneumatic ring oscillator circuits built from microfluidic valves and channels. Further, we present a compressible-flow analysis that differs fundamentally from conventional circuit theory, and we show the utility of this physically based model for the optimization of oscillator stability. Finally, we leverage microfluidic clocks to demonstrate circuits for the generation of phase-shifted waveforms, self-driving peristaltic pumps, and frequency division. Thus, pneumatic oscillators can serve as on-chip frequency references for microfluidic digital logic circuits. On-chip clocks and pumps both constitute critical building blocks on the path toward achieving autonomous laboratory-on-a-chip devices.

  3. ARDOLORES: an Arduino based motors control system for DOLORES

    NASA Astrophysics Data System (ADS)

    Gonzalez, Manuel; Ventura, H.; San Juan, J.; Di Fabrizio, L.

    2014-07-01

    We present ARDOLORES a custom made motor control system for the DOLORES instrument in use at the TNG telescope. ARDOLORES replaced the original PMAC based motor control system at a fraction of the cost. The whole system is composed by one master Arduino ONE with its Ethernet shield, to handle the communications with the external world through an Ethernet socket, and by one Arduino ONE with its custom motor shield for each axis to be controlled. The communication between the master and slaves Arduinos is made possible through the I2C bus. Also a Java web-service has been written to control the motors from an higher level and provides an external API for the scientific GUI. The system has been working since January 2012 handling the DOLORES motors and has demonstrated to be stable, reliable, and with easy maintenance in both the hardware and the software parts.

  4. Endogenous rhythm and pattern-generating circuit interactions in cockroach motor centres.

    PubMed

    David, Izhak; Holmes, Philip; Ayali, Amir

    2016-09-15

    Cockroaches are rapid and stable runners whose gaits emerge from the intricate, and not fully resolved, interplay between endogenous oscillatory pattern-generating networks and sensory feedback that shapes their rhythmic output. Here we studied the endogenous motor output of a brainless, deafferented preparation. We monitored the pilocarpine-induced rhythmic activity of levator and depressor motor neurons in the mesothoracic and metathoracic segments in order to reveal the oscillatory networks' architecture and interactions. Data analyses included phase relations, latencies between and overlaps of rhythmic bursts, spike frequencies, and the dependence of these parameters on cycle frequency. We found that, overall, ipsilateral connections are stronger than contralateral ones. Our findings revealed asymmetries in connectivity among the different ganglia, in which meta-to-mesothoracic ascending coupling is stronger than meso-to-metathoracic descending coupling. Within-ganglion coupling between the metathoracic hemiganglia is stronger than that in the mesothoracic ganglion. We also report differences in the role and mode of operation of homologue network units (manifested by levator and depressor nerve activity). Many observed characteristics are similar to those exhibited by intact animals, suggesting a dominant role for feedforward control in cockroach locomotion. Based on these data we posit a connectivity scheme among components of the locomotion pattern generating system.

  5. Endogenous rhythm and pattern-generating circuit interactions in cockroach motor centres

    PubMed Central

    David, Izhak; Holmes, Philip

    2016-01-01

    ABSTRACT Cockroaches are rapid and stable runners whose gaits emerge from the intricate, and not fully resolved, interplay between endogenous oscillatory pattern-generating networks and sensory feedback that shapes their rhythmic output. Here we studied the endogenous motor output of a brainless, deafferented preparation. We monitored the pilocarpine-induced rhythmic activity of levator and depressor motor neurons in the mesothoracic and metathoracic segments in order to reveal the oscillatory networks’ architecture and interactions. Data analyses included phase relations, latencies between and overlaps of rhythmic bursts, spike frequencies, and the dependence of these parameters on cycle frequency. We found that, overall, ipsilateral connections are stronger than contralateral ones. Our findings revealed asymmetries in connectivity among the different ganglia, in which meta-to-mesothoracic ascending coupling is stronger than meso-to-metathoracic descending coupling. Within-ganglion coupling between the metathoracic hemiganglia is stronger than that in the mesothoracic ganglion. We also report differences in the role and mode of operation of homologue network units (manifested by levator and depressor nerve activity). Many observed characteristics are similar to those exhibited by intact animals, suggesting a dominant role for feedforward control in cockroach locomotion. Based on these data we posit a connectivity scheme among components of the locomotion pattern generating system. PMID:27422902

  6. Low-frequency repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex.

    PubMed

    Di Lazzaro, V; Pilato, F; Dileone, M; Profice, P; Oliviero, A; Mazzone, P; Insola, A; Ranieri, F; Tonali, P A; Rothwell, J C

    2008-09-15

    Previous studies have shown that low-frequency repetitive transcranial magnetic stimulation (rTMS) suppresses motor-evoked potentials (MEPs) evoked by single pulse TMS. The aim of the present paper was to investigate the central nervous system level at which rTMS produces a suppression of MEP amplitude. We recorded corticospinal volleys evoked by single pulse TMS of the motor cortex before and after 1 Hz rTMS in five conscious subjects who had an electrode implanted in the cervical epidural space for the control of pain. One of the patients had Parkinson's disease and was studied on medication. Repetitive TMS significantly suppressed the amplitude of later I-waves, and reduced the amplitude of concomitantly recorded MEPs. The earliest I-wave was not significantly modified by rTMS. The present results show that 1 Hz rTMS may decrease the amplitude of later descending waves, consistent with a cortical origin of the effect of 1 Hz rTMS on MEPs. PMID:18653655

  7. Memory and cognitive control circuits in mathematical cognition and learning.

    PubMed

    Menon, V

    2016-01-01

    Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal-frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal-frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. PMID:27339012

  8. Motor neurons in Drosophila flight control: could b1 be the one?

    NASA Astrophysics Data System (ADS)

    Whitehead, Samuel; Shirangi, Troy; Cohen, Itai

    Similar to balancing a stick on one's fingertip, flapping flight is inherently unstable; maintaining stability is a delicate balancing act made possible only by near-constant, often-subtle corrective actions. For fruit flies, such corrective responses need not only be robust, but also fast: the Drosophila flight control reflex has a response latency time of ~5 ms, ranking it among the fastest reflexes in the animal kingdom. How is such rapid, robust control implemented physiologically? Here we present an analysis of a putatively crucial component of the Drosophila flight control circuit: the b1 motor neuron. Specifically, we apply mechanical perturbations to freely-flying Drosophila and analyze the differences in kinematics patterns between flies with manipulated and un-manipulated b1 motor neurons. Ultimately, we hope to identify the functional role of b1 in flight stabilization, with the aim of linking it to previously-proposed, reduced-order models for reflexive control.

  9. Recurrent neural network control for LCC-resonant ultrasonic motor drive.

    PubMed

    Lin, F J; Wai, R J; Hong, C M

    2000-01-01

    A newly designed driving circuit for the traveling wave-type ultrasonic motor (USM), which consists of a push-pull DC-DC power converter and a two-phase voltage source inverter using one inductance and two capacitances (LCC) resonant technique, is presented in this study. Moreover, because the dynamic characteristics of the USM are difficult to obtain and the motor parameters are time varying, a recurrent neural network (RNN) controller is proposed to control the USM drive system. In the proposed controller, the dynamic backpropagation algorithm is adopted to train the RNN on-line using the proposed delta adaptation law. Furthermore, to guarantee the convergence of tracking error, analytical methods based on a discrete-type Lyapunov function are proposed to determine the varied learning rates for the training of the RNN. Finally, the effectiveness of the RNN-controlled USM drive system is demonstrated by some experimental results.

  10. Fault diagnosis and fault-tolerant finite control set-model predictive control of a multiphase voltage-source inverter supplying BLDC motor.

    PubMed

    Salehifar, Mehdi; Moreno-Equilaz, Manuel

    2016-01-01

    Due to its fault tolerance, a multiphase brushless direct current (BLDC) motor can meet high reliability demand for application in electric vehicles. The voltage-source inverter (VSI) supplying the motor is subjected to open circuit faults. Therefore, it is necessary to design a fault-tolerant (FT) control algorithm with an embedded fault diagnosis (FD) block. In this paper, finite control set-model predictive control (FCS-MPC) is developed to implement the fault-tolerant control algorithm of a five-phase BLDC motor. The developed control method is fast, simple, and flexible. A FD method based on available information from the control block is proposed; this method is simple, robust to common transients in motor and able to localize multiple open circuit faults. The proposed FD and FT control algorithm are embedded in a five-phase BLDC motor drive. In order to validate the theory presented, simulation and experimental results are conducted on a five-phase two-level VSI supplying a five-phase BLDC motor. PMID:26549566

  11. Fault diagnosis and fault-tolerant finite control set-model predictive control of a multiphase voltage-source inverter supplying BLDC motor.

    PubMed

    Salehifar, Mehdi; Moreno-Equilaz, Manuel

    2016-01-01

    Due to its fault tolerance, a multiphase brushless direct current (BLDC) motor can meet high reliability demand for application in electric vehicles. The voltage-source inverter (VSI) supplying the motor is subjected to open circuit faults. Therefore, it is necessary to design a fault-tolerant (FT) control algorithm with an embedded fault diagnosis (FD) block. In this paper, finite control set-model predictive control (FCS-MPC) is developed to implement the fault-tolerant control algorithm of a five-phase BLDC motor. The developed control method is fast, simple, and flexible. A FD method based on available information from the control block is proposed; this method is simple, robust to common transients in motor and able to localize multiple open circuit faults. The proposed FD and FT control algorithm are embedded in a five-phase BLDC motor drive. In order to validate the theory presented, simulation and experimental results are conducted on a five-phase two-level VSI supplying a five-phase BLDC motor.

  12. The role of endocannabinoid signaling in motor control.

    PubMed

    El Manira, A; Kyriakatos, A

    2010-08-01

    Cannabinoid receptors and endocannabinoid signaling are distributed throughout the rostrocaudal neuraxis. Retrograde signaling via endocannabinoid mediates synaptic plasticity in many regions in the central nervous system. Here, we review the role of endocannabinoid signaling in different parts of the vertebrate motor system from networks responsible for the execution of movement to planning centers in the basal ganglia and cortex. The ubiquity of endocannabinoid-mediated plasticity suggests that it plays an important role in producing motion from defined circuitries and also for reconfiguring networks to learn new motor skills. The long-term plasticity induced by endocannabinoids may provide a long-term buffer that stabilizes the organization of motor circuits and their activity. PMID:20699469

  13. Long-range neuronal circuits underlying the interaction between sensory and motor cortex.

    PubMed

    Mao, Tianyi; Kusefoglu, Deniz; Hooks, Bryan M; Huber, Daniel; Petreanu, Leopoldo; Svoboda, Karel

    2011-10-01

    In the rodent vibrissal system, active sensation and sensorimotor integration are mediated in part by connections between barrel cortex and vibrissal motor cortex. Little is known about how these structures interact at the level of neurons. We used Channelrhodopsin-2 (ChR2) expression, combined with anterograde and retrograde labeling, to map connections between barrel cortex and pyramidal neurons in mouse motor cortex. Barrel cortex axons preferentially targeted upper layer (L2/3, L5A) neurons in motor cortex; input to neurons projecting back to barrel cortex was particularly strong. Barrel cortex input to deeper layers (L5B, L6) of motor cortex, including neurons projecting to the brainstem, was weak, despite pronounced geometric overlap of dendrites with axons from barrel cortex. Neurons in different layers received barrel cortex input within stereotyped dendritic domains. The cortico-cortical neurons in superficial layers of motor cortex thus couple motor and sensory signals and might mediate sensorimotor integration and motor learning.

  14. Control Systems Lab Using a LEGO Mindstorms NXT Motor System

    ERIC Educational Resources Information Center

    Kim, Y.

    2011-01-01

    This paper introduces a low-cost LEGO Mindstorms NXT motor system for teaching classical and modern control theories in standard third-year undergraduate courses. The LEGO motor system can be used in conjunction with MATLAB, Simulink, and several necessary toolboxes to demonstrate: 1) a modeling technique; 2) proportional-integral-differential…

  15. Gestalt Principles in the Control of Motor Action

    ERIC Educational Resources Information Center

    Klapp, Stuart T.; Jagacinski, Richard J.

    2011-01-01

    We argue that 4 fundamental gestalt phenomena in perception apply to the control of motor action. First, a motor gestalt, like a perceptual gestalt, is holistic in the sense that it is processed as a single unit. This notion is consistent with reaction time results indicating that all gestures for a brief unit of action must be programmed prior to…

  16. Regulating Cognitive Control through Approach-Avoidance Motor Actions

    ERIC Educational Resources Information Center

    Koch, Severine; Holland, Rob W.; van Knippenberg, Ad

    2008-01-01

    In two studies, the regulatory function of approach-avoidance cues in activating cognitive control processes was investigated. It was hypothesized that avoidance motor actions, relative to approach motor actions, increase the recruitment of cognitive resources, resulting in better performance on tasks that draw on these capacities. In Study 1,…

  17. Aging and Concurrent Task Performance: Cognitive Demand and Motor Control

    ERIC Educational Resources Information Center

    Albinet, Cedric; Tomporowski, Phillip D.; Beasman, Kathryn

    2006-01-01

    A motor task that requires fine control of upper limb movements and a cognitive task that requires executive processing--first performing them separately and then concurrently--was performed by 18 young and 18 older adults. The motor task required participants to tap alternatively on two targets, the sizes of which varied systematically. The…

  18. Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping

    PubMed Central

    D’Ostilio, Kevin; Rothwell, John C; Murphy, David L

    2014-01-01

    Objective This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with lower voltage rating than prior cTMS devices. Main results cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (<10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in 10 healthy volunteers. Significance The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool. PMID:25242286

  19. Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping

    NASA Astrophysics Data System (ADS)

    Peterchev, Angel V.; DʼOstilio, Kevin; Rothwell, John C.; Murphy, David L.

    2014-10-01

    Objective. This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach. We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with a lower voltage rating than prior cTMS devices. Main results. cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (\\lt 10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in ten healthy volunteers. Significance. The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool.

  20. Speech motor control and acute mountain sickness

    NASA Technical Reports Server (NTRS)

    Cymerman, Allen; Lieberman, Philip; Hochstadt, Jesse; Rock, Paul B.; Butterfield, Gail E.; Moore, Lorna G.

    2002-01-01

    BACKGROUND: An objective method that accurately quantifies the severity of Acute Mountain Sickness (AMS) symptoms is needed to enable more reliable evaluation of altitude acclimatization and testing of potentially beneficial interventions. HYPOTHESIS: Changes in human articulation, as quantified by timed variations in acoustic waveforms of specific spoken words (voice onset time; VOT), are correlated with the severity of AMS. METHODS: Fifteen volunteers were exposed to a simulated altitude of 4300 m (446 mm Hg) in a hypobaric chamber for 48 h. Speech motor control was determined from digitally recorded and analyzed timing patterns of 30 different monosyllabic words characterized as voiced and unvoiced, and as labial, alveolar, or velar. The Environmental Symptoms Questionnaire (ESQ) was used to assess AMS. RESULTS: Significant AMS symptoms occurred after 4 h, peaked at 16 h, and returned toward baseline after 48 h. Labial VOTs were shorter after 4 and 39 h of exposure; velar VOTs were altered only after 4 h; and there were no changes in alveolar VOTs. The duration of vowel sounds was increased after 4 h of exposure and returned to normal thereafter. Only 1 of 15 subjects did not increase vowel time after 4 h of exposure. The 39-h labial (p = 0.009) and velar (p = 0.037) voiced-unvoiced timed separations consonants and the symptoms of AMS were significantly correlated. CONCLUSIONS: Two objective measures of speech production were affected by exposure to 4300 m altitude and correlated with AMS severity. Alterations in speech production may represent an objective measure of AMS and central vulnerability to hypoxia.

  1. Basal forebrain circuit for sleep-wake control.

    PubMed

    Xu, Min; Chung, Shinjae; Zhang, Siyu; Zhong, Peng; Ma, Chenyan; Chang, Wei-Cheng; Weissbourd, Brandon; Sakai, Noriaki; Luo, Liqun; Nishino, Seiji; Dan, Yang

    2015-11-01

    The mammalian basal forebrain (BF) has important roles in controlling sleep and wakefulness, but the underlying neural circuit remains poorly understood. We examined the BF circuit by recording and optogenetically perturbing the activity of four genetically defined cell types across sleep-wake cycles and by comprehensively mapping their synaptic connections. Recordings from channelrhodopsin-2 (ChR2)-tagged neurons revealed that three BF cell types, cholinergic, glutamatergic and parvalbumin-positive (PV+) GABAergic neurons, were more active during wakefulness and rapid eye movement (REM) sleep (wake/REM active) than during non-REM (NREM) sleep, and activation of each cell type rapidly induced wakefulness. By contrast, activation of somatostatin-positive (SOM+) GABAergic neurons promoted NREM sleep, although only some of them were NREM active. Synaptically, the wake-promoting neurons were organized hierarchically by glutamatergic→cholinergic→PV+ neuron excitatory connections, and they all received inhibition from SOM+ neurons. Together, these findings reveal the basic organization of the BF circuit for sleep-wake control.

  2. Cholinergic interneurons control local circuit activity and cocaine conditioning.

    PubMed

    Witten, Ilana B; Lin, Shih-Chun; Brodsky, Matthew; Prakash, Rohit; Diester, Ilka; Anikeeva, Polina; Gradinaru, Viviana; Ramakrishnan, Charu; Deisseroth, Karl

    2010-12-17

    Cholinergic neurons are widespread, and pharmacological modulation of acetylcholine receptors affects numerous brain processes, but such modulation entails side effects due to limitations in specificity for receptor type and target cell. As a result, causal roles of cholinergic neurons in circuits have been unclear. We integrated optogenetics, freely moving mammalian behavior, in vivo electrophysiology, and slice physiology to probe the cholinergic interneurons of the nucleus accumbens by direct excitation or inhibition. Despite representing less than 1% of local neurons, these cholinergic cells have dominant control roles, exerting powerful modulation of circuit activity. Furthermore, these neurons could be activated by cocaine, and silencing this drug-induced activity during cocaine exposure (despite the fact that the manipulation of the cholinergic interneurons was not aversive by itself) blocked cocaine conditioning in freely moving mammals.

  3. The development of oral motor control and language.

    PubMed

    Alcock, Katie

    2006-08-01

    Motor control has long been associated with language skill, in deficits, both acquired and developmental, and in typical development. Most evidence comes from limb praxis however; the link between oral motor control and speech and language has been neglected, despite the fact that most language users talk with their mouths. Oral motor control is affected in a variety of developmental disorders, including Down syndrome. However, its development is poorly understood. We investigated oral motor control in three groups: adults with acquired aphasia, individuals with developmental dysphasia, and typically developing children. In individuals with speech and language difficulties, oral motor control was impaired. More complex movements and sets of movements were even harder for individuals with language impairments. In typically developing children (21-24 months), oral motor control was found to be related to language skills. In both studies, a closer relationship was found between language and complex oral movements than simple oral movements. This relationship remained when the effect of overall cognitive ability was removed. Children who were poor at oral movements were not good at language, although children who were good at oral movements could fall anywhere on the distribution of language abilities. Oral motor skills may be a necessary precursor for language skills.

  4. Sequential control by speed drive for ac motor

    NASA Astrophysics Data System (ADS)

    Barsoum, Nader

    2012-11-01

    The speed drive for ac motor is widely used in the industrial field to allow direct control for the speed and torque without any feedback from the motor shaft. By using the ABB ACS800 speed drive unit, the speed and torque can be controlled using sequential control method. Sequential control is one of the application control method provided in the ABB ACS800 Drive, where a set of events or action performed in a particular order one after the other to control the speed and torque of the ac motor. It was claimed that sequential control method is using the preset seven constant speeds being provided in ABB ACS800 drive to control the speed and torque in a continuous and sequential manner. The characteristics and features of controlling the speed and torque using sequential control method can be investigated by observing the graphs and curves plotted which are obtained from the practical result. Sequential control can run either in the Direct Torque Control (DTC) or Scalar motor control mode. By using sequential control method, the ABB ACS800 drive can be programmed to run the motor automatically according to the time setting of the seven preset constant speeds. Besides, the intention of this project is to generate a new form of the experimental set up.

  5. Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury.

    PubMed

    Wenger, Nikolaus; Moraud, Eduardo Martin; Gandar, Jerome; Musienko, Pavel; Capogrosso, Marco; Baud, Laetitia; Le Goff, Camille G; Barraud, Quentin; Pavlova, Natalia; Dominici, Nadia; Minev, Ivan R; Asboth, Leonie; Hirsch, Arthur; Duis, Simone; Kreider, Julie; Mortera, Andrea; Haverbeck, Oliver; Kraus, Silvio; Schmitz, Felix; DiGiovanna, Jack; van den Brand, Rubia; Bloch, Jocelyne; Detemple, Peter; Lacour, Stéphanie P; Bézard, Erwan; Micera, Silvestro; Courtine, Grégoire

    2016-02-01

    Electrical neuromodulation of lumbar segments improves motor control after spinal cord injury in animal models and humans. However, the physiological principles underlying the effect of this intervention remain poorly understood, which has limited the therapeutic approach to continuous stimulation applied to restricted spinal cord locations. Here we developed stimulation protocols that reproduce the natural dynamics of motoneuron activation during locomotion. For this, we computed the spatiotemporal activation pattern of muscle synergies during locomotion in healthy rats. Computer simulations identified optimal electrode locations to target each synergy through the recruitment of proprioceptive feedback circuits. This framework steered the design of spatially selective spinal implants and real-time control software that modulate extensor and flexor synergies with precise temporal resolution. Spatiotemporal neuromodulation therapies improved gait quality, weight-bearing capacity, endurance and skilled locomotion in several rodent models of spinal cord injury. These new concepts are directly translatable to strategies to improve motor control in humans. PMID:26779815

  6. Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury.

    PubMed

    Wenger, Nikolaus; Moraud, Eduardo Martin; Gandar, Jerome; Musienko, Pavel; Capogrosso, Marco; Baud, Laetitia; Le Goff, Camille G; Barraud, Quentin; Pavlova, Natalia; Dominici, Nadia; Minev, Ivan R; Asboth, Leonie; Hirsch, Arthur; Duis, Simone; Kreider, Julie; Mortera, Andrea; Haverbeck, Oliver; Kraus, Silvio; Schmitz, Felix; DiGiovanna, Jack; van den Brand, Rubia; Bloch, Jocelyne; Detemple, Peter; Lacour, Stéphanie P; Bézard, Erwan; Micera, Silvestro; Courtine, Grégoire

    2016-02-01

    Electrical neuromodulation of lumbar segments improves motor control after spinal cord injury in animal models and humans. However, the physiological principles underlying the effect of this intervention remain poorly understood, which has limited the therapeutic approach to continuous stimulation applied to restricted spinal cord locations. Here we developed stimulation protocols that reproduce the natural dynamics of motoneuron activation during locomotion. For this, we computed the spatiotemporal activation pattern of muscle synergies during locomotion in healthy rats. Computer simulations identified optimal electrode locations to target each synergy through the recruitment of proprioceptive feedback circuits. This framework steered the design of spatially selective spinal implants and real-time control software that modulate extensor and flexor synergies with precise temporal resolution. Spatiotemporal neuromodulation therapies improved gait quality, weight-bearing capacity, endurance and skilled locomotion in several rodent models of spinal cord injury. These new concepts are directly translatable to strategies to improve motor control in humans.

  7. Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury

    PubMed Central

    Wenger, Nikolaus; Moraud, Eduardo Martin; Gandar, Jerome; Musienko, Pavel; Capogrosso, Marco; Baud, Laetitia; Le Goff, Camille G.; Barraud, Quentin; Pavlova, Natalia; Dominici, Nadia; Minev, Ivan R.; Asboth, Leonie; Hirsch, Arthur; Duis, Simone; Kreider, Julie; Mortera, Andrea; Haverbeck, Oliver; Kraus, Silvio; Schmitz, Felix; DiGiovanna, Jack; van den Brand, Rubia; Bloch, Jocelyne; Detemple, Peter; Lacour, Stéphanie P.; Bézard, Erwan; Micera, Silvestro; Courtine, Grégoire

    2016-01-01

    Electrical neuromodulation of lumbar segments improves motor control after spinal cord injury in animal models and humans. However, the physiological principles underlying the effect of this intervention remain poorly understood, which has limited this therapeutic approach to continuous stimulation applied to restricted spinal cord locations. Here, we developed novel stimulation protocols that reproduce the natural dynamics of motoneuron activation during locomotion. For this, we computed the spatiotemporal activation pattern of muscle synergies during locomotion in healthy rats. Computer simulations identified optimal electrode locations to target each synergy through the recruitment of proprioceptive feedback circuits. This framework steered the design of spatially selective spinal implants and real–time control software that modulate extensor versus flexor synergies with precise temporal resolution. Spatiotemporal neuromodulation therapies improved gait quality, weight–bearing capacities, endurance and skilled locomotion in multiple rodent models of spinal cord injury. These new concepts are directly translatable to strategies to improve motor control in humans. PMID:26779815

  8. A programmable positioning stepper-motor controller with a multibus/IEEE 796 compatible interface.

    PubMed

    Papoff, P; Ricci, D

    1984-02-01

    A programmable positioning stepper-motor controller, based on the Multibus/IEEE 796 standard interface, has been assembled by use of some intelligent and programmable integrated circuits. This controller, organized as a bus-slave unit, has been planned for local management of up to four stepper motors working simultaneously. The number of steps, the direction of rotation and the step-rate for the positioning of each motor are issued by the bus master microcomputer to the controller which handles all the required operations. Once each positioning has been performed, the controller informs the master by generating a proper bus-vectored interrupt. Displacements in up to 64,000 steps may be programmed with step-rates ranging from 0.1 to 6550 steps/sec. This device, for which only low-cost, high-performance components are required, can be successfully used in a wide range of applications and can be easily extended to control more than four stepper motors. PMID:18963547

  9. Evolution of Motor Control: From Reflexes and Motor Programs to the Equilibrium-Point Hypothesis

    PubMed Central

    Latash, Mark L.

    2009-01-01

    This brief review analyzes the evolution of motor control theories along two lines that emphasize active (motor programs) and reactive (reflexes) features of voluntary movements. It suggests that the only contemporary hypothesis that integrates both approaches in a fruitful way is the equilibrium-point hypothesis. Physical, physiological, and behavioral foundations of the EP-hypothesis are considered as well as relations between the EP-hypothesis and the recent developments of the notion of motor synergies. The paper ends with a brief review of the criticisms of the EP-hypothesis and challenges that the hypothesis faces at this time. PMID:19823595

  10. An AC motor drive with power factor control for low cost applications

    NASA Astrophysics Data System (ADS)

    Bellar, Maria Dias

    2000-10-01

    The front-end rectifier followed by a pulse-width modulated voltage source inverter (PWM-VSI) has been a well-established power converter configuration for many industrial drives. The increasing costs on the utility usage, due to power quality regulations, and the need to improve the VA capacity of systems, e.g. off-shore drilling rigs, have increased the interest in the development of power electronic equipment with power factor control capability. Electrical motors consume a large amount of the available electrical energy, and this energy tends to increase due to the massive emerging applications of electrical motor drives in appliances and in industrial processes. Therefore, the improvement of the power factor of these low power drive systems, usually in the range from fractional horse-power (hp) to 1 hp, is of particular interest. For these power ratings, the system configuration usually comprises a single-phase to three-phase type of converter with additional circuitry for power factor control (PFC). However, this approach has an impact on the system cost and packaging. In this work, a new concept of integrating motor and power factor controls by using a single-phase to three-phase DSP based six-switch converter topology is presented. Unlike other configurations using extra switch(es) and/or extra boost inductor, in this circuit the boost action, for input current shaping, is done by the motor leakage inductances. The power factor control and inverter operation are performed by applying two modulating signals to the SPWM control logic of the converter. In this dissertation, the converter operation and a proposed control strategy will be explained. Simulation and experimental results for a DSP based induction motor drive will be provided as proof of concept. The feasibility and potential of this configuration for ac motor drive applications will be established. The impact of this scheme on the machine operation will also be discussed.

  11. Parallel pathways from motor and somatosensory cortex for controlling whisker movements in mice

    PubMed Central

    Sreenivasan, Varun; Karmakar, Kajari; Rijli, Filippo M; Petersen, Carl C H

    2015-01-01

    Mice can gather tactile sensory information by actively moving their whiskers to palpate objects in their immediate surroundings. Whisker sensory perception therefore requires integration of sensory and motor information, which occurs prominently in the neocortex. The signalling pathways from the neocortex for controlling whisker movements are currently poorly understood in mice. Here, we delineate two pathways, one originating from primary whisker somatosensory cortex (wS1) and the other from whisker motor cortex (wM1), that control qualitatively distinct movements of contralateral whiskers. Optogenetic stimulation of wS1 drove retraction of contralateral whiskers while stimulation of wM1 drove rhythmic whisker protraction. To map brainstem pathways connecting these cortical areas to whisker motor neurons, we used a combination of anterograde tracing using adenoassociated virus injected into neocortex and retrograde tracing using monosynaptic rabies virus injected into whisker muscles. Our data are consistent with wS1 driving whisker retraction by exciting glutamatergic premotor neurons in the rostral spinal trigeminal interpolaris nucleus, which in turn activate the motor neurons innervating the extrinsic retractor muscle nasolabialis. The rhythmic whisker protraction evoked by wM1 stimulation might be driven by excitation of excitatory and inhibitory premotor neurons in the brainstem reticular formation innervating both intrinsic and extrinsic muscles. Our data therefore begin to unravel the neuronal circuits linking the neocortex to whisker motor neurons. PMID:25476605

  12. Dynamic control of a central pattern generator circuit: a computational model of the snail feeding network.

    PubMed

    Vavoulis, Dimitris V; Straub, Volko A; Kemenes, Ildikó; Kemenes, György; Feng, Jianfeng; Benjamin, Paul R

    2007-05-01

    Central pattern generators (CPGs) are networks underlying rhythmic motor behaviours and they are dynamically regulated by neuronal elements that are extrinsic or intrinsic to the rhythmogenic circuit. In the feeding system of the pond snail, Lymnaea stagnalis, the extrinsic slow oscillator (SO) interneuron controls the frequency of the feeding rhythm and the N3t (tonic) has a dual role; it is an intrinsic CPG interneuron, but it also suppresses CPG activity in the absence of food, acting as a decision-making element in the feeding circuit. The firing patterns of the SO and N3t neurons and their synaptic connections with the rest of the CPG are known, but how these regulate network function is not well understood. This was investigated by building a computer model of the feeding network based on a minimum number of cells (N1M, N2v and N3t) required to generate the three-phase motor rhythm together with the SO that was used to activate the system. The intrinsic properties of individual neurons were represented using two-compartment models containing currents of the Hodgkin-Huxley type. Manipulations of neuronal activity in the N3t and SO neurons in the model produced similar quantitative effects to food and electrical stimulation in the biological network indicating that the model is a useful tool for studying the dynamic properties of the feeding circuit. The model also predicted novel effects of electrical stimulation of two CPG interneurons (N1M and N2v). When tested experimentally, similar effects were found in the biological system providing further validation of our model.

  13. LRRK2 BAC transgenic rats develop progressive, L-DOPA-responsive motor impairment, and deficits in dopamine circuit function

    PubMed Central

    Sloan, Max; Alegre-Abarrategui, Javier; Potgieter, Dawid; Kaufmann, Anna-Kristin; Exley, Richard; Deltheil, Thierry; Threlfell, Sarah; Connor-Robson, Natalie; Brimblecombe, Katherine; Wallings, Rebecca; Cioroch, Milena; Bannerman, David M.; Bolam, J. Paul; Magill, Peter J.; Cragg, Stephanie J.; Dodson, Paul D.; Wade-Martins, Richard

    2016-01-01

    Mutations in leucine-rich repeat kinase 2 (LRRK2) lead to late-onset, autosomal dominant Parkinson's disease, characterized by the degeneration of dopamine neurons of the substantia nigra pars compacta, a deficit in dopamine neurotransmission and the development of motor and non-motor symptoms. The most prevalent Parkinson's disease LRRK2 mutations are located in the kinase (G2019S) and GTPase (R1441C) encoding domains of LRRK2. To better understand the sequence of events that lead to progressive neurophysiological deficits in vulnerable neurons and circuits in Parkinson's disease, we have generated LRRK2 bacterial artificial chromosome transgenic rats expressing either G2019S or R1441C mutant, or wild-type LRRK2, from the complete human LRRK2 genomic locus, including endogenous promoter and regulatory regions. Aged (18–21 months) G2019S and R1441C mutant transgenic rats exhibit L-DOPA-responsive motor dysfunction, impaired striatal dopamine release as determined by fast-scan cyclic voltammetry, and cognitive deficits. In addition, in vivo recordings of identified substantia nigra pars compacta dopamine neurons in R1441C LRRK2 transgenic rats reveal an age-dependent reduction in burst firing, which likely results in further reductions to striatal dopamine release. These alterations to dopamine circuit function occur in the absence of neurodegeneration or abnormal protein accumulation within the substantia nigra pars compacta, suggesting that nigrostriatal dopamine dysfunction precedes detectable protein aggregation and cell death in the development of Parkinson's disease. In conclusion, our longitudinal deep-phenotyping provides novel insights into how the genetic burden arising from human mutant LRRK2 manifests as early pathophysiological changes to dopamine circuit function and highlights a potential model for testing Parkinson's therapeutics. PMID:26744332

  14. Feedback inhibition controls spike transfer in hybrid thalamic circuits

    NASA Astrophysics Data System (ADS)

    Le Masson, Gwendal; Renaud-Le Masson, Sylvie; Debay, Damien; Bal, Thierry

    2002-06-01

    Sensory information reaches the cerebral cortex through the thalamus, which differentially relays this input depending on the state of arousal. Such `gating' involves inhibition of the thalamocortical relay neurons by the reticular nucleus of the thalamus, but the underlying mechanisms are poorly understood. We reconstructed the thalamocortical circuit as an artificial and biological hybrid network in vitro. With visual input simulated as retinal cell activity, we show here that when the gain in the thalamic inhibitory feedback loop is greater than a critical value, the circuit tends towards oscillations-and thus imposes a temporal decorrelation of retinal cell input and thalamic relay output. This results in the functional disconnection of the cortex from the sensory drive, a feature typical of sleep states. Conversely, low gain in the feedback inhibition and the action of noradrenaline, a known modulator of arousal, converge to increase input-output correlation in relay neurons. Combining gain control of feedback inhibition and modulation of membrane excitability thus enables thalamic circuits to finely tune the gating of spike transmission from sensory organs to the cortex.

  15. Controlling Photons, Qubits and their Interactions in Superconducting Electronic Circuits

    NASA Astrophysics Data System (ADS)

    Wallraff, Andreas

    2009-03-01

    A combination of ideas from atomic physics, quantum optics and solid state physics allows us to investigate the fundamental interaction of matter and light on the level of single quanta in electronic circuits. In an approach known as circuit quantum electrodynamics, we coherently couple individual photons stored in a high quality microwave frequency resonator to a fully controllable superconducting two-level system (qubit) realized in a macroscopic electronic circuit [1]. In particular, we have recently observed the simultaneous interaction of one, two and three photons with a single qubit. In these experiments, we have probed the quantum nonlinearity of the qubit/light interaction governed by the Jaynes-Cummings hamiltonian, clearly demonstrating the quantization of the radiation field in the on-chip cavity. We have also performed quantum optics experiments with no photons at all. In this situation, i.e. in pure vacuum, we have resolved the renormalization of the qubit transition frequency - known as the Lamb shift - due to its non-resonant interaction with the cavity vacuum fluctuations [3].[4pt] [1] A. Wallraff et al., Nature (London) 431, 162 (2004)[0pt] [2] J. Fink et al., Nature (London) 454, 315 (2008)[0pt] [3] A. Fragner et al., Science 322, 1357 (2008)

  16. 6. VIEW, LOOKING SOUTH OF OPERATOR DECK, SHOWING MOTOR CONTROLS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW, LOOKING SOUTH OF OPERATOR DECK, SHOWING MOTOR CONTROLS AND LEVERS AND HOIST FOR TRASH RAKE - Cabot Station Electric Generating Plant, Gantry Crane, Montague City Road, Turners Falls vicinity, Montague, Franklin County, MA

  17. 76. VIEW OF THE MOTOR CONTROL PANEL IN THE NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    76. VIEW OF THE MOTOR CONTROL PANEL IN THE NORTH SIDE OF THE EAST SERVICE BUILDING FOR DOROTHY SIX BLAST FURNACE. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  18. Looking East at Motor Control System, Clarity Columns and Blend ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking East at Motor Control System, Clarity Columns and Blend Tank Along East Side of Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  19. 48. AUTOMATIC WATER CONTROL MOTOR DRIVE FOR NEEDLES CONSTRUCTION DETAILS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. AUTOMATIC WATER CONTROL MOTOR DRIVE FOR NEEDLES CONSTRUCTION DETAILS, SANTA ANA RIVER NO. 2, JAN. 24, 1977. SCE drawing no. 455667-0. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  20. Post-translational control of genetic circuits using Potyvirus proteases.

    PubMed

    Fernandez-Rodriguez, Jesus; Voigt, Christopher A

    2016-07-27

    Genetic engineering projects often require control over when a protein is degraded. To this end, we use a fusion between a degron and an inactivating peptide that can be added to the N-terminus of a protein. When the corresponding protease is expressed, it cleaves the peptide and the protein is degraded. Three protease:cleavage site pairs from Potyvirus are shown to be orthogonal and active in exposing degrons, releasing inhibitory domains and cleaving polyproteins. This toolbox is applied to the design of genetic circuits as a means to control regulator activity and degradation. First, we demonstrate that a gate can be constructed by constitutively expressing an inactivated repressor and having an input promoter drive the expression of the protease. It is also shown that the proteolytic release of an inhibitory domain can improve the dynamic range of a transcriptional gate (200-fold repression). Next, we design polyproteins containing multiple repressors and show that their cleavage can be used to control multiple outputs. Finally, we demonstrate that the dynamic range of an output can be improved (8-fold to 190-fold) with the addition of a protease-cleaved degron. Thus, controllable proteolysis offers a powerful tool for modulating and expanding the function of synthetic gene circuits. PMID:27298256

  1. Disrupting vagal feedback affects birdsong motor control

    PubMed Central

    Méndez, Jorge M.; Dall'Asén, Analía G.; Goller, Franz

    2010-01-01

    Coordination of different motor systems for sound production involves the use of feedback mechanisms. Song production in oscines is a well-established animal model for studying learned vocal behavior. Whereas the online use of auditory feedback has been studied in the songbird model, very little is known about the role of other feedback mechanisms. Auditory feedback is required for the maintenance of stereotyped adult song. In addition, the use of somatosensory feedback to maintain pressure during song has been demonstrated with experimentally induced fluctuations in air sac pressure. Feedback information mediating this response is thought to be routed to the central nervous system via afferent fibers of the vagus nerve. Here, we tested the effects of unilateral vagotomy on the peripheral motor patterns of song production and the acoustic features. Unilateral vagotomy caused a variety of disruptions and alterations to the respiratory pattern of song, some of which affected the acoustic structure of vocalizations. These changes were most pronounced a few days after nerve resection and varied between individuals. In the most extreme cases, the motor gestures of respiration were so severely disrupted that individual song syllables or the song motif were atypically terminated. Acoustic changes also suggest altered use of the two sound generators and upper vocal tract filtering, indicating that the disruption of vagal feedback caused changes to the motor program of all motor systems involved in song production and modification. This evidence for the use of vagal feedback by the song system with disruption of song during the first days after nerve cut provides a contrast to the longer-term effects of auditory feedback disruption. It suggests a significant role for somatosensory feedback that differs from that of auditory feedback. PMID:21113000

  2. Sneak circuit analysis of instrumentation and control systems. [technology transfer

    NASA Technical Reports Server (NTRS)

    Rankin, J. P.; Williams, A. M.

    1974-01-01

    The evolvement and implementation is presented of a systematic means for detecting the sneak prone designs of an electrical system which could result in such unplanned modes so that they can be prevented prior to occurrence. Sneak circuit analysis is shown to be a formalized approach based upon topological techniques. The trees employed are produced from manufacturing detail data processed by a computer to orderly completion. The analysis techniques applied on a variety of NASA programs are shown to be particularly applicable to industrial instrumentation and control systems.

  3. 46 CFR 111.91-1 - Power, control, and interlock circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME A17.1 (incorporated by reference; see 46 CFR 110.10-1). ... 46 Shipping 4 2010-10-01 2010-10-01 false Power, control, and interlock circuits. 111.91-1...

  4. 46 CFR 111.91-1 - Power, control, and interlock circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME A17.1 (incorporated by reference; see 46 CFR 110.10-1). ... 46 Shipping 4 2012-10-01 2012-10-01 false Power, control, and interlock circuits. 111.91-1...

  5. 46 CFR 111.91-1 - Power, control, and interlock circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME A17.1 (incorporated by reference; see 46 CFR 110.10-1). ... 46 Shipping 4 2014-10-01 2014-10-01 false Power, control, and interlock circuits. 111.91-1...

  6. 49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to...

  7. 49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to...

  8. 49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to...

  9. 49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to...

  10. 49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to...

  11. 46 CFR 111.91-1 - Power, control, and interlock circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME A17.1 (incorporated by reference; see 46 CFR 110.10-1). ... 46 Shipping 4 2011-10-01 2011-10-01 false Power, control, and interlock circuits. 111.91-1...

  12. Self-controlled practice benefits motor learning in older adults.

    PubMed

    Lessa, Helena Thofehrn; Chiviacowsky, Suzete

    2015-04-01

    Providing learners with the chance to choose over certain aspects of practice has been consistently shown to facilitate the acquisition of motor skills in several populations. However, studies investigating the effects of providing autonomy support during the learning process of older adults remain scarce. The objective of the present study was to investigate the effects of self-controlled amount of practice on the learning of a sequential motor task in older adults. Participants in the self-control group were able to choose when to stop practicing a speed cup stacking task, while the number of practice trials for a yoked group was pre-determined, mirroring the self-control group. The opportunity to choose when stop practicing facilitated motor performance and learning compared to the yoked condition. The findings suggest that letting older adult learners choose the amount of practice, supporting their autonomy needs, has a positive influence on motor learning.

  13. Variable-pulse switching circuit accurately controls solenoid-valve actuations

    NASA Technical Reports Server (NTRS)

    Gillett, J. D.

    1967-01-01

    Solid state circuit generating adjustable square wave pulses of sufficient power operates a 28 volt dc solenoid valve at precise time intervals. This circuit is used for precise time control of fluid flow in combustion experiments.

  14. Long-Range Neuronal Circuits Underlying the Interaction between Sensory and Motor Cortex

    PubMed Central

    Mao, Tianyi; Kusefoglu, Deniz; Hooks, Bryan M.; Huber, Daniel; Petreanu, Leopoldo; Svoboda, Karel

    2016-01-01

    SUMMARY In the rodent vibrissal system, active sensation and sensorimotor integration are mediated in part by connections between barrel cortex and vibrissal motor cortex. Little is known about how these structures interact at the level of neurons. We used Channelrhodopsin-2 (ChR2) expression, combined with anterograde and retrograde labeling, to map connections between barrel cortex and pyramidal neurons in mouse motor cortex. Barrel cortex axons preferentially targeted upper layer (L2/3, L5A) neurons in motor cortex; input to neurons projecting back to barrel cortex was particularly strong. Barrel cortex input to deeper layers (L5B, L6) of motor cortex, including neurons projecting to the brainstem, was weak, despite pronounced geometric overlap of dendrites with axons from barrel cortex. Neurons in different layers received barrel cortex input within stereotyped dendritic domains. The cortico-cortical neurons in superficial layers of motor cortex thus couple motor and sensory signals and might mediate sensorimotor integration and motor learning. PMID:21982373

  15. Gestalt principles in the control of motor action.

    PubMed

    Klapp, Stuart T; Jagacinski, Richard J

    2011-05-01

    We argue that 4 fundamental gestalt phenomena in perception apply to the control of motor action. First, a motor gestalt, like a perceptual gestalt, is holistic in the sense that it is processed as a single unit. This notion is consistent with reaction time results indicating that all gestures for a brief unit of action must be programmed prior to initiation of any part of the movement. Additional reaction time results related to initiation of longer responses are consistent with processing in terms of a sequence of indivisible motor gestalts. Some actions (e.g., many involving coordination of the hands) can be carried out effectively only if represented as a unitary gestalt. Second, a perceptual gestalt is independent of specific sensory receptors, as evidenced by perceptual constancy. In a similar manner a motor gestalt can be represented independently of specific muscular effectors, thereby allowing motor constancy. Third, just as a perceptual pattern (e.g., a Necker cube) is exclusively structured into only 1 of its possible configurations at any moment in time, processing prior to action is limited to 1 motor gestalt. Fourth, grouping in apparent motion leads to stream segregation in visual and auditory perception; this segregation is present in motor action and is dependent on the temporal rate. We discuss congruence of gestalt phenomena across perception and motor action (a) in relation to a unitary perceptual-motor code, (b) with respect to differences in the role of awareness, and (c) in conjunction with separate neural pathways for conscious perception and motor control.

  16. An influence of the stepping motor control and friction models on precise positioning of the complex mechanical system

    NASA Astrophysics Data System (ADS)

    Konowrocki, Robert; Szolc, Tomasz; Pochanke, Andrzej; Pręgowska, Agnieszka

    2016-03-01

    This paper aims to investigate, both experimentally and theoretically, the electromechanical dynamic interaction between a driving stepping motor and a driven laboratory belt-transporter system. A test-rig imitates the operation of a robotic device in the form of a working tool-carrier under translational motion. The object under consideration is equipped with measurement systems, which enable the registration of electrical and mechanical quantities. Analytical considerations are performed by means of a circuit model of the electric motor and a discrete, non-linear model of the mechanical system. Various scenarios of the working tool-carrier motion and positioning by the belt-transporter are measured and simulated; in all cases the electric current control of the driving motor has been applied. The main goal of this study is to investigate the influence of the stepping motor control parameters along with various mechanical friction models on the precise positioning of a laboratory robotic device.

  17. Control of a high-speed, brushless dc motor driven through a cycloconverter line

    NASA Astrophysics Data System (ADS)

    Cathey, J. J.; Reesor, D. B.; Weimer, J. A.

    Feasibility and concept of designing a high-speed, permanent magnet, brushless dc motor aircraft fuel pump drive using a cycloconverter link is examined. Analytical methods are developed to model the behavior of a three-phase permanent magnetic machine when operated as a self-synchronous motor supplied from a polyphase, variable voltage, variable frequency source through a midpoint cycloconverter link under circulating current free mode of control. A hybrid combination of sinusoidal and dc steady-state analysis methods is utilized to obtain a suitable equivalent circuit of the motor. Study of the motor model is made to establish the nature of the no load MMF angle as a function of current to give a minimum value while assuring proper thyristor commutation. Then, a closed loop control system with an outer loop on speed and an inner loop on current is postulated wherein a proportional plus integral controller is placed in the forward path to assure minimum speed error. A numerical study of performance is presented for speed runup and rundown conditions.

  18. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Spring switch; selection of signal control... SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems General § 236.13 Spring switch... facing movements over a main track spring switch shall be selected through the contacts of a...

  19. Remote control of molecular motors using light-activated gearshifting

    NASA Astrophysics Data System (ADS)

    Bryant, Zev

    2013-03-01

    Engineering molecular motors with dynamically controllable properties will allow selective perturbation of mechanical processes in vivo and provide sophisticated components for directed nanoscale transport in vitro. We previously constructed myosin motors that respond to a change in [Ca++] by reversing their direction of motion along the polarized actin filament. To expand the potential applications of controllable molecular motors, we have now developed myosins that shift gears in response to blue light illumination. Light is a versatile control signal that can be readily modulated in time and space, and is generally orthogonal to cellular signaling. Using structure-guided protein engineering, we have incorporated LOV photoreceptor domains into the lever arms of chimeric myosins, resulting in motors that robustly speed up, slow down, or switch directions upon illumination. These genetically encoded motors should be directly deployable inside living cells. Our successful designs include constructs based on two different myosin classes, and we show that optical velocity control can be implemented in motors that move at microns/sec speeds, enabling practical biological and bioengineering applications.

  20. Protective circuit for thyristor controlled systems and thyristor converter embodying such protective circuit

    DOEpatents

    Downhower, Jr., Francis H.; Finlayson, Paul T.

    1984-04-10

    A snubber circuit coupled across each thyristor to be gated in a chain of thyristors determines the critical output of a NOR LATCH whenever one snubber circuit could not be charged and discharged under normal gating conditions because of a short failure.

  1. A flight simulator control system using electric torque motors

    NASA Technical Reports Server (NTRS)

    Musick, R. O.; Wagner, C. A.

    1975-01-01

    Control systems are required in flight simulators to provide representative stick and rudder pedal characteristics. A system has been developed that uses electric dc torque motors instead of the more common hydraulic actuators. The torque motor system overcomes certain disadvantages of hydraulic systems, such as high cost, high power consumption, noise, oil leaks, and safety problems. A description of the torque motor system is presented, including both electrical and mechanical design as well as performance characteristics. The system develops forces sufficiently high for most simulations, and is physically small and light enough to be used in most motion-base cockpits.

  2. Redundant speed control for brushless Hall effect motor

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1973-01-01

    A speed control system for a brushless Hall effect device equipped direct current (D.C.) motor is described. Separate windings of the motor are powered by separate speed responsive power sources. A change in speed, upward or downward, because of the failure of a component of one of the power sources results in a corrective signal being generated in the other power source to supply an appropriate power level and polarity to one winding to cause the motor to be corrected in speed.

  3. Motor Learning and Control Foundations of Kinesiology: Defining the Academic Core

    ERIC Educational Resources Information Center

    Fischman, Mark G.

    2007-01-01

    This paper outlines the kinesiological foundations of the motor behavior subdisciplines of motor learning and motor control. After defining the components of motor behavior, the paper addresses the undergraduate major and core knowledge by examining several classic textbooks in motor learning and control, as well as a number of contemporary…

  4. Fault tolerant vector control of induction motor drive

    NASA Astrophysics Data System (ADS)

    Odnokopylov, G.; Bragin, A.

    2014-10-01

    For electric composed of technical objects hazardous industries, such as nuclear, military, chemical, etc. an urgent task is to increase their resiliency and survivability. The construction principle of vector control system fault-tolerant asynchronous electric. Displaying recovery efficiency three-phase induction motor drive in emergency mode using two-phase vector control system. The process of formation of a simulation model of the asynchronous electric unbalance in emergency mode. When modeling used coordinate transformation, providing emergency operation electric unbalance work. The results of modeling transient phase loss motor stator. During a power failure phase induction motor cannot save circular rotating field in the air gap of the motor and ensure the restoration of its efficiency at rated torque and speed.

  5. A comparison of motor submodels in the optimal control model

    NASA Technical Reports Server (NTRS)

    Lancraft, R. E.; Kleinman, D. L.

    1978-01-01

    Properties of several structural variations in the neuromotor interface portion of the optimal control model (OCM) are investigated. For example, it is known that commanding control-rate introduces an open-loop pole at S=O and will generate low frequency phase and magnitude characteristics similar to experimental data. However, this gives rise to unusually high sensitivities with respect to motor and sensor noise-ratios, thereby reducing the models' predictive capabilities. Relationships for different motor submodels are discussed to show sources of these sensitivities. The models investigated include both pseudo motor-noise and actual (system driving) motor-noise characterizations. The effects of explicit proprioceptive feedback in the OCM is also examined. To show graphically the effects of each submodel on system outputs, sensitivity studies are included, and compared to data obtained from other tests.

  6. Direct and indirect spino-cerebellar pathways: shared ideas but different functions in motor control

    PubMed Central

    Jiang, Juan; Azim, Eiman; Ekerot, Carl-Fredrik; Alstermark, Bror

    2015-01-01

    The impressive precision of mammalian limb movements relies on internal feedback pathways that convey information about ongoing motor output to cerebellar circuits. The spino-cerebellar tracts (SCT) in the cervical, thoracic and lumbar spinal cord have long been considered canonical neural substrates for the conveyance of internal feedback signals. Here we consider the distinct features of an indirect spino-cerebellar route, via the brainstem lateral reticular nucleus (LRN), and the implications of this pre-cerebellar “detour” for the execution and evolution of limb motor control. Both direct and indirect spino-cerebellar pathways signal spinal interneuronal activity to the cerebellum during movements, but evidence suggests that direct SCT neurons are mainly modulated by rhythmic activity, whereas the LRN also receives information from systems active during postural adjustment, reaching and grasping. Thus, while direct and indirect spino-cerebellar circuits can both be regarded as internal copy pathways, it seems likely that the direct system is principally dedicated to rhythmic motor acts like locomotion, while the indirect system also provides a means of pre-cerebellar integration relevant to the execution and coordination of dexterous limb movements. PMID:26217214

  7. Developmental kinesiology: three levels of motor control in the assessment and treatment of the motor system.

    PubMed

    Kobesova, Alena; Kolar, Pavel

    2014-01-01

    Three levels of sensorimotor control within the central nervous system (CNS) can be distinguished. During the neonatal stage, general movements and primitive reflexes are controlled at the spinal and brain stem levels. Analysis of the newborn's spontaneous general movements and the assessment of primitive reflexes is crucial in the screening and early recognition of a risk for abnormal development. Following the newborn period, the subcortical level of the CNS motor control emerges and matures mainly during the first year of life. This allows for basic trunk stabilization, a prerequisite for any phasic movement and for the locomotor function of the extremities. At the subcortical level, orofacial muscles and afferent information are automatically integrated within postural-locomotor patterns. Finally, the cortical (the highest) level of motor control increasingly becomes activated. Cortical control is important for the individual qualities and characteristics of movement. It also allows for isolated segmental movement and relaxation. A child with impaired cortical motor control may be diagnosed with developmental dyspraxia or developmental coordination disorder. Human ontogenetic models, i.e., developmental motor patterns, can be used in both the diagnosis and treatment of locomotor system dysfunction.

  8. An enhanced Z-source inverter topology-based permanent magnet brushless DC motor drive speed control

    NASA Astrophysics Data System (ADS)

    Geno Peter, P.; Rajaram, M.

    2015-08-01

    In this paper, an enhanced Z-source inverter (ZSI) is introduced for controlling the speed of permanent magnet brushless DC motor (PMBLDCM) drive. It is the extension of the conventional ZSI and the elements used in the circuit are the same as those of the conventional ZSI, except that the position of Inverter Bridge and diode would be exchanged from the classical circuit diagram. This exchanged circuit avoids the startup path of the inrush current and hence reduces the inrush current and improves the motor efficiency. Different modes of enhanced ZSI are studied with PMBLDCM. The voltage polarity of Z-source capacitors in the proposed circuit is the same as that of the input voltage polarity. Furthermore, to get the same voltage boost, the capacitor voltage stress is reduced to a significant extent. The speed control capability of the proposed brushless DC motor drive is compared with that of the conventional ZSI. The proposed ZSI is implemented in MATLAB/Simulink working platform and the output performance is evaluated. Also, the performance of voltage ratio is analysed both by simulation and mathematical models. All these analyses are known to express the innovative features of the proposed system.

  9. Adaptive hybrid control for linear piezoelectric ceramic motor drive using diagonal recurrent CMAC network.

    PubMed

    Wai, Rong-Jong; Lin, Chih-Min; Peng, Ya-Fu

    2004-11-01

    This paper presents an adaptive hybrid control system using a diagonal recurrent cerebellar-model-articulation-computer (DRCMAC) network to control a linear piezoelectric ceramic motor (LPCM) driven by a two-inductance two-capacitance (LLCC) resonant inverter. Since the dynamic characteristics and motor parameters of the LPCM are highly nonlinear and time varying, an adaptive hybrid control system is therefore designed based on a hypothetical dynamic model to achieve high-precision position control. The architecture of DRCMAC network is a modified model of a cerebellar-model-articulation-computer (CMAC) network to attain a small number of receptive-fields. The novel idea of this study is that it employs the concept of diagonal recurrent neural network (DRNN) in order to capture the system dynamics and convert the static CMAC into a dynamic one. This adaptive hybrid control system is composed of two parts. One is a DRCMAC network controller that is used to mimic a conventional computed torque control law due to unknown system dynamics, and the other is a compensated controller with bound estimation algorithm that is utilized to recover the residual approximation error for guaranteeing the stable characteristic. The effectiveness of the proposed driving circuit and control system is verified with hardware experiments under the occurrence of uncertainties. In addition, the advantages of the proposed control scheme are indicated in comparison with a traditional integral-proportional (IP) position control system.

  10. A Review on Locomotor Training after Spinal Cord Injury: Reorganization of Spinal Neuronal Circuits and Recovery of Motor Function

    PubMed Central

    2016-01-01

    Locomotor training is a classic rehabilitation approach utilized with the aim of improving sensorimotor function and walking ability in people with spinal cord injury (SCI). Recent studies have provided strong evidence that locomotor training of persons with clinically complete, motor complete, or motor incomplete SCI induces functional reorganization of spinal neuronal networks at multisegmental levels at rest and during assisted stepping. This neuronal reorganization coincides with improvements in motor function and decreased muscle cocontractions. In this review, we will discuss the manner in which spinal neuronal circuits are impaired and the evidence surrounding plasticity of neuronal activity after locomotor training in people with SCI. We conclude that we need to better understand the physiological changes underlying locomotor training, use physiological signals to probe recovery over the course of training, and utilize established and contemporary interventions simultaneously in larger scale research studies. Furthermore, the focus of our research questions needs to change from feasibility and efficacy to the following: what are the physiological mechanisms that make it work and for whom? The aforementioned will enable the scientific and clinical community to develop more effective rehabilitation protocols maximizing sensorimotor function recovery in people with SCI. PMID:27293901

  11. A Review on Locomotor Training after Spinal Cord Injury: Reorganization of Spinal Neuronal Circuits and Recovery of Motor Function.

    PubMed

    Smith, Andrew C; Knikou, Maria

    2016-01-01

    Locomotor training is a classic rehabilitation approach utilized with the aim of improving sensorimotor function and walking ability in people with spinal cord injury (SCI). Recent studies have provided strong evidence that locomotor training of persons with clinically complete, motor complete, or motor incomplete SCI induces functional reorganization of spinal neuronal networks at multisegmental levels at rest and during assisted stepping. This neuronal reorganization coincides with improvements in motor function and decreased muscle cocontractions. In this review, we will discuss the manner in which spinal neuronal circuits are impaired and the evidence surrounding plasticity of neuronal activity after locomotor training in people with SCI. We conclude that we need to better understand the physiological changes underlying locomotor training, use physiological signals to probe recovery over the course of training, and utilize established and contemporary interventions simultaneously in larger scale research studies. Furthermore, the focus of our research questions needs to change from feasibility and efficacy to the following: what are the physiological mechanisms that make it work and for whom? The aforementioned will enable the scientific and clinical community to develop more effective rehabilitation protocols maximizing sensorimotor function recovery in people with SCI. PMID:27293901

  12. Development of a super high speed motor-generator and controller

    SciTech Connect

    Hong, Do-Kwan Ahn, Min-Hyuk; Joo, Dae-Suk; Woo, Byung-Chul; Koo, Dae-Hyun

    2014-05-07

    To develop a super high speed motor-generator, it is essential to deal with magnetic analysis, dynamic analysis, and experimental evaluation of the heart of the MTG (Microturbine Generator) system, the motor-generator. An amorphous core is applied to a stator core for reduction of iron loss at high speed, and the motor-generator is analyzed with considerations focused on magnetic losses and the statistical optimum design. The performance of the amorphous core is validated by the analysis and experiment by back-to-back tests considering the AC load. Rotor dynamics is performed for dynamic stability at high speed using transient analysis orbit diagrams and compared with the experimental results. The simulation results of the generator are compared with the experiment. Also a super high speed controller of the MTG system is developed using a sensorless algorithm, power stack, gate driver, digital signal processing, analog circuit, and radiation heat design. Based on these results, a high speed motor-generator and controller are successfully developed.

  13. Development of a super high speed motor-generator and controller

    NASA Astrophysics Data System (ADS)

    Hong, Do-Kwan; Ahn, Min-Hyuk; Joo, Dae-Suk; Woo, Byung-Chul; Koo, Dae-Hyun

    2014-05-01

    To develop a super high speed motor-generator, it is essential to deal with magnetic analysis, dynamic analysis, and experimental evaluation of the heart of the MTG (Microturbine Generator) system, the motor-generator. An amorphous core is applied to a stator core for reduction of iron loss at high speed, and the motor-generator is analyzed with considerations focused on magnetic losses and the statistical optimum design. The performance of the amorphous core is validated by the analysis and experiment by back-to-back tests considering the AC load. Rotor dynamics is performed for dynamic stability at high speed using transient analysis orbit diagrams and compared with the experimental results. The simulation results of the generator are compared with the experiment. Also a super high speed controller of the MTG system is developed using a sensorless algorithm, power stack, gate driver, digital signal processing, analog circuit, and radiation heat design. Based on these results, a high speed motor-generator and controller are successfully developed.

  14. Antifouling strategies and corrosion control in cooling circuits.

    PubMed

    Cristiani, P; Perboni, G

    2014-06-01

    Biofouling and corrosion phenomena dramatically reduce the functionality of industrial cooling circuits, especially in marine environments. This study underlines the effectiveness of a low level chlorination treatment of seawater to prevent biological fouling and biocorrosion. Reported examples emphasize the reaction of chlorine with bromide, ammonia and organic compounds in seawater and the effectiveness of a treatment performed in such a way to guarantee a residual concentration lower than 3μM at the outlet of the condensers. In a brief review of antifouling strategies, alternatives to chlorination and the monitoring approach able to optimize the treatments are also reported. An integrated, on-line system based on electrochemical probes (Biox system and a linear polarization resistance probe) demonstrated to be sufficient to monitor in real time: corrosion, biofilm growth and chemical treatments based on chlorine or alternative oxidant products (chlorine dioxide, etc.). A careful electrochemical monitoring and the optimized treatments help the plant operators of industrial cooling circuits prevent the decay of the equipment performance, allowing at the same time the control of the halogenated by-products formation. PMID:24507969

  15. Heartbeat control in leeches. II. Fictive motor pattern.

    PubMed

    Wenning, Angela; Hill, Andrew A V; Calabrese, Ronald L

    2004-01-01

    The rhythmic beating of the tube-like hearts in the medicinal leech is driven and coordinated by rhythmic activity in segmental heart motor neurons. The motor neurons are controlled by rhythmic inhibitory input from a network of heart interneurons that compose the heartbeat central pattern generator. In the preceding paper, we described the constriction pattern of the hearts in quiescent intact animals and showed that one heart constricts in a rear-to-front wave (peristaltic coordination mode), while the other heart constricts in near unison over its length (synchronous coordination mode) and that they regularly switch coordination modes. Here we analyze intersegmental and side-to-side-coordination of the fictive motor pattern for heartbeat in denervated nerve cords. We show that the intersegmental phase relations among heart motor neurons in both coordination modes are independent of heartbeat period. This finding enables us to combine data from different experiments to form a detailed analysis of the relative phases, duty cycle, and intraburst spike frequency of the bursts of the segmental heart motor neurons. The fictive motor pattern and the constriction pattern seen in intact leeches closely match in their intersegmental and side-to-side coordination, indicating that sensory feedback is not necessary for properly phased intersegmental coordination. Moreover, the regular switches in coordination mode of the fictive motor pattern mimic those seen in intact animals indicating that these switches likely arise by a central mechanism.

  16. Motor control differs for increasing and releasing force.

    PubMed

    Park, Seoung Hoon; Kwon, MinHyuk; Solis, Danielle; Lodha, Neha; Christou, Evangelos A

    2016-06-01

    Control of the motor output depends on our ability to precisely increase and release force. However, the influence of aging on force increase and release remains unknown. The purpose of this study, therefore, was to determine whether force control differs while increasing and releasing force in young and older adults. Sixteen young adults (22.5 ± 4 yr, 8 females) and 16 older adults (75.7 ± 6.4 yr, 8 females) increased and released force at a constant rate (10% maximum voluntary contraction force/s) during an ankle dorsiflexion isometric task. We recorded the force output and multiple motor unit activity from the tibialis anterior (TA) muscle and quantified the following outcomes: 1) variability of force using the SD of force; 2) mean discharge rate and variability of discharge rate of multiple motor units; and 3) power spectrum of the multiple motor units from 0-4, 4-10, 10-35, and 35-60 Hz. Participants exhibited greater force variability while releasing force, independent of age (P < 0.001). Increased force variability during force release was associated with decreased modulation of multiple motor units from 35 to 60 Hz (R(2) = 0.38). Modulation of multiple motor units from 35 to 60 Hz was further correlated to the change in mean discharge rate of multiple motor units (r = 0.66) and modulation from 0 to 4 Hz (r = -0.64). In conclusion, these findings suggest that force control is altered while releasing due to an altered modulation of the motor units.

  17. Adaptive Fuzzy Control of a Direct Drive Motor

    NASA Technical Reports Server (NTRS)

    Medina, E.; Kim, Y. T.; Akbaradeh-T., M. -R.

    1997-01-01

    This paper presents a state feedback adaptive control method for position and velocity control of a direct drive motor. The proposed control scheme allows for integrating heuristic knowledge with mathematical knowledge of a system. It performs well even when mathematical model of the system is poorly understood. The controller consists of an adaptive fuzzy controller and a supervisory controller. The supervisory controller requires only knowledge of the upper bound and lower bound of the system parameters. The fuzzy controller is based on fuzzy basis functions and states of the system. The adaptation law is derived based on the Lyapunov function which ensures that the state of the system asymptotically approaches zero. The proposed controller is applied to a direct drive motor with payload and parameter uncertainty, and the effectiveness is verified by simulation results.

  18. Adaptive Fuzzy Control of a Direct Drive Motor: Experimental Aspects

    NASA Technical Reports Server (NTRS)

    Medina, E.; Akbarzadeh-T, M.-R.; Kim, Y. T.

    1998-01-01

    This paper presents a state feedback adaptive control method for position and velocity control of a direct drive motor. The proposed control scheme allows for integrating heuristic knowledge with mathematical knowledge of a system. It performs well even when mathematical model of the system is poorly understood. The controller consists of an adaptive fuzzy controller and a supervisory controller. The supervisory controller requires only knowledge of the upper bound and lower bound of the system parameters. The fuzzy controller is based on fuzzy basis functions and states of the system. The adaptation law is derived based on the Lyapunov function which ensures that the state of the system asymptotically approaches zero. The proposed controller is applied to a direct drive motor with payload and parameter uncertainty, and the effectiveness is experimentally verified. The real-time performance is compared with simulation results.

  19. Effect of motor dynamics on nonlinear feedback robot arm control

    NASA Technical Reports Server (NTRS)

    Tarn, Tzyh-Jong; Li, Zuofeng; Bejczy, Antal K.; Yun, Xiaoping

    1991-01-01

    A nonlinear feedback robot controller that incorporates the robot manipulator dynamics and the robot joint motor dynamics is proposed. The manipulator dynamics and the motor dynamics are coupled to obtain a third-order-dynamic model, and differential geometric control theory is applied to produce a linearized and decoupled robot controller. The derived robot controller operates in the robot task space, thus eliminating the need for decomposition of motion commands into robot joint space commands. Computer simulations are performed to verify the feasibility of the proposed robot controller. The controller is further experimentally evaluated on the PUMA 560 robot arm. The experiments show that the proposed controller produces good trajectory tracking performances and is robust in the presence of model inaccuracies. Compared with a nonlinear feedback robot controller based on the manipulator dynamics only, the proposed robot controller yields conspicuously improved performance.

  20. Implementation of a new fuzzy vector control of induction motor.

    PubMed

    Rafa, Souad; Larabi, Abdelkader; Barazane, Linda; Manceur, Malik; Essounbouli, Najib; Hamzaoui, Abdelaziz

    2014-05-01

    The aim of this paper is to present a new approach to control an induction motor using type-1 fuzzy logic. The induction motor has a nonlinear model, uncertain and strongly coupled. The vector control technique, which is based on the inverse model of the induction motors, solves the coupling problem. Unfortunately, in practice this is not checked because of model uncertainties. Indeed, the presence of the uncertainties led us to use human expertise such as the fuzzy logic techniques. In order to maintain the decoupling and to overcome the problem of the sensitivity to the parametric variations, the field-oriented control is replaced by a new block control. The simulation results show that the both control schemes provide in their basic configuration, comparable performances regarding the decoupling. However, the fuzzy vector control provides the insensitivity to the parametric variations compared to the classical one. The fuzzy vector control scheme is successfully implemented in real-time using a digital signal processor board dSPACE 1104. The efficiency of this technique is verified as well as experimentally at different dynamic operating conditions such as sudden loads change, parameter variations, speed changes, etc. The fuzzy vector control is found to be a best control for application in an induction motor.

  1. Motor control and low back pain in dancers.

    PubMed

    Roussel, N; De Kooning, M; Schutt, A; Mottram, S; Truijen, S; Nijs, J; Daenen, L

    2013-02-01

    Professional dancers suffer a high incidence of injuries, especially to the spine and lower extremities. There is a lack of experimental research addressing low back pain (LBP) in dancers. The aim of this study is to compare lumbopelvic motor control, muscle extensibility and sacroiliac joint pain between dancers with and without a history of LBP. 40 pre-professional dancers (mean age of 20.3 years) underwent a clinical test battery, consisting of an evaluation of lumbopelvic motor control, muscle extensibility, generalized joint hypermobility, and sacroiliac joint pain provocation tests. Also self-reported measurements and standardized questionnaires were used. 41% of the dancers suffered from LBP during at least 2 consecutive days in the previous year. Only one dancer suffered from sacroiliac joint pain. Compared to dancers without a history of LBP, dancers with a history of LBP showed poorer lumbopelvic motor control (p<0.05). No differences in muscle extensibility or joint hypermobility were observed between dancers (p>0.05). Despite their young age, pre-professional dancers suffer from LBP frequently. Sacroiliac joint pain, generalized joint hypermobility or muscle extensibility appears unrelated to LBP in dancers. Motor control is decreased in those with a history of LBP. Further research should examine whether motor control is etiologically involved in LBP in dancers.

  2. Decoupled 3D moment control using in-wheel motors

    NASA Astrophysics Data System (ADS)

    Katsuyama, Etsuo

    2013-01-01

    Vehicles equipped with in-wheel motors are being studied and developed as a type of electric vehicle. Since these motors are attached to the suspension, a large vertical suspension reaction force is generated during driving. Based on this mechanism, this paper describes the development of a method for independently controlling roll and pitch as well as yaw using driving force distribution control at each wheel. It also details the theoretical calculation of a method for decoupling the dynamic motions. Finally, it describes the application of these 3D dynamic motion control methods to a test vehicle and the confirmation of the performance improvement.

  3. A human motor control perspective to multiple manipulator modelling.

    PubMed

    Kambhampati, C; Rajasekharan, S

    2003-10-01

    This paper describes the aspects involved in modelling a multi-robot system from a human motor control perspective. The human motor control system has a hierarchical and decentralised structure, and building a control system for a multi-robot system that attains human features would require a decomposable model. Decomposition of a complex robotic system is difficult due to the interactions between the subsystems, so these have to be first separated before the system is modelled. The proposed method of separating the interconnections is applied with the aid of fuzzy modelling to derive a fully decomposable model of two manipulator robots handling a common object.

  4. The minimum transition hypothesis for intermittent hierarchical motor control.

    PubMed

    Karniel, Amir

    2013-01-01

    In intermittent control, instead of continuously calculating the control signal, the controller occasionally changes this signal at certain sparse points in time. The control law may include feedback, adaptation, optimization, or any other control strategies. When, where, and how does the brain employ intermittency as it controls movement? These are open questions in motor neuroscience. Evidence for intermittency in human motor control has been repeatedly observed in the neural control of movement literature. Moreover, some researchers have provided theoretical models to address intermittency. Even so, the vast majority of current models, and I would dare to say the dogma in most of the current motor neuroscience literature involves continuous control. In this paper, I focus on an area in which intermittent control has not yet been thoroughly considered, the structure of muscle synergies. A synergy in the muscle space is a group of muscles activated together by a single neural command. Under the assumption that the motor control is intermittent, I present the minimum transition hypothesis (MTH) and its predictions with regards to the structure of muscle synergies. The MTH asserts that the purpose of synergies is to minimize the effort of the higher level in the hierarchy by minimizing the number of transitions in an intermittent control signal. The implications of the MTH are not only for the structure of the muscle synergies but also to the intermittent and hierarchical nature of the motor system, with various predictions as to the process of skill learning, and important implications to the design of brain machine interfaces and human robot interaction.

  5. Novel intelligent PID control of traveling wave ultrasonic motor.

    PubMed

    Jingzhuo, Shi; Yu, Liu; Jingtao, Huang; Meiyu, Xu; Juwei, Zhang; Lei, Zhang

    2014-09-01

    A simple control strategy with acceptable control performance can be a good choice for the mass production of ultrasonic motor control system. In this paper, through the theoretic and experimental analyses of typical control process, a simpler intelligent PID speed control strategy of TWUM is proposed, involving only two expert rules to adjust the PID control parameters based on the current status. Compared with the traditional PID controller, this design requires less calculation and more cheap chips which can be easily involved in online performance. Experiments with different load torques and voltage amplitudes show that the proposed controller can deal with the nonlinearity and load disturbance to maintain good control performance of TWUM.

  6. Engineering controllable bidirectional molecular motors based on myosin

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev

    2012-04-01

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells and have potential applications in molecular detection and diagnostic devices. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions and other signals. Here, we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies and guided by a structural model for the redirected power stroke of myosin VI, we have constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should make it possible to achieve spatiotemporal control over a range of motor properties including processivity, stride size and branchpoint turning.

  7. Sensory-motor networks involved in speech production and motor control: an fMRI study.

    PubMed

    Behroozmand, Roozbeh; Shebek, Rachel; Hansen, Daniel R; Oya, Hiroyuki; Robin, Donald A; Howard, Matthew A; Greenlee, Jeremy D W

    2015-04-01

    Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve sensory-motor interactions that incorporate feedback information for online monitoring and control of produced speech sounds. In the present study, we adopted an auditory feedback pitch perturbation paradigm and combined it with functional magnetic resonance imaging (fMRI) recordings in order to identify brain areas involved in speech production and motor control. Subjects underwent fMRI scanning while they produced a steady vowel sound /a/ (speaking) or listened to the playback of their own vowel production (playback). During each condition, the auditory feedback from vowel production was either normal (no perturbation) or perturbed by an upward (+600 cents) pitch-shift stimulus randomly. Analysis of BOLD responses during speaking (with and without shift) vs. rest revealed activation of a complex network including bilateral superior temporal gyrus (STG), Heschl's gyrus, precentral gyrus, supplementary motor area (SMA), Rolandic operculum, postcentral gyrus and right inferior frontal gyrus (IFG). Performance correlation analysis showed that the subjects produced compensatory vocal responses that significantly correlated with BOLD response increases in bilateral STG and left precentral gyrus. However, during playback, the activation network was limited to cortical auditory areas including bilateral STG and Heschl's gyrus. Moreover, the contrast between speaking vs. playback highlighted a distinct functional network that included bilateral precentral gyrus, SMA, IFG, postcentral gyrus and insula. These findings suggest that speech motor control involves feedback error detection in sensory (e.g. auditory) cortices that subsequently activate motor-related areas for the adjustment of speech parameters during speaking.

  8. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control.

    PubMed

    Pinzon-Morales, Ruben-Dario; Hirata, Yutaka

    2015-01-01

    The cerebellar granule cells (GCs) have been proposed to perform lossless, adaptive spatio-temporal coding of incoming sensory/motor information required by downstream cerebellar circuits to support motor learning, motor coordination, and cognition. Here we use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN) to selectively enable/disable the output of GCs and evaluate the behavioral and neural consequences during three different control scenarios. The control scenarios are a simple direct current motor (1 degree of freedom: DOF), an unstable two-wheel balancing robot (2 DOFs), and a simulation model of a quadcopter (6 DOFs). Results showed that adequate control was maintained with a relatively small number of GCs (< 200) in all the control scenarios. However, the minimum number of GCs required to successfully govern each control plant increased with their complexity (i.e., DOFs). It was also shown that increasing the number of GCs resulted in higher robustness against changes in the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic weights). Therefore, we suggest that the abundant GCs in the cerebellar cortex provide the computational power during the large repertoire of motor activities and motor plants the cerebellum is involved with, and bring robustness against changes in the cerebellar microcircuit (e.g., neuronal connections).

  9. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control.

    PubMed

    Pinzon-Morales, Ruben-Dario; Hirata, Yutaka

    2015-01-01

    The cerebellar granule cells (GCs) have been proposed to perform lossless, adaptive spatio-temporal coding of incoming sensory/motor information required by downstream cerebellar circuits to support motor learning, motor coordination, and cognition. Here we use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN) to selectively enable/disable the output of GCs and evaluate the behavioral and neural consequences during three different control scenarios. The control scenarios are a simple direct current motor (1 degree of freedom: DOF), an unstable two-wheel balancing robot (2 DOFs), and a simulation model of a quadcopter (6 DOFs). Results showed that adequate control was maintained with a relatively small number of GCs (< 200) in all the control scenarios. However, the minimum number of GCs required to successfully govern each control plant increased with their complexity (i.e., DOFs). It was also shown that increasing the number of GCs resulted in higher robustness against changes in the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic weights). Therefore, we suggest that the abundant GCs in the cerebellar cortex provide the computational power during the large repertoire of motor activities and motor plants the cerebellum is involved with, and bring robustness against changes in the cerebellar microcircuit (e.g., neuronal connections). PMID:25983678

  10. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control

    PubMed Central

    Pinzon-Morales, Ruben-Dario; Hirata, Yutaka

    2015-01-01

    The cerebellar granule cells (GCs) have been proposed to perform lossless, adaptive spatio-temporal coding of incoming sensory/motor information required by downstream cerebellar circuits to support motor learning, motor coordination, and cognition. Here we use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN) to selectively enable/disable the output of GCs and evaluate the behavioral and neural consequences during three different control scenarios. The control scenarios are a simple direct current motor (1 degree of freedom: DOF), an unstable two-wheel balancing robot (2 DOFs), and a simulation model of a quadcopter (6 DOFs). Results showed that adequate control was maintained with a relatively small number of GCs (< 200) in all the control scenarios. However, the minimum number of GCs required to successfully govern each control plant increased with their complexity (i.e., DOFs). It was also shown that increasing the number of GCs resulted in higher robustness against changes in the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic weights). Therefore, we suggest that the abundant GCs in the cerebellar cortex provide the computational power during the large repertoire of motor activities and motor plants the cerebellum is involved with, and bring robustness against changes in the cerebellar microcircuit (e.g., neuronal connections). PMID:25983678

  11. Molecular substrates of action control in cortico-striatal circuits

    PubMed Central

    Shiflett, Michael W.; Balleine, Bernard W.

    2011-01-01

    The purpose of this review is to describe the molecular mechanisms in the striatum that mediate reward-based learning and action control during instrumental conditioning. Experiments assessing the neural bases of instrumental conditioning have uncovered functional circuits in the striatum, including dorsal and ventral striatal sub-regions, involved in action-outcome learning, stimulus-response learning, and the motivational control of action by reward-associated cues. Integration of dopamine (DA) and glutamate neurotransmission within these striatal sub-regions is hypothesized to enable learning and action control through its role in shaping synaptic plasticity and cellular excitability. The extracellular signal regulated kinase (ERK) appears to be particularly important for reward-based learning and action control due to its sensitivity to combined DA and glutamate receptor activation and its involvement in a range of cellular functions. ERK activation in striatal neurons is proposed to have a dual role in both the learning and performance factors that contribute to instrumental conditioning through its regulation of plasticity-related transcription factors and its modulation of intrinsic cellular excitability. Furthermore, perturbation of ERK activation by drugs of abuse may give rise to behavioral disorders such as addiction. PMID:21704115

  12. Redundant information encoding in primary motor cortex during natural and prosthetic motor control.

    PubMed

    So, Kelvin; Ganguly, Karunesh; Jimenez, Jessica; Gastpar, Michael C; Carmena, Jose M

    2012-06-01

    Redundant encoding of information facilitates reliable distributed information processing. To explore this hypothesis in the motor system, we applied concepts from information theory to quantify the redundancy of movement-related information encoded in the macaque primary motor cortex (M1) during natural and neuroprosthetic control. Two macaque monkeys were trained to perform a delay center-out reaching task controlling a computer cursor under natural arm movement (manual control, 'MC'), and using a brain-machine interface (BMI) via volitional control of neural ensemble activity (brain control, 'BC'). During MC, we found neurons in contralateral M1 to contain higher and more redundant information about target direction than ipsilateral M1 neurons, consistent with the laterality of movement control. During BC, we found that the M1 neurons directly incorporated into the BMI ('direct' neurons) contained the highest and most redundant target information compared to neurons that were not incorporated into the BMI ('indirect' neurons). This effect was even more significant when comparing to M1 neurons of the opposite hemisphere. Interestingly, when we retrained the BMI to use ipsilateral M1 activity, we found that these neurons were more redundant and contained higher information than contralateral M1 neurons, even though ensembles from this hemisphere were previously less redundant during natural arm movement. These results indicate that ensembles most associated to movement contain highest redundancy and information encoding, which suggests a role for redundancy in proficient natural and prosthetic motor control.

  13. Piezoelectric drive circuit

    DOEpatents

    Treu, C.A. Jr.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  14. Piezoelectric drive circuit

    DOEpatents

    Treu, Jr., Charles A.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  15. PD control for robot manipulators actuated by switched reluctance motors

    NASA Astrophysics Data System (ADS)

    Hernández-Guzmán, Victor M.; Carrillo-Serrano, Roberto V.; Silva-Ortigoza, Ramón

    2013-03-01

    This article is concerned with position regulation in direct-drive n degrees of freedom rigid robots equipped only with revolute joints when actuated by switched reluctance motors. Our controller represents an extension to this case of a previous work in the literature which was proposed for a single-switched reluctance motor when moving a simple linear mechanical load. We show how to avoid a singularity present in such a previous controller. We also introduce some simplifications since the number of terms to be fedback is smaller. Further, a linear proportional inner electric current loop is included instead of a velocity dependent one.

  16. Parallel, redundant circuit organization for homeostatic control of feeding behavior.

    PubMed

    Betley, J Nicholas; Cao, Zhen Fang Huang; Ritola, Kimberly D; Sternson, Scott M

    2013-12-01

    Neural circuits for essential natural behaviors are shaped by selective pressure to coordinate reliable execution of flexible goal-directed actions. However, the structural and functional organization of survival-oriented circuits is poorly understood due to exceptionally complex neuroanatomy. This is exemplified by AGRP neurons, which are a molecularly defined population that is sufficient to rapidly coordinate voracious food seeking and consumption behaviors. Here, we use cell-type-specific techniques for neural circuit manipulation and projection-specific anatomical analysis to examine the organization of this critical homeostatic circuit that regulates feeding. We show that AGRP neuronal circuits use a segregated, parallel, and redundant output configuration. AGRP neuron axon projections that target different brain regions originate from distinct subpopulations, several of which are sufficient to independently evoke feeding. The concerted anatomical and functional analysis of AGRP neuron projection populations reveals a constellation of core forebrain nodes, which are part of an extended circuit that mediates feeding behavior.

  17. Horizontal and vertical components of head movement are controlled by distinct neural circuits in the barn owl.

    PubMed

    Masino, T; Knudsen, E I

    1990-05-31

    To generate behaviour, the brain must transform sensory information into signals that are appropriate to control movement. Sensory and motor coordinate frames are fundamentally different, however: sensory coordinates are based on the spatiotemporal patterns of activity arising from the various sense organs, whereas motor coordinates are based on the pulling directions of muscles or groups of muscles. Results from psychophysical experiments suggest that in the process of transforming sensory information into motor control signals, the brain encodes movements in abstract or extrinsic coordinate frames, that is ones not closely related to the geometry of the sensory apparatus or of the skeletomusculature. Here we show that an abstract code underlies movements of the head by the barn owl. Specifically, the data show that subsequent to the retinotopic code for space in the optic tectum yet before the motor neuron code for muscle tensions there exists a code for head movement in which upward, downward, leftward and rightward components of movement are controlled by four functionally distinct neural circuits. Such independent coding of orthogonal components of movement may be a common intermediate step in the transformation of sensation into behaviour. PMID:2342573

  18. Active Fault Tolerant Control for Ultrasonic Piezoelectric Motor

    NASA Astrophysics Data System (ADS)

    Boukhnifer, Moussa

    2012-07-01

    Ultrasonic piezoelectric motor technology is an important system component in integrated mechatronics devices working on extreme operating conditions. Due to these constraints, robustness and performance of the control interfaces should be taken into account in the motor design. In this paper, we apply a new architecture for a fault tolerant control using Youla parameterization for an ultrasonic piezoelectric motor. The distinguished feature of proposed controller architecture is that it shows structurally how the controller design for performance and robustness may be done separately which has the potential to overcome the conflict between performance and robustness in the traditional feedback framework. A fault tolerant control architecture includes two parts: one part for performance and the other part for robustness. The controller design works in such a way that the feedback control system will be solely controlled by the proportional plus double-integral PI2 performance controller for a nominal model without disturbances and H∞ robustification controller will only be activated in the presence of the uncertainties or an external disturbances. The simulation results demonstrate the effectiveness of the proposed fault tolerant control architecture.

  19. Motor Skill Learning, Retention, and Control Deficits in Parkinson's Disease

    PubMed Central

    Pendt, Lisa Katharina; Reuter, Iris; Müller, Hermann

    2011-01-01

    Parkinson's disease, which affects the basal ganglia, is known to lead to various impairments of motor control. Since the basal ganglia have also been shown to be involved in learning processes, motor learning has frequently been investigated in this group of patients. However, results are still inconsistent, mainly due to skill levels and time scales of testing. To bridge across the time scale problem, the present study examined de novo skill learning over a long series of practice sessions that comprised early and late learning stages as well as retention. 19 non-demented, medicated, mild to moderate patients with Parkinson's disease and 19 healthy age and gender matched participants practiced a novel throwing task over five days in a virtual environment where timing of release was a critical element. Six patients and seven control participants came to an additional long-term retention testing after seven to nine months. Changes in task performance were analyzed by a method that differentiates between three components of motor learning prominent in different stages of learning: Tolerance, Noise and Covariation. In addition, kinematic analysis related the influence of skill levels as affected by the specific motor control deficits in Parkinson patients to the process of learning. As a result, patients showed similar learning in early and late stages compared to the control subjects. Differences occurred in short-term retention tests; patients' performance constantly decreased after breaks arising from poorer release timing. However, patients were able to overcome the initial timing problems within the course of each practice session and could further improve their throwing performance. Thus, results demonstrate the intact ability to learn a novel motor skill in non-demented, medicated patients with Parkinson's disease and indicate confounding effects of motor control deficits on retention performance. PMID:21760898

  20. Chaotic operation and chaos control of travelling wave ultrasonic motor.

    PubMed

    Shi, Jingzhuo; Zhao, Fujie; Shen, Xiaoxi; Wang, Xiaojie

    2013-08-01

    The travelling wave ultrasonic motor, which is a nonlinear dynamic system, has complex chaotic phenomenon with some certain choices of system parameters and external inputs, and its chaotic characteristics have not been studied until now. In this paper, the preliminary study of the chaos phenomenon in ultrasonic motor driving system has been done. The experiment of speed closed-loop control is designed to obtain several groups of time sampling data sequence of the amplitude of driving voltage, and phase-space reconstruction is used to analyze the chaos characteristics of these time sequences. The largest Lyapunov index is calculated and the result is positive, which shows that the travelling wave ultrasonic motor has chaotic characteristics in a certain working condition Then, the nonlinear characteristics of travelling wave ultrasonic motor are analyzed which includes Lyapunov exponent map, the bifurcation diagram and the locus of voltage relative to speed based on the nonlinear chaos model of a travelling wave ultrasonic motor. After that, two kinds of adaptive delay feedback controllers are designed in this paper to control and suppress chaos in USM speed control system. Simulation results show that the method can control unstable periodic orbits, suppress chaos in USM control system. Proportion-delayed feedback controller was designed following and arithmetic of fuzzy logic was used to adaptively adjust the delay time online. Simulation results show that this method could fast and effectively change the chaos movement into periodic or fixed-point movement and make the system enter into stable state from chaos state. Finally the chaos behavior was controlled.

  1. Optimal motor control may mask sensory dynamics

    PubMed Central

    Kiemel, Tim; Cowan, Noah J.; Jeka, John J.

    2009-01-01

    Properties of neural controllers for closed-loop sensorimotor behavior can be inferred with system identification. Under the standard paradigm, the closed-loop system is perturbed (input), measurements are taken (output), and the relationship between input and output reveals features of the system under study. Here we show that under common assumptions made about such systems (e.g. the system implements optimal control with a penalty on mechanical, but not sensory, states) important aspects of the neural controller (its zeros mask the modes of the sensors) remain hidden from standard system identification techniques. Only by perturbing or measuring the closed-loop system “between” the sensor and the control can these features be exposed with closed-loop system identification methods; while uncommon, there exist noninvasive techniques such as galvanic vestibular stimulation that perturb between sensor and controller in this way. PMID:19408009

  2. Age peculiarities of human motor control in aging.

    PubMed

    Mankovsky, N B; Mints, A Y; Lisenyuk, V P

    1982-01-01

    A clinicophysiological investigation of motor control was carried out in 199 apparently healthy, socially active elderly (aged 60-69 years) and long-living (90 years and over) subjects in order to establish the peculiarities of the motor sphere specific to age-related changes of the nervous system. Analyzing the experimentally induced state of readiness (intention) before a spontaneous movement, we found an increase with age in the latent period of the muscle intentional activity (IA) parallel to an increase in the latent period of the spontaneous movement, a decrease in IA amplitude with more frequent structural deviations of the EMG in the prestarting period and a reduction of the required IA selectiveness. The described changes in the organization of readiness for a spontaneous movement seemed to be related with age impairment of supraspinal (mainly corticospinal) influences and may be used for an explanation of a number of clinical peculiarities of human motor control in late ontogenesis.

  3. Mass Spectrometry Imaging and GC-MS Profiling of the Mammalian Peripheral Sensory-Motor Circuit.

    PubMed

    Rubakhin, Stanislav S; Ulanov, Alexander; Sweedler, Jonathan V

    2015-06-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has evolved to become an effective discovery tool in science and clinical diagnostics. Here, chemical imaging approaches are applied to well-defined regions of the mammalian peripheral sensory-motor system, including the dorsal root ganglia (DRG) and adjacent nerves. By combining several MSI approaches, analyte coverage is increased and 195 distinct molecular features are observed. Principal component analysis suggests three chemically different regions within the sensory-motor system, with the DRG and adjacent nerve regions being the most distinct. Investigation of these regions using gas chromatography-mass spectrometry corroborate these findings and reveal important metabolic markers related to the observed differences. The heterogeneity of the structurally, physiologically, and functionally connected regions demonstrates the intricate chemical and spatial regulation of their chemical composition.

  4. Mass Spectrometry Imaging and GC-MS Profiling of the Mammalian Peripheral Sensory-Motor Circuit

    NASA Astrophysics Data System (ADS)

    Rubakhin, Stanislav S.; Ulanov, Alexander; Sweedler, Jonathan V.

    2015-06-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has evolved to become an effective discovery tool in science and clinical diagnostics. Here, chemical imaging approaches are applied to well-defined regions of the mammalian peripheral sensory-motor system, including the dorsal root ganglia (DRG) and adjacent nerves. By combining several MSI approaches, analyte coverage is increased and 195 distinct molecular features are observed. Principal component analysis suggests three chemically different regions within the sensory-motor system, with the DRG and adjacent nerve regions being the most distinct. Investigation of these regions using gas chromatography-mass spectrometry corroborate these findings and reveal important metabolic markers related to the observed differences. The heterogeneity of the structurally, physiologically, and functionally connected regions demonstrates the intricate chemical and spatial regulation of their chemical composition.

  5. Mass Spectrometry Imaging and GC-MS Profiling of the Mammalian Peripheral Sensory-Motor Circuit

    PubMed Central

    Rubakhin, Stanislav S.; Ulanov, Alexander; Sweedler, Jonathan V.

    2015-01-01

    Matrix-assisted laser desorption / ionization-mass spectrometry imaging (MSI) has evolved to become an effective discovery tool in science and clinical diagnostics. Here, chemical imaging approaches are applied to well-defined regions of the mammalian peripheral sensory-motor system, including the dorsal root ganglia (DRG) and adjacent nerves. By combining several MSI approaches, analyte coverage is increased and 195 distinct molecular features are observed. Principal component analysis suggests three chemically different regions within the sensory-motor system, with the DRG and adjacent nerve regions being the most distinct. Investigation of these regions using gas chromatography-mass spectrometry corroborate these findings and reveal important metabolic markers related to the observed differences. The heterogeneity of the structurally, physiologically, and functionally connected regions demonstrates the intricate chemical and spatial regulation of their chemical composition. PMID:25822927

  6. Energy-saving technology of vector controlled induction motor based on the adaptive neuro-controller

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Karandeev, D.

    2015-10-01

    The ongoing evolution of the power system towards a Smart Grid implies an important role of intelligent technologies, but poses strict requirements on their control schemes to preserve stability and controllability. This paper presents the adaptive neuro-controller for the vector control of induction motor within Smart Gird. The validity and effectiveness of the proposed energy-saving technology of vector controlled induction motor based on adaptive neuro-controller are verified by simulation results at different operating conditions over a wide speed range of induction motor.

  7. Voluntary motor commands reveal awareness and control of involuntary movement.

    PubMed

    De Havas, Jack; Ghosh, Arko; Gomi, Hiroaki; Haggard, Patrick

    2016-10-01

    The capacity to inhibit actions is central to voluntary motor control. However, the control mechanisms and subjective experience involved in voluntarily stopping an involuntary movement remain poorly understood. Here we examined, in humans, the voluntary inhibition of the Kohnstamm phenomenon, in which sustained voluntary contraction of shoulder abductors is followed by involuntary arm raising. Participants were instructed to stop the involuntary movement, hold the arm in a constant position, and 'release' the inhibition after ∼2s. Participants achieved this by modulating agonist muscle activity, rather than by antagonist contraction. Specifically, agonist muscle activity plateaued during this voluntary inhibition, and resumed its previous increase thereafter. There was no discernible antagonist activation. Thus, some central signal appeared to temporarily counter the involuntary motor drive, without directly affecting the Kohnstamm generator itself. We hypothesise a form of "negative motor command" to account for this novel finding. We next tested the specificity of the negative motor command, by inducing bilateral Kohnstamm movements, and instructing voluntary inhibition for one arm only. The results suggested negative motor commands responsible for inhibition are initially broad, affecting both arms, and then become focused. Finally, a psychophysical investigation found that the perceived force of the aftercontraction was significantly overestimated, relative to voluntary contractions with similar EMG levels. This finding is consistent with the hypothesis that the Kohnstamm generator does not provide an efference copy signal. Our results shed new light on this interesting class of involuntary movement, and provide new information about voluntary inhibition of action. PMID:27399155

  8. Speed tracking and synchronization of multiple motors using ring coupling control and adaptive sliding mode control.

    PubMed

    Li, Le-Bao; Sun, Ling-Ling; Zhang, Sheng-Zhou; Yang, Qing-Quan

    2015-09-01

    A new control approach for speed tracking and synchronization of multiple motors is developed, by incorporating an adaptive sliding mode control (ASMC) technique into a ring coupling synchronization control structure. This control approach can stabilize speed tracking of each motor and synchronize its motion with other motors' motion so that speed tracking errors and synchronization errors converge to zero. Moreover, an adaptive law is exploited to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort and attenuate chattering. Performance comparisons with parallel control, relative coupling control and conventional PI control are investigated on a four-motor synchronization control system. Extensive simulation results show the effectiveness of the proposed control scheme.

  9. Semiclosed-circuit atmosphere control in a portable recompression chamber

    NASA Technical Reports Server (NTRS)

    Riegel, P. S.; Caudy, D. W.

    1972-01-01

    A small portable recompression chamber is described that can be used both to treat a diver for decompression sickness or to transport him to a larger chamber complex. The device can be operated in either open circuit or semiclosed circuit atmospheres, permits two way conversation between patient and attendant, and uses an air injector for circulation of the chamber atmosphere.

  10. Planning and on-line control of catching as a function of perceptual-motor constraints.

    PubMed

    Mazyn, Liesbeth I N; Savelsbergh, Geert J P; Montagne, Gilles; Lenoir, Matthieu

    2007-09-01

    Two experiments were conducted in order to investigate the adaptability and associated strategies of the human perceptuo-motor system to deal with changing constraints. In a catching task, perceptual-motor constraints were internally controlled by coupling movement onset of the catch and the illumination circuit in the lab: upon the first movement of the catcher, all lights went out within 3 ms. The authors studied (a) how much movement time catchers prefer if no visual information is available after movement onset, and (b) how movement execution changes under such temporal constraints. It was hypothesised that, in order to accomplish successful catching behaviour, (1) movement initiation would be postponed in order to allow sufficient information uptake before the lights went out, and (2) an alternative control strategy would have to be mobilised, since on-line control becomes inappropriate when catching in the dark. In the first experiment, the adaptation process to the light-dark paradigm was investigated. In the second experiment, the conclusions from experiment 1 were challenged under varying ball speeds. In order to maintain catching performance, subjects initiated the catch approximately 280 ms before ball-hand contact. Next to changes in temporal structure of the catch and subtle kinematic adaptations, evidence for a change in the control mode emerged: while an on-line control strategy was adopted under normal illumination, catching movements seemed to be executed as planned in advance when catching in the dark. Additionally, perceptual constraints seem to determine the time of movement initiation, rather than motor constraints. These results emphasize the capability of the human perceptuo-motor system to adjust promptly to new task constraints.

  11. Mean deviation coupling synchronous control for multiple motors via second-order adaptive sliding mode control.

    PubMed

    Li, Lebao; Sun, Lingling; Zhang, Shengzhou

    2016-05-01

    A new mean deviation coupling synchronization control strategy is developed for multiple motor control systems, which can guarantee the synchronization performance of multiple motor control systems and reduce complexity of the control structure with the increasing number of motors. The mean deviation coupling synchronization control architecture combining second-order adaptive sliding mode control (SOASMC) approach is proposed, which can improve synchronization control precision of multiple motor control systems and make speed tracking errors, mean speed errors of each motor and speed synchronization errors converge to zero rapidly. The proposed control scheme is robustness to parameter variations and random external disturbances and can alleviate the chattering phenomena. Moreover, an adaptive law is employed to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort. Performance comparisons with master-slave control, relative coupling control, ring coupling control, conventional PI control and SMC are investigated on a four-motor synchronization control system. Extensive comparative results are given to shown the good performance of the proposed control scheme. PMID:26899554

  12. Mean deviation coupling synchronous control for multiple motors via second-order adaptive sliding mode control.

    PubMed

    Li, Lebao; Sun, Lingling; Zhang, Shengzhou

    2016-05-01

    A new mean deviation coupling synchronization control strategy is developed for multiple motor control systems, which can guarantee the synchronization performance of multiple motor control systems and reduce complexity of the control structure with the increasing number of motors. The mean deviation coupling synchronization control architecture combining second-order adaptive sliding mode control (SOASMC) approach is proposed, which can improve synchronization control precision of multiple motor control systems and make speed tracking errors, mean speed errors of each motor and speed synchronization errors converge to zero rapidly. The proposed control scheme is robustness to parameter variations and random external disturbances and can alleviate the chattering phenomena. Moreover, an adaptive law is employed to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort. Performance comparisons with master-slave control, relative coupling control, ring coupling control, conventional PI control and SMC are investigated on a four-motor synchronization control system. Extensive comparative results are given to shown the good performance of the proposed control scheme.

  13. Multimodal chemosensory circuits controlling male courtship in Drosophila

    PubMed Central

    Clowney, E. Josephine; Iguchi, Shinya; Bussell, Jennifer J.; Scheer, Elias; Ruta, Vanessa

    2015-01-01

    Summary Throughout the animal kingdom, internal states generate long-lasting and self-perpetuating chains of behavior. In Drosophila, males instinctively pursue females with a lengthy and elaborate courtship ritual triggered by activation of sexually dimorphic P1 interneurons. Gustatory pheromones are thought to activate P1 neurons but the circuit mechanisms that dictate their sensory responses to gate entry into courtship remain unknown. Here, we use circuit mapping and in vivo functional imaging techniques to trace gustatory and olfactory pheromone circuits to their point of convergence onto P1 neurons and reveal how their combined input underlies selective tuning to appropriate sexual partners. We identify inhibition, even in response to courtship-promoting pheromones, as a key circuit element that tunes and tempers P1 neuron activity. Our results suggest a circuit mechanism in which balanced excitation and inhibition underlie discrimination of prospective mates and stringently regulate the transition to courtship in Drosophila. PMID:26279475

  14. Multimodal Chemosensory Circuits Controlling Male Courtship in Drosophila.

    PubMed

    Clowney, E Josephine; Iguchi, Shinya; Bussell, Jennifer J; Scheer, Elias; Ruta, Vanessa

    2015-09-01

    Throughout the animal kingdom, internal states generate long-lasting and self-perpetuating chains of behavior. In Drosophila, males instinctively pursue females with a lengthy and elaborate courtship ritual triggered by activation of sexually dimorphic P1 interneurons. Gustatory pheromones are thought to activate P1 neurons but the circuit mechanisms that dictate their sensory responses to gate entry into courtship remain unknown. Here, we use circuit mapping and in vivo functional imaging techniques to trace gustatory and olfactory pheromone circuits to their point of convergence onto P1 neurons and reveal how their combined input underlies selective tuning to appropriate sexual partners. We identify inhibition, even in response to courtship-promoting pheromones, as a key circuit element that tunes and tempers P1 neuron activity. Our results suggest a circuit mechanism in which balanced excitation and inhibition underlie discrimination of prospective mates and stringently regulate the transition to courtship in Drosophila.

  15. Controlling the elements: an optogenetic approach to understanding the neural circuits of fear.

    PubMed

    Johansen, Joshua P; Wolff, Steffen B E; Lüthi, Andreas; LeDoux, Joseph E

    2012-06-15

    Neural circuits underlie our ability to interact in the world and to learn adaptively from experience. Understanding neural circuits and how circuit structure gives rise to neural firing patterns or computations is fundamental to our understanding of human experience and behavior. Fear conditioning is a powerful model system in which to study neural circuits and information processing and relate them to learning and behavior. Until recently, technological limitations have made it difficult to study the causal role of specific circuit elements during fear conditioning. However, newly developed optogenetic tools allow researchers to manipulate individual circuit components such as anatomically or molecularly defined cell populations, with high temporal precision. Applying these tools to the study of fear conditioning to control specific neural subpopulations in the fear circuit will facilitate a causal analysis of the role of these circuit elements in fear learning and memory. By combining this approach with in vivo electrophysiological recordings in awake, behaving animals, it will also be possible to determine the functional contribution of specific cell populations to neural processing in the fear circuit. As a result, the application of optogenetics to fear conditioning could shed light on how specific circuit elements contribute to neural coding and to fear learning and memory. Furthermore, this approach may reveal general rules for how circuit structure and neural coding within circuits gives rise to sensory experience and behavior.

  16. Motor Room, overall view to the west. The control cabinet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Motor Room, overall view to the west. The control cabinet and cement pipes along the south wall are being temporarily stored in the Pumping Plant and are not part of the original equipment - Wellton-Mohawk Irrigation System, Pumping Plant No. 1, Bounded by Gila River & Union Pacific Railroad, Wellton, Yuma County, AZ

  17. Analysis and modelling of human motor control systems.

    PubMed

    Denier van der Gon, J J

    1978-01-01

    In this contribution the aims and possibilities of model studies and simulations are briefly discussed. Next, a simulation kit for the peripheral motor control system is presented in outline and, finally, some results which can be obtained with it are given.

  18. The paternity of the power law of human motor control.

    PubMed

    Kvålseth, T O

    1993-02-01

    It is pointed out that, contrary to a recent paternity claim, the power law of human motor control was first discovered by this author more than ten years ago. The classical Fitts' law is shown to be a special case of the power law.

  19. 31. DETAIL OF CONTROLS, ELECTRIC MOTOR, AND LOWER SHEAVES OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. DETAIL OF CONTROLS, ELECTRIC MOTOR, AND LOWER SHEAVES OF OTIS PASSENGER ELEVATOR ADDED IN 1921, BASEMENT. The original equipment, shown here, operated on direct current from the Massachusetts Avenue trolley line, abandoned in 1961. - Woodrow Wilson House, 2340 South S Street, Northwest, Washington, District of Columbia, DC

  20. Motor and Executive Control in Repetitive Timing of Brief Intervals

    ERIC Educational Resources Information Center

    Holm, Linus; Ullen, Fredrik; Madison, Guy

    2013-01-01

    We investigated the causal role of executive control functions in the production of brief time intervals by means of a concurrent task paradigm. To isolate the influence of executive functions on timing from motor coordination effects, we dissociated executive load from the number of effectors used in the dual task situation. In 3 experiments,…

  1. HSPICE modelling of a solar array circuit controlled by a fet switch

    NASA Technical Reports Server (NTRS)

    Cox, Deanna D.; Natarajan, T.; Day, John

    1987-01-01

    This paper presents a method of modeling a solar array circuit controlled by a hexfet switch on HSPICE. HSPICE models are developed for the solar array current voltage (IV) characteristic and the IRF150 hexfet. Computer simulations are made to verify rate of current change at the load. The equivalent LC circuit for the same current control is modeled to show savings in weight and power in choosing the fet switch over an LC circuit.

  2. A Simple Voltage Controlled Oscillator Using Bootstrap Circuits and NOR-RS Flip Flop

    NASA Astrophysics Data System (ADS)

    Chaikla, Amphawan; Pongswatd, Sawai; Sasaki, Hirofumi; Fujimoto, Kuniaki; Yahara, Mitsutoshi

    This paper presents a simple and successful design for a voltage controlled oscillator. The proposed circuit is based on the use of two identical bootstrap circuits and a NOR-RS Flip Flop to generate wide-tunable sawtooth and square waves. Increasing control voltage linearly increases the output oscillation frequency. Experimental results verifying the performances of the proposed circuit are in agreement with the calculated values.

  3. The shared circuits model (SCM): how control, mirroring, and simulation can enable imitation, deliberation, and mindreading.

    PubMed

    Hurley, Susan

    2008-02-01

    Imitation, deliberation, and mindreading are characteristically human sociocognitive skills. Research on imitation and its role in social cognition is flourishing across various disciplines. Imitation is surveyed in this target article under headings of behavior, subpersonal mechanisms, and functions of imitation. A model is then advanced within which many of the developments surveyed can be located and explained. The shared circuits model (SCM) explains how imitation, deliberation, and mindreading can be enabled by subpersonal mechanisms of control, mirroring, and simulation. It is cast at a middle, functional level of description, that is, between the level of neural implementation and the level of conscious perceptions and intentional actions. The SCM connects shared informational dynamics for perception and action with shared informational dynamics for self and other, while also showing how the action/perception, self/other, and actual/possible distinctions can be overlaid on these shared informational dynamics. It avoids the common conception of perception and action as separate and peripheral to central cognition. Rather, it contributes to the situated cognition movement by showing how mechanisms for perceiving action can be built on those for active perception.;>;>The SCM is developed heuristically, in five layers that can be combined in various ways to frame specific ontogenetic or phylogenetic hypotheses. The starting point is dynamic online motor control, whereby an organism is closely attuned to its embedding environment through sensorimotor feedback. Onto this are layered functions of prediction and simulation of feedback, mirroring, simulation of mirroring, monitored inhibition of motor output, and monitored simulation of input. Finally, monitored simulation of input specifying possible actions plus inhibited mirroring of such possible actions can generate information about the possible as opposed to actual instrumental actions of others, and the

  4. Raclopride or high-frequency stimulation of the subthalamic nucleus stops cocaine-induced motor stereotypy and restores related alterations in prefrontal basal ganglia circuits.

    PubMed

    Aliane, Verena; Pérez, Sylvie; Deniau, Jean-Michel; Kemel, Marie-Louise

    2012-11-01

    Motor stereotypy is a key symptom of various neurological or neuropsychiatric disorders. Neuroleptics or the promising treatment using deep brain stimulation stops stereotypies but the mechanisms underlying their actions are unclear. In rat, motor stereotypies are linked to an imbalance between prefrontal and sensorimotor cortico-basal ganglia circuits. Indeed, cortico-nigral transmission was reduced in the prefrontal but not sensorimotor basal ganglia circuits and dopamine and acetylcholine release was altered in the prefrontal but not sensorimotor territory of the dorsal striatum. Furthermore, cholinergic transmission in the prefrontal territory of the dorsal striatum plays a crucial role in the arrest of motor stereotypy. Here we found that, as previously observed for raclopride, high-frequency stimulation of the subthalamic nucleus (HFS STN) rapidly stopped cocaine-induced motor stereotypies in rat. Importantly, raclopride and HFS STN exerted a strong effect on cocaine-induced alterations in prefrontal basal ganglia circuits. Raclopride restored the cholinergic transmission in the prefrontal territory of the dorsal striatum and the cortico-nigral information transmissions in the prefrontal basal ganglia circuits. HFS STN also restored the N-methyl-d-aspartic-acid-evoked release of acetylcholine and dopamine in the prefrontal territory of the dorsal striatum. However, in contrast to raclopride, HFS STN did not restore the cortico-substantia nigra pars reticulata transmissions but exerted strong inhibitory and excitatory effects on neuronal activity in the prefrontal subdivision of the substantia nigra pars reticulata. Thus, both raclopride and HFS STN stop cocaine-induced motor stereotypy, but exert different effects on the related alterations in the prefrontal basal ganglia circuits.

  5. Controlled Rotation and Manipulation of Individual Molecular Motors

    NASA Astrophysics Data System (ADS)

    Kersell, Heath; Perera, U. G. E.; Ample, F.; Zhang, Y.; Vives, G.; Echeverria, J.; Grisolia, M.; Rapenne, G.; Joachim, C.; Hla, S.-W.

    2015-03-01

    The design of artificial molecular machines often takes inspiration from macroscopic machines, but the parallels between the two are frequently only superficial because many molecular machines are governed by quantum processes. Previously, chemically and light driven rotary molecular motors have been developed. For electrically driven motors, tunneling electrons from the tip of a scanning tunneling microscope (STM) have been used to drive rotation in a simple rotor into a single direction and to move a wheeled molecule across a surface. Here, we show that a single standalone molecular motor adsorbed on a gold surface can be made to rotate in a clockwise or counterclockwise direction [1] by selective inelastic electron tunneling through different sub-units of the motor. Our motor is composed of a tripodal stator for vertical positioning, a five-arm rotator for controlled rotations, and a Ru atomic ball bearing connecting the static and rotational parts. The directional rotation originates from saw-tooth-like rotational potentials, which are determined by the internal molecular structure and are independent of the surface adsorption site. This project is supported by the US DOE, BES grant: DE-FG02-02ER46012.

  6. Integration simulation method concerning speed control of ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Miyauchi, R.; Yue, B.; Matsunaga, N.; Ishizuka, S.

    2016-09-01

    In this paper, the configuration of control system of the ultrasonic motor (USM) from finite element method (FEM) model by applying the nonlinear model order reduction (MOR) is proposed. First, the USM and the FEM model is introduced. Second, FEM model order reduction method is described. Third, the result of comparing the computing time and accuracy of the FEM model and reduced order model is shown. Finaly, nominal model for control is derived by system identification from reduced order model. Nonlinear model predictive control (NMPC) is applied to the nominal model, and speed is controlled. the controller effect is comfirmed by applying the proposed reduced order model.

  7. Microgravity induced changes in the control of motor units

    NASA Astrophysics Data System (ADS)

    de Luca, C.; Roy, S.

    The goal of this project is to understand the effects of microgravity on the control of muscles. It is motivated by the notion that in order to adequately address microgravity-induced deterioration in the force generating capacity of muscles, one needs to understand the changes in the control aspects in addition to histochemical and morphological changes. The investigations into muscle control need to include the regulation of the firing activity of motor units that make up a muscle and the coordination of different muscles responsible for the control of a joint. In order to understand the effects of microgravity on these two aspects of muscle control, we will test astronauts before and after spaceflight. The investigations of the control of motor units will involve intramuscular EMG techniques developed in our laboratory. We will use a quadrifilar electrode to detect simultaneously three differential channels of EMG activity. These data will be decomposed accurately using a sophisticated set of algorithms constructed with artificial intelligence knowledge- based techniques. Particular attention will be paid to the firing rate and recruitment behavior of motor units and we will study the degree of cross-correlation of the firing rates. This approach will enable us to study the firing behavior of several (approx. 10) concurrently active motor units. This analysis will enable us to detect modifications in the control of motor units. We will perform these investigations in a hand muscle, which continues being used in prehensile tasks in space, and a leg muscle whose antigravity role is not needed in space. The comparison of the effects of weightlessness on these muscles will determine if continued use of muscles in space deters the possible deleterious effects of microgravity on the control of motor units, in addition to slowing down atrophy. We are particularly interested in comparing the results of this study to similar data already obtained from elderly subjects

  8. Measuring circuit

    DOEpatents

    Sun, Shan C.; Chaprnka, Anthony G.

    1977-01-11

    An automatic gain control circuit functions to adjust the magnitude of an input signal supplied to a measuring circuit to a level within the dynamic range of the measuring circuit while a log-ratio circuit adjusts the magnitude of the output signal from the measuring circuit to the level of the input signal and optimizes the signal-to-noise ratio performance of the measuring circuit.

  9. Neural circuits controlling behavior and autonomic functions in medicinal leeches.

    PubMed

    Lamb, Damon G; Calabrese, Ronald L

    2011-09-28

    In the study of the neural circuits underlying behavior and autonomic functions, the stereotyped and accessible nervous system of medicinal leeches, Hirudo sp., has been particularly informative. These leeches express well-defined behaviors and autonomic movements which are amenable to investigation at the circuit and neuronal levels. In this review, we discuss some of the best understood of these movements and the circuits which underlie them, focusing on swimming, crawling and heartbeat. We also discuss the rudiments of decision-making: the selection between generally mutually exclusive behaviors at the neuronal level.

  10. Decoding Neural Circuits that Control Compulsive Sucrose-Seeking

    PubMed Central

    Nieh, Edward H.; Matthews, Gillian A.; Allsop, Stephen A.; Presbrey, Kara N.; Leppla, Christopher A.; Wichmann, Romy; Neve, Rachael; Wildes, Craig P.; Tye, Kay M.

    2015-01-01

    The lateral hypothalamic (LH) projection to the ventral tegmental area (VTA) has been linked to reward processing, but the computations within the LH-VTA loop that give rise to specific aspects of behavior have been difficult to isolate. We show that LH-VTA neurons encode the learned action of seeking a reward, independent of reward availability. In contrast, LH neurons downstream of VTA encode reward-predictive cues and unexpected reward omission. We show that inhibiting the LH-VTA pathway reduces “compulsive” sucrose-seeking, but not food consumption in hungry mice. We reveal that the LH sends excitatory and inhibitory input onto VTA dopamine (DA) and GABA neurons, and that the GABAergic projection drives feeding-related behavior. Our study overlays information about the type, function and connectivity of LH neurons and identifies a neural circuit that selectively controls compulsive sugar consumption, without preventing feeding necessary for survival, providing a potential target for therapeutic interventions for compulsive-overeating disorder. PMID:25635460

  11. Exploring the control circuit of cell migration by mathematical modeling.

    PubMed

    Satulovsky, Javier; Lui, Roger; Wang, Yu-li

    2008-05-01

    We have developed a top-down, rule-based mathematical model to explore the basic principles that coordinate mechanochemical events during animal cell migration, particularly the local-stimulation-global-inhibition model suggested originally for chemotaxis. Cells were modeled as a shape machine that protrudes or retracts in response to a combination of local protrusion and global retraction signals. Using an optimization algorithm to identify parameters that generate specific shapes and migration patterns, we show that the mechanism of local stimulation global inhibition can readily account for the behavior of Dictyostelium under a large collection of conditions. Within this collection, some parameters showed strong correlation, indicating that a normal phenotype may be maintained by complementation among functional modules. In addition, comparison of parameters for control and nocodazole-treated Dictyostelium identified the most prominent effect of microtubules as regulating the rates of retraction and protrusion signal decay, and the extent of global inhibition. Other changes in parameters can lead to profound transformations from amoeboid cells into cells mimicking keratocytes, neurons, or fibroblasts. Thus, a simple circuit of local stimulation-global inhibition can account for a wide range of cell behaviors. A similar top-down approach may be applied to other complex problems and combined with molecular manipulations to define specific protein functions.

  12. 46 CFR 111.91-1 - Power, control, and interlock circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Elevators and Dumbwaiters § 111.91-1 Power, control, and interlock circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME A17.1 (incorporated by reference; see 46 CFR 110.10-1)....

  13. 78 FR 32223 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... AGENCY 40 CFR Parts 80, 85, 86, 600, 1036, 1037, 1065, and 1066 RIN 2060-A0 Control of Air Pollution From... (``EPA'') is announcing an extension of the public comment period for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule...

  14. Method for controlling a motor vehicle powertrain

    DOEpatents

    Burba, J.C.; Landman, R.G.; Patil, P.B.; Reitz, G.A.

    1990-05-22

    A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission. 7 figs.

  15. Method for controlling a motor vehicle powertrain

    DOEpatents

    Burba, Joseph C.; Landman, Ronald G.; Patil, Prabhakar B.; Reitz, Graydon A.

    1990-01-01

    A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission.

  16. Effects of muscle atrophy on motor control

    NASA Technical Reports Server (NTRS)

    Stuart, D. G.

    1985-01-01

    As a biological tissue, muscle adapts to the demands of usage. One traditional way of assessing the extent of this adaptation has been to examine the effects of an altered-activity protocol on the physiological properties of muscles. However, in order to accurately interpret the changes associated with an activity pattern, it is necessary to employ an appropriate control model. A substantial literature exists which reports altered-use effects by comparing experimental observations with those from animals raised in small laboratory cages. Some evidence suggests that small-cage-reared animals actually represent a model of reduced use. For example, laboratory animals subjected to limited physical activity have shown resistance to insulin-induced glucose uptake which can be altered by exercise training. This project concerned itself with the basic mechanisms underlying muscle atrophy. Specifically, the project addressed the issue of the appropriateness of rats raised in conventional-sized cages as experimental models to examine this phenomenon. The project hypothesis was that rats raised in small cages are inappropriate models for the study of muscle atrophy. The experimental protocol involved: 1) raising two populations of rats, one group in conventional (small)-sized cages and the other group in a much larger (133x) cage, from weanling age (21 days) through to young adulthood (125 days); 2) comparison of size- and force-related characteristics of selected test muscles in an acute terminal paradigm.

  17. Propulsion control of superconducting linear synchronous motor vehicle

    SciTech Connect

    Sakamoto, Tetsuzo; Shiromizu, Tsunehiro

    1997-09-01

    The armature current of a superconducting Linear Synchronous Motor (LSM) for a maglev vehicle is controlled to produce a suitable propulsion force so that the vehicle follows the reference speed signal sent from a control station. Besides the power is supplied from some inverters to the LSM armature sections where the vehicle exists. This paper shows an exact mathematical modeling of the propulsion control system to treat the system analytically, which is used for designing controllers and performance computer simulations. The calculated results include the simulations when the vehicle goes through power feeder section borders and tunnels that have a large aerodynamic drag force with taking account of an inverter failure.

  18. Motor Control and Regulation for a Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara; Lyons, Valerie

    2003-01-01

    This talk will focus on the motor control algorithms used to regulate the flywheel system at the NASA Glenn Research Center. First a discussion of the inner loop torque control technique will be given. It is based on the principle of field orientation and is implemented without a position or speed sensor (sensorless control). Then the outer loop charge and discharge algorithm will be presented. This algorithm controls the acceleration of the flywheel during charging and the deceleration while discharging. The algorithm also allows the flywheel system to regulate the DC bus voltage during the discharge cycle.

  19. Arm coordination in octopus crawling involves unique motor control strategies.

    PubMed

    Levy, Guy; Flash, Tamar; Hochner, Binyamin

    2015-05-01

    To cope with the exceptional computational complexity that is involved in the control of its hyper-redundant arms [1], the octopus has adopted unique motor control strategies in which the central brain activates rather autonomous motor programs in the elaborated peripheral nervous system of the arms [2, 3]. How octopuses coordinate their eight long and flexible arms in locomotion is still unknown. Here, we present the first detailed kinematic analysis of octopus arm coordination in crawling. The results are surprising in several respects: (1) despite its bilaterally symmetrical body, the octopus can crawl in any direction relative to its body orientation; (2) body and crawling orientation are monotonically and independently controlled; and (3) contrasting known animal locomotion, octopus crawling lacks any apparent rhythmical patterns in limb coordination, suggesting a unique non-rhythmical output of the octopus central controller. We show that this uncommon maneuverability is derived from the radial symmetry of the arms around the body and the simple pushing-by-elongation mechanism by which the arms create the crawling thrust. These two together enable a mechanism whereby the central controller chooses in a moment-to-moment fashion which arms to recruit for pushing the body in an instantaneous direction. Our findings suggest that the soft molluscan body has affected in an embodied way [4, 5] the emergence of the adaptive motor behavior of the octopus.

  20. Arm coordination in octopus crawling involves unique motor control strategies.

    PubMed

    Levy, Guy; Flash, Tamar; Hochner, Binyamin

    2015-05-01

    To cope with the exceptional computational complexity that is involved in the control of its hyper-redundant arms [1], the octopus has adopted unique motor control strategies in which the central brain activates rather autonomous motor programs in the elaborated peripheral nervous system of the arms [2, 3]. How octopuses coordinate their eight long and flexible arms in locomotion is still unknown. Here, we present the first detailed kinematic analysis of octopus arm coordination in crawling. The results are surprising in several respects: (1) despite its bilaterally symmetrical body, the octopus can crawl in any direction relative to its body orientation; (2) body and crawling orientation are monotonically and independently controlled; and (3) contrasting known animal locomotion, octopus crawling lacks any apparent rhythmical patterns in limb coordination, suggesting a unique non-rhythmical output of the octopus central controller. We show that this uncommon maneuverability is derived from the radial symmetry of the arms around the body and the simple pushing-by-elongation mechanism by which the arms create the crawling thrust. These two together enable a mechanism whereby the central controller chooses in a moment-to-moment fashion which arms to recruit for pushing the body in an instantaneous direction. Our findings suggest that the soft molluscan body has affected in an embodied way [4, 5] the emergence of the adaptive motor behavior of the octopus. PMID:25891406

  1. Functional MRI in human motor control studies and clinical applications.

    PubMed

    Toma, Keiichiro; Nakai, Toshiharu

    2002-07-01

    Functional magnetic resonance imaging (fMRI) has been a useful tool for the noninvasive mapping of brain function associated with various motor and cognitive tasks. Because fMRI is based on the blood oxygenation level dependent (BOLD) effect, it does not directly record neural activity. With the fMRI technique, distinguishing BOLD signals created by cortical projection neurons from those created by intracortical neurons appears to be difficult. Two major experimental designs are used in fMRI studies: block designs and event-related designs. Block-designed fMRI presupposes the steady state of regional cerebral blood flow and has been applied to examinations of brain activation caused by tasks requiring sustained or repetitive movements. By contrast, the more recently developed event-related fMRI with time resolution of a few seconds allows the mapping of brain activation associated with a single movement according to the transient aspects of the hemodynamic response. Increasing evidence suggests that multiple motor areas are engaged in a networked manner to execute various motor acts. In order to understand functional brain maps, it is important that one understands sequential and parallel organizations of anatomical connections between multiple motor areas. In fMRI studies of complex motor tasks, elementary parameters such as movement length, force, velocity, acceleration and frequency should be controlled, because inconsistency in those parameters may alter the extent and intensity of motor cortical activation, confounding interpretation of the findings obtained. In addition to initiation of movements, termination of movements plays an important role in the successful achievement of complex movements. Brain areas exclusively related to the termination of movements have been, for the first time, uncovered with an event-related fMRI technique. We propose the application of fMRI to the elucidation of the pathophysiology of movement disorders, particularly dystonia

  2. Novel intelligent PID control of traveling wave ultrasonic motor.

    PubMed

    Jingzhuo, Shi; Yu, Liu; Jingtao, Huang; Meiyu, Xu; Juwei, Zhang; Lei, Zhang

    2014-09-01

    A simple control strategy with acceptable control performance can be a good choice for the mass production of ultrasonic motor control system. In this paper, through the theoretic and experimental analyses of typical control process, a simpler intelligent PID speed control strategy of TWUM is proposed, involving only two expert rules to adjust the PID control parameters based on the current status. Compared with the traditional PID controller, this design requires less calculation and more cheap chips which can be easily involved in online performance. Experiments with different load torques and voltage amplitudes show that the proposed controller can deal with the nonlinearity and load disturbance to maintain good control performance of TWUM. PMID:24957274

  3. Costs of control: decreased motor cortex engagement during a Go/NoGo task in Tourette's syndrome.

    PubMed

    Thomalla, Götz; Jonas, Melanie; Bäumer, Tobias; Siebner, Hartwig R; Biermann-Ruben, Katja; Ganos, Christos; Orth, Michael; Hummel, Friedhelm C; Gerloff, Christian; Müller-Vahl, Kirsten; Schnitzler, Alfons; Münchau, Alexander

    2014-01-01

    diffusion tensor imaging-based probabilistic tractography. Our results link reduced sensory-motor cortical activation during movement execution to a decreased co-activation between the sensory-motor cortex and other brain areas involved in motor processing. These functional changes in patients with Tourette's syndrome might result from adaptive reorganization in fronto-parietal brain networks engaged in motor and behavioural control, possibly triggered by abnormal processing and presumably overactivity in cortico-striato-cortical circuits. This might enable patients with Tourette's syndrome to better suppress unwanted movements but comes at a price of behavioural deficits in other domains.

  4. Control Code for Bearingless Switched-Reluctance Motor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.

    2007-01-01

    A computer program has been devised for controlling a machine that is an integral combination of magnetic bearings and a switched-reluctance motor. The motor contains an eight-pole stator and a hybrid rotor, which has both (1) a circular lamination stack for levitation and (2) a six-pole lamination stack for rotation. The program computes drive and levitation currents for the stator windings with real-time feedback control. During normal operation, two of the four pairs of opposing stator poles (each pair at right angles to the other pair) levitate the rotor. The remaining two pairs of stator poles exert torque on the six-pole rotor lamination stack to produce rotation. This version is executable in a control-loop time of 40 s on a Pentium (or equivalent) processor that operates at a clock speed of 400 MHz. The program can be expanded, by addition of logic blocks, to enable control of position along additional axes. The code enables adjustment of operational parameters (e.g., motor speed and stiffness, and damping parameters of magnetic bearings) through computer keyboard key presses.

  5. Physiological and pathological tremors and rhythmic central motor control.

    PubMed

    McAuley, J H; Marsden, C D

    2000-08-01

    In recent years there has been increasing interest in oscillatory neural activity in the CNS and in the role that such activity may have in motor control. It is thought that physiological tremor may be a manifestation in the periphery of such central oscillatory activity and that some pathological tremors are the result of derangement of these oscillators. This review re-evaluates both early and recent studies on physiological and pathological tremors and other peripheral oscillations in order to gain a new perspective on the nature and function of their central progenitors. This approach, namely using tremor as a 'window' into the function of central oscillations, is particularly suited to human investigations because of the obvious limitations of direct central recording. It is argued that physiological tremor is likely to be multifactorial in origin, with contributions not only from CNS 10-Hz range oscillatory activity, but also from motor unit firing properties, mechanical resonances and reflex loop resonances. Different origins are likely to dominate under different conditions. While some pathological tremors appear to arise as a distortion of central or peripheral components of physiological tremor, others arise de novo, such as the pathological oscillation of 3- to 6-Hz parkinsonian tremor. CNS oscillations outside the 10-Hz range are also found to modulate limb activity in normal individuals, and oscillatory activity exists in other motor systems such as eye movements. Finally, it is shown how studies of peripheral oscillations may help develop hypotheses on the role of CNS oscillations in motor control, including the proposed 'binding' function of synchronized oscillations and the possibility that motor signals could be coded by frequency of modulating oscillation as well as by synaptic connectivity. PMID:10908186

  6. Fuzzy logic controllers for electric motors and wind turbines. Report for October 1996-April 1997

    SciTech Connect

    Spiegel, R.J.

    1997-04-01

    The paper discusses a precision laboratory test facility that has been assempbled to test the performance of two fuzzy-logic based controllers for electric motors and wind turbines. Commercial induction motors up to 10 hp (7.46 kWe) in motors and equipped with adjustable-speed drives (ASDs) were used to test the motor optimizers.

  7. Variable-frequency inverter controls torque, speed, and braking in ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1974-01-01

    Dc to ac inverter provides optimum frequency and voltage to ac induction motor, in response to different motor-load and speed requirements. Inverter varies slip frequency of motor in proportion to required torque. Inverter protects motor from high current surges, controls negative slip to apply braking, and returns energy stored in momentum of load to dc power source.

  8. Low speed phaselock speed control system. [for brushless dc motor

    NASA Technical Reports Server (NTRS)

    Fulcher, R. W.; Sudey, J. (Inventor)

    1975-01-01

    A motor speed control system for an electronically commutated brushless dc motor is provided which includes a phaselock loop with bidirectional torque control for locking the frequency output of a high density encoder, responsive to actual speed conditions, to a reference frequency signal, corresponding to the desired speed. The system includes a phase comparator, which produces an output in accordance with the difference in phase between the reference and encoder frequency signals, and an integrator-digital-to-analog converter unit, which converts the comparator output into an analog error signal voltage. Compensation circuitry, including a biasing means, is provided to convert the analog error signal voltage to a bidirectional error signal voltage which is utilized by an absolute value amplifier, rotational decoder, power amplifier-commutators, and an arrangement of commutation circuitry.

  9. Zebrafish and motor control over the last decade

    PubMed Central

    Fetcho, Joseph R.; Higashijima, Shin-ichi; McLean, David L.

    2008-01-01

    The combination of transparency and accessible genetics is making zebrafish an increasingly important model in studies of motor control. Much of the work on the model has been done over the past decade. Here we review some of the highlights of this work that serve to reveal both the power of the model and its prospects for providing important future insights into the links between neural networks and behavior. PMID:17825423

  10. Mechanisms of motor adaptation in reactive balance control.

    PubMed

    Welch, Torrence D J; Ting, Lena H

    2014-01-01

    Balance control must be rapidly modified to provide stability in the face of environmental challenges. Although changes in reactive balance over repeated perturbations have been observed previously, only anticipatory postural adjustments preceding voluntary movements have been studied in the framework of motor adaptation and learning theory. Here, we hypothesized that adaptation occurs in task-level balance control during responses to perturbations due to central changes in the control of both anticipatory and reactive components of balance. Our adaptation paradigm consisted of a Training set of forward support-surface perturbations, a Reversal set of novel countermanding perturbations that reversed direction, and a Washout set identical to the Training set. Adaptation was characterized by a change in a motor variable from the beginning to the end of each set, the presence of aftereffects at the beginning of the Washout set when the novel perturbations were removed, and a return of the variable at the end of the Washout to a level comparable to the end of the Training set. Task-level balance performance was characterized by peak center of mass (CoM) excursion and velocity, which showed adaptive changes with repetitive trials. Only small changes in anticipatory postural control, characterized by body lean and background muscle activity were observed. Adaptation was found in the evoked long-latency muscular response, and also in the sensorimotor transformation mediating that response. Finally, in each set, temporal patterns of muscle activity converged towards an optimum predicted by a trade-off between maximizing motor performance and minimizing muscle activity. Our results suggest that adaptation in balance, as well as other motor tasks, is mediated by altering central sensitivity to perturbations and may be driven by energetic considerations. PMID:24810991

  11. The influence of scopolamine on motor control and attentional processes

    PubMed Central

    Bestaven, Emma; Kambrun, Charline; Guehl, Dominique; Cazalets, Jean-René

    2016-01-01

    Background: Motion sickness may be caused by a sensory conflict between the visual and the vestibular systems. Scopolamine, known to be the most effective therapy to control the vegetative symptoms of motion sickness, acts on the vestibular nucleus and potentially the vestibulospinal pathway, which may affect balance and motor tasks requiring both attentional process and motor balance. The aim of this study was to explore the effect of scopolamine on motor control and attentional processes. Methods: Seven subjects were evaluated on four different tasks before and after a subcutaneous injection of scopolamine (0.2 mg): a one-minute balance test, a subjective visual vertical test, a pointing task and a galvanic vestibular stimulation with EMG recordings. Results: The results showed that the reaction time and the movement duration were not modified after the injection of scopolamine. However, there was an increase in the center of pressure displacement during the balance test, a decrease in EMG muscle response after galvanic vestibular stimulation and an alteration in the perception of verticality. Discussion: These results confirm that low doses of scopolamine such as those prescribed to avoid motion sickness have no effect on attentional processes, but that it is essential to consider the responsiveness of each subject. However, scopolamine did affect postural control and the perception of verticality. In conclusion, the use of scopolamine to prevent motion sickness must be considered carefully because it could increase imbalances in situations when individuals are already at risk of falling (e.g., sailing, parabolic flight). PMID:27169000

  12. Fluid Power Multi-actuator Circuit Board with Microcomputer Control Option.

    ERIC Educational Resources Information Center

    McKechnie, R. E.; Vickers, G. W.

    1981-01-01

    Describes a portable fluid power engineering laboratory and class demonstration apparatus designed to enable students to design, build, and test multi-actuator circuits. Features a variety of standard pneumatic values and actuators fitted with quick disconnect couplings. Discusses sequencing circuit boards, microcomputer control, cost, and…

  13. Optical gain control of GaAs microwave monolithic integrated circuit distributed amplifier

    NASA Astrophysics Data System (ADS)

    Paolella, Arthur; Herczfeld, Peter R.

    1989-02-01

    An optical gain control circuit for controlling the gain of a GaAs MMIC distributed amplifier having a dc gain control is provided. Variable intensity light from a controlled LED is directed to the surface of a GaAs multi-finger FET by means of an optical fiber. The FET is gate biased to a point near pinch-off to maximize its light sensitivity and the drain and source of the FET are serially connected with a fixed resistance in a dc voltage divider circuit so that the output of the voltage divider circuit changes as a function of the change in light intensity of the LED. A MMIC operational amplifier connected in an inverter mode is coupled between the output of the voltage divider circuit and the dc gain control of the distributed amplifier to control the gain of that amplifier.

  14. Controlling chaos in balanced neural circuits with input spike trains

    NASA Astrophysics Data System (ADS)

    Engelken, Rainer; Wolf, Fred

    The cerebral cortex can be seen as a system of neural circuits driving each other with spike trains. Here we study how the statistics of these spike trains affects chaos in balanced target circuits.Earlier studies of chaos in balanced neural circuits either used a fixed input [van Vreeswijk, Sompolinsky 1996, Monteforte, Wolf 2010] or white noise [Lajoie et al. 2014]. We study dynamical stability of balanced networks driven by input spike trains with variable statistics. The analytically obtained Jacobian enables us to calculate the complete Lyapunov spectrum. We solved the dynamics in event-based simulations and calculated Lyapunov spectra, entropy production rate and attractor dimension. We vary correlations, irregularity, coupling strength and spike rate of the input and action potential onset rapidness of recurrent neurons.We generally find a suppression of chaos by input spike trains. This is strengthened by bursty and correlated input spike trains and increased action potential onset rapidness. We find a link between response reliability and the Lyapunov spectrum. Our study extends findings in chaotic rate models [Molgedey et al. 1992] to spiking neuron models and opens a novel avenue to study the role of projections in shaping the dynamics of large neural circuits.

  15. An improved fault-tolerant control scheme for PWM inverter-fed induction motor-based EVs.

    PubMed

    Tabbache, Bekheïra; Benbouzid, Mohamed; Kheloui, Abdelaziz; Bourgeot, Jean-Matthieu; Mamoune, Abdeslam

    2013-11-01

    This paper proposes an improved fault-tolerant control scheme for PWM inverter-fed induction motor-based electric vehicles. The proposed strategy deals with power switch (IGBTs) failures mitigation within a reconfigurable induction motor control. To increase the vehicle powertrain reliability regarding IGBT open-circuit failures, 4-wire and 4-leg PWM inverter topologies are investigated and their performances discussed in a vehicle context. The proposed fault-tolerant topologies require only minimum hardware modifications to the conventional off-the-shelf six-switch three-phase drive, mitigating the IGBTs failures by specific inverter control. Indeed, the two topologies exploit the induction motor neutral accessibility for fault-tolerant purposes. The 4-wire topology uses then classical hysteresis controllers to account for the IGBT failures. The 4-leg topology, meanwhile, uses a specific 3D space vector PWM to handle vehicle requirements in terms of size (DC bus capacitors) and cost (IGBTs number). Experiments on an induction motor drive and simulations on an electric vehicle are carried-out using a European urban driving cycle to show that the proposed fault-tolerant control approach is effective and provides a simple configuration with high performance in terms of speed and torque responses. PMID:23916869

  16. Dual capacity compressor with reversible motor and controls arrangement therefor

    DOEpatents

    Sisk, Francis J.

    1980-12-02

    A hermetic reciprocating compressor such as may be used in heat pump applications is provided for dual capacity operation by providing the crankpin of the crankshaft with an eccentric ring rotatably mounted thereon, and with the end of the connecting rod opposite the piston encompassing the outer circumference of the eccentric ring, with means limiting the rotation of the eccentric ring upon the crankpin between one end point and an opposite angularly displaced end point to provide different values of eccentricity depending upon which end point the eccentric ring is rotated to upon the crankpin, and a reversible motor in the hermetic shell of the compressor for rotating the crankshaft, the motor operating in one direction effecting the angular displacement of the eccentric ring relative to the crankpin to the one end point, and in the opposite direction effecting the angular displacement of the eccentric ring relative to the crankpin to the opposite end point, this arrangement automatically giving different stroke lengths depending upon the direction of motor rotation. The mechanical structure of the arrangement may take various forms including at least one in which any impact of reversal is reduced by utilizing lubricant passages and chambers at the interface area of the crankpin and eccentric ring to provide a dashpot effect. In the main intended application of the arrangement according to the invention, that is, in a refrigerating or air conditioning system, it is desirable to insure a delay during reversal of the direction of compressor operation. A control arrangement is provided in which the control system controls the direction of motor operation in accordance with temperature conditions, the system including control means for effecting operation in a low capacity direction or alternatively in a high capacity direction in response to one set, and another set, respectively, of temperature conditions and with timer means delaying a restart of the compressor

  17. Universal adaptive torque control for PM motors for field-weakening region operation

    DOEpatents

    Royak, Semyon; Harbaugh, Mark M.; Breitzmann, Robert J.; Nondahl, Thomas A.; Schmidt, Peter B.; Liu, Jingbo

    2011-03-29

    The invention includes a motor controller and method for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by, among other things, receiving a torque command, determining a normalized torque command by normalizing the torque command to a characteristic current of the motor, determining a normalized maximum available voltage, determining an inductance ratio of the motor, and determining a direct-axis current based upon the normalized torque command, the normalized maximum available voltage, and the inductance ratio of the motor.

  18. Neural and Fuzzy Adaptive Control of Induction Motor Drives

    NASA Astrophysics Data System (ADS)

    Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.

    2008-06-01

    This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.

  19. Neural and Fuzzy Adaptive Control of Induction Motor Drives

    SciTech Connect

    Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.

    2008-06-12

    This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.

  20. Voltage Controller Saves Energy, Prolongs Life of Motors

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In 1985, Power Efficiency Corporation of Las Vegas licensed NASA voltage controller technology from Marshall Space Flight Center. In the following years, Power Efficiency made patented improvements to the technology and marketed the resulting products throughout the world as the Performance Controller and the Power Efficiency energy-saving soft start. Soft start gradually introduces power to an electric motor, thus eliminating the harsh, violent mechanical stresses of having the device go from a dormant state to one of full activity; prevents it from running too hot; and increases the motor's lifetime. The product can pay for itself through the reduction in electricity consumed (according to Power Efficiency, within 3 years), depending on the duty cycle of the motor and the prevailing power rates. In many instances, the purchaser is eligible for special utility rebates for the environmental protection it provides. Common applications of Power Efficiency's soft start include mixers, grinders, granulators, conveyors, crushers, stamping presses, injection molders, elevators with MG sets, and escalators. The device has been retrofitted onto equipment at major department store chains, hotels, airports, universities, and for various manufacturers

  1. Synchronization of motor controller and PC system clocks

    NASA Astrophysics Data System (ADS)

    Kittmann, Frank; Bertram, Thomas; Briegel, Florian; Mohr, Lars; Berwein, Jürgen

    2010-07-01

    The power of the Large Binocular Telescope (LBT) with its two 8.4m primary mirrors sharing a common mount will unfold its full potential with the LINC-NIRVANA (LN) instrument. LINC-NIRVANA is a German-Italian beam combiner for the LBT and will interfere the light from the two 8.4m mirrors of the LBT in Fizeau mode. More than 140 motors have to be handled by custom developed Motor Controllers (MoCons). One important feature of the MoCon is the support of externally computed trajectories. Motion profiles provide information on the movement of the motor along a defined path over a certain period of time. Such profiles can be uploaded to the MoCon over Ethernet and can be started at a specific time. For field derotation it is critical that the derotation trajectories are executed with a very precise relative and absolute timing. This raises the problem of the synchronization of the MoCon internal clock with the system time of the servers that are hosting LINCNIRVANA's Instrument Control Software. The MoCon time should be known by the servers with an uncertainty of few milliseconds in order to match the start time of the motion profile and the field rotation trajectory. In this paper we will discuss how to synchronize the MoCon internal time and the PC system time.

  2. Multisensory systems integration for high-performance motor control in flies.

    PubMed

    Frye, Mark A

    2010-06-01

    Engineered tracking systems 'fuse' data from disparate sensor platforms, such as radar and video, to synthesize information that is more reliable than any single input. The mammalian brain registers visual and auditory inputs to directionally localize an interesting environmental feature. For a fly, sensory perception is challenged by the extreme performance demands of high speed flight. Yet even a fruit fly can robustly track a fragmented odor plume through varying visual environments, outperforming any human engineered robot. Flies integrate disparate modalities, such as vision and olfaction, which are neither related by spatiotemporal spectra nor processed by registered neural tissue maps. Thus, the fly is motivating new conceptual frameworks for how low-level multisensory circuits and functional algorithms produce high-performance motor control.

  3. Multisensory systems integration for high-performance motor control in flies.

    PubMed

    Frye, Mark A

    2010-06-01

    Engineered tracking systems 'fuse' data from disparate sensor platforms, such as radar and video, to synthesize information that is more reliable than any single input. The mammalian brain registers visual and auditory inputs to directionally localize an interesting environmental feature. For a fly, sensory perception is challenged by the extreme performance demands of high speed flight. Yet even a fruit fly can robustly track a fragmented odor plume through varying visual environments, outperforming any human engineered robot. Flies integrate disparate modalities, such as vision and olfaction, which are neither related by spatiotemporal spectra nor processed by registered neural tissue maps. Thus, the fly is motivating new conceptual frameworks for how low-level multisensory circuits and functional algorithms produce high-performance motor control. PMID:20202821

  4. Small computer interface to a stepper motor

    NASA Technical Reports Server (NTRS)

    Berry, Fred A., Jr.

    1986-01-01

    A Commodore VIC-20 computer has been interfaced with a stepper motor to provide an inexpensive stepper motor controller. Only eight transistors and two integrated circuits compose the interface. The software controls the parallel interface of the computer and provides the four phase drive signals for the motor. Optical sensors control the zeroing of the 12-inch turntable positioned by the controller. The computer calculates the position information and movement of the table and may be programmed in BASIC to execute automatic sequences.

  5. Brushless DC motor control system responsive to control signals generated by a computer or the like

    NASA Technical Reports Server (NTRS)

    Packard, D. T. (Inventor)

    1985-01-01

    A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The motor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor be regulated by applying a separate control signal and each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.

  6. Brushless DC motor control system responsive to control signals generated by a computer or the like

    NASA Astrophysics Data System (ADS)

    Packard, D. T.

    1985-04-01

    A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The motor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor be regulated by applying a separate control signal and each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.

  7. Experiments in robotic sensori-motor control during grasp

    SciTech Connect

    Stansfield, S.A.

    1991-09-06

    This paper presents a series of experiments in robotic sensori-motor control during grasping. The work utilizes a multifingered, dextrous robot hand equipped with a fingertip force sensor to explore dynamic grasp force adjustment during manipulation. The work is primarily concerned with the relationship between the weight of an object and the grasp force required to lift it. Too weak a grasp is unstable and the object will slip from the hand. Too strong a grasp may damage the object and/or the manipulator. An algorithm is presented which uses tactile information from the sensor to dynamically adjust the grasp force during lift. It is assumed that there is no a priori knowledge about the object to be manipulated. The effects of different arm/hand postures and object surfaces is explored. Finally, the use of sensory data to detect unexpected object motion and to signal transitions between manipulation phases - with the coincident triggering of new motor programs - is investigated.

  8. Reusable solid rocket motor case - Optimum probabilistic fracture control

    NASA Technical Reports Server (NTRS)

    Hanagud, S.; Uppaluri, B.

    1979-01-01

    A methodology for the reliability analysis of a reusable solid rocket motor case is discussed in this paper. The analysis is based on probabilistic fracture mechanics and probability distribution for initial flaw sizes. The developed reliability analysis can be used to select the structural design variables of the solid rocket motor case on the basis of minimum expected cost and specified reliability bounds during the projected design life of the case. Effects on failure prevention plans such as nondestructive inspection and the material erosion between missions can also be considered in the developed procedure for selection of design variables. The reliability-based procedure that has been discussed in this paper can easily be modified to consider other similar structures of reusable space vehicle systems with different fracture control plans.

  9. Variable frequency inverter for ac induction motors with torque, speed and braking control

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1975-01-01

    A variable frequency inverter was designed for driving an ac induction motor which varies the frequency and voltage to the motor windings in response to varying torque requirements for the motor so that the applied voltage amplitude and frequency are of optimal value for any motor load and speed requirement. The slip frequency of the motor is caused to vary proportionally to the torque and feedback is provided so that the most efficient operating voltage is applied to the motor. Winding current surge is limited and a controlled negative slip causes motor braking and return of load energy to a dc power source.

  10. Driver circuit

    NASA Technical Reports Server (NTRS)

    Matsumoto, Raymond T. (Inventor); Higashi, Stanley T. (Inventor)

    1976-01-01

    A driver circuit which has low power requirements, a relatively small number of components and provides flexibility in output voltage setting. The driver circuit comprises, essentially, two portions which are selectively activated by the application of input signals. The output signal is determined by which of the two circuit portions is activated. While each of the two circuit portions operates in a manner similar to silicon controlled rectifiers (SCR), the circuit portions are on only when an input signal is supplied thereto.

  11. Protocadherin-18b interacts with Nap1 to control motor axon growth and arborization in zebrafish.

    PubMed

    Biswas, Sayantanee; Emond, Michelle R; Duy, Phan Q; Hao, Le T; Beattie, Christine E; Jontes, James D

    2014-03-01

    The proper assembly of neural circuits during development requires the precise control of axon outgrowth, guidance, and arborization. Although the protocadherin family of cell surface receptors is widely hypothesized to participate in neural circuit assembly, their specific roles in neuronal development remain largely unknown. Here we demonstrate that zebrafish pcdh18b is involved in regulating axon arborization in primary motoneurons. Although axon outgrowth and elongation appear normal, antisense morpholino knockdown of pcdh18b results in dose-dependent axon branching defects in caudal primary motoneurons. Cell transplantation experiments show that this effect is cell autonomous. Pcdh18b interacts with Nap1, a core component of the WAVE complex, through its intracellular domain, suggesting a role in the control of actin assembly. Like that of Pcdh18b, depletion of Nap1 results in reduced branching of motor axons. Time-lapse imaging and quantitative analysis of axon dynamics indicate that both Pcdh18b and Nap1 regulate axon arborization by affecting the density of filopodia along the shaft of the extending axon. PMID:24371087

  12. An agonist–antagonist cerebellar nuclear system controlling eyelid kinematics during motor learning

    PubMed Central

    Sánchez-Campusano, Raudel; Gruart, Agnès; Fernández-Mas, Rodrigo; Delgado-García, José M.

    2012-01-01

    The presence of two antagonistic groups of deep cerebellar nuclei neurons has been reported as necessary for a proper dynamic control of learned motor responses. Most models of cerebellar function seem to ignore the biomechanical need for a double activation–deactivation system controlling eyelid kinematics, since most of them accept that, for closing the eyelid, only the activation of the orbicularis oculi (OO) muscle (via the red nucleus to the facial motor nucleus) is necessary, without a simultaneous deactivation of levator palpebrae motoneurons (via unknown pathways projecting to the perioculomotor area). We have analyzed the kinetic neural commands of two antagonistic types of cerebellar posterior interpositus neuron (IPn) (types A and B), the electromyographic (EMG) activity of the OO muscle, and eyelid kinematic variables in alert behaving cats during classical eyeblink conditioning, using a delay paradigm. We addressed the hypothesis that the interpositus nucleus can be considered an agonist–antagonist system controlling eyelid kinematics during motor learning. To carry out a comparative study of the kinetic–kinematic relationships, we applied timing and dispersion pattern analyses. We concluded that, in accordance with a dominant role of cerebellar circuits for the facilitation of flexor responses, type A neurons fire during active eyelid downward displacements—i.e., during the active contraction of the OO muscle. In contrast, type B neurons present a high tonic rate when the eyelids are wide open, and stop firing during any active downward displacement of the upper eyelid. From a functional point of view, it could be suggested that type B neurons play a facilitative role for the antagonistic action of the levator palpebrae muscle. From an anatomical point of view, the possibility that cerebellar nuclear type B neurons project to the perioculomotor area—i.e., more or less directly onto levator palpebrae motoneurons—is highly appealing. PMID

  13. Sampling and Control Circuit Board for an Inertial Measurement Unit

    NASA Technical Reports Server (NTRS)

    Chelmins, David; Powis, Rick

    2012-01-01

    Spacesuit navigation is one component of NASA s efforts to return humans to the Moon. Studies performed at the NASA Glenn Research Center (GRC) considered various navigation technologies and filtering approaches to enable navigation on the lunar surface. As part of this effort, microelectromechanical systems (MEMS) inertial measurement units (IMUs) were studied to determine if they could supplement a radiometric infrastructure. MEMS IMUs were included in the Lunar Extra-Vehicular Activity Crewmember Location Determination System (LECLDS) testbed during NASA s annual Desert Research and Technology Studies (D-RATS) event in 2009 and 2010. The testbed included one IMU in 2009 and three IMUs in 2010, along with a custom circuit board interfacing between the navigation processor and each IMU. The board was revised for the 2010 test, and this paper documents the design details of this latest revision of the interface circuit board and firmware.

  14. Investigating human motor control by transcranial magnetic stimulation.

    PubMed

    Petersen, Nicolas T; Pyndt, Henrik S; Nielsen, Jens B

    2003-09-01

    In this review we discuss the contribution of transcranial magnetic stimulation (TMS) to the understanding of human motor control. Compound motor-evoked potentials (MEPs) may provide valuable information about corticospinal transmission, especially in patients with neurological disorders, but generally do not allow conclusions regarding the details of corticospinal function to be made. Techniques such as poststimulus time histograms (PSTHs) of the discharge of single, voluntarily activated motor units and conditioning of H reflexes provide a more optimal way of evaluating transmission in specific excitatory and inhibitory pathways. Through application of such techniques, several important issues have been clarified. TMS has provided the first real evidence that direct monosynaptic connections from the motor cortex to spinal motoneurons exist in man, and it has been revealed that the distribution of these projections roughly follows the same proximal-distal gradient as in other primates. However, pronounced differences also exist. In particular, the tibialis anterior muscle appears to receive as significant a monosynaptic corticospinal drive as muscles in the hand. The reason for this may be the importance of this muscle in controlling the foot trajectory in the swing phase of walking. Conditioning of H reflexes by TMS has provided evidence of changes in cortical excitability prior to and during various movements. These experiments have generally confirmed information obtained from chronic recording of the activity of corticospinal cells in primates, but information about the corticospinal contribution to movements for which information from other primates is sparse or lacking has also been obtained. One example is walking, where TMS experiments have revealed that the corticospinal tract makes an important contribution to the ongoing EMG activity during treadmill walking. TMS experiments have also documented the convergence of descending corticospinal projections

  15. Emergence of Virtual Reality as a Tool for Upper Limb Rehabilitation: Incorporation of Motor Control and Motor Learning Principles

    PubMed Central

    Weiss, Patrice L.; Keshner, Emily A.

    2015-01-01

    The primary focus of rehabilitation for individuals with loss of upper limb movement as a result of acquired brain injury is the relearning of specific motor skills and daily tasks. This relearning is essential because the loss of upper limb movement often results in a reduced quality of life. Although rehabilitation strives to take advantage of neuroplastic processes during recovery, results of traditional approaches to upper limb rehabilitation have not entirely met this goal. In contrast, enriched training tasks, simulated with a wide range of low- to high-end virtual reality–based simulations, can be used to provide meaningful, repetitive practice together with salient feedback, thereby maximizing neuroplastic processes via motor learning and motor recovery. Such enriched virtual environments have the potential to optimize motor learning by manipulating practice conditions that explicitly engage motivational, cognitive, motor control, and sensory feedback–based learning mechanisms. The objectives of this article are to review motor control and motor learning principles, to discuss how they can be exploited by virtual reality training environments, and to provide evidence concerning current applications for upper limb motor recovery. The limitations of the current technologies with respect to their effectiveness and transfer of learning to daily life tasks also are discussed. PMID:25212522

  16. Interlocked DNA nanostructures controlled by a reversible logic circuit.

    PubMed

    Li, Tao; Lohmann, Finn; Famulok, Michael

    2014-09-17

    DNA nanostructures constitute attractive devices for logic computing and nanomechanics. An emerging interest is to integrate these two fields and devise intelligent DNA nanorobots. Here we report a reversible logic circuit built on the programmable assembly of a double-stranded (ds) DNA [3]pseudocatenane that serves as a rigid scaffold to position two separate branched-out head-motifs, a bimolecular i-motif and a G-quadruplex. The G-quadruplex only forms when preceded by the assembly of the i-motif. The formation of the latter, in turn, requires acidic pH and unhindered mobility of the head-motif containing dsDNA nanorings with respect to the central ring to which they are interlocked, triggered by release oligodeoxynucleotides. We employ these features to convert the structural changes into Boolean operations with fluorescence labelling. The nanostructure behaves as a reversible logic circuit consisting of tandem YES and AND gates. Such reversible logic circuits integrated into functional nanodevices may guide future intelligent DNA nanorobots to manipulate cascade reactions in biological systems.

  17. Interlocked DNA nanostructures controlled by a reversible logic circuit

    PubMed Central

    Li, Tao; Lohmann, Finn; Famulok, Michael

    2014-01-01

    DNA nanostructures constitute attractive devices for logic computing and nanomechanics. An emerging interest is to integrate these two fields and devise intelligent DNA nanorobots. Here we report a reversible logic circuit built on the programmable assembly of a double-stranded (ds) DNA [3]pseudocatenane that serves as a rigid scaffold to position two separate branched-out head-motifs, a bimolecular i-motif and a G-quadruplex. The G-quadruplex only forms when preceded by the assembly of the i-motif. The formation of the latter, in turn, requires acidic pH and unhindered mobility of the head-motif containing dsDNA nanorings with respect to the central ring to which they are interlocked, triggered by release oligodeoxynucleotides. We employ these features to convert the structural changes into Boolean operations with fluorescence labelling. The nanostructure behaves as a reversible logic circuit consisting of tandem YES and AND gates. Such reversible logic circuits integrated into functional nanodevices may guide future intelligent DNA nanorobots to manipulate cascade reactions in biological systems. PMID:25229207

  18. Motor Control in Children and Adults during a Non-Speech Oral Task.

    ERIC Educational Resources Information Center

    Clark, Heather M.; Robin, Donald A.; McCullagh, Gail; Schmidt, Richard A.

    2001-01-01

    This study examined the accuracy and stability of oral motor control in 20 adults and 20 children. Although the children were less accurate and less stable, adults and children exhibited similar variability in their generalized motor program. Results are discussed within the framework of a schema model of motor control, especially the strategic…

  19. The application of standardized control and interface circuits to three dc to dc power converters.

    NASA Technical Reports Server (NTRS)

    Yu, Y.; Biess, J. J.; Schoenfeld, A. D.; Lalli, V. R.

    1973-01-01

    Standardized control and interface circuits were applied to the three most commonly used dc to dc converters: the buck-boost converter, the series-switching buck regulator, and the pulse-modulated parallel inverter. The two-loop ASDTIC regulation control concept was implemented by using a common analog control signal processor and a novel digital control signal processor. This resulted in control circuit standardization and superior static and dynamic performance of the three dc-to-dc converters. Power components stress control, through active peak current limiting and recovery of switching losses, was applied to enhance reliability and converter efficiency.

  20. Delays and tori in a nonlinear model from motor control

    NASA Astrophysics Data System (ADS)

    Campbell, Sue A.; Belair, Jacques

    1993-11-01

    A model is derived for a `simple' motor control task. An artificial delay is introduced in the experiments to assess the dynamic influence it may have on normal and/or pathological conditions. The model takes the form of a delay-differential equation containing two time delays, associated with two (proprioceptive and visual) negative feedback loops. A linear stability analysis reveals a rich structure in the parameter values destabilizing the equilibrium. A nonlinear analysis, by a reduction on a center manifold when two Hopf bifurcations interact, reveals the existence of stable and unstable 2D tori. These results are contrasted with systems involving a single feedback loop, and a single time delay.

  1. Thrust vector control for the Space Shuttle Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Counter, D. N.; Brinton, B. C.

    1975-01-01

    Thrust vector control (TVC) for the Space Shuttle Solid Rocket Motor (SRM) is obtained by omniaxis vectoring of the nozzle. The development and integration of the system are under the cognizance of Marshall Space Flight Center (MSFC). The nozzle and flexible bearing have been designed and will be built by Thiokol Corporation/Wasatch Division. The vector requirements of the system, the impact of multiple reuse on the components, and the unique problems associated with a large flexible bearing are discussed. The design details of each of the major TVC subcomponents are delineated. The subscale bearing development program and the overall development schedule also are presented.

  2. Plasticity of motor control systems demonstrated by yoga training.

    PubMed

    Telles, S; Hanumanthaiah, B H; Nagarathna, R; Nagendra, H R

    1994-04-01

    The static motor performance was tested in two groups with 20 subjects in each (age range 17 to 22 years, and 5 females in each group). Tests were carried out at the beginning and end of a 10 day period. The test required being able to insert and hold a metal stylus within holes of varying sizes for 15 sec. Accidental contacts between the stylus and the sides of the holes, were registered on a counter as errors. During the 10 days one group (the yoga group) practised asanas (physical postures), pranayama (voluntary regulation of breathing), meditation, devotional sessions, and tratakas (visual focussing exercises). The control group followed their usual routine. At the end of 10 days the yoga group showed a significant reduction in number of errors (Wilcoxon paired signed ranks test), while the control group did not change. Our earlier study showed a similar improvement in children (9-13 years). It was interesting to note the same degree of plasticity in motor control systems in young adults. The implications for rehabilitation programmes have been discussed.

  3. Proactive Motor Control Reduces Monetary Risk Taking in Gambling

    PubMed Central

    Adams, Rachel; Chambers, Christopher D.

    2012-01-01

    Less supervision by the executive system after disruption of the right prefrontal cortex leads to increased risk taking in gambling because superficially attractive—but risky—choices are not suppressed. Similarly, people might gamble more in multitask situations than in single-task situations because concurrent executive processes usually interfere with each other. In the study reported here, we used a novel monetary decision-making paradigm to investigate whether multitasking could reduce rather than increase risk taking in gambling. We found that performing a task that induced cautious motor responding reduced gambling in a multitask situation (Experiment 1). We then found that a short period of inhibitory training lessened risk taking in gambling at least 2 hr later (Experiments 2 and 3). Our findings indicate that proactive motor control strongly affects monetary risk taking in gambling. The link between control systems at different cognitive levels might be exploited to develop new methods for rehabilitation of addiction and impulse-control disorders. PMID:22692336

  4. Computational motor control as a window to understanding schizophrenia.

    PubMed

    Izawa, Jun; Asai, Tomohisa; Imamizu, Hiroshi

    2016-03-01

    In addition to mental disorders such as attention, emotion, delusions, hallucinations, and difficulties in social skills, the patients with schizophrenia exhibits significant abnormality in sensorimotor perception and control. To seek a neurobiological cause of the heterogeneous symptoms in schizophrenia, we focused on the impaired inference mechanism of the self-agency of the schizophrenia's brain where the sensory outcome generated by the self-initiated action was misattributed to the other agent's action. By developing a novel computational model of agency experience using a Bayesian decision making framework, we united the computational mechanisms of agency and motor control via internal model: a model for one to predict the sensory consequence of action. Our theory based on optimal feedback control with Kalman filtering successfully predicted a variety of schizophrenia's motor abnormalities assuming a deformed internal model. To discuss the plausibility of these model predictions, we reviewed literature that might support these predictions. We further proposed some experiments that potentially examine the proposed model of schizophrenia. Our approach in investigating a problem of mind by projecting it on the coordinates system of the embodiment effectively shed light on a central neuropathology of this disease that had been latent behind the observed behaviors. PMID:26592778

  5. Design of adaptive dead-time control circuit for resonant half-bridge driver

    NASA Astrophysics Data System (ADS)

    Shi, Ling-Feng; Liu, Fu-Bo; He, Hui-Sen; Mao, Xiang-Yu; Lai, Xin-Quan

    2013-10-01

    To decrease the switching loss and the dead-time effect of resonant half-bridge inverter, a novel adaptive dead-time control circuit of resonant half-bridge driver Integrated Circuit (IC) is presented. Without increasing the pin number of IC, this circuit takes a novel strategy to adaptively regulate dead time to a temperate range between high and low thresholds. The high and low thresholds are adaptive to the fall time of output signal in a half-bridge clock cycle. The IC of the designed circuit is suitable for high-voltage applications. The dead-time regulation range of this circuit achieves 0-3.5 µs. The range of temperate dead-time state is 300 ns. The failure signal of this circuit can protect the IC and peripheral power devices by regulating operation in three clock cycles. Both simulation and measurement of the proposed circuit in a half-bridge driver IC with an operating frequency at 50 kHz are presented based on the 0.5 µm 700 V BCD process. The results of simulation and measurement show that the presented circuits' performance is perfect.

  6. Optogenetic Control of Hypocretin (Orexin) Neurons and Arousal Circuits

    PubMed Central

    de Lecea, Luis

    2016-01-01

    In 1998, our group discovered a cDNA that encoded the precursor of two putative neuropeptides that we called hypocretins for their hypothalamic expression and their similarity to the secretin family of neuropeptides. In the last 16 years, numerous studies have placed the hypocretin system as an integrator of homeostatic functions with a crucial, non-redundant function as arousal stabilizer. We recently applied optogenetic methods to interrogate the role of individual neuronal circuits in sleep-to-wake transitions. The neuronal connections between the hypocretin system and the locus coeruleus (LC) seem to be crucial in establishing the appropriate dynamic of spontaneous awakenings. PMID:25502546

  7. Dynamic Re-wiring of Neural Circuits in the Motor Cortex in Mouse Models of Parkinson's Disease

    PubMed Central

    Lalchandani, Rupa R.; Cui, Yuting; Shu, Yu; Xu, Tonghui; Ding, Jun B.

    2015-01-01

    SUMMARY Dynamic adaptations in synaptic plasticity are critical for learning new motor skills and maintaining memory throughout life, which rapidly decline with Parkinson's disease (PD). Plasticity in the motor cortex is important for acquisition and maintenance of novel motor skills, but how the loss of dopamine in PD leads to disrupted structural and functional plasticity in the motor cortex is not well understood. Here, we utilized mouse models of PD and 2-photon imaging to show that dopamine depletion resulted in structural changes in the motor cortex. We further discovered that dopamine D1 and D2 receptor signaling were linked to selectively and distinctly regulating these aberrant changes in structural and functional plasticity. Our findings suggest that both D1 and D2 receptor signaling regulate motor cortex plasticity, and loss of dopamine results in atypical synaptic adaptations that may contribute to the impairment of motor performance and motor memory observed in PD. PMID:26237365

  8. Brushless DC motor control system responsive to control signals generated by a computer or the like

    NASA Technical Reports Server (NTRS)

    Packard, Douglas T. (Inventor); Schmitt, Donald E. (Inventor)

    1987-01-01

    A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The rotor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor may be regulated by applying a separate control signal to each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.

  9. Electronic control for a motor vehicle variable geometry turbocharger

    SciTech Connect

    Moody, J.F.; Yuille, R.D.

    1987-06-09

    This patent describes a motor vehicle power plant including a combustion engine, and engine exhaust gas driven turbocharger adapted to boost the pressure of a combustible mixture supplied to the engine, and an adjustable turbocharger control mechanism for effectively varying the turbocharger geometry to provide increased or decreased boost for a given engine operating condition. The method of adjusting the control mechanism, comprises: sensing the actual pressure of the combustible mixture supplied to the engine; determining based on the sensed pressure whether the engine is operating in a vacuum mode wherein the pressure of the mixture is less than atmospheric pressure, or a boost mode wherein the turbocharger boosts the pressure of the mixture above atmospheric pressure; and generating a control signal in accordance with sensed engine and vehicle conditions.

  10. A cerebellar thalamic cortical circuit for error-related cognitive control

    PubMed Central

    Ide, Jaime S.; Li, Chiang-shan Ray

    2010-01-01

    Error detection and behavioral adjustment are core components of cognitive control. Numerous studies have focused on the anterior cingulate cortex (ACC) as a critical locus of this executive function. Our previous work showed greater activation in the dorsal ACC and subcortical structures during error detection, and activation in the ventrolateral prefrontal cortex (VLPFC) during post-error slowing (PES) in a stop signal task (SST). However, the extent of error-related cortical or subcortical activation across subjects was not correlated with VLPFC activity during PES. So then, what causes VLPFC activation during PES? To address this question, we employed Granger causality mapping (GCM) and identified regions that Granger caused VLPFC activation in 54 adults performing the SST during fMRI. These brain regions, including the supplementary motor area (SMA), cerebellum, a pontine region, and medial thalamus, represent potential targets responding to errors in a way that could influence VLPFC activation. In confirmation of this hypothesis, the error-related activity of these regions correlated with VLPFC activation during PES, with the cerebellum showing the strongest association. The finding that cerebellar activation Granger causes prefrontal activity during behavioral adjustment supports a cerebellar function in cognitive control. Furthermore, multivariate GCA described the “flow of information” across these brain regions. Through connectivity with the thalamus and SMA, the cerebellum mediates error and post-error processing in accord with known anatomical projections. Taken together, these new findings highlight the role of the cerebello-thalamo-cortical pathway in an executive function that has heretofore largely been ascribed to the anterior cingulate-prefrontal cortical circuit. PMID:20656038

  11. Thalamic control of layer 1 circuits in prefrontal cortex

    PubMed Central

    Cruikshank, Scott J.; Ahmed, Omar J.; Stevens, Tanya R.; Patrick, Saundra L.; Gonzalez, Amalia N.; Elmaleh, Margot; Connors, Barry W.

    2012-01-01

    Knowledge of thalamocortical (TC) processing comes mainly from studying core thalamic systems that project to middle layers of primary sensory cortices. However, most thalamic relay neurons comprise a matrix of cells that are densest in the “nonspecific” thalamic nuclei and usually target layer 1 of multiple cortical areas. A longstanding hypothesis is that matrix TC systems are crucial for regulating neocortical excitability during changing behavioral states, yet we know almost nothing about the mechanisms of such regulation. It is also unclear whether synaptic and circuit mechanisms that are well established for core sensory TC systems apply to matrix TC systems. Here we describe studies of thalamic matrix influences on mouse prefrontal cortex using optogenetic and in vitro electrophysiology techniques. Channelrhodopsin-2 was expressed in midline and paralaminar (matrix) thalamic neurons, and their layer 1-projecting TC axons were activated optically. Contrary to conventional views, we found that matrix TC projections to layer 1 could transmit relatively strong, fast, high-fidelity synaptic signals. Layer 1 TC projections preferentially drove inhibitory interneurons of layer 1, especially those of the late-spiking subtype, and often triggered feedforward inhibition in both layer 1 interneurons and pyramidal cells of layers 2/3. Responses during repetitive stimulation were far more sustained for matrix than for core sensory TC pathways. Thus, matrix TC circuits appear to be specialized for robust transmission over relatively extended periods, consistent with the sort of persistent activation observed during working memory and potentially applicable to state-dependent regulation of excitability. PMID:23223300

  12. Origin and early evolution of neural circuits for the control of ciliary locomotion

    PubMed Central

    Jékely, Gáspár

    2011-01-01

    Behaviour evolved before nervous systems. Various single-celled eukaryotes (protists) and the ciliated larvae of sponges devoid of neurons can display sophisticated behaviours, including phototaxis, gravitaxis or chemotaxis. In single-celled eukaryotes, sensory inputs directly influence the motor behaviour of the cell. In swimming sponge larvae, sensory cells influence the activity of cilia on the same cell, thereby steering the multicellular larva. In these organisms, the efficiency of sensory-to-motor transformation (defined as the ratio of sensory cells to total cell number) is low. With the advent of neurons, signal amplification and fast, long-range communication between sensory and motor cells became possible. This may have first occurred in a ciliated swimming stage of the first eumetazoans. The first axons may have had en passant synaptic contacts to several ciliated cells to improve the efficiency of sensory-to-motor transformation, thereby allowing a reduction in the number of sensory cells tuned for the same input. This could have allowed the diversification of sensory modalities and of the behavioural repertoire. I propose that the first nervous systems consisted of combined sensory-motor neurons, directly translating sensory input into motor output on locomotor ciliated cells and steering muscle cells. Neuronal circuitry with low levels of integration has been retained in cnidarians and in the ciliated larvae of some marine invertebrates. This parallel processing stage could have been the starting point for the evolution of more integrated circuits performing the first complex computations such as persistence or coincidence detection. The sensory-motor nervous systems of cnidarians and ciliated larvae of diverse phyla show that brains, like all biological structures, are not irreducibly complex. PMID:21123265

  13. Origin and early evolution of neural circuits for the control of ciliary locomotion.

    PubMed

    Jékely, Gáspár

    2011-03-22

    Behaviour evolved before nervous systems. Various single-celled eukaryotes (protists) and the ciliated larvae of sponges devoid of neurons can display sophisticated behaviours, including phototaxis, gravitaxis or chemotaxis. In single-celled eukaryotes, sensory inputs directly influence the motor behaviour of the cell. In swimming sponge larvae, sensory cells influence the activity of cilia on the same cell, thereby steering the multicellular larva. In these organisms, the efficiency of sensory-to-motor transformation (defined as the ratio of sensory cells to total cell number) is low. With the advent of neurons, signal amplification and fast, long-range communication between sensory and motor cells became possible. This may have first occurred in a ciliated swimming stage of the first eumetazoans. The first axons may have had en passant synaptic contacts to several ciliated cells to improve the efficiency of sensory-to-motor transformation, thereby allowing a reduction in the number of sensory cells tuned for the same input. This could have allowed the diversification of sensory modalities and of the behavioural repertoire. I propose that the first nervous systems consisted of combined sensory-motor neurons, directly translating sensory input into motor output on locomotor ciliated cells and steering muscle cells. Neuronal circuitry with low levels of integration has been retained in cnidarians and in the ciliated larvae of some marine invertebrates. This parallel processing stage could have been the starting point for the evolution of more integrated circuits performing the first complex computations such as persistence or coincidence detection. The sensory-motor nervous systems of cnidarians and ciliated larvae of diverse phyla show that brains, like all biological structures, are not irreducibly complex.

  14. Deficient grip force control in schizophrenia: behavioral and modeling evidence for altered motor inhibition and motor noise.

    PubMed

    Teremetz, Maxime; Amado, Isabelle; Bendjemaa, Narjes; Krebs, Marie-Odile; Lindberg, Pavel G; Maier, Marc A

    2014-01-01

    Whether upper limb sensorimotor control is affected in schizophrenia and how underlying pathological mechanisms may potentially intervene in these deficits is still being debated. We tested voluntary force control in schizophrenia patients and used a computational model in order to elucidate potential cerebral mechanisms underlying sensorimotor deficits in schizophrenia. A visuomotor grip force-tracking task was performed by 17 medicated and 6 non-medicated patients with schizophrenia (DSM-IV) and by 15 healthy controls. Target forces in the ramp-hold-and-release paradigm were set to 5 N and to 10% maximal voluntary grip force. Force trajectory was analyzed by performance measures and Principal Component Analysis (PCA). A computational model incorporating neural control signals was used to replicate the empirically observed motor behavior and to explore underlying neural mechanisms. Grip task performance was significantly lower in medicated and non-medicated schizophrenia patients compared to controls. Three behavioral variables were significantly higher in both patient groups: tracking error (by 50%), coefficient of variation of force (by 57%) and duration of force release (up by 37%). Behavioral performance did not differ between patient groups. Computational simulation successfully replicated these findings and predicted that decreased motor inhibition, together with an increased signal-dependent motor noise, are sufficient to explain the observed motor deficits in patients. PCA also suggested altered motor inhibition as a key factor differentiating patients from control subjects: the principal component representing inhibition correlated with clinical severity. These findings show that schizophrenia affects voluntary sensorimotor control of the hand independent of medication, and suggest that reduced motor inhibition and increased signal-dependent motor noise likely reflect key pathological mechanisms of the sensorimotor deficit.

  15. Motor neurons and the sense of place.

    PubMed

    Jessell, Thomas M; Sürmeli, Gülşen; Kelly, John S

    2011-11-01

    Seventy years ago George Romanes began to document the anatomical organization of the spinal motor system, uncovering a multilayered topographic plan that links the clustering and settling position of motor neurons to the spatial arrangement and biomechanical features of limb muscles. To this day, these findings have provided a structural foundation for analysis of the neural control of movement and serve as a guide for studies to explore mechanisms that direct the wiring of spinal motor circuits. In this brief essay we outline the core of Romanes's findings and place them in the context of recent studies that begin to provide insight into molecular programs that assign motor pool position and to resolve how motor neuron position shapes circuit assembly. Romanes's findings reveal how and why neuronal positioning contributes to sensory-motor connectivity and may have relevance to circuit organization in other regions of the central nervous system.

  16. Low-Cost Undergraduate Control Systems Experiments Using Microcontroller-Based Control of a DC Motor

    ERIC Educational Resources Information Center

    Gunasekaran, M.; Potluri, R.

    2012-01-01

    This paper presents low-cost experiments for a control systems laboratory module that is worth one and a third credits. The experiments are organized around the microcontroller-based control of a permanent magnet dc motor. The experimental setups were built in-house. Except for the operating system, the software used is primarily freeware or free…

  17. Altered motor control patterns in whiplash and chronic neck pain

    PubMed Central

    Woodhouse, Astrid; Vasseljen, Ottar

    2008-01-01

    Background Persistent whiplash associated disorders (WAD) have been associated with alterations in kinesthetic sense and motor control. The evidence is however inconclusive, particularly for differences between WAD patients and patients with chronic non-traumatic neck pain. The aim of this study was to investigate motor control deficits in WAD compared to chronic non-traumatic neck pain and healthy controls in relation to cervical range of motion (ROM), conjunct motion, joint position error and ROM-variability. Methods Participants (n = 173) were recruited to three groups: 59 patients with persistent WAD, 57 patients with chronic non-traumatic neck pain and 57 asymptomatic volunteers. A 3D motion tracking system (Fastrak) was used to record maximal range of motion in the three cardinal planes of the cervical spine (sagittal, frontal and horizontal), and concurrent motion in the two associated cardinal planes relative to each primary plane were used to express conjunct motion. Joint position error was registered as the difference in head positions before and after cervical rotations. Results Reduced conjunct motion was found for WAD and chronic neck pain patients compared to asymptomatic subjects. This was most evident during cervical rotation. Reduced conjunct motion was not explained by current pain or by range of motion in the primary plane. Total conjunct motion during primary rotation was 13.9° (95% CI; 12.2–15.6) for the WAD group, 17.9° (95% CI; 16.1–19.6) for the chronic neck pain group and 25.9° (95% CI; 23.7–28.1) for the asymptomatic group. As expected, maximal cervical range of motion was significantly reduced among the WAD patients compared to both control groups. No group differences were found in maximal ROM-variability or joint position error. Conclusion Altered movement patterns in the cervical spine were found for both pain groups, indicating changes in motor control strategies. The changes were not related to a history of neck trauma, nor

  18. Flux-Based Deadbeat Control of Induction-Motor Torque

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Lorenz, Robert D.

    2003-01-01

    An improved method and prior methods of deadbeat direct torque control involve the use of pulse-width modulation (PWM) of applied voltages. The prior methods are based on the use of stator flux and stator current as state variables, leading to mathematical solutions of control equations in forms that do not lend themselves to clear visualization of solution spaces. In contrast, the use of rotor and stator fluxes as the state variables in the present improved method lends itself to graphical representations that aid in understanding possible solutions under various operating conditions. In addition, the present improved method incorporates the superposition of high-frequency carrier signals for use in a motor-self-sensing technique for estimating the rotor shaft angle at any speed (including low or even zero speed) without need for additional shaft-angle-measuring sensors.

  19. Forward and reverse control system for induction motors

    DOEpatents

    Wright, J.T.

    1987-09-15

    A control system for controlling the direction of rotation of a rotor of an induction motor includes an array of five triacs with one of the triacs applying a current of fixed phase to the windings of the rotor and four of the triacs being switchable to apply either hot ac current or return ac current to the stator windings so as to reverse the phase of current in the stator relative to that of the rotor and thereby reverse the direction of rotation of the rotor. Switching current phase in the stator is accomplished by operating the gates of pairs of the triacs so as to connect either hot ac current or return ac current to the input winding of the stator. 1 fig.

  20. 40 CFR 80.24 - Controls applicable to motor vehicle manufacturers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... spout meeting the specifications of § 80.22(f)(2). (c) A motorcycle, as defined at 40 CFR 86.402 for the... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Controls applicable to motor vehicle... applicable to motor vehicle manufacturers. (a) (b) The manufacturer of any motor vehicle equipped with...