Science.gov

Sample records for motor control circuit

  1. Control Circuit For Two Stepping Motors

    NASA Technical Reports Server (NTRS)

    Ratliff, Roger; Rehmann, Kenneth; Backus, Charles

    1990-01-01

    Control circuit operates two independent stepping motors, one at a time. Provides following operating features: After selected motor stepped to chosen position, power turned off to reduce dissipation; Includes two up/down counters that remember at which one of eight steps each motor set. For selected motor, step indicated by illumination of one of eight light-emitting diodes (LED's) in ring; Selected motor advanced one step at time or repeatedly at rate controlled; Motor current - 30 mA at 90 degree positions, 60 mA at 45 degree positions - indicated by high or low intensity of LED that serves as motor-current monitor; Power-on reset feature provides trouble-free starts; To maintain synchronism between control circuit and motors, stepping of counters inhibited when motor power turned off.

  2. Motor power control circuit for ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A motor power control of the type which functions by controlling the power factor wherein one of the parameters of power factor current on time is determined by the on time of a triac through which current is supplied to the motor. By means of a positive feedback circuit, a wider range of control is effected.

  3. Integrated-Circuit Controller For Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Le, Dong Tuan

    1994-01-01

    Generic circuit performs commutation-logic and power-switching functions for control of brushless dc motor. Controller includes commutation-logic and associated control circuitry, power supply, and inverters containing power transistors. Major advantages of controller are size, weight, and power consumption can be made less than other brushless-dc-motor controllers.

  4. Integrated-Circuit Controller For Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Le, Dong Tuan

    1994-01-01

    Generic circuit performs commutation-logic and power-switching functions for control of brushless dc motor. Controller includes commutation-logic and associated control circuitry, power supply, and inverters containing power transistors. Major advantages of controller are size, weight, and power consumption can be made less than other brushless-dc-motor controllers.

  5. Fluid logic control circuit operates nutator actuator motor

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Fluid logic control circuit operates a pneumatic nutator actuator motor. It has no moving parts and consists of connected fluid interaction devices. The operation of this circuit demonstrates the ability of fluid interaction devices to operate in a complex combination of series and parallel logic sequence.

  6. Induction motor control system with voltage controlled oscillator circuit

    NASA Technical Reports Server (NTRS)

    Nola, F. J.; Currie, J. R.; Reid, H., Jr. (Inventor)

    1973-01-01

    A voltage controlled oscillator circuit is reported in which there are employed first and second differential amplifiers. The first differential amplifier, being employed as an integrator, develops equal and opposite slopes proportional to an input voltage, and the second differential amplifier functions as a comparator to detect equal amplitude positive and negative selected limits and provides switching signals which gate a transistor switch. The integrating differential amplifier is switched between charging and discharging modes to provide an output of the first differential amplifier which upon the application of wave shaping provides a substantially sinusoidal output signal. A two phased version with a second integrator provides a second 90 deg phase shifted output for induction motor control.

  7. Solid state circuit controls direction, speed, and braking of dc motor

    NASA Technical Reports Server (NTRS)

    Hanna, M. F.

    1966-01-01

    Full-wave bridge rectifier circuit controls the direction, speed, and braking of a dc motor. Gating in the circuit of Silicon Controlled Rectifiers /SCRS/ controls output polarity and braking is provided by an SCR that is gated to short circuit the reverse voltage generated by reversal of motor rotation.

  8. Application of drive circuit based on L298N in direct current motor speed control system

    NASA Astrophysics Data System (ADS)

    Yin, Liuliu; Wang, Fang; Han, Sen; Li, Yuchen; Sun, Hao; Lu, Qingjie; Yang, Cheng; Wang, Quanzhao

    2016-10-01

    In the experiment of researching the nanometer laser interferometer, our design of laser interferometer circuit system is up to the wireless communication technique of the 802.15.4 IEEE standard, and we use the RF TI provided by Basic to receive the data on speed control system software. The system's hardware is connected with control module and the DC motor. However, in the experiment, we found that single chip microcomputer control module is very difficult to drive the DC motor directly. The reason is that the DC motor's starting and braking current is larger than the causing current of the single chip microcomputer control module. In order to solve this problem, we add a driving module that control board can transmit PWM wave signal through I/O port to drive the DC motor, the driving circuit board can come true the function of the DC motor's positive and reversal rotation and speed adjustment. In many various driving module, the L298N module's integrated level is higher compared with other driver module. The L298N model is easy to control, it not only can control the DC motor, but also achieve motor speed control by modulating PWM wave that the control panel output. It also has the over-current protection function, when the motor lock, the L298N model can protect circuit and motor. So we use the driver module based on L298N to drive the DC motor. It is concluded that the L298N driver circuit module plays a very important role in the process of driving the DC motor in the DC motor speed control system.

  9. Four quadrant control circuit for a brushless three-phase dc motor

    NASA Technical Reports Server (NTRS)

    Nola, Frank J. (Inventor)

    1987-01-01

    A control circuit is provided for a brushless three-phase dc motor which affords four quadrant control from a single command. The control circuit probes acceleration of the motor in both clockwise and counterclockwise directions and braking and generation in both clockwise and counterclockwise directions. In addition to turning on individual transistors of the transistor pairs connected to the phase windings of the motor for 120 deg periods while the other transistor of that pair is off, the control circuit also provides, in a future mode of operation, turning the two transistors of each pair on and off alternately at a phase modulation frequency during such a 120 deg period. A feedback signal is derived which is proportional to the motor current and which has a polarity consistent with the command signal, such that negative feedback results.

  10. Power control for ac motor

    NASA Technical Reports Server (NTRS)

    Dabney, R. W. (Inventor)

    1984-01-01

    A motor controller employing a triac through which power is supplied to a motor is described. The open circuit voltage appearing across the triac controls the operation of a timing circuit. This timing circuit triggers on the triac at a time following turn off which varies inversely as a function of the amplitude of the open circuit voltage of the triac.

  11. Emergence of Motor Circuit Activity

    PubMed Central

    Law, Chris; Paquet, Michel; Kania, Artur

    2014-01-01

    In the developing nervous system, ordered neuronal activity patterns can occur even in the absence of sensory input and to investigate how these arise, we have used the model system of the embryonic chicken spinal motor circuit, focusing on motor neurons of the lateral motor column (LMC). At the earliest stages of their molecular differentiation, we can detect differences between medial and lateral LMC neurons in terms of expression of neurotransmitter receptor subunits, including CHRNA5, CHRNA7, GRIN2A, GRIK1, HTR1A and HTR1B, as well as the KCC2 transporter. Using patch-clamp recordings we also demonstrate that medial and lateral LMC motor neurons have subtly different activity patterns that reflect the differential expression of neurotransmitter receptor subunits. Using a combination of patch-clamp recordings in single neurons and calcium-imaging of motor neuron populations, we demonstrate that inhibition of nicotinic, muscarinic or GABA-ergic activity, has profound effects of motor circuit activity during the initial stages of neuromuscular junction formation. Finally, by analysing the activity of large populations of motor neurons at different developmental stages, we show that the asynchronous, disordered neuronal activity that occurs at early stages of circuit formation develops into organised, synchronous activity evident at the stage of LMC neuron muscle innervation. In light of the considerable diversity of neurotransmitter receptor expression, activity patterns in the LMC are surprisingly similar between neuronal types, however the emergence of patterned activity, in conjunction with the differential expression of transmitter systems likely leads to the development of near-mature patterns of locomotor activity by perinatal ages. PMID:24722186

  12. Motor control in basal ganglia circuits using fMRI and brain atlas approaches.

    PubMed

    Lehéricy, Stéphane; Bardinet, Eric; Tremblay, Leon; Van de Moortele, Pierre-Francois; Pochon, Jean-Baptiste; Dormont, Didier; Kim, Dae-Shik; Yelnik, Jerome; Ugurbil, Kamil

    2006-02-01

    In this study, we examined how the motor, premotor and associative basal ganglia territories process movement parameters such as the complexity and the frequency of movement. Twelve right-handed volunteers were studied using EPI BOLD contrast (3 T) while performing audio-paced finger tapping tasks designed to differentiate basal ganglia territories. Tasks varied movement complexity (repetitive index tapping, simple sequence of finger movements and complex sequence of 10 moves) and frequency (from 0.5 to 3 Hz). Activation maps were coregistered onto a 3-D brain atlas derived from post-mortem brains. Three main patterns of activation were observed. In the posterior putamen and the sensorimotor cortex, signal increased with movement frequency but not with movement complexity. In premotor areas, the anterior putamen and the ventral posterolateral thalamus, signal increased regularly with increasing movement frequency and complexity. In rostral frontal areas, the caudate nucleus, the subthalamic nucleus and the ventral anterior/ventrolateral thalamus, signal increased mainly during the complex task and the high frequency task (3 Hz). These data show the different roles of motor, premotor and associative basal ganglia circuits in the processing of motor-related operations and suggest that activation can be precisely located within the entire circuitry of the basal ganglia.

  13. Identification of a spinal circuit for light touch and fine motor control

    PubMed Central

    Bourane, Steeve; Grossmann, Katja S.; Britz, Olivier; Dalet, Antoine; Del Barrio, Marta Garcia; Stam, Floor J.; Garcia-Campmany, Lidia; Koch, Stephanie; Goulding, Martyn

    2015-01-01

    Sensory circuits in the dorsal spinal cord integrate and transmit multiple cutaneous sensory modalities including the sense of light touch. Here we identify a population of excitatory interneurons (INs) in the dorsal horn that are important for transmitting innocuous light touch sensation. These neurons express the ROR alpha (RORα) nuclear orphan receptor and are selectively innervated by cutaneous low threshold mechanoreceptors (LTMs). Targeted removal of RORα INs in the dorsal spinal cord leads a marked reduction in behavioral responsiveness to light touch without affecting responses to noxious and itch stimuli. RORα IN-deficient mice also display a selective deficit in corrective foot movements. This phenotype, together with our demonstration that the RORα INs are innervated by corticospinal and vestibulospinal projection neurons, argues that the RORα INs direct corrective reflex movements by integrating touch information with descending motor commands from the cortex and cerebellum. PMID:25635458

  14. Speed control for synchronous motors

    NASA Technical Reports Server (NTRS)

    Packard, H.; Schott, J.

    1981-01-01

    Feedback circuit controls fluctuations in speed of synchronous ac motor. Voltage proportional to phase angle is developed by phase detector, rectified, amplified, compared to threshold, and reapplied positively or negatively to motor excitation circuit. Speed control reduces wow and flutter of audio turntables and tape recorders, and enhances hunting in gyroscope motors.

  15. Speed control for synchronous motors

    NASA Technical Reports Server (NTRS)

    Packard, H.; Schott, J.

    1981-01-01

    Feedback circuit controls fluctuations in speed of synchronous ac motor. Voltage proportional to phase angle is developed by phase detector, rectified, amplified, compared to threshold, and reapplied positively or negatively to motor excitation circuit. Speed control reduces wow and flutter of audio turntables and tape recorders, and enhances hunting in gyroscope motors.

  16. Circuits in the rodent brainstem that control whisking in concert with other orofacial motor actions.

    PubMed

    McElvain, Lauren E; Friedman, Beth; Karten, Harvey J; Svoboda, Karel; Wang, Fan; Deschênes, Martin; Kleinfeld, David

    2017-08-23

    The world view of rodents is largely determined by sensation on two length scales. One is within the animal's peri-personal space; sensorimotor control on this scale involves active movements of the nose, tongue, head, and vibrissa, along with sniffing to determine olfactory clues. The second scale involves the detection of more distant space through vision and audition; these detection processes also impact repositioning of the head, eyes, and ears. Here we focus on orofacial motor actions, primarily vibrissa-based touch but including nose twitching, head bobbing, and licking, that control sensation at short, peri-personal distances. The orofacial nuclei for control of the motor plants, as well as primary and secondary sensory nuclei associated with these motor actions, lie within the hindbrain. The current data support three themes: First, the position of the sensors is determined by the summation of two drive signals, i.e., a fast rhythmic component and an evolving orienting component. Second, the rhythmic component is coordinated across all orofacial motor actions and is phase-locked to sniffing as the animal explores. Reverse engineering reveals that the preBötzinger inspiratory complex provides the reset to the relevant premotor oscillators. Third, direct feedback from somatosensory trigeminal nuclei can rapidly alter motion of the sensors. This feedback is disynaptic and can be tuned by high-level inputs. A holistic model for the coordination of orofacial motor actions into behaviors will encompass feedback pathways through the midbrain and forebrain, as well as hindbrain areas. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or motor-control...

  18. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or motor-control...

  19. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or motor-control...

  20. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or motor-control...

  1. Load-Responsive Motor Controller

    NASA Technical Reports Server (NTRS)

    Edge, T. M.

    1982-01-01

    New circuit controls voltage applied to a three-phase induction motor in response to magnitude of current, so as to reduce power consumption when the motor is idling or operating at less than full load. Control circuit decreases rms applied voltage to match decreases in motor load over entire torque range. This considerably decreases power consumption in motors operating at a fraction of their rated torques.

  2. Variability in action: Contributions of a songbird cortical-basal ganglia circuit to vocal motor learning and control.

    PubMed

    Woolley, S C; Kao, M H

    2015-06-18

    Many motor behaviors, from walking to speaking, are acquired through experience, in particular, through trial-and-error learning. The acquisition and maintenance of such motor behaviors in a wide range of species, including humans, appear to depend on cortical-basal ganglia circuits. In this review, we discuss recent studies in songbirds that have been pivotal in informing our current understanding of motor learning and cortical-basal ganglia function. Songbirds are important ethological model systems for the study of motor learning because young songbirds naturally develop and refine their songs through trial-and-error learning. In addition, reinforcement mechanisms are hypothesized to be important for the maintenance and plasticity of structured adult song. Computational and experimental studies highlight the importance of vocal motor variability as the substrate upon which reinforcement mechanisms could operate to shape developing song and to maintain adult song. Recent studies in songbirds indicate that this vocal motor variability is actively generated and modulated by a highly specialized cortical-basal ganglia circuit evolved for a single behavior, song. We argue that these and other recent findings illustrate how the tight association between a specialized neural circuit and a natural behavior make songbirds a unique and powerful model in which to investigate the neural substrates of motor learning and plasticity. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Motor control for a brushless DC motor

    NASA Technical Reports Server (NTRS)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  4. Torque control for electric motors

    NASA Technical Reports Server (NTRS)

    Bernard, C. A.

    1980-01-01

    Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.

  5. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or...

  6. Design, Assembly and Installation of Electronic Control Circuits for VM Cooler Drive Motors

    DTIC Science & Technology

    1975-10-01

    conclusions were made: • The high failure rate of switching transistors was caused by misfirings of the associated coil- dampening SCR’s (silicon...replaced with a diode scheme in which a single diode across the switching transistor replaced the SCR and the SCR triggering and timing circuits... transistors for regulation and commutation was re- tained. The disadvantage of this over a system where the two functions would be performed

  7. Similar circuits but different connectivity patterns between the cerebellum, basal ganglia, and supplementary motor area in early Parkinson's disease patients and controls during predictive motor timing.

    PubMed

    Husárová, Ivica; Mikl, Michal; Lungu, Ovidiu V; Mareček, Radek; Vaníček, Jiří; Bareš, Martin

    2013-10-01

    subjects and controls use similar functional circuits to maintain a successful outcome in predictive motor timing behavior, the type and strength of EC and its modulation by behavioral performance differ between these two groups. These functional differences might represent the first step of cortical reorganization aimed at maintaining a normal performance in the brain affected by early Parkinson's disease and may have implications for the neuro-rehabilitation field. Copyright © 2013 by the American Society of Neuroimaging.

  8. Equivalent Circuit Modeling of Hysteresis Motors

    SciTech Connect

    Nitao, J J; Scharlemann, E T; Kirkendall, B A

    2009-08-31

    We performed a literature review and found that many equivalent circuit models of hysteresis motors in use today are incorrect. The model by Miyairi and Kataoka (1965) is the correct one. We extended the model by transforming it to quadrature coordinates, amenable to circuit or digital simulation. 'Hunting' is an oscillatory phenomenon often observed in hysteresis motors. While several works have attempted to model the phenomenon with some partial success, we present a new complete model that predicts hunting from first principles.

  9. Development of larval motor circuits in Drosophila.

    PubMed

    Kohsaka, Hiroshi; Okusawa, Satoko; Itakura, Yuki; Fushiki, Akira; Nose, Akinao

    2012-04-01

    How are functional neural circuits formed during development? Despite recent advances in our understanding of the development of individual neurons, little is known about how complex circuits are assembled to generate specific behaviors. Here, we describe the ways in which Drosophila motor circuits serve as an excellent model system to tackle this problem. We first summarize what has been learned during the past decades on the connectivity and development of component neurons, in particular motor neurons and sensory feedback neurons. We then review recent progress in our understanding of the development of the circuits as well as studies that apply optogenetics and other innovative techniques to dissect the circuit diagram. New approaches using Drosophila as a model system are now making it possible to search for developmental rules that regulate the construction of neural circuits.

  10. Motor Controllers

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Kollmorgen Corporation's Mermaid II two person submersible is propeller-driven by a system of five DC brushless motors with new electronic controllers that originated in work performed in a NASA/DOE project managed by Lewis Research Center. A key feature of the system is electric commutation rather than mechanical commutation for converting AC current to DC.

  11. Closed-Loop Motor-Speed Control

    NASA Technical Reports Server (NTRS)

    Smith, Matthew A.; Delcher, Ray C.; Huston, Steven W.

    1989-01-01

    Electronic motor-speed control circuit designed to operate in electrically noisy environment. Includes optoelectronic pick-up device, placed inside motor housing to provide speed feedback signal. Automatically maintains speed motor at commanded value. Measures speed of motor in terms of frequency of pulses of infrared light chopped by fan blades of motor. Difference between measured and commanded speeds serves as control signal for external amplifier driving motor. Major advantage of circuit is low cost.

  12. Circuit increases capability of hysteresis synchronous motor

    NASA Technical Reports Server (NTRS)

    Markowitz, I. N.

    1967-01-01

    Frequency and phase detector circuit enables a hysteresis synchronous motor to drive a load of given torque value at a precise speed determined by a stable reference. This technique permits driving larger torque loads with smaller motors and lower power drain.

  13. Circuit Regulates Speed Of dc Motor

    NASA Technical Reports Server (NTRS)

    Weaver, Charles; Padden, Robin; Brown, Floyd A., Jr.

    1990-01-01

    Driving circuit regulates speed of small dc permanent-magnet motor in tape recorder. Two nested feedback loops maintain speed within 1 percent of constant value. Inner loop provides coarse regulation, while outer loop removes most of variation in speed that remains in the presence of regulation by the inner loop. Compares speed of motor with commanded speed and adjusts current supplied to motor accordingly.

  14. Circuit Regulates Speed Of dc Motor

    NASA Technical Reports Server (NTRS)

    Weaver, Charles; Padden, Robin; Brown, Floyd A., Jr.

    1990-01-01

    Driving circuit regulates speed of small dc permanent-magnet motor in tape recorder. Two nested feedback loops maintain speed within 1 percent of constant value. Inner loop provides coarse regulation, while outer loop removes most of variation in speed that remains in the presence of regulation by the inner loop. Compares speed of motor with commanded speed and adjusts current supplied to motor accordingly.

  15. Descending Systems Direct Development of Key Spinal Motor Circuits.

    PubMed

    Smith, Calvin C; Paton, Julian F R; Chakrabarty, Samit; Ichiyama, Ronaldo M

    2017-06-28

    The formation of mature spinal motor circuits is dependent on both activity-dependent and independent mechanisms during postnatal development. During this time, reorganization and refinement of spinal sensorimotor circuits occurs as supraspinal projections are integrated. However, specific features of postnatal spinal circuit development remain poorly understood. This study provides the first detailed characterization of rat spinal sensorimotor circuit development in the presence and absence of descending systems. We show that the development of proprioceptive afferent input to motoneurons (MNs) and Renshaw cells (RCs) is disrupted by thoracic spinal cord transection at postnatal day 5 (P5TX). P5TX also led to malformation of GABApre neuron axo-axonic contacts on Ia afferents and of the recurrent inhibitory circuit between MNs and RCs. Using a novel in situ perfused preparation for studying motor control, we show that malformation of these spinal circuits leads to hyperexcitability of the monosynaptic reflex. Our results demonstrate that removing descending input severely disrupts the development of spinal circuits and identifies key mechanisms contributing to motor dysfunction in conditions such as cerebral palsy and spinal cord injury.SIGNIFICANCE STATEMENT Acquisition of mature behavior during postnatal development correlates with the arrival and maturation of supraspinal projections to the spinal cord. However, we know little about the role that descending systems play in the maturation of spinal circuits. Here, we characterize postnatal development of key spinal microcircuits in the presence and absence of descending systems. We show that formation of these circuits is abnormal after early (postnatal day 5) removal of descending systems, inducing hyperexcitability of the monosynaptic reflex. The study is a detailed characterization of spinal circuit development elucidating how these mechanisms contribute to motor dysfunction in conditions such as cerebral

  16. From circuits to behaviour: motor networks in vertebrates

    PubMed Central

    Garcia-Campmany, Lidia; Stam, Floor J.; Goulding, Martyn

    2010-01-01

    Neural networks in the hindbrain and spinal cord generate the simple patterns of motor activity that are necessary for breathing and locomotion. These networks function autonomously, producing simple yet flexible rhythmic motor behaviours that are highly responsive to sensory inputs and central control. This review highlights recent advances in our understanding of the genetic programs that control the assembly and functioning of the hindbrain and spinal circuits that are responsible for respiration and locomotion. In addition, we highlight the influence that target-derived retrograde signaling and experience-dependent mechanisms have on establishing connectivity, particularly with respect to sensory circuits in the spinal cord. PMID:20138753

  17. Circuit changes in motor cortex during motor skill learning.

    PubMed

    Papale, Andrew E; Hooks, Bryan M

    2017-09-14

    Motor cortex is important for motor skill learning, particularly the dexterous skills necessary for our favorite sports and careers. We are especially interested in understanding how plasticity in motor cortex contributes to skill learning. Although human studies have been helpful in understanding the importance of motor cortex in learning skilled tasks, animal models are necessary for achieving a detailed understanding of the circuitry underlying these behaviors and the changes that occur during training. We review data from these models to try to identify sites of plasticity in motor cortex, focusing on rodents asa model system. Rodent neocortex contains well-differentiated motor and sensory regions, as well as neurons expressing similar genetic markers to many of the same circuit components in human cortex. Furthermore, rodents have circuit mapping tools for labeling, targeting, and manipulating these cell types as circuit nodes. Crucially, the projection from rodent primary somatosensory cortex to primary motor cortex is a well-studied corticocortical projection and a model of sensorimotor integration. We first summarize some of the descending pathways involved in making dexterous movements, including reaching. We then describe local and long-range circuitry in mouse motor cortex, summarizing structural and functional changes associated with motor skill acquisition. We then address which specific connections might be responsible for plasticity. For insight into the range of plasticity mechanisms employed by cortex, we review plasticity in sensory systems. The similarities and differences between motor cortex plasticity and critical periods of plasticity in sensory systems are discussed. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Circuit For Control Of Electromechanical Prosthetic Hand

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Proposed circuit for control of electromechanical prosthetic hand derives electrical control signals from shoulder movements. Updated, electronic version of prosthesis, that includes two hooklike fingers actuated via cables from shoulder harness. Circuit built around favored shoulder harness, provides more dexterous movement, without incurring complexity of computer-controlled "bionic" or hydraulically actuated devices. Additional harness and potentiometer connected to similar control circuit mounted on other shoulder. Used to control stepping motor rotating hand about prosthetic wrist to one of number of angles consistent with number of digital outputs. Finger-control signals developed by circuit connected to first shoulder harness transmitted to prosthetic hand via sliprings at prosthetic wrist joint.

  19. Circuit For Control Of Electromechanical Prosthetic Hand

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Proposed circuit for control of electromechanical prosthetic hand derives electrical control signals from shoulder movements. Updated, electronic version of prosthesis, that includes two hooklike fingers actuated via cables from shoulder harness. Circuit built around favored shoulder harness, provides more dexterous movement, without incurring complexity of computer-controlled "bionic" or hydraulically actuated devices. Additional harness and potentiometer connected to similar control circuit mounted on other shoulder. Used to control stepping motor rotating hand about prosthetic wrist to one of number of angles consistent with number of digital outputs. Finger-control signals developed by circuit connected to first shoulder harness transmitted to prosthetic hand via sliprings at prosthetic wrist joint.

  20. The Influence of Vacuum Circuit Breakers and Different Motor Models on Switching Overvoltages in Motor Circuits

    NASA Astrophysics Data System (ADS)

    Wong, Cat S. M.; Snider, L. A.; Lo, Edward W. C.; Chung, T. S.

    Switching of induction motors with vacuum circuit breakers continues to be a concern. In this paper the influence on statistical overvoltages of the stochastic characteristics of vacuum circuit breakers, high frequency models of motors and transformers, and network characteristics, including cable lengths and network topology are evaluated and a general view of the overvoltages phenomena is presented. Finally, a real case study on the statistical voltage levels and risk-of-failure resulting from switching of a vacuum circuit breaker in an industrial installation in Hong Kong is presented.

  1. Endocannabinoid Modulation of Dopaminergic Motor Circuits

    PubMed Central

    Morera-Herreras, Teresa; Miguelez, Cristina; Aristieta, Asier; Ruiz-Ortega, José Ángel; Ugedo, Luisa

    2012-01-01

    There is substantial evidence supporting a role for the endocannabinoid system as a modulator of the dopaminergic activity in the basal ganglia, a forebrain system that integrates cortical information to coordinate motor activity regulating signals. In fact, the administration of plant-derived, synthetic or endogenous cannabinoids produces several effects on motor function. These effects are mediated primarily through the CB1 receptors that are densely located in the dopamine-enriched basal ganglia networks, suggesting that the motor effects of endocannabinoids are due, at least in part, to modulation of dopaminergic transmission. On the other hand, there are profound changes in CB1 receptor cannabinoid signaling in the basal ganglia circuits after dopamine depletion (as happens in Parkinson’s disease) and following l-DOPA replacement therapy. Therefore, it has been suggested that endocannabinoid system modulation may constitute an important component in new therapeutic approaches to the treatment of motor disturbances. In this article we will review studies supporting the endocannabinoid modulation of dopaminergic motor circuits. PMID:22701427

  2. ELECTRONIC PHASE CONTROL CIRCUIT

    DOEpatents

    Salisbury, J.D.; Klein, W.W.; Hansen, C.F.

    1959-04-21

    An electronic circuit is described for controlling the phase of radio frequency energy applied to a multicavity linear accelerator. In one application of the circuit two cavities are excited from a single radio frequency source, with one cavity directly coupled to the source and the other cavity coupled through a delay line of special construction. A phase detector provides a bipolar d-c output signal proportional to the difference in phase between the voltage in the two cavities. This d-c signal controls a bias supply which provides a d-c output for varying the capacitnce of voltage sensitive capacitors in the delay line. The over-all operation of the circuit is completely electronic, overcoming the time response limitations of the electromechanical control systems, and the relative phase relationship of the radio frequency voltages in the two caviiies is continuously controlled to effect particle acceleration.

  3. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b) The...

  4. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b) The...

  5. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b) The...

  6. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b)...

  7. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b)...

  8. Gross motor control

    MedlinePlus

    Gross motor control is the ability to make large, general movements (such as waving an arm or lifting a ... Gross motor control is a milestone in the development of an infant. Infants develop gross motor control before they ...

  9. A motor cortex circuit for motor planning and movement.

    PubMed

    Li, Nuo; Chen, Tsai-Wen; Guo, Zengcai V; Gerfen, Charles R; Svoboda, Karel

    2015-03-05

    Activity in motor cortex predicts specific movements seconds before they occur, but how this preparatory activity relates to upcoming movements is obscure. We dissected the conversion of preparatory activity to movement within a structured motor cortex circuit. An anterior lateral region of the mouse cortex (a possible homologue of premotor cortex in primates) contains equal proportions of intermingled neurons predicting ipsi- or contralateral movements, yet unilateral inactivation of this cortical region during movement planning disrupts contralateral movements. Using cell-type-specific electrophysiology, cellular imaging and optogenetic perturbation, we show that layer 5 neurons projecting within the cortex have unbiased laterality. Activity with a contralateral population bias arises specifically in layer 5 neurons projecting to the brainstem, and only late during movement planning. These results reveal the transformation of distributed preparatory activity into movement commands within hierarchically organized cortical circuits.

  10. Inrush Current Control Circuit

    NASA Technical Reports Server (NTRS)

    Cole, Steven W. (Inventor)

    2002-01-01

    An inrush current control circuit having an input terminal connected to a DC power supply and an output terminal connected to a load capacitor limits the inrush current that charges up the load capacitor during power up of a system. When the DC power supply applies a DC voltage to the input terminal, the inrush current control circuit produces a voltage ramp at the load capacitor instead of an abrupt DC voltage. The voltage ramp results in a constant low level current to charge up the load capacitor, greatly reducing the current drain on the DC power supply.

  11. Method and apparatus for controlling multiple motors

    DOEpatents

    Jones, Rollin G.; Kortegaard, Bert L.; Jones, David F.

    1987-01-01

    A method and apparatus are provided for simultaneously controlling a plurality of stepper motors. Addressing circuitry generates address data for each motor in a periodic address sequence. Memory circuits respond to the address data for each motor by accessing a corresponding memory location containing a first operational data set functionally related to a direction for moving the motor, speed data, and rate of speed change. First logic circuits respond to the first data set to generate a motor step command. Second logic circuits respond to the command from the first logic circuits to generate a third data set for replacing the first data set in memory with a current operational motor status, which becomes the first data set when the motor is next addressed.

  12. DETAIL OF THE OPERATING MOTOR FOR THE OIL CIRCUIT BREAKER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE OPERATING MOTOR FOR THE OIL CIRCUIT BREAKER SWITCH. - Wilson Dam & Hydroelectric Plant, Three Phase Tri Level Circuit Breaker, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL

  13. Temperature-Controlling Circuit

    NASA Technical Reports Server (NTRS)

    Temple, Gerald

    1987-01-01

    Simple circuit switches current to electrical heater on and off to maintain temperature of room at 25 plus or minus 0.5 degree C. Lightweight, compact, reliable, insensitive to electrical noise, and uses single 5-Vdc power supply. Handles ac loads of 10 A. Designed to operate outside temperature controlled environment over range of -55 to +85 degree C. Thermistor provides input signal for simple temperature controller. Output of controller applied to solid-state relay, which in turn switches current to resistance heater.

  14. Temperature-Controlling Circuit

    NASA Technical Reports Server (NTRS)

    Temple, Gerald

    1987-01-01

    Simple circuit switches current to electrical heater on and off to maintain temperature of room at 25 plus or minus 0.5 degree C. Lightweight, compact, reliable, insensitive to electrical noise, and uses single 5-Vdc power supply. Handles ac loads of 10 A. Designed to operate outside temperature controlled environment over range of -55 to +85 degree C. Thermistor provides input signal for simple temperature controller. Output of controller applied to solid-state relay, which in turn switches current to resistance heater.

  15. Tapping into spinal circuits to restore motor function.

    PubMed

    Barbeau, H; McCrea, D A; O'Donovan, M J; Rossignol, S; Grill, W M; Lemay, M A

    1999-07-01

    Motivated by the challenge of improving neuroprosthetic devices, the authors review current knowledge relating to harnessing the potential of spinal neural circuits, such as reflexes and pattern generators. If such spinal interneuronal circuits could be activated, they could provide the coordinated control of many muscles that is so complex to implement with a device that aims to address each participating muscle individually. The authors' goal is to identify candidate spinal circuits and areas of research that might open opportunities to effect control of human limbs through electrical activation of such circuits. David McCrea's discussion of the ways in which hindlimb reflexes in the cat modify motor activity may help in developing optimal strategies for functional neuromuscular stimulation (FNS), by using knowledge of how reflex actions can adapt to different conditions. Michael O'Donovan's discussion of the development of rhythmogenic networks in the chick embryo may provide clues to methods of generating rhythmic activity in the adult spinal cord. Serge Rossignol examines the spinal pattern generator for locomotion in cats, its trigger mechanisms, modulation and adaptation, and suggests how this knowledge can help guide therapeutic approaches in humans. Hugues Barbeau applies the work of Rossignol and others to locomotor training in human subjects who have suffered spinal cord injury (SCI) with incomplete motor function loss (IMFL). Michel Lemay and Warren Grill discuss some of the technical challenges that must be addressed by engineers to implement a neuroprosthesis using electrical stimulation of the spinal cord, particularly the control issues that would have to be resolved.

  16. Three phase AC motor controller

    DOEpatents

    Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.

    1984-03-20

    A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

  17. Breathing and vocal control: the respiratory system as both a driver and a target of telencephalic vocal motor circuits in songbirds.

    PubMed

    Schmidt, Marc F; McLean, Judith; Goller, Franz

    2012-04-01

    The production of vocalizations is intimately linked to the respiratory system. Despite our understanding of neural circuits that generate normal respiratory patterns, very little is understood regarding how these pontomedullary circuits become engaged during vocal production. Songbirds offer a potentially powerful model system for addressing this relationship. Songs dramatically alter the respiratory pattern in ways that are often highly predictable, and songbirds have a specialized telencephalic vocal motor circuit that provides massive innervation to a brainstem respiratory network that shares many similarities with its mammalian counterpart. In this review, we highlight interactions between the song motor circuit and the respiratory system, describing how both systems are likely to interact to produce the complex respiratory patterns that are observed during vocalization. We also discuss how the respiratory system, through its bilateral bottom-up projections to thalamus, might play a key role in sending precisely timed signals that synchronize premotor activity in both hemispheres.

  18. Synaptic Circuit Organization of Motor Corticothalamic Neurons

    PubMed Central

    Yamawaki, Naoki

    2015-01-01

    Corticothalamic (CT) neurons in layer 6 constitute a large but enigmatic class of cortical projection neurons. How they are integrated into intracortical and thalamo-cortico-thalamic circuits is incompletely understood, especially outside of sensory cortex. Here, we investigated CT circuits in mouse forelimb motor cortex (M1) using multiple circuit-analysis methods. Stimulating and recording from CT, intratelencephalic (IT), and pyramidal tract (PT) projection neurons, we found strong CT↔ CT and CT↔ IT connections; however, CT→IT connections were limited to IT neurons in layer 6, not 5B. There was strikingly little CT↔ PT excitatory connectivity. Disynaptic inhibition systematically accompanied excitation in these pathways, scaling with the amplitude of excitation according to both presynaptic (class-specific) and postsynaptic (cell-by-cell) factors. In particular, CT neurons evoked proportionally more inhibition relative to excitation (I/E ratio) than IT neurons. Furthermore, the amplitude of inhibition was tuned to match the amount of excitation at the level of individual neurons; in the extreme, neurons receiving no excitation received no inhibition either. Extending these studies to dissect the connectivity between cortex and thalamus, we found that M1-CT neurons and thalamocortical neurons in the ventrolateral (VL) nucleus were remarkably unconnected in either direction. Instead, VL axons in the cortex excited both IT and PT neurons, and CT axons in the thalamus excited other thalamic neurons, including those in the posterior nucleus, which additionally received PT excitation. These findings, which contrast in several ways with previous observations in sensory areas, illuminate the basic circuit organization of CT neurons within M1 and between M1 and thalamus. PMID:25653383

  19. High-temperature brushless DC motor controller

    DOEpatents

    Cieslewski, Crzegorz; Lindblom, Scott C.; Maldonado, Frank J.; Eckert, Michael Nathan

    2017-05-16

    A motor control system for deployment in high temperature environments includes a controller; a first half-bridge circuit that includes a first high-side switching element and a first low-side switching element; a second half-bridge circuit that includes a second high-side switching element and a second low-side switching element; and a third half-bridge circuit that includes a third high-side switching element and a third; low-side switching element. The motor controller is arranged to apply a pulse width modulation (PWM) scheme to switch the first half-bridge circuit, second half-bridge circuit, and third half-bridge circuit to power a motor.

  20. Precision stop control for motors

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Montenegro, Justino (Inventor)

    2000-01-01

    An improved stop control system and method are provided for a motor having a drive mechanism in which the motor is coupled to a motor controller that controls the speed and position of the drive mechanism using a first signal indicative of a commanded position of the drive mechanism, a second signal indicative of the actual speed of the drive mechanism and a third signal indicative of the actual position of the drive mechanism. The improved system/method uses a first circuit that receives the first and third signal and generates an error signal indicative of a difference therebetween. A second circuit receives the error signal and compares same with a threshold position error. The result of this comparison is used to selectively supply the second signal (i.e., speed) to the motor controller at least whenever the error signal is less than the threshold position error so that the motor controller can use the second signal in conjunction with the third signal to stop the motor.

  1. Cortical Motor Circuits after Piano Training in Adulthood: Neurophysiologic Evidence.

    PubMed

    Houdayer, Elise; Cursi, Marco; Nuara, Arturo; Zanini, Sonia; Gatti, Roberto; Comi, Giancarlo; Leocani, Letizia

    2016-01-01

    The neuronal mechanisms involved in brain plasticity after skilled motor learning are not completely understood. We aimed to study the short-term effects of keyboard training in music-naive subjects on the motor/premotor cortex activity and interhemispheric interactions, using electroencephalography and transcranial magnetic stimulation (TMS). Twelve subjects (experimental group) underwent, before and after a two week-piano training: (1) hand-motor function tests: Jamar, grip and nine-hole peg tests; (2) electroencephalography, evaluating the mu rhythm task-related desynchronization (TRD) during keyboard performance; and (3) TMS, targeting bilateral abductor pollicis brevis (APB) and abductor digiti minimi (ADM), to obtain duration and area of ipsilateral silent period (ISP) during simultaneous tonic contraction of APB and ADM. Data were compared with 13 controls who underwent twice these measurements, in a two-week interval, without undergoing piano training. Every subject in the experimental group improved keyboard performance and left-hand nine-hole peg test scores. Pre-training, ISP durations were asymmetrical, left being longer than right. Post-training, right ISPAPB increased, leading to symmetrical ISPAPB. Mu TRD during motor performance became more focal and had a lesser amplitude than in pre-training, due to decreased activity over ventral premotor cortices. No such changes were evidenced in controls. We demonstrated that a 10-day piano-training was associated with balanced interhemispheric interactions both at rest and during motor activation. Piano training, in a short timeframe, may reshape local and inter-hemispheric motor cortical circuits.

  2. Compensated gain control circuit for buck regulator command charge circuit

    DOEpatents

    Barrett, David M.

    1996-01-01

    A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit.

  3. Compensated gain control circuit for buck regulator command charge circuit

    DOEpatents

    Barrett, D.M.

    1996-11-05

    A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit. 5 figs.

  4. Demodulation circuit for AC motor current spectral analysis

    SciTech Connect

    Hendrix, D.E.; Smith, S.F.

    1990-12-18

    A motor current analysis method for the remote, noninvasive inspection of electric motor-operated systems is disclosed. Synchronous amplitude demodulation and phase demodulation circuits are used singly and in combination along with a frequency analyzer to produce improved spectral analysis of load-induced frequencies present in the electric current flowing in a motor-driven system. 12 figs.

  5. Demodulation circuit for AC motor current spectral analysis

    DOEpatents

    Hendrix, Donald E.; Smith, Stephen F.

    1990-12-18

    A motor current analysis method for the remote, noninvasive inspection of electric motor-operated systems. Synchronous amplitude demodulation and phase demodulation circuits are used singly and in combination along with a frequency analyzer to produce improved spectral analysis of load-induced frequencies present in the electric current flowing in a motor-driven system.

  6. Dual-circuit segmented rail phased induction motor

    DOEpatents

    Marder, Barry M.; Cowan, Jr., Maynard

    2002-01-01

    An improved linear motor utilizes two circuits, rather that one circuit and an opposed plate, to gain efficiency. The powered circuit is a flat conductive coil. The opposed segmented rail circuit is either a plurality of similar conductive coils that are shorted, or a plurality of ladders formed of opposed conductive bars connected by a plurality of spaced conductors. In each embodiment, the conductors are preferably cables formed from a plurality of intertwined insulated wires to carry current evenly.

  7. The neural circuits and synaptic mechanisms underlying motor initiation in C. elegans

    PubMed Central

    Piggott, Beverly J.; Liu, Jie; Feng, Zhaoyang; Wescott, Seth A.; Xu, X. Z. Shawn

    2011-01-01

    Summary C. elegans is widely used to dissect how neural circuits and genes generate behavior. During locomotion, worms initiate backward movement to change locomotion direction spontaneously or in response to sensory cues; however, the underlying neural circuits are not well defined. We applied a multidisciplinary approach to map neural circuits in freely-behaving worms by integrating functional imaging, optogenetic interrogation, genetic manipulation, laser ablation, and electrophysiology. We found that a disinhibitory circuit and a stimulatory circuit together promote the initiation of backward movement, and that circuitry dynamics is differentially regulated by sensory cues. Both circuits require glutamatergic transmission but depend on distinct glutamate receptors. This dual mode of motor initiation control is found in mammals, suggesting that distantly related organisms with anatomically distinct nervous systems may adopt similar strategies for motor control. Additionally, our studies illustrate how a multidisciplinary approach facilitates dissection of circuit and synaptic mechanisms underlying behavior in a genetic model organism. PMID:22078887

  8. Electronic control circuits: A compilation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A compilation of technical R and D information on circuits and modular subassemblies is presented as a part of a technology utilization program. Fundamental design principles and applications are given. Electronic control circuits discussed include: anti-noise circuit; ground protection device for bioinstrumentation; temperature compensation for operational amplifiers; hybrid gatling capacitor; automatic signal range control; integrated clock-switching control; and precision voltage tolerance detector.

  9. Corticospinal circuit plasticity in motor rehabilitation from spinal cord injury.

    PubMed

    Serradj, Najet; Agger, Sydney F; Hollis, Edmund R

    2016-12-06

    Restoring corticospinal function after spinal cord injury is a significant challenge as the corticospinal tract elicits no substantive, spontaneous regeneration, and its interruption leaves a permanent deficit. The corticospinal circuit serves multiple motor and sensory functions within the mammalian nervous system as the direct link between isocortex and spinal cord. Maturation of the corticospinal circuit involves the refinement of projections within the spinal cord and a subsequent refinement of motor maps within the cortex. The plasticity of these cortical motor maps mirrors the acquisition of skilled motor learning, and both the maps and motor skills are disrupted following injury to the corticospinal tract. The motor cortex exhibits the capacity to incorporate changes in corticospinal projections induced by both spontaneous and therapeutic-mediated plasticity of corticospinal axons through appropriate rehabilitation. An understanding of the mechanisms of corticospinal plasticity in motor learning will undoubtedly help inform strategies to improve motor rehabilitation after spinal cord injury.

  10. Dynamic Characteristics of Human Motor Performance in Control Systems.

    DTIC Science & Technology

    1979-01-01

    including the neural control of respiration and vestibular organization. In addition, computer simulations of small neuronal networks have added an understanding of circuits involved in motor performance. (Author)

  11. Optically controllable molecular logic circuits

    SciTech Connect

    Nishimura, Takahiro Fujii, Ryo; Ogura, Yusuke; Tanida, Jun

    2015-07-06

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals.

  12. 2. ELEVATOR DRIVE, CABLE MOTOR, CIRCUIT BOX, Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ELEVATOR DRIVE, CABLE MOTOR, CIRCUIT BOX, - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  13. Cortical Motor Circuits after Piano Training in Adulthood: Neurophysiologic Evidence

    PubMed Central

    Nuara, Arturo; Zanini, Sonia; Gatti, Roberto; Comi, Giancarlo; Leocani, Letizia

    2016-01-01

    The neuronal mechanisms involved in brain plasticity after skilled motor learning are not completely understood. We aimed to study the short-term effects of keyboard training in music-naive subjects on the motor/premotor cortex activity and interhemispheric interactions, using electroencephalography and transcranial magnetic stimulation (TMS). Twelve subjects (experimental group) underwent, before and after a two week-piano training: (1) hand-motor function tests: Jamar, grip and nine-hole peg tests; (2) electroencephalography, evaluating the mu rhythm task-related desynchronization (TRD) during keyboard performance; and (3) TMS, targeting bilateral abductor pollicis brevis (APB) and abductor digiti minimi (ADM), to obtain duration and area of ipsilateral silent period (ISP) during simultaneous tonic contraction of APB and ADM. Data were compared with 13 controls who underwent twice these measurements, in a two-week interval, without undergoing piano training. Every subject in the experimental group improved keyboard performance and left-hand nine-hole peg test scores. Pre-training, ISP durations were asymmetrical, left being longer than right. Post-training, right ISPAPB increased, leading to symmetrical ISPAPB. Mu TRD during motor performance became more focal and had a lesser amplitude than in pre-training, due to decreased activity over ventral premotor cortices. No such changes were evidenced in controls. We demonstrated that a 10-day piano-training was associated with balanced interhemispheric interactions both at rest and during motor activation. Piano training, in a short timeframe, may reshape local and inter-hemispheric motor cortical circuits. PMID:27309353

  14. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... circuits through circuit controller. 236.13 Section 236.13 Transportation Other Regulations Relating to...; selection of signal control circuits through circuit controller. The control circuits of signals governing... circuit controller, or through the contacts of relay repeating the position of such circuit controller...

  15. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... circuits through circuit controller. 236.13 Section 236.13 Transportation Other Regulations Relating to...; selection of signal control circuits through circuit controller. The control circuits of signals governing... circuit controller, or through the contacts of relay repeating the position of such circuit controller...

  16. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... circuits through circuit controller. 236.13 Section 236.13 Transportation Other Regulations Relating to...; selection of signal control circuits through circuit controller. The control circuits of signals governing... circuit controller, or through the contacts of relay repeating the position of such circuit controller...

  17. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... circuits through circuit controller. 236.13 Section 236.13 Transportation Other Regulations Relating to...; selection of signal control circuits through circuit controller. The control circuits of signals governing... circuit controller, or through the contacts of relay repeating the position of such circuit controller...

  18. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... circuits through circuit controller. 236.13 Section 236.13 Transportation Other Regulations Relating to...; selection of signal control circuits through circuit controller. The control circuits of signals governing... circuit controller, or through the contacts of relay repeating the position of such circuit controller...

  19. 46 CFR 111.70-7 - Remote control, interlock, and indicator circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-7..., interlock, or indicator circuit of a motor controller must be protected against overcurrent unless: (1) The conductor is wholly within the controller enclosure; (2) The rating or setting of the branch circuit...

  20. Controller for a High-Power, Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Fleming, David J.; Makdad, Terence A.

    1987-01-01

    Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.

  1. Controller for a High-Power, Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Fleming, David J.; Makdad, Terence A.

    1987-01-01

    Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.

  2. Stepping motor controller

    DOEpatents

    Bourret, S.C.; Swansen, J.E.

    1982-07-02

    A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  3. Stepping motor controller

    DOEpatents

    Bourret, Steven C.; Swansen, James E.

    1984-01-01

    A stepping motor is microprocessingly controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  4. Chaos Control for Chua's Circuits

    NASA Astrophysics Data System (ADS)

    Tôrres, L. A. B.; Aguirre, L. A.; Palhares, R. M.; Mendes, E. M. A. M.

    The practical implementation of Chua's circuit control methods is discussed in this chapter. In order to better address this subject, an inductorless Chua's circuit realization is first presented, followed by practical issues related to data analysis, mathematical modelling, and dynamical characterization associated to this electronic chaotic oscillator. As a consequence of the investigation of different control strategies applied to Chua's circuit, a tradeoff among control objective, control energy, and model complexity is devised, which quite naturally leads to a principle that seems to be of general nature: the Information Transmission Via Control (ITVC) for nonlinear oscillators. The main purpose of the present chapter is to serve as an introductory guide to the universe of Chua's circuit control, synchronization, and mathematical modelling.

  5. Power-Conserving Stepping-Motor Drive Circuits

    NASA Technical Reports Server (NTRS)

    Nola, Frank J.; Howard, David E.

    1994-01-01

    Two improved drive circuits for sinusoidally commutated stepping motor include feedback loops reducing unnecessary consumption of power by reducing drive-current amplitude, I, when motor operates under light load. Basic design strategy attempts to supply only little more current than minimum needed to overcome friction in lightly loaded condition. In this sinusoidally commutated two-phase stepping motor, magnetic field generated by drive currents in phase-A and phase-B stator windings urges rotor toward commanded angle x.

  6. Pulsed thyristor trigger control circuit

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A trigger control circuit is provided for producing firing pulses for the thyristor of a thyristor control system such as a power factor controller. The control circuit overcomes thyristor triggering problems involved with the current lag associated with controlling inductive loads and utilizes a phase difference signal, already present in the power factor controller, in deriving a signal for inhibiting generation of a firing pulse until no load current is flowing from the preceding half cycle and thereby ensuring that the thyristor is triggered on during each half cycle.

  7. Induction motor control

    NASA Astrophysics Data System (ADS)

    Hansen, Irving G.

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  8. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  9. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly utilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilizes induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  10. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  11. Fine motor control

    MedlinePlus

    ... with Parkinson disease have trouble speaking, eating, and writing because they have lost fine motor control. The ... Drawing lines or circles Folding clothes Holding and writing with a pencil Stacking blocks Zipping a zipper

  12. Chua's Circuit: Control and Synchronization

    NASA Astrophysics Data System (ADS)

    Irimiciuc, Stefan-Andrei; Vasilovici, Ovidiu; Dimitriu, Dan-Gheorghe

    Chaos-based data encryption is one of the most reliable methods used in secure communications. This implies a good control of a chaotic system and a good synchronization between the involved systems. Here, experimental results are shown on the control and synchronization of Chua's circuits. The control of the chaotic circuit was achieved by using the switching method. The influence of the control signal characteristics (amplitude, frequency and shape) on the system's states was also investigated. The synchronization of two similar chaotic circuits was studied, emphasizing the importance of the chaotic state characteristics of the Master system in respect to those of Slave system. It was shown that the synchronization does not depend on the chaotic state type, neither on the dimension (x, y or z) used for synchronization.

  13. PHOTOSENSITIVE RELAY CONTROL CIRCUIT

    DOEpatents

    Martin, C.F.

    1958-01-14

    adapted for the measurement of the time required for an oscillating member to pass through a preselected number of oscillations, after being damped to a certain maximum amplitude of oscillation. A mirror is attached to the moving member and directs light successively to a photocell which is part of a trigger unit and to first and second photocells which are part of a starter unit, as the member swings to its maximum amplitude. The starter and trigger units comprise thyratrons and relays so interconnected that the trigger circuit, although generating a counter pulse, does not register a count in the counter when the light traverses both photocells of the starter unit. When the amplitude of oscillation of the member decreases to where the second photocell is not transversed, the triggei pulse is received by the counter. The counter taen operates to register the desired number of oscillations and initiates and terminates a timer for measuring the time irterval for the preselected number of oscillations.

  14. 18. Station Service Control and Motor Control Center #2, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Station Service Control and Motor Control Center #2, view to the northeast. Note the circuit breaker switch on cart in left corner of photograph. This switch is part of the motor control center which has been temporarily removed from the slot marked with a tag that is visible at lower left end of control center. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  15. Gap Junction-Mediated Signaling from Motor Neurons Regulates Motor Generation in the Central Circuits of Larval Drosophila.

    PubMed

    Matsunaga, Teruyuki; Kohsaka, Hiroshi; Nose, Akinao

    2017-02-22

    In this study, we used the peristaltic crawling of Drosophila larvae as a model to study how motor patterns are regulated by central circuits. We built an experimental system that allows simultaneous application of optogenetics and calcium imaging to the isolated ventral nerve cord (VNC). We then investigated the effects of manipulating local activity of motor neurons (MNs) on fictive locomotion observed as waves of MN activity propagating along neuromeres. Optical inhibition of MNs with halorhodopsin3 in a middle segment (A4, A5, or A6), but not other segments, dramatically decreased the frequency of the motor waves. Conversely, local activation of MNs with channelrhodopsin2 in a posterior segment (A6 or A7) increased the frequency of the motor waves. Since peripheral nerves mediating sensory feedback were severed in the VNC preparation, these results indicate that MNs send signals to the central circuits to regulate motor pattern generation. Our results also indicate segmental specificity in the roles of MNs in motor control. The effects of the local MN activity manipulation were lost in shaking-B(2) (shakB(2) ) or ogre(2) , gap-junction mutations in Drosophila, or upon acute application of the gap junction blocker carbenoxolone, implicating electrical synapses in the signaling from MNs. Cell-type-specific RNAi suggested shakB and ogre function in MNs and interneurons, respectively, during the signaling. Our results not only reveal an unexpected role for MNs in motor pattern regulation, but also introduce a powerful experimental system that enables examination of the input-output relationship among the component neurons in this system.SIGNIFICANCE STATEMENT Motor neurons are generally considered passive players in motor pattern generation, simply relaying information from upstream interneuronal circuits to the target muscles. This study shows instead that MNs play active roles in the control of motor generation by conveying information via gap junctions to the

  16. Efficient Power Amplifier for Motor Control

    NASA Technical Reports Server (NTRS)

    Brown, R. J.

    1986-01-01

    Pulse-width-modulated amplifier supplies high current as efficiently as low current needed for starting and running motor. Key to efficiency of motor-control amplifier is V-channel metal-oxide/semiconductor transistor Q1. Device has low saturation resistance. However, has large gate input capacitance and small margin between its turn-on voltage and maximum allowable gate-to-source voltage. Circuits for output stages overcome limitations of VMOS device.

  17. DC motor proportional control system for orthotic devices

    NASA Technical Reports Server (NTRS)

    Blaise, H. T.; Allen, J. R.

    1972-01-01

    Multi-channel proportional control system for operation of dc motors for use with externally-powered orthotic arm braces is described. Components of circuitry and principles of operation are described. Schematic diagram of control circuit is provided.

  18. Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits.

    PubMed

    Jiang, Yu-Qiu; Zaaimi, Boubker; Martin, John H

    2016-01-06

    Injury to the mature motor system drives significant spontaneous axonal sprouting instead of axon regeneration. Knowing the circuit-level determinants of axonal sprouting is important for repairing motor circuits after injury to achieve functional rehabilitation. Competitive interactions are known to shape corticospinal tract axon outgrowth and withdrawal during development. Whether and how competition contributes to reorganization of mature spinal motor circuits is unclear. To study this question, we examined plastic changes in corticospinal axons in response to two complementary proprioceptive afferent manipulations: (1) enhancing proprioceptive afferents activity by electrical stimulation; or (2) diminishing their input by dorsal rootlet rhizotomy. Experiments were conducted in adult rats. Electrical stimulation produced proprioceptive afferent sprouting that was accompanied by significant corticospinal axon withdrawal and a decrease in corticospinal connections on cholinergic interneurons in the medial intermediate zone and C boutons on motoneurons. In contrast, dorsal rootlet rhizotomy led to a significant increase in corticospinal connections, including those on cholinergic interneurons; C bouton density increased correspondingly. Motor cortex-evoked muscle potentials showed parallel changes to those of corticospinal axons, suggesting that reciprocal corticospinal axon changes are functional. Using the two complementary models, we showed that competitive interactions between proprioceptive and corticospinal axons are an important determinant in the organization of mature corticospinal axons and spinal motor circuits. The activity- and synaptic space-dependent properties of the competition enables prediction of the remodeling of spared corticospinal connection and spinal motor circuits after injury and informs the target-specific control of corticospinal connections to promote functional recovery. Neuroplasticity is limited in maturity, but it is promoted

  19. Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits

    PubMed Central

    Jiang, Yu-Qiu; Zaaimi, Boubker

    2016-01-01

    Injury to the mature motor system drives significant spontaneous axonal sprouting instead of axon regeneration. Knowing the circuit-level determinants of axonal sprouting is important for repairing motor circuits after injury to achieve functional rehabilitation. Competitive interactions are known to shape corticospinal tract axon outgrowth and withdrawal during development. Whether and how competition contributes to reorganization of mature spinal motor circuits is unclear. To study this question, we examined plastic changes in corticospinal axons in response to two complementary proprioceptive afferent manipulations: (1) enhancing proprioceptive afferents activity by electrical stimulation; or (2) diminishing their input by dorsal rootlet rhizotomy. Experiments were conducted in adult rats. Electrical stimulation produced proprioceptive afferent sprouting that was accompanied by significant corticospinal axon withdrawal and a decrease in corticospinal connections on cholinergic interneurons in the medial intermediate zone and C boutons on motoneurons. In contrast, dorsal rootlet rhizotomy led to a significant increase in corticospinal connections, including those on cholinergic interneurons; C bouton density increased correspondingly. Motor cortex-evoked muscle potentials showed parallel changes to those of corticospinal axons, suggesting that reciprocal corticospinal axon changes are functional. Using the two complementary models, we showed that competitive interactions between proprioceptive and corticospinal axons are an important determinant in the organization of mature corticospinal axons and spinal motor circuits. The activity- and synaptic space-dependent properties of the competition enables prediction of the remodeling of spared corticospinal connection and spinal motor circuits after injury and informs the target-specific control of corticospinal connections to promote functional recovery. SIGNIFICANCE STATEMENT Neuroplasticity is limited in maturity

  20. Electric vehicle motors and controllers

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1981-01-01

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  1. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  2. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  3. SMN is required for sensory-motor circuit function in Drosophila

    PubMed Central

    Imlach, Wendy L.; Beck, Erin S.; Choi, Ben Jiwon; Lotti, Francesco; Pellizzoni, Livio; McCabe, Brian D.

    2012-01-01

    Summary Spinal muscular atrophy (SMA) is a lethal human disease characterized by motor neuron dysfunction and muscle deterioration due to depletion of the ubiquitous Survival Motor Neuron (SMN) protein. Drosophila SMN mutants have reduced muscle size and defective locomotion, motor rhythm and motor neuron neurotransmission. Unexpectedly, restoration of SMN in either muscles or motor neurons did not alter these phenotypes. Instead, SMN must be expressed in proprioceptive neurons and interneurons in the motor circuit to non-autonomously correct defects in motor neurons and muscles. SMN depletion disrupts the motor system subsequent to circuit development and can be mimicked by the inhibition of motor network function. Furthermore, increasing motor circuit excitability by genetic or pharmacological inhibition of K+ channels can correct SMN-dependent phenotypes. These results establish sensory-motor circuit dysfunction as the origin of motor system deficits in this SMA model and suggest that enhancement of motor neural network activity could ameliorate the disease. PMID:23063130

  4. SMN is required for sensory-motor circuit function in Drosophila.

    PubMed

    Imlach, Wendy L; Beck, Erin S; Choi, Ben Jiwon; Lotti, Francesco; Pellizzoni, Livio; McCabe, Brian D

    2012-10-12

    Spinal muscular atrophy (SMA) is a lethal human disease characterized by motor neuron dysfunction and muscle deterioration due to depletion of the ubiquitous survival motor neuron (SMN) protein. Drosophila SMN mutants have reduced muscle size and defective locomotion, motor rhythm, and motor neuron neurotransmission. Unexpectedly, restoration of SMN in either muscles or motor neurons did not alter these phenotypes. Instead, SMN must be expressed in proprioceptive neurons and interneurons in the motor circuit to nonautonomously correct defects in motor neurons and muscles. SMN depletion disrupts the motor system subsequent to circuit development and can be mimicked by the inhibition of motor network function. Furthermore, increasing motor circuit excitability by genetic or pharmacological inhibition of K(+) channels can correct SMN-dependent phenotypes. These results establish sensory-motor circuit dysfunction as the origin of motor system deficits in this SMA model and suggest that enhancement of motor neural network activity could ameliorate the disease.

  5. CONTROL AND FAULT DETECTOR CIRCUIT

    DOEpatents

    Winningstad, C.N.

    1958-04-01

    A power control and fault detectcr circuit for a radiofrequency system is described. The operation of the circuit controls the power output of a radio- frequency power supply to automatically start the flow of energizing power to the radio-frequency power supply and to gradually increase the power to a predetermined level which is below the point where destruction occurs upon the happening of a fault. If the radio-frequency power supply output fails to increase during such period, the control does not further increase the power. On the other hand, if the output of the radio-frequency power supply properly increases, then the control continues to increase the power to a maximum value. After the maximumn value of radio-frequency output has been achieved. the control is responsive to a ''fault,'' such as a short circuit in the radio-frequency system being driven, so that the flow of power is interrupted for an interval before the cycle is repeated.

  6. VAV-1 acts in a single interneuron to inhibit motor circuit activity in Caenorhabditis elegans.

    PubMed

    Fry, Amanda L; Laboy, Jocelyn T; Norman, Kenneth R

    2014-11-21

    The complex molecular and cellular mechanisms underlying neuronal control of animal movement are not well understood. Locomotion of Caenorhabditis elegans is mediated by a neuronal circuit that produces coordinated sinusoidal movement. Here we utilize this simple, yet elegant, behaviour to show that VAV-1, a conserved guanine nucleotide exchange factor for Rho-family GTPases, negatively regulates motor circuit activity and the rate of locomotion. While vav-1 is expressed in a small subset of neurons, we find that VAV-1 function is required in a single interneuron, ALA, to regulate motor neuron circuit activity. Furthermore, we show by genetic and optogenetic manipulation of ALA that VAV-1 is required for the excitation and activation of this neuron. We find that ALA signalling inhibits command interneuron activity by abrogating excitatory signalling in the command interneurons, which is responsible for promoting motor neuron circuit activity. Together, our data describe a novel neuromodulatory role for VAV-1-dependent signalling in the regulation of motor circuit activity and locomotion.

  7. VAV-1 acts in a single interneuron to inhibit motor circuit activity in Caenorhabditis elegans

    PubMed Central

    Fry, Amanda L.; Laboy, Jocelyn T.; Norman, Kenneth R.

    2014-01-01

    The complex molecular and cellular mechanisms underlying neuronal control of animal movement are not well understood. Locomotion of Caenorhabditis elegans is mediated by a neuronal circuit that produces coordinated sinusoidal movement. Here we utilize this simple, yet elegant, behaviour to show that VAV-1, a conserved guanine nucleotide exchange factor for Rho-family GTPases, negatively regulates motor circuit activity and the rate of locomotion. While vav-1 is expressed in a small subset of neurons, we find that VAV-1 function is required in a single interneuron, ALA, to regulate motor neuron circuit activity. Furthermore, we show by genetic and optogenetic manipulation of ALA that VAV-1 is required for the excitation and activation of this neuron. We find that ALA signalling inhibits command interneuron activity by abrogating excitatory signalling in the command interneurons, which is responsible for promoting motor neuron circuit activity. Together, our data describe a novel neuromodulatory role for VAV-1-dependent signalling in the regulation of motor circuit activity and locomotion. PMID:25412913

  8. 49 CFR 236.721 - Circuit, control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.721 Circuit, control. An electrical circuit between a source of electric energy and a device which it operates....

  9. Power factor control system for ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1981-01-01

    A power control circuit for an induction motor is disclosed in which a servo loop is used to control power input by controlling the power factor of motor operation. The power factor is measured by summing the voltage and current derived square wave signals.

  10. Overlapping connections within the motor cortico-basal ganglia circuit: fMRI-tractography analysis.

    PubMed

    Oguri, Takuya; Sawamoto, Nobukatsu; Tabu, Hayato; Urayama, Shin-ichi; Matsuhashi, Masao; Matsukawa, Noriyuki; Ojika, Kosei; Fukuyama, Hidenao

    2013-09-01

    Contribution of the subcortical nuclei to the coordination of human behavior is dependent on the existence of appropriate anatomical architecture. Interpretations of available data have led to opposing 'information funneling' and 'parallel processing' hypotheses. Using motor circuit as a model, we examined whether cortico-subcortical circuits, especially cortico-basal ganglia circuits, are funneled or parallel in the control of volitional movement. Twenty-five healthy subjects underwent functional magnetic resonance imaging (fMRI). Activated clusters during self-initiated, sequential finger-to-thumb opposition movements of the left hand were identified in the bilateral supplementary motor area (SMA), right lateral premotor cortex (PM) and primary motor cortex (M1), and in the right striatum and thalamus. These functionally defined clusters were applied to probabilistic tractography based on diffusion-weighted MRI to examine patterns of connectivity. Striatal and thalamic sub-regions with high probabilities of connection to the motor cortices partially overlapped, with connection to the two premotor areas outspreading rostrally relative to M1. We suggest that, on a macroscopic anatomical level, there is overlap as well as segregation among connections of the motor cortices with the striatum and thalamus. This supports the notion that neuronal information of the motor cortices is funneled, and parallel processing is not an exclusive principle in the basal ganglia. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. 49 CFR 234.203 - Control circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Control circuits. 234.203 Section 234.203 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Maintenance Standards § 234.203 Control circuits. All control circuits that affect...

  12. 49 CFR 234.203 - Control circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Control circuits. 234.203 Section 234.203 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Maintenance Standards § 234.203 Control circuits. All control circuits that affect...

  13. Circuit Mechanisms Underlying Motor Memory Formation in the Cerebellum

    PubMed Central

    Lee, Ka Hung; Mathews, Paul J.; Reeves, Alexander M.B.; Choe, Katrina Y.; Jami, Shekib A.; Serrano, Raul E.; Otis, Thomas S.

    2015-01-01

    SUMMARY The cerebellum stores associative motor memories essential for properly timed movement; however, the mechanisms by which these memories form and are acted upon remain unclear. To determine how cerebellar activity relates to movement and motor learning, we used optogenetics to manipulate spontaneously firing Purkinje neurons (PNs) in mouse simplex lobe. Using high-speed videography and motion tracking, we found that altering PN activity produced rapid forelimb movement. PN inhibition drove movements time-locked to stimulus onset, whereas PN excitation drove delayed movements time-locked to stimulus offset. Pairing either PN inhibition or excitation with sensory stimuli triggered the formation of robust, associative motor memories; however, PN excitation led to learned movements whose timing more closely matched training intervals. These findings implicate inhibition of PNs as a teaching signal, consistent with a model whereby learning leads first to reductions in PN firing that subsequently instruct circuit changes in the cerebellar nucleus. PMID:25843404

  14. Skilled forelimb movements and internal copy motor circuits.

    PubMed

    Azim, Eiman; Alstermark, Bror

    2015-08-01

    Mammalian skilled forelimb movements are remarkable in their precision, a feature that emerges from the continuous adjustment of motor output. Here we discuss recent progress in bridging the gap between theory and neural implementation in understanding the basis of forelimb motor refinement. One influential theory is that feedback from internal copy motor pathways enables fast prediction, through a forward model of the limb, an idea supported by behavioral studies that have explored how forelimb movements are corrected online and can adapt to changing conditions. In parallel, neural substrates of forelimb internal copy pathways are coming into clearer focus, in part through the use of genetically tractable animal models to isolate spinal and cerebellar circuits and explore their contributions to movement.

  15. Chaos control by using Motor Maps

    NASA Astrophysics Data System (ADS)

    Arena, Paolo; Fortuna, Luigi; Frasca, Mattia

    2002-09-01

    In this paper a new method for chaos control is proposed, consisting of an unsupervised neural network, namely a Motor Map. In particular a feedback entrainment scheme is adopted: a chaotic system with a given parameter set generates the reference trajectory for another chaotic system with different parameters to be controlled: the Motor Map is required to provide the appropriate time-varying gain value for the feedback signal. The state of the controlled system is considered as input to the Motor Map. Particular efforts have been paid to the feasibility of the implementation. Indeed, the simulations performed have been oriented to design a Motor Map suitable for an hardware realization, thus some restrictive hypotheses, such as for example a low number of neurons, have been assumed. A huge number of simulations has been carried out by considering as system to be controlled a Double Scroll Chua Attractor as well as other chaotic attractors. Several reference trajectories have also been considered: a limit cycle generated by a Chua's circuit with different parameters values, a double scroll Chua attractor, a chaotic attractor of the family of the Chua's circuit attractors. In all the simulations instead of controlling the whole state space, only two state variables have been fed back. Good results in terms of settling time (namely, the period in which the map learns the control task) and steady state errors have been obtained with a few neurons. The Motor Map based adaptive controller offers high performances, specially in the case when the reference trajectory is switched into another one. In this case, a specialization of the neurons constituting the Motor Map is observed: while a group of neurons learns the appropriate control law for a reference trajectory, another group specializes itself to control the system when the other trajectory is used as a reference. A discrete components electronic realization of the Motor Map is presented and experimental results

  16. Chaos control by using Motor Maps.

    PubMed

    Arena, Paolo; Fortuna, Luigi; Frasca, Mattia

    2002-09-01

    In this paper a new method for chaos control is proposed, consisting of an unsupervised neural network, namely a Motor Map. In particular a feedback entrainment scheme is adopted: a chaotic system with a given parameter set generates the reference trajectory for another chaotic system with different parameters to be controlled: the Motor Map is required to provide the appropriate time-varying gain value for the feedback signal. The state of the controlled system is considered as input to the Motor Map. Particular efforts have been paid to the feasibility of the implementation. Indeed, the simulations performed have been oriented to design a Motor Map suitable for an hardware realization, thus some restrictive hypotheses, such as for example a low number of neurons, have been assumed. A huge number of simulations has been carried out by considering as system to be controlled a Double Scroll Chua Attractor as well as other chaotic attractors. Several reference trajectories have also been considered: a limit cycle generated by a Chua's circuit with different parameters values, a double scroll Chua attractor, a chaotic attractor of the family of the Chua's circuit attractors. In all the simulations instead of controlling the whole state space, only two state variables have been fed back. Good results in terms of settling time (namely, the period in which the map learns the control task) and steady state errors have been obtained with a few neurons. The Motor Map based adaptive controller offers high performances, specially in the case when the reference trajectory is switched into another one. In this case, a specialization of the neurons constituting the Motor Map is observed: while a group of neurons learns the appropriate control law for a reference trajectory, another group specializes itself to control the system when the other trajectory is used as a reference. A discrete components electronic realization of the Motor Map is presented and experimental results

  17. A circuit for motor cortical modulation of auditory cortical activity.

    PubMed

    Nelson, Anders; Schneider, David M; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan; Mooney, Richard

    2013-09-04

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity.

  18. A Circuit for Motor Cortical Modulation of Auditory Cortical Activity

    PubMed Central

    Nelson, Anders; Schneider, David M.; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan

    2013-01-01

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity. PMID:24005287

  19. Modularity for Motor Control and Motor Learning.

    PubMed

    d'Avella, Andrea

    2016-01-01

    How the central nervous system (CNS) overcomes the complexity of multi-joint and multi-muscle control and how it acquires or adapts motor skills are fundamental and open questions in neuroscience. A modular architecture may simplify control by embedding features of both the dynamic behavior of the musculoskeletal system and of the task into a small number of modules and by directly mapping task goals into module combination parameters. Several studies of the electromyographic (EMG) activity recorded from many muscles during the performance of different tasks have shown that motor commands are generated by the combination of a small number of muscle synergies, coordinated recruitment of groups of muscles with specific amplitude balances or activation waveforms, thus supporting a modular organization of motor control. Modularity may also help understanding motor learning. In a modular architecture, acquisition of a new motor skill or adaptation of an existing skill after a perturbation may occur at the level of modules or at the level of module combinations. As learning or adapting an existing skill through recombination of modules is likely faster than learning or adapting a skill by acquiring new modules, compatibility with the modules predicts learning difficulty. A recent study in which human subjects used myoelectric control to move a mass in a virtual environment has tested this prediction. By altering the mapping between recorded muscle activity and simulated force applied on the mass, as in a complex surgical rearrangement of the tendons, it has been possible to show that it is easier to adapt to a perturbation that is compatible with the muscle synergies used to generate hand force than to a similar but incompatible perturbation. This result provides direct support for a modular organization of motor control and motor learning.

  20. Postnatal development of a segmental switch enables corticospinal tract transmission to spinal forelimb motor circuits.

    PubMed

    Chakrabarty, Samit; Martin, John H

    2010-02-10

    Development of skilled movements and the corticospinal tract (CST) begin prenatally and continue postnatally. Because the CST is required for skilled movements in maturity, it is accepted that motor skills cannot occur until the CST develops a mature organization. We recently showed that the CST plays an essential role in postnatal development of interneurons comprising the spinal circuits it engages. We proposed that CST signals are more effectively transmitted to ventral motor circuits after interneuron maturation, thereby enabling expression of CST motor functions, suggesting development of a segmental switch promoting transmission. We tested this by recording CST-evoked focal synaptic potentials, extracellularly, in the cervical enlargement of cats before and after interneuron maturation [postnatal week 5 (PW5) to PW7]. We compared monosynaptic CST amplitude input to segmental circuits with oligosynaptic ventral horn responses, as a measure of CST-evoked segmental response transmission from input to output. The M1 primary motor cortex was unilaterally inactivated between PW5 and PW7 to determine activity dependence. CST interneuron contacts were identified using confocal microscopy. CST terminals contact diverse interneuron classes. CST stimulation strongly activated ventral motor circuits at the ages when both interneurons and CST spinal terminations have developed a mature phenotype, supporting development of segmental transmission of CST signals. CST activity blockade impeded development of effective segmental transmission by the inactivated CST and created a novel path for transmission from the ipsilateral, unaffected, CST. Our findings show that development of segmental CST signal transmission regulates nascent CST motor control functions and provide insight into systems-level mechanisms for protracted motor skill development.

  1. 49 CFR 236.721 - Circuit, control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Circuit, control. 236.721 Section 236.721 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Circuit, control. An electrical circuit between a source of electric energy and a device which it operates. ...

  2. 49 CFR 236.731 - Controller, circuit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Controller, circuit. 236.731 Section 236.731 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Controller, circuit. A device for opening and closing electric circuits. ...

  3. 49 CFR 234.203 - Control circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Control circuits. 234.203 Section 234.203 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... circuits. All control circuits that affect the safe operation of a highway-rail grade crossing warning...

  4. 49 CFR 234.203 - Control circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Control circuits. 234.203 Section 234.203 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... circuits. All control circuits that affect the safe operation of a highway-rail grade crossing warning...

  5. 49 CFR 236.731 - Controller, circuit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Controller, circuit. 236.731 Section 236.731 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Controller, circuit. A device for opening and closing electric circuits. ...

  6. 49 CFR 234.203 - Control circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Control circuits. 234.203 Section 234.203 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... circuits. All control circuits that affect the safe operation of a highway-rail grade crossing warning...

  7. 49 CFR 236.731 - Controller, circuit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Controller, circuit. 236.731 Section 236.731 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Controller, circuit. A device for opening and closing electric circuits. ...

  8. 49 CFR 236.721 - Circuit, control.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Circuit, control. 236.721 Section 236.721 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Circuit, control. An electrical circuit between a source of electric energy and a device which it operates. ...

  9. 49 CFR 236.731 - Controller, circuit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Controller, circuit. 236.731 Section 236.731 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Controller, circuit. A device for opening and closing electric circuits. ...

  10. 49 CFR 236.721 - Circuit, control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Circuit, control. 236.721 Section 236.721 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Circuit, control. An electrical circuit between a source of electric energy and a device which it operates. ...

  11. 49 CFR 236.721 - Circuit, control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Circuit, control. 236.721 Section 236.721 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Circuit, control. An electrical circuit between a source of electric energy and a device which it operates. ...

  12. 49 CFR 236.731 - Controller, circuit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Controller, circuit. 236.731 Section 236.731 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Controller, circuit. A device for opening and closing electric circuits. ...

  13. Control system for a wound-rotor motor

    DOEpatents

    Ellis, James N.

    1983-01-01

    A load switching circuit for switching two or more transformer taps under load carrying conditions includes first and second parallel connected bridge rectifier circuits which control the selective connection of a direct current load to taps of a transformer. The first bridge circuit is normally conducting so that the load is connected to a first tap through the first bridge circuit. To transfer the load to the second tap, a switch is operable to connect the second bridge circuit to a second tap, and when the second bridge circuit begins to conduct, the first bridge circuit ceases conduction because the potential at the second tap is higher than the potential at the first tap, and the load is thus connected to the second tap through the second bridge circuit. The load switching circuit is applicable in a motor speed controller for a wound-rotor motor for effecting tap switching as a function of motor speed while providing a stepless motor speed control characteristic.

  14. Heritability of motor control and motor learning

    PubMed Central

    Missitzi, Julia; Gentner, Reinhard; Misitzi, Angelica; Geladas, Nickos; Politis, Panagiotis; Klissouras, Vassilis; Classen, Joseph

    2013-01-01

    Abstract The aim of this study was to elucidate the relative contribution of genes and environment on individual differences in motor control and acquisition of a force control task, in view of recent association studies showing that several candidate polymorphisms may have an effect on them. Forty‐four healthy female twins performed brisk isometric abductions with their right thumb. Force was recorded by a transducer and fed back to the subject on a computer screen. The task was to place the tracing of the peak force in a force window defined between 30% and 40% of the subject's maximum force, as determined beforehand. The initial level of proficiency was defined as the number of attempts reaching the force window criterion within the first 100 trials. The difference between the number of successful trials within the last and the first 100 trials was taken as a measure of motor learning. For motor control, defined by the initial level of proficiency, the intrapair differences in monozygotic (MZ) and dizygotic (DZ) twins were 6.8 ± 7.8 and 13.8 ± 8.4, and the intrapair correlations 0.77 and 0.39, respectively. Heritability was estimated at 0.68. Likewise for motor learning intrapair differences in the increment of the number of successful trials in MZ and DZ twins were 5.4 ± 5.2 and 12.8 ± 7, and the intrapair correlations 0.58 and 0.19. Heritability reached 0.70. The present findings suggest that heredity accounts for a major part of existing differences in motor control and motor learning, but uncertainty remains which gene polymorphisms may be responsible. PMID:24744865

  15. Controlled wind motor

    SciTech Connect

    Boswell, F.A.

    1983-12-27

    A mechanical sail including a rotatable mast, the mast including a top vane mount and a bottom vane mount, the mounts being spaced from each other on the mast and rotatable therewith, a series of rotatable vanes spaced from and surrounding the mast and supported by and between the mounts, cam operaters extending between the mounts and connected to the vanes for controlling the rotation of the vanes, a first controller associated with the mast below the bottom vane mount for controlling the cam operators, the first controller being movable vertically with respect to the mast, a second controller for moving the first controller vertically with respect to the mast, the vanes being flexible and bowed outwardly, the bottom vane mount being movable with respect to the mast and connected to the second controller whereby when the second controller is operated, the bottom vane mount will move toward the top vane mount causing the vanes to bow outwardly at a desired arc and whereby when the first controller is moved, the vanes are caused to rotate to the desired angle of attack with respect to wind velocity and direction. When the sail is connected to a motor drive, the vessel may be driven forward or rearward depending on the angle of attack of the vanes through 180/sup 0/.

  16. Control system for an induction motor with energy recovery

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A control circuit for an induction motor powered system is disclosed in which a power factor controlled servo loop is used to control, via the phase angle of firing of a triac, the power input to the motor, as a function of load placed on the motor by machinery of the powered system. Then, upon application of torque by this machinery to the motor, which tends to overspeed the motor, the firing angle of the triac is automatically set to a fixed, and relatively short, firing angle.

  17. Subcortical motor circuit excitability during simple and choice reaction time.

    PubMed

    Maslovat, Dana; Carlsen, Anthony N; Franks, Ian M

    2012-06-01

    The purpose of the current study was to examine the relationship between movement preparation and excitability of subcortical motor circuits, as measured by the reflexive response to a startling acoustic stimulus. We compared the size and incidence of activation in the sternocleidomastoid (startle indicator) from participants completing either a simple or choice reaction time (RT) task. Consistent with predictions, results indicated that the startle reflex habituated after several presentations of the SAS for the choice RT group but not for the simple RT group, which we attributed to advance motor preparatory processes involved in a simple RT task. Additionally, when participants from the choice RT group were put into a simple RT condition, the startle reflex response returned to nonhabituated levels. We conclude that the increased corticospinal activation associated with advance preparation may also result in increased subcortical activation, accounting for the observed lack of habituation to a startling stimulus in simple RT.

  18. Motor Maps for Nonlinear Control

    NASA Astrophysics Data System (ADS)

    Arena, Paolo; Bucolo, Maide; Fortuna, Luigi; Frasca, Mattia

    2002-07-01

    In this paper the design of a motor map to control a chaotic system is presented. A feedback entrainment scheme is adopted: a system with different parameters is used to generate the reference trajectory for the chaotic system to be controlled, while the motor map provides the appropriate gain value of the feedback signal. As input of the motor map the state of the system to be controlled is considered. The motor map based adaptive controller offers high performances, specially in the case when the reference trajectory is switched into another one. In this case, a specialization of the neurons constituting the motor map is observed: while a group of neurons learns the appropriate control law for a reference trajectory, another group specializes itself to control the system when the other trajectory is used as reference. Moreover, a discrete components hardware implementation of the motor map has been realized.

  19. Associative plasticity in intracortical inhibitory circuits in human motor cortex.

    PubMed

    Russmann, Heike; Lamy, Jean-Charles; Shamim, Ejaz A; Meunier, Sabine; Hallett, Mark

    2009-06-01

    Paired associative stimulation (PAS) is a transcranial magnetic stimulation technique inducing Hebbian-like synaptic plasticity in the human motor cortex (M1). PAS is produced by repetitive pairing of a peripheral nerve shock and a transcranial magnetic stimulus (TMS). Its effect is assessed by a change in size of a motor evoked response (MEP). MEP size results from excitatory and inhibitory influences exerted on cortical pyramidal cells, but no robust effects on inhibitory networks have been demonstrated so far. In 38 healthy volunteers, we assessed whether a PAS intervention influences three intracortical inhibitory circuits: short (SICI) and long (LICI) intracortical inhibitions reflecting activity of GABA(A) and GABA(B) interneurons, respectively, and long afferent inhibition (LAI) reflecting activity of somatosensory inputs. After PAS, MEP sizes, LICI and LAI levels were significantly changed while changes of SICI were inconsistent. The changes in LICI and LAI lasted 45 min after PAS. Their direction depended on the delay between the arrival time of the afferent volley at the cortex and the TMS-induced cortical activation during the PAS. PAS influences inhibitory circuits in M1. PAS paradigms can demonstrate Hebbian-like plasticity at selected inhibitory networks as well as excitatory networks.

  20. Associative plasticity in intracortical inhibitory circuits in human motor cortex

    PubMed Central

    Russmann, Heike; Lamy, Jean-Charles; Shamim, Ejaz; Meunier, Sabine; Hallett, Mark

    2009-01-01

    Objective Paired-associative stimulation (PAS) is a transcranial magnetic stimulation technique inducing Hebbian-like synaptic plasticity in the human motor cortex (M1). PAS is produced by repetitive pairing of a peripheral nerve shock and a transcranial magnetic stimulus (TMS). Its effect is assessed by a change in size of a motor evoked response (MEP). MEP size results from excitatory and inhibitory influences exerted on cortical pyramidal cells, but no robust effects on inhibitory networks have been demonstrated so far. Method In 38 healthy volunteers, we assessed whether a PAS intervention influences three intracortical inhibitory circuits: short (SICI) and long (LICI) intracortical inhibitions reflecting activity of GABAA and GABAB interneurons respectively, and long afferent inhibition (LAI) reflecting activity of somatosensory inputs. Results After PAS, MEP sizes, LICI and LAI levels were significantly changed while changes of SICI were inconsistent. The changes in LICI and LAI lasted 45 minutes after PAS. Their direction depended on the delay between the arrival time of the afferent volley at the cortex and the TMS-induced cortical activation during the PAS. Conclusions PAS influences inhibitory circuits in M1. Significance PAS paradigms can demonstrate Hebbian-like plasticity at selected inhibitory networks as well as excitatory networks. PMID:19435676

  1. Transcriptional networks in the early development of sensory-motor circuits.

    PubMed

    Dasen, Jeremy S

    2009-01-01

    The emergence of coordinated locomotor behaviors in vertebrates relies on the establishment of selective connections between discrete populations of neurons present in the spinal cord and peripheral nervous system. The assembly of the circuits necessary for movement presumably requires the generation of many unique cell types to accommodate the intricate connections between motor neurons, sensory neurons, interneurons, and muscle. The specification of diverse neuronal subtypes is mediated largely through networks of transcription factors that operate within progenitor and postmitotic cells. Selective patterns of transcription factor expression appear to define the cell-type-specific cellular programs that govern the axonal guidance decisions and synaptic specificities of neurons, and may lay the foundation through which innate motor behaviors are genetically predetermined. Recent studies on the developmental programs that specify two highly diverse neuronal classes-spinal motor neurons and proprioceptive sensory neurons-have provided important insights into the molecular strategies used in the earliest phases of locomotor circuit assembly. This chapter reviews progress toward elucidating the early transcriptional networks that define neuronal identity in the locomotor system, focusing on the pathways controlling the specific connections of motor neurons and sensory neurons in the formation of simple reflex circuits.

  2. Advanced motor and motor control development

    NASA Astrophysics Data System (ADS)

    Wuertz, Kenneth L.; Beauchamp, Edward D.

    1988-08-01

    The capability of operating a high speed permanent magnet brushless dc motor with electronic controller over a wide load and speed range was demonstrated. A centrifugal pump was used as the loading mechanism and hydraulic fluid was pumped in simulation of an aircraft engine fuel pump requirement. A motor speed of 45,000 rpm was reached and a maximum output of 68.5 hp was demonstrated. The response of the system to step commands for speed change was established. Reduction of size and weight of electronic control was established as a primary future goal. The program system concept with minor rotating machine improvements is viable for high speed drive applications up to 100-hp level.

  3. Microcomputer controlled soft start of motor

    NASA Astrophysics Data System (ADS)

    Gao, Miao; Wang, Yanpeng; Li, Shian

    2005-12-01

    Improving the starting characteristics of a motor is an important part of the motor control. An intelligent soft starting technique was adopted in the starter and used in the present study because of its many advantages compared with conventional starting processes. The core of the soft starter was a single chip (Atmel 8098), its soul was the software and its control object was a Silicon Controlled Rectifier (SCR). The starter achieved not only current-limit starting, but also closed-loop control with a stator current detection circuit. In conclusion, as a result of digital control, starting characteristic can be conveniently chosen according to the load. In addition the starter is of small size, and starting is smooth and reliable due to current feedback.

  4. The Periaqueductal Gray Orchestrates Sensory and Motor Circuits at Multiple Levels of the Neuraxis.

    PubMed

    Koutsikou, Stella; Watson, Thomas C; Crook, Jonathan J; Leith, J Lianne; Lawrenson, Charlotte L; Apps, Richard; Lumb, Bridget M

    2015-10-21

    The periaqueductal gray (PAG) coordinates behaviors essential to survival, including striking changes in movement and posture (e.g., escape behaviors in response to noxious stimuli vs freezing in response to fear-evoking stimuli). However, the neural circuits underlying the expression of these behaviors remain poorly understood. We demonstrate in vivo in rats that activation of the ventrolateral PAG (vlPAG) affects motor systems at multiple levels of the neuraxis through the following: (1) differential control of spinal neurons that forward sensory information to the cerebellum via spino-olivo-cerebellar pathways (nociceptive signals are reduced while proprioceptive signals are enhanced); (2) alterations in cerebellar nuclear output as revealed by changes in expression of Fos-like immunoreactivity; and (3) regulation of spinal reflex circuits, as shown by an increase in α-motoneuron excitability. The capacity to coordinate sensory and motor functions is demonstrated in awake, behaving rats, in which natural activation of the vlPAG in fear-conditioned animals reduced transmission in spino-olivo-cerebellar pathways during periods of freezing that were associated with increased muscle tone and thus motor outflow. The increase in spinal motor reflex excitability and reduction in transmission of ascending sensory signals via spino-olivo-cerebellar pathways occurred simultaneously. We suggest that the interactions revealed in the present study between the vlPAG and sensorimotor circuits could form the neural substrate for survival behaviors associated with vlPAG activation. Neural circuits that coordinate survival behaviors remain poorly understood. We demonstrate in rats that the periaqueductal gray (PAG) affects motor systems at the following multiple levels of the neuraxis: (1) through altering transmission in spino-olivary pathways that forward sensory signals to the cerebellum, reducing and enhancing transmission of nociceptive and proprioceptive information

  5. The Periaqueductal Gray Orchestrates Sensory and Motor Circuits at Multiple Levels of the Neuraxis

    PubMed Central

    Koutsikou, Stella; Watson, Thomas C.; Crook, Jonathan J.; Leith, J. Lianne; Lawrenson, Charlotte L.; Lumb, Bridget M.

    2015-01-01

    The periaqueductal gray (PAG) coordinates behaviors essential to survival, including striking changes in movement and posture (e.g., escape behaviors in response to noxious stimuli vs freezing in response to fear-evoking stimuli). However, the neural circuits underlying the expression of these behaviors remain poorly understood. We demonstrate in vivo in rats that activation of the ventrolateral PAG (vlPAG) affects motor systems at multiple levels of the neuraxis through the following: (1) differential control of spinal neurons that forward sensory information to the cerebellum via spino-olivo-cerebellar pathways (nociceptive signals are reduced while proprioceptive signals are enhanced); (2) alterations in cerebellar nuclear output as revealed by changes in expression of Fos-like immunoreactivity; and (3) regulation of spinal reflex circuits, as shown by an increase in α-motoneuron excitability. The capacity to coordinate sensory and motor functions is demonstrated in awake, behaving rats, in which natural activation of the vlPAG in fear-conditioned animals reduced transmission in spino-olivo-cerebellar pathways during periods of freezing that were associated with increased muscle tone and thus motor outflow. The increase in spinal motor reflex excitability and reduction in transmission of ascending sensory signals via spino-olivo-cerebellar pathways occurred simultaneously. We suggest that the interactions revealed in the present study between the vlPAG and sensorimotor circuits could form the neural substrate for survival behaviors associated with vlPAG activation. SIGNIFICANCE STATEMENT Neural circuits that coordinate survival behaviors remain poorly understood. We demonstrate in rats that the periaqueductal gray (PAG) affects motor systems at the following multiple levels of the neuraxis: (1) through altering transmission in spino-olivary pathways that forward sensory signals to the cerebellum, reducing and enhancing transmission of nociceptive and

  6. A SMN-Dependent U12 Splicing Event Essential for Motor Circuit Function

    PubMed Central

    Lotti, Francesco; Imlach, Wendy L.; Saieva, Luciano; Beck, Erin S.; Hao, Le T.; Li, Darrick K.; Jiao, Wei; Mentis, George Z.; Beattie, Christine E.; McCabe, Brian D.; Pellizzoni, Livio

    2012-01-01

    SUMMARY Spinal muscular atrophy (SMA) is a motor neuron disease caused by deficiency of the ubiquitous survival motor neuron (SMN) protein. To define the mechanisms of selective neuronal dysfunction in SMA, we investigated the role of SMN-dependent U12 splicing events in the regulation of motor circuit activity. We show that SMN deficiency perturbs splicing and decreases the expression of a subset of U12 intron-containing genes in mammalian cells and Drosophila larvae. Analysis of these SMN target genes identifies Stasimon as a novel protein required for motor circuit function. Restoration of Stasimon expression in the motor circuit corrects defects in neuromuscular junction transmission and muscle growth in Drosophila SMN mutants and aberrant motor neuron development in SMN-deficient zebrafish. These findings directly link defective splicing of critical neuronal genes induced by SMN deficiency to motor circuit dysfunction, establishing a molecular framework for the selective pathology of SMA. PMID:23063131

  7. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Design of control circuits on closed circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on closed circuit principle. All control circuits the functioning of which affects safety of train operation...

  8. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Design of control circuits on closed circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on closed circuit principle. All control circuits the functioning of which affects safety of train operation...

  9. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Design of control circuits on closed circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on closed circuit principle. All control circuits the functioning of which affects safety of train operation...

  10. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Design of control circuits on closed circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on closed circuit principle. All control circuits the functioning of which affects safety of train operation...

  11. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Design of control circuits on closed circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on closed circuit principle. All control circuits the functioning of which affects safety of train operation...

  12. Alterations in the motor neuron-Renshaw cell circuit in the Sod1G93A mouse model

    PubMed Central

    Wootz, Hanna; FitzSimons-Kantamneni, Eileen; Larhammar, Martin; Rotterman, Travis M.; Enjin, Anders; Patra, Kalicharan; Andre, Elodie; van Zundert, Brigitte; Kullander, Klas; Alvarez, Francisco J.

    2012-01-01

    Motor neurons become hyperexcitable during progression of amyotrophic lateral sclerosis (ALS). This abnormal firing behavior has been explained by changes in their membrane properties, but more recently it has been suggested that changes in premotor circuits may also contribute to this abnormal activity. The specific circuits that may be altered during development of ALS have not been investigated. Here we examined the Renshaw cell recurrent circuit that exerts inhibitory feedback control on motor neuron firing. Using two markers for Renshaw cells (calbindin and Chrna2 , cholinergic nicotinic receptor subunit alpha2), two general markers for motor neurons (NeuN and VAChT, vesicular acethylcholine transporter ) and two markers for fast motor neurons (Chondrolectin and Calca, calcitonin-related polypeptide alpha), we analyzed the survival and connectivity of these cells during disease progression in the Sod1G93A mouse model. Most calbindin-immunoreactive (IR) Renshaw cells survive to end-stage but downregulate postsynaptic Chrna2 in presymptomatic animals. In motor neurons, some markers are downregulated early (NeuN, VAChT, Chondrolectin) and others at end-stage(Calca). Early downregulation of presynaptic VAChT and Chrna2 was correlated with disconnection from Renshaw cells as well as major structural abnormalities of motor axon synapses inside the spinal cord. Renshaw cell synapses on motor neurons underwent more complex changes, including transitional sprouting preferentially over remaining NeuN-IR motor neurons. We conclude that the loss of presynaptic motor axon input on Renshaw cells occurs at early stages of ALS and disconnects the recurrent inhibitory circuit, presumably resulting in a diminished control of motor neuron firing. PMID:23172249

  13. Comparison of Alternative Equivalent Circuits of Induction Motor with Real Machine Data

    NASA Astrophysics Data System (ADS)

    Bradna, J.; Bauer, J.; Fligl, S.; Hlinovsky, V.

    The algorithms based on separated control of the motor flux and torque is used in order to gain the maximum performance from the induction machine. To push the efficiency and dynamics limits of the IM to its limits mostly FOC or DTC control strategies are used. Both are based on the knowledge of the hardly measurable variable-machine flux. To obtain the information about inner machine flux models based on the machine equivalent circuit are mostly used. Therefore the accuracy of the equivalent circuits has direct influence on the accuracy of the machine control. To reduce the complexity of the mathematical model the resistances and inductances are concentrated to one component and three phase winding is assumed to be symmetrical. In order to design control strategy for the induction motor, system equations and equivalent circuit must be established at first. This paper examines and compares some of the issues of adequate machine modeling and attempts to provide a firmer basis for selection of an appropriate model and to confirm or disprove the equivalence of different approaches. The results of the IM model run up are then compared to the results obtained from the measurements on the real machine and the equivalency is discussed.

  14. Remote control for motor vehicle

    NASA Technical Reports Server (NTRS)

    Johnson, Dale R. (Inventor); Ciciora, John A. (Inventor)

    1984-01-01

    A remote controller is disclosed for controlling the throttle, brake and steering mechanism of a conventional motor vehicle, with the remote controller being particularly advantageous for use by severely handicapped individuals. The controller includes a remote manipulator which controls a plurality of actuators through interfacing electronics. The remote manipulator is a two-axis joystick which controls a pair of linear actuators and a rotary actuator, with the actuators being powered by electric motors to effect throttle, brake and steering control of a motor vehicle adapted to include the controller. The controller enables the driver to control the adapted vehicle from anywhere in the vehicle with one hand with minimal control force and range of motion. In addition, even though a conventional vehicle is adapted for use with the remote controller, the vehicle may still be operated in the normal manner.

  15. Towards a circuit mechanism for movement tuning in motor cortex

    PubMed Central

    Harrison, Thomas C.; Murphy, Timothy H.

    2013-01-01

    The firing rates of neurons in primate motor cortex have been related to multiple parameters of voluntary movement. This finding has been corroborated by stimulation-based studies that have mapped complex movements in rodent and primate motor cortex. However, it has been difficult to link the movement tuning of a neuron with its role within the cortical microcircuit. In sensory cortex, neuronal tuning is largely established by afferents delivering information from tuned receptors in the periphery. Motor cortex, which lacks the granular input layer, may be better understood by analyzing its efferent projections. As a primary source of cortical output, layer 5 neurons represent an ideal starting point for this line of experimentation. It is in these deep output layers that movements can most effectively be evoked by intracortical microstimulation and recordings can obtain the most useful signals for the control of motor prostheses. Studies focused on layer 5 output neurons have revealed that projection identity is a fundamental property related to the laminar position, receptive field and ion channel complement of these cells. Given the variety of brain areas targeted by layer 5 output neurons, knowledge of a neuron's downstream connectivity may provide insight into its movement tuning. Future experiments that relate motor behavior to the activity of neurons with a known projection identity will yield a more detailed understanding of the function of cortical microcircuits. PMID:23346050

  16. 46 CFR 111.70-7 - Remote control, interlock, and indicator circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Remote control, interlock, and indicator circuits. 111.70-7 Section 111.70-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection §...

  17. 46 CFR 111.70-7 - Remote control, interlock, and indicator circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Remote control, interlock, and indicator circuits. 111.70-7 Section 111.70-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection §...

  18. 46 CFR 111.70-7 - Remote control, interlock, and indicator circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Remote control, interlock, and indicator circuits. 111.70-7 Section 111.70-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection §...

  19. 46 CFR 111.70-7 - Remote control, interlock, and indicator circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Remote control, interlock, and indicator circuits. 111.70-7 Section 111.70-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection §...

  20. Computational approaches to motor control.

    PubMed

    Flash, T; Sejnowski, T J

    2001-12-01

    New concepts and computational models that integrate behavioral and neurophysiological observations have addressed several of the most fundamental long-standing problems in motor control. These problems include the selection of particular trajectories among the large number of possibilities, the solution of inverse kinematics and dynamics problems, motor adaptation and the learning of sequential behaviors.

  1. Computational approaches to motor control

    PubMed Central

    Flash, Tamar; Sejnowski, Terrence J

    2010-01-01

    New concepts and computational models that integrate behavioral and neurophysiological observations have addressed several of the most fundamental long-standing problems in motor control. These problems include the selection of particular trajectories among the large number of possibilities, the solution of inverse kinematics and dynamics problems, motor adaptation and the learning of sequential behaviors. PMID:11741014

  2. Electronic switches and control circuits: A compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The innovations in this updated series of compilations dealing with electronic technology represents a carefully selected collection of items on electronic switches and control circuits. Most of the items are based on well-known circuit design concepts that have been simplified or refined to meet NASA's demanding requirement for reliability, simplicity, fail-safe characteristics, and the capability of withstanding environmental extremes.

  3. A programmable heater control circuit for spacecraft

    NASA Technical Reports Server (NTRS)

    Nguyen, D. D.; Owen, J. W.; Smith, D. A.; Lewter, W. J.

    1994-01-01

    Spacecraft thermal control is accomplished for many components through use of multilayer insulation systems, electrical heaters, and radiator systems. The heaters are commanded to maintain component temperatures within design specifications. The programmable heater control circuit (PHCC) was designed to obtain an effective and efficient means of spacecraft thermal control. The hybrid circuit provides use of control instrumentation as temperature data, available to the spacecraft central data system, reprogramming capability of the local microprocessor during the spacecraft's mission, and the elimination of significant spacecraft wiring. The hybrid integrated circuit has a temperature sensing and conditioning circuit, a microprocessor, and a heater power and control circuit. The device is miniature and housed in a volume which allows physical integration with the component to be controlled. Applications might include alternate battery-powered logic-circuit configurations. A prototype unit with appropriate physical and functional interfaces was procured for testing. The physical functionality and the feasibility of fabrication of the hybrid integrated circuit were successfully verified. The remaining work to develop a flight-qualified device includes fabrication and testing of a Mil-certified part. An option for completing the PHCC flight qualification testing is to enter into a joint venture with industry.

  4. Motor-related circuit dysfunction in MSA-P: Usefulness of combined whole-brain imaging analysis.

    PubMed

    Tir, Mélissa; Delmaire, Christine; le Thuc, Vianney; Duhamel, Alain; Destée, Alain; Pruvo, Jean-Pierre; Defebvre, Luc

    2009-04-30

    The aim of this study was to evaluate in vivo changes in the brain's macro- and microstructure (notably in the motor system) in the parkinsonian variant of multiple system atrophy (MSA-P) and in Parkinson's disease (PD) and to characterize the cerebral anatomical differences between the two conditions. We used a combination of voxel-based morphometry (VBM) and whole-brain, voxel-based diffusion tensor imaging analysis (VB-DTI). Forty-seven right-handed subjects (14 MSA-P patients, 19 PD patients, and 14 controls) were evaluated using VBM and VB-DTI in an analysis of covariance (ANCOVA) with a significance threshold set to P < 0.005. In MSA-P patients, VBM analysis revealed a lower density of grey matter (GM) in a motor-related circuit (especially in the left primary motor cortex, PMC), relative to PD patients, and in the left supplementary motor area (SMA), relative to controls). Diffusion tensor imaging analysis revealed lower fractional anisotropy (FA) values in the left PMC and the right cerebellum in MSA-P patients, compared with controls. Using a volumetric diffusion technique, our study revealed selective tissue degeneration in motor circuits, regardless of the volume loss detected in VBM and in agreement with pathology reports and clinical motor characteristics. Our findings suggest that MSA-P is characterized by both macro- and microstructural changes in the sensorimotor circuit.

  5. Advanced Motor-Controller Development.

    DTIC Science & Technology

    1983-06-22

    which document the three stages of develop- _ - fment. "U Volume Summary A. Phase I Report Flux Synthesis and PWM Synthesis Techniques Theory and...Three Phase Power Bridge and Evaluation of Motor Controller Volume Summary The three reports assembled in this votume represent work performed...1963-A * I ADVANCED MOTOR-CONTROLLER * DEVELOPMENT Final Report for Period October 1979 - June 1983 June 22, 1983 Report DTNSRDC-PASD-CR-1-83

  6. Motor Control Abnormalities in Parkinson’s Disease

    PubMed Central

    Mazzoni, Pietro; Shabbott, Britne; Cortés, Juan Camilo

    2012-01-01

    The primary manifestations of Parkinson’s disease are abnormalities of movement, including movement slowness, difficulties with gait and balance, and tremor. We know a considerable amount about the abnormalities of neuronal and muscle activity that correlate with these symptoms. Motor symptoms can also be described in terms of motor control, a level of description that explains how movement variables, such as a limb’s position and speed, are controlled and coordinated. Understanding motor symptoms as motor control abnormalities means to identify how the disease disrupts normal control processes. In the case of Parkinson’s disease, movement slowness, for example, would be explained by a disruption of the control processes that determine normal movement speed. Two long-term benefits of understanding the motor control basis of motor symptoms include the future design of neural prostheses to replace the function of damaged basal ganglia circuits, and the rational design of rehabilitation strategies. This type of understanding, however, remains limited, partly because of limitations in our knowledge of normal motor control. In this article, we review the concept of motor control and describe a few motor symptoms that illustrate the challenges in understanding such symptoms as motor control abnormalities. PMID:22675667

  7. A universal computer control system for motors

    NASA Technical Reports Server (NTRS)

    Szakaly, Zoltan F. (Inventor)

    1991-01-01

    A control system for a multi-motor system such as a space telerobot, having a remote computational node and a local computational node interconnected with one another by a high speed data link is described. A Universal Computer Control System (UCCS) for the telerobot is located at each node. Each node is provided with a multibus computer system which is characterized by a plurality of processors with all processors being connected to a common bus, and including at least one command processor. The command processor communicates over the bus with a plurality of joint controller cards. A plurality of direct current torque motors, of the type used in telerobot joints and telerobot hand-held controllers, are connected to the controller cards and responds to digital control signals from the command processor. Essential motor operating parameters are sensed by analog sensing circuits and the sensed analog signals are converted to digital signals for storage at the controller cards where such signals can be read during an address read/write cycle of the command processing processor.

  8. A universal computer control system for motors

    NASA Astrophysics Data System (ADS)

    Szakaly, Zoltan F.

    1991-09-01

    A control system for a multi-motor system such as a space telerobot, having a remote computational node and a local computational node interconnected with one another by a high speed data link is described. A Universal Computer Control System (UCCS) for the telerobot is located at each node. Each node is provided with a multibus computer system which is characterized by a plurality of processors with all processors being connected to a common bus, and including at least one command processor. The command processor communicates over the bus with a plurality of joint controller cards. A plurality of direct current torque motors, of the type used in telerobot joints and telerobot hand-held controllers, are connected to the controller cards and responds to digital control signals from the command processor. Essential motor operating parameters are sensed by analog sensing circuits and the sensed analog signals are converted to digital signals for storage at the controller cards where such signals can be read during an address read/write cycle of the command processing processor.

  9. A centre for accommodative vergence motor control

    NASA Technical Reports Server (NTRS)

    Wilson, D.

    1973-01-01

    Latencies in accommodation, accommodative-vergence, and pupil-diameter responses to changing accommodation stimuli, as well as latencies in pupil response to light-intensity changes were measured. From the information obtained, a block diagram has been derived that uses the least number of blocks for representing the accommodation, accommodative-vergence, and pupil systems. The signal transmission delays over the various circuits of the model have been determined and compared to known experimental physiological-delay data. The results suggest the existence of a motor center that controls the accommodative vergence and is completely independent of the accommodation system.

  10. The Basal Ganglia and Adaptive Motor Control

    NASA Astrophysics Data System (ADS)

    Graybiel, Ann M.; Aosaki, Toshihiko; Flaherty, Alice W.; Kimura, Minoru

    1994-09-01

    The basal ganglia are neural structures within the motor and cognitive control circuits in the mammalian forebrain and are interconnected with the neocortex by multiple loops. Dysfunction in these parallel loops caused by damage to the striatum results in major defects in voluntary movement, exemplified in Parkinson's disease and Huntington's disease. These parallel loops have a distributed modular architecture resembling local expert architectures of computational learning models. During sensorimotor learning, such distributed networks may be coordinated by widely spaced striatal interneurons that acquire response properties on the basis of experienced reward.

  11. Circuit-based interrogation of sleep control.

    PubMed

    Weber, Franz; Dan, Yang

    2016-10-06

    Sleep is a fundamental biological process observed widely in the animal kingdom, but the neural circuits generating sleep remain poorly understood. Understanding the brain mechanisms controlling sleep requires the identification of key neurons in the control circuits and mapping of their synaptic connections. Technical innovations over the past decade have greatly facilitated dissection of the sleep circuits. This has set the stage for understanding how a variety of environmental and physiological factors influence sleep. The ability to initiate and terminate sleep on command will also help us to elucidate its functions within and beyond the brain.

  12. Space Digital Controller for Improved Motor Control

    NASA Astrophysics Data System (ADS)

    Alves-Nunes, Samuel; Daras, Gaetan; Dehez, Bruno; Maillard, Christophe; Bekemans, Marc; Michel, Raymond

    2014-08-01

    Performing digital motor control into space equipment is a new challenge. The new DPC (Digital Programmable Controller) is the first chip that we can use as a micro-controller, allowing us to drive motors with digital control schemes. In this paper, the digital control of hybrid stepper motors is considered. This kind of motor is used for solar array rotation and antenna actuation. New digital control technology brings a lot of advantages, allowing an important reduction of thermal losses inside the motor, and a reduction of thermal constraints on power drive electronic components. The opportunity to drive motors with a digital controller also brings many new functionalities like post-failure torque analysis, micro- vibrations and cogging torque reduction, or electro- mechanical damping of solar array oscillations. To evaluate the performance of the system, Field-Oriented Control (FOC) is implemented on a hybrid stepper motor. A test-bench, made of an active load, has been made to emulate the mechanical behaviour of the solar array, by the use of a torsionally-compliant model. The experimental results show that we can drastically reduce electrical power consumption, compared with the currently used open-loop control scheme.

  13. Electrochemically controlled charging circuit for storage batteries

    DOEpatents

    Onstott, E.I.

    1980-06-24

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  14. Use of inverse time, adjustable instantaneous pickup circuit breakers for short circuit and ground fault protection of energy efficient motors

    SciTech Connect

    Heath, D.W.; Bradfield, H.L.

    1995-12-31

    Many energy efficient low voltage motors exhibit first half cycle instantaneous inrush current values greater than the National Electrical Code`s 13 times motor full load amperes maximum permissible setting for instantaneous trip circuit breakers. The alternate use of an inverse time circuit breaker could lead to inadequate protection if the breaker does not have adjustable instantaneous settings. Recent innovations in digital solid state trip unit technology have made available an inverse time, adjustable instantaneous trip circuit breaker in 15A to 150A ratings. This allows the instantaneous pickup to be adjusted to a value slightly above motor inrush so that low level faults will be cleared instantaneously while avoiding nuisance tripping at startup. Applications, settings and comparisons are discussed.

  15. Motor Experience Reprograms Development of a Genetically-Altered Bilateral Corticospinal Motor Circuit

    PubMed Central

    Serradj, Najet

    2016-01-01

    Evidence suggests that motor experience plays a role in shaping development of the corticospinal system and voluntary motor control, which is a key motor function of the system. Here we used a mouse model with conditional forebrain deletion of the gene for EphA4 (Emx1-Cre:EphA4tm2Kldr), which regulates development of the laterality of corticospinal tract (CST). We combined study of Emx1-Cre:EphA4tm2Kldr with unilateral forelimb constraint during development to expand our understanding of experience-dependent CST development from both basic and translational perspectives. This mouse develops dense ipsilateral CST projections, a bilateral motor cortex motor representation, and bilateral motor phenotypes. Together these phenotypes can be used as readouts of corticospinal system organization and function and the changes brought about by experience. The Emx1-Cre:EphA4tm2Kldr mouse shares features with the common developmental disorder cerebral palsy: bilateral voluntary motor impairments and bilateral CST miswiring. Emx1-Cre:EphA4tm2Kldr mice with typical motor experiences during development display the bilateral phenotype of “mirror” reaching, because of a strongly bilateral motor cortex motor representation and a bilateral CST. By contrast, Emx1-Cre:EphA4tm2Kldr mice that experienced unilateral forelimb constraint from P1 to P30 and tested at maturity had a more contralateral motor cortex motor representation in each hemisphere; more lateralized CST projections; and substantially more lateralized/independent reaching movements. Changes in CST organization and function in this model can be explained by reduced synaptic competition of the CST from the side without developmental forelimb motor experiences. Using this model we show that unilateral constraint largely abrogated the effects of the genetic mutation on CST projections and thus demonstrates how robust and persistent experience-dependent development can be for the establishment of corticospinal system

  16. Mapping genetically controlled neural circuits of social behavior and visuo-motor integration by a preliminary examination of atypical deletions with Williams syndrome.

    PubMed

    Hoeft, Fumiko; Dai, Li; Haas, Brian W; Sheau, Kristen; Mimura, Masaru; Mills, Debra; Galaburda, Albert; Bellugi, Ursula; Korenberg, Julie R; Reiss, Allan L

    2014-01-01

    In this study of eight rare atypical deletion cases with Williams-Beuren syndrome (WS; also known as 7q11.23 deletion syndrome) consisting of three different patterns of deletions, compared to typical WS and typically developing (TD) individuals, we show preliminary evidence of dissociable genetic contributions to brain structure and human cognition. Univariate and multivariate pattern classification results of morphometric brain patterns complemented by behavior implicate a possible role for the chromosomal region that includes: 1) GTF2I/GTF2IRD1 in visuo-spatial/motor integration, intraparietal as well as overall gray matter structures, 2) the region spanning ABHD11 through RFC2 including LIMK1, in social cognition, in particular approachability, as well as orbitofrontal, amygdala and fusiform anatomy, and 3) the regions including STX1A, and/or CYLN2 in overall white matter structure. This knowledge contributes to our understanding of the role of genetics on human brain structure, cognition and pathophysiology of altered cognition in WS. The current study builds on ongoing research designed to characterize the impact of multiple genes, gene-gene interactions and changes in gene expression on the human brain.

  17. Mapping Genetically Controlled Neural Circuits of Social Behavior and Visuo-Motor Integration by a Preliminary Examination of Atypical Deletions with Williams Syndrome

    PubMed Central

    Hoeft, Fumiko; Dai, Li; Haas, Brian W.; Sheau, Kristen; Mimura, Masaru; Mills, Debra; Galaburda, Albert; Bellugi, Ursula

    2014-01-01

    In this study of eight rare atypical deletion cases with Williams-Beuren syndrome (WS; also known as 7q11.23 deletion syndrome) consisting of three different patterns of deletions, compared to typical WS and typically developing (TD) individuals, we show preliminary evidence of dissociable genetic contributions to brain structure and human cognition. Univariate and multivariate pattern classification results of morphometric brain patterns complemented by behavior implicate a possible role for the chromosomal region that includes: 1) GTF2I/GTF2IRD1 in visuo-spatial/motor integration, intraparietal as well as overall gray matter structures, 2) the region spanning ABHD11 through RFC2 including LIMK1, in social cognition, in particular approachability, as well as orbitofrontal, amygdala and fusiform anatomy, and 3) the regions including STX1A, and/or CYLN2 in overall white matter structure. This knowledge contributes to our understanding of the role of genetics on human brain structure, cognition and pathophysiology of altered cognition in WS. The current study builds on ongoing research designed to characterize the impact of multiple genes, gene-gene interactions and changes in gene expression on the human brain. PMID:25105779

  18. A versatile stepping motor controller for systems with many motors

    SciTech Connect

    Feng, S.K.; Siddons, D.P.

    1989-01-01

    A versatile system for controlling beamlines or complex experimental setups is described. The system as currently configured can control up to 32 motors, with all motors capable of full speed operation concurrently. There are 2 limit switch inputs for each motor, and a further input to accept a reference position marker. The motors can be controlled via a front panel keyboard with display, or by a host computer over an IEEE-488 interface. Both methods can be used together if required. There is an emergency stop'' key on the front panel keyboard to stop the motion of all motors without losing track of the motors' position. 3 refs., 4 figs., 1 tab.

  19. Variable current speed controller for eddy current motors

    DOEpatents

    Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

    1982-03-12

    A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

  20. New moves in motor control.

    PubMed

    Büschges, Ansgar; Scholz, Henrike; El Manira, Abdeljabbar

    2011-07-12

    Motor behaviour results from information processing across multiple neural networks acting at all levels from initial selection of the behaviour to its final generation. Understanding how motor behaviour is produced requires identifying the constituent neurons of these networks, their cellular properties, and their pattern of synaptic connectivity. Neural networks have been traditionally studied with neurophysiological and neuroanatomical approaches. These approaches have been highly successful in particularly suitable 'model' preparations, typically ones in which the numbers of neurons in the networks were relatively small, neural network composition was unvarying across individual animals, and the preparations continued to produce fictive motor patterns in vitro. However, analysing networks without these characteristics, and analysing the complete ensemble of networks that cooperatively generate behaviours, is difficult with these approaches. Recently developed molecular and neurogenetic tools provide additional avenues for analysing motor networks by allowing individual or groups of neurons within networks to be manipulated in novel ways and allowing experiments to be performed not only in vitro but also in vivo. We review here some of the new insights into motor network function that these advances have provided and indicate how these advances might bridge gaps in our understanding of motor control. To these ends, we first review motor neural network organisation highlighting cross-phylum principles. We then use prominent examples from the field to show how neurogenetic approaches can complement classical physiological studies, and identify additional areas where these approaches could be advantageously applied. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning

    PubMed Central

    Chen, Simon X.; Kim, An Na; Peters, Andrew J.; Komiyama, Takaki

    2015-01-01

    Motor skill learning induces long-lasting reorganization of dendritic spines, major sites of excitatory synapses, in the motor cortex. However, mechanisms that regulate these excitatory synaptic changes remain poorly understood. Here using in vivo two-photon imaging in awake mice, we found that learning-induced spine reorganization of L2/3 excitatory neurons occurs in the distal branches of their apical dendrites in L1 but not in the perisomatic dendrites. This compartment-specific spine reorganization coincided with subtype-specific plasticity of local inhibitory circuits. Somatostatin-expressing inhibitory neurons (SOM-INs) that mainly inhibit distal dendrites of excitatory neurons showed a decrease in axonal boutons immediately after the training begins, whereas parvalbumin-expressing inhibitory neurons (PV-INs) that mainly inhibit perisomatic regions of excitatory neurons exhibited a gradual increase in the axonal boutons during training. Optogenetic enhancement and suppression of SOM-IN activity during training destabilized and hyper-stabilized spines, respectively, and both manipulations impaired the learning of stereotyped movements. Our results identify SOM inhibition of distal dendrites as a key regulator of learning-related changes in excitatory synapses and the acquisition of motor skills. PMID:26098758

  2. Analog circuit for controlling acoustic transducer arrays

    DOEpatents

    Drumheller, Douglas S.

    1991-01-01

    A simplified ananlog circuit is presented for controlling electromechanical transducer pairs in an acoustic telemetry system. The analog circuit of this invention comprises a single electrical resistor which replaces all of the digital components in a known digital circuit. In accordance with this invention, a first transducer in a transducer pair of array is driven in series with the resistor. The voltage drop across this resistor is then amplified and used to drive the second transducer. The voltage drop across the resistor is proportional and in phase with the current to the transducer. This current is approximately 90 degrees out of phase with the driving voltage to the transducer. This phase shift replaces the digital delay required by the digital control circuit of the prior art.

  3. Magnetic Circuit Model of PM Motor-Generator to Predict Radial Forces

    NASA Technical Reports Server (NTRS)

    McLallin, Kerry (Technical Monitor); Kascak, Peter E.; Dever, Timothy P.; Jansen, Ralph H.

    2004-01-01

    A magnetic circuit model is developed for a PM motor for flywheel applications. A sample motor is designed and modeled. Motor configuration and selection of materials is discussed, and the choice of winding configuration is described. A magnetic circuit model is described, which includes the stator back iron, rotor yoke, permanent magnets, air gaps and the stator teeth. Iterative solution of this model yields flux linkages, back EMF, torque, power, and radial force at the rotor caused by eccentricity. Calculated radial forces are then used to determine motor negative stiffness.

  4. Ketamine-Induced Oscillations in the Motor Circuit of the Rat Basal Ganglia

    PubMed Central

    Alegre, Manuel; Pérez-Alcázar, Marta; Iriarte, Jorge; Artieda, Julio

    2011-01-01

    Oscillatory activity can be widely recorded in the cortex and basal ganglia. This activity may play a role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of psychiatric and neurological diseases like schizophrenia or Parkinson's disease. Ketamine administration has been shown to cause an increase in gamma activity in cortical and subcortical structures, and an increase in 150 Hz oscillations in the nucleus accumbens in healthy rats, together with hyperlocomotion. We recorded local field potentials from motor cortex, caudate-putamen (CPU), substantia nigra pars reticulata (SNr) and subthalamic nucleus (STN) in 20 awake rats before and after the administration of ketamine at three different subanesthetic doses (10, 25 and 50 mg/Kg), and saline as control condition. Motor behavior was semiautomatically quantified by custom-made software specifically developed for this setting. Ketamine induced coherent oscillations in low gamma (50 Hz), high gamma (80 Hz) and high frequency (HFO, 150 Hz) bands, with different behavior in the four structures studied. While oscillatory activity at these three peaks was widespread across all structures, interactions showed a different pattern for each frequency band. Imaginary coherence at 150 Hz was maximum between motor cortex and the different basal ganglia nuclei, while low gamma coherence connected motor cortex with CPU and high gamma coherence was more constrained to the basal ganglia nuclei. Power at three bands correlated with the motor activity of the animal, but only coherence values in the HFO and high gamma range correlated with movement. Interactions in the low gamma band did not show a direct relationship to movement. These results suggest that the motor effects of ketamine administration may be primarily mediated by the induction of coherent widespread high-frequency activity in the motor circuit of the basal ganglia, together with a frequency-specific pattern of

  5. Hardware Evolution of Analog Speed Controllers for a DC Motor

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Ferguson, Michael I.

    2003-01-01

    Evolvable hardware provides the capability to evolve analog circuits to produce amplifier and filter functions. Conventional analog controller designs employ these same functions. Analog controllers for the control of the shaft speed of a DC motor are evolved on an evolvable hardware platform utilizing a Field Programmable Transistor Array (FPTA). The performance of these evolved controllers is compared to that of a conventional proportional-integral (PI) controller.

  6. Hardware Evolution of Analog Speed Controllers for a DC Motor

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Ferguson, Michael I.

    2003-01-01

    Evolvable hardware provides the capability to evolve analog circuits to produce amplifier and filter functions. Conventional analog controller designs employ these same functions. Analog controllers for the control of the shaft speed of a DC motor are evolved on an evolvable hardware platform utilizing a Field Programmable Transistor Array (FPTA). The performance of these evolved controllers is compared to that of a conventional proportional-integral (PI) controller.

  7. Improving Control of Two Motor Controllers

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.

    2004-01-01

    A computer program controls motors that drive translation stages in a metrology system that consists of a pair of two-axis cathetometers. This program is specific to Compumotor Gemini (or equivalent) motors and the Compumotor 6K-series (or equivalent) motor controller. Relative to the software supplied with the controller, this program affords more capabilities and is easier to use. Written as a Virtual Instrument in the LabVIEW software system, the program presents an imitation control panel that the user can manipulate by use of a keyboard and mouse. There are three modes of operation: command, movement, and joystick. In command mode, single commands are sent to the controller for troubleshooting. In movement mode, distance, speed, and/or acceleration commands are sent to the controller. Position readouts from the motors and from position encoders on the translation stages are displayed in marked fields. At any time, the position readouts can be recorded in a file named by the user. In joystick mode, the program yields control of the motors to a joystick. The program sends commands to, and receives data from, the controller via a serial cable connection, using the serial-communication portion of the software supplied with the controller.

  8. Nongrounded Common-Mode Equivalent Circuit for Brushless DC Motor Driven by PWM Inverter

    NASA Astrophysics Data System (ADS)

    Maetani, Tatsuo; Isomura, Yoshinori; Watanabe, Akihiko; Iimori, Kenichi; Morimoto, Shigeo

    This paper describes nongrounded common-mode equivalent circuit for a motor driven by a voltage-source PWM inverter. When the capacitance of the rotor was small, the phenomenon that polarity of the common mode voltage and shaft voltage reversed was observed. In order to model this phenomenon, the bridge type equivalent circuit is proposed. It is verified with the calculation and experiment that shaft voltage values and polarity are accurately calculated with the proposed equivalent circuit.

  9. Adaptive control of closed-circuit anesthesia.

    PubMed

    Vishnoi, R; Roy, R J

    1991-01-01

    Closed-circuit anesthesia (CCA) is more economical and ecologically safer than open circuit anesthesia. However, gas concentrations are more difficult to control. Computer control of CCA has been proposed to facilitate its use. Past efforts have either been limited to the control of anesthetic gas concentrations or apply only to a small group of patients. This paper describes a comprehensive control system applicable to a large class of patients. This system controls the end-tidal oxygen and anesthetic gas concentrations, and the circuit volume. The CCA process was modeled by writing mass balance equations. Simplifying assumptions yielded a bilinear single-input-single-output model for the anesthetic gas concentration and a bilinear multiple-input-multiple-output model for the circuit volume and oxygen concentration. One-step-ahead controllers were used to control these two subsystems. Simulations showed that the control performance was most sensitive to the gas uptakes. Three independent, least-mean-squares estimation schemes were implemented to estimate the uptakes of oxygen, nitrous oxide, and anesthetic gas. These estimates were used in the control law and resulted in explicit adaptive control. The performance of the adaptive controller was compared to that of a fixed controller (with precalculated gas uptakes) in five animal experiments. The adaptive controller performed better than the fixed controller in all cases. The most significant difference was in the anesthetic gas response time 3.6 +/- 0.70 min for adaptive control and 7.04 +/- 5.62 min for fixed control. The adaptive controller was also robust with respect to variations in the system parameters such as the functional residual capacity, leak, deadspace and gas uptakes.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Genetically identified spinal interneurons integrating tactile afferents for motor control

    PubMed Central

    Panek, Izabela; Farah, Carl

    2015-01-01

    Our movements are shaped by our perception of the world as communicated by our senses. Perception of sensory information has been largely attributed to cortical activity. However, a prior level of sensory processing occurs in the spinal cord. Indeed, sensory inputs directly project to many spinal circuits, some of which communicate with motor circuits within the spinal cord. Therefore, the processing of sensory information for the purpose of ensuring proper movements is distributed between spinal and supraspinal circuits. The mechanisms underlying the integration of sensory information for motor control at the level of the spinal cord have yet to be fully described. Recent research has led to the characterization of spinal neuron populations that share common molecular identities. Identification of molecular markers that define specific populations of spinal neurons is a prerequisite to the application of genetic techniques devised to both delineate the function of these spinal neurons and their connectivity. This strategy has been used in the study of spinal neurons that receive tactile inputs from sensory neurons innervating the skin. As a result, the circuits that include these spinal neurons have been revealed to play important roles in specific aspects of motor function. We describe these genetically identified spinal neurons that integrate tactile information and the contribution of these studies to our understanding of how tactile information shapes motor output. Furthermore, we describe future opportunities that these circuits present for shedding light on the neural mechanisms of tactile processing. PMID:26445867

  11. Control of flexible structure using back electromotive force of motor

    NASA Astrophysics Data System (ADS)

    Matsuda, Khoichi; Hatano, Shinji; Fujii, Hironori

    Wave absorbing control for vibration suppression of flexible space structure is studied. In order to implement control method in a realistic system, it is usually necessary that the signals obtained from sensors are led to actuators through the process of the digital computer programmed under the control law. In this study, a torque motor is used not only as the actuator but also the sensor which detects time differentiation of shaft angle and closes a control loop without using the process of the digital computation. The motor is connected to an electronic circuit which includes the frequency-dependent impedance. The back electromotive force (e.m.f.) of the motor is induced when the shaft of the motor rotates and electric current is generated in the circuit. When the current passes through the motor, it creates control torque for the motor, enabling the suppression of the vibration of a beam without using the digital computer. The control method is confirmed to work well through use of the numerical simulation.

  12. TRIAC/SCR proportional control circuit

    DOEpatents

    Hughes, Wallace J.

    1999-01-01

    A power controller device which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the "reset" input of a R-S flip flop, while an "0" crossing detector controls the "set" input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the "reset" and "set" inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations.

  13. TRIAC/SCR proportional control circuit

    DOEpatents

    Hughes, W.J.

    1999-04-06

    A power controller device is disclosed which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the ``reset`` input of a R-S flip flop, while an ``0`` crossing detector controls the ``set`` input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the ``reset`` and ``set`` inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations. 9 figs.

  14. Energy Consumption Calculation of Permanent Magnet Synchronous Motor for Railway Vehicle Traction Using Equivalent Circuit

    NASA Astrophysics Data System (ADS)

    Kondo, Minoru; Kawamura, Junya; Terauchi, Nobuo

    We are developing a new high performance traction motor for railway vehicle using interior permanent magnet synchronous motor (IPMSM) and expecting it can reduce energy consumption. To estimate the losses and energy consumption of IPMSM, a simple motor model is needed. In this paper, We propose a simple equivalent circuit and loss model for IPMSM, the constants of which can be obtained from several simple test results. The calculation results using them show that the total loss of the IPMSM becomes about 60% of that of the induction motor when used as a traction motor for a typical commuter train.

  15. How Thoughts Give Rise to Action - Conscious Motor Intention Increases the Excitability of Target-Specific Motor Circuits

    PubMed Central

    Zschorlich, Volker R.; Köhling, Rüdiger

    2013-01-01

    The present study shows evidence for conscious motor intention in motor preparation prior to movement execution. We demonstrate that conscious motor intention of directed movement, combined with minimally supra-threshold transcranial magnetic stimulation (TMS) of the motor cortex, determines the direction and the force of resulting movements, whilst a lack of intention results in weak and omni-directed muscle activation. We investigated changes of consciously intended goal directed movements by analyzing amplitudes of motor-evoked potentials of the forearm muscle, flexor carpi radialis (FCR), and extensor carpi radialis (ECR), induced by transcranial magnetic stimulation over the right motor cortex and their motor outcome. Right-handed subjects were asked to develop a strong intention to move their left wrist (flexion or extension), without any overt motor output at the wrist, prior to brain stimulation. Our analyses of hand acceleration and electromyography showed that during the strong motor intention of wrist flexion movement, it evoked motor potential responses that were significantly larger in the FCR muscle than in the ECR, whilst the opposite was true for an extension movement. The acceleration data on flexion/extension corresponded to this finding. Under no-intention conditions again, which served as a reference for motor evoked potentials, brain stimulation resulted in undirected and minimally simultaneous extension/flexion innervation and virtually no movement. These results indicate that conscious intentions govern motor function, which in turn shows that a neuronal activation representing an “intention network” in the human brain pre-exists, and that it functionally represents target specific motor circuits. Until today, it was unclear whether conscious motor intention exists prior to movement, or whether the brain constructs such an intention after movement initiation. Our study gives evidence that motor intentions become aware before any motor

  16. 49 CFR 236.205 - Signal control circuits; requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Signal control circuits; requirements. 236.205... Block Signal Systems Standards § 236.205 Signal control circuits; requirements. The circuits shall be so... fouling point derail equipped with switch circuit controller is not in derailing position, (d) When a...

  17. 49 CFR 236.205 - Signal control circuits; requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Signal control circuits; requirements. 236.205... Block Signal Systems Standards § 236.205 Signal control circuits; requirements. The circuits shall be so... fouling point derail equipped with switch circuit controller is not in derailing position, (d) When a...

  18. 49 CFR 236.205 - Signal control circuits; requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Signal control circuits; requirements. 236.205... Block Signal Systems Standards § 236.205 Signal control circuits; requirements. The circuits shall be so... fouling point derail equipped with switch circuit controller is not in derailing position, (d) When a...

  19. 49 CFR 236.205 - Signal control circuits; requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Signal control circuits; requirements. 236.205... Block Signal Systems Standards § 236.205 Signal control circuits; requirements. The circuits shall be so... fouling point derail equipped with switch circuit controller is not in derailing position, (d) When a...

  20. 49 CFR 236.205 - Signal control circuits; requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Signal control circuits; requirements. 236.205... Block Signal Systems Standards § 236.205 Signal control circuits; requirements. The circuits shall be so... fouling point derail equipped with switch circuit controller is not in derailing position, (d) When a...

  1. Quantum circuits cannot control unknown operations

    NASA Astrophysics Data System (ADS)

    Araújo, Mateus; Feix, Adrien; Costa, Fabio; Brukner, Časlav

    2014-09-01

    One of the essential building blocks of classical computer programs is the ‘if’ clause, which executes a subroutine depending on the value of a control variable. Similarly, several quantum algorithms rely on applying a unitary operation conditioned on the state of a control system. Here we show that this control cannot be performed by a quantum circuit if the unitary is completely unknown. The task remains impossible even if we allow the control to be done modulo a global phase. However, this no-go theorem does not prevent implementing quantum control of unknown unitaries in practice, as any physical implementation of an unknown unitary provides additional information that makes the control possible. We then argue that one should extend the quantum circuit formalism to capture this possibility in a straightforward way. This is done by allowing unknown unitaries to be applied to subspaces and not only to subsystems.

  2. Advanced motor-controller development

    NASA Astrophysics Data System (ADS)

    Lesster, L. E.; Zeitlin, D. B.; Hall, W. B.

    1983-06-01

    The purpose of this development program was to investigate a promising alternative technique for control of a squirrel cage induction motor for subsea propulsion or hydraulic power applications. The technique uses microprocessor based generation of the pulse width modulation waveforms, which in turn permits use of a true integral volt-second pulse width control for the generation of low harmonic content sine waves from a 3 phase Graetz transistor power bridge.

  3. Striatal cholinergic interneurons generate beta and gamma oscillations in the corticostriatal circuit and produce motor deficits.

    PubMed

    Kondabolu, Krishnakanth; Roberts, Erik A; Bucklin, Mark; McCarthy, Michelle M; Kopell, Nancy; Han, Xue

    2016-05-31

    Cortico-basal ganglia-thalamic (CBT) neural circuits are critical modulators of cognitive and motor function. When compromised, these circuits contribute to neurological and psychiatric disorders, such as Parkinson's disease (PD). In PD, motor deficits correlate with the emergence of exaggerated beta frequency (15-30 Hz) oscillations throughout the CBT network. However, little is known about how specific cell types within individual CBT brain regions support the generation, propagation, and interaction of oscillatory dynamics throughout the CBT circuit or how specific oscillatory dynamics are related to motor function. Here, we investigated the role of striatal cholinergic interneurons (SChIs) in generating beta and gamma oscillations in cortical-striatal circuits and in influencing movement behavior. We found that selective stimulation of SChIs via optogenetics in normal mice robustly and reversibly amplified beta and gamma oscillations that are supported by distinct mechanisms within striatal-cortical circuits. Whereas beta oscillations are supported robustly in the striatum and all layers of primary motor cortex (M1) through a muscarinic-receptor mediated mechanism, gamma oscillations are largely restricted to the striatum and the deeper layers of M1. Finally, SChI activation led to parkinsonian-like motor deficits in otherwise normal mice. These results highlight the important role of striatal cholinergic interneurons in supporting oscillations in the CBT network that are closely related to movement and parkinsonian motor symptoms.

  4. Computer-controlled warmup circuit

    NASA Technical Reports Server (NTRS)

    Daeges, J. J.

    1980-01-01

    Filament of high-power radio transmitter is brought to operating temperature automatically. Pushbotton reduces operator's role to one-step command and is compatible with various forms of computer control. Filiament shutdown is initiated by "down" command from operator, failure of cooling systems, or power failure for more than few seconds.

  5. Ultra-Compact Motor Controller

    NASA Technical Reports Server (NTRS)

    Townsend, William T.; Crowell, Adam; Hauptman, Traveler; Pratt, Gill Andrews

    2012-01-01

    This invention is an electronically commutated brushless motor controller that incorporates Hall-array sensing in a small, 42-gram package that provides 4096 absolute counts per motor revolution position sensing. The unit is the size of a miniature hockey puck, and is a 44-pin male connector that provides many I/O channels, including CANbus, RS-232 communications, general-purpose analog and digital I/O (GPIO), analog and digital Hall inputs, DC power input (18-90 VDC, 0-l0 A), three-phase motor outputs, and a strain gauge amplifier. This controller replaces air cooling with conduction cooling via a high-thermal-conductivity epoxy casting. A secondary advantage of the relatively good heat conductivity that comes with ultra-small size is that temperature differences within the controller become smaller, so that it is easier to measure the hottest temperature in the controller with fewer temperature sensors, or even one temperature sensor. Another size-sensitive design feature is in the approach to electrical noise immunity. At a very small size, where conduction paths are much shorter than in conventional designs, the ground becomes essentially isopotential, and so certain (space-consuming) electrical noise control components become unnecessary, which helps make small size possible. One winding-current sensor, applied to all of the windings in fast sequence, is smaller and wastes less power than the two or more sensors conventionally used to sense and control winding currents. An unexpected benefit of using only one current sensor is that it actually improves the precision of current control by using the "same" sensors to read each of the three phases. Folding the encoder directly into the controller electronics eliminates a great deal of redundant electronics, packaging, connectors, and hook-up wiring. The reduction of wires and connectors subtracts substantial bulk and eliminates their role in behaving as EMI (electro-magnetic interference) antennas. A shared

  6. Motor Circuit Anatomy in Children with Autism Spectrum Disorder With or Without Attention Deficit Hyperactivity Disorder.

    PubMed

    Mahajan, Rajneesh; Dirlikov, Benjamin; Crocetti, Deana; Mostofsky, Stewart H

    2016-01-01

    This study examined the morphology of frontal-parietal regions relevant to motor functions in children with autism spectrum disorder (ASD) with or without attention deficit hyperactivity disorder (ADHD). We also explored its associations with autism severity and motor skills, and the impact of comorbid ADHD on these associations. Participants included 126 school-age children: 30 had ASD only, 33 had ASD with ADHD, and 63 were typically developing. High resolution 3T MPRAGE images were acquired to examine the cortical morphology (gray matter volume, GMV, surface area, SA, and cortical thickness, CT) in three regions of interest (ROI): precentral gyrus (M1), postcentral gyrus (S1), and inferior parietal cortex (IPC). Children with ASD showed abnormal increases in GMV and SA in all three ROIs: (a) increased GMV in S1 bilaterally and in right M1 was specific to children with ASD without ADHD; (b) all children with ASD (with or without ADHD) showed increases in the left IPC SA. Furthermore, on measures of motor function, impaired praxis was associated with increased GMV in right S1 in the ASD group with ADHD. Children with ASD with ADHD showed a positive relationship between bilateral S1 GMV and manual dexterity, whereas children with ASD without ADHD showed a negative relationship. Our findings suggest that (a) ASD is associated with abnormal morphology of cortical circuits crucial to motor control and learning; (b) anomalous overgrowth of these regions, particularly S1, may contribute to impaired motor skill development, and (c) functional and morphological differences are apparent between children with ASD with or without ADHD.

  7. Motor Circuit Anatomy in Children with Autism Spectrum Disorder With or Without Attention Deficit Hyperactivity Disorder

    PubMed Central

    Mahajan, Rajneesh; Dirlikov, Benjamin; Crocetti, Deana; Mostofsky, Stewart H.

    2017-01-01

    This study examined the morphology of frontal-parietal regions relevant to motor functions in children with autism spectrum disorder (ASD) with or without attention deficit hyperactivity disorder (ADHD). We also explored its associations with autism severity and motor skills, and the impact of comorbid ADHD on these associations. Participants included 126 school-age children: 30 had ASD only, 33 had ASD with ADHD, and 63 were typically developing. High resolution 3T MPRAGE images were acquired to examine the cortical morphology (gray matter volume, GMV, surface area, SA, and cortical thickness, CT) in three regions of interest (ROI): precentral gyrus (M1), postcentral gyrus (S1), and inferior parietal cortex (IPC). Children with ASD showed abnormal increases in GMV and SA in all three ROIs: (a) increased GMV in S1 bilaterally and in right M1 was specific to children with ASD without ADHD; (b) all children with ASD (with or without ADHD) showed increases in the left IPC SA. Furthermore, on measures of motor function, impaired praxis was associated with increased GMV in right S1 in the ASD group with ADHD. Children with ASD with ADHD showed a positive relationship between bilateral S1 GMV and manual dexterity, whereas children with ASD without ADHD showed a negative relationship. Our findings suggest that (a) ASD is associated with abnormal morphology of cortical circuits crucial to motor control and learning; (b) anomalous overgrowth of these regions, particularly S1, may contribute to impaired motor skill development, and (c) functional and morphological differences are apparent between children with ASD with or without ADHD. PMID:25962921

  8. Packaging Of Control Circuits In A Robot Arm

    NASA Technical Reports Server (NTRS)

    Kast, William

    1994-01-01

    Packaging system houses and connects control circuitry mounted on circuit boards within shoulder, upper section, and lower section of seven-degree-of-freedom robot arm. Has modular design that incorporates surface-mount technology, multilayer circuit boards, large-scale integrated circuits, and multi-layer flat cables between sections for compactness. Three sections of robot arm contain circuit modules in form of stardardized circuit boards. Each module contains two printed-circuit cards, one of each face.

  9. Packaging Of Control Circuits In A Robot Arm

    NASA Technical Reports Server (NTRS)

    Kast, William

    1994-01-01

    Packaging system houses and connects control circuitry mounted on circuit boards within shoulder, upper section, and lower section of seven-degree-of-freedom robot arm. Has modular design that incorporates surface-mount technology, multilayer circuit boards, large-scale integrated circuits, and multi-layer flat cables between sections for compactness. Three sections of robot arm contain circuit modules in form of stardardized circuit boards. Each module contains two printed-circuit cards, one of each face.

  10. Personal Computer Based Controller For Switched Reluctance Motor Drives

    NASA Astrophysics Data System (ADS)

    Mang, X.; Krishnan, R.; Adkar, S.; Chandramouli, G.

    1987-10-01

    Th9, switched reluctance motor (SRM) has recently gained considerable attention in the variable speed drive market. Two important factors that have contributed to this are, the simplicity of construction and the possibility of developing low cost con-trollers with minimum number of switching devices in the drive circuits. This is mainly due to the state-of-art of the present digital circuits technology and the low cost of switching devices. The control of this motor drive is under research. Optimized performance of the SRM motor drive is very dependent on the integration of the controller, converter and the motor. This research on system integration involves considerable changes in the control algorithms and their implementation. A Personal computer (PC) based controller is very appropriate for this purpose. Accordingly, the present paper is concerned with the design of a PC based controller for a SRM. The PC allows for real-time microprocessor control with the possibility of on-line system parameter modifications. Software reconfiguration of this controller is easier than a hardware based controller. User friendliness is a natural consequence of such a system. Considering the low cost of PCs, this controller will offer an excellent cost-effective means of studying the control strategies for the SRM drive intop greater detail than in the past.

  11. Recruitment of prefrontal-striatal circuit in response to skilled motor challenge.

    PubMed

    Guo, Yumei; Wang, Zhuo; Prathap, Sandhya; Holschneider, Daniel P

    2017-09-08

    A variety of physical fitness regimens have been shown to improve cognition, including executive function, yet our understanding of which parameters of motor training are important in optimizing outcomes remains limited. We used functional brain mapping to compare the ability of two motor challenges to acutely recruit the prefrontal-striatal circuit. The two motor tasks - walking in a complex running wheel with irregularly spaced rungs or walking in a running wheel with a smooth internal surface - differed only in the extent of skill required for their execution. Cerebral perfusion was mapped in rats by intravenous injection of [C]-iodoantipyrine during walking in either a motorized complex wheel or in a simple wheel. Regional cerebral blood flow (rCBF) was quantified by whole-brain autoradiography and analyzed in three-dimensional reconstructed brains by statistical parametric mapping and seed-based functional connectivity. Skilled or simple walking compared with rest, increased rCBF in regions of the motor circuit, somatosensory and visual cortex, as well as the hippocampus. Significantly greater rCBF increases were noted during skilled walking than for simple walking. Skilled walking, unlike simple walking or the resting condition, was associated with a significant positive functional connectivity in the prefrontal-striatal circuit (prelimbic cortex-dorsomedial striatum) and greater negative functional connectivity in the prefrontal-hippocampal circuit. Our findings suggest that the level of skill of a motor training task determines the extent of functional recruitment of the prefrontal-corticostriatal circuit, with implications for a new approach in neurorehabilitation that uses circuit-specific neuroplasticity to improve motor and cognitive functions.

  12. Motor Control: The Heart of Kinesiology

    ERIC Educational Resources Information Center

    Latash, Mark L.

    2008-01-01

    This brief review presents the subjective view of the author on the history of motor control and its current state among the subdisciplines of kinesiology. It summarizes the current controversies and challenges in motor control and emphasizes the necessity for an adequate set of notions that would make motor control (and kinesiology) a science.…

  13. Motorized control for mirror mount apparatus

    SciTech Connect

    Cutburth, Ronald W.

    1989-01-01

    A motorized control and automatic braking system for adjusting mirror mount apparatus is disclosed. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.

  14. Motorized control for mirror mount apparatus

    SciTech Connect

    Cutburth, R.W.

    1989-03-14

    This patent describes a motorized control and automatic braking system for adjusting mirror mount apparatus. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.

  15. Theoretical analysis of a YBCO squirrel-cage type induction motor based on an equivalent circuit

    NASA Astrophysics Data System (ADS)

    Morita, G.; Nakamura, T.; Muta, I.

    2006-06-01

    A HTS induction motor, with a HTS squirrel-cage rotor, is analysed using an electrical equivalent circuit. The squirrel-cage winding in the rotor consists of rotor bars and end rings, and both are considered to be made of YBCO film conductors. A wide range of electric field versus current density in YBCO film is formulated based on the Weibull function, and analysed as a non-linear resistance in the equivalent circuit. It is shown that starting and accelerating torques of the HTS induction motor are improved drastically compared to those of a conventional induction motor. Furthermore, large synchronous torque can also be realized by trapping the magnetic flux in the rotor circuit because of the persistent current mode.

  16. Intelligent motion control for linear piezoelectric ceramic motor drive.

    PubMed

    Wai, Rong-Jong; Lee, Jeng-Dao

    2004-10-01

    Since the dynamic characteristics of a linear piezoelectric ceramic motor (LPCM) are highly nonlinear and time varying, it is difficult to design a suitable motor drive and position controller that realizes accurate position control at all time. This study investigates a double-inductance double-capacitance (LLCC) resonant driving circuit and a sliding-mode fuzzy-neural-network control (SMFNNC) system for the motion control of an LPCM. First, the motor structure and LLCC driving circuit of an LPCM are introduced. The LLCC resonant inverter is designed to operate at an optimal switching frequency such that the output voltage will not be influenced by the variation of quality factor. Moreover, a SMFNNC system is designed to achieve favorable tracking performance without precise dynamic models being controlled. All adaptive learning algorithms in the SMFNNC system are derived in the sense of Lyapunov stability analysis, so that system-tracking stability can be guaranteed in the closed-loop system. The effectiveness of the proposed driving circuit and control system is verified by experimental results.

  17. Modeling and simulation of control system for 3-phase variable-reluctance stepper motor

    NASA Astrophysics Data System (ADS)

    Liu, Lihua; Li, Hong

    2010-12-01

    In this paper, firstly, we establish the mode of the VR stepper motor on open-loop system of the stepper motor. Secondly, we control the exciting model, realize simulation of the circuit of unipolar driver and chop constant current control. Finally, we analyze the simulation results. And the results shows that these control methods can be applied to the actual motion of the system, which can improve the characteristics of the motion system of the stepper motor.

  18. From parallel sequence representations to calligraphic control: a conspiracy of neural circuits.

    PubMed

    Bullock, Daniel

    2004-10-01

    Calligraphic writing presents many challenges for motor control, including: learning and recall of stroke sequences; critical timing of stroke onsets and durations; fine control of grip and contact forces; and letterform invariance under size scaling, which entails fine control of stroke directions and amplitudes during recruitment and derecruitment of musculoskeletal degrees of freedom. Experimental and computational studies in behavioral neuroscience have progressed toward explaining the learning, planning, and control exercised in tasks that share features with calligraphic writing and drawing. This article highlights component operations ranging from parallel sequence representations to fine force control. Treated in succession are: competitive queuing models of sequence representation, performance, learning, and recall; letter size scaling and motor equivalence; cursive handwriting models in which sensory-motor transformations are performed by circuits that learn inverse differential kinematic mappings; and fine-grained control of timing and transient forces by circuit models that learn to solve inverse dynamics problems.

  19. Development of cortical motor circuits between childhood and adulthood: A navigated TMS-HdEEG study.

    PubMed

    Määttä, Sara; Könönen, Mervi; Kallioniemi, Elisa; Lakka, Timo; Lintu, Niina; Lindi, Virpi; Ferreri, Florinda; Ponzo, David; Säisänen, Laura

    2017-02-20

    Motor functions improve during childhood and adolescence, but little is still known about the development of cortical motor circuits during early life. To elucidate the neurophysiological hallmarks of motor cortex development, we investigated the differences in motor cortical excitability and connectivity between healthy children, adolescents, and adults by means of navigated suprathreshold motor cortex transcranial magnetic stimulation (TMS) combined with high-density electroencephalography (EEG). We demonstrated that with development, the excitability of the motor system increases, the TMS-evoked EEG waveform increases in complexity, the magnitude of induced activation decreases, and signal spreading increases. Furthermore, the phase of the oscillatory response to TMS becomes less consistent with age. These changes parallel an improvement in manual dexterity and may reflect developmental changes in functional connectivity. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc.

  20. Motor neurons in the escape response circuit of white shrimp (Litopenaeus setiferus)

    PubMed Central

    2015-01-01

    Many decapod crustaceans perform escape tailflips with a neural circuit involving giant interneurons, a specialized fast flexor motor giant (MoG) neuron, populations of larger, less specialized fast flexor motor neurons, and fast extensor motor neurons. These escape-related neurons are well described in crayfish (Reptantia), but not in more basal decapod groups. To clarify the evolution of the escape circuit, I examined the fast flexor and fast extensor motor neurons of white shrimp (Litopenaeus setiferus; Dendrobranchiata) using backfilling. In crayfish, the MoGs in each abdominal ganglion are a bilateral pair of separate neurons. In L. setiferus, the MoGs have massive, possibly syncytial, cell bodies and fused axons. The non-MoG fast flexor motor neurons and fast extensor motor neurons are generally found in similar locations to where they are found in crayfish, but the number of motor neurons in both the flexor and extensor pools is smaller than in crayfish. The loss of fusion in the MoGs and increased number of fast motor neurons in reptantian decapods may be correlated with an increased reliance on non-giant mediated tailflipping. PMID:26244117

  1. 49 CFR 236.342 - Switch circuit controller.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Switch circuit controller. 236.342 Section 236.342 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Instructions § 236.342 Switch circuit controller. Switch circuit controller connected at the point to switch...

  2. 49 CFR 236.342 - Switch circuit controller.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Switch circuit controller. 236.342 Section 236.342 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Instructions § 236.342 Switch circuit controller. Switch circuit controller connected at the point to switch...

  3. 49 CFR 236.342 - Switch circuit controller.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Switch circuit controller. 236.342 Section 236.342 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Instructions § 236.342 Switch circuit controller. Switch circuit controller connected at the point to switch...

  4. 49 CFR 236.342 - Switch circuit controller.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Switch circuit controller. 236.342 Section 236.342 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Instructions § 236.342 Switch circuit controller. Switch circuit controller connected at the point to switch...

  5. 49 CFR 236.342 - Switch circuit controller.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Switch circuit controller. 236.342 Section 236.342 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Instructions § 236.342 Switch circuit controller. Switch circuit controller connected at the point to switch...

  6. 5-DOF Controlled Self-Bearing Motor

    NASA Astrophysics Data System (ADS)

    Ishikawa, Tatsuya; Matsuda, Ken-Ichi; Kondo, Ryou; Masuzawa, Toru

    A novel 5-DOF actively controlled self-bearing motor that combines the functions of a motor, two radial AMBs, and an axial AMB has been developed to achieve smaller size and higher performance simultaneously. In this paper, magnetic suspension performance of the 5-DOF controlled self-bearing motor is reported. First, radial control performance of the developed self-bearing motor is evaluated by the radial experimental setup. Next, tilt control performance and 5-DOF active control performance are evaluated by the 5-DOF experimental setup. Finally, the frequency response in the 5-DOF is measured with the contact-free levitation. The 5-DOF controlled self-bearing motor produced sufficient radial force and tilt control torque to overcome the radial negative stiffness and to stabilize the rotor. The sufficient frequency bandwidth was observed in the frequency response and the self-bearing motor successfully suppressed vibration at the resonant frequencies.

  7. Requirement for Dicer in Maintenance of Monosynaptic Sensory-Motor Circuits in the Spinal Cord.

    PubMed

    Imai, Fumiyasu; Chen, Xiaoting; Weirauch, Matthew T; Yoshida, Yutaka

    2016-11-22

    In contrast to our knowledge of mechanisms governing circuit formation, our understanding of how neural circuits are maintained is limited. Here, we show that Dicer, an RNaseIII protein required for processing microRNAs (miRNAs), is essential for maintenance of the spinal monosynaptic stretch reflex circuit in which group Ia proprioceptive sensory neurons form direct connections with motor neurons. In postnatal mice lacking Dicer in proprioceptor sensory neurons, there are no obvious defects in specificity or formation of monosynaptic sensory-motor connections. However, these circuits degrade through synapse loss and retraction of proprioceptive axonal projections from the ventral spinal cord. Peripheral terminals are also impaired without retracting from muscle targets. Interestingly, despite these central and peripheral axonal defects, proprioceptive neurons survive in the absence of Dicer-processed miRNAs. These findings reveal that Dicer, through its production of mature miRNAs, plays a key role in the maintenance of monosynaptic sensory-motor circuits. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Exercise alters resting-state functional connectivity of motor circuits in parkinsonian rats.

    PubMed

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G; Heintz, Ryan; Peng, Yu-Hao; Maarek, Jean-Michel I; Holschneider, Daniel P

    2015-01-01

    Few studies have examined changes in functional connectivity after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise on the resting-state functional connectivity (rsFC) of motor circuits of rats subjected to bilateral 6-hydroxydopamine lesion of the dorsal striatum. Our results showed substantial similarity between lesion-induced changes in rsFC in the rats and alterations in rsFC reported in Parkinson's disease subjects, including disconnection of the dorsolateral striatum. Exercise in lesioned rats resulted in: (1) normalization of many of the lesion-induced alterations in rsFC, including reintegration of the dorsolateral striatum into the motor network; (2) emergence of the ventrolateral striatum as a new broadly connected network hub; and (3) increased rsFC among the motor cortex, motor thalamus, basal ganglia, and cerebellum. Our results showed for the first time that long-term exercise training partially reversed lesion-induced alterations in rsFC of the motor circuits, and in addition enhanced functional connectivity in specific motor pathways in the parkinsonian rats, which could underlie recovery in motor functions observed in these animals.

  9. Exercise alters resting state functional connectivity of motor circuits in Parkinsonian rats

    PubMed Central

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G.; Heintz, Ryan; Peng, Yu-Hao; Maarek, Jean-Michel I.; Holschneider, Daniel P.

    2014-01-01

    Few studies have examined changes in functional connectivity after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise on the resting-state functional connectivity (rsFC) of motor circuits of rats subjected to bilateral 6-hydroxydopamine lesion of the dorsal striatum. Our results showed substantial similarity between lesion-induced changes in rsFC in the rats and alterations in rsFC reported in Parkinson’s disease subjects, including disconnection of the dorsolateral striatum. Exercise in lesioned rats resulted in: (a) normalization of many of the lesion-induced alterations in rsFC, including reintegration of the dorsolateral striatum into the motor network; (b) emergence of the ventrolateral striatum as a new broadly connected network hub; (c) increased rsFC among the motor cortex, motor thalamus, basal ganglia, and cerebellum. Our results showed for the first time that long-term exercise training partially reversed lesion-induced alterations in rsFC of the motor circuits, and in addition enhanced functional connectivity in specific motor pathways in the Parkinsonian rats, which could underlie recovery in motor functions observed in these rats. PMID:25219465

  10. 49 CFR 236.732 - Controller, circuit; switch.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Controller, circuit; switch. 236.732 Section 236.732 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by a...

  11. 49 CFR 236.732 - Controller, circuit; switch.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Controller, circuit; switch. 236.732 Section 236.732 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by a...

  12. 49 CFR 236.732 - Controller, circuit; switch.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Controller, circuit; switch. 236.732 Section 236.732 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by a...

  13. 49 CFR 236.732 - Controller, circuit; switch.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Controller, circuit; switch. 236.732 Section 236.732 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by a...

  14. 49 CFR 236.732 - Controller, circuit; switch.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Controller, circuit; switch. 236.732 Section 236.732 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by a...

  15. Distinct cortical circuit mechanisms for complex forelimb movement and motor map topography.

    PubMed

    Harrison, Thomas C; Ayling, Oliver G S; Murphy, Timothy H

    2012-04-26

    Cortical motor maps are the basis of voluntary movement, but they have proven difficult to understand in the context of their underlying neuronal circuits. We applied light-based motor mapping of Channelrhodopsin-2 mice to reveal a functional subdivision of the forelimb motor cortex based on the direction of movement evoked by brief (10 ms) pulses. Prolonged trains of electrical or optogenetic stimulation (100-500 ms) targeted to anterior or posterior subregions of motor cortex evoked reproducible complex movements of the forelimb to distinct positions in space. Blocking excitatory cortical synaptic transmission did not abolish basic motor map topography, but the site-specific expression of complex movements was lost. Our data suggest that the topography of movement maps arises from their segregated output projections, whereas complex movements evoked by prolonged stimulation require intracortical synaptic transmission.

  16. Realistic simulation of the Aplysia siphon-withdrawal reflex circuit: roles of circuit elements in producing motor output.

    PubMed

    Lieb, J R; Frost, W N

    1997-03-01

    The circuitry underlying the Aplysia siphon-elicited siphon-withdrawal reflex has been widely used to study the cellular substrates of simple forms of learning and memory. Nonetheless, the functional roles of the different neurons and synaptic connections modified with learning have yet to be firmly established. In this study we constructed a realistic computer simulation of the best-understood component of this network to better understand how the siphon-withdrawal circuit works. We used an integrate-and-fire scheme to simulate four neuron types (LFS, L29, L30, L34) and 10 synaptic connections. Each of these circuit components was individually constructed to match the mean or typical example of its biological counterpart on the basis of group measurements of each circuit element. Once each cell and synapse was modeled, its free parameters were fixed and not subject to further manipulation. The LFS motor neurons respond to sensory input with a brief phasic burst followed by a long-lasting period of tonic firing. We found that the assembled model network responded to sensory input in a qualitatively similar fashion, suggesting that many of the interneurons important for producing the LFS firing response have now been identified. By selectively removing different circuit elements, we determined the contribution of each of the LFS firing pattern. Our first finding was that the monosynaptic sensory neuron to motor neuron pathway contributed only to the initial brief burst of the LFS firing response, whereas the polysynaptic pathway determined the overall duration of LFS firing. By making more selective deletions, we found that the circuit elements responsible for transforming brief sensory neuron discharges into long-lasting LFS firing were the slow components of the L29-LFS fast/slow excitatory postsynaptic potentials. The inhibitory L30 neurons exerted a significant braking action on the flow of excitatory information through the circuit. Interestingly, L30 lost its

  17. Multi motor controller MMC32: User manual

    SciTech Connect

    Feng-Berman, S.K.; Siddons, D.P.

    1993-02-01

    The MMC32 is a versatile stepping motor controller for systems with many motors. The system as currently configured can control up to 32 motors, with all motors capable of full speed operation concurrently in different pulse modes. Each individual motor`s position can be monitored in an open loop, a closed loop, or an encoded loop, even when the motor is moving. There are 2 limit switch inputs for each motor, and a further input to accept a reference position marker. The motors can be controlled via a front panel keyboard with display, or by a host computer over an IEEE-488 interface. Both methods can be used together if required. The details for manual operation are in Chapter 4, and for remote computer control are in Chapter 5. The manual operation is controlled by the front panel keypad with interactive menu display. There is an ``emergency stop`` key on the front panel keypad to abort the motion of all motors without losing track of the motors` position.

  18. The peptidergic control circuit for sighing

    PubMed Central

    Kam, Kaiwen; Pagliardini, Silvia; Krasnow, Mark A.; Feldman, Jack L.

    2016-01-01

    Sighs are long, deep breaths expressing sadness, relief, or exhaustion. Sighs also occur spontaneously every few minutes to reinflate alveoli, and sighing increases under hypoxia, stress, and certain psychiatric conditions. Here we use molecular, genetic, and pharmacologic approaches to identify a peptidergic sigh control circuit in murine brain. Small neural subpopulations in a key breathing control center (RTN/pFRG) express bombesin-like neuropeptide genes neuromedin B (Nmb) or gastrin releasing peptide (Grp). These project to the preBötzinger Complex (preBötC), the respiratory rhythm generator, which expresses NMB and GRP receptors in overlapping subsets of ~200 neurons. Introducing either neuropeptide into preBötC, or onto preBötC slices, induced sighing, whereas elimination or inhibition of either receptor reduced basal sighing and inhibition of both abolished it. Ablating receptor-expressing neurons eliminated basal and hypoxia-induced sighing, but left breathing otherwise intact initially. We propose these overlapping peptidergic pathways comprise the core of a sigh control circuit that integrates physiological and perhaps emotional input to transform normal breaths into sighs. PMID:26855425

  19. Distributed Motor Controller (DMC) for Operation in Extreme Environments

    NASA Technical Reports Server (NTRS)

    McKinney, Colin M.; Yager, Jeremy A.; Mojarradi, Mohammad M.; Some, Rafi; Sirota, Allen; Kopf, Ted; Stern, Ryan; Hunter, Don

    2012-01-01

    This paper presents an extreme environment capable Distributed Motor Controller (DMC) module suitable for operation with a distributed architecture of future spacecraft systems. This motor controller is designed to be a bus-based electronics module capable of operating a single Brushless DC motor in extreme space environments: temperature (-120 C to +85 C required, -180 C to +100 C stretch goal); radiation (>;20K required, >;100KRad stretch goal); >;360 cycles of operation. Achieving this objective will result in a scalable modular configuration for motor control with enhanced reliability that will greatly lower cost during the design, fabrication and ATLO phases of future missions. Within the heart of the DMC lies a pair of cold-capable Application Specific Integrated Circuits (ASICs) and a Field Programmable Gate Array (FPGA) that enable its miniaturization and operation in extreme environments. The ASICs are fabricated in the IBM 0.5 micron Silicon Germanium (SiGe) BiCMOS process and are comprised of Analog circuitry to provide telemetry information, sensor interface, and health and status of DMC. The FPGA contains logic to provide motor control, status monitoring and spacecraft interface. The testing and characterization of these ASICs have yielded excellent functionality in cold temperatures (-135 C). The DMC module has demonstrated successful operation of a motor at temperature.

  20. Distributed Motor Controller (DMC) for Operation in Extreme Environments

    NASA Technical Reports Server (NTRS)

    McKinney, Colin M.; Yager, Jeremy A.; Mojarradi, Mohammad M.; Some, Rafi; Sirota, Allen; Kopf, Ted; Stern, Ryan; Hunter, Don

    2012-01-01

    This paper presents an extreme environment capable Distributed Motor Controller (DMC) module suitable for operation with a distributed architecture of future spacecraft systems. This motor controller is designed to be a bus-based electronics module capable of operating a single Brushless DC motor in extreme space environments: temperature (-120 C to +85 C required, -180 C to +100 C stretch goal); radiation (>;20K required, >;100KRad stretch goal); >;360 cycles of operation. Achieving this objective will result in a scalable modular configuration for motor control with enhanced reliability that will greatly lower cost during the design, fabrication and ATLO phases of future missions. Within the heart of the DMC lies a pair of cold-capable Application Specific Integrated Circuits (ASICs) and a Field Programmable Gate Array (FPGA) that enable its miniaturization and operation in extreme environments. The ASICs are fabricated in the IBM 0.5 micron Silicon Germanium (SiGe) BiCMOS process and are comprised of Analog circuitry to provide telemetry information, sensor interface, and health and status of DMC. The FPGA contains logic to provide motor control, status monitoring and spacecraft interface. The testing and characterization of these ASICs have yielded excellent functionality in cold temperatures (-135 C). The DMC module has demonstrated successful operation of a motor at temperature.

  1. Dynamic phases in control and information processing biological circuits

    NASA Astrophysics Data System (ADS)

    Vaikuntanathan, Suriyanarayanan

    2015-03-01

    Recent work using the mathematical framework of large deviation theory has shown that fluctuations about the steady state can have a particularly rich structure even in extremely simple non-equilibrium systems [Phys. Rev. E. 89, 062108, 2014]. In certain instances the fluctuations can encode the presence of a dynamical phase with properties distinct from those of the steady state of the system. The transition between these two regimes is akin to a first order thermodynamic phase transition. Specifically, it implies an extreme sensitivity of the system to changes in certain sets of parameters. I will show that such dynamical phase transitions can serve as a general organizing principle to understand biological circuits that are involved in information processing and control. I will focus on two specific examples: adaptation control in E. coli chemotaxis and ultra sensitive response of the E. coli flagella motor, to illustrate these calculations. This work also elucidates the role played by energy dissipation in ensuring control and suggests general guidelines for the construction of robust non equilibrium circuits that perform various specified functions.

  2. Timing control by redundant inhibitory neuronal circuits

    NASA Astrophysics Data System (ADS)

    Tristan, I.; Rulkov, N. F.; Huerta, R.; Rabinovich, M.

    2014-03-01

    Rhythms and timing control of sequential activity in the brain is fundamental to cognition and behavior. Although experimental and theoretical studies support the understanding that neuronal circuits are intrinsically capable of generating different time intervals, the dynamical origin of the phenomenon of functionally dependent timing control is still unclear. Here, we consider a new mechanism that is related to the multi-neuronal cooperative dynamics in inhibitory brain motifs consisting of a few clusters. It is shown that redundancy and diversity of neurons within each cluster enhances the sensitivity of the timing control with the level of neuronal excitation of the whole network. The generality of the mechanism is shown to work on two different neuronal models: a conductance-based model and a map-based model.

  3. Timing control by redundant inhibitory neuronal circuits

    SciTech Connect

    Tristan, I. Rulkov, N. F.; Huerta, R.; Rabinovich, M.

    2014-03-15

    Rhythms and timing control of sequential activity in the brain is fundamental to cognition and behavior. Although experimental and theoretical studies support the understanding that neuronal circuits are intrinsically capable of generating different time intervals, the dynamical origin of the phenomenon of functionally dependent timing control is still unclear. Here, we consider a new mechanism that is related to the multi-neuronal cooperative dynamics in inhibitory brain motifs consisting of a few clusters. It is shown that redundancy and diversity of neurons within each cluster enhances the sensitivity of the timing control with the level of neuronal excitation of the whole network. The generality of the mechanism is shown to work on two different neuronal models: a conductance-based model and a map-based model.

  4. System and method for monitoring and controlling stator winding temperature in a de-energized AC motor

    DOEpatents

    Lu, Bin [Kenosha, WI; Luebke, Charles John [Sussex, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Becker, Scott K [Oak Creek, WI

    2011-12-27

    A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.

  5. A computational neuroanatomy for motor control.

    PubMed

    Shadmehr, Reza; Krakauer, John W

    2008-03-01

    The study of patients to infer normal brain function has a long tradition in neurology and psychology. More recently, the motor system has been subject to quantitative and computational characterization. The purpose of this review is to argue that the lesion approach and theoretical motor control can mutually inform each other. Specifically, one may identify distinct motor control processes from computational models and map them onto specific deficits in patients. Here we review some of the impairments in motor control, motor learning and higher-order motor control in patients with lesions of the corticospinal tract, the cerebellum, parietal cortex, the basal ganglia, and the medial temporal lobe. We attempt to explain some of these impairments in terms of computational ideas such as state estimation, optimization, prediction, cost, and reward. We suggest that a function of the cerebellum is system identification: to build internal models that predict sensory outcome of motor commands and correct motor commands through internal feedback. A function of the parietal cortex is state estimation: to integrate the predicted proprioceptive and visual outcomes with sensory feedback to form a belief about how the commands affected the states of the body and the environment. A function of basal ganglia is related to optimal control: learning costs and rewards associated with sensory states and estimating the "cost-to-go" during execution of a motor task. Finally, functions of the primary and the premotor cortices are related to implementing the optimal control policy by transforming beliefs about proprioceptive and visual states, respectively, into motor commands.

  6. Motor neurons controlling fluid ingestion in Drosophila.

    PubMed

    Manzo, Andrea; Silies, Marion; Gohl, Daryl M; Scott, Kristin

    2012-04-17

    Rhythmic motor behaviors such as feeding are driven by neural networks that can be modulated by external stimuli and internal states. In Drosophila, ingestion is accomplished by a pump that draws fluid into the esophagus. Here we examine how pumping is regulated and characterize motor neurons innervating the pump. Frequency of pumping is not affected by sucrose concentration or hunger but is altered by fluid viscosity. Inactivating motor neurons disrupts pumping and ingestion, whereas activating them elicits arrhythmic pumping. These motor neurons respond to taste stimuli and show prolonged activity to palatable substances. This work describes an important component of the neural circuit for feeding in Drosophila and is a step toward understanding the rhythmic activity producing ingestion.

  7. Controlling a Four-Quadrant Brushless Three-Phase dc Motor

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1986-01-01

    Control circuit commutates windings of brushless, three-phase, permanent-magnet motor operating from power supply. With single analog command voltage, controller makes motor accelerate, drive steadily, or brake regeneratively, in clockwise or counterclockwise direction. Controller well suited for use with energy-storage flywheels, actuators for aircraft-control surfaces, cranes, industrial robots, and other electromechanical systems requiring bidirectional control or sudden stopping and reversal.

  8. Controlling a Four-Quadrant Brushless Three-Phase dc Motor

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1986-01-01

    Control circuit commutates windings of brushless, three-phase, permanent-magnet motor operating from power supply. With single analog command voltage, controller makes motor accelerate, drive steadily, or brake regeneratively, in clockwise or counterclockwise direction. Controller well suited for use with energy-storage flywheels, actuators for aircraft-control surfaces, cranes, industrial robots, and other electromechanical systems requiring bidirectional control or sudden stopping and reversal.

  9. Neuronal connectome of a sensory-motor circuit for visual navigation.

    PubMed

    Randel, Nadine; Asadulina, Albina; Bezares-Calderón, Luis A; Verasztó, Csaba; Williams, Elizabeth A; Conzelmann, Markus; Shahidi, Réza; Jékely, Gáspár

    2014-05-27

    Animals use spatial differences in environmental light levels for visual navigation; however, how light inputs are translated into coordinated motor outputs remains poorly understood. Here we reconstruct the neuronal connectome of a four-eye visual circuit in the larva of the annelid Platynereis using serial-section transmission electron microscopy. In this 71-neuron circuit, photoreceptors connect via three layers of interneurons to motorneurons, which innervate trunk muscles. By combining eye ablations with behavioral experiments, we show that the circuit compares light on either side of the body and stimulates body bending upon left-right light imbalance during visual phototaxis. We also identified an interneuron motif that enhances sensitivity to different light intensity contrasts. The Platynereis eye circuit has the hallmarks of a visual system, including spatial light detection and contrast modulation, illustrating how image-forming eyes may have evolved via intermediate stages contrasting only a light and a dark field during a simple visual task.

  10. Advanced dc motor controller for battery-powered electric vehicles

    NASA Technical Reports Server (NTRS)

    Belsterling, C. A.

    1981-01-01

    A motor generation set is connected to run from the dc source and generate a voltage in the traction motor armature circuit that normally opposes the source voltage. The functional feasibility of the concept is demonstrated with tests on a Proof of Principle System. An analog computer simulation is developed, validated with the results of the tests, applied to predict the performance of a full scale Functional Model dc Controller. The results indicate high efficiencies over wide operating ranges and exceptional recovery of regenerated energy. The new machine integrates both motor and generator on a single two bearing shaft. The control strategy produces a controlled bidirectional plus or minus 48 volts dc output from the generator permitting full control of a 96 volt dc traction motor from a 48 volt battery, was designed to control a 20 hp traction motor. The controller weighs 63.5 kg (140 lb.) and has a peak efficiency of 90% in random driving modes and 96% during the SAE J 227a/D driving cycle.

  11. What Can Different Motor Circuits Tell Us About Psychosis? An RDoC Perspective.

    PubMed

    Mittal, Vijay A; Bernard, Jessica A; Northoff, Georg

    2017-09-01

    Signs of motor dysfunction are evidenced across a range of psychiatric disorders including schizophrenia. Historically, these features have been neglected but emerging theoretical and methodological advancements have shed new light on the utility of considering movement abnormalities. Indeed, the National Institute of Mental Health Research Domain Criteria initiative has recently met to develop a Motor Systems Domain. This reflects a growing appreciation for the enhanced reliability and validity that can come along with evaluating disturbances relevant to psychiatric illnesses from multiple levels of analysis, and conceptualizing these domains with respect to the complexity of their role in a broader integrated system (ie, weighing contributions and interactions between the cognitive, affective, and motor domains). This article discusses motor behaviors and seeks to explain how research into basal ganglia, cerebellar, and cortico-motor circuit function/dysfunction, grounded in brain circuit-motor behavior relationships, can elucidate our understanding of pathophysiology, provide vital links to other key systems of interest, significantly improve identification and classification, and drive development of targeted individualized treatments. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits

    PubMed Central

    Ramanathan, Dhakshin S.; Conner, James M.; Anilkumar, Arjun A.

    2014-01-01

    Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia. PMID:25505106

  13. Multi motor controller MMC32: User manual

    SciTech Connect

    Feng-Berman, S.K.; Siddons, D.P.

    1993-02-01

    The MMC32 is a versatile stepping motor controller for systems with many motors. The system as currently configured can control up to 32 motors, with all motors capable of full speed operation concurrently in different pulse modes. Each individual motor's position can be monitored in an open loop, a closed loop, or an encoded loop, even when the motor is moving. There are 2 limit switch inputs for each motor, and a further input to accept a reference position marker. The motors can be controlled via a front panel keyboard with display, or by a host computer over an IEEE-488 interface. Both methods can be used together if required. The details for manual operation are in Chapter 4, and for remote computer control are in Chapter 5. The manual operation is controlled by the front panel keypad with interactive menu display. There is an emergency stop'' key on the front panel keypad to abort the motion of all motors without losing track of the motors' position.

  14. Optogenetic Control of Cells and Circuits

    PubMed Central

    Miesenböck, Gero

    2013-01-01

    The absorption of light by bound or diffusible chromophores causes conformational rearrangements in natural and artificial photoreceptor proteins. These rearrangements are coupled to the opening or closing of ion transport pathways, the association or dissociation of binding partners, the enhancement or suppression of catalytic activity, or the transcription or repression of genetic information. Illumination of cells, tissues, or organisms engineered genetically to express photoreceptor proteins can thus be used to perturb biochemical and electrical signaling with exquisite cellular and molecular specificity. First demonstrated in 2002, this principle of optogenetic control has had a profound impact on neuroscience, where it provides a direct and stringent means of probing the organization of neural circuits and of identifying the neural substrates of behavior. The impact of optogenetic control is also beginning to be felt in other areas of cell and organismal biology. PMID:21819234

  15. Attention modulates specific motor cortical circuits recruited by transcranial magnetic stimulation.

    PubMed

    Mirdamadi, J L; Suzuki, L Y; Meehan, S K

    2017-09-17

    Skilled performance and acquisition is dependent upon afferent input to motor cortex. The present study used short-latency afferent inhibition (SAI) to probe how manipulation of sensory afference by attention affects different circuits projecting to pyramidal tract neurons in motor cortex. SAI was assessed in the first dorsal interosseous muscle while participants performed a low or high attention-demanding visual detection task. SAI was evoked by preceding a suprathreshold transcranial magnetic stimulus with electrical stimulation of the median nerve at the wrist. To isolate different afferent intracortical circuits in motor cortex SAI was evoked using either posterior-anterior (PA) or anterior-posterior (PA) monophasic current. In an independent sample, somatosensory processing during the same attention-demanding visual detection tasks was assessed using somatosensory-evoked potentials (SEP) elicited by median nerve stimulation. SAI elicited by AP TMS was reduced under high compared to low visual attention demands. SAI elicited by PA TMS was not affected by visual attention demands. SEPs revealed that the high visual attention load reduced the fronto-central P20-N30 but not the contralateral parietal N20-P25 SEP component. P20-N30 reduction confirmed that the visual attention task altered sensory afference. The current results offer further support that PA and AP TMS recruit different neuronal circuits. AP circuits may be one substrate by which cognitive strategies shape sensorimotor processing during skilled movement by altering sensory processing in premotor areas. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Precision electronic speed controller for an alternating-current motor

    DOEpatents

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  17. Vagal afferent control of opioidergic effects in rat brainstem circuits

    PubMed Central

    Browning, Kirsteen N; Zheng, Zhongling; Gettys, Thomas W; Travagli, R Alberto

    2006-01-01

    We demonstrated recently that increasing the levels of cAMP allows opioids to modulate GABAergic synaptic transmission between the nucleus of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV). Using a combination of electrophysiological, immunohistochemical and biochemical approaches, we provide evidence that vagal afferent fibres dampen cAMP levels within the vagal brainstem circuits via tonic activation of group II metabotropic glutamate receptors (mGluRs). Whole-cell patch-clamp recordings were made from identified neurons of the rat DMV. Following chronic vagal deafferentation, the opioid agonist methionine-enkephalin (ME) inhibited the amplitude of evoked IPSC (eIPSC) in 32 of 33 neurons, without exogenous enhancement of cAMP levels. The ME-induced inhibition was prevented by the group II mGluR-selective agonist APDC. Following perfusion with the group II mGluR-selective antagonist EGLU, ME inhibited eIPSC amplitude in brainstem slices of control rats. Immunohistochemical experiments revealed that, following vagal deafferentation, μ-opioid receptors were colocalized on GABAergic profiles apposing DMV neurons; the number of colocalized profiles was significantly decreased by pretreatment with APDC. Radioimmunoassay and Western blot analysis showed that cAMP and phosphorylated cyclic AMP response element binding protein (pCREB) levels in the dorsal vagal complex were increased following vagal deafferentation. Our data show that by tonically dampening the levels of cAMP within the GABAergic synaptic contacts, activated group II mGluRs prevent the modulation of this synapse by endogenous opioids. These data suggest that the plasticity, hence the response, of central circuits controlling the vagal motor outflow to visceral organs is modulated and finely tuned by vagal afferent fibres. PMID:16825311

  18. Motor power factor controller with a reduced voltage starter

    NASA Technical Reports Server (NTRS)

    Nola, Frank J. (Inventor)

    1983-01-01

    A power factor type motor controller in which the conventional power factor constant voltage command signal is replaced during a starting interval with a graduated control voltage. The present invention adds to the three-phase system of pending application Ser. No. 199,765, filed Oct. 23, 1980, means for modifying the operation of the system for a motor start-up interval of 5 to 30 seconds. The modification is that of providing via ramp generator 174 an initial ramp-like signal which replaces a constant power factor signal supplied by potentiometer 70. The ramp-like signal is applied to terminal 40 where it is summed with an operating power factor signal from phase detectors 32, 34, and 36 to thereby obtain a control signal for ultimately controlling SCR devices 12, 14, and 16 to effect a gradual turn-on of motor 10. The significant difference of the present invention over prior art is that the SCR devices are turned on at an advancing rate with time responsive to the combination signal described rather than simply a function of a ramp-like signal alone. The added signal, the operating power factor signal, enables the production of a control signal which effectively eliminates a prior problem with many motor starting circuits, which is that of accompanying motor instabilities.

  19. Controller for computer control of brushless dc motors. [automobile engines

    NASA Technical Reports Server (NTRS)

    Hieda, L. S. (Inventor)

    1981-01-01

    A motor speed and torque controller for brushless d.c. motors provides an unusually smooth torque control arrangement. The controller provides a means for controlling a current waveform in each winding of a brushless dc motor by synchronization of an excitation pulse train from a programmable oscillator. Sensing of torque for synchronization is provided by a light beam chopper mounted on the motor rotor shaft. Speed and duty cycle are independently controlled by controlling the frequency and pulse width output of the programmable oscillator. A means is also provided so that current transitions from one motor winding to another is effected without abrupt changes in output torque.

  20. Motor Control Research Requires Nonlinear Dynamics

    ERIC Educational Resources Information Center

    Guastello, Stephen J.

    2006-01-01

    The author comments on the original article "The Cinderella of psychology: The neglect of motor control in the science of mental life and behavior," by D. A. Rosenbaum. Rosenbaum draws attention to the study of motor control and evaluates seven possible explanations for why the topic has been relatively neglected. The point of this comment is that…

  1. Advanced dc-Traction-Motor Control System

    NASA Technical Reports Server (NTRS)

    Vittone, O.

    1985-01-01

    Motor-control concept for battery-powered vehicles includes stateof-the-art power-transistor switching and separate excitation of motor windings in traction and regenerative braking. Switching transistors and other components of power-conditioning subsystem operate under control of computer that coordinates traction, braking, and protective functions.

  2. Motor Control Research Requires Nonlinear Dynamics

    ERIC Educational Resources Information Center

    Guastello, Stephen J.

    2006-01-01

    The author comments on the original article "The Cinderella of psychology: The neglect of motor control in the science of mental life and behavior," by D. A. Rosenbaum. Rosenbaum draws attention to the study of motor control and evaluates seven possible explanations for why the topic has been relatively neglected. The point of this comment is that…

  3. Advanced dc-Traction-Motor Control System

    NASA Technical Reports Server (NTRS)

    Vittone, O.

    1985-01-01

    Motor-control concept for battery-powered vehicles includes stateof-the-art power-transistor switching and separate excitation of motor windings in traction and regenerative braking. Switching transistors and other components of power-conditioning subsystem operate under control of computer that coordinates traction, braking, and protective functions.

  4. Cholinergic circuit control of postnatal neurogenesis

    PubMed Central

    Asrican, Brent; Paez-Gonzalez, Patricia; Erb, Joshua; Kuo, Chay T.

    2016-01-01

    abstract New neuron addition via continued neurogenesis in the postnatal/adult mammalian brain presents a distinct form of nervous system plasticity. During embryonic development, precise temporal and spatial patterns of neurogenesis are necessary to create the nervous system architecture. Similar between embryonic and postnatal stages, neurogenic proliferation is regulated by neural stem cell (NSC)-intrinsic mechanisms layered upon cues from their local microenvironmental niche. Following developmental assembly, it remains relatively unclear what may be the key driving forces that sustain continued production of neurons in the postnatal/adult brain. Recent experimental evidence suggests that patterned activity from specific neural circuits can also directly govern postnatal/adult neurogenesis. Here, we review experimental findings that revealed cholinergic modulation, and how patterns of neuronal activity and acetylcholine release may differentially or synergistically activate downstream signaling in NSCs. Higher-order excitatory and inhibitory inputs regulating cholinergic neuron firing, and their implications in neurogenesis control are also considered. PMID:27468423

  5. Motor control of Drosophila feeding behavior

    PubMed Central

    Schwarz, Olivia; Bohra, Ali Asgar; Liu, Xinyu; Reichert, Heinrich; VijayRaghavan, Krishnaswamy; Pielage, Jan

    2017-01-01

    The precise coordination of body parts is essential for survival and behavior of higher organisms. While progress has been made towards the identification of central mechanisms coordinating limb movement, only limited knowledge exists regarding the generation and execution of sequential motor action patterns at the level of individual motoneurons. Here we use Drosophila proboscis extension as a model system for a reaching-like behavior. We first provide a neuroanatomical description of the motoneurons and muscles contributing to proboscis motion. Using genetic targeting in combination with artificial activation and silencing assays we identify the individual motoneurons controlling the five major sequential steps of proboscis extension and retraction. Activity-manipulations during naturally evoked proboscis extension show that orchestration of serial motoneuron activation does not rely on feed-forward mechanisms. Our data support a model in which central command circuits recruit individual motoneurons to generate task-specific proboscis extension sequences. DOI: http://dx.doi.org/10.7554/eLife.19892.001 PMID:28211791

  6. Fuzzy control of small servo motors

    NASA Technical Reports Server (NTRS)

    Maor, Ron; Jani, Yashvant

    1993-01-01

    To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.

  7. Ultra-Compact Motor Controller

    NASA Technical Reports Server (NTRS)

    Townsend, William T.; Cromwell, Adam; Hauptman, Traveler; Pratt, Gill Andrews

    2012-01-01

    This invention is an electronically commutated brushless motor contro ller that incorporates Hall-array sensing in a small, 42-gram packag e that provides 4096 absolute counts per motor revolution position s ensing. The unit is the size of a miniature hockey puck, and is a 44 -pin male connector that provides many I/O channels, including CANbus , RS-232 communications, general-purpose analog and digital I/O (GPI O), analog and digital Hall inputs, DC power input (18-90 VDC, 0-l0 A), three-phase motor outputs, and a strain gauge amplifier.

  8. Motor control, habits, complex motor stereotypies, and Tourette syndrome.

    PubMed

    Singer, Harvey S

    2013-11-01

    Tourette syndrome (TS) and primary complex motor stereotypies (CMS) are two relatively common, distinctly different movement disorders of childhood. Despite their frequency, the precise underlying pathophysiological mechanism(s) for tics and stereotypies remains unknown. Both are likely to involve cortical-striatal-thalamo-cortical (CSTC) pathways or their interconnecting brain regions. In recent studies, distinct, separate cortical-striatal pathways have been identified for goal-directed and habitual behavioral activity with important influences from structures, such as the hippocampus, amygdala, dorsolateral prefrontal cortex, cerebellum, ventral tegmental area, and substantia nigra pars compacta. Determining the specific site of abnormality within these circuits remains an active area of research. At the synaptic level, numerous neurotransmitters are involved in the transmission of messages through CSTC pathways, and many have been proposed as potential pathophysiological mechanisms. Which, if any, transmitter is the primary pathological factor in TS and primary CMS remains to be definitively determined. © 2013 New York Academy of Sciences.

  9. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-5 Heater circuits. (a) If an enclosure for a... machinery is remote from the motor and controller disconnect device, a sign must be fixed to the enclosure... location of the heater circuit disconnect device. (c) Electric heaters installed within motor controllers...

  10. Multilevel modulation of a sensory motor circuit during C. elegans sleep and arousal

    PubMed Central

    Cho, Julie Y.; Sternberg, Paul W.

    2014-01-01

    Sleep is characterized by behavioral quiescence, homeostasis, increased arousal threshold, and rapid reversibility. Understanding how these properties are encoded by a neuronal circuit has been difficult, and no single molecular or neuronal pathway has been shown to be responsible for the regulation of sleep. Taking advantage of the well-mapped neuronal connections of Caenorhabditis elegans and the sleep-like states in this animal, we demonstrate the changed properties of both sensory neurons and downstream interneurons that mediate sleep and arousal. The ASH sensory neuron displays reduced sensitivity to stimuli in the sleep-like state, and the activity of the corresponding interneurons in ASH’s motor circuit becomes asynchronous. Restoration of interneuron synchrony is sufficient for arousal. The multilevel circuit depression revealed provides an elegant strategy to promote a robust decrease in arousal while allowing for rapid reversibility of the sleep state. PMID:24439380

  11. Engaging cognitive circuits to promote motor recovery in degenerative disorders. exercise as a learning modality.

    PubMed

    Jakowec, Michael W; Wang, Zhou; Holschneider, Daniel; Beeler, Jeff; Petzinger, Giselle M

    2016-09-01

    Exercise and physical activity are fundamental components of a lifestyle essential in maintaining a healthy brain. This is primarily due to the fact that the adult brain maintains a high degree of plasticity and activity is essential for homeostasis throughout life. Plasticity is not lost even in the context of a neurodegenerative disorder, but could be maladaptive thus promoting disease onset and progression. A major breakthrough in treating brain disorders such as Parkinson's disease is to drive neuroplasticity in a direction to improve motor and cognitive dysfunction. The purpose of this short review is to present the evidence from our laboratories that supports neuroplasticity as a potential therapeutic target in treating brain disorders. We consider that the enhancement of motor recovery in both animal models of dopamine depletion and in patients with Parkinson's disease is optimized when cognitive circuits are engaged; in other words, the brain is engaged in a learning modality. Therefore, we propose that to be effective in treating Parkinson's disease, physical therapy must employ both skill-based exercise (to drive specific circuits) and aerobic exercise (to drive the expression of molecules required to strengthen synaptic connections) components to select those neuronal circuits, such as the corticostriatal pathway, necessary to restore proper motor and cognitive behaviors. In the wide spectrum of different forms of exercise, learning as the fundamental modality likely links interventions used to treat patients with Parkinson's disease and may be necessary to drive beneficial neuroplasticity resulting in symptomatic improvement and possible disease modification.

  12. Brain tissue properties differentiate between motor and limbic basal ganglia circuits

    PubMed Central

    Accolla, Ettore A; Dukart, Juergen; Helms, Gunther; Weiskopf, Nikolaus; Kherif, Ferath; Lutti, Antoine; Chowdhury, Rumana; Hetzer, Stefan; Haynes, John-Dylan; Kühn, Andrea A; Draganski, Bogdan

    2014-01-01

    Despite advances in understanding basic organizational principles of the human basal ganglia, accurate in vivo assessment of their anatomical properties is essential to improve early diagnosis in disorders with corticosubcortical pathology and optimize target planning in deep brain stimulation. Main goal of this study was the detailed topological characterization of limbic, associative, and motor subdivisions of the subthalamic nucleus (STN) in relation to corresponding corticosubcortical circuits. To this aim, we used magnetic resonance imaging and investigated independently anatomical connectivity via white matter tracts next to brain tissue properties. On the basis of probabilistic diffusion tractography we identified STN subregions with predominantly motor, associative, and limbic connectivity. We then computed for each of the nonoverlapping STN subregions the covariance between local brain tissue properties and the rest of the brain using high-resolution maps of magnetization transfer (MT) saturation and longitudinal (R1) and transverse relaxation rate (R2*). The demonstrated spatial distribution pattern of covariance between brain tissue properties linked to myelin (R1 and MT) and iron (R2*) content clearly segregates between motor and limbic basal ganglia circuits. We interpret the demonstrated covariance pattern as evidence for shared tissue properties within a functional circuit, which is closely linked to its function. Our findings open new possibilities for investigation of changes in the established covariance pattern aiming at accurate diagnosis of basal ganglia disorders and prediction of treatment outcome. PMID:24777915

  13. Control of oscillations in a discharge circuit

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1972-01-01

    Development of electric discharge circuit damping element which increases in resistance with current and time is described. Damping element is resistor made of tungsten wire which has large resistance-temperature coefficient. Specifications of tungsten resistor and incorporation into circuit are explained.

  14. Multiple neuropeptides in cholinergic motor neurons of Aplysia: evidence for modulation intrinsic to the motor circuit

    SciTech Connect

    Cropper, E.C.; Lloyd, P.E.; Reed, W.; Tenenbaum, R.; Kupfermann, I.; Weiss, K.R.

    1987-05-01

    Changes in Aplysia biting responses during food arousal are partially mediated by the serotonergic metacerebral cells (MCCs). The MCCs potentiate contractions of a muscle utilized in biting, the accessory radula closer (ARCM), when contractions are elicited by stimulation of either of the two cholinergic motor neurons B15 or B16 that innervate the muscle. The authors have now shown that ARCM contractions may also be potentiated by peptide cotransmitters in the ARCM motor neurons. They found that motor neuron B15 contains small cardioactive peptides A and B (SCP/sub A/ and SCP/sub B/) i.e., whole B15 neurons were bioactive on the SCP-sensitive Helix heart, as were reverse-phase HPLC fractions of B15 neurons that eluted like synthetic SCP/sub A/ and SCP/sub B/. Furthermore, (/sup 35/S)methionine-labeled B15 peptides precisely coeluted with synthetic SCP/sub A/ and SCP/sub B/. SCP/sub B/-like immunoreactivity was associated with dense-core vesicles in the soma of B15 and in neuritic varicosities and terminals in the ARCM. B16 motor neurons did not contain SCP/sub A/ or SCP/sub B/ but contained an unidentified bioactive peptide. RP-HPLC of (/sup 35/S)methionine-labeled B16s resulted in one major peak of radioactivity that did not coelute with either SCP and which, when subject to Edman degradation, yielded (/sup 35/S)methionine in positions where there is no methionine in the SCPs. Exogenously applied B16 peptide potentiated ARCM contractions elicited by stimulation of B15 or B16 neurons. Thus, in this system there appear to be two types of modulation; one type arises from the MCCs and is extrinsic to the motor system, whereas the second type arises from the motor neurons themselves and hence is intrinsic.

  15. Computerized Torque Control for Large dc Motors

    NASA Technical Reports Server (NTRS)

    Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.

    1987-01-01

    Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.

  16. Motor Control: CRF Regulates Coordination and Gait.

    PubMed

    Manto, Mario

    2017-09-11

    The function of the olivo-cerebellar tract is not restricted to the supervision of plasticity in the cerebellar cortex. There is growing evidence that the climbing fibers also tune motor commands. A novel study unravels a role of corticotropin-releasing factor (CRF) in motor coordination and gait control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Oscillation control system for electric motor drive

    DOEpatents

    Slicker, James M.; Sereshteh, Ahmad

    1988-01-01

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

  18. Oscillation control system for electric motor drive

    DOEpatents

    Slicker, J.M.; Sereshteh, A.

    1988-08-30

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

  19. Computerized Torque Control for Large dc Motors

    NASA Technical Reports Server (NTRS)

    Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.

    1987-01-01

    Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.

  20. Controlling coherent state superpositions with superconducting circuits

    NASA Astrophysics Data System (ADS)

    Vlastakis, Brian Michael

    Quantum computation requires a large yet controllable Hilbert space. While many implementations use discrete quantum variables such as the energy states of a two-level system to encode quantum information, continuous variables could allow access to a larger computational space while minimizing the amount of re- quired hardware. With a toolset of conditional qubit-photon logic, we encode quantum information into the amplitude and phase of coherent state superpositions in a resonator, also known as Schrddinger cat states. We achieve this using a superconducting transmon qubit with a strong off-resonant coupling to a waveguide cavity. This dispersive interaction is much greater than decoherence rates and higher-order nonlinearites and therefore allows for simultaneous control of over one hundred photons. Furthermore, we combine this experiment with fast, high-fidelity qubit state readout to perform composite qubit-cavity state tomography and detect entanglement between a physical qubit and a cat-state encoded qubit. These results have promising applications for redundant encoding in a cavity state and ultimately quantum error correction with superconducting circuits.

  1. Computational motor control: feedback and accuracy.

    PubMed

    Guigon, Emmanuel; Baraduc, Pierre; Desmurget, Michel

    2008-02-01

    Speed/accuracy trade-off is a ubiquitous phenomenon in motor behaviour, which has been ascribed to the presence of signal-dependent noise (SDN) in motor commands. Although this explanation can provide a quantitative account of many aspects of motor variability, including Fitts' law, the fact that this law is frequently violated, e.g. during the acquisition of new motor skills, remains unexplained. Here, we describe a principled approach to the influence of noise on motor behaviour, in which motor variability results from the interplay between sensory and motor execution noises in an optimal feedback-controlled system. In this framework, we first show that Fitts' law arises due to signal-dependent motor noise (SDN(m)) when sensory (proprioceptive) noise is low, e.g. under visual feedback. Then we show that the terminal variability of non-visually guided movement can be explained by the presence of signal-dependent proprioceptive noise. Finally, we show that movement accuracy can be controlled by opposite changes in signal-dependent sensory (SDN(s)) and SDN(m), a phenomenon that could be ascribed to muscular co-contraction. As the model also explains kinematics, kinetics, muscular and neural characteristics of reaching movements, it provides a unified framework to address motor variability.

  2. A COMPUTATIONAL NEUROANATOMY FOR MOTOR CONTROL

    PubMed Central

    Shadmehr, Reza; Krakauer, John W.

    2008-01-01

    The study of patients to infer normal brain function has a long tradition in neurology and psychology. More recently, the motor system has been subject to quantitative and computational characterization. The purpose of this review is to argue that the lesion approach and theoretical motor control can mutually inform each other. Specifically, one may identify distinct motor control processes from computational models and map them onto specific deficits in patients. Here we review some of the impairments in motor control, motor learning and higher-order motor control in patients with lesions of the corticospinal tract, the cerebellum, parietal cortex, the basal ganglia, and the medial temporal lobe. We attempt to explain some of these impairments in terms of computational ideas such as state estimation, optimization, prediction, cost, and reward. We suggest that a function of the cerebellum is system identification: to built internal models that predict sensory outcome of motor commands and correct motor commands through internal feedback. A function of the parietal cortex is state estimation: to integrate the predicted proprioceptive and visual outcomes with sensory feedback to form a belief about how the commands affected the states of the body and the environment. A function of basal ganglia is related to optimal control: learning costs and rewards associated with sensory states and estimating the “cost-to-go” during execution of a motor task. Finally, functions of the primary and the premotor cortices are related to implementing the optimal control policy by transforming beliefs about proprioceptive and visual states, respectively, into motor commands. PMID:18251019

  3. Test and inspection for process control of monolithic circuits

    NASA Technical Reports Server (NTRS)

    Spangenberg, E.

    1967-01-01

    Report details the test and inspection procedures for the mass production of high reliability integrated circuits. It covers configuration control, basic fundamentals of quality control, control charts, wafer process evaluation, general process evaluation, evaluation score system, and diffusion evaluation.

  4. Selective Suppression of Local Circuits during Movement Preparation in the Mouse Motor Cortex.

    PubMed

    Hasegawa, Masashi; Majima, Kei; Itokazu, Takahide; Maki, Takakuni; Albrecht, Urban-Raphael; Castner, Nora; Izumo, Mariko; Sohya, Kazuhiro; Sato, Tatsuo K; Kamitani, Yukiyasu; Sato, Takashi R

    2017-03-14

    Prepared movements are more efficient than those that are not prepared for. Although changes in cortical activity have been observed prior to a forthcoming action, the circuits involved in motor preparation remain unclear. Here, we use in vivo two-photon calcium imaging to uncover changes in the motor cortex during variable waiting periods prior to a forepaw reaching task in mice. Consistent with previous reports, we observed a subset of neurons with increased activity during the waiting period; however, these neurons did not account for the degree of preparation as defined by reaction time (RT). Instead, the suppression of activity of distinct neurons in the same cortical area better accounts for RT. This suppression of neural activity resulted in a distinct and reproducible pattern when mice were well prepared. Thus, the selective suppression of network activity in the motor cortex may be a key feature of prepared movements.

  5. Efficient foot motor control by Neymar's brain.

    PubMed

    Naito, Eiichi; Hirose, Satoshi

    2014-01-01

    How very long-term (over many years) motor skill training shapes internal motor representation remains poorly understood. We provide valuable evidence that the football brain of Neymar da Silva Santos Júnior (the Brasilian footballer) recruits very limited neural resources in the motor-cortical foot regions during foot movements. We scanned his brain activity with a 3-tesla functional magnetic resonance imaging (fMRI) while he rotated his right ankle at 1 Hz. We also scanned brain activity when three other age-controlled professional footballers, two top-athlete swimmers and one amateur footballer performed the identical task. A comparison was made between Neymar's brain activity with that obtained from the others. We found activations in the left medial-wall foot motor regions during the foot movements consistently across all participants. However, the size and intensity of medial-wall activity was smaller in the four professional footballers than in the three other participants, despite no difference in amount of foot movement. Surprisingly, the reduced recruitment of medial-wall foot motor regions became apparent in Neymar. His medial-wall activity was smallest among all participants with absolutely no difference in amount of foot movement. Neymar may efficiently control given foot movements probably by largely conserving motor-cortical neural resources. We discuss this possibility in terms of over-years motor skill training effect, use-dependent plasticity, and efficient motor control.

  6. Cell-Type-Specific Control of Brainstem Locomotor Circuits by Basal Ganglia

    PubMed Central

    Roseberry, Thomas K.; Lee, A. Moses; Lalive, Arnaud L.; Wilbrecht, Linda; Bonci, Antonello; Kreitzer, Anatol C.

    2015-01-01

    Summary The basal ganglia (BG) are critical for adaptive motor control, but the circuit principles underlying their pathway-specific modulation of target regions are not well understood. Here, we dissect the mechanisms underlying BG direct- and indirect-pathway-mediated control of the mesencephalic locomotor region (MLR), a brainstem target of the BG that is critical for locomotion. We optogenetically dissect the locomotor function of the three neurochemically-distinct cell types within the MLR: glutamatergic, GABAergic, and cholinergic neurons. We find that the glutamatergic subpopulation encodes locomotor state and speed, is necessary and sufficient for locomotion, and is selectively innervated by BG. We further show activation and suppression, respectively, of MLR glutamatergic neurons by direct and indirect pathways, which is required for bidirectional control of locomotion by BG circuits. These findings provide a fundamental understanding of how the BG can initiate or suppress a motor program through cell-type-specific regulation of neurons linked to specific actions. PMID:26824660

  7. Peripheral sensory activation of cortical circuits in the leg motor cortex of man

    PubMed Central

    Roy, François D; Gorassini, Monica A

    2008-01-01

    Peripheral sensory afferents in the hand activate both excitatory and inhibitory intracortical circuits to potentially facilitate and prune descending motor commands. In this study, we characterized how afferent inputs modulate the excitability of cortical circuits in the leg area of the primary motor cortex by examining how stimulation of the tibial nerve (TN) at the ankle alters motor evoked potentials (MEPs) activated by transcranial magnetic stimulation (TMS). Resting MEPs in the tibialis anterior (TA) muscle were facilitated in response to heteronymous activation of the TN 45–50 ms earlier, whereas MEPs were inhibited at interstimulus intervals of 32.5–37.5 ms. Similar time-dependent modulation occurred in the soleus (SOL) muscle with stimulation of the homonymous posterior tibial nerve (PTN) at the knee. To determine the site of this afferent-evoked facilitation and inhibition (spinal or cortical), we compared the effects of afferent stimulation to responses evoked at subcortical sites. At interstimulus intervals where MEP facilitation was observed (near 50 ms), spinal H-reflexes and responses evoked from corticospinal tract stimulation at the brainstem were predominantly depressed by the sensory stimulus suggesting that the observed MEP facilitation was cortical in origin. At interstimulus intervals where MEP depression was observed (near 35 ms), brainstem evoked responses were depressed to a similar degree and, in contrast to the hand, this suggests that spinal rather than cortical circuits mediate short-latency afferent inhibition (SAI) of leg MEPs. When the MEP was facilitated by afferent inputs, short-interval intracortical inhibition (SICI) was reduced and intracortical facilitation (ICF) was increased, but long-interval intracortical inhibition (LICI) at a 100 ms interval was unchanged. In addition, sensory excitation increased the recruitment of early, middle and late descending corticospinal volleys as evidenced from increases in MEP facilitation

  8. Taking control of the flagellar motor

    NASA Astrophysics Data System (ADS)

    Gauthier, Mathieu; Truchon, Dany; Rainville, Simon

    2008-06-01

    Numerous types of bacteria swim in their environment by rotating long helical filaments. At the base of each filament is a tiny rotary motor called the bacterial flagellar motor. A lot is already known about the structure, assembly and function of this splendid molecular machine of nanoscopic dimensions. Nevertheless many fundamental questions remain open and the study of the flagellar motor is a very exciting area of current research. We are developing an in vitro assay to enable studies of the bacterial flagellar motor in precisely controlled conditions and to gain direct access to the inner components of the motor. We partly squeeze a filamentous E. coli bacterium inside a micropipette, leaving a working flagellar motor outside. We then punch a hole through the cell wall at the end of the bacterium located inside the micropipette using a brief train of ultrashort (~60 fs) laser pulses. This enables us to control the rotation of the motor with an external voltage (for at least 15 minutes). In parallel, new methods to monitor the speed of rotation of the motor in the low load (high speed) regime are being developed using various nanoparticules.

  9. Four quadrant control of induction motors

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1991-01-01

    Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.

  10. Four quadrant control of induction motors

    NASA Astrophysics Data System (ADS)

    Hansen, Irving G.

    1991-03-01

    Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.

  11. Computer-Controlled, Motorized Positioning System

    NASA Technical Reports Server (NTRS)

    Vargas-Aburto, Carlos; Liff, Dale R.

    1994-01-01

    Computer-controlled, motorized positioning system developed for use in robotic manipulation of samples in custom-built secondary-ion mass spectrometry (SIMS) system. Positions sample repeatably and accurately, even during analysis in three linear orthogonal coordinates and one angular coordinate under manual local control, or microprocessor-based local control or remote control by computer via general-purpose interface bus (GPIB).

  12. Computer-Controlled, Motorized Positioning System

    NASA Technical Reports Server (NTRS)

    Vargas-Aburto, Carlos; Liff, Dale R.

    1994-01-01

    Computer-controlled, motorized positioning system developed for use in robotic manipulation of samples in custom-built secondary-ion mass spectrometry (SIMS) system. Positions sample repeatably and accurately, even during analysis in three linear orthogonal coordinates and one angular coordinate under manual local control, or microprocessor-based local control or remote control by computer via general-purpose interface bus (GPIB).

  13. Fast recovery, high voltage silicon diodes for AC motor controllers

    NASA Technical Reports Server (NTRS)

    Balodis, V.; Berman, A. H.; Gaugh, C.

    1982-01-01

    The fabrication and characterization of a high voltage, high current, fast recovery silicon diode for use in AC motor controllers, originally developed for NASA for use in avionics power supplies, is presented. The diode utilizes a positive bevel PIN mesa structure with glass passivation and has the following characteristics: peak inverse voltage - 1200 volts, forward voltage at 50 amperes - 1.5 volts, reverse recovery time of 200 nanoseconds. Characterization data for the diode, included in a table, show agreement with design concepts developed for power diodes. Circuit diagrams of the diode are also given.

  14. Electronic circuit provides automatic level control for liquid nitrogen traps

    NASA Technical Reports Server (NTRS)

    Turvy, R. R.

    1968-01-01

    Electronic circuit, based on the principle of increased thermistor resistance corresponding to decreases in temperature provides an automatic level control for liquid nitrogen cold traps. The electronically controlled apparatus is practically service-free, requiring only occasional reliability checks.

  15. Control circuit maintains unity power factor of reactive load

    NASA Technical Reports Server (NTRS)

    Kramer, M.; Martinage, L. H.

    1966-01-01

    Circuit including feedback control elements automatically corrects the power factor of a reactive load. It maintains power supply efficiency where negative load reactance changes and varies by providing corrective error signals to the control windings of a power supply transformer.

  16. Opposing regulation of dopaminergic activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits.

    PubMed

    Patel, Jyoti C; Rossignol, Elsa; Rice, Margaret E; Machold, Robert P

    2012-01-01

    Dopamine transmission is critical for exploratory motor behaviour. A key regulator is acetylcholine; forebrain acetylcholine regulates striatal dopamine release, whereas brainstem cholinergic inputs regulate the transition of dopamine neurons from tonic to burst firing modes. How these sources of cholinergic activity combine to control dopamine efflux and exploratory motor behaviour is unclear. Here we show that mice lacking total forebrain acetylcholine exhibit enhanced frequency-dependent striatal dopamine release and are hyperactive in a novel environment, whereas mice lacking rostral brainstem acetylcholine are hypoactive. Exploratory motor behaviour is normalized by the removal of both cholinergic sources. Involvement of dopamine in the exploratory motor phenotypes observed in these mutants is indicated by their altered sensitivity to the dopamine D2 receptor antagonist raclopride. These results support a model in which forebrain and brainstem cholinergic systems act in tandem to regulate striatal dopamine signalling for proper control of motor activity.

  17. Two Archetypes of Motor Control Research.

    PubMed

    Latash, Mark L

    2010-07-01

    This reply to the Commentaries is focused on two archetypes of motor control research, one based on physics and physiology and the other based on control theory and ideas of neural computations. The former approach, represented by the equilibrium-point hypothesis, strives to discover the physical laws and salient physiological variables that make purposeful coordinated movements possible. The latter approach, represented by the ideas of internal models and optimal control, tries to apply methods of control developed for man-made inanimate systems to the human body. Specific issues related to control with subthreshold membrane depolarization, motor redundancy, and the idea of synergies are briefly discussed.

  18. Control of centrifugal blood pump based on the motor current.

    PubMed

    Iijima, T; Inamoto, T; Nogawa, M; Takatani, S

    1997-07-01

    In this study, centrifugal pump performance was examined in a mock circulatory loop to derive an automatic pump rotational speed (rpm) control method. The pivot bearing supported sealless centrifugal pump was placed in the left ventricular apex to aorta bypass mode. The pneumatic pulsatile ventricle was used to simulate the natural ventricle. To simulate the suction effect in the ventricle, a collapsible rubber tube was placed in the inflow port of the centrifugal pump in series with the apex of the simulated ventricle. Experimentally, the centrifugal pump speed (rpm) was gradually increased to simulate the suction effect. The pump flow through the centrifugal pump measured by an electromagnetic flowmeter, the aortic pressure, and the motor current were continuously digitized at 100 Hz and stored in a personal computer. The analysis of the cross-spectral density between the pump flow and motor current waveforms revealed that 2 waveforms were highly correlated at the frequency range between 0 and 4 Hz, with the coherence and phase angles being close to 1.0 and 0 degree, respectively. The fast Fourier transform analysis of the motor current indicated that the second harmonic component of the motor current power density increased with the occurrence of the suction effect in the circuit. The ratio of the fundamental to the second harmonic component decreased less than 1.3 as the suction effect developed in the circuit. It is possible to detect and prevent the suction effect of the centrifugal blood pump in the natural ventricle through analysis of the motor current waveform.

  19. Intracortical circuits, sensorimotor integration and plasticity in human motor cortical projections to muscles of the lower face

    PubMed Central

    Pilurzi, G; Hasan, A; Saifee, T A; Tolu, E; Rothwell, J C; Deriu, F

    2013-01-01

    Previous studies of the cortical control of human facial muscles documented the distribution of corticobulbar projections and the presence of intracortical inhibitory and facilitatory mechanisms. Yet surprisingly, given the importance and precision in control of facial expression, there have been no studies of the afferent modulation of corticobulbar excitability or of the plasticity of synaptic connections in the facial primary motor cortex (face M1). In 25 healthy volunteers, we used standard single- and paired-pulse transcranial magnetic stimulation (TMS) methods to probe motor-evoked potentials (MEPs), short-intracortical inhibition, intracortical facilitation, short-afferent and long-afferent inhibition and paired associative stimulation in relaxed and active depressor anguli oris muscles. Single-pulse TMS evoked bilateral MEPs at rest and during activity that were larger in contralateral muscles, confirming that corticobulbar projection to lower facial muscles is bilateral and asymmetric, with contralateral predominance. Both short-intracortical inhibition and intracortical facilitation were present bilaterally in resting and active conditions. Electrical stimulation of the facial nerve paired with a TMS pulse 5–200 ms later showed no short-afferent inhibition, but long-afferent inhibition was present. Paired associative stimulation tested with an electrical stimulation–TMS interval of 20 ms significantly facilitated MEPs for up to 30 min. The long-term potentiation, evoked for the first time in face M1, demonstrates that excitability of the facial motor cortex is prone to plastic changes after paired associative stimulation. Evaluation of intracortical circuits in both relaxed and active lower facial muscles as well as of plasticity in the facial motor cortex may provide further physiological insight into pathologies affecting the facial motor system. PMID:23297305

  20. Sampling and Control Circuit Board for an Inertial Measurement Unit

    NASA Technical Reports Server (NTRS)

    Chelmins, David T (Inventor); Powis, Richard T., Jr. (Inventor); Sands, Obed (Inventor)

    2016-01-01

    A circuit board that serves as a control and sampling interface to an inertial measurement unit ("IMU") is provided. The circuit board is also configured to interface with a local oscillator and an external trigger pulse. The circuit board is further configured to receive the external trigger pulse from an external source that time aligns the local oscillator and initiates sampling of the inertial measurement device for data at precise time intervals based on pulses from the local oscillator. The sampled data may be synchronized by the circuit board with other sensors of a navigation system via the trigger pulse.

  1. Study on self-tuning pole assignment speed control of an ultrasonic motor.

    PubMed

    Shi, Jingzhuo; Bo, Liu; Yu, Zhang

    2011-10-01

    Ultrasonic motors have a heavy nonlinearity, which varies with driving conditions. The nonlinearity is a problem as an accurate motion actuator for industrial applications and it is important to eliminate the nonlinearity in order to improve the control performance. In general, complicated control strategies are used to deal with the nonlinearity of ultrasonic motors. This paper proposes a new speed control scheme for ultrasonic motors to overcome the nonlinearity employing a simplified self-tuning control. The speed control model which can reflect the main nonlinear characteristics is obtained using a system identification method based on the step response. Then, a pole assignment speed controller is designed. To avoid the influence of the motor's nonlinearity on the speed control performance, a control parameters' on-line self-tuning strategy utilizing the gain of the model is designed. The proposed control strategy is realized using a DSP circuit, and experiments prove the validity of the proposed speed control scheme.

  2. Neuronal connectome of a sensory-motor circuit for visual navigation

    PubMed Central

    Randel, Nadine; Asadulina, Albina; Bezares-Calderón, Luis A; Verasztó, Csaba; Williams, Elizabeth A; Conzelmann, Markus; Shahidi, Réza; Jékely, Gáspár

    2014-01-01

    Animals use spatial differences in environmental light levels for visual navigation; however, how light inputs are translated into coordinated motor outputs remains poorly understood. Here we reconstruct the neuronal connectome of a four-eye visual circuit in the larva of the annelid Platynereis using serial-section transmission electron microscopy. In this 71-neuron circuit, photoreceptors connect via three layers of interneurons to motorneurons, which innervate trunk muscles. By combining eye ablations with behavioral experiments, we show that the circuit compares light on either side of the body and stimulates body bending upon left-right light imbalance during visual phototaxis. We also identified an interneuron motif that enhances sensitivity to different light intensity contrasts. The Platynereis eye circuit has the hallmarks of a visual system, including spatial light detection and contrast modulation, illustrating how image-forming eyes may have evolved via intermediate stages contrasting only a light and a dark field during a simple visual task. DOI: http://dx.doi.org/10.7554/eLife.02730.001 PMID:24867217

  3. The NCA sodium leak channel is required for persistent motor circuit activity that sustains locomotion.

    PubMed

    Gao, Shangbang; Xie, Lin; Kawano, Taizo; Po, Michelle D; Guan, Sihui; Zhen, Mei; Pirri, Jennifer K; Alkema, Mark J

    2015-02-26

    Persistent neural activity, a sustained circuit output that outlasts the stimuli, underlies short-term or working memory, as well as various mental representations. Molecular mechanisms that underlie persistent activity are not well understood. Combining in situ whole-cell patch clamping and quantitative locomotion analyses, we show here that the Caenorhabditis elegans neuromuscular system exhibits persistent rhythmic activity, and such an activity contributes to the sustainability of basal locomotion, and the maintenance of acceleration after stimulation. The NALCN family sodium leak channel regulates the resting membrane potential and excitability of invertebrate and vertebrate neurons. Our molecular genetics and electrophysiology analyses show that the C. elegans NALCN, NCA, activates a premotor interneuron network to potentiate persistent motor circuit activity and to sustain C. elegans locomotion. Collectively, these results reveal a mechanism for, and physiological function of, persistent neural activity using a simple animal model, providing potential mechanistic clues for working memory in other systems.

  4. Stepper motor control that adjusts to motor loading

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Nola, Frank J. (Inventor)

    2000-01-01

    A system and method are provided for controlling a stepper motor having a rotor and a multi-phase stator. Sinusoidal command signals define a commanded position of the motor's rotor. An actual position of the rotor is sensed as a function of an electrical angle between the actual position and the commanded position. The actual position is defined by sinusoidal position signals. An adjustment signal is generated using the sinusoidal command signals and sinusoidal position signals. The adjustment signal is defined as a function of the cosine of the electrical angle. The adjustment signal is multiplied by each sinusoidal command signal to generate a corresponding set of excitation signals, each of which is applied to a corresponding phase of the multi-phase stator.

  5. Engaging cognitive circuits to promote motor recovery in degenerative disorders. exercise as a learning modality

    PubMed Central

    Wang, Zhou; Holschneider, Daniel; Beeler, Jeff; Petzinger, Giselle M.

    2016-01-01

    Abstract Exercise and physical activity are fundamental components of a lifestyle essential in maintaining a healthy brain. This is primarily due to the fact that the adult brain maintains a high degree of plasticity and activity is essential for homeostasis throughout life. Plasticity is not lost even in the context of a neurodegenerative disorder, but could be maladaptive thus promoting disease onset and progression. A major breakthrough in treating brain disorders such as Parkinson’s disease is to drive neuroplasticity in a direction to improve motor and cognitive dysfunction. The purpose of this short review is to present the evidence from our laboratories that supports neuroplasticity as a potential therapeutic target in treating brain disorders. We consider that the enhancement of motor recovery in both animal models of dopamine depletion and in patients with Parkinson’s disease is optimized when cognitive circuits are engaged; in other words, the brain is engaged in a learning modality. Therefore, we propose that to be effective in treating Parkinson’s disease, physical therapy must employ both skill-based exercise (to drive specific circuits) and aerobic exercise (to drive the expression of molecules required to strengthen synaptic connections) components to select those neuronal circuits, such as the corticostriatal pathway, necessary to restore proper motor and cognitive behaviors. In the wide spectrum of different forms of exercise, learning as the fundamental modality likely links interventions used to treat patients with Parkinson’s disease and may be necessary to drive beneficial neuroplasticity resulting in symptomatic improvement and possible disease modification. PMID:28149392

  6. High accuracy motor controller for positioning optical filters in the CLAES Spectrometer

    NASA Technical Reports Server (NTRS)

    Thatcher, John B.

    1989-01-01

    The Etalon Drive Motor (EDM), a precision etalon control system designed for accurate positioning of etalon filters in the IR spectrometer of the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment is described. The EDM includes a brushless dc torque motor, which has an infinite resolution for setting an etalon filter to any desired angle, a four-filter etalon wheel, and an electromechanical resolver for angle information. An 18-bit control loop provides high accuracy, resolution, and stability. Dynamic computer interaction allows the user to optimize the step response. A block diagram of the motor controller is presented along with a schematic of the digital/analog converter circuit.

  7. Method and apparatus for large motor control

    DOEpatents

    Rose, Chris R.; Nelson, Ronald O.

    2003-08-12

    Apparatus and method for providing digital signal processing method for controlling the speed and phase of a motor involves inputting a reference signal having a frequency and relative phase indicative of a time based signal; modifying the reference signal to introduce a slew-rate limited portion of each cycle of the reference signal; inputting a feedback signal having a frequency and relative phase indicative of the operation of said motor; modifying the feedback signal to introduce a slew-rate limited portion of each cycle of the feedback signal; analyzing the modified reference signal and the modified feedback signal to determine the frequency of the modified reference signal and of the modified feedback signal and said relative phase between said modified reference signal and said modified feedback signal; and outputting control signals to the motor for adjusting said speed and phase of the motor based on the frequency determination and determination of the relative phase.

  8. FUZZY LOGIC CONTROL OF ELECTRIC MOTORS AND MOTOR DRIVES: FEASIBILITY STUDY

    EPA Science Inventory

    The report gives results of a study (part 1) of fuzzy logic motor control (FLMC). The study included: 1) reviews of existing applications of fuzzy logic, of motor operation, and of motor control; 2) a description of motor control schemes that can utilize FLMC; 3) selection of a m...

  9. FUZZY LOGIC CONTROL OF ELECTRIC MOTORS AND MOTOR DRIVES: FEASIBILITY STUDY

    EPA Science Inventory

    The report gives results of a study (part 1) of fuzzy logic motor control (FLMC). The study included: 1) reviews of existing applications of fuzzy logic, of motor operation, and of motor control; 2) a description of motor control schemes that can utilize FLMC; 3) selection of a m...

  10. Dynamic neural controllers for induction motor.

    PubMed

    Brdyś, M A; Kulawski, G J

    1999-01-01

    The paper reports application of recently developed adaptive control techniques based on neural networks to the induction motor control. This case study represents one of the more difficult control problems due to the complex, nonlinear, and time-varying dynamics of the motor and unavailability of full-state measurements. A partial solution is first presented based on a single input-single output (SISO) algorithm employing static multilayer perceptron (MLP) networks. A novel technique is subsequently described which is based on a recurrent neural network employed as a dynamical model of the plant. Recent stability results for this algorithm are reported. The technique is applied to multiinput-multioutput (MIMO) control of the motor. A simulation study of both methods is presented. It is argued that appropriately structured recurrent neural networks can provide conveniently parameterized dynamic models for many nonlinear systems for use in adaptive control.

  11. Finite element analysis of induction motors based on computing detailed equivalent circuit parameters

    SciTech Connect

    Zhou, P.; Gilmore, J.; Badics, Z.; Cendes, Z.J.

    1998-09-01

    A method for accurately predicting the steady-state performance of squirrel cage induction motors is presented. The approach is based on the use of complex two-dimensional finite element solutions to deduce per-phase equivalent circuit parameters for any operating condition. Core saturation and skin effect are directly considered in the field calculation. Corrections can be introduced to include three-dimensional effects such as end-winding and rotor skew. An application example is provided to demonstrate the effectiveness of the proposed approach.

  12. The neural optimal control hierarchy for motor control

    NASA Astrophysics Data System (ADS)

    DeWolf, T.; Eliasmith, C.

    2011-10-01

    Our empirical, neuroscientific understanding of biological motor systems has been rapidly growing in recent years. However, this understanding has not been systematically mapped to a quantitative characterization of motor control based in control theory. Here, we attempt to bridge this gap by describing the neural optimal control hierarchy (NOCH), which can serve as a foundation for biologically plausible models of neural motor control. The NOCH has been constructed by taking recent control theoretic models of motor control, analyzing the required processes, generating neurally plausible equivalent calculations and mapping them on to the neural structures that have been empirically identified to form the anatomical basis of motor control. We demonstrate the utility of the NOCH by constructing a simple model based on the identified principles and testing it in two ways. First, we perturb specific anatomical elements of the model and compare the resulting motor behavior with clinical data in which the corresponding area of the brain has been damaged. We show that damaging the assigned functions of the basal ganglia and cerebellum can cause the movement deficiencies seen in patients with Huntington's disease and cerebellar lesions. Second, we demonstrate that single spiking neuron data from our model's motor cortical areas explain major features of single-cell responses recorded from the same primate areas. We suggest that together these results show how NOCH-based models can be used to unify a broad range of data relevant to biological motor control in a quantitative, control theoretic framework.

  13. Secondary Side CMOS Feedback Control Integrated Circuit

    DTIC Science & Technology

    1990-06-01

    Temperature ( Celc ~us) Figure 5.1: Experimental Temperature Dependence cf Untrimmed Bandgap Circuit 104 1. I I ’ - ’ 0 0.9 . -0-0 Ouput Voit -ge ---.o M...Schlecht and L.F. Casey, "Comparison of the Square-Wave and Quasi- Resonant Topologies," IEEE PESC Record, 1987, pp. 124-134. 132

  14. Hemispheric differences in motor control.

    PubMed

    Goodale, M A

    1988-09-15

    Two lines of evidence are presented to suggest that the left hemisphere in human beings plays a special role in the organization of complex motor behaviour, an idea first put forward by Liepmann and extended more recently by Kimura. The results of one line of research suggest that the right-sided asymmetries observed in movements of the mouth during verbal and non-verbal tasks reflect the fact that mechanisms within the left hemisphere are particularly involved in selecting individual movements and facilitating the transition from one movement to another. The results of the second line of research extend this idea and suggest that the organization of eye and limb movements during visually guided reaching is also dependent on these left-hemisphere mechanisms. These findings, together with the work of a number of other workers, all point to the same conclusion: that speech is but one example of a great number of different motor patterns mediated in part by neural systems within the so-called 'dominant' hemisphere.

  15. OPERATIONAL AMPLIFIER CIRCUITS FOR CONTROLLED POTENTIAL CYCLIC VOLTAMMETRY, II,

    DTIC Science & Technology

    are described, a mechanical or motor driven unit, and an OA integrator network which is more versatile. Cyclic voltammetry appears to have great...Several practical, inexpensive, operational amplifier (OA) circuits are described which are particularly useful in single sweep and cyclic ... voltammetry at stationary electrodes. Specific adaptations of OA’s to electroanalytical instrumentation were made some time ago by Booman and coworkers and

  16. Control of exciton fluxes in an excitonic integrated circuit.

    PubMed

    High, Alex A; Novitskaya, Ekaterina E; Butov, Leonid V; Hanson, Micah; Gossard, Arthur C

    2008-07-11

    Efficient signal communication uses photons. Signal processing, however, uses an optically inactive medium, electrons. Therefore, an interconnection between electronic signal processing and optical communication is required at the integrated circuit level. We demonstrated control of exciton fluxes in an excitonic integrated circuit. The circuit consists of three exciton optoelectronic transistors and performs operations with exciton fluxes, such as directional switching and merging. Photons transform into excitons at the circuit input, and the excitons transform into photons at the circuit output. The exciton flux from the input to the output is controlled by a pattern of the electrode voltages. The direct coupling of photons, used in communication, to excitons, used as the device-operation medium, may lead to the development of efficient exciton-based optoelectronic devices.

  17. 49 CFR 236.303 - Control circuits for signals, selection through circuit controller operated by switch points or...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-point frogs and derails shall be selected through circuit controller operated directly by switch points... switch, movable-point frog, and derail in the routes governed by such signal. Circuits shall be arranged... when each switch, movable-point frog, and derail in the route is in proper position. ...

  18. 49 CFR 236.303 - Control circuits for signals, selection through circuit controller operated by switch points or...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-point frogs and derails shall be selected through circuit controller operated directly by switch points... switch, movable-point frog, and derail in the routes governed by such signal. Circuits shall be arranged... when each switch, movable-point frog, and derail in the route is in proper position. ...

  19. 49 CFR 236.303 - Control circuits for signals, selection through circuit controller operated by switch points or...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-point frogs and derails shall be selected through circuit controller operated directly by switch points... switch, movable-point frog, and derail in the routes governed by such signal. Circuits shall be arranged... when each switch, movable-point frog, and derail in the route is in proper position. ...

  20. 49 CFR 236.303 - Control circuits for signals, selection through circuit controller operated by switch points or...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-point frogs and derails shall be selected through circuit controller operated directly by switch points... switch, movable-point frog, and derail in the routes governed by such signal. Circuits shall be arranged... when each switch, movable-point frog, and derail in the route is in proper position. ...

  1. 49 CFR 236.303 - Control circuits for signals, selection through circuit controller operated by switch points or...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-point frogs and derails shall be selected through circuit controller operated directly by switch points... switch, movable-point frog, and derail in the routes governed by such signal. Circuits shall be arranged... when each switch, movable-point frog, and derail in the route is in proper position. ...

  2. Neural Control Adaptation to Motor Noise Manipulation

    PubMed Central

    Hasson, Christopher J.; Gelina, Olga; Woo, Garrett

    2016-01-01

    Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g., delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability. PMID:26973487

  3. Spinal metaplasticity in respiratory motor control

    PubMed Central

    Fields, Daryl P.; Mitchell, Gordon S.

    2015-01-01

    A hallmark feature of the neural system controlling breathing is its ability to exhibit plasticity. Less appreciated is the ability to exhibit metaplasticity, a change in the capacity to express plasticity (i.e., “plastic plasticity”). Recent advances in our understanding of cellular mechanisms giving rise to respiratory motor plasticity lay the groundwork for (ongoing) investigations of metaplasticity. This detailed understanding of respiratory metaplasticity will be essential as we harness metaplasticity to restore breathing capacity in clinical disorders that compromise breathing, such as cervical spinal injury, motor neuron disease and other neuromuscular diseases. In this brief review, we discuss key examples of metaplasticity in respiratory motor control, and our current understanding of mechanisms giving rise to spinal plasticity and metaplasticity in phrenic motor output; particularly after pre-conditioning with intermittent hypoxia. Progress in this area has led to the realization that similar mechanisms are operative in other spinal motor networks, including those governing limb movement. Further, these mechanisms can be harnessed to restore respiratory and non-respiratory motor function after spinal injury. PMID:25717292

  4. Computational motor control in humans and robots.

    PubMed

    Schaal, Stefan; Schweighofer, Nicolas

    2005-12-01

    Computational models can provide useful guidance in the design of behavioral and neurophysiological experiments and in the interpretation of complex, high dimensional biological data. Because many problems faced by the primate brain in the control of movement have parallels in robotic motor control, models and algorithms from robotics research provide useful inspiration, baseline performance, and sometimes direct analogs for neuroscience.

  5. Integrating Neural Circuits Controlling Female Sexual Behavior.

    PubMed

    Micevych, Paul E; Meisel, Robert L

    2017-01-01

    The hypothalamus is most often associated with innate behaviors such as is hunger, thirst and sex. While the expression of these behaviors important for survival of the individual or the species is nested within the hypothalamus, the desire (i.e., motivation) for them is centered within the mesolimbic reward circuitry. In this review, we will use female sexual behavior as a model to examine the interaction of these circuits. We will examine the evidence for a hypothalamic circuit that regulates consummatory aspects of reproductive behavior, i.e., lordosis behavior, a measure of sexual receptivity that involves estradiol membrane-initiated signaling in the arcuate nucleus (ARH), activating β-endorphin projections to the medial preoptic nucleus (MPN), which in turn modulate ventromedial hypothalamic nucleus (VMH) activity-the common output from the hypothalamus. Estradiol modulates not only a series of neuropeptides, transmitters and receptors but induces dendritic spines that are for estrogenic induction of lordosis behavior. Simultaneously, in the nucleus accumbens of the mesolimbic system, the mating experience produces long term changes in dopamine signaling and structure. Sexual experience sensitizes the response of nucleus accumbens neurons to dopamine signaling through the induction of a long lasting early immediate gene. While estrogen alone increases spines in the ARH, sexual experience increases dendritic spine density in the nucleus accumbens. These two circuits appear to converge onto the medial preoptic area where there is a reciprocal influence of motivational circuits on consummatory behavior and vice versa. While it has not been formally demonstrated in the human, such circuitry is generally highly conserved and thus, understanding the anatomy, neurochemistry and physiology can provide useful insight into the motivation for sexual behavior and other innate behaviors in humans.

  6. Integrating Neural Circuits Controlling Female Sexual Behavior

    PubMed Central

    Micevych, Paul E.; Meisel, Robert L.

    2017-01-01

    The hypothalamus is most often associated with innate behaviors such as is hunger, thirst and sex. While the expression of these behaviors important for survival of the individual or the species is nested within the hypothalamus, the desire (i.e., motivation) for them is centered within the mesolimbic reward circuitry. In this review, we will use female sexual behavior as a model to examine the interaction of these circuits. We will examine the evidence for a hypothalamic circuit that regulates consummatory aspects of reproductive behavior, i.e., lordosis behavior, a measure of sexual receptivity that involves estradiol membrane-initiated signaling in the arcuate nucleus (ARH), activating β-endorphin projections to the medial preoptic nucleus (MPN), which in turn modulate ventromedial hypothalamic nucleus (VMH) activity—the common output from the hypothalamus. Estradiol modulates not only a series of neuropeptides, transmitters and receptors but induces dendritic spines that are for estrogenic induction of lordosis behavior. Simultaneously, in the nucleus accumbens of the mesolimbic system, the mating experience produces long term changes in dopamine signaling and structure. Sexual experience sensitizes the response of nucleus accumbens neurons to dopamine signaling through the induction of a long lasting early immediate gene. While estrogen alone increases spines in the ARH, sexual experience increases dendritic spine density in the nucleus accumbens. These two circuits appear to converge onto the medial preoptic area where there is a reciprocal influence of motivational circuits on consummatory behavior and vice versa. While it has not been formally demonstrated in the human, such circuitry is generally highly conserved and thus, understanding the anatomy, neurochemistry and physiology can provide useful insight into the motivation for sexual behavior and other innate behaviors in humans. PMID:28642689

  7. Close up view of circuit breaker control switches on panel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of circuit breaker control switches on panel 4 of main supervisory board - Thirtieth Street Station, Power Director Center, Thirtieth & Market Streets in Amtrak Railroad Station, Philadelphia, Philadelphia County, PA

  8. Detail of motor control cabinet and field breakers. Control cabinet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of motor control cabinet and field breakers. Control cabinet and breaker panel built by Cutler-Hammer - Wellton-Mohawk Irrigation System, Pumping Plant No. 3, South of Interstate 8, Wellton, Yuma County, AZ

  9. Deep networks for motor control functions

    PubMed Central

    Berniker, Max; Kording, Konrad P.

    2015-01-01

    The motor system generates time-varying commands to move our limbs and body. Conventional descriptions of motor control and learning rely on dynamical representations of our body's state (forward and inverse models), and control policies that must be integrated forward to generate feedforward time-varying commands; thus these are representations across space, but not time. Here we examine a new approach that directly represents both time-varying commands and the resulting state trajectories with a function; a representation across space and time. Since the output of this function includes time, it necessarily requires more parameters than a typical dynamical model. To avoid the problems of local minima these extra parameters introduce, we exploit recent advances in machine learning to build our function using a stacked autoencoder, or deep network. With initial and target states as inputs, this deep network can be trained to output an accurate temporal profile of the optimal command and state trajectory for a point-to-point reach of a non-linear limb model, even when influenced by varying force fields. In a manner that mirrors motor babble, the network can also teach itself to learn through trial and error. Lastly, we demonstrate how this network can learn to optimize a cost objective. This functional approach to motor control is a sharp departure from the standard dynamical approach, and may offer new insights into the neural implementation of motor control. PMID:25852530

  10. Promoting Motor Cortical Plasticity with Acute Aerobic Exercise: A Role for Cerebellar Circuits.

    PubMed

    Mang, Cameron S; Brown, Katlyn E; Neva, Jason L; Snow, Nicholas J; Campbell, Kristin L; Boyd, Lara A

    2016-01-01

    Acute aerobic exercise facilitated long-term potentiation-like plasticity in the human primary motor cortex (M1). Here, we investigated the effect of acute aerobic exercise on cerebellar circuits, and their potential contribution to altered M1 plasticity in healthy individuals (age: 24.8 ± 4.1 years). In Experiment   1, acute aerobic exercise reduced cerebellar inhibition (CBI) (n = 10, p = 0.01), elicited by dual-coil paired-pulse transcranial magnetic stimulation. In Experiment   2, we evaluated the facilitatory effects of aerobic exercise on responses to paired associative stimulation, delivered with a 25 ms (PAS25) or 21 ms (PAS21) interstimulus interval (n = 16 per group). Increased M1 excitability evoked by PAS25, but not PAS21, relies on trans-cerebellar sensory pathways. The magnitude of the aerobic exercise effect on PAS response was not significantly different between PAS protocols (interaction effect: p = 0.30); however, planned comparisons indicated that, relative to a period of rest, acute aerobic exercise enhanced the excitatory response to PAS25 (p = 0.02), but not PAS21 (p = 0.30). Thus, the results of these planned comparisons indirectly provide modest evidence that modulation of cerebellar circuits may contribute to exercise-induced increases in M1 plasticity. The findings have implications for developing aerobic exercise strategies to "prime" M1 plasticity for enhanced motor skill learning in applied settings.

  11. Promoting Motor Cortical Plasticity with Acute Aerobic Exercise: A Role for Cerebellar Circuits

    PubMed Central

    Mang, Cameron S.; Brown, Katlyn E.; Neva, Jason L.; Snow, Nicholas J.; Campbell, Kristin L.; Boyd, Lara A.

    2016-01-01

    Acute aerobic exercise facilitated long-term potentiation-like plasticity in the human primary motor cortex (M1). Here, we investigated the effect of acute aerobic exercise on cerebellar circuits, and their potential contribution to altered M1 plasticity in healthy individuals (age: 24.8 ± 4.1 years). In Experiment   1, acute aerobic exercise reduced cerebellar inhibition (CBI) (n = 10, p = 0.01), elicited by dual-coil paired-pulse transcranial magnetic stimulation. In Experiment   2, we evaluated the facilitatory effects of aerobic exercise on responses to paired associative stimulation, delivered with a 25 ms (PAS25) or 21 ms (PAS21) interstimulus interval (n = 16 per group). Increased M1 excitability evoked by PAS25, but not PAS21, relies on trans-cerebellar sensory pathways. The magnitude of the aerobic exercise effect on PAS response was not significantly different between PAS protocols (interaction effect: p = 0.30); however, planned comparisons indicated that, relative to a period of rest, acute aerobic exercise enhanced the excitatory response to PAS25 (p = 0.02), but not PAS21 (p = 0.30). Thus, the results of these planned comparisons indirectly provide modest evidence that modulation of cerebellar circuits may contribute to exercise-induced increases in M1 plasticity. The findings have implications for developing aerobic exercise strategies to “prime” M1 plasticity for enhanced motor skill learning in applied settings. PMID:27127659

  12. Hand motor control: maturing an immature science.

    PubMed

    Cole, Kelly J

    2015-04-01

    In the target article Mark Latash has argued that there is but a single bona-fide theory for hand motor control (referent configuration theory). If this is true, and research is often phenomenological, then we must admit that the science of hand motor control is immature. While describing observations under varying conditions is a crucial (but early) stage of the science of any field, it is also true that the key to maturing any science is to vigorously subject extant theories and budding laws to critical experimentation. If competing theories are absent at the present time is it time for scientists to focus their efforts on maturing the science of hand motor control through critical testing of this long-standing theory (and related collections of knowledge such as the uncontrolled manifold)?

  13. Phased-Array Antenna With Optoelectronic Control Circuits

    NASA Technical Reports Server (NTRS)

    Kunath, Richard R.; Shalkhauser, Kurt A.; Martzaklis, Konstantinos; Lee, Richard Q.; Downey, Alan N.; Simons, Rainee N.

    1995-01-01

    Prototype phased-array antenna features control of amplitude and phase at each radiating element. Amplitude- and phase-control signals transmitted on optical fiber to optoelectronic interface circuit (OEIC), then to monolithic microwave integrated circuit (MMIC) at each element. Offers advantages of flexible, rapid electronic steering and shaping of beams. Furthermore, greater number of elements, less overall performance of antenna degraded by malfunction in single element.

  14. Prototype Motor Controllers Demonstrated for the James Webb Space Telescope Cryogenic Environment

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammond, Ahmad

    2004-01-01

    NASA is in the process of designing the James Webb Space Telescope. This telescope will investigate images of objects in deep space (stars, galaxies, etc.) by using light in the infrared region of the light spectrum. To make such observations, the telescope must have light sensors that operate at very cold temperatures, near absolute zero. To achieve this low-temperature tolerance, designers must place the light sensors behind a Sun shield that will prevent sunlight, and its heat, from reaching the sensors. In this cold region inside the telescope, electric motors and some motor controls must operate at temperatures near 40 K (40 degrees above absolute zero). These motors will be used to position light filters needed by the telescope. There are motors that operate at the low temperatures, but there is little technology for low-temperature motor-control electronics. The drawing shows how the motors and their controls are positioned behind the Sun shield. Simplified version of the layout of the motor and control electronics that are located, as dictated by mission requirements, in the cold zone of the James Webb Space Telescope. A Sun shield provides protection and isolation of these electronics from the heat of the rays of the sun. Room temperature compoenets (control computer, motor select command, motor phase drive, power supply, parallel to serial, and sun shield) as well as 40-kelvin components (motor select, serial to parallel, and motors) are shown. The Low Temperature Electronics Group at the NASA Glenn Research Center has been working to develop motor control electronics that will operate at a temperature of 40 K. The group conducted tests to determine which electronic components will operate at such very low temperatures. Then, components that were determined to operate successfully at the low temperatures were used to design low-temperature motor-controller circuits. A prototype motor controller circuit was built, evaluated, and demonstrated to operate at

  15. Nature of Motor Control: Perspectives and Issues

    PubMed Central

    Turvey, M. T.; Fonseca, Sergio

    2013-01-01

    Four perspectives on motor control provide the framework for developing a comprehensive theory of motor control in biological systems. The four perspectives, of decreasing orthodoxy, are distinguished by their sources of inspiration: neuroanatomy, robotics, self-organization, and ecological realities. Twelve major issues that commonly constrain (either explicitly or implicitly) the understanding of the control and coordination of movement are identified and evaluated within the framework of the four perspectives. The issues are as follows: (1) Is control strictly neural? (2) Is there a divide between planning and execution? (3) Does control entail a frequently involved knowledgeable executive? (4) Do analytical internal models mediate control? (5) Is anticipation necessarily model dependent? (6) Are movements preassembled? (7) Are the participating components context independent? (8) Is force transmission strictly myotendinous? (9) Is afference a matter of local linear signaling? (10) Is neural noise an impediment? (11) Do standard variables (of mechanics and physiology) suffice? (12) Is the organization of control hierarchical? PMID:19227497

  16. Summary of electric vehicle dc motor-controller tests

    NASA Technical Reports Server (NTRS)

    Mcbrien, E. F.; Tryon, H. B.

    1982-01-01

    The differences in the performance of dc motors are evaluated when operating with chopper type controllers, and when operating on direct current. The interactions between the motor and the controller which cause these differences are investigated. Motor-controlled tests provided some of the data the quantified motor efficiency variations for both ripple free and chopper modes of operation.

  17. Field oriented control of induction motors

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Zinger, Don S.; Roth, Mary Ellen

    1990-01-01

    Induction motors have always been known for their simple rugged construction, but until lately were not suitable for variable speed or servo drives due to the inherent complexity of the controls. With the advent of field oriented control (FOC), however, the induction motor has become an attractive option for these types of drive systems. An FOC system which utilizes the pulse population modulation method to synthesize the motor drive frequencies is examined. This system allows for a variable voltage to frequency ratio and enables the user to have independent control of both the speed and torque of an induction motor. A second generation of the control boards were developed and tested with the next point of focus being the minimization of the size and complexity of these controls. Many options were considered with the best approach being the use of a digital signal processor (DSP) due to its inherent ability to quickly evaluate control algorithms. The present test results of the system and the status of the optimization process using a DSP are discussed.

  18. A neural command circuit for grooming movement control.

    PubMed

    Hampel, Stefanie; Franconville, Romain; Simpson, Julie H; Seeds, Andrew M

    2015-09-07

    Animals perform many stereotyped movements, but how nervous systems are organized for controlling specific movements remains unclear. Here we use anatomical, optogenetic, behavioral, and physiological techniques to identify a circuit in Drosophila melanogaster that can elicit stereotyped leg movements that groom the antennae. Mechanosensory chordotonal neurons detect displacements of the antennae and excite three different classes of functionally connected interneurons, which include two classes of brain interneurons and different parallel descending neurons. This multilayered circuit is organized such that neurons within each layer are sufficient to specifically elicit antennal grooming. However, we find differences in the durations of antennal grooming elicited by neurons in the different layers, suggesting that the circuit is organized to both command antennal grooming and control its duration. As similar features underlie stimulus-induced movements in other animals, we infer the possibility of a common circuit organization for movement control that can be dissected in Drosophila.

  19. Two distinct auditory-motor circuits for monitoring speech production as revealed by content-specific suppression of auditory cortex.

    PubMed

    Ylinen, Sari; Nora, Anni; Leminen, Alina; Hakala, Tero; Huotilainen, Minna; Shtyrov, Yury; Mäkelä, Jyrki P; Service, Elisabet

    2015-06-01

    Speech production, both overt and covert, down-regulates the activation of auditory cortex. This is thought to be due to forward prediction of the sensory consequences of speech, contributing to a feedback control mechanism for speech production. Critically, however, these regulatory effects should be specific to speech content to enable accurate speech monitoring. To determine the extent to which such forward prediction is content-specific, we recorded the brain's neuromagnetic responses to heard multisyllabic pseudowords during covert rehearsal in working memory, contrasted with a control task. The cortical auditory processing of target syllables was significantly suppressed during rehearsal compared with control, but only when they matched the rehearsed items. This critical specificity to speech content enables accurate speech monitoring by forward prediction, as proposed by current models of speech production. The one-to-one phonological motor-to-auditory mappings also appear to serve the maintenance of information in phonological working memory. Further findings of right-hemispheric suppression in the case of whole-item matches and left-hemispheric enhancement for last-syllable mismatches suggest that speech production is monitored by 2 auditory-motor circuits operating on different timescales: Finer grain in the left versus coarser grain in the right hemisphere. Taken together, our findings provide hemisphere-specific evidence of the interface between inner and heard speech.

  20. A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs.

    PubMed

    Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J; Paz-Vicente, Rafael; Civit-Balcells, Anton

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control.

  1. A Neuro-Inspired Spike-Based PID Motor Controller for Multi-Motor Robots with Low Cost FPGAs

    PubMed Central

    Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J.; Paz-Vicente, Rafael; Civit-Balcells, Anton

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control. PMID:22666004

  2. Controlling Precision Stepper Motors in Flight Using (Almost) No Parts

    NASA Technical Reports Server (NTRS)

    Randall, David

    2010-01-01

    This concept allows control of high-performance stepper motors with minimal parts count and minimal flight software complexity. Although it uses a small number of common flight-qualified parts and simple control algorithms, it is capable enough to meet demanding system requirements. Its programmable nature makes it trivial to implement changes to control algorithms both during integration & test and in flight. Enhancements such as microstepping, half stepping, back-emf compensation, and jitter reduction can be tailored to the requirements of a large variety of stepper motor based applications including filter wheels, focus mechanisms, antenna tracking subsystems, pointing and mobility. The hardware design (using an H-bridge motor controller IC) was adapted from JPL's MER mission, still operating on Mars. This concept has been fully developed and incorporated into the MCS instrument on MRO, currently operating in Mars orbit. It has been incorporated into the filter wheel mechanism and linear stage (focus) mechanism for the AMT instrument. On MCS/MRO, two of these circuits control the elevation and azimuth of the MCS telescope/radiometer assembly, allowing the instrument to continuously monitor the limb of the Martian atmosphere. Implementation on MCS/MRO resulted in a 4:1 reduction in the volume and mass required for the motor driver electronics (100:25 square inches of PCB space), producing a very compact instrument. In fact, all of the electronics for the MCS instrument are packaged within the movable instrument structure. It also saved approximately 3 Watts of power. Most importantly, the design enabled MCS to meet very its stringent maximum allowable torque disturbance requirements.

  3. Controlling Precision Stepper Motors in Flight Using (Almost) No Parts

    NASA Technical Reports Server (NTRS)

    Randall, David

    2010-01-01

    This concept allows control of high-performance stepper motors with minimal parts count and minimal flight software complexity. Although it uses a small number of common flight-qualified parts and simple control algorithms, it is capable enough to meet demanding system requirements. Its programmable nature makes it trivial to implement changes to control algorithms both during integration & test and in flight. Enhancements such as microstepping, half stepping, back-emf compensation, and jitter reduction can be tailored to the requirements of a large variety of stepper motor based applications including filter wheels, focus mechanisms, antenna tracking subsystems, pointing and mobility. The hardware design (using an H-bridge motor controller IC) was adapted from JPL's MER mission, still operating on Mars. This concept has been fully developed and incorporated into the MCS instrument on MRO, currently operating in Mars orbit. It has been incorporated into the filter wheel mechanism and linear stage (focus) mechanism for the AMT instrument. On MCS/MRO, two of these circuits control the elevation and azimuth of the MCS telescope/radiometer assembly, allowing the instrument to continuously monitor the limb of the Martian atmosphere. Implementation on MCS/MRO resulted in a 4:1 reduction in the volume and mass required for the motor driver electronics (100:25 square inches of PCB space), producing a very compact instrument. In fact, all of the electronics for the MCS instrument are packaged within the movable instrument structure. It also saved approximately 3 Watts of power. Most importantly, the design enabled MCS to meet very its stringent maximum allowable torque disturbance requirements.

  4. Control System for Bearingless Motor-generator

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E. (Inventor); Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor)

    2008-01-01

    A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.

  5. Control system for bearingless motor-generator

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E. (Inventor); Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor)

    2010-01-01

    A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.

  6. Motor control. How posture and movements are governed.

    PubMed

    Brooks, V B

    1983-05-01

    This article is a review of the nature of motor control: the abilities and limitations of the body, the principles of doing and learning, how parts of the nervous system interact, and how information is processed to generate the blend of sensory, perceptive, and motor functions that we call motor control. The relation to physical therapy is stressed: PT is regarded as an emerging applied science of motor control, and motor control is regarded as a basic science of physical therapy.

  7. On the role of recurrent inhibitory feedback in motor control.

    PubMed

    Windhorst, U

    1996-08-01

    This article reviews presumed roles of recurrent inhibition in motor control, that have been proposed over the past five decades. The discussion is structured in an order of increasing complexity. It starts out with the simplest and earliest circuit, that is recurrent self-inhibition of skeleto-motoneurons, and related functions. It soon becomes clear that in order to understand recurrent inhibition, we must look beyond the simple self-inhibitory CNS circuit. First, recurrent inhibition must be seen in the context of other neural circuits. Second, some quantitative features appear to be correlated with features of the neuromusculo-skeletal periphery. Third, the aspect of lateral inhibition between different members of a motoneuron pool as well as between different motoneuron pools points to the essential multiple input-multiple output structure of recurrent inhibition that again can be understood only by correlating it with features of the neuromusculo-skeletal periphery. Another extension results from the discovery that recurrent inhibition affects not only skeleto-motoneurons, but also gamma-motoneurons, Ia inhibitory interneurons mediating reciprocal inhibition between antagonist motoneurons, other Renshaw cells and cells of origin of the ventral spinocerebellar tract (VSCT). Then the view broadens again, investigating the potential role that recurrent inhibition plays in two far-ranging theories of motor control, the inverse-dynamics approach and the equilibrium-point hypothesis. Finally, the present author tries to formulate, in broad strokes, a personal functional interpretation of recurrent inhibition. All the functional considerations, right or wrong, should yield ideas for new experiments, and this then is the last objective of this review.

  8. Temporary Short Circuit Detection in Induction Motor Winding Using Second Level Haar-Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Asfani, Dimas Anton; Syafaruddin, Dimas Anton; Purnomo, Mauridhi Heri; Hiyama, Takashi

    Faults in induction motor winding can be successfully detected using different motor current signature analysis. However, there still remain some parts where the performance of conventional methods can be improved. In case of the fast Fourier transform (FFT) method, it can only identify the permanent fault, but not the temporary one because the method gives frequency content similar to the normal condition. Moreover, the FFT technique is unable to provide the exact timing information of the fault occurrence. On the other hand, the method based on the first level wavelet transform sometimes gives misleading information, especially in case of starting and ending points of temporary short circuit. For these reasons, this paper comes up with a new method for winding fault detection, which analyzes motor current spectrogram based on extension wavelet analysis, called the second level Haar wavelet transform. The proposed method is able to detect temporary fault with very short duration and low current level with more clear information than that of the first level. Several testing scenarios are presented to confirm the robustness of the proposed method including the provision of time of occurrence information for each case.

  9. Efflux Pump Control Alters Synthetic Gene Circuit Function.

    PubMed

    Diao, Junchen; Charlebois, Daniel A; Nevozhay, Dmitry; Bódi, Zoltán; Pál, Csaba; Balázsi, Gábor

    2016-07-15

    Synthetic biology aims to design new biological systems for predefined purposes, such as the controlled secretion of biofuels, pharmaceuticals, or other chemicals. Synthetic gene circuits regulating an efflux pump from the ATP-binding cassette (ABC) protein family could achieve this. However, ABC efflux pumps can also drive out intracellular inducer molecules that control the gene circuits. This will introduce an implicit feedback that could alter gene circuit function in ways that are poorly understood. Here, we used two synthetic gene circuits inducible by tetracycline family molecules to regulate the expression of a yeast ABC pump (Pdr5p) that pumps out the inducer. Pdr5p altered the dose-responses of the original gene circuits substantially in Saccharomyces cerevisiae. While one aspect of the change could be attributed to the efflux pumping function of Pdr5p, another aspect remained unexplained. Quantitative modeling indicated that reduced regulator gene expression in addition to efflux pump function could fully explain the altered dose-responses. These predictions were validated experimentally. Overall, we highlight how efflux pumps can alter gene circuit dynamics and demonstrate the utility of mathematical modeling in understanding synthetic gene circuit function in new circumstances.

  10. A hybrid electrical/chemical circuit in the spinal cord generates a transient embryonic motor behavior.

    PubMed

    Knogler, Laura D; Ryan, Joel; Saint-Amant, Louis; Drapeau, Pierre

    2014-07-16

    Spontaneous network activity is a highly stereotyped early feature of developing circuits throughout the nervous system, including in the spinal cord. Spinal locomotor circuits produce a series of behaviors during development before locomotion that reflect the continual integration of spinal neurons into a functional network, but how the circuitry is reconfigured is not understood. The first behavior of the zebrafish embryo (spontaneous coiling) is mediated by an electrical circuit that subsequently generates mature locomotion (swimming) as chemical neurotransmission develops. We describe here a new spontaneous behavior, double coiling, that consists of two alternating contractions of the tail in rapid succession. Double coiling was glutamate-dependent and required descending hindbrain excitation, similar to but preceding swimming, making it a discrete intermediary developmental behavior. At the cellular level, motoneurons had a distinctive glutamate-dependent activity pattern that correlated with double coiling. Two glutamatergic interneurons, CoPAs and CiDs, had different activity profiles during this novel behavior. CoPA neurons failed to show changes in activity patterns during the period in which double coiling appears, whereas CiD neurons developed a glutamate-dependent activity pattern that correlated with double coiling and they innervated motoneurons at that time. Additionally, double coils were modified after pharmacological reduction of glycinergic neurotransmission such that embryos produced three or more rapidly alternating coils. We propose that double coiling behavior represents an important transition of the motor network from an electrically coupled spinal cord circuit that produces simple periodic coils to a spinal network driven by descending chemical neurotransmission, which generates more complex behaviors.

  11. Evaluation of Motor Control Using Haptic Device

    NASA Astrophysics Data System (ADS)

    Nuruki, Atsuo; Kawabata, Takuro; Shimozono, Tomoyuki; Yamada, Masafumi; Yunokuchi, Kazutomo

    When the kinesthesia and the touch act at the same time, such perception is called haptic perception. This sense has the key role in motor information on the force and position control. The haptic perception is important in the field where the evaluation of the motor control is needed. The purpose of this paper is to evaluate the motor control, perception of heaviness and distance in normal and fatigue conditions using psychophysical experiment. We used a haptic device in order to generate precise force and distance, but the precedent of the evaluation system with the haptic device has been few. Therefore, it is another purpose to examine whether the haptic device is useful as evaluation system for the motor control. The psychophysical quantity of force and distance was measured by two kinds of experiments. Eight healthy subjects participated in this study. The stimulation was presented by haptic device [PHANTOM Omni: SensAble Company]. The subjects compared between standard and test stimulation, and answered it had felt which stimulation was strong. In the result of the psychophysical quantity of force, just noticeable difference (JND) had a significant difference, and point of subjective equality (PSE) was not different between normal and muscle fatigue. On the other hand, in the result of the psychophysical quantity of distance, JND and PSE were not difference between normal and muscle fatigue. These results show that control of force was influenced, but control of distance was not influenced in muscle fatigue. Moreover, these results suggested that the haptic device is useful as the evaluation system for the motor control.

  12. Spurious-Mode Control of Same-Phase Drive-Type Ultrasonic Motor

    NASA Astrophysics Data System (ADS)

    Aoyagi, Manabu; Watanabe, Hiroyuki; Tomikawa, Yoshiro; Takano, Takehiro

    2002-05-01

    A same-phase drive-type ultrasonic motor requires a single power source for its operation. In particular, self-oscillation driving is useful for driving a small ultrasonic motor. This type of ultrasonic motor has a spurious mode close to the operation frequency on its stator vibrator. The spurious vibration mode affects the oscillation frequency of a self-oscillation drive circuit. Hence the spurious vibration mode should be restrained or moved away from the neighborhood of the operation frequency. In this paper, we report that an inductor connected at an electrical control terminal provided on standby electrodes for the reverse rotation operation controls only the spurious vibration mode. The effect of an inductor connected at the control terminal was clarified by the simulation of an equivalent circuit and some experiments.

  13. Neuromodulation of lower limb motor control in restorative neurology

    PubMed Central

    Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried

    2012-01-01

    One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. PMID:22464657

  14. Computational design of nucleic acid feedback control circuits.

    PubMed

    Yordanov, Boyan; Kim, Jongmin; Petersen, Rasmus L; Shudy, Angelina; Kulkarni, Vishwesh V; Phillips, Andrew

    2014-08-15

    The design of synthetic circuits for controlling molecular-scale processes is an important goal of synthetic biology, with potential applications in future in vitro and in vivo biotechnology. In this paper, we present a computational approach for designing feedback control circuits constructed from nucleic acids. Our approach relies on an existing methodology for expressing signal processing and control circuits as biomolecular reactions. We first extend the methodology so that circuits can be expressed using just two classes of reactions: catalysis and annihilation. We then propose implementations of these reactions in three distinct classes of nucleic acid circuits, which rely on DNA strand displacement, DNA enzyme and RNA enzyme mechanisms, respectively. We use these implementations to design a Proportional Integral controller, capable of regulating the output of a system according to a given reference signal, and discuss the trade-offs between the different approaches. As a proof of principle, we implement our methodology as an extension to a DNA strand displacement software tool, thus allowing a broad range of nucleic acid circuits to be designed and analyzed within a common modeling framework.

  15. Magnetophoretic circuits for digital control of single particles and cells

    NASA Astrophysics Data System (ADS)

    Lim, Byeonghwa; Reddy, Venu; Hu, Xinghao; Kim, Kunwoo; Jadhav, Mital; Abedini-Nassab, Roozbeh; Noh, Young-Woock; Lim, Yong Taik; Yellen, Benjamin B.; Kim, Cheolgi

    2014-05-01

    The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.

  16. Magnetophoretic circuits for digital control of single particles and cells.

    PubMed

    Lim, Byeonghwa; Reddy, Venu; Hu, XingHao; Kim, KunWoo; Jadhav, Mital; Abedini-Nassab, Roozbeh; Noh, Young-Woock; Lim, Yong Taik; Yellen, Benjamin B; Kim, CheolGi

    2014-05-14

    The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.

  17. Two distinct interneuron circuits in human motor cortex are linked to different subsets of physiological and behavioral plasticity.

    PubMed

    Hamada, Masashi; Galea, Joseph M; Di Lazzaro, Vincenzo; Mazzone, Paolo; Ziemann, Ulf; Rothwell, John C

    2014-09-17

    How does a single brain region participate in multiple behaviors? Here we argue that two separate interneuron circuits in the primary motor cortex (M1) contribute differently to two varieties of physiological and behavioral plasticity. To test this in human brain noninvasively, we used transcranial magnetic stimulation (TMS) of M1 hand area to activate two independent sets of synaptic inputs to corticospinal neurons by changing the direction of current induced in the brain: posterior-to-anterior current (PA inputs) and anterior-to-posterior current (AP inputs). We demonstrate that excitability changes produced by repetitive activation of AP inputs depend on cerebellar activity and selectively alter model-based motor learning. In contrast, the changes observed with repetitive stimulation of PA inputs are independent of cerebellar activity and specifically modulate model-free motor learning. The findings are highly suggestive that separate circuits in M1 subserve different forms of motor learning.

  18. Octopamine promotes rhythmicity but not synchrony in a bilateral pair of bursting motor neurons in the feeding circuit of Aplysia

    PubMed Central

    Martínez-Rubio, C.; Serrano, G. E.; Miller, M. W.

    2010-01-01

    Octopamine-like immunoreactivity was localized to a limited number (<40) of neurons in the Aplysia central nervous system, including three neurons in the paired buccal ganglia (BG) that control feeding movements. Application of octopamine (OA) to the BG circuit produced concentration-dependent (10−8–10−4 mol l−1) modulatory actions on the spontaneous burst activity of the bilaterally paired B67 pharyngeal motor neurons (MNs). OA increased B67's burst duration and the number of impulses per burst. These effects reflected actions of OA on the intrinsic tetrodotoxin-resistant driver potential (DP) that underlies B67 bursting. In addition to its effects on B67's burst parameters, OA also increased the rate and regularity of burst timing. Although the bilaterally paired B67 MNs both exhibited rhythmic bursting in the presence of OA, they did not become synchronized. In this respect, the response to OA differed from that of dopamine, another modulator of the feeding motor network, which produces both rhythmicity and synchrony of bursting in the paired B67 neurons. It is proposed that modulators can regulate burst synchrony of MNs by exerting a dual control over their intrinsic rhythmicity and their reciprocal capacity to generate membrane potential perturbations. In this simple system, dopaminergic and octopaminergic modulation could influence whether pharyngeal contractions occur in a bilaterally synchronous or asynchronous fashion. PMID:20228355

  19. A model for reverberating circuits with controlled feedback

    NASA Astrophysics Data System (ADS)

    Rodrigues, Vanessa de Freitas; de Castro, Maria Clícia Stelling; Wedemann, Roseli Suzi; Cortez, Celia Martins

    2015-12-01

    We studied the behavior of a mathematic-computational model for a reverberating neuronal circuit with controlled feedback, verifying the output pattern of the circuit, by means simulations using a program in language C++. Using values obtained from surveying the literature from animal experiments, we observed that the model was able to reproduce the polissynaptic activity of a neuron group of a vigil rat, with looping time of three neurons of the order of magnitude of 102 ms.

  20. Neural Control of Energy Balance: Translating Circuits to Therapies

    PubMed Central

    Gautron, Laurent; Elmquist, Joel K.; Williams, Kevin W.

    2015-01-01

    Recent insights into the neural circuits controlling energy balance and glucose homeostasis have rekindled the hope for development of novel treatments for obesity and diabetes. However, many therapies contribute relatively modest beneficial gains with accompanying side effects, and the mechanisms of action for other interventions remain undefined. This Review summarizes current knowledge linking the neural circuits regulating energy and glucose balance with current and potential pharmacotherapeutic and surgical interventions for the treatment of obesity and diabetes. PMID:25815991

  1. Active parallel redundancy for electronic integrator-type control circuits

    NASA Technical Reports Server (NTRS)

    Peterson, R. A.

    1971-01-01

    Circuit extends concept of redundant feedback control from type-0 to type-1 control systems. Inactive channels are slaves to the active channel, if latter fails, it is rejected and slave channel is activated. High reliability and elimination of single-component catastrophic failure are important in closed-loop control systems.

  2. Traffic control: regulation of kinesin motors.

    PubMed

    Verhey, Kristen J; Hammond, Jennetta W

    2009-11-01

    Kinesins are a family of molecular motors that use the energy of ATP hydrolysis to move along the surface of, or destabilize, microtubule filaments. Much progress has been made in understanding the mechanics and functions of the kinesin motors that play important parts in cell division, cell motility, intracellular trafficking and ciliary function. How kinesins are regulated in cells to ensure the temporal and spatial fidelity of their microtubule-based activities is less well understood. Recent work has revealed molecular mechanisms that control kinesin autoinhibition and subsequent activation, binding to cargos and microtubule tracks, and localization at specific sites of action.

  3. Regulatory Circuits Controlling Vascular Cell Calcification

    PubMed Central

    Sallam, Tamer; Cheng, Henry; Demer, Linda L.; Tintut, Yin

    2013-01-01

    Vascular calcification is a common feature of chronic kidney disease, cardiovascular disease, and aging. Such abnormal calcium deposition occurs in medial and/or intimal layers of blood vessels as well as in cardiac valves. Once considered a passive and inconsequential finding, the presence of calcium deposits in the vasculature is widely accepted as a predictor of increased morbidity and mortality. Recognition of the importance of vascular calcification in health is driving research into mechanisms that govern its development, progression, and regression. Diverse, but highly interconnected factors, have been implicated, including disturbances in lipid metabolism, oxidative stress, inflammatory cytokines, and mineral and hormonal balances, which can lead to formation of osteoblast-like cells in the artery wall. A tight balance of procalcific and anticalcific regulators dictates the extent of disease. In this review, we focus on the main regulatory circuits modulating vascular cell calcification. PMID:23269436

  4. cis-Regulatory control circuits in development.

    PubMed

    Howard, Meredith L; Davidson, Eric H

    2004-07-01

    During development, an organism undergoes many rounds of pattern formation, generating ever-greater complexity with each ensuing round of cell division and specification. The instructions for executing this process are encoded in the cis-regulatory modules that direct the expression of developmental transcription factors and signaling molecules. Each transcription factor binding site within a cis-regulatory module contributes information about when, where, or how much a gene is turned on, and by dissecting the modules driving a given gene, all the inputs governing expression of the gene can be accurately identified. Furthermore, by mapping the output of each gene to the inputs of other genes, it is possible to reverse engineer developmental circuits and even whole networks. At this higher level of organization, common bilaterian strategies for specifying progenitor fields, locking down regulatory states, and driving development forward emerge.

  5. Motor Control Theories and Their Applications

    PubMed Central

    Latash, Mark L.; Levin, Mindy F.; Scholz, John P.; Schöner, Gregor

    2010-01-01

    Summary We describe several influential hypotheses in the field of motor control including the equilibrium-point (referent configuration) hypothesis, the uncontrolled manifold hypothesis, and the idea of synergies based on the principle of motor abundance. The equilibrium-point hypothesis is based on the idea of control with thresholds for activation of neuronal pools; it provides a framework for analysis of both voluntary and involuntary movements. In particular, control of a single muscle can be adequately described with changes in the threshold of motor unit recruitment during slow muscle stretch (threshold of the tonic stretch reflex). Unlike the ideas of internal models, the equilibrium-point hypothesis does not assume neural computations of mechanical variables. The uncontrolled manifold hypothesis is based on the dynamic system approach to movements; it offers a toolbox to analyze synergic changes within redundant sets of elements related to stabilization of potentially important performance variables. The referent configuration hypothesis and the principle of abundance can be naturally combined into a single coherent scheme of control of multi-element systems. A body of experimental data on healthy persons and patients with movement disorders are reviewed in support of the mentioned hypotheses. In particular, movement disorders associated with spasticity are considered as consequences of an impaired ability to shift threshold of the tonic stretch reflex within the whole normal range. Technical details and applications of the mentioned hypotheses to studies of motor learning are described. We view the mentioned hypotheses as the most promising ones in the field of motor control, based on a solid physical and neurophysiological foundation. PMID:20944446

  6. Motor control theories and their applications.

    PubMed

    Latash, Mark L; Levin, Mindy F; Scholz, John P; Schöner, Gregor

    2010-01-01

    We describe several influential hypotheses in the field of motor control including the equilibrium-point (referent configuration) hypothesis, the uncontrolled manifold hypothesis, and the idea of synergies based on the principle of motor abundance. The equilibrium-point hypothesis is based on the idea of control with thresholds for activation of neuronal pools; it provides a framework for analysis of both voluntary and involuntary movements. In particular, control of a single muscle can be adequately described with changes in the threshold of motor unit recruitment during slow muscle stretch (threshold of the tonic stretch reflex). Unlike the ideas of internal models, the equilibrium-point hypothesis does not assume neural computations of mechanical variables. The uncontrolled manifold hypothesis is based on the dynamic system approach to movements; it offers a toolbox to analyze synergic changes within redundant sets of elements related to stabilization of potentially important performance variables. The referent configuration hypothesis and the principle of abundance can be naturally combined into a single coherent scheme of control of multi-element systems. A body of experimental data on healthy persons and patients with movement disorders are reviewed in support of the mentioned hypotheses. In particular, movement disorders associated with spasticity are considered as consequences of an impaired ability to shift threshold of the tonic stretch reflex within the whole normal range. Technical details and applications of the mentioned hypo-theses to studies of motor learning are described. We view the mentioned hypotheses as the most promising ones in the field of motor control, based on a solid physical and neurophysiological foundation.

  7. Homeostatic metaplasticity of corticospinal excitatory and intracortical inhibitory neural circuits in human motor cortex

    PubMed Central

    Murakami, Takenobu; Müller-Dahlhaus, Florian; Lu, Ming-Kuei; Ziemann, Ulf

    2012-01-01

    Homeostatic metaplasticity, a fundamental principle for maintaining overall synaptic weight in the physiological range in neuronal networks, was demonstrated at the cellular and systems level predominantly for excitatory synaptic neurotransmission. Although inhibitory networks are crucial for regulating excitability, it is largely unknown to what extent homeostatic metaplasticity of inhibition also exists. Here, we employed intermittent and continuous transcranial magnetic theta burst stimulation (iTBS, cTBS) of the primary motor cortex in healthy subjects for induction of long-term potentiation (LTP)-like and long-term depression (LTD)-like plasticity. We studied metaplasticity by testing the interactions of priming TBS with LTP/LTD-like plasticity induced by subsequent test TBS. Changes in excitatory neurotransmission were measured by the input–output curve of motor-evoked potentials (IO-MEP), and changes in GABAAergic inhibitory neurotransmission by the IO of short-interval intracortical inhibition (IO-SICI, four conditioning stimulus intensities of 70–100% active motor threshold, interstimulus interval 2.0 ms). Non-primed iTBS increased IO-MEP, while non-primed cTBS decreased IO-MEP. Pairing of identical protocols (iTBS→iTBS, cTBS→cTBS) resulted in suppression of the non-primed TBS effects on IO-MEP, and pairing of different protocols (cTBS→iTBS, iTBS→cTBS) enhanced the test TBS effects on IO-MEP. While non-primed TBS did not result in significant changes of IO-SICI, iTBS→iTBS resulted in IO-SICI decrease, and cTBS→cTBS in IO-SICI increase compared with the non-primed conditions. The changes in SICI induced by priming TBS correlated with the changes in MEP induced by subsequent test TBS. Findings demonstrate that plasticity in both excitatory and inhibitory circuits in the human motor cortex are regulated by homeostatic metaplasticity, and that priming effects on inhibition contribute to the homeostatic regulation of metaplasticity in excitatory

  8. Human dorsomedial parieto-motor circuit specifies grasp during the planning of goal-directed hand actions.

    PubMed

    Vesia, Michael; Barnett-Cowan, Michael; Elahi, Behzad; Jegatheeswaran, Gaayathiri; Isayama, Reina; Neva, Jason L; Davare, Marco; Staines, W Richard; Culham, Jody C; Chen, Robert

    2017-07-01

    According to one influential view, two specialized parieto-frontal circuits control prehension: a dorsomedial stream for hand transport during reaching and a dorsolateral stream for preshaping the fingers during grasping. However, recent evidence argues that an area within the dorsomedial stream-macaque area V6A and, its putative human homolog, superior parietal occipital cortex (SPOC) - encodes both hand transport and grip formation. We tested whether planning varied hand actions modulates functional connectivity between left SPOC and ipsilateral primary motor cortex (M1) using a dual-site, paired-pulse transcranial magnetic stimulation paradigm with two coils (dsTMS). Participants performed three different hand actions to a target object comprising a small cylinder atop a larger cylinder. These actions were: reaching-to-grasp the top (GT) using a precision grip, reaching-to-grasp the bottom (GB) using a whole-hand grip, or reaching-to-touch (Touch) the side of the target object without forming a grip. Motor-evoked potentials (MEPs) from TMS to M1, with or without preceding TMS to SPOC, were recorded from first dorsal interosseous (FDI) and abductor digiti minimi (ADM) hand muscles in two experiments that varied timing parameters (the stimulus onset asynchrony, SOA, between the 'GO' cue and stimulation and interpulse interval, IPI, between SPOC and M1 stimulation). We found that preparatory response amplitudes in the SPOC-M1 circuit of different hand muscles were selectively modulated early in the motor plan for different types of grasps. First, based on SPOC-M1 interactions, across two experiments, the role of the ADM was facilitated during a whole-hand grasp of a large object (GB) relative to other conditions under certain timing parameters (SOA = 150 msec; IPI = 6 msec). Second, the role of the FDI was facilitated during hand action planning compared to rest. These findings suggest that the human dorsomedial parieto-motor stream plays a causal role in

  9. Diamagnetically Levitating Three Phase Motor with Optical Feedback Control

    NASA Astrophysics Data System (ADS)

    Khanna, Shrey; Nhut Ho, Joe; Irwen, Jonathan; Chih Wang, Wei

    2010-11-01

    This article describes a feasibility study of creating a low friction, low maintenance power delivering motor using a diamagnetically stabilized levitating rotor. The planar rotor described in this article uses a triangular configuration of magnets that rotates due to nine electric coils evenly spaced around the rotor. The principle behind levitation of the rotor and the dynamic forces on it are described in detail. An optical encoder feedback system is designed and fabricated that controls the frequency of the levitating rotor. The current input to the coils is given through a driving circuit that amplifies a DC pulse signal generated by a control algorithm designed in LabVIEW. The driving circuit allows current to flow through one phase at a time, which produces a magnetic field strong enough to spin the rotor. Experiments suggest that the optical encoder feedback control system can do reference tracking on the levitating rotor. The designed control algorithm can drive the rotor to specified reference frequencies up to 1.3 Hz using the optical encoder measurements.

  10. DC Motor control using motor-generator set with controlled generator field

    DOEpatents

    Belsterling, Charles A.; Stone, John

    1982-01-01

    A d.c. generator is connected in series opposed to the polarity of a d.c. power source supplying a d.c. drive motor. The generator is part of a motor-generator set, the motor of which is supplied from the power source connected to the motor. A generator field control means varies the field produced by at least one of the generator windings in order to change the effective voltage output. When the generator voltage is exactly equal to the d.c. voltage supply, no voltage is applied across the drive motor. As the field of the generator is reduced, the drive motor is supplied greater voltage until the full voltage of the d.c. power source is supplied when the generator has zero field applied. Additional voltage may be applied across the drive motor by reversing and increasing the reversed field on the generator. The drive motor may be reversed in direction from standstill by increasing the generator field so that a reverse voltage is applied across the d.c. motor.

  11. Reviewing the Role of the Efferent Vestibular System in Motor and Vestibular Circuits

    PubMed Central

    Mathews, Miranda A.; Camp, Aaron J.; Murray, Andrew J.

    2017-01-01

    Efferent circuits within the nervous system carry nerve impulses from the central nervous system to sensory end organs. Vestibular efferents originate in the brainstem and terminate on hair cells and primary afferent fibers in the semicircular canals and otolith organs within the inner ear. The function of this efferent vestibular system (EVS) in vestibular and motor coordination though, has proven difficult to determine, and remains under debate. We consider current literature that implicate corollary discharge from the spinal cord through the efferent vestibular nucleus (EVN), and hint at a potential role in overall vestibular plasticity and compensation. Hypotheses range from differentiating between passive and active movements at the level of vestibular afferents, to EVS activation under specific behavioral and environmental contexts such as arousal, predation, and locomotion. In this review, we summarize current knowledge of EVS circuitry, its effects on vestibular hair cell and primary afferent activity, and discuss its potential functional roles. PMID:28824449

  12. Controllability of fractional-order Chua’s circuit

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Chen, Di-Yi; Zhou, Kun; Wang, Yi-Chen

    2015-03-01

    The ultimate proof of our understanding of nature and engineering systems is reflected in our ability to control them. Since fractional calculus is more universal, we bring attention to the controllability of fractional order systems. First, we extend the conventional controllability theorem to the fractional domain. Strictly mathematical analysis and proof are presented. Because Chua’s circuit is a typical representative of nonlinear circuits, we study the controllability of the fractional order Chua’s circuit in detail using the presented theorem. Numerical simulations and theoretical analysis are both presented, which are in agreement with each other. Project supported by the National Natural Science Foundation of China (Grant Nos. 51109180 and 51479173), the Fundamental Research Funds for the Central Universities, China (Grant No. 201304030577), the Northwest A&F University Foundation, China (Grant No. 2013BSJJ095), and the Scientific Research Foundation on Water Engineering of Shaanxi Province, China (Grant No. 2013slkj-12).

  13. Cortical Feedback Control of Olfactory Bulb Circuits

    PubMed Central

    Boyd, Alison M.; Sturgill, James F.; Poo, Cindy; Isaacson, Jeffry S.

    2013-01-01

    SUMMARY Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. PMID:23259951

  14. Rapid Mechanically Controlled Rewiring of Neuronal Circuits

    PubMed Central

    Magdesian, Margaret H.; Lopez-Ayon, G. Monserratt; Mori, Megumi; Boudreau, Dominic; Goulet-Hanssens, Alexis; Sanz, Ricardo; Miyahara, Yoichi; Barrett, Christopher J.; Fournier, Alyson E.; De Koninck, Yves

    2016-01-01

    CNS injury may lead to permanent functional deficits because it is still not possible to regenerate axons over long distances and accurately reconnect them with an appropriate target. Using rat neurons, microtools, and nanotools, we show that new, functional neurites can be created and precisely positioned to directly (re)wire neuronal networks. We show that an adhesive contact made onto an axon or dendrite can be pulled to initiate a new neurite that can be mechanically guided to form new synapses at up to 0.8 mm distance in <1 h. Our findings challenge current understanding of the limits of neuronal growth and have direct implications for the development of new therapies and surgical techniques to achieve functional regeneration. SIGNIFICANCE STATEMENT Brain and spinal cord injury may lead to permanent disability and death because it is still not possible to regenerate neurons over long distances and accurately reconnect them with an appropriate target. Using microtools and nanotools we have developed a new method to rapidly initiate, elongate, and precisely connect new functional neuronal circuits over long distances. The extension rates achieved are ≥60 times faster than previously reported. Our findings have direct implications for the development of new therapies and surgical techniques to achieve functional regeneration after trauma and in neurodegenerative diseases. It also opens the door for the direct wiring of robust brain–machine interfaces as well as for investigations of fundamental aspects of neuronal signal processing and neuronal function. PMID:26791225

  15. Field-Oriented Control Of Induction Motors

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Roth, Mary Ellen; Zinger, Don S.

    1993-01-01

    Field-oriented control system provides for feedback control of torque or speed or both. Developed for use with commercial three-phase, 400-Hz, 208-V, 5-hp motor. Systems include resonant power supply operating at 20 kHz. Pulse-population-modulation subsystem selects individual pulses of 20-kHz single-phase waveform as needed to synthesize three waveforms of appropriate lower frequency applied to three phase windings of motor. Electric actuation systems using technology currently being built to peak powers of 70 kW. Amplitude of voltage of effective machine-frequency waveform determined by momentary frequency of pulses, while machine frequency determined by rate of repetition of overall temporal pattern of pulses. System enables independent control of both voltage and frequency.

  16. Field-Oriented Control Of Induction Motors

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Roth, Mary Ellen; Zinger, Don S.

    1993-01-01

    Field-oriented control system provides for feedback control of torque or speed or both. Developed for use with commercial three-phase, 400-Hz, 208-V, 5-hp motor. Systems include resonant power supply operating at 20 kHz. Pulse-population-modulation subsystem selects individual pulses of 20-kHz single-phase waveform as needed to synthesize three waveforms of appropriate lower frequency applied to three phase windings of motor. Electric actuation systems using technology currently being built to peak powers of 70 kW. Amplitude of voltage of effective machine-frequency waveform determined by momentary frequency of pulses, while machine frequency determined by rate of repetition of overall temporal pattern of pulses. System enables independent control of both voltage and frequency.

  17. Injuries in professional motor car racing drivers at a racing circuit between 1996 and 2000.

    PubMed

    Minoyama, O; Tsuchida, H

    2004-10-01

    Research on injuries in racing drivers is limited. To gain more information about such injuries. Injuries recorded during and after races between 1996 and 2000 were investigated using the medical charts from the circuit medical centre at Fuji Speedway, which is one of the biggest circuits in Japan. Races were in either single seat/formula cars or saloon cars. Data were obtained from 39 races in single seat cars (1030 participating cars) and 42 races in saloon cars (1577 cars). Fifty injuries were recorded during the single seat car races, and 62 during the saloon car races (injury rate 1.2 per 1000 competitors per race and 0.9 per 1000 competitors per race respectively). Thirteen injuries were recorded after the race, 12 of them in saloon car racing. Bruises were the major injury in single seat car racing (58%). Lower limb bruising was more common than upper limb bruising. Most of the injuries in saloon car racing (53.2%) were neck sprains. The incidence of concussion was high in both groups compared with other high risk sports. There were some differences in injuries between the two types of car. No serious injuries occurred except for one death. However, the driver's body is subjected to large forces in a crash, hence the high incidence of concussion. The injuries recorded after the race emphasise that motor racing is a demanding sport.

  18. Magnetic Field Analysis of Lorentz Motors Using a Novel Segmented Magnetic Equivalent Circuit Method

    PubMed Central

    Qian, Junbing; Chen, Xuedong; Chen, Han; Zeng, Lizhan; Li, Xiaoqing

    2013-01-01

    A simple and accurate method based on the magnetic equivalent circuit (MEC) model is proposed in this paper to predict magnetic flux density (MFD) distribution of the air-gap in a Lorentz motor (LM). In conventional MEC methods, the permanent magnet (PM) is treated as one common source and all branches of MEC are coupled together to become a MEC network. In our proposed method, every PM flux source is divided into three sub-sections (the outer, the middle and the inner). Thus, the MEC of LM is divided correspondingly into three independent sub-loops. As the size of the middle sub-MEC is small enough, it can be treated as an ideal MEC and solved accurately. Combining with decoupled analysis of outer and inner MECs, MFD distribution in the air-gap can be approximated by a quadratic curve, and the complex calculation of reluctances in MECs can be avoided. The segmented magnetic equivalent circuit (SMEC) method is used to analyze a LM, and its effectiveness is demonstrated by comparison with FEA, conventional MEC and experimental results. PMID:23358368

  19. Injuries in professional motor car racing drivers at a racing circuit between 1996 and 2000

    PubMed Central

    Minoyama, O; Tsuchida, H

    2004-01-01

    Background: Research on injuries in racing drivers is limited. Objective: To gain more information about such injuries. Methods: Injuries recorded during and after races between 1996 and 2000 were investigated using the medical charts from the circuit medical centre at Fuji Speedway, which is one of the biggest circuits in Japan. Races were in either single seat/formula cars or saloon cars. Results: Data were obtained from 39 races in single seat cars (1030 participating cars) and 42 races in saloon cars (1577 cars). Fifty injuries were recorded during the single seat car races, and 62 during the saloon car races (injury rate 1.2 per 1000 competitors per race and 0.9 per 1000 competitors per race respectively). Thirteen injuries were recorded after the race, 12 of them in saloon car racing. Bruises were the major injury in single seat car racing (58%). Lower limb bruising was more common than upper limb bruising. Most of the injuries in saloon car racing (53.2%) were neck sprains. The incidence of concussion was high in both groups compared with other high risk sports. Conclusions: There were some differences in injuries between the two types of car. No serious injuries occurred except for one death. However, the driver's body is subjected to large forces in a crash, hence the high incidence of concussion. The injuries recorded after the race emphasise that motor racing is a demanding sport. PMID:15388550

  20. High fidelity equivalent circuit representation of induction motor determined by finite elements for electric vehicle drive applications

    SciTech Connect

    Vamvakari, A.; Kandianis, A.; Kladas, A.; Manias, S. )

    1999-05-01

    The paper presents the methodology for determination of an induction motor model suitable for harmonic representation on inverter supply. Harmonic iron losses are considered by convenient modifications of the standard equivalent circuit while the parameter variations for different operating conditions are determined by finite element modelling. The proposed motor representation is particularly important in cases that the drive efficiency is of major concern over a wide range of operating conditions such as in electrical vehicle applications. The method is illustrated with respect to an experimental set-up involving a 1,5 kW squirrel cage induction motor supplied by a PWM inverter.

  1. Role of sensory experience in functional development of Drosophila motor circuits.

    PubMed

    Fushiki, Akira; Kohsaka, Hiroshi; Nose, Akinao

    2013-01-01

    Neuronal circuits are formed according to a genetically predetermined program and then reconstructed in an experience-dependent manner. While the existence of experience-dependent plasticity has been demonstrated for the visual and other sensory systems, it remains unknown whether this is also the case for motor systems. Here we examined the effects of eliminating sensory inputs on the development of peristaltic movements in Drosophila embryos and larvae. The peristalsis is initially slow and uncoordinated, but gradually develops into a mature pattern during late embryonic stages. We tested whether inhibiting the transmission of specific sensory neurons during this period would have lasting effects on the properties of the sensorimotor circuits. We applied Shibire-mediated inhibition for six hours during embryonic development (15-21 h after egg laying [AEL]) and studied its effects on peristalsis in the mature second- and third-instar larvae. We found that inhibition of chordotonal organs, but not multidendritic neurons, led to a lasting decrease in the speed of larval locomotion. To narrow down the sensitive period, we applied shorter inhibition at various embryonic and larval stages and found that two-hour inhibition during 16-20 h AEL, but not at earlier or later stages, was sufficient to cause the effect. These results suggest that neural activity mediated by specific sensory neurons is involved in the maturation of sensorimotor circuits in Drosophila and that there is a critical period for this plastic change. Consistent with a role of chordotonal neurons in sensory feedback, these neurons were activated during larval peristalsis and acute inhibition of their activity decreased the speed of larval locomotion.

  2. Enriched environment restricted to gestation accelerates the development of sensory and motor circuits in the rat pup.

    PubMed

    Cárdenas, Lorena; García-García, Fabio; Santiago-Roque, Isela; Martínez, Armando J; Coria-Ávila, Genaro A; Corona-Morales, Aleph A

    2015-04-01

    The effects of stimulating environments on the neural plasticity of the adult brain have been well explored; however, how an enriched environment (EE) affects the mother-fetus interaction is poorly understood. We hypothesized that an enriched environment restricted to pregnancy will succeed in accelerating the development of sensory and motor circuits in the offspring. Pregnant Wistar rats were maintained either under a standard condition - two animals per standard cage- or an enriched environment - eight subjects in larger cages with different physical configurations-. After birth, litters from both groups (n=16 per group) were cross-fostered with mothers that were simultaneously maintained under standard environment during pregnancy. Sensory and motor development were studied in the pups of both groups with a battery of reflex and physical tests. Auditory and gait reflexes appeared two days earlier in the offspring of EE rats as compared to control subjects (p<0.05). In addition, EE pups displayed a better performance in righting reflex, inclined board and geotaxis tests (p<0.05). Differences were found even three weeks after birth. We conclude that EE limited to the phase of pregnancy stimulates the development of pups inutero so that they are born with a higher grade of development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. 49 CFR 236.103 - Switch circuit controller or point detector.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Switch circuit controller or point detector. 236... Rules and Instructions: All Systems Inspections and Tests; All Systems § 236.103 Switch circuit controller or point detector. Switch circuit controller, circuit controller, or point detector operated...

  4. 49 CFR 236.103 - Switch circuit controller or point detector.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Switch circuit controller or point detector. 236... Rules and Instructions: All Systems Inspections and Tests; All Systems § 236.103 Switch circuit controller or point detector. Switch circuit controller, circuit controller, or point detector operated...

  5. 49 CFR 236.103 - Switch circuit controller or point detector.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Switch circuit controller or point detector. 236... Rules and Instructions: All Systems Inspections and Tests; All Systems § 236.103 Switch circuit controller or point detector. Switch circuit controller, circuit controller, or point detector operated...

  6. 49 CFR 236.103 - Switch circuit controller or point detector.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Switch circuit controller or point detector. 236... Rules and Instructions: All Systems Inspections and Tests; All Systems § 236.103 Switch circuit controller or point detector. Switch circuit controller, circuit controller, or point detector operated...

  7. Interaction of plasticity and circuit organization during the acquisition of cerebellum-dependent motor learning.

    PubMed

    Yang, Yan; Lisberger, Stephen G

    2013-12-31

    Motor learning occurs through interactions between the cerebellar circuit and cellular plasticity at different sites. Previous work has established plasticity in brain slices and suggested plausible sites of behavioral learning. We now reveal what actually happens in the cerebellum during short-term learning. We monitor the expression of plasticity in the simple-spike firing of cerebellar Purkinje cells during trial-over-trial learning in smooth pursuit eye movements of monkeys. Our findings imply that: 1) a single complex-spike response driven by one instruction for learning causes short-term plasticity in a Purkinje cell's mossy fiber/parallel-fiber input pathways; 2) complex-spike responses and simple-spike firing rate are correlated across the Purkinje cell population; and 3) simple-spike firing rate at the time of an instruction for learning modulates the probability of a complex-spike response, possibly through a disynaptic feedback pathway to the inferior olive. These mechanisms may participate in long-term motor learning. DOI: http://dx.doi.org/10.7554/eLife.01574.001.

  8. Interaction of plasticity and circuit organization during the acquisition of cerebellum-dependent motor learning

    PubMed Central

    Yang, Yan; Lisberger, Stephen G

    2013-01-01

    Motor learning occurs through interactions between the cerebellar circuit and cellular plasticity at different sites. Previous work has established plasticity in brain slices and suggested plausible sites of behavioral learning. We now reveal what actually happens in the cerebellum during short-term learning. We monitor the expression of plasticity in the simple-spike firing of cerebellar Purkinje cells during trial-over-trial learning in smooth pursuit eye movements of monkeys. Our findings imply that: 1) a single complex-spike response driven by one instruction for learning causes short-term plasticity in a Purkinje cell’s mossy fiber/parallel-fiber input pathways; 2) complex-spike responses and simple-spike firing rate are correlated across the Purkinje cell population; and 3) simple-spike firing rate at the time of an instruction for learning modulates the probability of a complex-spike response, possibly through a disynaptic feedback pathway to the inferior olive. These mechanisms may participate in long-term motor learning. DOI: http://dx.doi.org/10.7554/eLife.01574.001 PMID:24381248

  9. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Heater circuits. 111.70-5 Section 111.70-5 Shipping... REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-5 Heater circuits. (a) If an enclosure for a... from a separate circuit, the heater circuit must be disconnected from its source of potential by a...

  10. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Heater circuits. 111.70-5 Section 111.70-5 Shipping... REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-5 Heater circuits. (a) If an enclosure for a... from a separate circuit, the heater circuit must be disconnected from its source of potential by a...

  11. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Heater circuits. 111.70-5 Section 111.70-5 Shipping... REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-5 Heater circuits. (a) If an enclosure for a... from a separate circuit, the heater circuit must be disconnected from its source of potential by a...

  12. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Heater circuits. 111.70-5 Section 111.70-5 Shipping... REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-5 Heater circuits. (a) If an enclosure for a... from a separate circuit, the heater circuit must be disconnected from its source of potential by a...

  13. 49 CFR 236.402 - Signals controlled by track circuits and control operator.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.402 Signals controlled by track circuits and... 49 Transportation 4 2011-10-01 2011-10-01 false Signals controlled by track circuits and...

  14. 49 CFR 236.402 - Signals controlled by track circuits and control operator.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.402 Signals controlled by track circuits and... 49 Transportation 4 2010-10-01 2010-10-01 false Signals controlled by track circuits and...

  15. Power factor control system for AC induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1977-01-01

    A power factor control system for use with ac induction motors was designed which samples lines voltage and current through the motor and decreases power input to the motor proportional to the detected phase displacement between current and voltage. This system provides, less power to the motor, as it is less loaded.

  16. Integrated Control of Axonemal Dynein AAA+ Motors

    PubMed Central

    King, Stephen M.

    2012-01-01

    Axonemal dyneins are AAA+ enzymes that convert ATP hydrolysis to mechanical work. This leads to the sliding of doublet microtubules with respect to each other and ultimately the generation of ciliary/flagellar beating. However, in order for useful work to be generated, the action of individual dynein motors must be precisely controlled. In addition, cells modulate the motility of these organelles through a variety of second messenger systems and these signals too must be integrated by the dynein motors to yield an appropriate output. This review describes the current status of efforts to understand dynein control mechanisms and their connectivity focusing mainly on studies of the outer dynein arm from axonemes of the unicellular biflagellate green alga Chlamydomonas. PMID:22406539

  17. Integrated control of axonemal dynein AAA(+) motors.

    PubMed

    King, Stephen M

    2012-08-01

    Axonemal dyneins are AAA(+) enzymes that convert ATP hydrolysis to mechanical work. This leads to the sliding of doublet microtubules with respect to each other and ultimately the generation of ciliary/flagellar beating. However, in order for useful work to be generated, the action of individual dynein motors must be precisely controlled. In addition, cells modulate the motility of these organelles through a variety of second messenger systems and these signals too must be integrated by the dynein motors to yield an appropriate output. This review describes the current status of efforts to understand dynein control mechanisms and their connectivity focusing mainly on studies of the outer dynein arm from axonemes of the unicellular biflagellate green alga Chlamydomonas.

  18. Motor control by precisely timed spike patterns.

    PubMed

    Srivastava, Kyle H; Holmes, Caroline M; Vellema, Michiel; Pack, Andrea R; Elemans, Coen P H; Nemenman, Ilya; Sober, Samuel J

    2017-01-31

    A fundamental problem in neuroscience is understanding how sequences of action potentials ("spikes") encode information about sensory signals and motor outputs. Although traditional theories assume that this information is conveyed by the total number of spikes fired within a specified time interval (spike rate), recent studies have shown that additional information is carried by the millisecond-scale timing patterns of action potentials (spike timing). However, it is unknown whether or how subtle differences in spike timing drive differences in perception or behavior, leaving it unclear whether the information in spike timing actually plays a role in brain function. By examining the activity of individual motor units (the muscle fibers innervated by a single motor neuron) and manipulating patterns of activation of these neurons, we provide both correlative and causal evidence that the nervous system uses millisecond-scale variations in the timing of spikes within multispike patterns to control a vertebrate behavior-namely, respiration in the Bengalese finch, a songbird. These findings suggest that a fundamental assumption of current theories of motor coding requires revision.

  19. Motor control by precisely timed spike patterns

    PubMed Central

    Srivastava, Kyle H.; Holmes, Caroline M.; Vellema, Michiel; Pack, Andrea R.; Elemans, Coen P. H.; Nemenman, Ilya; Sober, Samuel J.

    2017-01-01

    A fundamental problem in neuroscience is understanding how sequences of action potentials (“spikes”) encode information about sensory signals and motor outputs. Although traditional theories assume that this information is conveyed by the total number of spikes fired within a specified time interval (spike rate), recent studies have shown that additional information is carried by the millisecond-scale timing patterns of action potentials (spike timing). However, it is unknown whether or how subtle differences in spike timing drive differences in perception or behavior, leaving it unclear whether the information in spike timing actually plays a role in brain function. By examining the activity of individual motor units (the muscle fibers innervated by a single motor neuron) and manipulating patterns of activation of these neurons, we provide both correlative and causal evidence that the nervous system uses millisecond-scale variations in the timing of spikes within multispike patterns to control a vertebrate behavior—namely, respiration in the Bengalese finch, a songbird. These findings suggest that a fundamental assumption of current theories of motor coding requires revision. PMID:28100491

  20. Optimum Design for Noncontact Ultrasonic Motor with Flexurally Vibrating Disk Using an Equivalent Circuit Considering Viscosity of Air

    NASA Astrophysics Data System (ADS)

    Yamayoshi, Yasuhiro; Tamura, Hideki; Hirose, Seiji

    2009-07-01

    The optimum design for a noncontact ultrasonic motor with a flexurally vibrating disk has been investigated by analyzing the sound pressure in the air gap using an equivalent circuit considering the viscosity of air. The calculated results indicate that the sound pressure is affected by the viscosity and mass effect in the air gap, which are changed by the gap distance. The experimental results of revolution speed measured at various gap distances agree qualitatively with the sound pressure calculated using the equivalent circuit. In the case of wider gaps, a design satisfying the resonant condition of the air gap is necessary for optimizing the motor because the air gap resonates by the mass effect. However, in motors with an air gap narrower than about 50 µm, a higher speed rotation can be obtained for a wide range of rotor diameters and for a wide frequency range without consideration of the air gap resonance because the air viscosity effect becomes dominant.

  1. Automated tuning, control and stabilization of photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    O. De Aguiar, Douglas; Annoni, Andrea; Peserico, Nicola; Guglielmi, Emanuele; Carminati, Marco; Ferrari, Giorgio; Morichetti, Francesco

    2017-05-01

    The complexity scaling of silicon photonics circuits is raising novel needs related to control. Reconfigurable architectures need fast, accurate and robust procedures for the tuning and stabilization of their working point, counteracting temperature drifts originated by environmental fluctuations and mutual thermal crosstalk from surrounding integrated devices. In this contribution, we report on our recent achievements on the automated tuning, control and stabilization of silicon photonics architectures. The proposed control strategy exploits transparent integrated detectors to monitor non-invasively the light propagating in the silicon waveguides in key spots of the circuit. Local monitoring enables the partitioning of complex architectures in small photonic cells that can be easily tuned and controlled, with need for neither preliminary circuit calibration nor global optimization algorithms. The ability to monitor the Quality Of of Transmission (QoT) of the optical paths in Photonic Integrated Circuits (PICs) is also demonstrated with the use of channel labelling and non-invasive light monitoring. Several examples of applications are presented that include the automatic reconfiguration and feedback controlled stabilization of an 8×8 switch fabric based on Mach-Zehnder interferometers (MZIs) and the realization of a wavelength locking platform enabling feedback-control of silicon microring resonators (MRRs) for the realization of a 4×10 Gbit/s wavelength-division-multiplexing transmitter. The effectiveness and the robustness of the proposed approach for tuning and stabilization of the presented architectures is demonstrated by showing that no significant performance degradation is observed under uncooled operation for the silicon chip.

  2. Powerline Coupler for Windmill Motor/Generators

    NASA Technical Reports Server (NTRS)

    Nola, F.

    1985-01-01

    Efficiency at low windspeed increased by firing-angle control. Power coupled from wind-driven induction motor/generator to ac powerline with help from circuit. Circuit reduces power consumed by field windings thereby improving efficiency at low windspeeds. Circuit includes zerocrossing detector, ramp generator and comparator similar to those used to set firing angles for thyristors in power factor motor controllers.

  3. Field tests of a circuit breaker synchronous control

    SciTech Connect

    Rajotte, R.J.; Charpentier, C.; Breault, S.; Le, H.H.; Huynh, H.; Desmarais, J.

    1995-07-01

    A circuit breaker synchronous control interface which controls the point-on-wave at which shunt reactor circuit breakers open or close has been developed and tested on Hydro-Quebec`s 735-kV power system. It takes into account the influence of outdoor temperature on the breaker closing and opening times. It is also equipped with a reignition and a high-inrush-current detection system. Opening tests at different preset arcing times were conducted and the arcing time range where there are no re-ignitions in air-blast breakers was established. The tests showed that the interface is a valuable device for the elimination of re-ignitions associated with the interruption of small inductive currents. Closing tests have shown that the interface is also useful for the limitation of high inrush currents by selecting an appropriate point-on-wave for circuit breaker closing.

  4. Sensor and sensorless fault tolerant control for induction motors using a wavelet index.

    PubMed

    Gaeid, Khalaf Salloum; Ping, Hew Wooi; Khalid, Mustafa; Masaoud, Ammar

    2012-01-01

    Fault Tolerant Control (FTC) systems are crucial in industry to ensure safe and reliable operation, especially of motor drives. This paper proposes the use of multiple controllers for a FTC system of an induction motor drive, selected based on a switching mechanism. The system switches between sensor vector control, sensorless vector control, closed-loop voltage by frequency (V/f) control and open loop V/f control. Vector control offers high performance, while V/f is a simple, low cost strategy with high speed and satisfactory performance. The faults dealt with are speed sensor failures, stator winding open circuits, shorts and minimum voltage faults. In the event of compound faults, a protection unit halts motor operation. The faults are detected using a wavelet index. For the sensorless vector control, a novel Boosted Model Reference Adaptive System (BMRAS) to estimate the motor speed is presented, which reduces tuning time. Both simulation results and experimental results with an induction motor drive show the scheme to be a fast and effective one for fault detection, while the control methods transition smoothly and ensure the effectiveness of the FTC system. The system is also shown to be flexible, reverting rapidly back to the dominant controller if the motor returns to a healthy state.

  5. Sensor and Sensorless Fault Tolerant Control for Induction Motors Using a Wavelet Index

    PubMed Central

    Gaeid, Khalaf Salloum; Ping, Hew Wooi; Khalid, Mustafa; Masaoud, Ammar

    2012-01-01

    Fault Tolerant Control (FTC) systems are crucial in industry to ensure safe and reliable operation, especially of motor drives. This paper proposes the use of multiple controllers for a FTC system of an induction motor drive, selected based on a switching mechanism. The system switches between sensor vector control, sensorless vector control, closed-loop voltage by frequency (V/f) control and open loop V/f control. Vector control offers high performance, while V/f is a simple, low cost strategy with high speed and satisfactory performance. The faults dealt with are speed sensor failures, stator winding open circuits, shorts and minimum voltage faults. In the event of compound faults, a protection unit halts motor operation. The faults are detected using a wavelet index. For the sensorless vector control, a novel Boosted Model Reference Adaptive System (BMRAS) to estimate the motor speed is presented, which reduces tuning time. Both simulation results and experimental results with an induction motor drive show the scheme to be a fast and effective one for fault detection, while the control methods transition smoothly and ensure the effectiveness of the FTC system. The system is also shown to be flexible, reverting rapidly back to the dominant controller if the motor returns to a healthy state. PMID:22666016

  6. The Development of Oral Motor Control and Language

    ERIC Educational Resources Information Center

    Alcock, Katie

    2006-01-01

    Motor control has long been associated with language skill, in deficits, both acquired and developmental, and in typical development. Most evidence comes from limb praxis however; the link between oral motor control and speech and language has been neglected, despite the fact that most language users talk with their mouths. Oral motor control is…

  7. The Development of Oral Motor Control and Language

    ERIC Educational Resources Information Center

    Alcock, Katie

    2006-01-01

    Motor control has long been associated with language skill, in deficits, both acquired and developmental, and in typical development. Most evidence comes from limb praxis however; the link between oral motor control and speech and language has been neglected, despite the fact that most language users talk with their mouths. Oral motor control is…

  8. 49 CFR 236.201 - Track-circuit control of signals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Track-circuit control of signals. 236.201 Section... Block Signal Systems Standards § 236.201 Track-circuit control of signals. The control circuits for home... automatically by track circuits extending through the entire block. ...

  9. 49 CFR 236.201 - Track-circuit control of signals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Track-circuit control of signals. 236.201 Section... Block Signal Systems Standards § 236.201 Track-circuit control of signals. The control circuits for home... automatically by track circuits extending through the entire block. ...

  10. 49 CFR 236.201 - Track-circuit control of signals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Track-circuit control of signals. 236.201 Section... Block Signal Systems Standards § 236.201 Track-circuit control of signals. The control circuits for home... automatically by track circuits extending through the entire block. ...

  11. 49 CFR 236.201 - Track-circuit control of signals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Track-circuit control of signals. 236.201 Section... Block Signal Systems Standards § 236.201 Track-circuit control of signals. The control circuits for home... automatically by track circuits extending through the entire block. ...

  12. 49 CFR 236.201 - Track-circuit control of signals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Track-circuit control of signals. 236.201 Section... Block Signal Systems Standards § 236.201 Track-circuit control of signals. The control circuits for home... automatically by track circuits extending through the entire block. ...

  13. [PhysioFlex: a target-controlled self-regulating closed-circuit inhalation anesthesia regulator].

    PubMed

    Nathan, N; Sperandio, M; Erdmann, W; Westerkamp, B; Van Dijk, G; Scherpereel, P; Feiss, P

    1997-01-01

    Physi Flex is the first commercially available apparatus capable for quantitative, or self-regulating target controlled inhalational anaesthesia, with a totally closed circuit, in adults and children. The fresh gas supply to the circuit is intermittent, automatically regulated by continuous monitoring of the volume and composition of the gas mixture in the breathing circuit. The circle system includes, instead of the two conventional one way valves, a blower creating a continuous unidirectional flow at 70 L.min-1. In addition to the CO2-absorber it contains an absorber with carbon, absorbing the anaesthetic vapour when switched into the circuit. The ventilator consists of four ventilating chambers, each one with a membrane separating the patient and the motor compartments. The displacement of the membranes generates and measures the tidal volume. Automatic ventilation is achieved by electric valves and motor gas, and manual ventilation using a bag. Spontaneous ventilation is also possible. The machine is operated via a computer with selects the number of ventilating chambers (one, two or four), and the tidal volume between 50 and 2,000 mL, depending on age, gender and weight of the patient. The computer maintains the gas volume and the gas and vapour concentrations at their preset values. The O2-flow and consumption, the N2O flow and uptake, FICO2 and FETCO2, FI and FET of the volatile anaesthetic, all other important data are displayed in a numerical and graphical form on a color screen and registered for a delayed analysis. The end tidal concentration of the volatile anaesthetic drives a stepmotor with a syringe containing the selected volatile anaesthetic agent with is directly injected into the breathing circuit where it is vaporized. Therefore the concentration of the anaesthetic vapour can be instantaneously increased with this injector at induction and lowered at end of anaesthesia with the carbon absorber, and the fresh gas consumption is significantly

  14. A New Approach to Laboratory Motor Control MMCS: The Modular Motor Control System

    DTIC Science & Technology

    1989-02-01

    encB2 encl2 h/beat2 J2 . h/ beatl encll encBl encAl 0 = LED indicator connectors to motor/enc Figure 5.2: Motor interface board layout something is...signal for joint 1. h/ beatl Green Heartbeat signal for joint 1. h/beat2 Green Heartbeat signal for joint 2. gpl Red General purpose (software controllable

  15. A Microcomputer Interface for External Circuit Control.

    ERIC Educational Resources Information Center

    Gorham, D. A.

    1983-01-01

    Describes an interface designed to meet the requirements of an instrumentation teaching laboratory, particularly to develop computer-controlled digital circuitry while exploiting electrical drive properties of common transistor-transistor logic (TTL) devices, minimizing cost/number of components. Discusses decoding for Pet, switches, lights, and…

  16. A Microcomputer Interface for External Circuit Control.

    ERIC Educational Resources Information Center

    Gorham, D. A.

    1983-01-01

    Describes an interface designed to meet the requirements of an instrumentation teaching laboratory, particularly to develop computer-controlled digital circuitry while exploiting electrical drive properties of common transistor-transistor logic (TTL) devices, minimizing cost/number of components. Discusses decoding for Pet, switches, lights, and…

  17. Balanced-Bridge Feedback Control Of Motor

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J.

    1990-01-01

    Sensitivity to variations in electrical and mechanical characteristics reduced. Proposed control system for motor-driven rotary actuator includes three nested feedback loops which, when properly designed, decoupled from each other. Intended to increase accuracy of control by mitigating such degrading effects as vibrations and variations in electrical and mechanical characteristics of structure rotated. Lends itself to optimization of performance via independent optimization of each of three loops. Includes outer, actuator, and driver feedback loops, configured so that actuator is subsystem, and driver is subsystem of actuator.

  18. Balanced-Bridge Feedback Control Of Motor

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J.

    1990-01-01

    Sensitivity to variations in electrical and mechanical characteristics reduced. Proposed control system for motor-driven rotary actuator includes three nested feedback loops which, when properly designed, decoupled from each other. Intended to increase accuracy of control by mitigating such degrading effects as vibrations and variations in electrical and mechanical characteristics of structure rotated. Lends itself to optimization of performance via independent optimization of each of three loops. Includes outer, actuator, and driver feedback loops, configured so that actuator is subsystem, and driver is subsystem of actuator.

  19. Neurobiology: motor control of flexible octopus arms.

    PubMed

    Sumbre, Germán; Fiorito, Graziano; Flash, Tamar; Hochner, Binyamin

    2005-02-10

    Animals with rigid skeletons can rely on several mechanisms to simplify motor control--for example, they have skeletal joints that reduce the number of variables and degrees of freedom that need to be controlled. Here we show that when the octopus uses one of its long and highly flexible arms to transfer an object from one place to another, it employs a vertebrate-like strategy, temporarily reconfiguring its arm into a stiffened, articulated, quasi-jointed structure. This indicates that an articulated limb may provide an optimal solution for achieving precise, point-to-point movements.

  20. ACCELERATOR TARGET POSITIONER AND CONTROL CIRCUIT THEREFOR

    DOEpatents

    Stone, K.F.; Force, R.J.; Olson, W.W.; Cagle, D.S.

    1959-12-15

    An apparatus is described for inserting and retracting a target material with respect to the internal beam of a charged particle accelerator and to circuitry for controlling the timing and motion of the target placement. Two drive coils are mounted on the shaft of a target holder arm and disposed within the accelerator magnetic field with one coil at right angles to the other. Control circuitry alternately connects each coil to a current source and to a varying shorting resistance whereby the coils interchangeably produce driving and braking forces which swing the target arm within a ninety degree arc. The target is thus moved into the beam and away from it at high speeds and is brought to rest after each movement without whiplash or vibration.

  1. Controlling High Power Devices with Computers or TTL Logic Circuits

    ERIC Educational Resources Information Center

    Carlton, Kevin

    2002-01-01

    Computers are routinely used to control experiments in modern science laboratories. This should be reflected in laboratories in an educational setting. There is a mismatch between the power that can be delivered by a computer interfacing card or a TTL logic circuit and that required by many practical pieces of laboratory equipment. One common way…

  2. Remote control circuit breaker evaluation testing. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Bemko, L. M.

    1974-01-01

    Engineering evaluation tests were performed on several models/types of remote control circuit breakers marketed in an attempt to gain some insight into their potential suitability for use on the space shuttle vehicle. Tests included the measurement of several electrical and operational performance parameters under laboratory ambient, space simulation, acceleration and vibration environmental conditions.

  3. Controlling High Power Devices with Computers or TTL Logic Circuits

    ERIC Educational Resources Information Center

    Carlton, Kevin

    2002-01-01

    Computers are routinely used to control experiments in modern science laboratories. This should be reflected in laboratories in an educational setting. There is a mismatch between the power that can be delivered by a computer interfacing card or a TTL logic circuit and that required by many practical pieces of laboratory equipment. One common way…

  4. Controlled secret sharing protocol using a quantum cloning circuit

    NASA Astrophysics Data System (ADS)

    Adhikari, Satyabrata; Roy, Sovik; Chakraborty, Shantanav; Jagadish, Vinayak; Haris, M. K.; Kumar, Atul

    2014-09-01

    We demonstrate the possibility of controlling the success probability of a secret sharing protocol using a quantum cloning circuit. The cloning circuit is used to clone the qubits containing the encoded information and en route to the intended recipients. The success probability of the protocol depends on the cloning parameters used to clone the qubits. We also establish a relation between the concurrence of initially prepared state, entanglement of the mixed state received by the receivers after cloning scheme and the cloning parameters of cloning machine.

  5. Design of a Mode Conversion Ultrasonic Motor for Position Control

    NASA Technical Reports Server (NTRS)

    LeLetty, Ronan; Bouchilloux, Philippe; Claeyssen, Frank; Lhermet, Nicolas

    1996-01-01

    The many useful characteristics of ultrasonic motors, such as high holding torques, and high torque at low speeds, have made them the subject of increasing interest. In addition, several of their characteristics make them attractive for aerospace applications: they have a torque to weight ratio, and they require neither gearing mechanisms nor lubrication. Moreover, they create negligible magnetic fields, and conversely, they are not affected by external magnetic fields. Ultrasonic motors based on bolt-tightened structures offer simplicity and high stress capability. They use the inverse piezoelectric effect in the stator to produce vibrational energy, which is transferred to the rotor by friction. We designed a bolt-tightened ultrasonic motor using numerical modelling tools (finite element and electromechanical circuit analyses), creating an equivalent circuit model that takes into account the electromechanical energy conversion in the stator and the contact between the stator and the rotor. Analysis of the circuit gives insight into the behavior of the motor and allows its performance to be calculated. Two prototypes of the motor were built; their transient responses and other quantities, such as starting torque, were measured. In this paper, we discuss the numerical and the experimental results, and demonstrate the usefulness of numerical analysis in designing ultrasonic motors and estimating their performance.

  6. Design of a Mode Conversion Ultrasonic Motor for Position Control

    NASA Technical Reports Server (NTRS)

    LeLetty, Ronan; Bouchilloux, Philippe; Claeyssen, Frank; Lhermet, Nicolas

    1996-01-01

    The many useful characteristics of ultrasonic motors, such as high holding torques, and high torque at low speeds, have made them the subject of increasing interest. In addition, several of their characteristics make them attractive for aerospace applications: they have a torque to weight ratio, and they require neither gearing mechanisms nor lubrication. Moreover, they create negligible magnetic fields, and conversely, they are not affected by external magnetic fields. Ultrasonic motors based on bolt-tightened structures offer simplicity and high stress capability. They use the inverse piezoelectric effect in the stator to produce vibrational energy, which is transferred to the rotor by friction. We designed a bolt-tightened ultrasonic motor using numerical modelling tools (finite element and electromechanical circuit analyses), creating an equivalent circuit model that takes into account the electromechanical energy conversion in the stator and the contact between the stator and the rotor. Analysis of the circuit gives insight into the behavior of the motor and allows its performance to be calculated. Two prototypes of the motor were built; their transient responses and other quantities, such as starting torque, were measured. In this paper, we discuss the numerical and the experimental results, and demonstrate the usefulness of numerical analysis in designing ultrasonic motors and estimating their performance.

  7. Rescue of the Functional Alterations of Motor Cortical Circuits in Arginase Deficiency by Neonatal Gene Therapy

    PubMed Central

    Cantero, Gloria; Liu, Xiao-Bo; Mervis, Ronald F.; Lazaro, Maria T.; Cederbaum, Stephen D.; Golshani, Peyman

    2016-01-01

    Arginase 1 deficiency is a urea cycle disorder associated with hyperargininemia, spastic diplegia, loss of ambulation, intellectual disability, and seizures. To gain insight on how loss of arginase expression affects the excitability and synaptic connectivity of the cortical neurons in the developing brain, we used anatomical, ultrastructural, and electrophysiological techniques to determine how single-copy and double-copy arginase deletion affects cortical circuits in mice. We find that the loss of arginase 1 expression results in decreased dendritic complexity, decreased excitatory and inhibitory synapse numbers, decreased intrinsic excitability, and altered synaptic transmission in layer 5 motor cortical neurons. Hepatic arginase 1 gene therapy using adeno-associated virus rescued nearly all these abnormalities when administered to neonatal homozygous knock-out animals. Therefore, gene therapeutic strategies can reverse physiological and anatomical markers of arginase 1 deficiency and therefore may be of therapeutic benefit for the neurological disabilities in this syndrome. SIGNIFICANCE STATEMENT These studies are one of the few investigations to try to understand the underlying neurological dysfunction that occurs in urea cycle disorders and the only to examine arginase deficiency. We have demonstrated by multiple modalities that, in murine layer 5 cortical neurons, a gradation of abnormalities exists based on the functional copy number of arginase: intrinsic excitability is altered, there is decreased density in asymmetrical and perisomatic synapses, and analysis of the dendritic complexity is lowest in the homozygous knock-out. With neonatal administration of adeno-associated virus expressing arginase, there is near-total recovery of the abnormalities in neurons and cortical circuits, supporting the concept that neonatal gene therapy may prevent the functional abnormalities that occur in arginase deficiency. PMID:27335400

  8. Match explosionproof motors with variable-frequency controllers

    SciTech Connect

    Petro, D.; Basso, D.

    1995-10-01

    The correct application of variable-frequency drive controllers to AC induction motors can be difficult, even for relatively simple applications. When using a variable-frequency controller (inverter), the non-pure sine-wave power output cases additional motor heating, primarily because of harmonics and below-base-speed operation. Add to that a hazardous environment requiring an explosion proof (XP) motor and the selection of a suitable, as well as efficient, motor and variable-frequency controller combination, and selection becomes even more complicated. Hazardous locations are found in a wide range of chemical process industries (CPI) plants, including chemical, petrochemical textile, rubber-making,, agriculture, food-processing, and metalworking facilities. Because standard constant-speed XP motors are not designed of use with variable-frequency controllers in these potentially explosive applications, it is necessary to understand how drive controllers affect motor performance. The multitude of motors and controllers--which can be purchased separately--and the numerous hazardous-application restrictions make it difficult to select the right XP motor/controller combination. The paper discusses how variable frequency affects motors, hazardous environments as found in UL 674 and UL 1836, matching XP motors with variable-frequency controllers, preventing motor overheating, motor and controller packaging, and non-thermostat applications in the CPI.

  9. Parallel circuits control temperature preference in Drosophila during ageing.

    PubMed

    Shih, Hsiang-Wen; Wu, Chia-Lin; Chang, Sue-Wei; Liu, Tsung-Ho; Lai, Jason Sih-Yu; Fu, Tsai-Feng; Fu, Chien-Chung; Chiang, Ann-Shyn

    2015-07-16

    The detection of environmental temperature and regulation of body temperature are integral determinants of behaviour for all animals. These functions become less efficient in aged animals, particularly during exposure to cold environments, yet the cellular and molecular mechanisms are not well understood. Here, we identify an age-related change in the temperature preference of adult fruit flies that results from a shift in the relative contributions of two parallel mushroom body (MB) circuits—the β'- and β-systems. The β'-circuit primarily controls cold avoidance through dopamine signalling in young flies, whereas the β-circuit increasingly contributes to cold avoidance as adult flies age. Elevating dopamine levels in β'-afferent neurons of aged flies restores cold sensitivity, suggesting that the alteration of cold avoidance behaviour with ageing is functionally reversible. These results provide a framework for investigating how molecules and individual neural circuits modulate homeostatic alterations during the course of senescence.

  10. Control technology for integrated circuit fabrication at Micro-Circuit Engineering, Incorporated, West Palm Beach, Florida

    NASA Astrophysics Data System (ADS)

    Mihlan, G. I.; Mitchell, R. I.; Smith, R. K.

    1984-07-01

    A survey to assess control technology for integrated circuit fabrication was conducted. Engineering controls included local and general exhaust ventilation, shielding, and personal protective equipment. Devices or work stations that contained toxic materials that were potentially dangerous were controlled by local exhaust ventilation. Less hazardous areas were controlled by general exhaust ventilation. Process isolation was used in the plasma etching, low pressure chemical vapor deposition, and metallization operations. Shielding was used in ion implantation units to control X-ray emissions, in contact mask alignes to limit ultraviolet (UV) emissions, and in plasma etching units to control radiofrequency and UV emissions. Most operations were automated. Use of personal protective equipment varied by job function.

  11. Brushless DC Motors, Velocity and Position Control of the Brushless DC Motor.

    DTIC Science & Technology

    1986-06-01

    DC motor was designed using the Hall effect sensors. In addition, the position control of the brushless DC motor was developed using an optical encoder to sense angular position changes and a microprocessor to provide the desired position control. A Pittman 5111 wdg 1 brushless DC motor was used for this study. The design of the digital tachometer and pulse width modulator for velocity control and the design of the Z-80 based microprocessor controller and software design are described in

  12. Safety control circuit for a neutronic reactor

    DOEpatents

    Ellsworth, Howard C.

    2004-04-27

    A neutronic reactor comprising an active portion containing material fissionable by neutrons of thermal energy, means to control a neutronic chain reaction within the reactor comprising a safety device and a regulating device, a safety device including means defining a vertical channel extending into the reactor from an aperture in the upper surface of the reactor, a rod containing neutron-absorbing materials slidably disposed within the channel, means for maintaining the safety rod in a withdrawn position relative to the active portion of the reactor including means for releasing said rod on actuation thereof, a hopper mounted above the active portion of the reactor having a door disposed at the bottom of the hopper opening into the vertical channel, a plurality of bodies of neutron-absorbing materials disposed within the hopper, and means responsive to the failure of the safety rod on actuation thereof to enter the active portion of the reactor for opening the door in the hopper.

  13. Control of electrostatic damage to electronic circuits

    SciTech Connect

    Kirk, W.J. Jr.

    1980-03-01

    Static is caused by the flow of materials and people within an environment. The static voltages generated by these movements can degrade or destroy many solid state devices currently being used in sophisticated electronic equipment. Discharge of static voltages through these sensitive devices during assembly operations can lead to a nonfunctional assembly fabricated from parts which previously were acceptable or to later failure of an assembly which was functional after fabrication. Sources of electrostatic charges, equipment and methods for minimizing the generation of electrostatic voltages during the production, assembly and packaging of solid state electronic equipment, and the sensitivity of solid state devices to electrostatic damage are discussed. It is concluded that static awareness is the key to an effective electrostatic damage (ESD) control program, and that production facilities must incorporate electrostatic protection facilities, materials, and processes so that workers can concentrate on producing a high-quality product without having to be overly concerned about ESD procedures. (LCL)

  14. Functional reorganization of motor and limbic circuits after exercise training in a rat model of bilateral parkinsonism.

    PubMed

    Wang, Zhuo; Myers, Kalisa G; Guo, Yumei; Ocampo, Marco A; Pang, Raina D; Jakowec, Michael W; Holschneider, Daniel P

    2013-01-01

    Exercise training is widely used for neurorehabilitation of Parkinson's disease (PD). However, little is known about the functional reorganization of the injured brain after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise in a rat model of dopaminergic deafferentation (bilateral, dorsal striatal 6-hydroxydopamine lesions). One week after training, cerebral perfusion was mapped during treadmill walking or at rest using [(14)C]-iodoantipyrine autoradiography. Regional cerebral blood flow-related tissue radioactivity (rCBF) was analyzed in three-dimensionally reconstructed brains by statistical parametric mapping. In non-exercised rats, lesions resulted in persistent motor deficits. Compared to sham-lesioned rats, lesioned rats showed altered functional brain activation during walking, including: 1. hypoactivation of the striatum and motor cortex; 2. hyperactivation of non-lesioned areas in the basal ganglia-thalamocortical circuit; 3. functional recruitment of the red nucleus, superior colliculus and somatosensory cortex; 4. hyperactivation of the ventrolateral thalamus, cerebellar vermis and deep nuclei, suggesting recruitment of the cerebellar-thalamocortical circuit; 5. hyperactivation of limbic areas (amygdala, hippocampus, ventral striatum, septum, raphe, insula). These findings show remarkable similarities to imaging findings reported in PD patients. Exercise progressively improved motor deficits in lesioned rats, while increasing activation in dorsal striatum and rostral secondary motor cortex, attenuating a hyperemia of the zona incerta and eliciting a functional reorganization of regions participating in the cerebellar-thalamocortical circuit. Both lesions and exercise increased activation in mesolimbic areas (amygdala, hippocampus, ventral striatum, laterodorsal tegmental n., ventral pallidum), as well as in related paralimbic regions (septum, raphe, insula). Exercise, but not lesioning, resulted in decreases

  15. Functional Reorganization of Motor and Limbic Circuits after Exercise Training in a Rat Model of Bilateral Parkinsonism

    PubMed Central

    Wang, Zhuo; Myers, Kalisa G.; Guo, Yumei; Ocampo, Marco A.; Pang, Raina D.; Jakowec, Michael W.; Holschneider, Daniel P.

    2013-01-01

    Exercise training is widely used for neurorehabilitation of Parkinson’s disease (PD). However, little is known about the functional reorganization of the injured brain after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise in a rat model of dopaminergic deafferentation (bilateral, dorsal striatal 6-hydroxydopamine lesions). One week after training, cerebral perfusion was mapped during treadmill walking or at rest using [14C]-iodoantipyrine autoradiography. Regional cerebral blood flow-related tissue radioactivity (rCBF) was analyzed in three-dimensionally reconstructed brains by statistical parametric mapping. In non-exercised rats, lesions resulted in persistent motor deficits. Compared to sham-lesioned rats, lesioned rats showed altered functional brain activation during walking, including: 1. hypoactivation of the striatum and motor cortex; 2. hyperactivation of non-lesioned areas in the basal ganglia-thalamocortical circuit; 3. functional recruitment of the red nucleus, superior colliculus and somatosensory cortex; 4. hyperactivation of the ventrolateral thalamus, cerebellar vermis and deep nuclei, suggesting recruitment of the cerebellar-thalamocortical circuit; 5. hyperactivation of limbic areas (amygdala, hippocampus, ventral striatum, septum, raphe, insula). These findings show remarkable similarities to imaging findings reported in PD patients. Exercise progressively improved motor deficits in lesioned rats, while increasing activation in dorsal striatum and rostral secondary motor cortex, attenuating a hyperemia of the zona incerta and eliciting a functional reorganization of regions participating in the cerebellar-thalamocortical circuit. Both lesions and exercise increased activation in mesolimbic areas (amygdala, hippocampus, ventral striatum, laterodorsal tegmental n., ventral pallidum), as well as in related paralimbic regions (septum, raphe, insula). Exercise, but not lesioning, resulted in decreases

  16. A neural command circuit for grooming movement control

    PubMed Central

    Hampel, Stefanie; Franconville, Romain; Simpson, Julie H; Seeds, Andrew M

    2015-01-01

    Animals perform many stereotyped movements, but how nervous systems are organized for controlling specific movements remains unclear. Here we use anatomical, optogenetic, behavioral, and physiological techniques to identify a circuit in Drosophila melanogaster that can elicit stereotyped leg movements that groom the antennae. Mechanosensory chordotonal neurons detect displacements of the antennae and excite three different classes of functionally connected interneurons, which include two classes of brain interneurons and different parallel descending neurons. This multilayered circuit is organized such that neurons within each layer are sufficient to specifically elicit antennal grooming. However, we find differences in the durations of antennal grooming elicited by neurons in the different layers, suggesting that the circuit is organized to both command antennal grooming and control its duration. As similar features underlie stimulus-induced movements in other animals, we infer the possibility of a common circuit organization for movement control that can be dissected in Drosophila. DOI: http://dx.doi.org/10.7554/eLife.08758.001 PMID:26344548

  17. Relaxation from a voluntary contraction is preceded by increased excitability of motor cortical inhibitory circuits.

    PubMed

    Buccolieri, Alessandro; Abbruzzese, Giovanni; Rothwell, John C

    2004-07-15

    Termination of a muscle contraction is as important a part of movement as muscle activation yet the mechanisms responsible are less well understood. In the present experiments we examined the possible role of intracortical inhibitory circuits in terminating a 20% maximum isometric contraction of the first dorsal interosseous muscle (FDI) in eight healthy subjects. Subjects performed the task simultaneously with both hands and received single or pairs (at an interstimulus interval of 3 ms to evaluate short interval intracortical inhibition, SICI) of transcranial magnetic stimuli (TMS) via a focal coil over the motor hand area of the left hemisphere at different times before and after the onset of relaxation. The amplitude of the motor-evoked potential (MEP) following a single or a pair of TMS pulses was measured in the right FDI and plotted relative to the onset of relaxation as estimated from the surface electromyogram (EMG) of the left FDI. MEPs were larger during contraction than after relaxation whereas SICI was absent during contraction and reappeared after relaxation. We found that in all subjects, the time course of MEP changes during relaxation was closely fitted by a Boltzmann sigmoidal curve which allowed us to estimate the mean MEP amplitudes as well as the ratio of the amplitudes after single or pairs of TMS pulses (i.e.%SICI) at any time in the task. The data showed that the amplitude of MEPs to single pulse TMS had started to decline at about the same time as the onset of EMG silence. Furthermore, the size of the MEPs evoked by paired pulses decreased up to 30 ms beforehand. The latter suggests that an increase in SICI occurs prior to the onset of MEP changes, and hence that increased cortical inhibition may play a role in suppressing corticospinal excitability during relaxation. A subsidiary experiment showed that the time relations of changes in SICI and MEP were unchanged by a period of 10 min training on the task.

  18. Trade Electricity. Motors & Controls--Level 3. Standardized Curriculum.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Office of Occupational and Career Education.

    This curriculum guide consists of seven modules on motors and controls, one of the three divisions of the standardized trade electricity curriculum in high schools in New York City. The seven modules cover the following subjects: energy conservation wiring, direct current (DC) motor repair and rewinding, DC motor controls, alternating current (AC)…

  19. Trade Electricity. Motors & Controls--Level 3. Standardized Curriculum.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Office of Occupational and Career Education.

    This curriculum guide consists of seven modules on motors and controls, one of the three divisions of the standardized trade electricity curriculum in high schools in New York City. The seven modules cover the following subjects: energy conservation wiring, direct current (DC) motor repair and rewinding, DC motor controls, alternating current (AC)…

  20. One hand clapping: lateralization of motor control

    PubMed Central

    Welniarz, Quentin; Dusart, Isabelle; Gallea, Cécile; Roze, Emmanuel

    2015-01-01

    Lateralization of motor control refers to the ability to produce pure unilateral or asymmetric movements. It is required for a variety of coordinated activities, including skilled bimanual tasks and locomotion. Here we discuss the neuroanatomical substrates and pathophysiological underpinnings of lateralized motor outputs. Significant breakthroughs have been made in the past few years by studying the two known conditions characterized by the inability to properly produce unilateral or asymmetric movements, namely human patients with congenital “mirror movements” and model rodents with a “hopping gait”. Whereas mirror movements are associated with altered interhemispheric connectivity and abnormal corticospinal projections, abnormal spinal cord interneurons trajectory is responsible for the “hopping gait”. Proper commissural axon guidance is a critical requirement for these mechanisms. Interestingly, the analysis of these two conditions reveals that the production of asymmetric movements involves similar anatomical and functional requirements but in two different structures: (i) lateralized activation of the brain or spinal cord through contralateral silencing by cross-midline inhibition; and (ii) unilateral transmission of this activation, resulting in lateralized motor output. PMID:26082690

  1. Spatial constancy mechanisms in motor control

    PubMed Central

    Medendorp, W. Pieter

    2011-01-01

    The success of the human species in interacting with the environment depends on the ability to maintain spatial stability despite the continuous changes in sensory and motor inputs owing to movements of eyes, head and body. In this paper, I will review recent advances in the understanding of how the brain deals with the dynamic flow of sensory and motor information in order to maintain spatial constancy of movement goals. The first part summarizes studies in the saccadic system, showing that spatial constancy is governed by a dynamic feed-forward process, by gaze-centred remapping of target representations in anticipation of and across eye movements. The subsequent sections relate to other oculomotor behaviour, such as eye–head gaze shifts, smooth pursuit and vergence eye movements, and their implications for feed-forward mechanisms for spatial constancy. Work that studied the geometric complexities in spatial constancy and saccadic guidance across head and body movements, distinguishing between self-generated and passively induced motion, indicates that both feed-forward and sensory feedback processing play a role in spatial updating of movement goals. The paper ends with a discussion of the behavioural mechanisms of spatial constancy for arm motor control and their physiological implications for the brain. Taken together, the emerging picture is that the brain computes an evolving representation of three-dimensional action space, whose internal metric is updated in a nonlinear way, by optimally integrating noisy and ambiguous afferent and efferent signals. PMID:21242137

  2. Reducing Stepping-Motor Power Consumption

    NASA Technical Reports Server (NTRS)

    Williams, C. J.

    1985-01-01

    Direct-current stepping motors used in computer peripherals, process control, and precision remote-positioning equipment constantly dissipate power and create heat even when not moving. Circuit design energizes stepper motor only when pulses are present on control input.

  3. Asymmetric Circuit Models and Parameter Measurement for PermanentMagnet Linear Synchronous Motor Considering Inductance Harmonics and Saliency

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shu; Yamaguchi, Tomonobu; Hirahara, Hideaki; Ara, Takahiro

    This paper presents asymmetric circuit models and an inductance parameter measurement method for Permanent Magnet Linear Synchronous Motors (PMLSMs). The reason why the tested PMLSM with surface permanent magnet structure exhibits both asymmetry and salient pole natures is investigated. Asymmetric circuit models considering the saliency and inductance harmonic effects are discussed for PMLSM fed by three-phase three-wire power source systems. All fundamental and harmonic inductance parameters are easily determined by a standstill test using a single-phase commercial source. Experimental and simulation results on a single-sided PMLSM with a 3-phase, 4-pole and 14-slot mover demonstrate the validity of the proposed method.

  4. Mechanical properties and neural control of human hand motor units.

    PubMed

    Fuglevand, Andrew J

    2011-12-01

    Motor units serve both as the mechanical apparatus and the final stage of neural processing through which motor behaviours are enacted. Therefore, knowledge about the contractile properties and organization of the neural inputs to motor units supplying finger muscles is essential for understanding the control strategies underlying the diverse motor functions of the human hand. In this brief review, basic contractile properties of motor units residing in human hand muscles are described. Hand motor units are not readily categorized into the classical physiological types as established in the cat gastrocnemius muscle. In addition, the distribution of descending synaptic inputs to motor nuclei supplying different hand muscles is outlined. Motor neurons innervating intrinsic muscles appear to have relatively independent lines of input from supraspinal centres whereas substantial divergence of descending input is seen across motor nuclei supplying extrinsic hand muscles. The functional significance of such differential organizations of descending inputs for the control of hand movements is discussed.

  5. Mechanical properties and neural control of human hand motor units

    PubMed Central

    Fuglevand, Andrew J

    2011-01-01

    Abstract Motor units serve both as the mechanical apparatus and the final stage of neural processing through which motor behaviours are enacted. Therefore, knowledge about the contractile properties and organization of the neural inputs to motor units supplying finger muscles is essential for understanding the control strategies underlying the diverse motor functions of the human hand. In this brief review, basic contractile properties of motor units residing in human hand muscles are described. Hand motor units are not readily categorized into the classical physiological types as established in the cat gastrocnemius muscle. In addition, the distribution of descending synaptic inputs to motor nuclei supplying different hand muscles is outlined. Motor neurons innervating intrinsic muscles appear to have relatively independent lines of input from supraspinal centres whereas substantial divergence of descending input is seen across motor nuclei supplying extrinsic hand muscles. The functional significance of such differential organizations of descending inputs for the control of hand movements is discussed. PMID:22005677

  6. Electrically Controlled Valve With Small Motor

    NASA Technical Reports Server (NTRS)

    Reinicke, Robert H.; Mohtar, Rafic; Nelson, Richard O.

    1992-01-01

    Design of electrically controlled valve exploits force-multiplying principle to overcome large back-pressure force resisting initial opening. Design makes possible to open valve by use of relatively small motor adequate for rest of valve motion, but otherwise not large enough to open valve. In simple linear lifting, small horizontal forces applied to pair of taut cables to lift large weight through short distance. In rotary lifting, similar effect achieved by rotating, about an axis, disk to which initially axial cables attached.

  7. Method and apparatus for pulse width modulation control of an AC induction motor

    DOEpatents

    Geppert, Steven; Slicker, James M.

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  8. Method and apparatus for pulse width modulation control of an AC induction motor

    NASA Technical Reports Server (NTRS)

    Geppert, Steven (Inventor); Slicker, James M. (Inventor)

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.

  9. GABAergic circuits control spike-timing-dependent plasticity.

    PubMed

    Paille, Vincent; Fino, Elodie; Du, Kai; Morera-Herreras, Teresa; Perez, Sylvie; Kotaleski, Jeanette Hellgren; Venance, Laurent

    2013-05-29

    The spike-timing-dependent plasticity (STDP), a synaptic learning rule for encoding learning and memory, relies on relative timing of neuronal activity on either side of the synapse. GABAergic signaling has been shown to control neuronal excitability and consequently the spike timing, but whether GABAergic circuits rule the STDP remained unknown. Here we show that GABAergic signaling governs the polarity of STDP, because blockade of GABAA receptors was able to completely reverse the temporal order of plasticity at corticostriatal synapses in rats and mice. GABA controls the polarity of STDP in both striatopallidal and striatonigral output neurons. Biophysical simulations and experimental investigations suggest that GABA controls STDP polarity through depolarizing effects at distal dendrites of striatal output neurons by modifying the balance of two calcium sources, NMDARs and voltage-sensitive calcium channels. These findings establish a central role for GABAergic circuits in shaping STDP and suggest that GABA could operate as a Hebbian/anti-Hebbian switch.

  10. Measurement of control system response using an analog operational circuit

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.

    1978-01-01

    Ten basic steps are established for an analog method that measures control system response parameters. An example shows how these steps were used on a speed control portion of an auxiliary power unit. The equations and calculations necessary to describe this subsystem are given. The mechanization schematic and simulation diagram for obtaining the measured response parameters of the control system using an analog circuit are explained. Methods for investigating the various effects of the control parameters are described. It is concluded that the optimum system should be underdamped enough to be slightly oscillatory during transients.

  11. The basal ganglia: from motor commands to the control of vigor.

    PubMed

    Dudman, Joshua T; Krakauer, John W

    2016-04-01

    Vertebrates are remarkable for their ability to select and execute goal-directed actions: motor skills critical for thriving in complex, competitive environments. A key aspect of a motor skill is the ability to execute its component movements over a range of speeds, amplitudes and frequencies (vigor). Recent work has indicated that a subcortical circuit, the basal ganglia, is a critical determinant of movement vigor in rodents and primates. We propose that the basal ganglia evolved from a circuit that in lower vertebrates and some mammals is sufficient to directly command simple or stereotyped movements to one that indirectly controls the vigor of goal-directed movements. The implications of a dual role of the basal ganglia in the control of vigor and response to reward are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Optical control of muscle function by transplantation of stem cell-derived motor neurons in mice.

    PubMed

    Bryson, J Barney; Machado, Carolina Barcellos; Crossley, Martin; Stevenson, Danielle; Bros-Facer, Virginie; Burrone, Juan; Greensmith, Linda; Lieberam, Ivo

    2014-04-04

    Damage to the central nervous system caused by traumatic injury or neurological disorders can lead to permanent loss of voluntary motor function and muscle paralysis. Here, we describe an approach that circumvents central motor circuit pathology to restore specific skeletal muscle function. We generated murine embryonic stem cell-derived motor neurons that express the light-sensitive ion channel channelrhodopsin-2, which we then engrafted into partially denervated branches of the sciatic nerve of adult mice. These engrafted motor neurons not only reinnervated lower hind-limb muscles but also enabled their function to be restored in a controllable manner using optogenetic stimulation. This synthesis of regenerative medicine and optogenetics may be a successful strategy to restore muscle function after traumatic injury or disease.

  13. Pneumatic oscillator circuits for timing and control of integrated microfluidics.

    PubMed

    Duncan, Philip N; Nguyen, Transon V; Hui, Elliot E

    2013-11-05

    Frequency references are fundamental to most digital systems, providing the basis for process synchronization, timing of outputs, and waveform synthesis. Recently, there has been growing interest in digital logic systems that are constructed out of microfluidics rather than electronics, as a possible means toward fully integrated laboratory-on-a-chip systems that do not require any external control apparatus. However, the full realization of this goal has not been possible due to the lack of on-chip frequency references, thus requiring timing signals to be provided from off-chip. Although microfluidic oscillators have been demonstrated, there have been no reported efforts to characterize, model, or optimize timing accuracy, which is the fundamental metric of a clock. Here, we report pneumatic ring oscillator circuits built from microfluidic valves and channels. Further, we present a compressible-flow analysis that differs fundamentally from conventional circuit theory, and we show the utility of this physically based model for the optimization of oscillator stability. Finally, we leverage microfluidic clocks to demonstrate circuits for the generation of phase-shifted waveforms, self-driving peristaltic pumps, and frequency division. Thus, pneumatic oscillators can serve as on-chip frequency references for microfluidic digital logic circuits. On-chip clocks and pumps both constitute critical building blocks on the path toward achieving autonomous laboratory-on-a-chip devices.

  14. Pneumatic oscillator circuits for timing and control of integrated microfluidics

    PubMed Central

    Duncan, Philip N.; Nguyen, Transon V.; Hui, Elliot E.

    2013-01-01

    Frequency references are fundamental to most digital systems, providing the basis for process synchronization, timing of outputs, and waveform synthesis. Recently, there has been growing interest in digital logic systems that are constructed out of microfluidics rather than electronics, as a possible means toward fully integrated laboratory-on-a-chip systems that do not require any external control apparatus. However, the full realization of this goal has not been possible due to the lack of on-chip frequency references, thus requiring timing signals to be provided from off-chip. Although microfluidic oscillators have been demonstrated, there have been no reported efforts to characterize, model, or optimize timing accuracy, which is the fundamental metric of a clock. Here, we report pneumatic ring oscillator circuits built from microfluidic valves and channels. Further, we present a compressible-flow analysis that differs fundamentally from conventional circuit theory, and we show the utility of this physically based model for the optimization of oscillator stability. Finally, we leverage microfluidic clocks to demonstrate circuits for the generation of phase-shifted waveforms, self-driving peristaltic pumps, and frequency division. Thus, pneumatic oscillators can serve as on-chip frequency references for microfluidic digital logic circuits. On-chip clocks and pumps both constitute critical building blocks on the path toward achieving autonomous laboratory-on-a-chip devices. PMID:24145429

  15. Measuring technical and mathematical investigation of multiple reignitions at the switching of a motor using vacuum circuit breakers

    NASA Astrophysics Data System (ADS)

    Luxa, Andreas

    The necessary conditions in switching system and vacuum circuit breaker for the occurrence of multiple re-ignitions and accompanying effects were examined. The shape of the occurring voltages was determined in relationship to other types of overvoltage. A phenomenological model of the arc, based on an extension of the Mayr equation for arcs was used with the simulation program NETOMAC for the switching transients. Factors which affect the arc parameters were analyzed. The results were statistically verified by 3000 three-phase switching tests on 3 standard vacuum circuit breakers under realistic systems conditions; the occurring overvoltage level was measured. Dimensioning criteria for motor simulation circuits in power plants were formulated on the basis of a theoretical equivalence analysis and experimental studies. The simulation model allows a sufficiently correct estimation of all effects.

  16. 49 CFR 236.103 - Switch circuit controller or point detector.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Switch circuit controller or point detector. 236.103 Section 236.103 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL... controller or point detector. Switch circuit controller, circuit controller, or point detector operated by...

  17. 49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... controller. 236.6 Section 236.6 Transportation Other Regulations Relating to Transportation (Continued... switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to the point, or with facing-point lock and circuit controller, shall be so maintained that when point is open...

  18. System and method to determine electric motor efficiency using an equivalent circuit

    DOEpatents

    Lu, Bin; Habetler, Thomas G.

    2011-06-07

    A system and method for determining electric motor efficiency includes a monitoring system having a processor programmed to determine efficiency of an electric motor under load while the electric motor is online. The determination of motor efficiency is independent of a rotor speed measurement. Further, the efficiency is based on a determination of stator winding resistance, an input voltage, and an input current. The determination of the stator winding resistance occurs while the electric motor under load is online.

  19. System and method to determine electric motor efficiency using an equivalent circuit

    DOEpatents

    Lu, Bin; Habetler, Thomas G.

    2015-10-27

    A system and method for determining electric motor efficiency includes a monitoring system having a processor programmed to determine efficiency of an electric motor under load while the electric motor is online. The determination of motor efficiency is independent of a rotor speed measurement. Further, the efficiency is based on a determination of stator winding resistance, an input voltage, and an input current. The determination of the stator winding resistance occurs while the electric motor under load is online.

  20. Perceptual-Motor Control in Human-Computer Interaction.

    DTIC Science & Technology

    1996-03-01

    This report isolates and examines some of the emergent perceptual-motor issues raised by the new style in human - computer interaction . It concerns...be studied. I also cover research from both the motor-control and the human - computer interaction literature that applies to perceptual and motor aspects of menu selection.

  1. Sneak Circuit Analysis of F-4C Flight Control System,

    DTIC Science & Technology

    1974-09-17

    TITLE Sneak Path Between Pitch and Roll Stability DATE _ -&gmentation R. Clardy ENGINEER ~au REFERENCES -A Schematic., Electrical System AN/ASA-32M...generator switching causes interruption of bus power and disengages AFCS. The high failure rate components in the B+ power supply (CR50, CR51, CR52, R50...contacts. 2) Schematic, Electrical -System AN/ASA-32M Control Circuits Drawing #281E402, Sheet 4, Revision A, 2-16-71 Normally Open, Latching. H common

  2. Memory and cognitive control circuits in mathematical cognition and learning.

    PubMed

    Menon, V

    2016-01-01

    Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal-frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal-frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. © 2016 Elsevier B.V. All rights reserved.

  3. Real Time Flux Control in PM Motors

    SciTech Connect

    Otaduy, P.J.

    2005-09-27

    Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the magnets instead of

  4. Neuro-fuzzy speed control of traveling-wave type ultrasonic motor drive using frequency and phase modulation.

    PubMed

    Chen, Tien-Chi; Yu, Chih-Hsien; Chen, Chun-Jung; Tsai, Mi-Ching

    2008-07-01

    This paper presents a Fuzzy Neural Network (FNN) control system for a traveling-wave ultrasonic motor (TWUSM) driven by a dual mode modulation non-resonant driving circuit. First, the motor configuration and the proposed driving circuit of a TWUSM are introduced. To drive a TWUSM effectively, a novel driving circuit, that simultaneously employs both the driving frequency and phase modulation control scheme, is proposed to provide two-phase balance voltage for a TWUSM. Since the dynamic characteristics and motor parameters of the TWUSM are highly nonlinear and time-varying, a FNN control system is therefore investigated to achieve high-precision speed control. The proposed FNN control system incorporates neuro-fuzzy control and the driving frequency and phase modulation to solve the problem of nonlinearities and variations. The proposed control system is digitally implemented by a low-cost digital signal processor based microcontroller, hence reducing the system hardware size and cost. The effectiveness of the proposed driving circuit and control system is verified with hardware experiments under the occurrence of uncertainties. In addition, the advantages of the proposed control scheme are indicated in comparison with a conventional proportional-integral control system.

  5. Control of a specific motor program by a small brain area in zebrafish

    PubMed Central

    Fajardo, Otto; Zhu, Peixin; Friedrich, Rainer W.

    2013-01-01

    Complex motor behaviors are thought to be coordinated by networks of brain nuclei that may control different elementary motor programs. Transparent zebrafish larvae offer the opportunity to analyze the functional organization of motor control networks by optical manipulations of neuronal activity during behavior. We examined motor behavior in transgenic larvae expressing channelrhodopsin-2 throughout many neurons in the brain. Wide-field optical stimulation triggered backward and rotating movements caused by the repeated execution of J-turns, a specific motor program that normally occurs during prey capture. Although optically-evoked activity was widespread, behavioral responses were highly coordinated and lateralized. 3-D mapping of behavioral responses to local optical stimuli revealed that J-turns can be triggered specifically in the anterior-ventral optic tectum (avOT) and/or the adjacent pretectum. These results suggest that the execution of J-turns is controlled by a small group of neurons in the midbrain that may act as a command center. The identification of a brain area controlling a defined motor program involved in prey capture is a step toward a comprehensive analysis of neuronal circuits mediating sensorimotor behaviors of zebrafish. PMID:23641200

  6. Roles of the orexin system in central motor control.

    PubMed

    Hu, Bo; Yang, Nian; Qiao, Qi-Cheng; Hu, Zhi-An; Zhang, Jun

    2015-02-01

    The neuropeptides orexin-A and orexin-B are produced by one group of neurons located in the lateral hypothalamic/perifornical area. However, the orexins are widely released in entire brain including various central motor control structures. Especially, the loss of orexins has been demonstrated to associate with several motor deficits. Here, we first summarize the present knowledge that describes the anatomical and morphological connections between the orexin system and various central motor control structures. In the next section, the direct influence of orexins on related central motor control structures is reviewed at molecular, cellular, circuitry, and motor activity levels. After the summarization, the characteristic and functional relevance of the orexin system's direct influence on central motor control function are demonstrated and discussed. We also propose a hypothesis as to how the orexin system orchestrates central motor control in a homeostatic regulation manner. Besides, the importance of the orexin system's phasic modulation on related central motor control structures is highlighted in this regulation manner. Finally, a scheme combining the homeostatic regulation of orexin system on central motor control and its effects on other brain functions is presented to discuss the role of orexin system beyond the pure motor activity level, but at the complex behavioral level.

  7. Variable Rail Voltage Control of a Brushless DC (BLDC) Motor

    DTIC Science & Technology

    2013-01-01

    Variable Rail Voltage Control of a Brushless DC ( BLDC ) Motor by Yuan Chen, Joseph Conroy, and William Nothwang ARL-TR-6308 January 2013...TR-6308 January 2013 Variable Rail Voltage Control of a Brushless DC ( BLDC ) Motor Yuan Chen, Joseph Conroy, and William Nothwang Sensors...DATES COVERED (From - To) 4. TITLE AND SUBTITLE Variable Rail Voltage Control of a Brushless DC ( BLDC ) Motor 5a. CONTRACT NUMBER 5b. GRANT

  8. Basal forebrain circuit for sleep-wake control.

    PubMed

    Xu, Min; Chung, Shinjae; Zhang, Siyu; Zhong, Peng; Ma, Chenyan; Chang, Wei-Cheng; Weissbourd, Brandon; Sakai, Noriaki; Luo, Liqun; Nishino, Seiji; Dan, Yang

    2015-11-01

    The mammalian basal forebrain (BF) has important roles in controlling sleep and wakefulness, but the underlying neural circuit remains poorly understood. We examined the BF circuit by recording and optogenetically perturbing the activity of four genetically defined cell types across sleep-wake cycles and by comprehensively mapping their synaptic connections. Recordings from channelrhodopsin-2 (ChR2)-tagged neurons revealed that three BF cell types, cholinergic, glutamatergic and parvalbumin-positive (PV+) GABAergic neurons, were more active during wakefulness and rapid eye movement (REM) sleep (wake/REM active) than during non-REM (NREM) sleep, and activation of each cell type rapidly induced wakefulness. By contrast, activation of somatostatin-positive (SOM+) GABAergic neurons promoted NREM sleep, although only some of them were NREM active. Synaptically, the wake-promoting neurons were organized hierarchically by glutamatergic→cholinergic→PV+ neuron excitatory connections, and they all received inhibition from SOM+ neurons. Together, these findings reveal the basic organization of the BF circuit for sleep-wake control.

  9. Laser-Controlled Rapid Prototyping of Photonic Integrated Circuits.

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.

    1994-01-01

    Photonic integrated circuits offer important cost and environmental advantages over circuits composed of discrete components. However, the design and fabrication of complex, large-area photonic integrated circuits (PICs) is severely limited by the lack of prototyping tools as well as the appropriate device structures. This thesis describes the use of a novel laser fabrication process for the rapid prototyping of integrated optical circuits in compound semiconductor substrates. The fabrication is based on a type of laser direct photoelectrochemical etching process that uses a focused laser beam which is scanned under computer control to form micrometer-scale grooves, thereby patterning rib-like optical waveguide structures. The computer-controlled apparatus can be programmed with any desired circuit pattern, and prototype waveguide circuits can be produced within a day. The technique does not require the use of a mask; thus, the etching can be done in a single step. In the first part of this thesis, the technique of micrometer-scale photoelectrochemical etching of GaAs is described. The use of this technique for the fabrication of several passive integrated optical devices in GaAs is then presented. These "building block" devices include linear waveguides, bends, Y-branches, and tapers. From these, we were able to form simple passive devices such as splitters and directional couplers. These devices have low optical loss, are single-mode, and can be accurately modeled using effective index calculations. The usefulness of this technique as a prototyping tool is then demonstrated by its use in the fabrication of the first sub-Angstrom integrated channel-dropping filter. After the presentation of the passive devices results, the use of this technique to fabricate several active devices is discussed. These electrooptic devices include a polarization modulator, an integrated amplitude modulator consisting of a polarization modulator and an on-chip polarizer, and an

  10. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    NASA Astrophysics Data System (ADS)

    Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman

    2016-02-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.

  11. 49 CFR 236.7 - Circuit controller operated by switch-and-lock movement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit controller operated by switch-and-lock..., AND APPLIANCES Rules and Instructions: All Systems General § 236.7 Circuit controller operated by switch-and-lock movement. Circuit controller operated by switch-and-lock movement shall be maintained so...

  12. Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping

    PubMed Central

    D’Ostilio, Kevin; Rothwell, John C; Murphy, David L

    2014-01-01

    Objective This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with lower voltage rating than prior cTMS devices. Main results cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (<10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in 10 healthy volunteers. Significance The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool. PMID:25242286

  13. Similar Motor Cortical Control Mechanisms for Precise Limb Control during Reaching and Locomotion

    PubMed Central

    Yakovenko, Sergiy

    2015-01-01

    Throughout the course of evolution there has been a parallel development of the complexity and flexibility of the nervous system and the skeletomuscular system that it controls. This development is particularly evident for the cerebral cortical areas and the transformation of the use of the upper limbs from a purely locomotor function to one including, or restricted to, reaching and grasping. This study addresses the issue of whether the control of reaching has involved the development of new cortical circuits or whether the same neurons are used to control both locomotion and reaching. We recorded the activity of pyramidal tract neurons in the motor cortex of the cat both during voluntary gait modifications and during reaching. All cells showed generally similar patterns of activity in both tasks. More specifically, we showed that, in many cases, cells maintained a constant temporal relationship to the activity of synergistic muscle groups in each task. In addition, in some cells the relationship between the intensity of the cell discharge activity and the magnitude of the EMG activity was equally constant during gait modifications and reaching. As such, the results are compatible with the hypothesis that the corticospinal circuits used to control reaching evolved from those used to precisely modify gait. SIGNIFICANCE STATEMENT In an article in 1989, Georgopoulos and Grillner (1989) proposed that the corticospinal control mechanisms used for reaching movements in primates may have evolved from those used to control precise modifications of gait during quadrupedal locomotion. In this article, we provide a test of this hypothesis by recording the activity of individual motor cortical cells during both behaviors. Our results are compatible with the hypothesis in that they demonstrate that individual cortical neurons exhibit similar qualitative and quantitative patterns during each behavior. Beyond a general similarity of activity patterns, we show that some cortical

  14. Thin-disc piezoceramic ultrasonic motor. Part II: system construction and control.

    PubMed

    Yen, Chi Yung; Wen, Fuh Liang; Ouyang, Minsun

    2003-08-01

    Design and performance evaluation of an ultrasonic motor was discussed in [Wen et al., Thin-disc piezoelectric ultrasonic motor. Part I: design and performance evaluation, Ultrasonics]. Higher precision position control of piezoceramic ultrasonic motor depends on mechanical design and servo control of a very precise and adequate metrology. This paper proposes the design of a driving circuit and controller to deal with non-linearities behavior in the model of piezoceramic-driving ultrasonic motor. The performance of the driver and the effectiveness of the proposed controller are demonstrated by command inputs of sinusoidal and step signals. For comparison purpose, the ultrasonic motor is controlled using two methods: i.e., proportional-integral-derivative (PID) and sliding-mode control (SMC). It was proven that SMC would compensate automatically for unmodeled behaviors such as piezoceramic non-linearities and mechanical stick-slip phenomena. Furthermore, SMC scheme has been successfully applied to position tracking to demonstrate the excellent robust performance in noise rejection.

  15. Introduction to the Control of Electric Motors.

    ERIC Educational Resources Information Center

    Spencer, Frederick

    The fundamentals of electric circuits and electric machines are presented in the text, with an emphasis on the practical operation rather than on mathematical analyses of theories involved. The material contained in the text includes the fundamentals of both D.C. and A.C. circuits together with the principles of magnetism and electro-magnetic…

  16. Clinically Relevant Levels of 4-Aminopyridine Strengthen Physiological Responses in Intact Motor Circuits in Rats, Especially After Pyramidal Tract Injury.

    PubMed

    Sindhurakar, Anil; Mishra, Asht M; Gupta, Disha; Iaci, Jennifer F; Parry, Tom J; Carmel, Jason B

    2017-04-01

    4-Aminopyridine (4-AP) is a Food and Drug Administration-approved drug to improve motor function in people with multiple sclerosis. Preliminary results suggest the drug may act on intact neural circuits and not just on demyelinated ones. To determine if 4-AP at clinically relevant levels alters the excitability of intact motor circuits. In anesthetized rats, electrodes were placed over motor cortex and the dorsal cervical spinal cord for electrical stimulation, and electromyogram electrodes were inserted into biceps muscle to measure responses. The motor responses to brain and spinal cord stimulation were measured before and for 5 hours after 4-AP administration both in uninjured rats and rats with a cut lesion of the pyramidal tract. Blood was collected at the same time as electrophysiology to determine drug plasma concentration with a goal of 20 to 100 ng/mL. We first determined that a bolus infusion of 0.32 mg/kg 4-AP was optimal: it produced on average 61.5 ± 1.8 ng/mL over the 5 hours after infusion. This dose of 4-AP increased responses to spinal cord stimulation by 1.3-fold in uninjured rats and 3-fold in rats with pyramidal tract lesion. Responses to cortical stimulation also increased by 2-fold in uninjured rats and up to 4-fold in the injured. Clinically relevant levels of 4-AP strongly augment physiological responses in intact circuits, an effect that was more robust after partial injury, demonstrating its broad potential in treating central nervous system injuries.

  17. Simulink-aided Design and Implementation of Sensorless BLDC Motor Digital Control System

    NASA Astrophysics Data System (ADS)

    Zhilenkov, A. A.; Tsvetkov, Y. N.; Chistov, V. B.; Nyrkov, A. P.; Sokolov, S. S.

    2017-07-01

    The paper describes the process of creating of brushless direct current motor’s digital control system. The target motor has no speed sensor, so back-EMF method is used for commutation control. Authors show how to model the control system in MatLab/Simulink and to test it onboard STM32F4 microcontroller.This technology allows to create the most flexible system, which will control possible with a personal computer by communication lines. It is possible to examine the signals in the circuit of the actuator without any external measuring instruments - testers, oscilloscopes, etc. - and output waveforms and measured values of signals directly on the host PC.

  18. Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex

    PubMed Central

    Di Lazzaro, V; Pilato, F; Saturno, E; Oliviero, A; Dileone, M; Mazzone, P; Insola, A; Tonali, PA; Ranieri, F; Huang, YZ; Rothwell, JC

    2005-01-01

    In four conscious patients who had electrodes implanted in the cervical epidural space for the control of pain, we recorded corticospinal volleys evoked by single-pulse transcranial magnetic stimulation (TMS) over the motor cortex before and after a 20 s period of continuous theta-burst stimulation (cTBS). It has previously been reported that this form of repetitive TMS reduces the amplitude of motor-evoked potentials (MEPs), with the maximum effect occurring at 5–10 min after the end of stimulation. The present results show that cTBS preferentially decreases the amplitude of the corticospinal I1 wave, with approximately the same time course. This is consistent with a cortical origin of the effect on the MEP. However, other protocols that lead to MEP suppression, such as short-interval intracortical inhibition, are characterized by reduced excitability of late I waves (particularly I3), suggesting that cTBS suppresses MEPs through different mechanisms, such as long-term depression in excitatory synaptic connections. PMID:15845575

  19. Endogenous rhythm and pattern-generating circuit interactions in cockroach motor centres

    PubMed Central

    David, Izhak; Holmes, Philip

    2016-01-01

    ABSTRACT Cockroaches are rapid and stable runners whose gaits emerge from the intricate, and not fully resolved, interplay between endogenous oscillatory pattern-generating networks and sensory feedback that shapes their rhythmic output. Here we studied the endogenous motor output of a brainless, deafferented preparation. We monitored the pilocarpine-induced rhythmic activity of levator and depressor motor neurons in the mesothoracic and metathoracic segments in order to reveal the oscillatory networks’ architecture and interactions. Data analyses included phase relations, latencies between and overlaps of rhythmic bursts, spike frequencies, and the dependence of these parameters on cycle frequency. We found that, overall, ipsilateral connections are stronger than contralateral ones. Our findings revealed asymmetries in connectivity among the different ganglia, in which meta-to-mesothoracic ascending coupling is stronger than meso-to-metathoracic descending coupling. Within-ganglion coupling between the metathoracic hemiganglia is stronger than that in the mesothoracic ganglion. We also report differences in the role and mode of operation of homologue network units (manifested by levator and depressor nerve activity). Many observed characteristics are similar to those exhibited by intact animals, suggesting a dominant role for feedforward control in cockroach locomotion. Based on these data we posit a connectivity scheme among components of the locomotion pattern generating system. PMID:27422902

  20. Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex.

    PubMed

    Di Lazzaro, V; Pilato, F; Saturno, E; Oliviero, A; Dileone, M; Mazzone, P; Insola, A; Tonali, P A; Ranieri, F; Huang, Y Z; Rothwell, J C

    2005-06-15

    In four conscious patients who had electrodes implanted in the cervical epidural space for the control of pain, we recorded corticospinal volleys evoked by single-pulse transcranial magnetic stimulation (TMS) over the motor cortex before and after a 20 s period of continuous theta-burst stimulation (cTBS). It has previously been reported that this form of repetitive TMS reduces the amplitude of motor-evoked potentials (MEPs), with the maximum effect occurring at 5-10 min after the end of stimulation. The present results show that cTBS preferentially decreases the amplitude of the corticospinal I1 wave, with approximately the same time course. This is consistent with a cortical origin of the effect on the MEP. However, other protocols that lead to MEP suppression, such as short-interval intracortical inhibition, are characterized by reduced excitability of late I waves (particularly I3), suggesting that cTBS suppresses MEPs through different mechanisms, such as long-term depression in excitatory synaptic connections.

  1. Controlling Photons, Qubits and their Interactions in Superconducting Electronic Circuits

    NASA Astrophysics Data System (ADS)

    Wallraff, Andreas

    2009-03-01

    A combination of ideas from atomic physics, quantum optics and solid state physics allows us to investigate the fundamental interaction of matter and light on the level of single quanta in electronic circuits. In an approach known as circuit quantum electrodynamics, we coherently couple individual photons stored in a high quality microwave frequency resonator to a fully controllable superconducting two-level system (qubit) realized in a macroscopic electronic circuit [1]. In particular, we have recently observed the simultaneous interaction of one, two and three photons with a single qubit. In these experiments, we have probed the quantum nonlinearity of the qubit/light interaction governed by the Jaynes-Cummings hamiltonian, clearly demonstrating the quantization of the radiation field in the on-chip cavity. We have also performed quantum optics experiments with no photons at all. In this situation, i.e. in pure vacuum, we have resolved the renormalization of the qubit transition frequency - known as the Lamb shift - due to its non-resonant interaction with the cavity vacuum fluctuations [3].[4pt] [1] A. Wallraff et al., Nature (London) 431, 162 (2004)[0pt] [2] J. Fink et al., Nature (London) 454, 315 (2008)[0pt] [3] A. Fragner et al., Science 322, 1357 (2008)

  2. Debris control design achievements of the booster separation motors

    NASA Technical Reports Server (NTRS)

    Smith, G. W.; Chase, C. A.

    1985-01-01

    The stringent debris control requirements imposed on the design of the Space Shuttle booster separation motor are described along with the verification program implemented to ensure compliance with debris control objectives. The principal areas emphasized in the design and development of the Booster Separation Motor (BSM) relative to debris control were the propellant formulation and nozzle closures which protect the motors from aerodynamic heating and moisture. A description of the motor design requirements, the propellant formulation and verification program, and the nozzle closures design and verification are presented.

  3. Stepping-Motion Motor-Control Subsystem For Testing Bearings

    NASA Technical Reports Server (NTRS)

    Powers, Charles E.

    1992-01-01

    Control subsystem closed-loop angular-position-control system causing motor and bearing under test to undergo any of variety of continuous or stepping motions. Also used to test bearing-and-motor assemblies, motors, angular-position sensors including rotating shafts, and like. Monitoring subsystem gathers data used to evaluate performance of bearing or other article under test. Monitoring subsystem described in article, "Monitoring Subsystem For Testing Bearings" (GSC-13432).

  4. Post-translational control of genetic circuits using Potyvirus proteases

    PubMed Central

    Fernandez-Rodriguez, Jesus; Voigt, Christopher A.

    2016-01-01

    Genetic engineering projects often require control over when a protein is degraded. To this end, we use a fusion between a degron and an inactivating peptide that can be added to the N-terminus of a protein. When the corresponding protease is expressed, it cleaves the peptide and the protein is degraded. Three protease:cleavage site pairs from Potyvirus are shown to be orthogonal and active in exposing degrons, releasing inhibitory domains and cleaving polyproteins. This toolbox is applied to the design of genetic circuits as a means to control regulator activity and degradation. First, we demonstrate that a gate can be constructed by constitutively expressing an inactivated repressor and having an input promoter drive the expression of the protease. It is also shown that the proteolytic release of an inhibitory domain can improve the dynamic range of a transcriptional gate (200-fold repression). Next, we design polyproteins containing multiple repressors and show that their cleavage can be used to control multiple outputs. Finally, we demonstrate that the dynamic range of an output can be improved (8-fold to 190-fold) with the addition of a protease-cleaved degron. Thus, controllable proteolysis offers a powerful tool for modulating and expanding the function of synthetic gene circuits. PMID:27298256

  5. Similar Motor Cortical Control Mechanisms for Precise Limb Control during Reaching and Locomotion.

    PubMed

    Yakovenko, Sergiy; Drew, Trevor

    2015-10-28

    Throughout the course of evolution there has been a parallel development of the complexity and flexibility of the nervous system and the skeletomuscular system that it controls. This development is particularly evident for the cerebral cortical areas and the transformation of the use of the upper limbs from a purely locomotor function to one including, or restricted to, reaching and grasping. This study addresses the issue of whether the control of reaching has involved the development of new cortical circuits or whether the same neurons are used to control both locomotion and reaching. We recorded the activity of pyramidal tract neurons in the motor cortex of the cat both during voluntary gait modifications and during reaching. All cells showed generally similar patterns of activity in both tasks. More specifically, we showed that, in many cases, cells maintained a constant temporal relationship to the activity of synergistic muscle groups in each task. In addition, in some cells the relationship between the intensity of the cell discharge activity and the magnitude of the EMG activity was equally constant during gait modifications and reaching. As such, the results are compatible with the hypothesis that the corticospinal circuits used to control reaching evolved from those used to precisely modify gait. Copyright © 2015 the authors 0270-6474/15/3514476-15$15.00/0.

  6. 46 CFR 111.91-1 - Power, control, and interlock circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Power, control, and interlock circuits. 111.91-1 Section 111.91-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME...

  7. 46 CFR 111.91-1 - Power, control, and interlock circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Power, control, and interlock circuits. 111.91-1 Section 111.91-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME...

  8. 46 CFR 111.91-1 - Power, control, and interlock circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Power, control, and interlock circuits. 111.91-1 Section 111.91-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME...

  9. 46 CFR 111.91-1 - Power, control, and interlock circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Power, control, and interlock circuits. 111.91-1 Section 111.91-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME...

  10. 46 CFR 111.91-1 - Power, control, and interlock circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Power, control, and interlock circuits. 111.91-1 Section 111.91-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME...

  11. 49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to the...

  12. 49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to the...

  13. 49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to the...

  14. 49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to the...

  15. Push-Pull Control of Motor Output

    PubMed Central

    Johnson, Michael D.; Hyngstrom, Allison S.; Manuel, Marin; Heckman, C.J.

    2012-01-01

    Inhibition usually decreases input-output excitability of neurons. If, however, inhibition is coupled to excitation in a push-pull fashion, where inhibition decreases as excitation increases, neuron excitability can be increased. Although the presence of push-pull organization has been demonstrated in single cells, its functional impact on neural processing depends on its effect on the system level. We studied push-pull in the motor output stage of the feline spinal cord, a system which hallows in dependent control of inhibitory and excitatory components. Push-pull organization was clearly present in ankle extensor motoneurons, producing increased peak to peak modulation of synaptic currents. The effect at the system level was equally strong. Independent control of the inhibitory component showed that the stronger the background of inhibition, the greater the peak force production. This illustrates the paradox at the heart of push-pull organization: increased force output can be achieved by increasing background inhibition to provide greater disinhibition. PMID:22457505

  16. Maximum Output Power Control Using Short-Circuit Current and Open-Circuit Voltage of a Solar Panel

    NASA Astrophysics Data System (ADS)

    Kato, Takahiro; Miyake, Takuma; Tashima, Daisuke; Sakoda, Tatsuya; Otsubo, Masahisa; Hombu, Mitsuyuki

    2012-10-01

    A control method to optimize the output power of a solar cell is necessary because the output of a solar cell strongly depends on solar radiation. We here proposed two output power control methods using the short-circuit current and open-circuit voltage of a solar panel. One of them used a current ratio and a voltage ratio (αβ control), and the other used a current ratio and a short-circuit current-electric power characteristic coefficient (αγ control). The usefulness of the αβ and the αγ control methods was evaluated. The results showed that the output power controlled by our proposed methods was close to the maximum output power of a solar panel.

  17. Low distortion automatic phase control circuit. [voltage controlled phase shifter

    NASA Technical Reports Server (NTRS)

    Hauge, G.; Pederson, C. W. (Inventor)

    1974-01-01

    A voltage controlled phase shifter is rendered substantially harmonic distortion free over a large dynamic input range by employing two oppositely poled, equally biased varactor diodes as the voltage controlled elements which adjust the phase shift. Control voltages which affect the bias of both diodes equally are used to adjust the phase shift without increasing distortion. A feedback stabilized phase shifter is rendered substantially frequency independent by employing a phase detector to control the phase shift of the voltage controlled phase shifter.

  18. Sneak circuit analysis of instrumentation and control systems. [technology transfer

    NASA Technical Reports Server (NTRS)

    Rankin, J. P.; Williams, A. M.

    1974-01-01

    The evolvement and implementation is presented of a systematic means for detecting the sneak prone designs of an electrical system which could result in such unplanned modes so that they can be prevented prior to occurrence. Sneak circuit analysis is shown to be a formalized approach based upon topological techniques. The trees employed are produced from manufacturing detail data processed by a computer to orderly completion. The analysis techniques applied on a variety of NASA programs are shown to be particularly applicable to industrial instrumentation and control systems.

  19. Studies in Motor Behavior: 75 Years of Research in Motor Development, Learning, and Control

    ERIC Educational Resources Information Center

    Ulrich, Beverly D.; Reeve, T. Gilmour

    2005-01-01

    Research focused on human motor development, learning, and control has been a prominent feature in the Research Quarterly for Exercise and Sport (RQES) since it was first published in 1930. The purpose of this article is to provide an overview of the papers in the RQES that demonstrate the journal's contributions to the study of motor development,…

  20. Time Processing and Motor Control in Movement Disorders.

    PubMed

    Avanzino, Laura; Pelosin, Elisa; Vicario, Carmelo M; Lagravinese, Giovanna; Abbruzzese, Giovanni; Martino, Davide

    2016-01-01

    The subjective representation of "time" is critical for cognitive tasks but also for several motor activities. The neural network supporting motor timing comprises: lateral cerebellum, basal ganglia, sensorimotor and prefrontal cortical areas. Basal ganglia and associated cortical areas act as a hypothetical "internal clock" that beats the rhythm when the movement is internally generated. When timing information is processed to make predictions on the outcome of a subjective or externally perceived motor act, cerebellar processing and outflow pathways appear to be primarily involved. Clinical and experimental evidence on time processing and motor control points to a dysfunction of the neural networks involving basal ganglia and cerebellum in movement disorders. In some cases, temporal processing deficits could directly contribute to core motor features of the movement disorder, as in the case of bradykinesia in Parkinson's disease. For other movement disorders, the relationship between abnormal time processing and motor performance is less obvious and requires further investigation, as in the reduced accuracy in predicting the temporal outcome of a motor act in dystonia. We aim to review the literature on time processing and motor control in Parkinson's disease, dystonia, Huntington's disease, and Tourette syndrome, integrating the available findings with current pathophysiological models; we will highlight the areas in which future explorations are warranted, as well as the aspects of time processing in motor control that present translational aspects in future rehabilitation strategies. The subjective representation of "time" is critical for cognitive tasks but also for motor activities. Recently, greater attention has been devoted to improve our understanding of how temporal information becomes integrated within the mechanisms of motor control. Experimental evidence recognizes time processing in motor control as a complex neural function supported by diffuse