Sample records for motor control methods

  1. Sensorless Sinusoidal Drives for Fan and Pump Motors by V/f Control

    NASA Astrophysics Data System (ADS)

    Kiuchi, Mitsuyuki; Ohnishi, Tokuo

    This paper proposes sensorless sinusoidal driving methods of permanent magnet synchronous motors for fans and pumps by V/f control. The proposed methods are simple methods that control the motor peak current constant by voltage or frequency control, and are characterized by DC link current detection using a single shunt resistor at carrier wave signal bottom timing. As a result of the dumping factor from square torque load characteristics of fan and pump motors, it is possible to control stable starting and stable steady state by V/f control. In general, pressure losses as a result of the fluid pass of fan and pump systems are nearly constant; therefore, the flow rate and motor torque are determined by revolutions. Accordingly, high efficiency driving is possible by setting corresponding currents to q-axis currents (torque currents) at target revolutions. Because of the simple current detection and motor control methods, the proposed methods are optimum for fan and pump motor driving systems of home appliances.

  2. A Drive Method of Permanent Magnet Synchronous Motor Using Torque Angle Estimation without Position Sensor

    NASA Astrophysics Data System (ADS)

    Tanaka, Takuro; Takahashi, Hisashi

    In some motor applications, it is very difficult to attach a position sensor to the motor in housing. One of the examples of such applications is the dental handpiece-motor. In those designs, it is necessary to drive highly efficiency at low speed and variable load condition without a position sensor. We developed a method to control a motor high-efficient and smoothly at low speed without a position sensor. In this paper, the method in which permanent magnet synchronous motor is controlled smoothly and high-efficient by using torque angle control in synchronized operation is shown. The usefulness is confirmed by experimental results. In conclusion, the proposed sensor-less control method has been achieved to be very efficiently and smoothly.

  3. Fault diagnosis and fault-tolerant finite control set-model predictive control of a multiphase voltage-source inverter supplying BLDC motor.

    PubMed

    Salehifar, Mehdi; Moreno-Equilaz, Manuel

    2016-01-01

    Due to its fault tolerance, a multiphase brushless direct current (BLDC) motor can meet high reliability demand for application in electric vehicles. The voltage-source inverter (VSI) supplying the motor is subjected to open circuit faults. Therefore, it is necessary to design a fault-tolerant (FT) control algorithm with an embedded fault diagnosis (FD) block. In this paper, finite control set-model predictive control (FCS-MPC) is developed to implement the fault-tolerant control algorithm of a five-phase BLDC motor. The developed control method is fast, simple, and flexible. A FD method based on available information from the control block is proposed; this method is simple, robust to common transients in motor and able to localize multiple open circuit faults. The proposed FD and FT control algorithm are embedded in a five-phase BLDC motor drive. In order to validate the theory presented, simulation and experimental results are conducted on a five-phase two-level VSI supplying a five-phase BLDC motor. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Electromagnetic phenomena analysis in brushless DC motor with speed control using PWM method

    NASA Astrophysics Data System (ADS)

    Ciurys, Marek Pawel

    2017-12-01

    Field-circuit model of a brushless DC motor with speed control using PWM method was developed. Waveforms of electrical and mechanical quantities of the designed motor with a high pressure vane pump built in a rotor of the motor were computed. Analysis of electromagnetic phenomena in the system: single phase AC network - converter - BLDC motor was carried out.

  5. System and method for determining stator winding resistance in an AC motor using motor drives

    DOEpatents

    Lu, Bin; Habetler, Thomas G; Zhang, Pinjia

    2013-02-26

    A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.

  6. System and method for monitoring and controlling stator winding temperature in a de-energized AC motor

    DOEpatents

    Lu, Bin [Kenosha, WI; Luebke, Charles John [Sussex, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Becker, Scott K [Oak Creek, WI

    2011-12-27

    A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.

  7. Measurement of motor disability in MPTP-treated macaques using a telemetry system for estimating circadian motor activity.

    PubMed

    Barcia, C; De Pablos, V; Bautista-Hernández, V; Sanchez-Bahillo, A; Fernández-Barreiro, A; Poza, M; Herrero, M T

    2004-03-15

    The parkinsonian symptoms of primates after MPTP exposure can be measured by several visual methods (classical motor scores). However, these methods have a subjective bias, especially as regards the evaluation of the motor activity. Computerized monitoring systems represent an unbiased method for measuring the motor disability of monkeys after MPTP administration. In this work the motor activity of monkeys before and after MPTP administration is measured and compared with the activity of a control intact group by means of a telemetry system. A pronounced decrease in motor activity was observed after MPTP administration. These results suggest the monitoring method used is suited for characterizing the motor incapacity and possible improvements following treatments to test different therapies to control Parkinson's disease in MPTP models involving primates.

  8. The increase in the starting torque of PMSM motor by applying of FOC method

    NASA Astrophysics Data System (ADS)

    Plachta, Kamil

    2017-05-01

    The article presents field oriented control method of synchronous permanent magnet motor equipped in optical sensors. This method allows for a wide range regulation of torque and rotational speed of the electric motor. The paper presents mathematical model of electric motor and vector control method. Optical sensors have shorter time response as compared to the inductive sensors, which allow for faster response of the electronic control system to changes of motor loads. The motor driver is based on the digital signal processor which performs advanced mathematical operations in real time. The appliance of Clark and Park transformation in the software defines the angle of rotor position. The presented solution provides smooth adjustment of the rotational speed in the first operating zone and reduces the dead zone of the torque in the second and third operating zones.

  9. The Numerical Calculation and Experimental Measurement of the Inductance Parameters for Permanent Magnet Synchronous Motor in Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Qiao, Mingzhong; Zhu, Peng

    2017-12-01

    A permanent magnet synchronous motor with radial magnetic circuit and built-in permanent magnet is designed for the electric vehicle. Finite element numerical calculation and experimental measurement are adopted to obtain the direct axis and quadrature axis inductance parameters of the motor which are vital important for the motor control. The calculation method is simple, the measuring principle is clear, the results of numerical calculation and experimental measurement are mutual confirmation. A quick and effective method is provided to obtain the direct axis and quadrature axis inductance parameters of the motor, and then improve the design of motor or adjust the control parameters of the motor controller.

  10. Universal adaptive torque control for PM motors for field-weakening region operation

    DOEpatents

    Royak, Semyon [Beachwood, OH; Harbaugh, Mark M [Richfield, OH; Breitzmann, Robert J [South Russel, OH; Nondahl, Thomas A [Wauwatosa, WI; Schmidt, Peter B [Franklin, WI; Liu, Jingbo [Milwaukee, WI

    2011-03-29

    The invention includes a motor controller and method for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by, among other things, receiving a torque command, determining a normalized torque command by normalizing the torque command to a characteristic current of the motor, determining a normalized maximum available voltage, determining an inductance ratio of the motor, and determining a direct-axis current based upon the normalized torque command, the normalized maximum available voltage, and the inductance ratio of the motor.

  11. Design and simulation of permanent magnet synchronous motor control system

    NASA Astrophysics Data System (ADS)

    Li, Li; Liu, Yongqiu

    2018-06-01

    In recent years, with the development of power electronics, microelectronics, new motor control theory and rare earth permanent magnet materials, permanent magnet synchronous motors have been rapidly applied. Permanent magnet synchronous motors have the advantages of small size, low loss and high efficiency. Today, energy conservation and environmental protection are increasingly valued. It is very necessary to study them. Permanent magnet synchronous motor control system has a wide range of application prospects in the fields of electric vehicles, ships and other transportation. Using the simulation function of MATLAB/SIMULINK, a modular design structure was used to simulate the whole system model of speed loop adjustment, current PI modulation, SVPWM (Space Vector Pulse Width Module) wave generation and double closed loop. The results show that this control method has good robustness, and this method can improve the design efficiency and shorten the system design time. In this article, the analysis of the control principle of modern permanent magnet synchronous motor and the various processes of MATLAB simulation application will be analyzed in detail. The basic theory, basic method and application technology of the permanent magnet synchronous motor control system are systematically introduced.

  12. A Novelty Design Of Minimization Of Electrical Losses In A Vector Controlled Induction Machine Drive

    NASA Astrophysics Data System (ADS)

    Aryza, Solly; Irwanto, M.; Lubis, Zulkarnain; Putera Utama Siahaan, Andysah; Rahim, Robbi; Furqan, Mhd.

    2018-01-01

    The induction motor has in the industry . More attention has been a focus to develop and design of induction motor drive. With the method of vector control novelty prove the efficiency of induction motor over their entire speed range. In this paper desirable to design a loss minimization controller which can improve the efficiency. Also, this research described Modeling of an induction motor with core loss included. Realization of methods vector control for an induction motor drive with loss element included. The case of the loss minimization condition. The procedure was successful to calculate the gains of a PI controller. Though the problem of obtaining a robust and sensorless induction motor drive is by no means completely solved, the results obtained as part of this work point in a promising direction.

  13. Synchronous Control Method and Realization of Automated Pharmacy Elevator

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-Quan

    Firstly, the control method of elevator's synchronous motion is provided, the synchronous control structure of double servo motor based on PMAC is accomplished. Secondly, synchronous control program of elevator is implemented by using PMAC linear interpolation motion model and position error compensation method. Finally, the PID parameters of servo motor were adjusted. The experiment proves the control method has high stability and reliability.

  14. Control system and method for a hybrid electric vehicle

    DOEpatents

    Tamor, Michael Alan

    2001-03-06

    Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.

  15. Fuzzy control of small servo motors

    NASA Technical Reports Server (NTRS)

    Maor, Ron; Jani, Yashvant

    1993-01-01

    To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.

  16. Design of BLDCM emulator for transmission control units

    NASA Astrophysics Data System (ADS)

    Liu, Chang; He, Yongyi; Zhang, Bodong

    2018-04-01

    According to the testing requirements of the transmission control unit, a brushless DC motor emulating system is designed based on motor simulation and power hardware-in-the-loop. The discrete motor model is established and a real-time numerical method is designed to solve the motor states. The motor emulator directly interacts with power stage of the transmission control unit using a power-efficient circuit topology and is compatible with sensor-less control. Experiments on a laboratory prototype help to verify that the system can emulate the real motor currents and voltages whenever the motor is starting up or suddenly loaded.

  17. Rotor Position Sensorless Control and Its Parameter Sensitivity of Permanent Magnet Motor Based on Model Reference Adaptive System

    NASA Astrophysics Data System (ADS)

    Ohara, Masaki; Noguchi, Toshihiko

    This paper describes a new method for a rotor position sensorless control of a surface permanent magnet synchronous motor based on a model reference adaptive system (MRAS). This method features the MRAS in a current control loop to estimate a rotor speed and position by using only current sensors. This method as well as almost all the conventional methods incorporates a mathematical model of the motor, which consists of parameters such as winding resistances, inductances, and an induced voltage constant. Hence, the important thing is to investigate how the deviation of these parameters affects the estimated rotor position. First, this paper proposes a structure of the sensorless control applied in the current control loop. Next, it proves the stability of the proposed method when motor parameters deviate from the nominal values, and derives the relationship between the estimated position and the deviation of the parameters in a steady state. Finally, some experimental results are presented to show performance and effectiveness of the proposed method.

  18. Determination of torque speed current characteristics of a brushless DC motor by utilizing back-EMF of non-energized phase

    NASA Astrophysics Data System (ADS)

    Jang, G. H.; Yeom, J. H.; Kim, M. G.

    2007-03-01

    This paper presents a method to determine the torque constant and the torque-speed-current characteristics of a brushless DC (BLDC) motor by utilizing back-EMF variation of nonenergized phase. It also develops a BLDC motor controller with a digital signal processor (DSP) to monitor its current, voltage and speed in real time. Torque-speed-current characteristics of a BLDC motor are determined by using the proposed method and the developed controller. They are compared with the torque-speed-current characteristics measured by dynamometer experimentally. This research shows that the proposed method is an effective method to determine the torque constant and the torque-speed-current characteristics of the BLDC motor without using dynamometer.

  19. Universal Parameter Measurement and Sensorless Vector Control of Induction and Permanent Magnet Synchronous Motors

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shu; Ara, Takahiro

    Recently, induction motors (IMs) and permanent-magnet synchronous motors (PMSMs) have been used in various industrial drive systems. The features of the hardware device used for controlling the adjustable-speed drive in these motors are almost identical. Despite this, different techniques are generally used for parameter measurement and speed-sensorless control of these motors. If the same technique can be used for parameter measurement and sensorless control, a highly versatile adjustable-speed-drive system can be realized. In this paper, the authors describe a new universal sensorless control technique for both IMs and PMSMs (including salient pole and nonsalient pole machines). A mathematical model applicable for IMs and PMSMs is discussed. Using this model, the authors derive the proposed universal sensorless vector control algorithm on the basis of estimation of the stator flux linkage vector. All the electrical motor parameters are determined by a unified test procedure. The proposed method is implemented on three test machines. The actual driving test results demonstrate the validity of the proposed method.

  20. Method and apparatus for controlling multiple motors

    DOEpatents

    Jones, Rollin G.; Kortegaard, Bert L.; Jones, David F.

    1987-01-01

    A method and apparatus are provided for simultaneously controlling a plurality of stepper motors. Addressing circuitry generates address data for each motor in a periodic address sequence. Memory circuits respond to the address data for each motor by accessing a corresponding memory location containing a first operational data set functionally related to a direction for moving the motor, speed data, and rate of speed change. First logic circuits respond to the first data set to generate a motor step command. Second logic circuits respond to the command from the first logic circuits to generate a third data set for replacing the first data set in memory with a current operational motor status, which becomes the first data set when the motor is next addressed.

  1. Motor current signature analysis method for diagnosing motor operated devices

    DOEpatents

    Haynes, Howard D.; Eissenberg, David M.

    1990-01-01

    A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.

  2. MTPA control of mechanical sensorless IPMSM based on adaptive nonlinear control.

    PubMed

    Najjar-Khodabakhsh, Abbas; Soltani, Jafar

    2016-03-01

    In this paper, an adaptive nonlinear control scheme has been proposed for implementing maximum torque per ampere (MTPA) control strategy corresponding to interior permanent magnet synchronous motor (IPMSM) drive. This control scheme is developed in the rotor d-q axis reference frame using adaptive input-output state feedback linearization (AIOFL) method. The drive system control stability is supported by Lyapunov theory. The motor inductances are online estimated by an estimation law obtained by AIOFL. The estimation errors of these parameters are proved to be asymptotically converged to zero. Based on minimizing the motor current amplitude, the MTPA control strategy is performed by using the nonlinear optimization technique while considering the online reference torque. The motor reference torque is generated by a conventional rotor speed PI controller. By performing MTPA control strategy, the generated online motor d-q reference currents were used in AIOFL controller to obtain the SV-PWM reference voltages and the online estimation of the motor d-q inductances. In addition, the stator resistance is online estimated using a conventional PI controller. Moreover, the rotor position is detected using the online estimation of the stator flux and online estimation of the motor q-axis inductance. Simulation and experimental results obtained prove the effectiveness and the capability of the proposed control method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Study of the fractional order proportional integral controller for the permanent magnet synchronous motor based on the differential evolution algorithm.

    PubMed

    Zheng, Weijia; Pi, Youguo

    2016-07-01

    A tuning method of the fractional order proportional integral speed controller for a permanent magnet synchronous motor is proposed in this paper. Taking the combination of the integral of time and absolute error and the phase margin as the optimization index, the robustness specification as the constraint condition, the differential evolution algorithm is applied to search the optimal controller parameters. The dynamic response performance and robustness of the obtained optimal controller are verified by motor speed-tracking experiments on the motor speed control platform. Experimental results show that the proposed tuning method can enable the obtained control system to achieve both the optimal dynamic response performance and the robustness to gain variations. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Permanent magnet DC motor control by using arduino and motor drive module BTS7960

    NASA Astrophysics Data System (ADS)

    Syukriyadin, S.; Syahrizal, S.; Mansur, G.; Ramadhan, H. P.

    2018-05-01

    This study proposes a control system for permanent magnet DC (PMDC) motor. PMDC drive control system has two critical parameters: control and monitoring. Control system includes rotation speed control and direction of rotation of motor using motor drive module BTS7960. The PWM signal has a fixed frequency of waves with varying duty cycles (between 0% and 100%), so the motor rotation can be regulated gradually using a potentiometer already programmed on the Arduino Uno board. The motor rotation direction setting uses the H-bridge circuit method using a 3-way switch to set the direction of forward-reverse rotation of the motor. The monitoring system includes measurements of rotational speed, current, and voltage. Motor rotation speed can be adjusted from the armature voltage settings through the duty cycle PWM setting so that the motor speed can be increased or decreased by the desired duty cycle. From the unload PMDC motor test results it has also been shown that the torque of the motor is relatively constant when there is a change in speed from low rpm to high rpm or vice versa.

  5. Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Zhao, Wanzhong

    2018-02-01

    To improve the maneuverability and stability of in-wheel-motor-drive electric vehicle, a control strategy based on nonlinear decoupling control method is proposed in this paper, realizing the coordinated control of the steering and driving system. At first, the nonlinear models of the in-wheel-motor-drive electric vehicle and its sub-system are constructed. Then the inverse system decoupling theory is applied to decompose the nonlinear system into several independent subsystems, which makes it possible to realize the coordinated control of each subsystem. Next, the μ-Synthesis theory is applied to eliminate the influence of model uncertainty, improving the stability, robustness and tracking performance of in-wheel-motor-drive electric vehicle. Simulation and experiment results and numerical analyses, based on the electric vehicle actuated by in-wheel-motors, prove that the proposed control method is effective to accomplish the decoupling control of the steering and driving system in both simulation and real practice.

  6. Extracting motor synergies from random movements for low-dimensional task-space control of musculoskeletal robots.

    PubMed

    Fu, Kin Chung Denny; Dalla Libera, Fabio; Ishiguro, Hiroshi

    2015-10-08

    In the field of human motor control, the motor synergy hypothesis explains how humans simplify body control dimensionality by coordinating groups of muscles, called motor synergies, instead of controlling muscles independently. In most applications of motor synergies to low-dimensional control in robotics, motor synergies are extracted from given optimal control signals. In this paper, we address the problems of how to extract motor synergies without optimal data given, and how to apply motor synergies to achieve low-dimensional task-space tracking control of a human-like robotic arm actuated by redundant muscles, without prior knowledge of the robot. We propose to extract motor synergies from a subset of randomly generated reaching-like movement data. The essence is to first approximate the corresponding optimal control signals, using estimations of the robot's forward dynamics, and to extract the motor synergies subsequently. In order to avoid modeling difficulties, a learning-based control approach is adopted such that control is accomplished via estimations of the robot's inverse dynamics. We present a kernel-based regression formulation to estimate the forward and the inverse dynamics, and a sliding controller in order to cope with estimation error. Numerical evaluations show that the proposed method enables extraction of motor synergies for low-dimensional task-space control.

  7. Method and apparatus for large motor control

    DOEpatents

    Rose, Chris R [Santa Fe, NM; Nelson, Ronald O [White Rock, NM

    2003-08-12

    Apparatus and method for providing digital signal processing method for controlling the speed and phase of a motor involves inputting a reference signal having a frequency and relative phase indicative of a time based signal; modifying the reference signal to introduce a slew-rate limited portion of each cycle of the reference signal; inputting a feedback signal having a frequency and relative phase indicative of the operation of said motor; modifying the feedback signal to introduce a slew-rate limited portion of each cycle of the feedback signal; analyzing the modified reference signal and the modified feedback signal to determine the frequency of the modified reference signal and of the modified feedback signal and said relative phase between said modified reference signal and said modified feedback signal; and outputting control signals to the motor for adjusting said speed and phase of the motor based on the frequency determination and determination of the relative phase.

  8. Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle

    DOEpatents

    Boberg, Evan S.; Gebby, Brian P.

    1999-09-28

    A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

  9. An adaptive nonlinear internal-model control for the speed control of homopolar salient-pole BLDC motor

    NASA Astrophysics Data System (ADS)

    CheshmehBeigi, Hassan Moradi

    2018-05-01

    In this paper, a novel speed control method for Homopolar Brushless DC (HBLDC) motor based on the adaptive nonlinear internal-model control (ANIMC) is presented. Rotor position information is obtained online by the Hall-Effect sensors placed on the motor's shaft, and is used to calculate the accurate model and accurate inverse model of the HBLDC motor. The online inverse model of the motor is used in the controller structure. To suppress the reference ? error, the negative feedback of difference between the motor speed and its model output ? is applied in the proposed controller. An appropriate signal is the output of the controller, which drives the power switches to converge the motor speed to the constant desired speed. Simulations and experiments are carried out on a ? three-phase HBLDC motor. The proposed drive system operates well in the speed response and has good robustness with respect to the disturbances. To validate the theoretical analysis, several experimental results are discussed in this paper.

  10. Biomechanics as a window into the neural control of movement

    PubMed Central

    2016-01-01

    Abstract Biomechanics and motor control are discussed as parts of a more general science, physics of living systems. Major problems of biomechanics deal with exact definition of variables and their experimental measurement. In motor control, major problems are associated with formulating currently unknown laws of nature specific for movements by biological objects. Mechanics-based hypotheses in motor control, such as those originating from notions of a generalized motor program and internal models, are non-physical. The famous problem of motor redundancy is wrongly formulated; it has to be replaced by the principle of abundance, which does not pose computational problems for the central nervous system. Biomechanical methods play a central role in motor control studies. This is illustrated with studies with the reconstruction of hypothetical control variables and those exploring motor synergies within the framework of the uncontrolled manifold hypothesis. Biomechanics and motor control have to merge into physics of living systems, and the earlier this process starts the better. PMID:28149390

  11. A New Low-frequency Sonophoresis System Combined with Ultrasonic Motor and Transducer

    NASA Astrophysics Data System (ADS)

    Zhu, Pancheng; Peng, Hanmin; Yang, Jianzhi; Mao, Ting; Sheng, Juan

    2018-03-01

    Low frequency sonophoresis (LFS) is currently being attempted as a transdermal drug delivery method in clinical areas. However, it lacks both an effective control method and the equipment to satisfy the varying drug dosage requirements of individual patients. Herein, a novel method aimed at controlling permeability is proposed and developed, using a pressure control strategy which is based on an accurate, adjustable and non-invasive ultrasound transdermal drug delivery system in in vitro LFS. The system mainly consists of a lead screw linear ultrasonic motor and an ultrasonic transducer, in which the former offers pressure and the latter provides ultrasound wave in the liquid. The ultrasound can enhance non-invasive permeation and the pressure from the motor can control the permeability. The calculated and experimental results demonstrate that the maximum pressure on artificial skin is under the area with the maximum vibration amplitude of the ultrasonic transducer, and the total pressure consists of acoustic pressure from the transducer and approximate static pressure from the motor. Changing the static pressure from the ultrasonic motor can effectively control the non-invasive permeability, by adjusting the duty ratio or the amplitude of the motor’s driving voltage. In addition, the permeability control of calcein by thrust control is realized in 15 min, indicating the suitability of this method for application in accurate medical technology. The obtained results reveal that the issue of difficult permeability control can be addressed, using this control method in in vitro LFS to open up a route to the design of accurate drug delivery technology for individual patients.

  12. A Drive Method for Small Inductance PM Motor Under No-Load Condition

    NASA Astrophysics Data System (ADS)

    Tanaka, Daisuke; Ohishi, Kiyoshi

    The harmonic wave of the exciting current of the motor is generated by the pulsewidth modulated voltage of the inverter. The motors that have low inpedance genetate more harmonics and make larger iron loss. This paper describes an implementation of drive control for a small inductance permanent-magnet motor drive. A comparative experiment has been carried out with conventional methods and the utility of the proposed method has been verified.

  13. The Technique of Changing the Drive Method of Micro Step Drive and Sensorless Drive for Hybrid Stepping Motor

    NASA Astrophysics Data System (ADS)

    Yoneda, Makoto; Dohmeki, Hideo

    The position control system with the advantage large torque, low vibration, and high resolution can be obtained by the constant current micro step drive applied to hybrid stepping motor. However loss is large, in order not to be concerned with load torque but to control current uniformly. As the one technique of a position control system in which high efficiency is realizable, the same sensorless control as a permanent magnet motor is effective. But, it was the purpose that the control method proposed until now controls speed. Then, this paper proposed changing the drive method of micro step drive and sensorless drive. The change of the drive method was verified from the simulation and the experiment. On no load, it was checked not producing change of a large speed at the time of a change by making electrical angle and carrying out zero reset of the integrator. On load, it was checked that a large speed change arose. The proposed system could change drive method by setting up the initial value of an integrator using the estimated result, without producing speed change. With this technique, the low loss position control system, which employed the advantage of the hybrid stepping motor, has been built.

  14. An Online Observer for Minimization of Pulsating Torque in SMPM Motors

    PubMed Central

    Roșca, Lucian

    2016-01-01

    A persistent problem of surface mounted permanent magnet (SMPM) motors is the non-uniformity of the developed torque. Either the motor design or the motor control needs to be improved in order to minimize the periodic disturbances. This paper proposes a new control technique for reducing periodic disturbances in permanent magnet (PM) electro-mechanical actuators, by advancing a new observer/estimator paradigm. A recursive estimation algorithm is implemented for online control. The compensating signal is identified and added as feedback to the control signal of the servo motor. Compensation is evaluated for different values of the input signal, to show robustness of the proposed method. PMID:27089182

  15. Design of permanent magnet synchronous motor speed control system based on SVPWM

    NASA Astrophysics Data System (ADS)

    Wu, Haibo

    2017-04-01

    The control system is designed to realize TMS320F28335 based on the permanent magnet synchronous motor speed control system, and put it to quoting all electric of injection molding machine. The system of the control method used SVPWM, through the sampling motor current and rotating transformer position information, realize speed, current double closed loop control. Through the TMS320F28335 hardware floating-point processing core, realize the application for permanent magnet synchronous motor in the floating point arithmetic, to replace the past fixed-point algorithm, and improve the efficiency of the code.

  16. System and method for determining stator winding resistance in an AC motor

    DOEpatents

    Lu, Bin [Kenosha, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Theisen, Peter J [West Bend, WI

    2011-05-31

    A system and method for determining stator winding resistance in an AC motor is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of an AC motor. The circuit includes at least one contactor and at least one switch to control current flow and terminal voltages in the AC motor. The system also includes a controller connected to the circuit and configured to modify a switching time of the at least one switch to create a DC component in an output of the system corresponding to an input to the AC motor and determine a stator winding resistance of the AC motor based on the injected DC component of the voltage and current.

  17. Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia*

    PubMed Central

    Kim, Sung-Phil; Simeral, John D; Hochberg, Leigh R; Donoghue, John P; Black, Michael J

    2010-01-01

    Computer-mediated connections between human motor cortical neurons and assistive devices promise to improve or restore lost function in people with paralysis. Recently, a pilot clinical study of an intracortical neural interface system demonstrated that a tetraplegic human was able to obtain continuous two-dimensional control of a computer cursor using neural activity recorded from his motor cortex. This control, however, was not sufficiently accurate for reliable use in many common computer control tasks. Here, we studied several central design choices for such a system including the kinematic representation for cursor movement, the decoding method that translates neuronal ensemble spiking activity into a control signal and the cursor control task used during training for optimizing the parameters of the decoding method. In two tetraplegic participants, we found that controlling a cursor's velocity resulted in more accurate closed-loop control than controlling its position directly and that cursor velocity control was achieved more rapidly than position control. Control quality was further improved over conventional linear filters by using a probabilistic method, the Kalman filter, to decode human motor cortical activity. Performance assessment based on standard metrics used for the evaluation of a wide range of pointing devices demonstrated significantly improved cursor control with velocity rather than position decoding. PMID:19015583

  18. Self-Controlled Practice Enhances Motor Learning in Introverts and Extroverts

    ERIC Educational Resources Information Center

    Kaefer, Angélica; Chiviacowsky, Suzete; Meira, Cassio de Miranda, Jr.; Tani, Go

    2014-01-01

    Purpose: The purpose of the present study was to investigate the effects of self-controlled feedback on the learning of a sequential-timing motor task in introverts and extroverts. Method: Fifty-six university students were selected by the Eysenck Personality Questionnaire. They practiced a motor task consisting of pressing computer keyboard keys…

  19. HTS flywheel energy storage system with rotor shaft stabilized by feed-back control of armature currents of motor-generator

    NASA Astrophysics Data System (ADS)

    Tsukamoto, O.; Utsunomiya, A.

    2007-10-01

    We propose an HTS bulk bearing flywheel energy system (FWES) with rotor shaft stabilization system using feed-back control of the armature currents of the motor-generator. In the proposed system the rotor shift has a pivot bearing at one end of the shaft and an HTS bulk bearing (SMB) at the other end. The fluctuation of the rotor shaft with SMB is damped by feed-back control of the armature currents of the motor-generator sensing the position of the rotor shaft. The method has merits that the fluctuations are damped without active control magnet bearings and extra devices which may deteriorate the energy storage efficiency and need additional costs. The principle of the method was demonstrated by an experiment using a model permanent magnet motor.

  20. Quantum dynamics of light-driven chiral molecular motors.

    PubMed

    Yamaki, Masahiro; Nakayama, Shin-ichiro; Hoki, Kunihito; Kono, Hirohiko; Fujimura, Yuichi

    2009-03-21

    The results of theoretical studies on quantum dynamics of light-driven molecular motors with internal rotation are presented. Characteristic features of chiral motors driven by a non-helical, linearly polarized electric field of light are explained on the basis of symmetry argument. The rotational potential of the chiral motor is characterized by a ratchet form. The asymmetric potential determines the directional motion: the rotational direction is toward the gentle slope of the asymmetric potential. This direction is called the intuitive direction. To confirm the unidirectional rotational motion, results of quantum dynamical calculations of randomly-oriented molecular motors are presented. A theoretical design of the smallest light-driven molecular machine is presented. The smallest chiral molecular machine has an optically driven engine and a running propeller on its body. The mechanisms of transmission of driving forces from the engine to the propeller are elucidated by using a quantum dynamical treatment. The results provide a principle for control of optically-driven molecular bevel gears. Temperature effects are discussed using the density operator formalism. An effective method for ultrafast control of rotational motions in any desired direction is presented with the help of a quantum control theory. In this method, visible or UV light pulses are applied to drive the motor via an electronic excited state. A method for driving a large molecular motor consisting of an aromatic hydrocarbon is presented. The molecular motor is operated by interactions between the induced dipole of the molecular motor and the electric field of light pulses.

  1. Full-order observer for direct torque control of induction motor based on constant V/F control technique.

    PubMed

    Pimkumwong, Narongrit; Wang, Ming-Shyan

    2018-02-01

    This paper presents another control method for the three-phase induction motor that is direct torque control based on constant voltage per frequency control technique. This method uses the magnitude of stator flux and torque errors to generate the stator voltage and phase angle references for controlling the induction motor by using constant voltage per frequency control method. Instead of hysteresis comparators and optimum switching table, the PI controllers and space vector modulation technique are used to reduce torque and stator-flux ripples and achieve constant switching frequency. Moreover, the coordinate transformations are not required. To implement this control method, a full-order observer is used to estimate stator flux and overcome the problems from drift and saturation in using pure integrator. The feedback gains are designed by simple manner to improve the convergence of stator flux estimation, especially in low speed range. Furthermore, the necessary conditions to maintain the stability for feedback gain design are introduced. The simulation and experimental results show accurate and stable operation of the introduced estimator and good dynamic response of the proposed control method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Normative Data for an Instrumental Assessment of the Upper-Limb Functionality.

    PubMed

    Caimmi, Marco; Guanziroli, Eleonora; Malosio, Matteo; Pedrocchi, Nicola; Vicentini, Federico; Molinari Tosatti, Lorenzo; Molteni, Franco

    2015-01-01

    Upper-limb movement analysis is important to monitor objectively rehabilitation interventions, contributing to improving the overall treatments outcomes. Simple, fast, easy-to-use, and applicable methods are required to allow routinely functional evaluation of patients with different pathologies and clinical conditions. This paper describes the Reaching and Hand-to-Mouth Evaluation Method, a fast procedure to assess the upper-limb motor control and functional ability, providing a set of normative data from 42 healthy subjects of different ages, evaluated for both the dominant and the nondominant limb motor performance. Sixteen of them were reevaluated after two weeks to perform test-retest reliability analysis. Data were clustered into three subgroups of different ages to test the method sensitivity to motor control differences. Experimental data show notable test-retest reliability in all tasks. Data from older and younger subjects show significant differences in the measures related to the ability for coordination thus showing the high sensitivity of the method to motor control differences. The presented method, provided with control data from healthy subjects, appears to be a suitable and reliable tool for the upper-limb functional assessment in the clinical environment.

  3. Normative Data for an Instrumental Assessment of the Upper-Limb Functionality

    PubMed Central

    Caimmi, Marco; Guanziroli, Eleonora; Malosio, Matteo; Pedrocchi, Nicola; Vicentini, Federico; Molinari Tosatti, Lorenzo; Molteni, Franco

    2015-01-01

    Upper-limb movement analysis is important to monitor objectively rehabilitation interventions, contributing to improving the overall treatments outcomes. Simple, fast, easy-to-use, and applicable methods are required to allow routinely functional evaluation of patients with different pathologies and clinical conditions. This paper describes the Reaching and Hand-to-Mouth Evaluation Method, a fast procedure to assess the upper-limb motor control and functional ability, providing a set of normative data from 42 healthy subjects of different ages, evaluated for both the dominant and the nondominant limb motor performance. Sixteen of them were reevaluated after two weeks to perform test-retest reliability analysis. Data were clustered into three subgroups of different ages to test the method sensitivity to motor control differences. Experimental data show notable test-retest reliability in all tasks. Data from older and younger subjects show significant differences in the measures related to the ability for coordination thus showing the high sensitivity of the method to motor control differences. The presented method, provided with control data from healthy subjects, appears to be a suitable and reliable tool for the upper-limb functional assessment in the clinical environment. PMID:26539500

  4. Design, implementation, and application of 150-degree commutation VSI to improve speed range of sensored BLDC motor

    NASA Astrophysics Data System (ADS)

    Ozgenel, Mehmet Cihat

    2017-09-01

    Permanent magnet brushless dc (BLDC) motors are very convenient for many applications such as industrial, medical, robotic, aerospace, small electric vehicles, and home applications because of their inherent satisfying dynamic characteristics. There are numerous studies about these motors and their control schemes such as sensorless control and different speed and torque control schemes. All electric motors need commutation in order to produce speed and torque. Commutation in brushed DC motors is performed by means of a brush and collector. In BLDC motors, commutation is provided electronically in contrast to the brushed dc motors. In BLDC motors, motor phase windings are energized according to the information of the rotor position by inverter transistors. Rotor position information is used for commutation. Therefore, rotor position information is required to produce speed and torque for BLDC motors. The easiest and cheapest way to obtain rotor position information is to use Hall-effect or optical sensors. BLDC motor manufacturers generally produce BLDC motors equipped with three Hall-effect position sensors. Having three position sensors on BLDC motors provides six-step commutation which ensures two phase windings are energized in each moment. The third phase is empty. In this study, all phase windings are energized in the same time. This commutation method is twelve-step or 150 degrees commutation. So that more speed can be achieved from the same BLDC motor by comparison with six-step commutation. In this paper, both six-step and twelve-step commutation methods applied to the same BLDC motor and obtained experimental results from this study were presented, examined, and discussed.

  5. Design, implementation, and application of 150-degree commutation VSI to improve speed range of sensored BLDC motor.

    PubMed

    Ozgenel, Mehmet Cihat

    2017-09-01

    Permanent magnet brushless dc (BLDC) motors are very convenient for many applications such as industrial, medical, robotic, aerospace, small electric vehicles, and home applications because of their inherent satisfying dynamic characteristics. There are numerous studies about these motors and their control schemes such as sensorless control and different speed and torque control schemes. All electric motors need commutation in order to produce speed and torque. Commutation in brushed DC motors is performed by means of a brush and collector. In BLDC motors, commutation is provided electronically in contrast to the brushed dc motors. In BLDC motors, motor phase windings are energized according to the information of the rotor position by inverter transistors. Rotor position information is used for commutation. Therefore, rotor position information is required to produce speed and torque for BLDC motors. The easiest and cheapest way to obtain rotor position information is to use Hall-effect or optical sensors. BLDC motor manufacturers generally produce BLDC motors equipped with three Hall-effect position sensors. Having three position sensors on BLDC motors provides six-step commutation which ensures two phase windings are energized in each moment. The third phase is empty. In this study, all phase windings are energized in the same time. This commutation method is twelve-step or 150 degrees commutation. So that more speed can be achieved from the same BLDC motor by comparison with six-step commutation. In this paper, both six-step and twelve-step commutation methods applied to the same BLDC motor and obtained experimental results from this study were presented, examined, and discussed.

  6. Method and apparatus for monitoring the rotating frequency of de-energized induction motors

    DOEpatents

    Mikesell, H.E.; Lucy, E.

    1998-02-03

    The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor. 6 figs.

  7. Method and apparatus for monitoring the rotating frequency of de-energized induction motors

    DOEpatents

    Mikesell, Harvey E.; Lucy, Eric

    1998-01-01

    The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor.

  8. The Design of Software for Three-Phase Induction Motor Test System

    NASA Astrophysics Data System (ADS)

    Haixiang, Xu; Fengqi, Wu; Jiai, Xue

    2017-11-01

    The design and development of control system software is important to three-phase induction motor test equipment, which needs to be completely familiar with the test process and the control procedure of test equipment. In this paper, the software is developed according to the national standard (GB/T1032-2005) about three-phase induction motor test method by VB language. The control system and data analysis software and the implement about motor test system are described individually, which has the advantages of high automation and high accuracy.

  9. Torque control for electric motors

    NASA Technical Reports Server (NTRS)

    Bernard, C. A.

    1980-01-01

    Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.

  10. From action representation to action execution: exploring the links between cognitive and biomechanical levels of motor control

    PubMed Central

    Land, William M.; Volchenkov, Dima; Bläsing, Bettina E.; Schack, Thomas

    2013-01-01

    Along with superior performance, research indicates that expertise is associated with a number of mediating cognitive adaptations. To this extent, extensive practice is associated with the development of general and task-specific mental representations, which play an important role in the organization and control of action. Recently, new experimental methods have been developed, which allow for investigating the organization and structure of these representations, along with the functional structure of the movement kinematics. In the current article, we present a new approach for examining the overlap between skill representations and motor output. In doing so, we first present an architecture model, which addresses links between biomechanical and cognitive levels of motor control. Next, we review the state of the art in assessing memory structures underlying complex action. Following we present a new spatio-temporal decomposition method for illuminating the functional structure of movement kinematics, and finally, we apply these methods to investigate the overlap between the structure of motor representations in memory and their corresponding kinematic structures. Our aim is to understand the extent to which the output at a kinematic level is governed by representations at a cognitive level of motor control. PMID:24065915

  11. Analysis of automated quantification of motor activity in REM sleep behaviour disorder.

    PubMed

    Frandsen, Rune; Nikolic, Miki; Zoetmulder, Marielle; Kempfner, Lykke; Jennum, Poul

    2015-10-01

    Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterized by dream enactment and REM sleep without atonia. Atonia is evaluated on the basis of visual criteria, but there is a need for more objective, quantitative measurements. We aimed to define and optimize a method for establishing baseline and all other parameters in automatic quantifying submental motor activity during REM sleep. We analysed the electromyographic activity of the submental muscle in polysomnographs of 29 patients with idiopathic RBD (iRBD), 29 controls and 43 Parkinson's (PD) patients. Six adjustable parameters for motor activity were defined. Motor activity was detected and quantified automatically. The optimal parameters for separating RBD patients from controls were investigated by identifying the greatest area under the receiver operating curve from a total of 648 possible combinations. The optimal parameters were validated on PD patients. Automatic baseline estimation improved characterization of atonia during REM sleep, as it eliminates inter/intra-observer variability and can be standardized across diagnostic centres. We found an optimized method for quantifying motor activity during REM sleep. The method was stable and can be used to differentiate RBD from controls and to quantify motor activity during REM sleep in patients with neurodegeneration. No control had more than 30% of REM sleep with increased motor activity; patients with known RBD had as low activity as 4.5%. We developed and applied a sensitive, quantitative, automatic algorithm to evaluate loss of atonia in RBD patients. © 2015 European Sleep Research Society.

  12. Synchronization controller design of two coupling permanent magnet synchronous motors system with nonlinear constraints.

    PubMed

    Deng, Zhenhua; Shang, Jing; Nian, Xiaohong

    2015-11-01

    In this paper, two coupling permanent magnet synchronous motors system with nonlinear constraints is studied. First of all, the mathematical model of the system is established according to the engineering practices, in which the dynamic model of motor and the nonlinear coupling effect between two motors are considered. In order to keep the two motors synchronization, a synchronization controller based on load observer is designed via cross-coupling idea and interval matrix. Moreover, speed, position and current signals of two motor all are taken as self-feedback signal as well as cross-feedback signal in the proposed controller, which is conducive to improving the dynamical performance and the synchronization performance of the system. The proposed control strategy is verified by simulation via Matlab/Simulink program. The simulation results show that the proposed control method has a better control performance, especially synchronization performance, than that of the conventional PI controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Apparatus and method for controlling the rotary airlocks in a coal processing system by reversing the motor current rotating the air lock

    DOEpatents

    Groombridge, Clifton E.

    1996-01-01

    An improvement to a coal processing system where hard materials found in the coal may cause jamming of either inflow or outflow rotary airlocks, each driven by a reversible motor. The instantaneous current used by the motor is continually monitored and compared to a predetermined value. If an overcurrent condition occurs, indicating a jamming of the airlock, a controller means starts a "soft" reverse rotation of the motor thereby clearing the jamming. Three patterns of the motor reversal are provided.

  14. Torque ripple reduction of brushless DC motor based on adaptive input-output feedback linearization.

    PubMed

    Shirvani Boroujeni, M; Markadeh, G R Arab; Soltani, J

    2017-09-01

    Torque ripple reduction of Brushless DC Motors (BLDCs) is an interesting subject in variable speed AC drives. In this paper at first, a mathematical expression for torque ripple harmonics is obtained. Then for a non-ideal BLDC motor with known harmonic contents of back-EMF, calculation of desired reference current amplitudes, which are required to eliminate some selected harmonics of torque ripple, are reviewed. In order to inject the reference harmonic currents to the motor windings, an Adaptive Input-Output Feedback Linearization (AIOFBL) control is proposed, which generates the reference voltages for three phases voltage source inverter in stationary reference frame. Experimental results are presented to show the capability and validity of the proposed control method and are compared with the vector control in Multi-Reference Frame (MRF) and Pseudo-Vector Control (P-VC) method results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Design and control of a prosthetic leg for above-knee amputees operated in semi-active and active modes

    NASA Astrophysics Data System (ADS)

    Park, Jinhyuk; Yoon, Gun-Ha; Kang, Je-Won; Choi, Seung-Bok

    2016-08-01

    This paper proposes a new prosthesis operated in two different modes; the semi-active and active modes. The semi-active mode is achieved from a flow mode magneto-rheological (MR) damper, while the active mode is obtained from an electronically commutated (EC) motor. The knee joint part of the above knee prosthesis is equipped with the MR damper and EC motor. The MR damper generates reaction force by controlling the field-dependent yield stress of the MR fluid, while the EC motor actively controls the knee joint angle during gait cycle. In this work, the MR damper is designed as a two-end type flow mode mechanism without air chamber for compact size. On other hand, in order to predict desired knee joint angle to be controlled by EC motor, a polynomial prediction function using a statistical method is used. A nonlinear proportional-derivative controller integrated with the computed torque method is then designed and applied to both MR damper and EC motor to control the knee joint angle. It is demonstrated that the desired knee joint angle is well achieved in different walking velocities on the ground ground.

  16. Four quadrant control of induction motors

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1991-01-01

    Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.

  17. Loop shaping design for tracking performance in machine axes.

    PubMed

    Schinstock, Dale E; Wei, Zhouhong; Yang, Tao

    2006-01-01

    A modern interpretation of classical loop shaping control design methods is presented in the context of tracking control for linear motor stages. Target applications include noncontacting machines such as laser cutters and markers, water jet cutters, and adhesive applicators. The methods are directly applicable to the common PID controller and are pertinent to many electromechanical servo actuators other than linear motors. In addition to explicit design techniques a PID tuning algorithm stressing the importance of tracking is described. While the theory behind these techniques is not new, the analysis of their application to modern systems is unique in the research literature. The techniques and results should be important to control practitioners optimizing PID controller designs for tracking and in comparing results from classical designs to modern techniques. The methods stress high-gain controller design and interpret what this means for PID. Nothing in the methods presented precludes the addition of feedforward control methods for added improvements in tracking. Laboratory results from a linear motor stage demonstrate that with large open-loop gain very good tracking performance can be achieved. The resultant tracking errors compare very favorably to results from similar motions on similar systems that utilize much more complicated controllers.

  18. Composite synchronization of three eccentric rotors driven by induction motors in a vibrating system

    NASA Astrophysics Data System (ADS)

    Kong, Xiangxi; Chen, Changzheng; Wen, Bangchun

    2018-03-01

    This paper addresses the problem of composite synchronization of three eccentric rotors (ERs) driven by induction motors in a vibrating system. The composite synchronous motion of three ERs is composed of the controlled synchronous motion of two ERs and the self-synchronous motion of the third ER. Combining an adaptive sliding mode control (ASMC) algorithm with a modified master-slave control structure, the controllers are designed to implement controlled synchronous motion of two ERs with zero phase difference. Based on Lyapunov stability theorem and Barbalat's lemma, the stability of the designed controllers is verified. On basis of controlled synchronization of two ERs, self-synchronization of the third ER is introduced to implement composite synchronous motion of three ERs. The feasibility of the proposed composite synchronization method is analyzed by numerical method. The effects of motor and structure parameters on composite synchronous motion are discussed. Experiments on a vibrating test bench driven by three ERs are operated to validate the effectiveness of the proposed composite synchronization method, including a comparison with self-synchronization method.

  19. Power system

    DOEpatents

    Hickam, Christopher Dale [Glasford, IL

    2008-03-18

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  20. Skid Prevention for EVs Based on the Emulation of Torque Reduction Characteristics of Separately-excited DC Motor

    NASA Astrophysics Data System (ADS)

    Kodama, Shinya; Hori, Yoichi

    It is well-known that the separately-excited DC motor has effective torque (current) reduction characteristics in response to rapid increase in the rotational speed of the motor. These characteristics have been utilized in adhesion control of electric railway trains with separately-excited DC motor. Up to now, we have proposed a new skid prevention method for EVs, utilizing these characteristics and have made experiments with the hardware skid simulator “Motor-Generator setup”. In this paper, we applied this skid prevention control to our new vehicle “UOT CADWELL EV" equipped with BLDC motors and showed its effectiveness.

  1. Two Archetypes of Motor Control Research.

    PubMed

    Latash, Mark L

    2010-07-01

    This reply to the Commentaries is focused on two archetypes of motor control research, one based on physics and physiology and the other based on control theory and ideas of neural computations. The former approach, represented by the equilibrium-point hypothesis, strives to discover the physical laws and salient physiological variables that make purposeful coordinated movements possible. The latter approach, represented by the ideas of internal models and optimal control, tries to apply methods of control developed for man-made inanimate systems to the human body. Specific issues related to control with subthreshold membrane depolarization, motor redundancy, and the idea of synergies are briefly discussed.

  2. AVR Microcontroller-based automated technique for analysis of DC motors

    NASA Astrophysics Data System (ADS)

    Kaur, P.; Chatterji, S.

    2014-01-01

    This paper provides essential information on the development of a 'dc motor test and analysis control card' using AVR series ATMega32 microcontroller. This card can be interfaced to PC and calculates parameters like motor losses, efficiency and plot characteristics for dc motors. Presently, there are different tests and methods available to evaluate motor parameters, but a single and universal user-friendly automated set-up has been discussed in this paper. It has been accomplished by designing a data acquisition and SCR bridge firing hardware based on AVR ATMega32 microcontroller. This hardware has the capability to drive the phase-controlled rectifiers and acquire real-time values of current, voltage, temperature and speed of motor. Various analyses feasible with the designed hardware are of immense importance for dc motor manufacturers and quality-sensitive users. Authors, through this paper aim to provide details of this AVR-based hardware which can be used for dc motor parameter analysis and also for motor control applications.

  3. DETERMINING MOTOR INERTIA OF A STRESS-CONTROLLED RHEOMETER.

    PubMed

    Klemuk, Sarah A; Titze, Ingo R

    2009-01-01

    Viscoelastic measurements made with a stress-controlled rheometer are affected by system inertia. Of all contributors to system inertia, motor inertia is the largest. Its value is usually determined empirically and precision is rarely if ever specified. Inertia uncertainty has negligible effects on rheologic measurements below the coupled motor/plate/sample resonant frequency. But above the resonant frequency, G' values of soft viscoelastic materials such as dispersions, gels, biomaterials, and non-Newtonian polymers, err quadratically due to inertia uncertainty. In the present investigation, valid rheologic measurements were achieved near and above the coupled resonant frequency for a non-Newtonian reference material. At these elevated frequencies, accuracy in motor inertia is critical. Here we compare two methods for determining motor-inertia accurately. For the first (commercially-used) phase method, frequency responses of standard fluids were measured. Phase between G' and G" was analyzed at 5-70 Hz for motor inertia values of 50-150% of the manufacturer's nominal value. For a newly-devised two-plate method (10 mm and 60 mm parallel plates), dynamic measurements of a non-Newtonian standard were collected. Using a linear equation of motion with inertia, viscosity, and elasticity coefficients, G' expressions for both plates were equated and motor inertia was determined to be accurate (by comparison to the phase method) with a precision of ± 3%. The newly developed two-plate method had advantages of expressly eliminating dependence on gap, was explicitly derived from basic principles, quantified the error, and required fewer experiments than the commercially used phase method.

  4. Field-programmable analogue arrays for the sensorless control of DC motors

    NASA Astrophysics Data System (ADS)

    Rivera, J.; Dueñas, I.; Ortega, S.; Del Valle, J. L.

    2018-02-01

    This work presents the analogue implementation of a sensorless controller for direct current motors based on the super-twisting (ST) sliding mode technique, by means of field programmable analogue arrays (FPAA). The novelty of this work is twofold, first is the use of the ST algorithm in a sensorless scheme for DC motors, and the implementation method of this type of sliding mode controllers in FPAAs. The ST algorithm reduces the chattering problem produced with the deliberate use of the sign function in classical sliding mode approaches. On the other hand, the advantages of the implementation method over a digital one are that the controller is not digitally approximated, the controller gains are not fine tuned and the implementation does not require the use of analogue-to-digital and digital-to-analogue converter circuits. In addition to this, the FPAA is a reconfigurable, lower cost and power consumption technology. Simulation and experimentation results were registered, where a more accurate transient response and lower power consumption were obtained by the proposed implementation method when compared to a digital implementation. Also, a more accurate performance by the DC motor is obtained with proposed sensorless ST technique when compared with a classical sliding mode approach.

  5. Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Phil; Simeral, John D.; Hochberg, Leigh R.; Donoghue, John P.; Black, Michael J.

    2008-12-01

    Computer-mediated connections between human motor cortical neurons and assistive devices promise to improve or restore lost function in people with paralysis. Recently, a pilot clinical study of an intracortical neural interface system demonstrated that a tetraplegic human was able to obtain continuous two-dimensional control of a computer cursor using neural activity recorded from his motor cortex. This control, however, was not sufficiently accurate for reliable use in many common computer control tasks. Here, we studied several central design choices for such a system including the kinematic representation for cursor movement, the decoding method that translates neuronal ensemble spiking activity into a control signal and the cursor control task used during training for optimizing the parameters of the decoding method. In two tetraplegic participants, we found that controlling a cursor's velocity resulted in more accurate closed-loop control than controlling its position directly and that cursor velocity control was achieved more rapidly than position control. Control quality was further improved over conventional linear filters by using a probabilistic method, the Kalman filter, to decode human motor cortical activity. Performance assessment based on standard metrics used for the evaluation of a wide range of pointing devices demonstrated significantly improved cursor control with velocity rather than position decoding. Disclosure. JPD is the Chief Scientific Officer and a director of Cyberkinetics Neurotechnology Systems (CYKN); he holds stock and receives compensation. JDS has been a consultant for CYKN. LRH receives clinical trial support from CYKN.

  6. Chaotic operation and chaos control of travelling wave ultrasonic motor.

    PubMed

    Shi, Jingzhuo; Zhao, Fujie; Shen, Xiaoxi; Wang, Xiaojie

    2013-08-01

    The travelling wave ultrasonic motor, which is a nonlinear dynamic system, has complex chaotic phenomenon with some certain choices of system parameters and external inputs, and its chaotic characteristics have not been studied until now. In this paper, the preliminary study of the chaos phenomenon in ultrasonic motor driving system has been done. The experiment of speed closed-loop control is designed to obtain several groups of time sampling data sequence of the amplitude of driving voltage, and phase-space reconstruction is used to analyze the chaos characteristics of these time sequences. The largest Lyapunov index is calculated and the result is positive, which shows that the travelling wave ultrasonic motor has chaotic characteristics in a certain working condition Then, the nonlinear characteristics of travelling wave ultrasonic motor are analyzed which includes Lyapunov exponent map, the bifurcation diagram and the locus of voltage relative to speed based on the nonlinear chaos model of a travelling wave ultrasonic motor. After that, two kinds of adaptive delay feedback controllers are designed in this paper to control and suppress chaos in USM speed control system. Simulation results show that the method can control unstable periodic orbits, suppress chaos in USM control system. Proportion-delayed feedback controller was designed following and arithmetic of fuzzy logic was used to adaptively adjust the delay time online. Simulation results show that this method could fast and effectively change the chaos movement into periodic or fixed-point movement and make the system enter into stable state from chaos state. Finally the chaos behavior was controlled. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Advanced simulation model for IPM motor drive with considering phase voltage and stator inductance

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Myung; Park, Hyun-Jong; Lee, Ju

    2016-10-01

    This paper proposes an advanced simulation model of driving system for Interior Permanent Magnet (IPM) BrushLess Direct Current (BLDC) motors driven by 120-degree conduction method (two-phase conduction method, TPCM) that is widely used for sensorless control of BLDC motors. BLDC motors can be classified as SPM (Surface mounted Permanent Magnet) and IPM motors. Simulation model of driving system with SPM motors is simple due to the constant stator inductance regardless of the rotor position. Simulation models of SPM motor driving system have been proposed in many researches. On the other hand, simulation models for IPM driving system by graphic-based simulation tool such as Matlab/Simulink have not been proposed. Simulation study about driving system of IPMs with TPCM is complex because stator inductances of IPM vary with the rotor position, as permanent magnets are embedded in the rotor. To develop sensorless scheme or improve control performance, development of control algorithm through simulation study is essential, and the simulation model that accurately reflects the characteristic of IPM is required. Therefore, this paper presents the advanced simulation model of IPM driving system, which takes into account the unique characteristic of IPM due to the position-dependent inductances. The validity of the proposed simulation model is validated by comparison to experimental and simulation results using IPM with TPCM control scheme.

  8. A New Method for Control of the Efficiency of Gear Reducers

    NASA Astrophysics Data System (ADS)

    E Kozlov, K.; Egorov, A. V.; Belogusev, V. N.

    2017-04-01

    This article proposes a new method to control the energy efficiency of gear reducers. The method allows evaluating the friction losses in a drive motor, drive motor bearing assemblies, and toothing both at the stage of control of the finished product and in the course of its operation, maintenance, and repair. The proposed method, unlike currently used methods for control of the efficiency of gear reducers, allows determining the friction losses without the use of strain measurement, which requires calibration of tensometric sensors and expensive equipment. The method is based on the idea of invariability of mechanical characteristics of the induction motor at constant voltage, resistance of windings, and mains frequency, regardless of the driven inertia mass. This paper presents experimental results which verify the theoretical predictions. The proposed method can be implemented in the procedure of acceptance test at the companies that manufacture gear reducers, thereby assess their effectiveness and the level of degradation processes that significantly affect the service life of the research object. The method can be implemented both with universal and with specialized hardware and software complexes. At that, both an increment of the inertia moment and acceleration time of a gear reducer may serve as a performance criterion.

  9. Method and apparatus for pulse width modulation control of an AC induction motor

    DOEpatents

    Geppert, Steven; Slicker, James M.

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  10. Method and apparatus for pulse width modulation control of an AC induction motor

    NASA Technical Reports Server (NTRS)

    Geppert, Steven (Inventor); Slicker, James M. (Inventor)

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.

  11. Field oriented control of induction motors

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Zinger, Don S.; Roth, Mary Ellen

    1990-01-01

    Induction motors have always been known for their simple rugged construction, but until lately were not suitable for variable speed or servo drives due to the inherent complexity of the controls. With the advent of field oriented control (FOC), however, the induction motor has become an attractive option for these types of drive systems. An FOC system which utilizes the pulse population modulation method to synthesize the motor drive frequencies is examined. This system allows for a variable voltage to frequency ratio and enables the user to have independent control of both the speed and torque of an induction motor. A second generation of the control boards were developed and tested with the next point of focus being the minimization of the size and complexity of these controls. Many options were considered with the best approach being the use of a digital signal processor (DSP) due to its inherent ability to quickly evaluate control algorithms. The present test results of the system and the status of the optimization process using a DSP are discussed.

  12. Automatic alignment method for calibration of hydrometers

    NASA Astrophysics Data System (ADS)

    Lee, Y. J.; Chang, K. H.; Chon, J. C.; Oh, C. Y.

    2004-04-01

    This paper presents a new method to automatically align specific scale-marks for the calibration of hydrometers. A hydrometer calibration system adopting the new method consists of a vision system, a stepping motor, and software to control the system. The vision system is composed of a CCD camera and a frame grabber, and is used to acquire images. The stepping motor moves the camera, which is attached to the vessel containing a reference liquid, along the hydrometer. The operating program has two main functions: to process images from the camera to find the position of the horizontal plane and to control the stepping motor for the alignment of the horizontal plane with a particular scale-mark. Any system adopting this automatic alignment method is a convenient and precise means of calibrating a hydrometer. The performance of the proposed method is illustrated by comparing the calibration results using the automatic alignment method with those obtained using the manual method.

  13. Upper limb motor function in young adults with spina bifida and hydrocephalus

    PubMed Central

    Salman, M. S.; Jewell, D.; Hetherington, R.; Spiegler, B. J.; MacGregor, D. L.; Drake, J. M.; Humphreys, R. P.; Gentili, F.

    2011-01-01

    Objective The objective of the study was to measure upper limb motor function in young adults with spina bifida meningomyelocele (SBM) and typically developing age peers. Method Participants were 26 young adults with SBM, with a Verbal or Performance IQ score of at least 70 on the Wechsler scales, and 27 age- and gender-matched controls. Four upper limb motor function tasks were performed under four different visual and cognitive challenge conditions. Motor independence was assessed by questionnaire. Results Fewer SBM than control participants obtained perfect posture and rebound scores. The SBM group performed less accurately and was more disrupted by cognitive challenge than controls on limb dysmetria tasks. The SBM group was slower than controls on the diadochokinesis task. Adaptive motor independence was related to one upper limb motor task, arm posture, and upper rather than lower spinal lesions were associated with less motor independence. Conclusions Young adults with SBM have significant limitations in upper limb function and are more disrupted by some challenges while performing upper limb motor tasks. Within the group of young adults with SBM, upper spinal lesions compromise motor independence more than lower spinal lesions. PMID:19672605

  14. New sensorless, efficient optimized and stabilized v/f control for pmsm machines

    NASA Astrophysics Data System (ADS)

    Jafari, Seyed Hesam

    With the rapid advances in power electronics and motor drive technologies in recent decades, permanent magnet synchronous machines (PMSM) have found extensive applications in a variety of industrial systems due to its many desirable features such as high power density, high efficiency, and high torque to current ratio, low noise, and robustness. In low dynamic applications like pumps, fans and compressors where the motor speed is nearly constant, usage of a simple control algorithm that can be implemented with least number of the costly external hardware can be highly desirable for industry. In recent published works, for low power PMSMs, a new sensorless volts-per-hertz (V/f) controlling method has been proposed which can be used for PMSM drive applications where the motor speed is constant. Moreover, to minimize the cost of motor implementation, the expensive rotor damper winding was eliminated. By removing the damper winding, however, instability problems normally occur inside of the motor which in some cases can be harmful for a PMSM drive. As a result, to address the instability issue, a stabilizing loop was developed and added to the conventional V/f. By further studying the proposed sensorless stabilized V/f, and calculating power loss, it became known that overall motor efficiency still is needed to be improved and optimized. This thesis suggests a new V/f control method for PMSMs, where both efficiency and stability problems are addressed. Also, although in nearly all recent related research, methods have been applied to low power PMSM, for the first time, in this thesis, the suggested method is implemented for a medium power 15 kW PMSM. A C2000 F2833x Digital Signal Processor (DSP) is used as controller part for the student custom built PMSM drive, but instead of programming the DSP in Assembly or C, the main control algorithm was developed in a rapid prototype software environment which here Matlab Simulink embedded code library is used.

  15. A Randomized Controlled Trial Comparing the McKenzie Method to Motor Control Exercises in People With Chronic Low Back Pain and a Directional Preference.

    PubMed

    Halliday, Mark H; Pappas, Evangelos; Hancock, Mark J; Clare, Helen A; Pinto, Rafael Z; Robertson, Gavin; Ferreira, Paulo H

    2016-07-01

    Study Design Randomized clinical trial. Background Motor control exercises are believed to improve coordination of the trunk muscles. It is unclear whether increases in trunk muscle thickness can be facilitated by approaches such as the McKenzie method. Furthermore, it is unclear which approach may have superior clinical outcomes. Objectives The primary aim was to compare the effects of the McKenzie method and motor control exercises on trunk muscle recruitment in people with chronic low back pain classified with a directional preference. The secondary aim was to conduct a between-group comparison of outcomes for pain, function, and global perceived effect. Methods Seventy people with chronic low back pain who demonstrated a directional preference using the McKenzie assessment were randomized to receive 12 treatments over 8 weeks with the McKenzie method or with motor control approaches. All outcomes were collected at baseline and at 8-week follow-up by blinded assessors. Results No significant between-group difference was found for trunk muscle thickness of the transversus abdominis (-5.8%; 95% confidence interval [CI]: -15.2%, 3.7%), obliquus internus (-0.7%; 95% CI: -6.6%, 5.2%), and obliquus externus (1.2%; 95% CI: -4.3%, 6.8%). Perceived recovery was slightly superior in the McKenzie group (-0.8; 95% CI: -1.5, -0.1) on a -5 to +5 scale. No significant between-group differences were found for pain or function (P = .99 and P = .26, respectively). Conclusion We found no significant effect of treatment group for trunk muscle thickness. Participants reported a slightly greater sense of perceived recovery with the McKenzie method than with the motor control approach. Level of Evidence Therapy, level 1b-. Registered September 7, 2011 at www.anzctr.org.au (ACTRN12611000971932). J Orthop Sports Phys Ther 2016;46(7):514-522. Epub 12 May 2016. doi:10.2519/jospt.2016.6379.

  16. Primer Stepper Motor Nomenclature, Definition, Performance and Recommended Test Methods

    NASA Technical Reports Server (NTRS)

    Starin, Scott; Shea, Cutter

    2014-01-01

    There has been an unfortunate lack of standardization of the terms and components of stepper motor performance, requirements definition, application of torque margin and implementation of test methods. This paper will address these inconsistencies and discuss in detail the implications of performance parameters, affects of load inertia, control electronics, operational resonances and recommended test methods. Additionally, this paper will recommend parameters for defining and specifying stepper motor actuators. A useful description of terms as well as consolidated equations and recommended requirements is included.

  17. System and method for motor fault detection using stator current noise cancellation

    DOEpatents

    Zhou, Wei; Lu, Bin; Nowak, Michael P.; Dimino, Steven A.

    2010-12-07

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  18. Master-slave micromanipulator method

    DOEpatents

    Morimoto, Alan K.; Kozlowski, David M.; Charles, Steven T.; Spalding, James A.

    1999-01-01

    A method based on precision X-Y stages that are stacked. Attached to arms projecting from each X-Y stage are a set of two axis gimbals. Attached to the gimbals is a rod, which provides motion along the axis of the rod and rotation around its axis. A dual-planar apparatus that provides six degrees of freedom of motion precise to within microns of motion. Precision linear stages along with precision linear motors, encoders, and controls provide a robotics system. The motors can be remotized by incorporating a set of bellows on the motors and can be connected through a computer controller that will allow one to be a master and the other one to be a slave. Position information from the master can be used to control the slave. Forces of interaction of the slave with its environment can be reflected back to the motor control of the master to provide a sense of force sensed by the slave. Forces import onto the master by the operator can be fed back into the control of the slave to reduce the forces required to move it.

  19. Decoupling control of a five-phase fault-tolerant permanent magnet motor by radial basis function neural network inverse

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Liu, Guohai; Xu, Dezhi; Xu, Liang; Xu, Gaohong; Aamir, Nazir

    2018-05-01

    This paper proposes a new decoupled control for a five-phase in-wheel fault-tolerant permanent magnet (IW-FTPM) motor drive, in which radial basis function neural network inverse (RBF-NNI) and internal model control (IMC) are combined. The RBF-NNI system is introduced into original system to construct a pseudo-linear system, and IMC is used as a robust controller. Hence, the newly proposed control system incorporates the merits of the IMC and RBF-NNI methods. In order to verify the proposed strategy, an IW-FTPM motor drive is designed based on dSPACE real-time control platform. Then, the experimental results are offered to verify that the d-axis current and the rotor speed are successfully decoupled. Besides, the proposed motor drive exhibits strong robustness even under load torque disturbance.

  20. Design and control of the phase current of a brushless dc motor to eliminate cogging torque

    NASA Astrophysics Data System (ADS)

    Jang, G. H.; Lee, C. J.

    2006-04-01

    This paper presents a design and control method of the phase current to reduce the torque ripple of a brushless dc (BLDC) motor by eliminating cogging torque. The cogging torque is the main source of torque ripple and consequently of speed error, and it is also the excitation source to generate the vibration and noise of a motor. This research proposes a modified current wave form, which is composed of main and auxiliary currents. The former is the conventional current to generate the commutating torque. The latter generates the torque with the same magnitude and opposite sign of the corresponding cogging torque at the given position in order to eliminate the cogging torque. Time-stepping finite element method simulation considering pulse-width-modulation switching method has been performed to verify the effectiveness of the proposed method, and it shows that this proposed method reduces torque ripple by 36%. A digital-signal-processor-based controller is also developed to implement the proposed method, and it shows that this proposed method reduces the speed ripple significantly.

  1. Subcortical electrostimulation to identify network subserving motor control.

    PubMed

    Schucht, Philippe; Moritz-Gasser, Sylvie; Herbet, Guillaume; Raabe, Andreas; Duffau, Hugues

    2013-11-01

    Recent anatomical-functional studies have transformed our understanding of cerebral motor control away from a hierarchical structure and toward parallel and interconnected specialized circuits. Subcortical electrical stimulation during awake surgery provides a unique opportunity to identify white matter tracts involved in motor control. For the first time, this study reports the findings on motor modulatory responses evoked by subcortical stimulation and investigates the cortico-subcortical connectivity of cerebral motor control. Twenty-one selected patients were operated while awake for frontal, insular, and parietal diffuse low-grade gliomas. Subcortical electrostimulation mapping was used to search for interference with voluntary movements. The corresponding stimulation sites were localized on brain schemas using the anterior and posterior commissures method. Subcortical negative motor responses were evoked in 20/21 patients, whereas acceleration of voluntary movements and positive motor responses were observed in three and five patients, respectively. The majority of the stimulation sites were detected rostral of the corticospinal tract near the vertical anterior-commissural line, and additional sites were seen in the frontal and parietal white matter. The diverse interferences with motor function resulting in inhibition and acceleration imply a modulatory influence of the detected fiber network. The subcortical stimulation sites were distributed veil-like, anterior to the primary motor fibers, suggesting descending pathways originating from premotor areas known for negative motor response characteristics. Further stimulation sites in the parietal white matter as well as in the anterior arm of the internal capsule indicate a large-scale fronto-parietal motor control network. Copyright © 2012 Wiley Periodicals, Inc.

  2. System and method for bearing fault detection using stator current noise cancellation

    DOEpatents

    Zhou, Wei; Lu, Bin; Habetler, Thomas G.; Harley, Ronald G.; Theisen, Peter J.

    2010-08-17

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to repeatedly receive real-time operating current data from the operating motor and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  3. Proficiency and Linguistic Complexity Influence Speech Motor Control and Performance in Spanish Language Learners

    ERIC Educational Resources Information Center

    Nip, Ignatius S. B.; Blumenfeld, Henrike K.

    2015-01-01

    Purpose: Second-language (L2) production requires greater cognitive resources to inhibit the native language and to retrieve less robust lexical representations. The current investigation identifies how proficiency and linguistic complexity, specifically syntactic and lexical factors, influence speech motor control and performance. Method: Speech…

  4. The effect of motor control exercise versus placebo in patients with chronic low back pain [ACTRN012605000262606

    PubMed Central

    Maher, Chris G; Latimer, Jane; Hodges, Paul W; Refshauge, Kathryn M; Moseley, G Lorimer; Herbert, Robert D; Costa, Leonardo OP; McAuley, James

    2005-01-01

    Background While one in ten Australians suffer from chronic low back pain this condition remains extremely difficult to treat. Many contemporary treatments are of unknown value. One potentially useful therapy is the use of motor control exercise. This therapy has a biologically plausible effect, is readily available in primary care and it is of modest cost. However, to date, the efficacy of motor control exercise has not been established. Methods This paper describes the protocol for a clinical trial comparing the effects of motor control exercise versus placebo in the treatment of chronic non-specific low back pain. One hundred and fifty-four participants will be randomly allocated to receive an 8-week program of motor control exercise or placebo (detuned short wave and detuned ultrasound). Measures of outcomes will be obtained at follow-up appointments at 2, 6 and 12 months after randomisation. The primary outcomes are: pain, global perceived effect and patient-generated measure of disability at 2 months and recurrence at 12 months. Discussion This trial will be the first placebo-controlled trial of motor control exercise. The results will inform best practice for treating chronic low back pain and prevent its occurrence. PMID:16271149

  5. Design and application of a novel high precision and low cost electronic tachogenerator for sensor-based brushless direct current motor drivers.

    PubMed

    Ozgenel, Mehmet Cihat; Bal, Gungor; Uygun, Durmus

    2017-03-01

    This study presents a precise speed control method for Brushless Direct Current (BLDC) Motors using an electronic tachogenerator (ETg) instead of an electro-mechanical tachogenerator. Most commonly used three-phase BLDC motors have three position sensors for rotor position data to provide commutation among stator windings. Aforementioned position sensors are usually Hall-effect sensors delivering binary-high and binary-low data as long as the motor rotates. These binary sets from three Hall-effect sensors can be used as an analogue rotor speed signal for closed loop applications. Each position sensor signal is apart from 120 electrical degrees. By using an electronic circuitry, a combination of position sensor signals is converted to the analogue signal providing an input to a PI speed controller. To implement this, a frequency to voltage converter has been used in this study. Then, the analogue speed signal has been evaluated as rotor speed data in comparison with the reference speed. So, an ETg system has been successfully achieved in place of an electro-mechanical tachogenerator for BLDC motor speed control. The proposed ETg has been tested under various speed conditions on an experimental setup. Employed tests and obtained results show that the proposed low-cost speed feedback sub-system can be effectively used in BLDC motor drive systems. Through the proved method and designed sub-system, a new motor controller chip with a speed feedback capability has been aimed.

  6. Design and application of a novel high precision and low cost electronic tachogenerator for sensor-based brushless direct current motor drivers

    NASA Astrophysics Data System (ADS)

    Ozgenel, Mehmet Cihat; Bal, Gungor; Uygun, Durmus

    2017-03-01

    This study presents a precise speed control method for Brushless Direct Current (BLDC) Motors using an electronic tachogenerator (ETg) instead of an electro-mechanical tachogenerator. Most commonly used three-phase BLDC motors have three position sensors for rotor position data to provide commutation among stator windings. Aforementioned position sensors are usually Hall-effect sensors delivering binary-high and binary-low data as long as the motor rotates. These binary sets from three Hall-effect sensors can be used as an analogue rotor speed signal for closed loop applications. Each position sensor signal is apart from 120 electrical degrees. By using an electronic circuitry, a combination of position sensor signals is converted to the analogue signal providing an input to a PI speed controller. To implement this, a frequency to voltage converter has been used in this study. Then, the analogue speed signal has been evaluated as rotor speed data in comparison with the reference speed. So, an ETg system has been successfully achieved in place of an electro-mechanical tachogenerator for BLDC motor speed control. The proposed ETg has been tested under various speed conditions on an experimental setup. Employed tests and obtained results show that the proposed low-cost speed feedback sub-system can be effectively used in BLDC motor drive systems. Through the proved method and designed sub-system, a new motor controller chip with a speed feedback capability has been aimed.

  7. The human motor neuron pools receive a dominant slow‐varying common synaptic input

    PubMed Central

    Negro, Francesco; Yavuz, Utku Şükrü

    2016-01-01

    Key points Motor neurons in a pool receive both common and independent synaptic inputs, although the proportion and role of their common synaptic input is debated.Classic correlation techniques between motor unit spike trains do not measure the absolute proportion of common input and have limitations as a result of the non‐linearity of motor neurons.We propose a method that for the first time allows an accurate quantification of the absolute proportion of low frequency common synaptic input (<5 Hz) to motor neurons in humans.We applied the proposed method to three human muscles and determined experimentally that they receive a similar large amount (>60%) of common input, irrespective of their different functional and control properties.These results increase our knowledge about the role of common and independent input to motor neurons in force control. Abstract Motor neurons receive both common and independent synaptic inputs. This observation is classically based on the presence of a significant correlation between pairs of motor unit spike trains. The functional significance of different relative proportions of common input across muscles, individuals and conditions is still debated. One of the limitations in our understanding of correlated input to motor neurons is that it has not been possible so far to quantify the absolute proportion of common input with respect to the total synaptic input received by the motor neurons. Indeed, correlation measures of pairs of output spike trains only allow for relative comparisons. In the present study, we report for the first time an approach for measuring the proportion of common input in the low frequency bandwidth (<5 Hz) to a motor neuron pool in humans. This estimate is based on a phenomenological model and the theoretical fitting of the experimental values of coherence between the permutations of groups of motor unit spike trains. We demonstrate the validity of this theoretical estimate with several simulations. Moreover, we applied this method to three human muscles: the abductor digiti minimi, tibialis anterior and vastus medialis. Despite these muscles having different functional roles and control properties, as confirmed by the results of the present study, we estimate that their motor pools receive a similar and large (>60%) proportion of common low frequency oscillations with respect to their total synaptic input. These results suggest that the central nervous system provides a large amount of common input to motor neuron pools, in a similar way to that for muscles with different functional and control properties. PMID:27151459

  8. Virtual and Actual Humanoid Robot Control with Four-Class Motor-Imagery-Based Optical Brain-Computer Interface

    PubMed Central

    Kim, Youngmoo E.

    2017-01-01

    Motor-imagery tasks are a popular input method for controlling brain-computer interfaces (BCIs), partially due to their similarities to naturally produced motor signals. The use of functional near-infrared spectroscopy (fNIRS) in BCIs is still emerging and has shown potential as a supplement or replacement for electroencephalography. However, studies often use only two or three motor-imagery tasks, limiting the number of available commands. In this work, we present the results of the first four-class motor-imagery-based online fNIRS-BCI for robot control. Thirteen participants utilized upper- and lower-limb motor-imagery tasks (left hand, right hand, left foot, and right foot) that were mapped to four high-level commands (turn left, turn right, move forward, and move backward) to control the navigation of a simulated or real robot. A significant improvement in classification accuracy was found between the virtual-robot-based BCI (control of a virtual robot) and the physical-robot BCI (control of the DARwIn-OP humanoid robot). Differences were also found in the oxygenated hemoglobin activation patterns of the four tasks between the first and second BCI. These results corroborate previous findings that motor imagery can be improved with feedback and imply that a four-class motor-imagery-based fNIRS-BCI could be feasible with sufficient subject training. PMID:28804712

  9. Virtual and Actual Humanoid Robot Control with Four-Class Motor-Imagery-Based Optical Brain-Computer Interface.

    PubMed

    Batula, Alyssa M; Kim, Youngmoo E; Ayaz, Hasan

    2017-01-01

    Motor-imagery tasks are a popular input method for controlling brain-computer interfaces (BCIs), partially due to their similarities to naturally produced motor signals. The use of functional near-infrared spectroscopy (fNIRS) in BCIs is still emerging and has shown potential as a supplement or replacement for electroencephalography. However, studies often use only two or three motor-imagery tasks, limiting the number of available commands. In this work, we present the results of the first four-class motor-imagery-based online fNIRS-BCI for robot control. Thirteen participants utilized upper- and lower-limb motor-imagery tasks (left hand, right hand, left foot, and right foot) that were mapped to four high-level commands (turn left, turn right, move forward, and move backward) to control the navigation of a simulated or real robot. A significant improvement in classification accuracy was found between the virtual-robot-based BCI (control of a virtual robot) and the physical-robot BCI (control of the DARwIn-OP humanoid robot). Differences were also found in the oxygenated hemoglobin activation patterns of the four tasks between the first and second BCI. These results corroborate previous findings that motor imagery can be improved with feedback and imply that a four-class motor-imagery-based fNIRS-BCI could be feasible with sufficient subject training.

  10. Direct yaw moment control and power consumption of in-wheel motor vehicle in steady-state turning

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takao; Katsuyama, Etsuo; Sugiura, Hideki; Ono, Eiichi; Yamamoto, Masaki

    2017-01-01

    Driving force distribution control is one of the characteristic performance aspects of in-wheel motor vehicles and various methods have been developed to control direct yaw moment while turning. However, while these controls significantly enhance vehicle dynamic performance, the additional power required to control vehicle motion still remains to be clarified. This paper constructed new formulae of the mechanism by which direct yaw moment alters the cornering resistance and mechanical power of all wheels based on a simple bicycle model, including the electric loss of the motors and the inverters. These formulation results were validated by an actual test vehicle equipped with in-wheel motors in steady-state turning. The validated theory was also applied to a comparison of several different driving force distribution mechanisms from the standpoint of innate mechanical power.

  11. Sensorless position estimation and control of permanent-magnet synchronous motors using a saturation model

    NASA Astrophysics Data System (ADS)

    Kassem Jebai, Al; Malrait, François; Martin, Philippe; Rouchon, Pierre

    2016-03-01

    Sensorless control of permanent-magnet synchronous motors at low velocity remains a challenging task. A now well-established method consists of injecting a high-frequency signal and using the rotor saliency, both geometric and magnetic-saturation induced. This paper proposes a clear and original analysis based on second-order averaging of how to recover the position information from signal injection; this analysis blends well with a general model of magnetic saturation. It also proposes a simple parametric model of the saturated motor, based on an energy function which simply encompasses saturation and cross-saturation effects. Experimental results on a surface-mounted motor and an interior magnet motor illustrate the relevance of the approach.

  12. Gross motor skill development of kindergarten children in Japan.

    PubMed

    Aye, Thanda; Kuramoto-Ahuja, Tsugumi; Sato, Tamae; Sadakiyo, Kaori; Watanabe, Miyoko; Maruyama, Hitoshi

    2018-05-01

    [Purpose] The purposes of this study were to assess and explore the gender-based differences in gross motor skill development of 5-year-old Japanese children. [Subjects and Methods] This cross-sectional study recruited 60 healthy 5-year-old (third-year kindergarten, i.e., nencho ) children (34 boys, 26 girls) from one local private kindergarten school in Otawara city, Tochigi Prefecture, Japan. Gross motor skills, including six locomotor and six object control skills, were assessed using the test of gross motor development, second edition (TGMD-2). All subjects performed two trials of each gross motor skill, and the performances were video-recorded and scored. Assessment procedures were performed according to the standardized guidelines of the TGMD-2. [Results] The majority of subjects had an average level of overall gross motor skills. Girls had significantly better locomotor skills. Boys had significantly better object control skills. [Conclusion] The gross motor skill development of 5-year-old Japanese children involves gender-based differences in locomotor and object control skills. This study provided valuable information that can be used to establish normative references for the gross motor skills of 5-year-old Japanese children.

  13. Electric turbocompound control system

    DOEpatents

    Algrain, Marcelo C [Dunlap, IL

    2007-02-13

    Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

  14. [The optimization of restoration approaches of advanced hand activity using the sensorial glove and the mCIMT method].

    PubMed

    Mozheiko, E Yu; Prokopenko, S V; Alekseevich, G V

    To reason the choice of methods of restoration of advanced hand activity depending on severity of motor disturbance in the top extremity. Eighty-eight patients were randomized into 3 groups: 1) the mCIMT group, 2) the 'touch glove' group, 3) the control group. For assessment of physical activity of the top extremity Fugl-Meyer Assessment Upper Extremity, Nine-Hole Peg Test, Motor Assessment Scale were used. Assessment of non-use phenomenon was carried out with the Motor Activity Log scale. At a stage of severe motor dysfunction, there was a restoration of proximal departments of a hand in all groups, neither method was superior to the other. In case of moderate severity of motor deficiency of the upper extremity the most effective was the method based on the principle of biological feedback - 'a touch glove'. In the group with mild severity of motor dysfunction, the best recovery was achieved in the mCIMT group.

  15. Comparative evaluation of power factor impovement techniques for squirrel cage induction motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spee, R.; Wallace, A.K.

    1992-04-01

    This paper describes the results obtained from a series of tests of relatively simple methods of improving the power factor of squirrel-cage induction motors. The methods, which are evaluated under controlled laboratory conditions for a 10-hp, high-efficiency motor, include terminal voltage reduction; terminal static capacitors; and a floating'' winding with static capacitors. The test results are compared with equivalent circuit model predictions that are then used to identify optimum conditions for each of the power factor improvement techniques compared with the basic induction motor. Finally, the relative economic value, and the implications of component failures, of the three methods aremore » discussed.« less

  16. Modeling of R/C Servo Motor and Application to Underactuated Mechanical Systems

    NASA Astrophysics Data System (ADS)

    Ishikawa, Masato; Kitayoshi, Ryohei; Wada, Takashi; Maruta, Ichiro; Sugie, Toshiharu

    An R/C servo motor is a compact package of a DC geard-motor associated with a position servo controller. They are widely used in small-sized robotics and mechatronics by virtue of their compactness, easiness-to-use and high/weight ratio. However, it is crucial to clarify their internal model (including the embedded position servo) in order to improve control performance of mechatronic systems using R/C servo motors, such as biped robots or underactuted sysyems. In this paper, we propose a simple and realistic internal model of the R/C servo motors including the embedded servo controller, and estimate their physical parameters using continuous-time system identification method. We also provide a model of reference-to-torque transfer function so that we can estimate the internal torque acting on the load.

  17. Influences of Sentence Length and Syntactic Complexity on the Speech Motor Control of Children Who Stutter

    ERIC Educational Resources Information Center

    MacPherson, Megan K.; Smith, Anne

    2013-01-01

    Purpose: To investigate the potential effects of increased sentence length and syntactic complexity on the speech motor control of children who stutter (CWS). Method: Participants repeated sentences of varied length and syntactic complexity. Kinematic measures of articulatory coordination variability and movement duration during perceptually…

  18. The Effect of Coordinated Teaching Method Practices on Some Motor Skills of 6-Year-Old Children

    ERIC Educational Resources Information Center

    Altinkok, Mustafa

    2017-01-01

    Purpose: This study was designed to examine the effects of Coordinated Teaching Method activities applied for 10 weeks on 6-year-old children, and to examine the effects of these activities on the development of some motor skills in children. Research Methods: The "Experimental Research Model with Pre-test and Post-test Control Group"…

  19. Model-free adaptive speed control on travelling wave ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Di, Sisi; Li, Huafeng

    2018-01-01

    This paper introduced a new data-driven control (DDC) method for the speed control of ultrasonic motor (USM). The model-free adaptive control (MFAC) strategy was presented in terms of its principles, algorithms, and parameter selection. To verify the efficiency of the proposed method, a speed-frequency-time model, which contained all the measurable nonlinearity and uncertainties based on experimental data was established for simulation to mimic the USM operation system. Furthermore, the model was identified using particle swarm optimization (PSO) method. Then, the control of the simulated system using MFAC was evaluated under different expectations in terms of overshoot, rise time and steady-state error. Finally, the MFAC results were compared with that of proportion iteration differentiation (PID) to demonstrate its advantages in controlling general random system.

  20. Electrical system for pulse-width modulated control of a power inverter using phase-shifted carrier signals and related operating methods

    DOEpatents

    Welchko, Brian A [Torrance, CA

    2012-02-14

    Systems and methods are provided for pulse-width modulated control of power inverter using phase-shifted carrier signals. An electrical system comprises an energy source and a motor. The motor has a first set of windings and a second set of windings, which are electrically isolated from each other. An inverter module is coupled between the energy source and the motor and comprises a first set of phase legs coupled to the first set of windings and a second set of phase legs coupled to the second set of windings. A controller is coupled to the inverter module and is configured to achieve a desired power flow between the energy source and the motor by modulating the first set of phase legs using a first carrier signal and modulating the second set of phase legs using a second carrier signal. The second carrier signal is phase-shifted relative to the first carrier signal.

  1. A New Unified Analysis of Estimate Errors by Model-Matching Phase-Estimation Methods for Sensorless Drive of Permanent-Magnet Synchronous Motors and New Trajectory-Oriented Vector Control, Part II

    NASA Astrophysics Data System (ADS)

    Shinnaka, Shinji

    This paper presents a new unified analysis of estimate errors by model-matching extended-back-EMF estimation methods for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using model-matching extended-back-EMF estimation methods.

  2. Thrust Control Loop Design for Electric-Powered UAV

    NASA Astrophysics Data System (ADS)

    Byun, Heejae; Park, Sanghyuk

    2018-04-01

    This paper describes a process of designing a thrust control loop for an electric-powered fixed-wing unmanned aerial vehicle equipped with a propeller and a motor. In particular, the modeling method of the thrust system for thrust control is described in detail and the propeller thrust and torque force are modeled using blade element theory. A relation between current and torque of the motor is obtained using an experimental setup. Another relation between current, voltage and angular velocity is also obtained. The electric motor and the propeller dynamics are combined to model the thrust dynamics. The associated trim and linearization equations are derived. Then, the thrust dynamics are coupled with the flight dynamics to allow a proper design for the thrust loop in the flight control. The proposed method is validated by an application to a testbed UAV through simulations and flight test.

  3. Ultraprecision XY stage using a hybrid bolt-clamped Langevin-type ultrasonic linear motor for continuous motion.

    PubMed

    Lee, Dong-Jin; Lee, Sun-Kyu

    2015-01-01

    This paper presents a design and control system for an XY stage driven by an ultrasonic linear motor. In this study, a hybrid bolt-clamped Langevin-type ultrasonic linear motor was manufactured and then operated at the resonance frequency of the third longitudinal and the sixth lateral modes. These two modes were matched through the preload adjustment and precisely tuned by the frequency matching method based on the impedance matching method with consideration of the different moving weights. The XY stage was evaluated in terms of position and circular motion. To achieve both fine and stable motion, the controller consisted of a nominal characteristics trajectory following (NCTF) control for continuous motion, dead zone compensation, and a switching controller based on the different NCTFs for the macro- and micro-dynamics regimes. The experimental results showed that the developed stage enables positioning and continuous motion with nanometer-level accuracy.

  4. A nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle.

    PubMed

    van Bolhuis, A I; Holsheimer, J; Savelberg, H H

    2001-05-30

    Electrical stimulation of peripheral nerve results in a motor-unit recruitment order opposite to that attained by natural neural control, i.e. from large, fast-fatiguing to progressively smaller, fatigue-resistant motor-units. Yet animal studies involving physiological exercise protocols of low intensity and long duration require minimal fatigue. The present study sought to apply a nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle. Two pulse generators were used, independently supplying short supramaximal cathodal stimulating pulses (0.5 ms) and long subthreshold cathodal inactivating pulses (1.5 s) to the sciatic nerve. Propagation of action potentials was selectively blocked in nerve fibres of different diameter by adjusting the strength of the inactivating current. A tensile-testing machine was used to gauge isometric muscle force of the plantaris and both heads of the gastrocnemius muscle. The order of motor-unit recruitment was estimated from twitch characteristics, i.e. peak force and relaxation time. The results showed prolonged relaxation at lower twitch peak forces as the intensity of the inactivating current increased, indicating a reduction of the number of large motor-units to force production. It is shown that the nerve stimulation method described is effective in mimicking physiological muscle control.

  5. Adaptive Motor Resistance Video Game Exercise Apparatus and Method of Use Thereof

    NASA Technical Reports Server (NTRS)

    Reich, Alton (Inventor); Shaw, James (Inventor)

    2015-01-01

    The invention comprises a method and/or an apparatus using computer configured exercise equipment and an electric motor provided physical resistance in conjunction with a game system, such as a video game system, where the exercise system provides real physical resistance to a user interface. Results of user interaction with the user interface are integrated into a video game, such as running on a game console. The resistance system comprises: a subject interface, software control, a controller, an electric servo assist/resist motor, an actuator, and/or a subject sensor. The system provides actual physical interaction with a resistance device as input to the game console and game run thereon.

  6. Data-Driven Based Asynchronous Motor Control for Printing Servo Systems

    NASA Astrophysics Data System (ADS)

    Bian, Min; Guo, Qingyun

    Modern digital printing equipment aims to the environmental-friendly industry with high dynamic performances and control precision and low vibration and abrasion. High performance motion control system of printing servo systems was required. Control system of asynchronous motor based on data acquisition was proposed. Iterative learning control (ILC) algorithm was studied. PID control was widely used in the motion control. However, it was sensitive to the disturbances and model parameters variation. The ILC applied the history error data and present control signals to approximate the control signal directly in order to fully track the expect trajectory without the system models and structures. The motor control algorithm based on the ILC and PID was constructed and simulation results were given. The results show that data-driven control method is effective dealing with bounded disturbances for the motion control of printing servo systems.

  7. Research on motor rotational speed measurement in regenerative braking system of electric vehicle

    NASA Astrophysics Data System (ADS)

    Pan, Chaofeng; Chen, Liao; Chen, Long; Jiang, Haobin; Li, Zhongxing; Wang, Shaohua

    2016-01-01

    Rotational speed signals acquisition and processing techniques are widely used in rotational machinery. In order to realized precise and real-time control of motor drive and regenerative braking process, rotational speed measurement techniques are needed in electric vehicles. Obtaining accurate motor rotational speed signal will contribute to the regenerative braking force control steadily and realized higher energy recovery rate. This paper aims to develop a method that provides instantaneous speed information in the form of motor rotation. It addresses principles of motor rotational speed measurement in the regenerative braking systems of electric vehicle firstly. The paper then presents ideal and actual Hall position sensor signals characteristics, the relation between the motor rotational speed and the Hall position sensor signals is revealed. Finally, Hall position sensor signals conditioning and processing circuit and program for motor rotational speed measurement have been carried out based on measurement error analysis.

  8. Extending the Constant Power Speed Range of the Brushless DC Motor through Dual Mode Inverter Control -- Part I: Theory and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, J.S.

    2001-10-29

    An inverter topology and control scheme has been developed that can drive low-inductance, surface-mounted permanent magnet motors over the wide constant power speed range required in electric vehicle applications. This new controller is called the dual-mode inverter control (DMIC) [1]. The DMIC can drive either the Permanent Magnet Synchronous Machine (PMSM) with sinusoidal back emf, or the brushless dc machine (BDCM) with trapezoidal emf in the motoring and regenerative braking modes. In this paper we concentrate on the BDCM under high-speed motoring conditions. Simulation results show that if all motor and inverter loss mechanisms are neglected, the constant power speedmore » range of the DMIC is infinite. The simulation results are supported by closed form expressions for peak and rms motor current and average power derived from analytical solution to the differential equations governing the DMIC/BDCM drive for the lossless case. The analytical solution shows that the range of motor inductance that can be accommodated by the DMIC is more than an order of magnitude such that the DMIC is compatible with both low- and high-inductance BDCMs. Finally, method is given for integrating the classical hysteresis band current control, used for motor control below base speed, with the phase advance of DMIC that is applied above base speed. The power versus speed performance of the DMIC is then simulated across the entire speed range.« less

  9. Translating Principles of Neural Plasticity into Research on Speech Motor Control Recovery and Rehabilitation

    ERIC Educational Resources Information Center

    Ludlow, Christy L.; Hoit, Jeannette; Kent, Raymond; Ramig, Lorraine O.; Shrivastav, Rahul; Strand, Edythe; Yorkston, Kathryn; Sapienza, Christine M.

    2008-01-01

    Purpose: To review the principles of neural plasticity and make recommendations for research on the neural bases for rehabilitation of neurogenic speech disorders. Method: A working group in speech motor control and disorders developed this report, which examines the potential relevance of basic research on the brain mechanisms involved in neural…

  10. Motor Abilities of Children Diagnosed with Fragile X Syndrome with and without Autism

    ERIC Educational Resources Information Center

    Zingerevich, C.; Greiss-Hess, L.; Lemons-Chitwood, K.; Harris, S. W.; Hessl, D.; Cook, K.; Hagerman, Randi J.

    2009-01-01

    Background: Previous studies suggested that children diagnosed with fragile X syndrome (FXS) often meet criteria for autism or PDD. This study describes the fine motor abilities of children diagnosed with FXS with and without autism spectrum disorder, and compares the motor scores of those groups controlling for cognitive level. Method:…

  11. [Effects of bilateral deep brain stimulation in the subthalamic nucleus using two methods of target structure verification].

    PubMed

    Goubareva, N N; Fedorova, N V; Bril', E V; Tomskiy, A A; Gamaleya, A A; Poddubskaya, A A; Shabalov, V A; Omarova, S M

    To evaluate the efficacy of deep brain stimulation in the subthalamic nucleus (DBS STN) in patients with Parkinson's disease (PD) using different methods of targeting according to the dynamics of motor symptoms of PD. The study involved 90 patients treated with DBS STN. In 30 cases intraoperative microelectrode recording (MER) was used. MER was not performed in 30 patients of the comparison group. The control group consisted of 30 patients with PD who received conservative treatment. Hoehn and Yahr scale, Tinetti Balance and Mobility Scale (TBMS), Unified Parkinson's Disease Rating Scale (UPDRS), Parkinson's Disease Quality of Life-39 Scoring System (РDQ-39), Schwab & England ADL Scale were used. Levodopa equivalent daily dose (LEDD, 2010) was calculated for each patient. The effect of DBS STN using intraoperative microelectrode recording on the main motor symptoms, motor complications, walking as well as indicators of quality of life and daily activities was shown. In both DBS STN groups, there was a significant reduction in the LEDD and marked improvement of the control of motor symptoms of PD. A significant reduction in the severity of motor fluctuations (50%) and drug-induced dyskinesia (51%) was observed. Quality of life and daily activity in off-medication condition were significantly improved in both DBS STN groups of patients, irrespective of the method of target planning (75-100%), compared with the control group.

  12. Load speed regulation in compliant mechanical transmission systems using feedback and feedforward control actions.

    PubMed

    Raul, P R; Dwivedula, R V; Pagilla, P R

    2016-07-01

    The problem of controlling the load speed of a mechanical transmission system consisting of a belt-pulley and gear-pair is considered. The system is modeled as two inertia (motor and load) connected by a compliant transmission. If the transmission is assumed to be rigid, then using either the motor or load speed feedback provides the same result. However, with transmission compliance, due to belts or long shafts, the stability characteristics and performance of the closed-loop system are quite different when either motor or load speed feedback is employed. We investigate motor and load speed feedback schemes by utilizing the singular perturbation method. We propose and discuss a control scheme that utilizes both motor and load speed feedback, and design an adaptive feedforward action to reject load torque disturbances. The control algorithms are implemented on an experimental platform that is typically used in roll-to-roll manufacturing and results are shown and discussed. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Effect of different methods of pulse width modulation on power losses in an induction motor

    NASA Astrophysics Data System (ADS)

    Gulyaev, Alexander; Fokin, Dmitrii; Shuharev, Sergey; Ten, Evgenii

    2017-10-01

    We consider the calculation of modulation power losses in a system “induction motor-inverter” for various pulse width modulation (PWM) methods of the supply voltage. Presented values of modulation power losses are the result of modeling a system “DC link - two-level three-phase voltage inverter - induction motor - load”. In this study the power losses in a system “induction motor - inverter” are computed, as well as losses caused by higher harmonics of PWM supply voltage, followed by definition of active power consumed by the DC link for a specified value mechanical power on the induction motor shaft. Mechanical power was determined by the rotation speed and the torque on the motor shaft in various quasi-sinusoidal supply voltage PWM modes. These calculations reveal the best coefficient of performance (COP) in a system of a variable frequency drive (VFD) with independent voltage inverter controlled by induction motor PWM.

  14. The control system of synchronous movement of the gantry crane supports

    NASA Astrophysics Data System (ADS)

    Odnokopylov, I. G.; Gneushev, V. V.; Galtseva, O. V.; Natalinova, N. M.; Li, J.; Serebryakov, D. I.

    2017-01-01

    The paper presents study findings on synchronization of the gantry crane support movement. Asynchrony moving speed bearings may lead to an emergency mode at the natural rate of deformed metal structure alignment. The use of separate control of asynchronous motors with the vector control method allows synchronizing the movement speed of crane supports and achieving a balance between the motors. Simulation results of various control systems are described. Recommendations regarding the system further application are given.

  15. Gross motor skill development of kindergarten children in Japan

    PubMed Central

    Aye, Thanda; Kuramoto-Ahuja, Tsugumi; Sato, Tamae; Sadakiyo, Kaori; Watanabe, Miyoko; Maruyama, Hitoshi

    2018-01-01

    [Purpose] The purposes of this study were to assess and explore the gender-based differences in gross motor skill development of 5-year-old Japanese children. [Subjects and Methods] This cross-sectional study recruited 60 healthy 5-year-old (third-year kindergarten, i.e., nencho) children (34 boys, 26 girls) from one local private kindergarten school in Otawara city, Tochigi Prefecture, Japan. Gross motor skills, including six locomotor and six object control skills, were assessed using the test of gross motor development, second edition (TGMD-2). All subjects performed two trials of each gross motor skill, and the performances were video-recorded and scored. Assessment procedures were performed according to the standardized guidelines of the TGMD-2. [Results] The majority of subjects had an average level of overall gross motor skills. Girls had significantly better locomotor skills. Boys had significantly better object control skills. [Conclusion] The gross motor skill development of 5-year-old Japanese children involves gender-based differences in locomotor and object control skills. This study provided valuable information that can be used to establish normative references for the gross motor skills of 5-year-old Japanese children. PMID:29765187

  16. Implementation of a sliding-mode-based position sensorless drive for high-speed micro permanent-magnet synchronous motors.

    PubMed

    Chi, Wen-Chun; Cheng, Ming-Yang

    2014-03-01

    Due to issues such as limited space, it is difficult if it is not impossible to employ a position sensor in the drive control of high-speed micro PMSMs. In order to alleviate this problem, this paper analyzes and implements a simple and robust position sensorless field-oriented control method of high-speed micro PMSMs based on the sliding-mode observer. In particular, the angular position and velocity of the rotor of the high-speed micro PMSM are estimated using the sliding-mode observer. This observer is able to accurately estimate rotor position in the low speed region and guarantee fast convergence of the observer in the high speed region. The proposed position sensorless control method is suitable for electric dental handpiece motor drives where a wide speed range operation is essential. The proposed sensorless FOC method is implemented using a cost-effective 16-bit microcontroller and tested in a prototype electric dental handpiece motor. Several experiments are performed to verify the effectiveness of the proposed method. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Novel Observer Scheme of Fuzzy-MRAS Sensorless Speed Control of Induction Motor Drive

    NASA Astrophysics Data System (ADS)

    Chekroun, S.; Zerikat, M.; Mechernene, A.; Benharir, N.

    2017-01-01

    This paper presents a novel approach Fuzzy-MRAS conception for robust accurate tracking of induction motor drive operating in a high-performance drives environment. Of the different methods for sensorless control of induction motor drive the model reference adaptive system (MRAS) finds lot of attention due to its good performance. The analysis of the sensorless vector control system using MRAS is presented and the resistance parameters variations and speed observer using new Fuzzy Self-Tuning adaptive IP Controller is proposed. In fact, fuzzy logic is reminiscent of human thinking processes and natural language enabling decisions to be made based on vague information. The present approach helps to achieve a good dynamic response, disturbance rejection and low to plant parameter variations of the induction motor. In order to verify the performances of the proposed observer and control algorithms and to test behaviour of the controlled system, numerical simulation is achieved. Simulation results are presented and discussed to shown the validity and the performance of the proposed observer.

  18. Evidence that a Motor Timing Deficit Is a Factor in the Development of Stuttering

    ERIC Educational Resources Information Center

    Olander, Lindsey; Smith, Anne; Zelaznik, Howard N.

    2010-01-01

    Purpose: To determine whether young children who stutter have a basic motor timing and/or a coordination deficit. Method: Between-hands coordination and variability of rhythmic motor timing were assessed in 17 children who stutter (4-6 years of age) and 13 age-matched controls. Children clapped in rhythm with a metronome with a 600-ms interbeat…

  19. Finger Tapping-Related Activation Differences in Treatment-Naive Pediatric Tourette Syndrome: A Comparison of the Preferred and Nonpreferred Hand

    ERIC Educational Resources Information Center

    Roessner, Veit; Wittfoth, Matthias; August, Julia M.; Rothenberger, Aribert; Baudewig, Jurgen; Dechent, Peter

    2013-01-01

    Background: Disturbances of motor circuitry are commonly encountered in Tourette syndrome (TS). The aim of this study was to investigate simple motor performance differences between boys with TS and healthy controls. Methods: We attempted to provide insight into motor network alterations by studying a group of treatment-naive patients suffering…

  20. Do Early Intervention Programmes Improve Cognitive and Motor Outcomes for Preterm Infants after Discharge? A Systematic Review

    ERIC Educational Resources Information Center

    Orton, Jane; Spittle, Alicia; Doyle, Lex; Anderson, Peter; Boyd, Roslyn

    2009-01-01

    Aim: The aim of this study was to review the effects of early developmental intervention after discharge from hospital on motor and cognitive development in preterm infants. Method: Randomized controlled trials (RCTs) or quasi-RCTs of early developmental intervention programmes for preterm infants in which motor or cognitive outcomes were reported…

  1. Triple stimulation technique in patients with spinocerebellar ataxia type 6.

    PubMed

    Sakuma, Kenji; Adachi, Yoshiki; Fukuda, Hiroki; Kai, Tohru; Nakashima, Kenji

    2005-11-01

    To establish further evidence that SCA6 may not be a pure cerebellar syndrome. Seven patients with genetically confirmed SCA6 and 9 age-matched normal controls were studied. Recordings of the CMAP were obtained from the right first dorsal interosseus muscle. Transcranial magnetic stimulation of the left motor cortex was applied to the contralateral scalp with a plane figure-of-8 coil. Conventional transcranial magnetic stimulation (TMS), central motor conduction time (CMCT) by F-wave method and the triple stimulation technique (TST) amplitude ratio (TST test/TST control) were investigated. The mean resting motor threshold and mean CMCT did not show significant differences between normal controls and patients, but the mean TST amplitude ratio was significantly smaller in patients than in controls. An abnormal TST represents upper motor neuron loss, central axon lesions or conduction blocks, or inexcitability in response to TMS. The lack of pathological changes in the corticospinal tract of patients with SCA6 indicates that this abnormality may be caused by crossed cerebellar diaschisis, or a functional disorder in the brain resulting from CACNA1A mutations. TST is a useful method for quantifying corticospinal tract dysfunction.

  2. Toward more versatile and intuitive cortical brain machine interfaces

    PubMed Central

    Andersen, Richard A.; Kellis, Spencer; Klaes, Christian; Aflalo, Tyson

    2015-01-01

    Brain machine interfaces have great potential in neuroprosthetic applications to assist patients with brain injury and neurodegenerative diseases. One type of BMI is a cortical motor prosthetic which is used to assist paralyzed subjects. Motor prosthetics to date have typically used the motor cortex as a source of neural signals for controlling external devices. The review will focus on several new topics in the arena of cortical prosthetics. These include using 1) recordings from cortical areas outside motor cortex; 2) local field potentials (LFPs) as a source of recorded signals; 3) somatosensory feedback for more dexterous control of robotics; and 4) new decoding methods that work in concert to form an ecology of decode algorithms. These new advances hold promise in greatly accelerating the applicability and ease of operation of motor prosthetics. PMID:25247368

  3. Motor cortex inhibition

    PubMed Central

    Isaacs, K.M.; Augusta, M.; MacNeil, L.K.; Mostofsky, S.H.

    2011-01-01

    Objective: Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset behavioral diagnosis in which children often fail to meet age norms in development of motor control, particularly timed repetitive and sequential movements, motor overflow, and balance. The neural substrate of this motor delay may include mechanisms of synaptic inhibition in or adjacent to the motor cortex. The primary objective of this study was to determine whether transcranial magnetic stimulation (TMS)–evoked measures, particularly short interval cortical inhibition (SICI), in motor cortex correlate with the presence and severity of ADHD in childhood as well as with commonly observed delays in motor control. Methods: In this case-control study, behavioral ratings, motor skills, and motor cortex physiology were evaluated in 49 children with ADHD (mean age 10.6 years, 30 boys) and 49 typically developing children (mean age 10.5 years, 30 boys), all right-handed, aged 8–12 years. Motor skills were evaluated with the Physical and Neurological Examination for Subtle Signs (PANESS) and the Motor Assessment Battery for Children version 2. SICI and other physiologic measures were obtained using TMS in the left motor cortex. Results: In children with ADHD, mean SICI was reduced by 40% (p < 0.0001) and less SICI correlated with higher ADHD severity (r = −0.52; p = 0.002). Mean PANESS motor development scores were 59% worse in children with ADHD (p < 0.0001). Worse PANESS scores correlated modestly with less SICI (r = −.30; p = 0.01). Conclusion: Reduced TMS-evoked SICI correlates with ADHD diagnosis and symptom severity and also reflects motor skill development in children. PMID:21321335

  4. Object-Oriented Control System Design Using On-Line Training of Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Rubaai, Ahmed

    1997-01-01

    This report deals with the object-oriented model development of a neuro-controller design for permanent magnet (PM) dc motor drives. The system under study is described as a collection of interacting objects. Each object module describes the object behaviors, called methods. The characteristics of the object are included in its variables. The knowledge of the object exists within its variables, and the performance is determined by its methods. This structure maps well to the real world objects that comprise the system being modeled. A dynamic learning architecture that possesses the capabilities of simultaneous on-line identification and control is incorporated to enforce constraints on connections and control the dynamics of the motor. The control action is implemented "on-line", in "real time" in such a way that the predicted trajectory follows a specified reference model. A design example of controlling a PM dc motor drive on-line shows the effectiveness of the design tool. This will therefore be very useful in aerospace applications. It is expected to provide an innovative and noval software model for the rocket engine numerical simulator executive.

  5. Position and speed control of brushless DC motors using sensorless techniques and application trends.

    PubMed

    Gamazo-Real, José Carlos; Vázquez-Sánchez, Ernesto; Gómez-Gil, Jaime

    2010-01-01

    This paper provides a technical review of position and speed sensorless methods for controlling Brushless Direct Current (BLDC) motor drives, including the background analysis using sensors, limitations and advances. The performance and reliability of BLDC motor drivers have been improved because the conventional control and sensing techniques have been improved through sensorless technology. Then, in this paper sensorless advances are reviewed and recent developments in this area are introduced with their inherent advantages and drawbacks, including the analysis of practical implementation issues and applications. The study includes a deep overview of state-of-the-art back-EMF sensing methods, which includes Terminal Voltage Sensing, Third Harmonic Voltage Integration, Terminal Current Sensing, Back-EMF Integration and PWM strategies. Also, the most relevant techniques based on estimation and models are briefly analysed, such as Sliding-mode Observer, Extended Kalman Filter, Model Reference Adaptive System, Adaptive observers (Full-order and Pseudoreduced-order) and Artificial Neural Networks.

  6. Energy Efficiency of Induction Motors Running Off Frequency Converters with Pulse-Width Voltage Modulation{sup 1}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvetsov, N. K., E-mail: elmash@em.ispu.ru

    2016-11-15

    The results of calculations of the increase in losses in an induction motor with frequency control and different forms of the supply voltage are presented. The calculations were performed by an analytic method based on harmonic analysis of the supply voltage as well as numerical calculation of the electromagnetic processes by the finite-element method.

  7. An Inexpensive and Automated Method for Presenting Olfactory or Tactile Stimuli to Rats in a Two-Choice Discrimination Task

    ERIC Educational Resources Information Center

    Iversen, Iver H.

    2008-01-01

    An inexpensive and automated method for presentation of olfactory or tactile stimuli in a two-choice task for rats was implemented with the use of a computer-controlled bidirectional motor. The motor rotated a disk that presented two stimuli of different texture for tactile discrimination, or different odor for olfactory discrimination. Because…

  8. Flux-Based Deadbeat Control of Induction-Motor Torque

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Lorenz, Robert D.

    2003-01-01

    An improved method and prior methods of deadbeat direct torque control involve the use of pulse-width modulation (PWM) of applied voltages. The prior methods are based on the use of stator flux and stator current as state variables, leading to mathematical solutions of control equations in forms that do not lend themselves to clear visualization of solution spaces. In contrast, the use of rotor and stator fluxes as the state variables in the present improved method lends itself to graphical representations that aid in understanding possible solutions under various operating conditions. In addition, the present improved method incorporates the superposition of high-frequency carrier signals for use in a motor-self-sensing technique for estimating the rotor shaft angle at any speed (including low or even zero speed) without need for additional shaft-angle-measuring sensors.

  9. Generating Spatiotemporal Joint Torque Patterns from Dynamical Synchronization of Distributed Pattern Generators

    PubMed Central

    Pitti, Alexandre; Lungarella, Max; Kuniyoshi, Yasuo

    2009-01-01

    Pattern generators found in the spinal cord are no more seen as simple rhythmic oscillators for motion control. Indeed, they achieve flexible and dynamical coordination in interaction with the body and the environment dynamics giving to rise motor synergies. Discovering the mechanisms underlying the control of motor synergies constitutes an important research question not only for neuroscience but also for robotics: the motors coordination of high dimensional robotic systems is still a drawback and new control methods based on biological solutions may reduce their overall complexity. We propose to model the flexible combination of motor synergies in embodied systems via partial phase synchronization of distributed chaotic systems; for specific coupling strength, chaotic systems are able to phase synchronize their dynamics to the resonant frequencies of one external force. We take advantage of this property to explore and exploit the intrinsic dynamics of one specified embodied system. In two experiments with bipedal walkers, we show how motor synergies emerge when the controllers phase synchronize to the body's dynamics, entraining it to its intrinsic behavioral patterns. This stage is characterized by directed information flow from the sensors to the motors exhibiting the optimal situation when the body dynamics drive the controllers (mutual entrainment). Based on our results, we discuss the relevance of our findings for modeling the modular control of distributed pattern generators exhibited in the spinal cord, and for exploring the motor synergies in robots. PMID:20011216

  10. A New Unified Analysis of Estimate Errors by Model-Matching Phase-Estimation Methods for Sensorless Drive of Permanent-Magnet Synchronous Motors and New Trajectory-Oriented Vector Control, Part I

    NASA Astrophysics Data System (ADS)

    Shinnaka, Shinji; Sano, Kousuke

    This paper presents a new unified analysis of estimate errors by model-matching phase-estimation methods such as rotor-flux state-observers, back EMF state-observers, and back EMF disturbance-observers, for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using one of the model-matching phase-estimation methods.

  11. Intermediate Cognitive Phenotypes in Bipolar Disorder

    PubMed Central

    Langenecker, Scott A.; Saunders, Erika F.H.; Kade, Allison M.; Ransom, Michael T.; McInnis, Melvin G.

    2013-01-01

    Background Intermediate cognitive phenotypes (ICPs) are measurable and quantifiable states that may be objectively assessed in a standardized method, and can be integrated into association studies, including genetic, biochemical, clinical, and imaging based correlates. The present study used neuropsychological measures as ICPs, with factor scores in executive functioning, attention, memory, fine motor function, and emotion processing, similar to prior work in schizophrenia. Methods Healthy control subjects (HC, n=34) and euthymic (E, n=66), depressed (D, n=43), or hypomanic/mixed (HM, n=13) patients with bipolar disorder (BD) were assessed with neuropsychological tests. These were from eight domains consistent with previous literature; auditory memory, visual memory, processing speed with interference resolution, verbal fluency and processing speed, conceptual reasoning and set-shifting, inhibitory control, emotion processing, and fine motor dexterity. Results Of the eight factor scores, the HC group outperformed the E group in three (Processing Speed with Interference Resolution, Visual Memory, Fine Motor Dexterity), the D group in seven (all except Inhibitory Control), and the HM group in four (Inhibitory Control, Processing Speed with Interference Resolution, Fine Motor Dexterity, and Auditory Memory). Limitations The HM group was relatively small, thus effects of this phase of illness may have been underestimated. Effects of medication could not be fully controlled without a randomized, double-blind, placebo-controlled study. Conclusions Use of the factor scores can assist in determining ICPs for BD and related disorders, and may provide more specific targets for development of new treatments. We highlight strong ICPs (Processing Speed with Interference Resolution, Visual Memory, Fine Motor Dexterity) for further study, consistent with the existing literature. PMID:19800130

  12. Ultraprecision XY stage using a hybrid bolt-clamped Langevin-type ultrasonic linear motor for continuous motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dong-Jin; Lee, Sun-Kyu, E-mail: skyee@gist.ac.kr

    2015-01-15

    This paper presents a design and control system for an XY stage driven by an ultrasonic linear motor. In this study, a hybrid bolt-clamped Langevin-type ultrasonic linear motor was manufactured and then operated at the resonance frequency of the third longitudinal and the sixth lateral modes. These two modes were matched through the preload adjustment and precisely tuned by the frequency matching method based on the impedance matching method with consideration of the different moving weights. The XY stage was evaluated in terms of position and circular motion. To achieve both fine and stable motion, the controller consisted of amore » nominal characteristics trajectory following (NCTF) control for continuous motion, dead zone compensation, and a switching controller based on the different NCTFs for the macro- and micro-dynamics regimes. The experimental results showed that the developed stage enables positioning and continuous motion with nanometer-level accuracy.« less

  13. Adaptation to sensory-motor reflex perturbations is blind to the source of errors.

    PubMed

    Hudson, Todd E; Landy, Michael S

    2012-01-06

    In the study of visual-motor control, perhaps the most familiar findings involve adaptation to externally imposed movement errors. Theories of visual-motor adaptation based on optimal information processing suppose that the nervous system identifies the sources of errors to effect the most efficient adaptive response. We report two experiments using a novel perturbation based on stimulating a visually induced reflex in the reaching arm. Unlike adaptation to an external force, our method induces a perturbing reflex within the motor system itself, i.e., perturbing forces are self-generated. This novel method allows a test of the theory that error source information is used to generate an optimal adaptive response. If the self-generated source of the visually induced reflex perturbation is identified, the optimal response will be via reflex gain control. If the source is not identified, a compensatory force should be generated to counteract the reflex. Gain control is the optimal response to reflex perturbation, both because energy cost and movement errors are minimized. Energy is conserved because neither reflex-induced nor compensatory forces are generated. Precision is maximized because endpoint variance is proportional to force production. We find evidence against source-identified adaptation in both experiments, suggesting that sensory-motor information processing is not always optimal.

  14. Research of vibration controlling based on programmable logic controller for electrostatic precipitator

    NASA Astrophysics Data System (ADS)

    Zhang, Zisheng; Li, Yanhu; Li, Jiaojiao; Liu, Zhiqiang; Li, Qing

    2013-03-01

    In order to improve the reliability, stability and automation of electrostatic precipitator, circuits of vibration motor for ESP and vibration control ladder diagram program are investigated using Schneider PLC with high performance and programming software of Twidosoft. Operational results show that after adopting PLC, vibration motor can run automatically; compared with traditional control system of vibration based on single-chip microcomputer, it has higher reliability, better stability and higher dust removal rate, when dust emission concentrations <= 50 mg m-3, providing a new method for vibration controlling of ESP.

  15. Reprogrammable Assembly of Molecular Motor on Solid Surfaces via Dynamic Bonds.

    PubMed

    Yu, Li; Sun, Jian; Wang, Qian; Guan, Yan; Zhou, Le; Zhang, Jingxuan; Zhang, Lanying; Yang, Huai

    2017-06-01

    Controllable assembly of molecular motors on solid surfaces is a fundamental issue for providing them to perform physical tasks. However, it can hardly be achieved by most previous methods due to their inherent limitations. Here, a general strategy is designed for the reprogrammable assembly of molecular motors on solid surfaces based on dynamic bonds. In this method, molecular motors with disulfide bonds can be remotely, reversibly, and precisely attached to solid surfaces with disulfide bonds, regardless of their chemical composition and microstructure. More importantly, it not only allows encoding geometric information referring to a pattern of molecular motors, but also enables erasing and re-encoding of geometric information via hemolytic photocleavage and recombination of disulfide bonds. Thus, solid surfaces can be regarded as "computer hardware", where molecular motors can be reformatted and reprogramed as geometric information. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Functional MRI evidence for fine motor praxis dysfunction in children with persistent speech disorders

    PubMed Central

    Redle, Erin; Vannest, Jennifer; Maloney, Thomas; Tsevat, Rebecca K.; Eikenberry, Sarah; Lewis, Barbara; Shriberg, Lawrence D.; Tkach, Jean; Holland, Scott K.

    2014-01-01

    Children with persistent speech disorders (PSD) often present with overt or subtle motor deficits; the possibility that speech disorders and motor deficits could arise from a shared neurological base is currently unknown. Functional MRI (fMRI) was used to examine the brain networks supporting fine motor praxis in children with PSD and without clinically identified fine motor deficits. Methods This case-control study included 12 children with PSD (mean age 7.42 years, 4 female) and 12 controls (mean age 7.44 years, 4 female). Children completed behavioral evaluations using standardized motor assessments and parent reported functional measures. During fMRI scanning, participants completed a cued finger tapping task contrasted passive listening. A general linear model approach identified brain regions associated with finger tapping in each group and regions that differed between groups. The relationship between regional fMRI activation and fine motor skill was assessed using a regression analysis. Results Children with PSD had significantly poorer results for rapid speech production and fine motor praxis skills, but did not differ on classroom functional skills. Functional MRI results showed that children with PSD had significantly more activation in the cerebellum during finger tapping. Positive correlations between performance on a fine motor praxis test and activation multiple cortical regions were noted for children with PSD but not for controls. Conclusions Over-activation in the cerebellum during a motor task may reflect a subtle abnormality in the non-speech motor neural circuitry in children with PSD. PMID:25481413

  17. Analysis of sensorless control of brushless DC motor using unknown input observer with different gains

    NASA Astrophysics Data System (ADS)

    Astik, Mitesh B.; Bhatt, Praghnesh; Bhalja, Bhavesh R.

    2017-03-01

    A sensorless control scheme based on an unknown input observer is presented in this paper in which back EMF of the Brushless DC Motor (BLDC) is continuously estimated from available line voltages and currents. During negative rotation of motor, actual and estimated speed fail to track the reference speed and if the corrective action is not taken by the observer, the motor goes into saturation. To overcome this problem, the speed estimation algorithm has been implemented in this paper to control the dynamic behavior of the motor during negative rotation. The Ackermans method was used to calculate the gains of an unknown input observer which is based on the appropriate choice of the eigenvalues in advance. The criteria to choose eigenvalue is to obtain a balance between faster convergence rate and the least noise level. Simulations have been carried out for different disturbances such as step changes in motor reference speed and load torque. The comparative simulation results clearly depict that the disturbance effects in actual and estimated responses minimizes as observer gain setting increases.

  18. A novel approach to enhance ACL injury prevention programs.

    PubMed

    Gokeler, Alli; Seil, Romain; Kerkhoffs, Gino; Verhagen, Evert

    2018-06-18

    Efficacy studies have demonstrated decreased anterior cruciate ligament (ACL) injury rates for athletes participating in injury prevention programs. Typically, ACL injury prevention programs entail a combination of plyometrics, strength training, agility and balance exercises. Unfortunately, improvements of movement patterns are not sustained over time. The reason may be related to the type of instructions given during training. Encouraging athletes to consciously control knee movements during exercises may not be optimal for the acquisition of complex motor skills as needed in complex sports environments. In the motor learning domain, these types of instructions are defined as an internal attentional focus. An internal focus, on one's own movements results in a more conscious type of control that may hamper motor learning. It has been established in numerous studies that an external focus of attention facilitates motor learning more effectively due to the utilization of automatic motor control. Subsequently, the athlete has more recourses available to anticipate on situations on the field and take appropriate feed forward directed actions. The purpose of this manuscript was to present methods to optimize motor skill acquisition of athletes and elaborate on athletes' behavior.

  19. Computer simulation of a cruise missile using brushless dc motor fin control

    NASA Astrophysics Data System (ADS)

    Franklin, G. C.

    1985-03-01

    This thesis describes a computer simulation developed in order to provide a method of establishing the potential of brushless dc motors for applications to tactical cruise missile control surface positioning. In particular, an altitude hold controller has been developed that provides an operational load test condition for the evaluation of the electromechanical actuator. A proportional integral control scheme in conjunction with tachometer feedback provides the position control for the missile tailfin surfaces. The fin control system is further imbedded in a cruise missile model to allow altitude control of the missile. The load on the fin is developed from the dynamic fluid environment that the missile will be operating in and is proportional to such factors as fin size and air density. The program written in CSMP language is suitable for parametric studies including motor and torque load characteristics, and missile and control system parameters.

  20. Five Decades of Research in Speech Motor Control: What Have We Learned, and Where Should We Go from Here?

    ERIC Educational Resources Information Center

    Perkell, Joseph S.

    2013-01-01

    Purpose: The author presents a view of research in speech motor control over the past 5 decades, as observed from within Ken Stevens's Speech Communication Group (SCG) in the Research Laboratory of Electronics at MIT. Method: The author presents a limited overview of some important developments and discoveries. The perspective is based…

  1. Effects of vibratory stimulation-induced kinesthetic illusions on the neural activities of patients with stroke.

    PubMed

    Kodama, Takayuki; Nakano, Hideki; Ohsugi, Hironori; Murata, Shin

    2016-01-01

    [Purpose] This study evaluated the influence of vibratory stimulation-induced kinesthetic illusion on brain function after stroke. [Subjects] Twelve healthy individuals and 13 stroke patients without motor or sensory loss participated. [Methods] Electroencephalograms were taken at rest and during vibratory stimulation. As a neurophysiological index of brain function, we measured the μ-rhythm, which is present mainly in the kinesthetic cortex and is attenuated by movement or motor imagery and compared the data using source localization analyses in the Standardized Low Resolution Brain Electromagnetic Tomography (sLORETA) program. [Results] At rest, μ-rhythms appeared in the sensorimotor and supplementary motor cortices in both healthy controls and stroke patients. Under vibratory stimulation, no μ-rhythm appeared in the sensorimotor cortex of either group. Moreover, in the supplementary motor area, which stores the motor imagery required for kinesthetic illusions, the μ-rhythms of patients were significantly stronger than those of the controls, although the μ-rhythms of both groups were reduced. Thus, differences in neural activity in the supplementary motor area were apparent between the subject groups. [Conclusion] Kinesthetic illusions do occur in patients with motor deficits due to stroke. The neural basis of the supplementary motor area in stroke patients may be functionally different from that found in healthy controls.

  2. Effects of vibratory stimulation-induced kinesthetic illusions on the neural activities of patients with stroke

    PubMed Central

    Kodama, Takayuki; Nakano, Hideki; Ohsugi, Hironori; Murata, Shin

    2016-01-01

    [Purpose] This study evaluated the influence of vibratory stimulation-induced kinesthetic illusion on brain function after stroke. [Subjects] Twelve healthy individuals and 13 stroke patients without motor or sensory loss participated. [Methods] Electroencephalograms were taken at rest and during vibratory stimulation. As a neurophysiological index of brain function, we measured the μ-rhythm, which is present mainly in the kinesthetic cortex and is attenuated by movement or motor imagery and compared the data using source localization analyses in the Standardized Low Resolution Brain Electromagnetic Tomography (sLORETA) program. [Results] At rest, μ-rhythms appeared in the sensorimotor and supplementary motor cortices in both healthy controls and stroke patients. Under vibratory stimulation, no μ-rhythm appeared in the sensorimotor cortex of either group. Moreover, in the supplementary motor area, which stores the motor imagery required for kinesthetic illusions, the μ-rhythms of patients were significantly stronger than those of the controls, although the μ-rhythms of both groups were reduced. Thus, differences in neural activity in the supplementary motor area were apparent between the subject groups. [Conclusion] Kinesthetic illusions do occur in patients with motor deficits due to stroke. The neural basis of the supplementary motor area in stroke patients may be functionally different from that found in healthy controls. PMID:27065525

  3. Determination of efficiencies, loss mechanisms, and performance degradation factors in chopper controlled dc vehical motors. Section 2: The time dependent finite element modeling of the electromagnetic field in electrical machines: Methods and applications. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hamilton, H. B.; Strangas, E.

    1980-01-01

    The time dependent solution of the magnetic field is introduced as a method for accounting for the variation, in time, of the machine parameters in predicting and analyzing the performance of the electrical machines. The method of time dependent finite element was used in combination with an also time dependent construction of a grid for the air gap region. The Maxwell stress tensor was used to calculate the airgap torque from the magnetic vector potential distribution. Incremental inductances were defined and calculated as functions of time, depending on eddy currents and saturation. The currents in all the machine circuits were calculated in the time domain based on these inductances, which were continuously updated. The method was applied to a chopper controlled DC series motor used for electric vehicle drive, and to a salient pole sychronous motor with damper bars. Simulation results were compared to experimentally obtained ones.

  4. Toward more versatile and intuitive cortical brain-machine interfaces.

    PubMed

    Andersen, Richard A; Kellis, Spencer; Klaes, Christian; Aflalo, Tyson

    2014-09-22

    Brain-machine interfaces have great potential for the development of neuroprosthetic applications to assist patients suffering from brain injury or neurodegenerative disease. One type of brain-machine interface is a cortical motor prosthetic, which is used to assist paralyzed subjects. Motor prosthetics to date have typically used the motor cortex as a source of neural signals for controlling external devices. The review will focus on several new topics in the arena of cortical prosthetics. These include using: recordings from cortical areas outside motor cortex; local field potentials as a source of recorded signals; somatosensory feedback for more dexterous control of robotics; and new decoding methods that work in concert to form an ecology of decode algorithms. These new advances promise to greatly accelerate the applicability and ease of operation of motor prosthetics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effects of interactive games on motor performance in children with spastic cerebral palsy

    PubMed Central

    AlSaif, Amer A.; Alsenany, Samira

    2015-01-01

    [Purpose] Motor control and muscle strength impairments are the prime reasons for motor behavior disorders in children with spastic cerebral palsy. These impairments lead to histological changes in muscle growth and the learning of motor skills. Therefore, such children experience reduced muscle force generation and decreased muscle flexibility. We investigated the effect of training with Nintendo Wii Fit games on motor performance in children with spastic cerebral palsy. [Subjects and Methods] Forty children with cerebral palsy spastic diplegia aged 6–10 years diagnosed with level-3 functional capabilities according to the Gross Motor Classification System (GMFCS) were enrolled. Participants were divided randomly into equal groups: group (A) that practiced with the Nintendo Wii Fit game for at least 20 minutes/day for 12 weeks and group (B) that underwent no training (control group). The Movement Assessment Battery for Children-2 (mABC-2) was used to assess motor performance, because it mainly involves motor tasks very similar to those involved in playing Nintendo Wii Fit games, e.g., goal-directed arm movements, balancing, and jumping. [Results] There were significant improvements in the subscales of the motor performance test of those who practiced with the Nintendo Wii, while the control group showed no significant changes. [Conclusion] Using motion interactive games in home rehabilitation is feasible for children with cerebral palsy. PMID:26180367

  6. Effects of interactive games on motor performance in children with spastic cerebral palsy.

    PubMed

    AlSaif, Amer A; Alsenany, Samira

    2015-06-01

    [Purpose] Motor control and muscle strength impairments are the prime reasons for motor behavior disorders in children with spastic cerebral palsy. These impairments lead to histological changes in muscle growth and the learning of motor skills. Therefore, such children experience reduced muscle force generation and decreased muscle flexibility. We investigated the effect of training with Nintendo Wii Fit games on motor performance in children with spastic cerebral palsy. [Subjects and Methods] Forty children with cerebral palsy spastic diplegia aged 6-10 years diagnosed with level-3 functional capabilities according to the Gross Motor Classification System (GMFCS) were enrolled. Participants were divided randomly into equal groups: group (A) that practiced with the Nintendo Wii Fit game for at least 20 minutes/day for 12 weeks and group (B) that underwent no training (control group). The Movement Assessment Battery for Children-2 (mABC-2) was used to assess motor performance, because it mainly involves motor tasks very similar to those involved in playing Nintendo Wii Fit games, e.g., goal-directed arm movements, balancing, and jumping. [Results] There were significant improvements in the subscales of the motor performance test of those who practiced with the Nintendo Wii, while the control group showed no significant changes. [Conclusion] Using motion interactive games in home rehabilitation is feasible for children with cerebral palsy.

  7. Current harmonics elimination control method for six-phase PM synchronous motor drives.

    PubMed

    Yuan, Lei; Chen, Ming-liang; Shen, Jian-qing; Xiao, Fei

    2015-11-01

    To reduce the undesired 5th and 7th stator harmonic current in the six-phase permanent magnet synchronous motor (PMSM), an improved vector control algorithm was proposed based on vector space decomposition (VSD) transformation method, which can control the fundamental and harmonic subspace separately. To improve the traditional VSD technology, a novel synchronous rotating coordinate transformation matrix was presented in this paper, and only using the traditional PI controller in d-q subspace can meet the non-static difference adjustment, the controller parameter design method is given by employing internal model principle. Moreover, the current PI controller parallel with resonant controller is employed in x-y subspace to realize the specific 5th and 7th harmonic component compensation. In addition, a new six-phase SVPWM algorithm based on VSD transformation theory is also proposed. Simulation and experimental results verify the effectiveness of current decoupling vector controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Extended Constant Power Speed Range of the Brushless DC Motor Through Dual Mode Inverter Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, J.S.

    2000-06-23

    The trapezoidal back electromotive force (emf) brushless direct current (dc) motor (BDCM) with surface-mounted magnets has high-power density and efficiency especially when rare-earth magnet materials are used. Traction applications, such as electric vehicles, could benefit significantly from the use of such motors. Unfortunately, a practical means for driving the motor over a constant power speed ratio (CPSR) of 5:1 or more has not yet been developed. A key feature of these motors is that they have low internal inductance. The phase advance method is effective in controlling the motor power over such a speed range, but the current at highmore » speed may be several times greater than that required at the base speed. The increase in current during high-speed operation is due to the low motor inductance and the action of the bypass diodes of the inverter. The use of such a control would require increased current rating of the inverter semiconductors and additional cooling for the inverter, where the conduction losses increase proportionally with current, and especially for the motor, where the losses increase with the square of the current. The high current problems of phase advance can be mitigated by adding series inductance; however, this reduces power density, requires significant increase in supply voltage, and leaves the CPSR performance of the system highly sensitive to variations in the available voltage. A new inverter topology and control scheme has been developed that can drive low-inductance BDCMs over the CPSR that would be required in electric vehicle applications. This new controller is called the dual-mode inverter control (DMIC). It is shown that the BDCM has an infinite CPSR when it is driven by the DMIC.« less

  9. Stepper motor control that adjusts to motor loading

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Nola, Frank J. (Inventor)

    2000-01-01

    A system and method are provided for controlling a stepper motor having a rotor and a multi-phase stator. Sinusoidal command signals define a commanded position of the motor's rotor. An actual position of the rotor is sensed as a function of an electrical angle between the actual position and the commanded position. The actual position is defined by sinusoidal position signals. An adjustment signal is generated using the sinusoidal command signals and sinusoidal position signals. The adjustment signal is defined as a function of the cosine of the electrical angle. The adjustment signal is multiplied by each sinusoidal command signal to generate a corresponding set of excitation signals, each of which is applied to a corresponding phase of the multi-phase stator.

  10. Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity.

    PubMed

    Lizier, Joseph T; Heinzle, Jakob; Horstmann, Annette; Haynes, John-Dylan; Prokopenko, Mikhail

    2011-02-01

    The human brain undertakes highly sophisticated information processing facilitated by the interaction between its sub-regions. We present a novel method for interregional connectivity analysis, using multivariate extensions to the mutual information and transfer entropy. The method allows us to identify the underlying directed information structure between brain regions, and how that structure changes according to behavioral conditions. This method is distinguished in using asymmetric, multivariate, information-theoretical analysis, which captures not only directional and non-linear relationships, but also collective interactions. Importantly, the method is able to estimate multivariate information measures with only relatively little data. We demonstrate the method to analyze functional magnetic resonance imaging time series to establish the directed information structure between brain regions involved in a visuo-motor tracking task. Importantly, this results in a tiered structure, with known movement planning regions driving visual and motor control regions. Also, we examine the changes in this structure as the difficulty of the tracking task is increased. We find that task difficulty modulates the coupling strength between regions of a cortical network involved in movement planning and between motor cortex and the cerebellum which is involved in the fine-tuning of motor control. It is likely these methods will find utility in identifying interregional structure (and experimentally induced changes in this structure) in other cognitive tasks and data modalities.

  11. Neuromusculoskeletal models based on the muscle synergy hypothesis for the investigation of adaptive motor control in locomotion via sensory-motor coordination.

    PubMed

    Aoi, Shinya; Funato, Tetsuro

    2016-03-01

    Humans and animals walk adaptively in diverse situations by skillfully manipulating their complicated and redundant musculoskeletal systems. From an analysis of measured electromyographic (EMG) data, it appears that despite complicated spatiotemporal properties, muscle activation patterns can be explained by a low dimensional spatiotemporal structure. More specifically, they can be accounted for by the combination of a small number of basic activation patterns. The basic patterns and distribution weights indicate temporal and spatial structures, respectively, and the weights show the muscle sets that are activated synchronously. In addition, various locomotor behaviors have similar low dimensional structures and major differences appear in the basic patterns. These analysis results suggest that neural systems use muscle group combinations to solve motor control redundancy problems (muscle synergy hypothesis) and manipulate those basic patterns to create various locomotor functions. However, it remains unclear how the neural system controls such muscle groups and basic patterns through neuromechanical interactions in order to achieve adaptive locomotor behavior. This paper reviews simulation studies that explored adaptive motor control in locomotion via sensory-motor coordination using neuromusculoskeletal models based on the muscle synergy hypothesis. Herein, the neural mechanism in motor control related to the muscle synergy for adaptive locomotion and a potential muscle synergy analysis method including neuromusculoskeletal modeling for motor impairments and rehabilitation are discussed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  12. Absent movement-related cortical potentials in children with primary motor stereotypies

    PubMed Central

    Houdayer, Elise; Walthall, Jessica; Belluscio, Beth A.; Vorbach, Sherry; Singer, Harvey S.; Hallett, Mark

    2013-01-01

    Background The underlying pathophysiologic mechanism for complex motor stereotypies in children is unknown with hypotheses ranging from an arousal to a motor control disorder. Movement-related cortical potentials (MRCPs), representing the activation of cerebral areas involved in the generation of movements, precede and accompany self-initiated voluntary movements. The goal of this study was to compare cerebral activity associated with stereotypies to that seen with voluntary movements in children with primary complex motor stereotypies. Methods Electroencephalographic (EEG) activity synchronized with video recording was recorded in 10 children diagnosed with primary motor stereotypies and 7 controls. EEG activity related to stereotypies and self-paced arm movements were analyzed for presence or absence of early or late MRCP, a steep negativity beginning about one second before the onset of a voluntary movement. Results Early MRCPs preceded self-paced arm movements in 8 out of 10 children with motor stereotypies and in 6 out of 7 controls. Observed MRCPs did not differ between groups. No MRCP was identified before the appearance of a complex motor stereotypy. Conclusions Unlike voluntary movements, stereotypies are not preceded by MRCPs. This indicates that premotor areas are likely not involved in the preparation of these complex movements and suggests that stereotypies are initiated by mechanisms different from voluntary movements. Further studies are required to determine the site of the motor control abnormality within cortico-striatal-thalamo-cortical pathways and to identify whether similar findings would be found in children with secondary stereotypies. PMID:24259275

  13. Gross Motor Development in Children Aged 3-5 Years, United States 2012.

    PubMed

    Kit, Brian K; Akinbami, Lara J; Isfahani, Neda Sarafrazi; Ulrich, Dale A

    2017-07-01

    Objective Gross motor development in early childhood is important in fostering greater interaction with the environment. The purpose of this study is to describe gross motor skills among US children aged 3-5 years using the Test of Gross Motor Development (TGMD-2). Methods We used 2012 NHANES National Youth Fitness Survey (NNYFS) data, which included TGMD-2 scores obtained according to an established protocol. Outcome measures included locomotor and object control raw and age-standardized scores. Means and standard errors were calculated for demographic and weight status with SUDAAN using sample weights to calculate nationally representative estimates, and survey design variables to account for the complex sampling methods. Results The sample included 339 children aged 3-5 years. As expected, locomotor and object control raw scores increased with age. Overall mean standardized scores for locomotor and object control were similar to the mean value previously determined using a normative sample. Girls had a higher mean locomotor, but not mean object control, standardized score than boys (p < 0.05). However, the mean locomotor standardized scores for both boys and girls fell into the range categorized as "average." There were no other differences by age, race/Hispanic origin, weight status, or income in either of the subtest standardized scores (p > 0.05). Conclusions In a nationally representative sample of US children aged 3-5 years, TGMD-2 mean locomotor and object control standardized scores were similar to the established mean. These results suggest that standardized gross motor development among young children generally did not differ by demographic or weight status.

  14. The influence of the non-motor vehicles for the car-following model considering traffic jerk

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Cheng, Rong-jun; Lei, Li; Ge, Hong-xia

    2016-12-01

    The influence of the non-motor vehicles and traffic jerk is considered for the car-following model in this paper. The control method is used to analyze the stability of the model. A control signal which is the velocity difference between the target vehicle and the following vehicle is added into the model and the stability condition is obtained. Numerical simulation is used to display the results for the stability of the model with and without control signal.

  15. On the use of musculoskeletal models to interpret motor control strategies from performance data

    NASA Astrophysics Data System (ADS)

    Cheng, Ernest J.; Loeb, Gerald E.

    2008-06-01

    The intrinsic viscoelastic properties of muscle are central to many theories of motor control. Much of the debate over these theories hinges on varying interpretations of these muscle properties. In the present study, we describe methods whereby a comprehensive musculoskeletal model can be used to make inferences about motor control strategies that would account for behavioral data. Muscle activity and kinematic data from a monkey were recorded while the animal performed a single degree-of-freedom pointing task in the presence of pseudo-random torque perturbations. The monkey's movements were simulated by a musculoskeletal model with accurate representations of musculotendon morphometry and contractile properties. The model was used to quantify the impedance of the limb while moving rapidly, the differential action of synergistic muscles, the relative contribution of reflexes to task performance and the completeness of recorded EMG signals. Current methods to address these issues in the absence of musculoskeletal models were compared with the methods used in the present study. We conclude that musculoskeletal models and kinetic analysis can improve the interpretation of kinematic and electrophysiological data, in some cases by illuminating shortcomings of the experimental methods or underlying assumptions that may otherwise escape notice.

  16. Dynamic Neuro-Cognitive Imagery Improves Mental Imagery Ability, Disease Severity, and Motor and Cognitive Functions in People with Parkinson's Disease

    PubMed Central

    Hart, Ariel; Andrade, Isaac; Hackney, Madeleine E.

    2018-01-01

    People with Parkinson's disease (PD) experience kinesthetic deficits, which affect motor and nonmotor functions, including mental imagery. Imagery training is a recommended, yet underresearched, approach in PD rehabilitation. Dynamic Neuro-Cognitive Imagery (DNI™) is a codified method for imagery training. Twenty subjects with idiopathic PD (Hoehn and Yahr stages I–III) were randomly allocated into DNI training (experimental; n = 10) or in-home learning and exercise program (control; n = 10). Both groups completed at least 16 hours of training within two weeks. DNI training focused on anatomical embodiment and kinesthetic awareness. Imagery abilities, disease severity, and motor and nonmotor functions were assessed pre- and postintervention. The DNI participants improved (p < .05) in mental imagery abilities, disease severity, and motor and spatial cognitive functions. Participants also reported improvements in balance, walking, mood, and coordination, and they were more physically active. Both groups strongly agreed they enjoyed their program and were more mentally active. DNI training is a promising rehabilitation method for improving imagery ability, disease severity, and motor and nonmotor functions in people with PD. This training might serve as a complementary PD therapeutic approach. Future studies should explore the effect of DNI on motor learning and control strategies. PMID:29725348

  17. Ankle Training With a Robotic Device Improves Hemiparetic Gait After a Stroke

    PubMed Central

    Forrester, Larry W.; Roy, Anindo; Krebs, Hermano Igo; Macko, Richard F.

    2013-01-01

    Background Task-oriented therapies such as treadmill exercise can improve gait velocity after stroke, but slow velocities and abnormal gait patterns often persist, suggesting a need for additional strategies to improve walking. Objectives To determine the effects of a 6-week visually guided, impedance controlled, ankle robotics intervention on paretic ankle motor control and gait function in chronic stroke. Methods This was a single-arm pilot study with a convenience sample of 8 stroke survivors with chronic hemiparetic gait, trained and tested in a laboratory. Subjects trained in dorsiflexion–plantarflexion by playing video games with the robot during three 1-hour training sessions weekly, totaling 560 repetitions per session. Assessments included paretic ankle ranges of motion, strength, motor control, and overground gait function. Results Improved paretic ankle motor control was seen as increased target success, along with faster and smoother movements. Walking velocity also increased significantly, whereas durations of paretic single support increased and double support decreased. Conclusions Robotic feedback training improved paretic ankle motor control with improvements in floor walking. Increased walking speeds were comparable with reports from other task-oriented, locomotor training approaches used in stroke, suggesting that a focus on ankle motor control may provide a valuable adjunct to locomotor therapies. PMID:21115945

  18. Compensatory role of the cortico-rubro-spinal tract in motor recovery after stroke

    PubMed Central

    Rüber, Theodor

    2012-01-01

    Objectives: Studies on nonhuman primates have demonstrated that the cortico-rubro-spinal system can compensate for damage to the pyramidal tract (PT). In humans, so-called alternate motor fibers (aMF), which may comprise the cortico-rubro-spinal tract, have been suggested to play a similar role in motor recovery after stroke. Using diffusion tensor imaging, we examined PT and aMF in the context of human motor recovery by relating their microstructural properties to functional outcome in chronic stroke patients. Methods: PT and aMF were reconstructed based on their origins in primary motor, dorsal premotor, and supplementary motor cortices in 18 patients and 10 healthy controls. The patients' degree of motor recovery was assessed using the Wolf Motor Function Test (WMFT). Results: Compared to controls, fractional anisotropy (FA) was lower along ipsilesional PT and aMF in chronic stroke patients, but clusters of higher FA were found bilaterally in aMF within the vicinity of the red nuclei. FA along ipsilesional PT and aMF and within the red nuclei correlated significantly with WMFT scores. Probabilistic connectivity of aMF originating from ipsilesional primary motor cortex was higher in patients, whereas the ipsilesional PT exhibited lower connectivity compared to controls. Conclusions: The strong correlations observed between microstructural properties of bilateral red nuclei and the level of motor function in chronic stroke patients indicate possible remodeling during recovery. Our results shed light on the role of different corticofugal motor tracts, and highlight a compensatory function of the cortico-rubro-spinal system which may be used as a target in future restorative treatments. PMID:22843266

  19. Illusory movement perception improves motor control for prosthetic hands

    PubMed Central

    Marasco, Paul D.; Hebert, Jacqueline S.; Sensinger, Jon W.; Shell, Courtney E.; Schofield, Jonathon S.; Thumser, Zachary C.; Nataraj, Raviraj; Beckler, Dylan T.; Dawson, Michael R.; Blustein, Dan H.; Gill, Satinder; Mensh, Brett D.; Granja-Vazquez, Rafael; Newcomb, Madeline D.; Carey, Jason P.; Orzell, Beth M.

    2018-01-01

    To effortlessly complete an intentional movement, the brain needs feedback from the body regarding the movement’s progress. This largely non-conscious kinesthetic sense helps the brain to learn relationships between motor commands and outcomes to correct movement errors. Prosthetic systems for restoring function have predominantly focused on controlling motorized joint movement. Without the kinesthetic sense, however, these devices do not become intuitively controllable. Here we report a method for endowing human amputees with a kinesthetic perception of dexterous robotic hands. Vibrating the muscles used for prosthetic control via a neural-machine interface produced the illusory perception of complex grip movements. Within minutes, three amputees integrated this kinesthetic feedback and improved movement control. Combining intent, kinesthesia, and vision instilled participants with a sense of agency over the robotic movements. This feedback approach for closed-loop control opens a pathway to seamless integration of minds and machines. PMID:29540617

  20. Prediction of Neurocognitive Deficits by Parkinsonian Motor Impairment in Schizophrenia: A Study in Neuroleptic-Naïve Subjects, Unaffected First-Degree Relatives and Healthy Controls From an Indigenous Population

    PubMed Central

    Molina, Juan L.; González Alemán, Gabriela; Florenzano, Néstor; Padilla, Eduardo; Calvó, María; Guerrero, Gonzalo; Kamis, Danielle; Stratton, Lee; Toranzo, Juan; Molina Rangeon, Beatriz; Hernández Cuervo, Helena; Bourdieu, Mercedes; Sedó, Manuel; Strejilevich, Sergio; Cloninger, Claude Robert; Escobar, Javier I.; de Erausquin, Gabriel A.

    2016-01-01

    Background: Neurocognitive deficits are among the most debilitating and pervasive symptoms of schizophrenia, and are present also in unaffected first-degree relatives. Also, multiple reports reveal parkisonian motor deficits in untreated subjects with schizophrenia and in first-degree relatives of affected subjects. Yet, the relation between motor and cognitive impairment and its value as a classifier of endophenotypes has not been studied. Aims: To test the efficacy of midbrain hyperechogenicity (MHE) and parkinsonian motor impairment (PKM) as predictors of neurocognitive impairment in subjects with or at risk for schizophrenia, that could be used to segregate them from first-degree relatives and healthy controls. Method: Seventy-six subjects with chronic schizophrenia never exposed to antipsychotic medication, 106 unaffected first-degree relatives, and 62 healthy controls were blindly assessed for cognitive and motor function, and transcranial ultrasound. Results: Executive function, fluid intelligence, motor planning, and hand coordination showed group differences. PKM and MHE were significantly higher in untreated schizophrenia and unaffected relatives. Unaffected relatives showed milder impairment, but were different from controls. Conclusions: PKM and MHE predict cognitive impairment in neuroleptic-naive patients with schizophrenia and their unaffected first-degree relatives and may be used to segregate them from first-degree relatives and healthy controls. PMID:26994395

  1. Automating the Transition Between Sensorless Motor Control Methods for the NASA Glenn Research Center Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Fehrmann, Elizabeth A.; Kenny, Barbara H.

    2004-01-01

    The NASA Glenn Research Center (GRC) has been working to advance the technology necessary for a flywheel energy storage system for the past several years. Flywheels offer high efficiency, durability, and near-complete discharge capabilities not produced by typical chemical batteries. These characteristics show flywheels to be an attractive alternative to the more typical energy storage solutions. Flywheels also offer the possibility of combining what are now two separate systems in space applications into one: energy storage, which is currently provided by batteries, and attitude control, which is currently provided by control moment gyroscopes (CMGs) or reaction wheels. To date, NASA Glenn research effort has produced the control algorithms necessary to demonstrate flywheel operation up to a rated speed of 60,000 RPM and the combined operation of two flywheel machines to simultaneously provide energy storage and single axis attitude control. Two position-sensorless algorithms are used to control the motor/generator, one for low (0 to 1200 RPM) speeds and one for high speeds. The algorithm allows the transition from the low speed method to the high speed method, but the transition from the high to low speed method was not originally included. This leads to a limitation in the existing motor/generator control code that does not allow the flywheels to be commanded to zero speed (and back in the negative speed direction) after the initial startup. In a multi-flywheel system providing both energy storage and attitude control to a spacecraft, speed reversal may be necessary.

  2. Effects of Computer-Aided Interlimb Force Coupling Training on Paretic Hand and Arm Motor Control following Chronic Stroke: A Randomized Controlled Trial

    PubMed Central

    Lin, Chueh-Ho; Chou, Li-Wei; Luo, Hong-Ji; Tsai, Po-Yi; Lieu, Fu-Kong; Chiang, Shang-Lin; Sung, Wen-Hsu

    2015-01-01

    Objective We investigated the training effects of interlimb force coupling training on paretic upper extremity outcomes in patients with chronic stroke and analyzed the relationship between motor recovery of the paretic hand, arm and functional performances on paretic upper limb. Design A randomized controlled trial with outcome assessment at baseline and after 4 weeks of intervention. Setting Taipei Veterans General Hospital, National Yang-Ming University. Participants Thirty-three subjects with chronic stroke were recruited and randomly assigned to training (n = 16) and control groups (n = 17). Interventions The computer-aided interlimb force coupling training task with visual feedback included different grip force generation methods on both hands. Main Outcome Measures The Barthel Index (BI), the upper extremity motor control Fugl-Meyer Assessment (FMA-UE), the Motor Assessment Score (MAS), and the Wolf Motor Function Test (WMFT). All assessments were executed by a blinded evaluator, and data management and statistical analysis were also conducted by a blinded researcher. Results The training group demonstrated greater improvement on the FMA-UE (p<.001), WMFT (p<.001), MAS (p = .004) and BI (p = .037) than the control group after 4 weeks of intervention. In addition, a moderate correlation was found between the improvement of scores for hand scales of the FMA and other portions of the FMA UE (r = .528, p = .018) or MAS (r = .596, p = .015) in the training group. Conclusion Computer-aided interlimb force coupling training improves the motor recovery of a paretic hand, and facilitates motor control and enhances functional performance in the paretic upper extremity of people with chronic stroke. Trial Registration ClinicalTrials.gov NCT02247674. PMID:26193492

  3. Decoding of Ankle Flexion and Extension from Cortical Current Sources Estimated from Non-invasive Brain Activity Recording Methods.

    PubMed

    Mejia Tobar, Alejandra; Hyoudou, Rikiya; Kita, Kahori; Nakamura, Tatsuhiro; Kambara, Hiroyuki; Ogata, Yousuke; Hanakawa, Takashi; Koike, Yasuharu; Yoshimura, Natsue

    2017-01-01

    The classification of ankle movements from non-invasive brain recordings can be applied to a brain-computer interface (BCI) to control exoskeletons, prosthesis, and functional electrical stimulators for the benefit of patients with walking impairments. In this research, ankle flexion and extension tasks at two force levels in both legs, were classified from cortical current sources estimated by a hierarchical variational Bayesian method, using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) recordings. The hierarchical prior for the current source estimation from EEG was obtained from activated brain areas and their intensities from an fMRI group (second-level) analysis. The fMRI group analysis was performed on regions of interest defined over the primary motor cortex, the supplementary motor area, and the somatosensory area, which are well-known to contribute to movement control. A sparse logistic regression method was applied for a nine-class classification (eight active tasks and a resting control task) obtaining a mean accuracy of 65.64% for time series of current sources, estimated from the EEG and the fMRI signals using a variational Bayesian method, and a mean accuracy of 22.19% for the classification of the pre-processed of EEG sensor signals, with a chance level of 11.11%. The higher classification accuracy of current sources, when compared to EEG classification accuracy, was attributed to the high number of sources and the different signal patterns obtained in the same vertex for different motor tasks. Since the inverse filter estimation for current sources can be done offline with the present method, the present method is applicable to real-time BCIs. Finally, due to the highly enhanced spatial distribution of current sources over the brain cortex, this method has the potential to identify activation patterns to design BCIs for the control of an affected limb in patients with stroke, or BCIs from motor imagery in patients with spinal cord injury.

  4. A mathematical tool to generate complex whole body motor tasks and test hypotheses on underlying motor planning.

    PubMed

    Tagliabue, Michele; Pedrocchi, Alessandra; Pozzo, Thierry; Ferrigno, Giancarlo

    2008-01-01

    In spite of the complexity of human motor behavior, difficulties in mathematical modeling have restricted to rather simple movements attempts to identify the motor planning criterion used by the central nervous system. This paper presents a novel-simulation technique able to predict the "desired trajectory" corresponding to a wide range of kinematic and kinetic optimality criteria for tasks involving many degrees of freedom and the coordination between goal achievement and balance maintenance. Employment of proper time discretization, inverse dynamic methods and constrained optimization technique are combined. The application of this simulator to a planar whole body pointing movement shows its effectiveness in managing system nonlinearities and instability as well as in ensuring the anatomo-physiological feasibility of predicted motor plans. In addition, the simulator's capability to simultaneously optimize competing movement aspects represents an interesting opportunity for the motor control community, in which the coexistence of several controlled variables has been hypothesized.

  5. Stepper motor

    NASA Technical Reports Server (NTRS)

    Dekramer, Cornelis

    1994-01-01

    The purpose of this document is to describe the more commonly used permanent magnet stepper motors for spaceflight. It will discuss the mechanical and electrical aspects of the devices, their torque behavior, those parameters which need to be controlled and measured, and test methods to be employed. It will also discuss torque margins, compare these to the existing margin requirements, and determine the applicability of these requirements. Finally it will attempt to generate a set of requirements which will be used in any stepper motor procurement and will fully characterize the stepper motor behavior in a consistent and repeatable fashion.

  6. Training voluntary motor suppression with real-time feedback of motor evoked potentials.

    PubMed

    Majid, D S Adnan; Lewis, Christina; Aron, Adam R

    2015-05-01

    Training people to suppress motor representations voluntarily could improve response control. We evaluated a novel training procedure of real-time feedback of motor evoked potentials (MEPs) generated by transcranial magnetic stimulation (TMS) over motor cortex. On each trial, a cue instructed participants to use a mental strategy to suppress a particular finger representation without overt movement. A single pulse of TMS was delivered over motor cortex, and an MEP-derived measure of hand motor excitability was delivered visually to the participant within 500 ms. In experiment 1, we showed that participants learned to reduce the excitability of a particular finger beneath baseline (selective motor suppression) within 30 min of practice. In experiment 2, we performed a double-blind study with 2 training groups (1 with veridical feedback and 1 with matched sham feedback) to show that selective motor suppression depends on the veridical feedback itself. Experiment 3 further demonstrated the importance of veridical feedback by showing that selective motor suppression did not arise from mere mental imagery, even when incentivized with reward. Thus participants can use real-time feedback of TMS-induced MEPs to discover an effective mental strategy for selective motor suppression. This high-temporal-resolution, trial-by-trial-feedback training method could be used to help people better control response tendencies and may serve as a potential therapy for motor disorders such as Tourette's and dystonia. Copyright © 2015 the American Physiological Society.

  7. Evidence for Auditory-Motor Impairment in Individuals with Hyperfunctional Voice Disorders

    ERIC Educational Resources Information Center

    Stepp, Cara E.; Lester-Smith, Rosemary A.; Abur, Defne; Daliri, Ayoub; Noordzij, J. Pieter; Lupiani, Ashling A.

    2017-01-01

    Purpose: The vocal auditory-motor control of individuals with hyperfunctional voice disorders was examined using a sensorimotor adaptation paradigm. Method: Nine individuals with hyperfunctional voice disorders and 9 individuals with typical voices produced sustained vowels over 160 trials in 2 separate conditions: (a) while experiencing gradual…

  8. Position and Speed Control of Brushless DC Motors Using Sensorless Techniques and Application Trends

    PubMed Central

    Gamazo-Real, José Carlos; Vázquez-Sánchez, Ernesto; Gómez-Gil, Jaime

    2010-01-01

    This paper provides a technical review of position and speed sensorless methods for controlling Brushless Direct Current (BLDC) motor drives, including the background analysis using sensors, limitations and advances. The performance and reliability of BLDC motor drivers have been improved because the conventional control and sensing techniques have been improved through sensorless technology. Then, in this paper sensorless advances are reviewed and recent developments in this area are introduced with their inherent advantages and drawbacks, including the analysis of practical implementation issues and applications. The study includes a deep overview of state-of-the-art back-EMF sensing methods, which includes Terminal Voltage Sensing, Third Harmonic Voltage Integration, Terminal Current Sensing, Back-EMF Integration and PWM strategies. Also, the most relevant techniques based on estimation and models are briefly analysed, such as Sliding-mode Observer, Extended Kalman Filter, Model Reference Adaptive System, Adaptive observers (Full-order and Pseudoreduced-order) and Artificial Neural Networks. PMID:22163582

  9. Balance Training Enhances Motor Coordination During a Perturbed Sidestep Cutting Task.

    PubMed

    Oliveira, Anderson Souza; Silva, Priscila Brito; Lund, Morten Enemark; Farina, Dario; Kersting, Uwe Gustav

    2017-11-01

    Study Design Controlled laboratory study. Background Balance training may improve motor coordination. However, little is known about the changes in motor coordination during unexpected perturbations to postural control following balance training. Objectives To study the effects of balance training on motor coordination and knee mechanics during perturbed sidestep cutting maneuvers in healthy adults. Methods Twenty-six healthy men were randomly assigned to a training group or a control group. Before balance training, subjects performed unperturbed, 90° sidestep cutting maneuvers and 1 unexpected perturbed cut (10-cm translation of a movable platform). Participants in the training group participated in a 6-week balance training program, while those in the control group followed their regular activity schedule. Both groups were retested after a 6-week period. Surface electromyography was recorded from 16 muscles of the supporting limb and trunk, as well as kinematics and ground reaction forces. Motor modules were extracted from electromyography by nonnegative matrix factorization. External knee abduction moments were calculated using inverse dynamics equations. Results Balance training reduced the external knee abduction moment (33% ± 25%, P<.03, η p 2 = 0.725) and increased the activation of trunk and proximal hip muscles in specific motor modules during perturbed cutting. Balance training also increased burst duration for the motor module related to landing early in the perturbation phase (23% ± 11%, P<.01, η p 2 = 0.532). Conclusion Balance training resulted in altered motor coordination and a reduction in knee abduction moment during an unexpected perturbation. The previously reported reduction in injury incidence following balance training may be linked to changes in dynamic postural stability and modular neuromuscular control. J Orthop Sports Phys Ther 2017;47(11):853-862. Epub 23 Sep 2017. doi:10.2519/jospt.2017.6980.

  10. Control method for peak power delivery with limited DC-bus voltage

    DOEpatents

    Edwards, John; Xu, Longya; Bhargava, Brij B.

    2006-09-05

    A method for driving a neutral point-clamped multi-level voltage source inverter supplying a synchronous motor is provided. A DC current is received at a neutral point-clamped multi-level voltage source inverter. The inverter has first, second, and third output nodes. The inverter also has a plurality of switches. A desired speed of a synchronous motor connected to the inverter by the first second and third nodes is received by the inverter. The synchronous motor has a rotor and the speed of the motor is defined by the rotational rate of the rotor. A position of the rotor is sensed, current flowing to the motor out of at least two of the first, second, and third output nodes is sensed, and predetermined switches are automatically activated by the inverter responsive to the sensed rotor position, the sensed current, and the desired speed.

  11. System and Method for Tensioning a Robotically Actuated Tendon

    NASA Technical Reports Server (NTRS)

    Reiland, Matthew J. (Inventor); Diftler, Myron A. (Inventor)

    2013-01-01

    A tendon tensioning system includes a tendon having a proximal end and a distal end, an actuator, and a motor controller. The actuator may include a drive screw and a motor, and may be coupled with the proximal end of the tendon and configured to apply a tension through the tendon in response to an electrical current. The motor controller may be electrically coupled with the actuator, and configured to provide an electrical current having a first amplitude to the actuator until a stall tension is achieved through the tendon; provide a pulse current to the actuator following the achievement of the stall tension, where the amplitude of the pulse current is greater than the first amplitude, and return the motor to a steady state holding current following the conclusion of the pulse current.

  12. Nonsomatotopic organization of the higher motor centers in octopus.

    PubMed

    Zullo, Letizia; Sumbre, German; Agnisola, Claudio; Flash, Tamar; Hochner, Binyamin

    2009-10-13

    Hyperredundant limbs with a virtually unlimited number of degrees of freedom (DOFs) pose a challenge for both biological and computational systems of motor control. In the flexible arms of the octopus, simplification strategies have evolved to reduce the number of controlled DOFs. Motor control in the octopus nervous system is hierarchically organized. A relatively small central brain integrates a huge amount of visual and tactile information from the large optic lobes and the peripheral nervous system of the arms and issues commands to lower motor centers controlling the elaborated neuromuscular system of the arms. This unique organization raises new questions on the organization of the octopus brain and whether and how it represents the rich movement repertoire. We developed a method of brain microstimulation in freely behaving animals and stimulated the higher motor centers-the basal lobes-thus inducing discrete and complex sets of movements. As stimulation strength increased, complex movements were recruited from basic components shared by different types of movement. We found no stimulation site where movements of a single arm or body part could be elicited. Discrete and complex components have no central topographical organization but are distributed over wide regions.

  13. High resolution optical shaft encoder for motor speed control based on an optical disk pick-up

    NASA Astrophysics Data System (ADS)

    Yeh, Wei-Hung; Bletscher, Warren; Mansuripur, M.

    1998-08-01

    Using a three-beam optical pick-up from a compact disk player and a flexible, shaft-mounted diffraction grating, we obtain information about the rotation speed and angular position of the motor's spindle. This information may be used for feedback to the motor for smooth operation. Due to the small size of the focused spot and the built-in auto-focus mechanism of the optical head, the proposed encoder can achieve submicrometer resolution. With high resolution, reliable operation, and low-cost elements, the proposed method is suitable for rotary and linear motion control where accurate positioning of an object is required.

  14. [Device-aided therapies in advanced Parkinson's disease].

    PubMed

    Timofeeva, A A

    Advanced stages of Parkinson's disease (PD) is a consequence of the severe neurodegenerative process and are characterized by the development of motor fluctuations and dyskinesia, aggravation of non-motor symptoms. Treatment with peroral and transdermal drugs can't provide an adequate control of PD symptoms and quality-of-life of the patients at this stage of disease. Currently, three device-aided therapies: deep brain stimulation (DBS), intrajejunal infusion of duodopa, subcutaneous infusion of apomorphine can be used in treatment of patients with advanced stages of PD. Timely administration of device-aided therapies and right choice of the method determine, to a large extent, the efficacy and safety of their use. Despite the high efficacy of all three methods with respect to the fluctuation of separate symptoms, each method has its own peculiarities. The authors reviewed the data on the expediency of using each method according to the severity of motor and non-motor symptoms, patient's age, PD duration, concomitant pathology and social support of the patients.

  15. Motor unit recruitment for dynamic tasks: current understanding and future directions.

    PubMed

    Hodson-Tole, Emma F; Wakeling, James M

    2009-01-01

    Skeletal muscle contains many muscle fibres that are functionally grouped into motor units. For any motor task there are many possible combinations of motor units that could be recruited and it has been proposed that a simple rule, the 'size principle', governs the selection of motor units recruited for different contractions. Motor units can be characterised by their different contractile, energetic and fatigue properties and it is important that the selection of motor units recruited for given movements allows units with the appropriate properties to be activated. Here we review what is currently understood about motor unit recruitment patterns, and assess how different recruitment patterns are more or less appropriate for different movement tasks. During natural movements the motor unit recruitment patterns vary (not always holding to the size principle) and it is proposed that motor unit recruitment is likely related to the mechanical function of the muscles. Many factors such as mechanics, sensory feedback, and central control influence recruitment patterns and consequently an integrative approach (rather than reductionist) is required to understand how recruitment is controlled during different movement tasks. Currently, the best way to achieve this is through in vivo studies that relate recruitment to mechanics and behaviour. Various methods for determining motor unit recruitment patterns are discussed, in particular the recent wavelet-analysis approaches that have allowed motor unit recruitment to be assessed during natural movements. Directions for future studies into motor recruitment within and between functional task groups and muscle compartments are suggested.

  16. Recurrent neural network control for LCC-resonant ultrasonic motor drive.

    PubMed

    Lin, F J; Wai, R J; Hong, C M

    2000-01-01

    A newly designed driving circuit for the traveling wave-type ultrasonic motor (USM), which consists of a push-pull DC-DC power converter and a two-phase voltage source inverter using one inductance and two capacitances (LCC) resonant technique, is presented in this study. Moreover, because the dynamic characteristics of the USM are difficult to obtain and the motor parameters are time varying, a recurrent neural network (RNN) controller is proposed to control the USM drive system. In the proposed controller, the dynamic backpropagation algorithm is adopted to train the RNN on-line using the proposed delta adaptation law. Furthermore, to guarantee the convergence of tracking error, analytical methods based on a discrete-type Lyapunov function are proposed to determine the varied learning rates for the training of the RNN. Finally, the effectiveness of the RNN-controlled USM drive system is demonstrated by some experimental results.

  17. PI controller design for indirect vector controlled induction motor: A decoupling approach.

    PubMed

    Jain, Jitendra Kr; Ghosh, Sandip; Maity, Somnath; Dworak, Pawel

    2017-09-01

    Decoupling of the stator currents is important for smoother torque response of indirect vector controlled induction motors. Typically, feedforward decoupling is used to take care of current coupling that requires exact knowledge of motor parameters, additional circuitry and signal processing. In this paper, a method is proposed to design the regulating proportional-integral gains that minimize coupling without any requirement of the additional decoupler. The variation of the coupling terms for change in load torque is considered as the performance measure. An iterative linear matrix inequality based H ∞ control design approach is used to obtain the controller gains. A comparison between the feedforward and the proposed decoupling schemes is presented through simulation and experimental results. The results show that the proposed scheme is simple yet effective even without additional block or burden on signal processing. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Perceptual reasoning predicts handwriting impairments in adolescents with autism

    PubMed Central

    Fuentes, Christina T.; Mostofsky, Stewart H.; Bastian, Amy J.

    2010-01-01

    Background: We have previously shown that children with autism spectrum disorder (ASD) have specific handwriting deficits consisting of poor form, and that these deficits are predicted by their motor abilities. It is not known whether the same handwriting impairments persist into adolescence and whether they remain linked to motor deficits. Methods: A case-control study of handwriting samples from adolescents with and without ASD was performed using the Minnesota Handwriting Assessment. Samples were scored on an individual letter basis in 5 categories: legibility, form, alignment, size, and spacing. Subjects were also administered an intelligence test and the Physical and Neurological Examination for Subtle (Motor) Signs (PANESS). Results: We found that adolescents with ASD, like children, show overall worse performance on a handwriting task than do age- and intelligence-matched controls. Also comparable to children, adolescents with ASD showed motor impairments relative to controls. However, adolescents with ASD differ from children in that Perceptual Reasoning Indices were significantly predictive of handwriting performance whereas measures of motor skills were not. Conclusions: Like children with ASD, adolescents with ASD have poor handwriting quality relative to controls. Despite still demonstrating motor impairments, in adolescents perceptual reasoning is the main predictor of handwriting performance, perhaps reflecting subjects' varied abilities to learn strategies to compensate for their motor impairments. GLOSSARY ASD = autism spectrum disorder; DSM-IV = Diagnostic and Statistical Manual of Mental Disorders, 4th edition; PANESS = Physical and Neurological Examination for Subtle (Motor) Signs; PRI = Perceptual Reasoning Index; WASI = Wechsler Abbreviated Scale of Intelligence; WISC = Wechsler Intelligence Scale for Children IV. PMID:21079184

  19. Research on Precision Tracking on Fast Steering Mirror and Control Strategy

    NASA Astrophysics Data System (ADS)

    Di, Lin; Yi-ming, Wu; Fan, Zhu

    2018-01-01

    Fast steering mirror is a device used for controlling the beam direction precisely. Due to the short travel of the push-pull FSM, a compound fast steering mirror system driven by both limited-angle voice coil motor and push-pull FSM together is proposed. In the compound FSM system, limited-angle voice coil motor quickly swings at wide angle, while the push-pull FSM do high frequency movement in a small range, which provides the system with the high bandwidth and long travel. In the control strategy, the method of combining feed-forward control in Kalman filtering with auto-disturbance rejection control is used to improve trajectory tracking accuracy. The simulation result shows that tracking accuracy measured by the compound method can be improved by more than 5 times than that of the conventional PID.

  20. PSO-based PID Speed Control of Traveling Wave Ultrasonic Motor under Temperature Disturbance

    NASA Astrophysics Data System (ADS)

    Arifin Mat Piah, Kamal; Yusoff, Wan Azhar Wan; Azmi, Nur Iffah Mohamed; Romlay, Fadhlur Rahman Mohd

    2018-03-01

    Traveling wave ultrasonic motors (TWUSMs) have a time varying dynamics characteristics. Temperature rise in TWUSMs remains a problem particularly in sustaining optimum speed performance. In this study, a PID controller is used to control the speed of TWUSM under temperature disturbance. Prior to developing the controller, a linear approximation model which relates the speed to the temperature is developed based on the experimental data. Two tuning methods are used to determine PID parameters: conventional Ziegler-Nichols(ZN) and particle swarm optimization (PSO). The comparison of speed control performance between PSO-PID and ZN-PID is presented. Modelling, simulation and experimental work is carried out utilizing Fukoku-Shinsei USR60 as the chosen TWUSM. The results of the analyses and experimental work reveal that PID tuning using PSO-based optimization has the advantage over the conventional Ziegler-Nichols method.

  1. Effect of task-oriented training and high-variability practice on gross motor performance and activities of daily living in children with spastic diplegia.

    PubMed

    Kwon, Hae-Yeon; Ahn, So-Yoon

    2016-10-01

    [Purpose] This study investigates how a task-oriented training and high-variability practice program can affect the gross motor performance and activities of daily living for children with spastic diplegia and provides an effective and reliable clinical database for future improvement of motor performances skills. [Subjects and Methods] This study randomly assigned seven children with spastic diplegia to each intervention group including that of a control group, task-oriented training group, and a high-variability practice group. The control group only received neurodevelopmental treatment for 40 minutes, while the other two intervention groups additionally implemented a task-oriented training and high-variability practice program for 8 weeks (twice a week, 60 min per session). To compare intra and inter-relationships of the three intervention groups, this study measured gross motor performance measure (GMPM) and functional independence measure for children (WeeFIM) before and after 8 weeks of training. [Results] There were statistically significant differences in the amount of change before and after the training among the three intervention groups for the gross motor performance measure and functional independence measure. [Conclusion] Applying high-variability practice in a task-oriented training course may be considered an efficient intervention method to improve motor performance skills that can tune to movement necessary for daily livelihood through motor experience and learning of new skills as well as change of tasks learned in a complex environment or similar situations to high-variability practice.

  2. Short-term thermal stability of transformer and motor oils at wide range of moisture contents

    NASA Astrophysics Data System (ADS)

    Volosnikov, D. V.; Povolotskiy, I. I.; Skripov, P. V.

    2018-01-01

    Method of controlled pulse heating of a wire probe was used for studying heat transfer and thermal stability of energy oils and motor oils in the presence of low quantities of moisture. The technique of two-pulse heating is the most suitable method for monitoring the actual state of oils. A distinct signal-response accompanying the appearance of moisture in the tested sample has been revealed.

  3. Two-motor direct drive control for elevation axis of telescope

    NASA Astrophysics Data System (ADS)

    Tang, T.; Tan, Y.; Ren, G.

    2014-07-01

    Two-motor application has become a very attractive filed in important field which high performance is permitted to achieve of position, speed, and acceleration. In the elevation axis of telescope control system, two-motor direct drive is proposed to enhance the high performance of tracking control system. Although there are several dominant strengths such as low size of motors and high torsional structural dynamics, the synchronization control of two motors is a very difficult and important. In this paper, a multi-loop control technique base master-slave current control is used to synchronize two motors, including current control loop, speed control loop and position control loop. First, the direct drive function of two motors is modeled. Compared of single motor direct control system, the resonance frequency of two motor control systems is same; while the anti-resonance frequency of two motors control system is 1.414 times than those of sing motor system. Because of rigid coupling for direct drive, the speed of two motor of the system is same, and the synchronization of torque for motors is critical. The current master-slave control technique is effective to synchronize the torque, which the current loop of the master motors is tracked the other slave motor. The speed feedback into the input of current loop of the master motors. The experiments test the performance of the two motors drive system. The random tracking error is 0.0119" for the line trajectory of 0.01°/s.

  4. Implementation of Temperature Sequential Controller on Variable Speed Drive

    NASA Astrophysics Data System (ADS)

    Cheong, Z. X.; Barsoum, N. N.

    2008-10-01

    There are many pump and motor installations with quite extensive speed variation, such as Sago conveyor, heating, ventilation and air conditioning (HVAC) and water pumping system. A common solution for these applications is to run several fixed speed motors in parallel, with flow control accomplish by turning the motors on and off. This type of control method causes high in-rush current, and adds a risk of damage caused by pressure transients. This paper explains the design and implementation of a temperature speed control system for use in industrial and commercial sectors. Advanced temperature speed control can be achieved by using ABB ACS800 variable speed drive-direct torque sequential control macro, programmable logic controller and temperature transmitter. The principle of direct torque sequential control macro (DTC-SC) is based on the control of torque and flux utilizing the stator flux field orientation over seven preset constant speed. As a result of continuous comparison of ambient temperature to the references temperatures; electromagnetic torque response is particularly fast to the motor state and it is able maintain constant speeds. Experimental tests have been carried out by using ABB ACS800-U1-0003-2, to validate the effectiveness and dynamic respond of ABB ACS800 against temperature variation, loads, and mechanical shocks.

  5. Impedance learning for robotic contact tasks using natural actor-critic algorithm.

    PubMed

    Kim, Byungchan; Park, Jooyoung; Park, Shinsuk; Kang, Sungchul

    2010-04-01

    Compared with their robotic counterparts, humans excel at various tasks by using their ability to adaptively modulate arm impedance parameters. This ability allows us to successfully perform contact tasks even in uncertain environments. This paper considers a learning strategy of motor skill for robotic contact tasks based on a human motor control theory and machine learning schemes. Our robot learning method employs impedance control based on the equilibrium point control theory and reinforcement learning to determine the impedance parameters for contact tasks. A recursive least-square filter-based episodic natural actor-critic algorithm is used to find the optimal impedance parameters. The effectiveness of the proposed method was tested through dynamic simulations of various contact tasks. The simulation results demonstrated that the proposed method optimizes the performance of the contact tasks in uncertain conditions of the environment.

  6. Thrusting maneuver control of a small spacecraft via only gimbaled-thruster scheme

    NASA Astrophysics Data System (ADS)

    Kabganian, Mansour; Kouhi, Hamed; Shahravi, Morteza; Fani Saberi, Farhad

    2018-05-01

    The thrust vector control (TVC) scheme is a powerful method in spacecraft attitude control. Since the control of a small spacecraft is being studied here, a solid rocket motor (SRM) should be used instead of a liquid propellant motor. Among the TVC methods, gimbaled-TVC as an efficient method is employed in this paper. The spacecraft structure is composed of a body and a gimbaled-SRM where common attitude control systems such as reaction control system (RCS) and spin-stabilization are not presented. A nonlinear two-body model is considered for the characterization of the gimbaled-thruster spacecraft where, the only control input is provided by a gimbal actuator. The attitude of the spacecraft is affected by a large exogenous disturbance torque which is generated by a thrust vector misalignment from the center of mass (C.M). A linear control law is designed to stabilize the spacecraft attitude while rejecting the mentioned disturbance torque. A semi-analytical formulation of the region of attraction (RoA) is developed to ensure the local stability and fast convergence of the nonlinear closed-loop system. Simulation results of the 3D maneuvers are included to show the applicability of this method for use in a small spacecraft.

  7. Modification of the azimuth control system in the LLMC

    NASA Astrophysics Data System (ADS)

    Li, Binhua; Yang, Lei; Chen, Linfei; Mao, Wei

    2000-10-01

    A new control system of the azimuth transmission mechanism used in the Lower Latitude Meridian Circle (LLMC) is described in this paper. Because the original azimuth transmission mechanism causes too much vibration during the transposition of the horizontal axis of the instrument, we decided to modify the original system by two ways. One is to modify the lift mechanism and the azimuth transmission mechanism. The other is to replace the original stepper motors with a new type of stepper motor. According to the requirement of the new motor and its sine subdivided microstep driver, the original control system has been modified. The new system has an expansion output board and a new control program compared with the original one. The hardware architecture of the new system is described. The program in the single chip microcontroller is written in ASM, which is composed of 10 subroutines. The program in a host PC is written in C++. The methods using in controlling motors and skills in designing these programs are discussed. Two sketch flow charts of the control program are presented in the paper. Modification of the lift mechanism is also introduced. All this works make the vibration very slight.

  8. A novel instrumented multipeg running wheel system, Step-Wheel, for monitoring and controlling complex sequential stepping in mice

    PubMed Central

    Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M.; Yamamori, Tetsuo

    2011-01-01

    Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice. PMID:21525375

  9. A novel instrumented multipeg running wheel system, Step-Wheel, for monitoring and controlling complex sequential stepping in mice.

    PubMed

    Kitsukawa, Takashi; Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M; Yamamori, Tetsuo

    2011-07-01

    Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice.

  10. The Recovery of Walking in Stroke Patients: A Review

    ERIC Educational Resources Information Center

    Jang, Sung Ho

    2010-01-01

    We reviewed the literature on walking recovery of stroke patients as it relates to the following subjects: epidemiology of walking dysfunction, recovery course of walking, and recovery mechanism of walking (neural control of normal walking, the evaluation methods for leg motor function, and motor recovery mechanism of leg). The recovery of walking…

  11. BCI Competition IV – Data Set I: Learning Discriminative Patterns for Self-Paced EEG-Based Motor Imagery Detection

    PubMed Central

    Zhang, Haihong; Guan, Cuntai; Ang, Kai Keng; Wang, Chuanchu

    2012-01-01

    Detecting motor imagery activities versus non-control in brain signals is the basis of self-paced brain-computer interfaces (BCIs), but also poses a considerable challenge to signal processing due to the complex and non-stationary characteristics of motor imagery as well as non-control. This paper presents a self-paced BCI based on a robust learning mechanism that extracts and selects spatio-spectral features for differentiating multiple EEG classes. It also employs a non-linear regression and post-processing technique for predicting the time-series of class labels from the spatio-spectral features. The method was validated in the BCI Competition IV on Dataset I where it produced the lowest prediction error of class labels continuously. This report also presents and discusses analysis of the method using the competition data set. PMID:22347153

  12. Motor deficits correlate with resting state motor network connectivity in patients with brain tumours

    PubMed Central

    Mikell, Charles B.; Youngerman, Brett E.; Liston, Conor; Sisti, Michael B.; Bruce, Jeffrey N.; Small, Scott A.; McKhann, Guy M.

    2012-01-01

    While a tumour in or abutting primary motor cortex leads to motor weakness, how tumours elsewhere in the frontal or parietal lobes affect functional connectivity in a weak patient is less clear. We hypothesized that diminished functional connectivity in a distributed network of motor centres would correlate with motor weakness in subjects with brain masses. Furthermore, we hypothesized that interhemispheric connections would be most vulnerable to subtle disruptions in functional connectivity. We used task-free functional magnetic resonance imaging connectivity to probe motor networks in control subjects and patients with brain tumours (n = 22). Using a control dataset, we developed a method for automated detection of key nodes in the motor network, including the primary motor cortex, supplementary motor area, premotor area and superior parietal lobule, based on the anatomic location of the hand-motor knob in the primary motor cortex. We then calculated functional connectivity between motor network nodes in control subjects, as well as patients with and without brain masses. We used this information to construct weighted, undirected graphs, which were then compared to variables of interest, including performance on a motor task, the grooved pegboard. Strong connectivity was observed within the identified motor networks between all nodes bilaterally, and especially between the primary motor cortex and supplementary motor area. Reduced connectivity was observed in subjects with motor weakness versus subjects with normal strength (P < 0.001). This difference was driven mostly by decreases in interhemispheric connectivity between the primary motor cortices (P < 0.05) and between the left primary motor cortex and the right premotor area (P < 0.05), as well as other premotor area connections. In the subjects without motor weakness, however, performance on the grooved pegboard did not relate to interhemispheric connectivity, but rather was inversely correlated with connectivity between the left premotor area and left supplementary motor area, for both the left and the right hands (P < 0.01). Finally, two subjects who experienced severe weakness following surgery for their brain tumours were followed longitudinally, and the subject who recovered showed reconstitution of her motor network at follow-up. The subject who was persistently weak did not reconstitute his motor network. Motor weakness in subjects with brain tumours that do not involve primary motor structures is associated with decreased connectivity within motor functional networks, particularly interhemispheric connections. Motor networks become weaker as the subjects become weaker, and may become strong again during motor recovery. PMID:22408270

  13. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.

    PubMed

    Jiang, Jun; Zhou, Zongtan; Yin, Erwei; Yu, Yang; Liu, Yadong; Hu, Dewen

    2015-11-01

    Motor imagery (MI)-based brain-computer interfaces (BCIs) allow disabled individuals to control external devices voluntarily, helping us to restore lost motor functions. However, the number of control commands available in MI-based BCIs remains limited, limiting the usability of BCI systems in control applications involving multiple degrees of freedom (DOF), such as control of a robot arm. To address this problem, we developed a novel Morse code-inspired method for MI-based BCI design to increase the number of output commands. Using this method, brain activities are modulated by sequences of MI (sMI) tasks, which are constructed by alternately imagining movements of the left or right hand or no motion. The codes of the sMI task was detected from EEG signals and mapped to special commands. According to permutation theory, an sMI task with N-length allows 2 × (2(N)-1) possible commands with the left and right MI tasks under self-paced conditions. To verify its feasibility, the new method was used to construct a six-class BCI system to control the arm of a humanoid robot. Four subjects participated in our experiment and the averaged accuracy of the six-class sMI tasks was 89.4%. The Cohen's kappa coefficient and the throughput of our BCI paradigm are 0.88 ± 0.060 and 23.5bits per minute (bpm), respectively. Furthermore, all of the subjects could operate an actual three-joint robot arm to grasp an object in around 49.1s using our approach. These promising results suggest that the Morse code-inspired method could be used in the design of BCIs for multi-DOF control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The bliss (not the problem) of motor abundance (not redundancy).

    PubMed

    Latash, Mark L

    2012-03-01

    Motor control is an area of natural science exploring how the nervous system interacts with other body parts and the environment to produce purposeful, coordinated actions. A central problem of motor control-the problem of motor redundancy-was formulated by Nikolai Bernstein as the problem of elimination of redundant degrees-of-freedom. Traditionally, this problem has been addressed using optimization methods based on a variety of cost functions. This review draws attention to a body of recent findings suggesting that the problem has been formulated incorrectly. An alternative view has been suggested as the principle of abundance, which considers the apparently redundant degrees-of-freedom as useful and even vital for many aspects of motor behavior. Over the past 10 years, dozens of publications have provided support for this view based on the ideas of synergic control, computational apparatus of the uncontrolled manifold hypothesis, and the equilibrium-point (referent configuration) hypothesis. In particular, large amounts of "good variance"-variance in the space of elements that has no effect on the overall performance-have been documented across a variety of natural actions. "Good variance" helps an abundant system to deal with secondary tasks and unexpected perturbations; its amount shows adaptive modulation across a variety of conditions. These data support the view that there is no problem of motor redundancy; there is bliss of motor abundance.

  15. [Transcranial magnetic stimulation (TMS), inhibition processes and attention deficit/hyperactivity disorder (ADHD) - an overview].

    PubMed

    Hoegl, Thomas; Bender, Stephan; Buchmann, Johannes; Kratz, Oliver; Moll, Gunther H; Heinrich, Hartmut

    2014-11-01

    Motor system excitability can be tested by transcranial magnetic stimulation CFMS). In this article, an overview of recent methodological developments and research findings related to attention deficit/hyperactivity disorder (ADHD) is provided. Different TMS parameters that reflect the function of interneurons in the motor cortex may represent neurophysiological markers of inhibition in ADHD, particularly the so-called intracortical inhibition. In children with a high level of hyperactivity and impulsivity, intracortical inhibition was comparably low at rest as shortly before the execution of a movement. TMS-evoked potentials can also be measured in the EEG so that investigating processes of excitability is not restricted to motor areas in future studies. The effects of methylphenidate on motor system excitability may be interpreted in the sense of a 'fine-tuning' with these mainly dopaminergic effects also depending on genetic parameters (DAT1 transporter). A differentiated view on the organization of motor control can be achieved by a combined analysis of TMS parameters and event-related potentials. Applying this bimodal approach, strong evidence for a deviant implementation of motor control in children with ADHD and probably compensatory mechanisms (with involvement of the prefrontal cortex) was obtained. These findings, which contribute to a better understanding of hyperactivity/impulsivity, inhibitory processes and motor control in ADHD as well as the mechanisms of medication, underline the relevance of TMS as a neurophysiological method in ADHD research.

  16. Heliostat control

    DOEpatents

    Kaehler, James A.

    1984-01-01

    An improvement in a system and method of controlling heliostat in which the heliostat is operable in azimuth and elevation by respective stepper motors and including the respective steps or means for calculating the position for the heliostat to be at a commanded position, determining the number of steps in azimuth and elevation for each respective motor to get to the commanded position and energizing both the azimuth and elevation stepper motors to run in parallel until predetermined number of steps away from the closest commanded position in azimuth and elevation so that the closest position has been achieved, and thereafter energizing only the remaining motor to bring it to its commanded position. In this way, the heliostat can be started from a stowed position in the morning and operated by a computer means to its commanded position and kept correctly oriented throughout the day using only the time of the day without requiring the usual sensors and feedback apparatus. A computer, or microprocessor, can then control a plurality of many heliostats easily and efficiently throughout the day.

  17. In-orbit performance of the ITOS improved attitude control system with Hall generator brushless motor and earth-splitting technique

    NASA Technical Reports Server (NTRS)

    Peacock, W. M.

    1973-01-01

    The National Aeronautics and Space Administration (NASA), launched ITOS-D with an improved attitude control system. A Hall generator brushless dc torque motor replaced the brush dc torque motor on Tiros-M and ITOS-A. Two CO2 attitude horizon sensors and one mirror replaced the four wideband horizon sensors and two mirrors on ITOS-1 and NOAA-1. Redundant pitch-control electronic boxes containing additional electronic circuitry for earth-splitting and brushless motor electronics were used. A method of generating a spacecraft earth-facing side reference for comparison to the time occurrence of the earth-splitting pulse was used to automatically correct pitch-attitude error. A single rotating flywheel, supported by a single bearing, provided gyroscopic stability and the required momentum interchange to keep one side of the satellite facing the earth. Magnetic torquing against the earth's magnetic field eliminated the requirement for expendable propellants which would limit satellite life in orbit.

  18. Leap motion evaluation for assessment of upper limb motor skills in Parkinson's disease.

    PubMed

    Butt, A H; Rovini, E; Dolciotti, C; Bongioanni, P; De Petris, G; Cavallo, F

    2017-07-01

    The main goal of this study is to investigate the potential of the Leap Motion Controller (LMC) for the objective assessment of motor dysfunctioning in patients with Parkinson's disease (PwPD). The most relevant clinical signs in Parkinson's Disease (PD), such as slowness of movements, frequency variation, amplitude variation, and speed, were extracted from the recorded LMC data. Data were clinically quantified using the LMC software development kit (SDK). In this study, 16 PwPD subjects and 12 control healthy subjects were involved. A neurologist assessed the subjects during the task execution, assigning them a score according to the MDS/UPDRS-Section III items. Features of motor performance from both subject groups (patients and healthy controls) were extracted with dedicated algorithms. Furthermore, to find out the significance of such features from the clinical point of view, machine learning based methods were used. Overall, our findings showed the moderate potential of LMC to extract the motor performance of PwPD.

  19. Using ipsilateral motor signals in the unaffected cerebral hemisphere as a signal platform for brain-computer interfaces in hemiplegic stroke survivors

    NASA Astrophysics Data System (ADS)

    Bundy, David T.; Wronkiewicz, Mark; Sharma, Mohit; Moran, Daniel W.; Corbetta, Maurizio; Leuthardt, Eric C.

    2012-06-01

    Brain-computer interface (BCI) systems have emerged as a method to restore function and enhance communication in motor impaired patients. To date, this has been applied primarily to patients who have a compromised motor outflow due to spinal cord dysfunction, but an intact and functioning cerebral cortex. The cortical physiology associated with movement of the contralateral limb has typically been the signal substrate that has been used as a control signal. While this is an ideal control platform in patients with an intact motor cortex, these signals are lost after a hemispheric stroke. Thus, a different control signal is needed that could provide control capability for a patient with a hemiparetic limb. Previous studies have shown that there is a distinct cortical physiology associated with ipsilateral, or same-sided, limb movements. Thus far, it was unknown whether stroke survivors could intentionally and effectively modulate this ipsilateral motor activity from their unaffected hemisphere. Therefore, this study seeks to evaluate whether stroke survivors could effectively utilize ipsilateral motor activity from their unaffected hemisphere to achieve this BCI control. To investigate this possibility, electroencephalographic (EEG) signals were recorded from four chronic hemispheric stroke patients as they performed (or attempted to perform) real and imagined hand tasks using either their affected or unaffected hand. Following performance of the screening task, the ability of patients to utilize a BCI system was investigated during on-line control of a one-dimensional control task. Significant ipsilateral motor signals (associated with movement intentions of the affected hand) in the unaffected hemisphere, which were found to be distinct from rest and contralateral signals, were identified and subsequently used for a simple online BCI control task. We demonstrate here for the first time that EEG signals from the unaffected hemisphere, associated with overt and imagined movements of the affected hand, can enable stroke survivors to control a one-dimensional computer cursor rapidly and accurately. This ipsilateral motor activity enabled users to achieve final target accuracies between 68% and 91% within 15 min. These findings suggest that ipsilateral motor activity from the unaffected hemisphere in stroke survivors could provide a physiological substrate for BCI operation that can be further developed as a long-term assistive device or potentially provide a novel tool for rehabilitation.

  20. Robust tracking and distributed synchronization control of a multi-motor servomechanism with H-infinity performance.

    PubMed

    Wang, Minlin; Ren, Xuemei; Chen, Qiang

    2018-01-01

    The multi-motor servomechanism (MMS) is a multi-variable, high coupling and nonlinear system, which makes the controller design challenging. In this paper, an adaptive robust H-infinity control scheme is proposed to achieve both the load tracking and multi-motor synchronization of MMS. This control scheme consists of two parts: a robust tracking controller and a distributed synchronization controller. The robust tracking controller is constructed by incorporating a neural network (NN) K-filter observer into the dynamic surface control, while the distributed synchronization controller is designed by combining the mean deviation coupling control strategy with the distributed technique. The proposed control scheme has several merits: 1) by using the mean deviation coupling synchronization control strategy, the tracking controller and the synchronization controller can be designed individually without any coupling problem; 2) the immeasurable states and unknown nonlinearities are handled by a NN K-filter observer, where the number of NN weights is largely reduced by using the minimal learning parameter technique; 3) the H-infinity performances of tracking error and synchronization error are guaranteed by introducing a robust term into the tracking controller and the synchronization controller, respectively. The stabilities of the tracking and synchronization control systems are analyzed by the Lyapunov theory. Simulation and experimental results based on a four-motor servomechanism are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Illusory movement perception improves motor control for prosthetic hands.

    PubMed

    Marasco, Paul D; Hebert, Jacqueline S; Sensinger, Jon W; Shell, Courtney E; Schofield, Jonathon S; Thumser, Zachary C; Nataraj, Raviraj; Beckler, Dylan T; Dawson, Michael R; Blustein, Dan H; Gill, Satinder; Mensh, Brett D; Granja-Vazquez, Rafael; Newcomb, Madeline D; Carey, Jason P; Orzell, Beth M

    2018-03-14

    To effortlessly complete an intentional movement, the brain needs feedback from the body regarding the movement's progress. This largely nonconscious kinesthetic sense helps the brain to learn relationships between motor commands and outcomes to correct movement errors. Prosthetic systems for restoring function have predominantly focused on controlling motorized joint movement. Without the kinesthetic sense, however, these devices do not become intuitively controllable. We report a method for endowing human amputees with a kinesthetic perception of dexterous robotic hands. Vibrating the muscles used for prosthetic control via a neural-machine interface produced the illusory perception of complex grip movements. Within minutes, three amputees integrated this kinesthetic feedback and improved movement control. Combining intent, kinesthesia, and vision instilled participants with a sense of agency over the robotic movements. This feedback approach for closed-loop control opens a pathway to seamless integration of minds and machines. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Analysis of field-oriented controlled induction motor drives under sensor faults and an overview of sensorless schemes.

    PubMed

    Arun Dominic, D; Chelliah, Thanga Raj

    2014-09-01

    To obtain high dynamic performance on induction motor drives (IMD), variable voltage and variable frequency operation has to be performed by measuring speed of rotation and stator currents through sensors and fed back them to the controllers. When the sensors are undergone a fault, the stability of control system, may be designed for an industrial process, is disturbed. This paper studies the negative effects on a 12.5 hp induction motor drives when the field oriented control system is subjected to sensor faults. To illustrate the importance of this study mine hoist load diagram is considered as shaft load of the tested machine. The methods to recover the system from sensor faults are discussed. In addition, the various speed sensorless schemes are reviewed comprehensively. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Improving Motor Activity Assessment in Depression: Which Sensor Placement, Analytic Strategy and Diurnal Time Frame Are Most Powerful in Distinguishing Patients from Controls and Monitoring Treatment Effects

    PubMed Central

    Deuschle, Michael; Gilles, Maria; Hill, Holger; Limberger, Matthias F.; Ebner-Priemer, Ulrich W.

    2015-01-01

    Background Abnormalities in motor activity represent a central feature in major depressive disorder. However, measurement issues are poorly understood, limiting the use of objective measurement of motor activity for diagnostics and treatment monitoring. Methods To improve measurement issues, especially sensor placement, analytic strategies and diurnal effects, we assessed motor activity in depressed patients at the beginning (MD; n=27) and after anti-depressive treatment (MD-post; n=18) as well as in healthy controls (HC; n=16) using wrist- and chest-worn accelerometers. We performed multiple analyses regarding sensor placements, extracted features, diurnal variation, motion patterns and posture to clarify which parameters are most powerful in distinguishing patients from controls and monitoring treatment effects. Results Whereas most feature-placement combinations revealed significant differences between groups, acceleration (wrist) distinguished MD from HC (d=1.39) best. Frequency (vertical axis chest) additionally differentiated groups in a logistic regression model (R2=0.54). Accordingly, both amplitude (d=1.16) and frequency (d=1.04) showed alterations, indicating reduced and decelerated motor activity. Differences between MD and HC in gestures (d=0.97) and walking (d=1.53) were found by data analysis from the wrist sensor. Comparison of motor activity at the beginning and after MD-treatment largely confirms our findings. Limitations Sample size was small, but sufficient for the given effect sizes. Comparison of depressed in-patients with non-hospitalized controls might have limited motor activity differences between groups. Conclusions Measurement of wrist-acceleration can be recommended as a basic technique to capture motor activity in depressed patients as it records whole body movement and gestures. Detailed analyses showed differences in amplitude and frequency denoting that depressed patients walked less and slower. PMID:25885258

  4. Development of a high-efficiency motor/generator for flywheel energy storage

    NASA Astrophysics Data System (ADS)

    Lashley, Christopher; Anand, Dave K.; Kirk, James A.; Zmood, Ronald B.

    This study addresses the design changes and extensions necessary to construct and test a working prototype of a motor/generator for a magnetically suspended flywheel energy storage system. The brushless motor controller for the motor was specified and the electronic commutation arrangement designed. The laminations were redesigned and fabricated using laser machining. Flux density measurements were made and the results used to redesign the armature windings. A test rig was designed and built, and the motor/generator was installed and speed tested to 9000 rpm. Experimental methods of obtaining the machine voltage and torque constants Kv and Kt, obtaining the useful air-gap flux density, and characterizing the motor and other system components are described. The measured Kv and Kt were approximately 40 percent greater than predicted by theory and initial experiment.

  5. Development of a high-efficiency motor/generator for flywheel energy storage

    NASA Technical Reports Server (NTRS)

    Lashley, Christopher; Anand, Dave K.; Kirk, James A.; Zmood, Ronald B.

    1991-01-01

    This study addresses the design changes and extensions necessary to construct and test a working prototype of a motor/generator for a magnetically suspended flywheel energy storage system. The brushless motor controller for the motor was specified and the electronic commutation arrangement designed. The laminations were redesigned and fabricated using laser machining. Flux density measurements were made and the results used to redesign the armature windings. A test rig was designed and built, and the motor/generator was installed and speed tested to 9000 rpm. Experimental methods of obtaining the machine voltage and torque constants Kv and Kt, obtaining the useful air-gap flux density, and characterizing the motor and other system components are described. The measured Kv and Kt were approximately 40 percent greater than predicted by theory and initial experiment.

  6. The discovery of human auditory-motor entrainment and its role in the development of neurologic music therapy.

    PubMed

    Thaut, Michael H

    2015-01-01

    The discovery of rhythmic auditory-motor entrainment in clinical populations was a historical breakthrough in demonstrating for the first time a neurological mechanism linking music to retraining brain and behavioral functions. Early pilot studies from this research center were followed up by a systematic line of research studying rhythmic auditory stimulation on motor therapies for stroke, Parkinson's disease, traumatic brain injury, cerebral palsy, and other movement disorders. The comprehensive effects on improving multiple aspects of motor control established the first neuroscience-based clinical method in music, which became the bedrock for the later development of neurologic music therapy. The discovery of entrainment fundamentally shifted and extended the view of the therapeutic properties of music from a psychosocially dominated view to a view using the structural elements of music to retrain motor control, speech and language function, and cognitive functions such as attention and memory. © 2015 Elsevier B.V. All rights reserved.

  7. Gross motor development in babies with treated idiopathic clubfoot.

    PubMed

    Garcia, Nancy L; McMulkin, Mark L; Tompkins, Bryan J; Caskey, Paul M; Mader, Shelley L; Baird, Glen O

    2011-01-01

    To investigate the effect of treated clubfoot disorder on gross motor skill level measured by the Alberta Infant Motor Scale (AIMS). Fifty-two babies participated: 26 were treated for idiopathic clubfoot (12 with the Ponseti treatment method, 9 with the French physical therapy technique, and 5 with a combination of both methods); 26 were babies who were typically developing and without medical diagnoses. The AIMS was administered at 3-month intervals. No significant differences in AIMS scores were found between the clubfoot and control groups at 3 and 6 months, but at 9 and 12 months the clubfoot group scored significantly lower. Babies who were typically developing were significantly more likely to be walking at 12 months than babies with clubfoot. Treated clubfoot was associated with a mild delay in attainment of gross motor skills at 9 and 12 months of age.

  8. Linear motion device and method for inserting and withdrawing control rods

    DOEpatents

    Smith, J.E.

    Disclosed is a linear motion device and more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core. The CRDM and method disclosed is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.

  9. Study of solid rocket motors for a space shuttle booster. Volume 3: Program acquisition planning

    NASA Technical Reports Server (NTRS)

    Vonderesch, A. H.

    1972-01-01

    Plans for conducting Phase C/D for a solid rocket motor booster vehicle are presented. Methods for conducting this program with details of scheduling, testing, and program management and control are included. The requirements of the space shuttle program to deliver a minimum cost/maximum reliability booster vehicle are examined.

  10. Robust current control-based generalized predictive control with sliding mode disturbance compensation for PMSM drives.

    PubMed

    Liu, Xudong; Zhang, Chenghui; Li, Ke; Zhang, Qi

    2017-11-01

    This paper addresses the current control of permanent magnet synchronous motor (PMSM) for electric drives with model uncertainties and disturbances. A generalized predictive current control method combined with sliding mode disturbance compensation is proposed to satisfy the requirement of fast response and strong robustness. Firstly, according to the generalized predictive control (GPC) theory based on the continuous time model, a predictive current control method is presented without considering the disturbance, which is convenient to be realized in the digital controller. In fact, it's difficult to derive the exact motor model and parameters in the practical system. Thus, a sliding mode disturbance compensation controller is studied to improve the adaptiveness and robustness of the control system. The designed controller attempts to combine the merits of both predictive control and sliding mode control, meanwhile, the controller parameters are easy to be adjusted. Lastly, the proposed controller is tested on an interior PMSM by simulation and experiment, and the results indicate that it has good performance in both current tracking and disturbance rejection. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. A modular robust control framework for control of movement elicited by multi-electrode intraspinal microstimulation

    NASA Astrophysics Data System (ADS)

    Roshani, Amir; Erfanian, Abbas

    2016-08-01

    Objective. An important issue in restoring motor function through intraspinal microstimulation (ISMS) is the motor control. To provide a physiologically plausible motor control using ISMS, it should be able to control the individual motor unit which is the lowest functional unit of motor control. By focal stimulation only a small group of motor neurons (MNs) within a motor pool can be activated. Different groups of MNs within a motor pool can potentially be activated without involving adjacent motor pools by local stimulation of different parts of a motor pool via microelectrode array implanted into a motor pool. However, since the system has multiple inputs with single output during multi-electrode ISMS, it poses a challenge to movement control. In this paper, we proposed a modular robust control strategy for movement control, whereas multi-electrode array is implanted into each motor activation pool of a muscle. Approach. The controller was based on the combination of proportional-integral-derivative and adaptive fuzzy sliding mode control. The global stability of the controller was guaranteed. Main results. The results of the experiments on rat models showed that the multi-electrode control can provide a more robust control and accurate tracking performance than a single-electrode control. The control output can be pulse amplitude (pulse amplitude modulation, PAM) or pulse width (pulse width modulation, PWM) of the stimulation signal. The results demonstrated that the controller with PAM provided faster convergence rate and better tracking performance than the controller with PWM. Significance. This work represents a promising control approach to the restoring motor functions using ISMS. The proposed controller requires no prior knowledge about the dynamics of the system to be controlled and no offline learning phase. The proposed control design is modular in the sense that each motor pool has an independent controller and each controller is able to control ISMS through an array of microelectrodes.

  12. Primary Motor Cortex in Stroke A Functional MRI-Guided Proton MR Spectroscopic Study

    PubMed Central

    Cirstea, Carmen M.; Brooks, William M.; Craciunas, Sorin C.; Popescu, Elena A.; Choi, In-Young; Lee, Phil; Bani-Ahmed, Ali; Yeh, Hung-Wen; Savage, Cary R.; Cohen, Leonardo G.; Nudo, Randolph J.

    2012-01-01

    Background and Purpose Our goal was to investigate whether certain metabolites, specific to neurons, glial cells, or the neuronal-glial neurotransmission system, in primary motor cortices (M1), are altered and correlated with clinical motor severity in chronic stroke. Methods Fourteen survivors of a single ischemic stroke located outside the M1 and 14 age-matched healthy control subjects were included. At >6 months after stroke, N-acetylaspartate, myo-inositol, and glutamate/glutamine were measured using proton magnetic resonance spectroscopic imaging (in-plane resolution=5×5 mm2) in radiologically normal-appearing gray matter of the hand representation area, identified by functional MRI, in each M1. Metabolite concentrations and analyses of metabolite correlations within M1 were determined. Relationships between metabolite concentrations and arm motor impairment were also evaluated. Results The stroke survivors showed lower N-acetylaspartate and higher myo-inositol across ipsilesional and contral-esional M1 compared with control subjects. Significant correlations between N-acetylaspartate and glutamate/glutamine were found in either M1. Ipsilesional N-acetylaspartate and glutamate/glutamine were positively correlated with arm motor impairment and contralesional N-acetylaspartate with time after stroke. Conclusions Our preliminary data demonstrated significant alterations of neuronal-glial interactions in spared M1 with the ipsilesional alterations related to stroke severity and contralesional alterations to stroke duration. Thus, MR spectroscopy might be a sensitive method to quantify relevant metabolite changes after stroke and consequently increase our knowledge of the factors leading from these changes in spared motor cortex to motor impairment after stroke. PMID:21330627

  13. Regenerative braking system of PM synchronous motor

    NASA Astrophysics Data System (ADS)

    Gao, Qian; Lv, Chengxing; Zhao, Na; Zang, Hechao; Jiang, Huilue; Zhang, Zhaowen; Zhang, Fengli

    2018-04-01

    Permanent-magnet synchronous motor is widely adopted in many fields with the advantage of a high efficiency and a high torque density. Regenerative Braking Systems (RBS) provide an efficient method to assist PMSM system achieve better fuel economy and lowering exhaust emissions. This paper describes the design and testing of the regenerative braking systems of PMSM. The mode of PWM duty has been adjusted to control regenerative braking of PMSM using energy controller for the port-controlled Hamiltonian model. The simulation analysis indicates that a smooth control could be realized and the highest efficiency and the smallest current ripple could be achieved by Regenerative Braking Systems.

  14. A novel adaptive control method for induction motor based on Backstepping approach using dSpace DS 1104 control board

    NASA Astrophysics Data System (ADS)

    Ben Regaya, Chiheb; Farhani, Fethi; Zaafouri, Abderrahmen; Chaari, Abdelkader

    2018-02-01

    This paper presents a new adaptive Backstepping technique to handle the induction motor (IM) rotor resistance tracking problem. The proposed solution leads to improve the robustness of the control system. Given the presence of static error when estimating the rotor resistance with classical methods, and the sensitivity to the load torque variation at low speed, a new Backstepping observer enhanced with an integral action of the tracking errors is presented, which can be established in two steps. The first one consists to estimate the rotor flux using a Backstepping observer. The second step, defines the adaptation mechanism of the rotor resistance based on the estimated rotor-flux. The asymptotic stability of the observer is proven by Lyapunov theory. To validate the proposed solution, a simulation and experimental benchmarking of a 3 kW induction motor are presented and analyzed. The obtained results show the effectiveness of the proposed solution compared to the model reference adaptive system (MRAS) rotor resistance observer presented in other recent works.

  15. The quantitative assessment of motor activity in mania and schizophrenia

    PubMed Central

    Minassian, Arpi; Henry, Brook L.; Geyer, Mark A.; Paulus, Martin P.; Young, Jared W.; Perry, William

    2009-01-01

    Background Increased motor activity is a cardinal feature of the mania of Bipolar Disorder (BD), and is thought to reflect dopaminergic dysregulation. Motor activity in BD has been studied almost exclusively with self-report and observer-rated scales, limiting the ability to objectively quantify this behavior. We used an ambulatory monitoring device to quantify motor activity in BD and schizophrenia (SCZ) patients in a novel exploratory paradigm, the human Behavioral Pattern Monitor (BPM). Method 28 patients in the manic phase of BD, 17 SCZ patients, and 21 nonpatient (NC) subjects were tested in the BPM, an unfamiliar room containing novel objects. Motor activity was measured with a wearable ambulatory monitoring device (LifeShirt). Results Manic BD patients exhibited higher levels of motor activity when exploring the novel environment than SCZ and NC groups. Motor activity showed some modest relationships with symptom ratings of mania and psychosis and was not related to smoking or body mass index. Limitations Although motor activity did not appear to be impacted significantly by antipsychotic or mood-stabilizing medications, this was a naturalistic study and medications were not controlled, thus limiting conclusions about potential medication effects on motor activity. Conclusion Manic BD patients exhibit a unique signature of motoric overactivity in a novel exploratory environment. The use of an objective method to quantify exploration and motor activity may help characterize the unique aspects of BD and, because it is amenable to translational research, may further the study of the biological and genetic bases of the disease. PMID:19435640

  16. Reducing Bolt Preload Variation with Angle-of-Twist Bolt Loading

    NASA Technical Reports Server (NTRS)

    Thompson, Bryce; Nayate, Pramod; Smith, Doug; McCool, Alex (Technical Monitor)

    2001-01-01

    Critical high-pressure sealing joints on the Space Shuttle reusable solid rocket motor require precise control of bolt preload to ensure proper joint function. As the reusable solid rocket motor experiences rapid internal pressurization, correct bolt preloads maintain the sealing capability and structural integrity of the hardware. The angle-of-twist process provides the right combination of preload accuracy, reliability, process control, and assembly-friendly design. It improves significantly over previous methods. The sophisticated angle-of-twist process controls have yielded answers to all discrepancies encountered while the simplicity of the root process has assured joint preload reliability.

  17. Development of Permanent Magnet Synchronous Motor Control System for the Traction Purpose of the Gauge Changing Train

    NASA Astrophysics Data System (ADS)

    Kondo, Keiichiro; Hata, Hiroshi; Yuki, Kazuaki; Naganuma, Katsunori; Matsuoka, Koichi; Hasebe, Toshio

    This paper is aimed at providing the designing method of a permanent magnet synchronous motor (PMSM) control system for the high-speed and the single-phase AC powered Gauge Changing Train (GCT). The state-of-the-art electrical motive unit is equipped with downsized direct drive type PMSMs for the simplified gauge changeable truck. Due to the feeding the AC single phase power, we propose a beat-less control for PMSMs. We verify the development results of designing procedures by the experimental results of operation on a high-speed test line in Colorado, USA.

  18. A Fully Implanted Drug Delivery System for Peripheral Nerve Blocks in Behaving Animals

    PubMed Central

    Pohlmeyer, Eric A.; Jordon, Luke R.; Kim, Peter; Miller, Lee E.

    2009-01-01

    Inhibiting peripheral nerve function can be useful for many studies of the nervous system or motor control. Accomplishing this in a temporary fashion in animal models by using peripheral nerve blocks permits studies of the immediate effects of the loss, and/or any resulting short-term changes and adaptations in behavior or motor control, while avoiding the complications commonly associated with permanent lesions, such as sores or self-mutilation. We have developed a method of quickly and repeatedly inducing temporary, controlled motor deficits in rhesus macaque monkeys via a chronically implanted drug delivery system. This assembly consists of a nerve cuff and a subdermal injection dome, and has proved effective for delivering local anesthetics directly to peripheral nerves for many months. Using this assembly for median and ulnar nerve blocks routinely resulted in over 80% losses in hand and wrist strength for rhesus monkeys. The assembly was also effective for inducing ambulatory motor deficits in rabbits through blocks of the sciatic nerve. Interestingly, while standard anesthetics were sufficient for the rabbit nerve blocks, the inclusion of epinephrine was essential for achieving significant motor blockade in the monkeys. PMID:19524613

  19. Pulse width modulation inverter with battery charger

    DOEpatents

    Slicker, James M.

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  20. Pulse width modulation inverter with battery charger

    NASA Technical Reports Server (NTRS)

    Slicker, James M. (Inventor)

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.

  1. FUZZY LOGIC CONTROL OF ELECTRIC MOTORS AND MOTOR DRIVES: FEASIBILITY STUDY

    EPA Science Inventory

    The report gives results of a study (part 1) of fuzzy logic motor control (FLMC). The study included: 1) reviews of existing applications of fuzzy logic, of motor operation, and of motor control; 2) a description of motor control schemes that can utilize FLMC; 3) selection of a m...

  2. Simulink-aided Design and Implementation of Sensorless BLDC Motor Digital Control System

    NASA Astrophysics Data System (ADS)

    Zhilenkov, A. A.; Tsvetkov, Y. N.; Chistov, V. B.; Nyrkov, A. P.; Sokolov, S. S.

    2017-07-01

    The paper describes the process of creating of brushless direct current motor’s digital control system. The target motor has no speed sensor, so back-EMF method is used for commutation control. Authors show how to model the control system in MatLab/Simulink and to test it onboard STM32F4 microcontroller.This technology allows to create the most flexible system, which will control possible with a personal computer by communication lines. It is possible to examine the signals in the circuit of the actuator without any external measuring instruments - testers, oscilloscopes, etc. - and output waveforms and measured values of signals directly on the host PC.

  3. Effectiveness of a Physical Activity Intervention for Head Start Preschoolers: A Randomized Intervention Study

    PubMed Central

    Davies, Patricia L.; Anderson, Jennifer; Kennedy, Catherine

    2013-01-01

    OBJECTIVES. The level of children’s motor skill proficiency may be an important determinant of their physical activity behaviors. This study assessed the efficacy of an intervention on gross motor skill performance, physical activity, and weight status of preschoolers. METHOD. The Food Friends: Get Movin’ With Mighty Moves® program was conducted in four Head Start centers. Measurements included the Peabody Developmental Motor Scales, pedometer counts, and body mass index (BMI) z scores. RESULTS. The intervention led to significant changes in gross motor skills in the treatment group (n = 98) compared with the control group (n = 103) and was a strong predictor of overall gross motor performance (gross motor quotient), locomotor, stability, and object manipulation skills. No intervention effect was found for physical activity levels or weight status. CONCLUSION. The intervention dose was adequate for enhancing gross motor skill performance but not for increasing physical activity levels or reducing BMI. PMID:23245780

  4. A high performance sensorimotor beta rhythm-based brain computer interface associated with human natural motor behavior

    NASA Astrophysics Data System (ADS)

    Bai, Ou; Lin, Peter; Vorbach, Sherry; Floeter, Mary Kay; Hattori, Noriaki; Hallett, Mark

    2008-03-01

    To explore the reliability of a high performance brain-computer interface (BCI) using non-invasive EEG signals associated with human natural motor behavior does not require extensive training. We propose a new BCI method, where users perform either sustaining or stopping a motor task with time locking to a predefined time window. Nine healthy volunteers, one stroke survivor with right-sided hemiparesis and one patient with amyotrophic lateral sclerosis (ALS) participated in this study. Subjects did not receive BCI training before participating in this study. We investigated tasks of both physical movement and motor imagery. The surface Laplacian derivation was used for enhancing EEG spatial resolution. A model-free threshold setting method was used for the classification of motor intentions. The performance of the proposed BCI was validated by an online sequential binary-cursor-control game for two-dimensional cursor movement. Event-related desynchronization and synchronization were observed when subjects sustained or stopped either motor execution or motor imagery. Feature analysis showed that EEG beta band activity over sensorimotor area provided the largest discrimination. With simple model-free classification of beta band EEG activity from a single electrode (with surface Laplacian derivation), the online classifications of the EEG activity with motor execution/motor imagery were: >90%/~80% for six healthy volunteers, >80%/~80% for the stroke patient and ~90%/~80% for the ALS patient. The EEG activities of the other three healthy volunteers were not classifiable. The sensorimotor beta rhythm of EEG associated with human natural motor behavior can be used for a reliable and high performance BCI for both healthy subjects and patients with neurological disorders. Significance: The proposed new non-invasive BCI method highlights a practical BCI for clinical applications, where the user does not require extensive training.

  5. Effects of combined fine motor skill and cognitive therapy to cognition, degree of dementia, depression, and activities of daily living in the elderly with Alzheimer's disease.

    PubMed

    Lee, Jin; Lee, ByoungHee; Park, YuHyung; Kim, Yumi

    2015-10-01

    [Purpose] This study evaluated the effects of combined fine motor skill and cognitive therapies on cognition, depression, and activities of daily living in elderly patients with Alzheimer's disease (AD). [Subjects and Methods] Twenty-six participants comprised 2 groups. The experimental group (n=13) received combined fine motor skill and cognitive therapy, and the control group (n=13) received only general medical care. [Results] The experimental group showed improvements in cognition, degree of dementia, depression, and activities of daily living compared to the control group. However, there were no significant differences between the two groups. [Conclusion] These results suggest that combined fine motor skill and cognitive therapy improves cognition, degree of dementia, depression, and daily living in elderly patients with AD. These therapies would therefore be effective as general medical care strategies.

  6. In-situ Condition Monitoring of Components in Small Modular Reactors Using Process and Electrical Signature Analysis. Final report, volume 1. Development of experimental flow control loop, data analysis and plant monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyaya, Belle; Hines, J. Wesley; Damiano, Brian

    The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. Themore » following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on plant parameters and the pump electrical signatures. Additionally, the reactor simulation is being used to generate normal operation data and data with instrumentation faults and process anomalies. A frequency controller was interfaced with the motor power supply in order to vary the electrical supply frequency. The experimental flow control loop was used to generate operational data under varying motor performance characteristics. Coolant leakage events were simulated by varying the bypass loop flow rate. The accuracy of motor power calculation was improved by incorporating the power factor, computed from motor current and voltage in each phase of the induction motor.- A variety of experimental runs were made for steady-state and transient pump operating conditions. Process, vibration, and electrical signatures were measured using a submersible pump with variable supply frequency. High correlation was seen between motor current and pump discharge pressure signal; similar high correlation was exhibited between pump motor power and flow rate. Wide-band analysis indicated high coherence (in the frequency domain) between motor current and vibration signals. - Wide-band operational data from a PWR were acquired from AMS Corporation and used to develop time-series models, and to estimate signal spectrum and sensor time constant. All the data were from different pressure transmitters in the system, including primary and secondary loops. These signals were pre-processed using the wavelet transform for filtering both low-frequency and high-frequency bands. This technique of signal pre-processing provides minimum distortion of the data, and results in a more optimal estimation of time constants of plant sensors using time-series modeling techniques.« less

  7. Protocol study for a randomised, controlled, double-blind, clinical trial involving virtual reality and anodal transcranial direct current stimulation for the improvement of upper limb motor function in children with Down syndrome

    PubMed Central

    Lopes, Jamile Benite Palma; Grecco, Luanda André Collange; de Moura, Renata Calhes Franco; Lazzari, Roberta Delasta; Duarte, Natalia de Almeida Carvalho; Miziara, Isabela; de Melo, Gileno Edu Lameira; Dumont, Arislander Jonathan Lopes; Galli, Manuela; Santos Oliveira, Claudia

    2017-01-01

    Introduction Down syndrome results in neuromotor impairment that affects selective motor control, compromising the acquisition of motor skills and functional independence. The aim of the proposed study is to evaluate and compare the effects of multiple-monopolar anodal transcranial direct current stimulation and sham stimulation over the primary motor cortex during upper limb motor training involving virtual reality on motor control, muscle activity, cerebral activity and functional independence. Methods and analysis A randomised, controlled, double-blind, clinical trial is proposed. The calculation of the sample size will be defined based on the results of a pilot study involving the same methods. The participants will be randomly allocated to two groups. Evaluations will be conducted before and after the intervention as well as 1 month after the end of the intervention process. At each evaluation, three-dimensional analysis of upper limb movement muscle activity will be measured using electromyography, cerebral activity will be measured using an electroencephalogram system and intellectual capacity will be assessed using the Wechsler Intelligence Scale for Children. Virtual reality training will be performed three times a week (one 20 min session per day) for a total of 10 sessions. During the protocol, transcranial stimulation will be administered concomitantly to upper limb motor training. The results will be analysed statistically, with a p value≤0.05 considered indicative of statistical significance. Ethical aspects and publicity The present study received approval from the Institutional Review Board of Universidade Nove de Julho (Sao Paulo,Brazil) under process number 1.540.113 and is registered with the Brazilian Registry of Clinical Trials (N° RBR3PHPXB). The participating institutions have presented a declaration of participation. The volunteers will be permitted to drop out of the study at any time with no negative repercussions. The results will be published and will contribute evidence regarding the use of this type of intervention on children. PMID:28801420

  8. Exploring the impact of visual and movement based priming on a motor intervention in the acute phase post-stroke in persons with severe hemiparesis of the upper extremity.

    PubMed

    Patel, Jigna; Qiu, Qinyin; Yarossi, Mathew; Merians, Alma; Massood, Supriya; Tunik, Eugene; Adamovich, Sergei; Fluet, Gerard

    2017-07-01

    Explore the potential benefits of using priming methods prior to an active hand task in the acute phase post-stroke in persons with severe upper extremity hemiparesis. Five individuals were trained using priming techniques including virtual reality (VR) based visual mirror feedback and contralaterally controlled passive movement strategies prior to training with an active pinch force modulation task. Clinical, kinetic, and neurophysiological measurements were taken pre and post the training period. Clinical measures were taken at six months post training. The two priming simulations and active training were well tolerated early after stroke. Priming effects were suggested by increased maximal pinch force immediately after visual and movement based priming. Despite having no clinically observable movement distally, the subjects were able to volitionally coordinate isometric force and muscle activity (EMG) in a pinch tracing task. The Root Mean Square Error (RMSE) of force during the pinch trace task gradually decreased over the training period suggesting learning may have occurred. Changes in motor cortical neurophysiology were seen in the unaffected hemisphere using Transcranial Magnetic Stimulation (TMS) mapping. Significant improvements in motor recovery as measured by the Action Research Arm Test (ARAT) and the Upper Extremity Fugl Meyer Assessment (UEFMA) were demonstrated at six months post training by three of the five subjects. This study suggests that an early hand-based intervention using visual and movement based priming activities and a scaled motor task allows participation by persons without the motor control required for traditionally presented rehabilitation and testing. Implications for Rehabilitation Rehabilitation of individuals with severely paretic upper extremities after stroke is challenging due to limited movement capacity and few options for therapeutic training. Long-term functional recovery of the arm after stroke depends on early return of active hand control, establishing a need for acute training methods focused distally. This study demonstrates the feasibility of an early hand-based intervention using virtual reality based priming and scaled motor activities which can allow for participation by persons without the motor control required for traditionally presented rehabilitation and testing.

  9. Design of a robotic vehicle with self-contained intelligent wheels

    NASA Astrophysics Data System (ADS)

    Poulson, Eric A.; Jacob, John S.; Gunderson, Robert W.; Abbott, Ben A.

    1998-08-01

    The Center for Intelligent Systems has developed a small robotic vehicle named the Advanced Rover Chassis 3 (ARC 3) with six identical intelligent wheel units attached to a payload via a passive linkage suspension system. All wheels are steerable, so the ARC 3 can move in any direction while rotating at any rate allowed by the terrain and motors. Each intelligent wheel unit contains a drive motor, steering motor, batteries, and computer. All wheel units are identical, so manufacturing, programing, and spare replacement are greatly simplified. The intelligent wheel concept would allow the number and placement of wheels on the vehicle to be changed with no changes to the control system, except to list the position of all the wheels relative to the vehicle center. The task of controlling the ARC 3 is distributed between one master computer and the wheel computers. Tasks such as controlling the steering motors and calculating the speed of each wheel relative to the vehicle speed in a corner are dependent on the location of a wheel relative to the vehicle center and ar processed by the wheel computers. Conflicts between the wheels are eliminated by computing the vehicle velocity control in the master computer. Various approaches to this distributed control problem, and various low level control methods, have been explored.

  10. Quantifying excessive mirror overflow in children with attention-deficit/hyperactivity disorder

    PubMed Central

    MacNeil, L.K.; Xavier, P.; Garvey, M.A.; Gilbert, D.L.; Ranta, M.E.; Denckla, M.B.

    2011-01-01

    Objectives: Qualitative observations have revealed that children with attention-deficit/hyperactivity disorder (ADHD) show increased overflow movements, a motor sign thought to reflect impaired inhibitory control. The goal of this study was to develop and implement methods for quantifying excessive mirror overflow movements in children with ADHD. Methods: Fifty right-handed children aged 8.2–13.3 years, 25 with ADHD (12 girls) and 25 typically developing (TD) control children (10 girls), performed a sequential finger-tapping task, completing both left-handed (LHFS) and right-handed finger sequencing (RHFS). Phasic overflow of the index and ring fingers was assessed in 34 children with video recording, and total overflow in 48 children was measured by calculating the total angular displacement of the index and ring fingers with electrogoniometer recordings. Results: Phasic overflow and total overflow across both hands were greater in children with ADHD than in TD children, particularly during LHFS. Separate gender analyses revealed that boys, but not girls, with ADHD showed significantly more total phasic overflow and total overflow than did their gender-matched control children. Conclusions: The quantitative overflow measures used in this study support past qualitative findings that motor overflow persists to a greater degree in children with ADHD than in age-matched TD peers. The quantitative findings further suggest that persistence of mirror overflow is more prominent during task execution of the nondominant hand and reveal gender-based differences in developmental neural systems critical to motor control. These quantitative measures will assist future physiologic investigation of the brain basis of motor control in ADHD. PMID:21321336

  11. Variable current speed controller for eddy current motors

    DOEpatents

    Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

    1982-03-12

    A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

  12. Motor Control Abnormalities in Parkinson’s Disease

    PubMed Central

    Mazzoni, Pietro; Shabbott, Britne; Cortés, Juan Camilo

    2012-01-01

    The primary manifestations of Parkinson’s disease are abnormalities of movement, including movement slowness, difficulties with gait and balance, and tremor. We know a considerable amount about the abnormalities of neuronal and muscle activity that correlate with these symptoms. Motor symptoms can also be described in terms of motor control, a level of description that explains how movement variables, such as a limb’s position and speed, are controlled and coordinated. Understanding motor symptoms as motor control abnormalities means to identify how the disease disrupts normal control processes. In the case of Parkinson’s disease, movement slowness, for example, would be explained by a disruption of the control processes that determine normal movement speed. Two long-term benefits of understanding the motor control basis of motor symptoms include the future design of neural prostheses to replace the function of damaged basal ganglia circuits, and the rational design of rehabilitation strategies. This type of understanding, however, remains limited, partly because of limitations in our knowledge of normal motor control. In this article, we review the concept of motor control and describe a few motor symptoms that illustrate the challenges in understanding such symptoms as motor control abnormalities. PMID:22675667

  13. Electric vehicle motors and controllers

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1981-01-01

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  14. Electric vehicle motors and controllers

    NASA Astrophysics Data System (ADS)

    Secunde, R. R.

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  15. DC motor speed control using fuzzy logic controller

    NASA Astrophysics Data System (ADS)

    Ismail, N. L.; Zakaria, K. A.; Nazar, N. S. Moh; Syaripuddin, M.; Mokhtar, A. S. N.; Thanakodi, S.

    2018-02-01

    The automatic control has played a vital role in the advance of engineering and science. Nowadays in industries, the control of direct current (DC) motor is a common practice thus the implementation of DC motor controller speed is important. The main purpose of motor speed control is to keep the rotation of the motor at the present speed and to drive a system at the demand speed. The main purpose of this project is to control speed of DC Series Wound Motor using Fuzzy Logic Controller (FLC). The expectation of this project is the Fuzzy Logic Controller will get the best performance compared to dc motor without controller in terms of settling time (Ts), rise time (Tr), peak time (Tp) and percent overshoot (%OS).

  16. Design and optimization of a modal- independent linear ultrasonic motor.

    PubMed

    Zhou, Shengli; Yao, Zhiyuan

    2014-03-01

    To simplify the design of the linear ultrasonic motor (LUSM) and improve its output performance, a method of modal decoupling for LUSMs is proposed in this paper. The specific embodiment of this method is decoupling of the traditional LUSM stator's complex vibration into two simple vibrations, with each vibration implemented by one vibrator. Because the two vibrators are designed independently, their frequencies can be tuned independently and frequency consistency is easy to achieve. Thus, the method can simplify the design of the LUSM. Based on this method, a prototype modal- independent LUSM is designed and fabricated. The motor reaches its maximum thrust force of 47 N, maximum unloaded speed of 0.43 m/s, and maximum power of 7.85 W at applied voltage of 200 Vpp. The motor's structure is then optimized by controlling the difference between the two vibrators' resonance frequencies to reach larger output speed, thrust, and power. The optimized results show that when the frequency difference is 73 Hz, the output force, speed, and power reach their maximum values. At the input voltage of 200 Vpp, the motor reaches its maximum thrust force of 64.2 N, maximum unloaded speed of 0.76 m/s, maximum power of 17.4 W, maximum thrust-weight ratio of 23.7, and maximum efficiency of 39.6%.

  17. Effects of Intermittent Theta Burst Stimulation on Manual Dexterity and Motor Imagery in Patients with Multiple Sclerosis: A Quasi-Experimental Controlled Study

    PubMed Central

    Azin, Mahdieh; Zangiabadi, Nasser; Iranmanesh, Farhad; Baneshi, Mohammad Reza; Banihashem, Seyedshahab

    2016-01-01

    Background Intermittent theta burst stimulation (iTBS) is a repetitive transcranial magnetic stimulation (rTMS) protocol that influences cortical excitability and motor function recovery. Objectives This study aimed to investigate the effects of iTBS on manual dexterity and hand motor imagery in multiple sclerosis (MS) patients. Methods Thirty-six MS patients were non-randomly assigned into sham (control) or iTBS groups. Then, iTBS was delivered to the primary motor cortex for ten days over two consecutive weeks. The patients’ manual dexterity was assessed using the nine-hole peg test (9HPT) and the Box and Block Test (BBT), while the hand motor imagery was assessed with the hand mental rotation task (HMRT). Results iTBS group showed a reduction in the time required to complete the 9HPT (mean difference = -3.05, P = 0.002), and an increase in the number of blocks transferred in one minute in the BBT (mean difference = 8.9, P = 0.001) when compared to the control group. Furthermore, there was no significant difference between the two groups in terms of the reaction time (P = 0.761) and response accuracy rate (P = 0.482) in the HMRT. Conclusions When iTBS was applied over the primary motor cortex, it significantly improved manual dexterity, but had no significant effect on the hand motor imagery ability in MS patients. PMID:28180015

  18. Tire-road friction estimation and traction control strategy for motorized electric vehicle.

    PubMed

    Jin, Li-Qiang; Ling, Mingze; Yue, Weiqiang

    2017-01-01

    In this paper, an optimal longitudinal slip ratio system for real-time identification of electric vehicle (EV) with motored wheels is proposed based on the adhesion between tire and road surface. First and foremost, the optimal longitudinal slip rate torque control can be identified in real time by calculating the derivative and slip rate of the adhesion coefficient. Secondly, the vehicle speed estimation method is also brought. Thirdly, an ideal vehicle simulation model is proposed to verify the algorithm with simulation, and we find that the slip ratio corresponds to the detection of the adhesion limit in real time. Finally, the proposed strategy is applied to traction control system (TCS). The results showed that the method can effectively identify the state of wheel and calculate the optimal slip ratio without wheel speed sensor; in the meantime, it can improve the accelerated stability of electric vehicle with traction control system (TCS).

  19. Tire-road friction estimation and traction control strategy for motorized electric vehicle

    PubMed Central

    Jin, Li-Qiang; Yue, Weiqiang

    2017-01-01

    In this paper, an optimal longitudinal slip ratio system for real-time identification of electric vehicle (EV) with motored wheels is proposed based on the adhesion between tire and road surface. First and foremost, the optimal longitudinal slip rate torque control can be identified in real time by calculating the derivative and slip rate of the adhesion coefficient. Secondly, the vehicle speed estimation method is also brought. Thirdly, an ideal vehicle simulation model is proposed to verify the algorithm with simulation, and we find that the slip ratio corresponds to the detection of the adhesion limit in real time. Finally, the proposed strategy is applied to traction control system (TCS). The results showed that the method can effectively identify the state of wheel and calculate the optimal slip ratio without wheel speed sensor; in the meantime, it can improve the accelerated stability of electric vehicle with traction control system (TCS). PMID:28662053

  20. A novel channel selection method for optimal classification in different motor imagery BCI paradigms.

    PubMed

    Shan, Haijun; Xu, Haojie; Zhu, Shanan; He, Bin

    2015-10-21

    For sensorimotor rhythms based brain-computer interface (BCI) systems, classification of different motor imageries (MIs) remains a crucial problem. An important aspect is how many scalp electrodes (channels) should be used in order to reach optimal performance classifying motor imaginations. While the previous researches on channel selection mainly focus on MI tasks paradigms without feedback, the present work aims to investigate the optimal channel selection in MI tasks paradigms with real-time feedback (two-class control and four-class control paradigms). In the present study, three datasets respectively recorded from MI tasks experiment, two-class control and four-class control experiments were analyzed offline. Multiple frequency-spatial synthesized features were comprehensively extracted from every channel, and a new enhanced method IterRelCen was proposed to perform channel selection. IterRelCen was constructed based on Relief algorithm, but was enhanced from two aspects: change of target sample selection strategy and adoption of the idea of iterative computation, and thus performed more robust in feature selection. Finally, a multiclass support vector machine was applied as the classifier. The least number of channels that yield the best classification accuracy were considered as the optimal channels. One-way ANOVA was employed to test the significance of performance improvement among using optimal channels, all the channels and three typical MI channels (C3, C4, Cz). The results show that the proposed method outperformed other channel selection methods by achieving average classification accuracies of 85.2, 94.1, and 83.2 % for the three datasets, respectively. Moreover, the channel selection results reveal that the average numbers of optimal channels were significantly different among the three MI paradigms. It is demonstrated that IterRelCen has a strong ability for feature selection. In addition, the results have shown that the numbers of optimal channels in the three different motor imagery BCI paradigms are distinct. From a MI task paradigm, to a two-class control paradigm, and to a four-class control paradigm, the number of required channels for optimizing the classification accuracy increased. These findings may provide useful information to optimize EEG based BCI systems, and further improve the performance of noninvasive BCI.

  1. Signal injection as a fault detection technique.

    PubMed

    Cusidó, Jordi; Romeral, Luis; Ortega, Juan Antonio; Garcia, Antoni; Riba, Jordi

    2011-01-01

    Double frequency tests are used for evaluating stator windings and analyzing the temperature. Likewise, signal injection on induction machines is used on sensorless motor control fields to find out the rotor position. Motor Current Signature Analysis (MCSA), which focuses on the spectral analysis of stator current, is the most widely used method for identifying faults in induction motors. Motor faults such as broken rotor bars, bearing damage and eccentricity of the rotor axis can be detected. However, the method presents some problems at low speed and low torque, mainly due to the proximity between the frequencies to be detected and the small amplitude of the resulting harmonics. This paper proposes the injection of an additional voltage into the machine being tested at a frequency different from the fundamental one, and then studying the resulting harmonics around the new frequencies appearing due to the composition between injected and main frequencies.

  2. Signal Injection as a Fault Detection Technique

    PubMed Central

    Cusidó, Jordi; Romeral, Luis; Ortega, Juan Antonio; Garcia, Antoni; Riba, Jordi

    2011-01-01

    Double frequency tests are used for evaluating stator windings and analyzing the temperature. Likewise, signal injection on induction machines is used on sensorless motor control fields to find out the rotor position. Motor Current Signature Analysis (MCSA), which focuses on the spectral analysis of stator current, is the most widely used method for identifying faults in induction motors. Motor faults such as broken rotor bars, bearing damage and eccentricity of the rotor axis can be detected. However, the method presents some problems at low speed and low torque, mainly due to the proximity between the frequencies to be detected and the small amplitude of the resulting harmonics. This paper proposes the injection of an additional voltage into the machine being tested at a frequency different from the fundamental one, and then studying the resulting harmonics around the new frequencies appearing due to the composition between injected and main frequencies. PMID:22163801

  3. Analysis and Design Considerations of a High-Power Density, Dual Air Gap, Axial-Field Brushless, Permanent Magnet Motor.

    NASA Astrophysics Data System (ADS)

    Cho, Chahee Peter

    1995-01-01

    Until recently, brush dc motors have been the dominant drive system because they provide easily controlled motor speed over a wide range, rapid acceleration and deceleration, convenient control of position, and lower product cost. Despite these capabilities, the brush dc motor configuration does not satisfy the design requirements for the U.S. Navy's underwater propulsion applications. Technical advances in rare-earth permanent magnet materials, in high-power semiconductor transistor technology, and in various rotor position-sensing devices have made using brushless permanent magnet motors a viable alternative. This research investigates brushless permanent magnet motor technology, studying the merits of dual-air gap, axial -field, brushless, permanent magnet motor configuration in terms of power density, efficiency, and noise/vibration levels. Because the design objectives for underwater motor applications include high-power density, high-performance, and low-noise/vibration, the traditional, simplified equivalent circuit analysis methods to assist in meeting these goals were inadequate. This study presents the development and verification of detailed finite element analysis (FEA) models and lumped parameter circuit models that can calculate back electromotive force waveforms, inductance, cogging torque, energized torque, and eddy current power losses. It is the first thorough quantification of dual air-gap, axial -field, brushless, permanent magnet motor parameters and performance characteristics. The new methodology introduced in this research not only facilitates the design process of an axial field, brushless, permanent magnet motor but reinforces the idea that the high-power density, high-efficiency, and low-noise/vibration motor is attainable.

  4. Motor Function Is Associated With Incident Disability in Older African Americans

    PubMed Central

    Wilson, Robert S.; Yu, Lei; Boyle, Patricia A.; Bennett, David A.; Barnes, Lisa L.

    2016-01-01

    Background: Disability in older African American adults is common, but its basis is unclear. We tested the hypothesis that the level of motor function is associated with incident disability in older African Americans after adjusting for cognition. Methods: A prospective observational cohort study of 605 older community-dwelling African American adults without dementia was carried out. Baseline global motor score summarized 11 motor performances, cognition was based on 19 cognitive tests, and self-reported disability was obtained annually. We examined the association of motor function with incident disability (instrumental activities of daily living [IADL], activities of daily living [ADL], and mobility disability) with a series of Cox proportional hazards models which controlled for age, sex, and education. Results: Average follow-up was about 5 years. In proportional hazards models, a 1-SD increase in baseline level of global motor score was associated with about a 50% decrease in the risk of subsequent IADL, ADL, and mobility disability (all p values < .001). These associations were unchanged in analyses controlling for cognition and other covariates. Further, the association of global motor score and incident ADL disability varied with the level of cognition (estimate −5.541, SE 1.634, p < .001), such that higher motor function was more protective at higher levels of cognition. Mobility and dexterity components of global motor score were more strongly associated with incident disability than strength (all p values < .001). Conclusions: Better motor function in older African Americans is associated with a decreased risk of developing disability. Moreover, the association of motor function and disability is stronger in individuals with better cognitive function. PMID:26525087

  5. WE-G-213CD-06: Implementation of Real-Time Tumor Tracking Using Robotic Couch.

    PubMed

    Buzurovic, I; Yu, Y; Podder, T

    2012-06-01

    The purpose of this study was to present a novel method for real- time tumor tracking using a commercially available robotic treatment couch, and to evaluate tumor tracking accuracy. Commercially available robotic couches are capable of positioning patients with high level of accuracy; however, currently there is no provision for compensating tumor motion using these systems. Elekta's existing commercial couch (PreciseTM Table) was used without changing its design. To establish the real-time couch motion for tracking, a novel control system was developed and implemented. The tabletop could be moved in horizontal plane (laterally and longitudinally) using two Maxon-24V motors with gearbox combination. Vertical motion was obtained using robust 70V-Rockwell Automation motor. For vertical motor position sensing, we used Model 755A-Accu- Coder encoder. Two Baumer-ITD_01_4mm shaft encoders were used for the lateral and longitudinal motions of the couch. Motors were connected to the Advance Motion Controls (AMC) amplifiers: for the vertical motion, motor AMC-20A20-INV amplifier was used, and two AMC-Z6A8 amplifiers were applied for the lateral and longitudinal couch motions. The Galil DMC-4133 controller was connected to standard PC computer using USB port. The system had two independent power supplies: Galil PSR-12- 24-12A, 24vdc power supply with diodes for controller and 24vdc motors and amplifiers, and Galil-PS300W72 72vdc power supply for vertical motion. Control algorithms were developed for position and velocity adjustment. The system was tested for real-time tracking in the range of 50mm in all 3 directions (superior-inferior, lateral, anterior- posterior). Accuracies were 0.15, 0.20, and 0.18mm, respectively. Repeatability of the desired motion was within ± 0.2mm. Experimental results of couch tracking show feasibility of real-time tumor tracking with high level of accuracy (within sub-millimeter range). This tracking technique potentially offers a simple and effective method to minimize healthy tissues irradiation.Acknowledgement: Study supported by Elekta,Ltd. Study supported by Elekta, Ltd. © 2012 American Association of Physicists in Medicine.

  6. Improved motor control method with measurements of fiber optics gyro (FOG) for dual-axis rotational inertial navigation system (RINS).

    PubMed

    Song, Tianxiao; Wang, Xueyun; Liang, Wenwei; Xing, Li

    2018-05-14

    Benefiting from frame structure, RINS can improve the navigation accuracy by modulating the inertial sensor errors with proper rotation scheme. In the traditional motor control method, the measurements of the photoelectric encoder are always adopted to drive inertial measurement unit (IMU) to rotate. However, when carrier conducts heading motion, the inertial sensor errors may no longer be zero-mean in navigation coordinate. Meanwhile, some high-speed carriers like aircraft need to roll a certain angle to balance the centrifugal force during the heading motion, which may result in non-negligible coupling errors, caused by the FOG installation errors and scale factor errors. Moreover, the error parameters of FOG are susceptible to the temperature and magnetic field, and the pre-calibration is a time-consuming process which is difficult to completely suppress the FOG-related errors. In this paper, an improved motor control method with the measurements of FOG is proposed to address these problems, with which the outer frame can insulate the carrier's roll motion and the inner frame can simultaneously achieve the rotary modulation on the basis of insulating the heading motion. The results of turntable experiments indicate that the navigation performance of dual-axis RINS has been significantly improved over the traditional method, which could still be maintained even with large FOG installation errors and scale factor errors, proving that the proposed method can relax the requirements for the accuracy of FOG-related errors.

  7. Smart motor technology

    NASA Technical Reports Server (NTRS)

    Packard, D.; Schmitt, D.

    1984-01-01

    Current spacecraft design relies upon microprocessor control; however, motors usually require extensive additional electronic circuitry to interface with these microprocessor controls. An improved control technique that allows a smart brushless motor to connect directly to a microprocessor control system is described. An actuator with smart motors receives a spacecraft command directly and responds in a closed loop control mode. In fact, two or more smart motors can be controlled for synchronous operation.

  8. The numerical assessment of motion strategies for integrated linear motor during starting of a free-piston engine generator

    NASA Astrophysics Data System (ADS)

    Razali Hanipah, M.; Razul Razali, Akhtar

    2017-10-01

    Free-piston engine generator (FPEG) provides a novel method for electrical power generation in hybrid electric vehicle applications with scarcely reported prototype development and testing. This paper is looking into the motion control strategy for motoring the FPEG during starting. There are two motion profiles investigated namely, trapezoidal velocity and Scurve velocity. Both motion profiles were investigated numerically and the results have shown that the S-curve motion can only achieve 80% of the stroke when operated at the proposed motoring speed of 10Hz.

  9. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... pump, elevator, steering gear, or auxiliary that is vital to the vessel's propulsion system, except a... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor... operation is not hazardous. If automatic restart is hazardous, the motor controller must have low-voltage...

  10. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... pump, elevator, steering gear, or auxiliary that is vital to the vessel's propulsion system, except a... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor... operation is not hazardous. If automatic restart is hazardous, the motor controller must have low-voltage...

  11. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... pump, elevator, steering gear, or auxiliary that is vital to the vessel's propulsion system, except a... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor... operation is not hazardous. If automatic restart is hazardous, the motor controller must have low-voltage...

  12. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pump, elevator, steering gear, or auxiliary that is vital to the vessel's propulsion system, except a... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor... operation is not hazardous. If automatic restart is hazardous, the motor controller must have low-voltage...

  13. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pump, elevator, steering gear, or auxiliary that is vital to the vessel's propulsion system, except a... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor... operation is not hazardous. If automatic restart is hazardous, the motor controller must have low-voltage...

  14. Rotating rake design for unique measurement of fan-generated spinning acoustic modes

    NASA Technical Reports Server (NTRS)

    Konno, Kevin E.; Hausmann, Clifford R.

    1993-01-01

    In light of the current emphasis on noise reduction in subsonic aircraft design, NASA has been actively studying the source of and propagation of noise generated by subsonic fan engines. NASA/LeRC has developed and tested a unique method of accurately measuring these spinning acoustic modes generated by an experimental fan. This mode measuring method is based on the use of a rotating microphone rake. Testing was conducted in the 9 x 15 Low-speed Wind Tunnel. The rotating rake was tested with the Advanced Ducted Propeller (ADP) model. This memorandum discusses the design and performance of the motor/drive system for the fan-synchronized rotating acoustic rake. This novel motor/drive design approach is now being adapted for additional acoustic mode studies in new test rigs as baseline data for the future design of active noise control for subsonic fan engines. Included in this memorandum are the research requirements, motor/drive specifications, test performance results, and a description of the controls and software involved.

  15. Design and Performance Improvement of AC Machines Sharing a Common Stator

    NASA Astrophysics Data System (ADS)

    Guo, Lusu

    With the increasing demand on electric motors in various industrial applications, especially electric powered vehicles (electric cars, more electric aircrafts and future electric ships and submarines), both synchronous reluctance machines (SynRMs) and interior permanent magnet (IPM) machines are recognized as good candidates for high performance variable speed applications. Developing a single stator design which can be used for both SynRM and IPM motors is a good way to reduce manufacturing and maintenance cost. SynRM can be used as a low cost solution for many electric driving applications and IPM machines can be used in power density crucial circumstances or work as generators to meet the increasing demand for electrical power on board. In this research, SynRM and IPM machines are designed sharing a common stator structure. The prototype motors are designed with the aid of finite element analysis (FEA). Machine performances with different stator slot and rotor pole numbers are compared by FEA. An 18-slot, 4-pole structure is selected based on the comparison for this prototype design. Sometimes, torque pulsation is the major drawback of permanent magnet synchronous machines. There are several sources of torque pulsations, such as back-EMF distortion, inductance variation and cogging torque due to presence of permanent magnets. To reduce torque pulsations in permanent magnet machines, all the efforts can be classified into two categories: one is from the design stage, the structure of permanent magnet machines can be optimized with the aid of finite element analysis. The other category of reducing torque pulsation is after the permanent magnet machine has been manufactured or the machine structure cannot be changed because of other reasons. The currents fed into the permanent magnet machine can be controlled to follow a certain profile which will make the machine generate a smoother torque waveform. Torque pulsation reduction methods in both categories will be discussed in this dissertation. In the design stage, an optimization method based on orthogonal experimental design will be introduced. Besides, a universal current profiling technique is proposed to minimize the torque pulsation along with the stator copper losses in modular interior permanent magnet motors. Instead of sinusoidal current waveforms, this algorithm will calculate the proper currents which can minimize the torque pulsation. Finite element analysis and Matlab programing will be used to develop this optimal current profiling algorithm. Permanent magnet machines are becoming more attractive in some modern traction applications, such as traction motors and generators for an electrified vehicle. The operating speed or the load condition in these applications may be changing all the time. Compared to electric machines used to operate at a constant speed and constant load, better control performance is required. In this dissertation, a novel model reference adaptive control (MRAC) used on five-phase interior permanent magnet motor drives is presented. The primary controller is designed based on artificial neural network (ANN) to simulate the nonlinear characteristics of the system without knowledge of accurate motor model or parameters. The proposed motor drive decouples the torque and flux components of five-phase IPM motors by applying a multiple reference frame transformation. Therefore, the motor can be easily driven below the rated speed with the maximum torque per ampere (MTPA) operation or above the rated speed with the flux weakening operation. The ANN based primary controller consists of a radial basis function (RBF) network which is trained on-line to adapt system uncertainties. The complete IPM motor drive is simulated in Matlab/Simulink environment and implemented experimentally utilizing dSPACE DS1104 DSP board on a five-phase prototype IPM motor. The proposed model reference adaptive control method has been applied on the commons stator SynRM and IPM machine as well.

  16. Gross motor skill development of 5-year-old Kindergarten children in Myanmar.

    PubMed

    Aye, Thanda; Oo, Khin Saw; Khin, Myo Thuzar; Kuramoto-Ahuja, Tsugumi; Maruyama, Hitoshi

    2017-10-01

    [Purpose] The purpose of this study was to examine the gross motor skill development of 5-year-old Kindergarten children in Myanmar. [Subjects and Methods] Total 472 healthy Kindergarten children (237 males, 235 females) of 2016-2017 academic year from four schools in urban area and four schools in rural area of Myanmar were recruited. The gross motor skill development of all subjects was assessed with the test of gross motor development second edition (TGMD-2). All subjects performed two trials for each gross motor skill and the performance was video recorded and scored. The assessment procedures were done according to the standardized guidelines of TGMD-2. [Results] The majority of subjects had average level of gross motor skill rank. The significant differences were found on the run and gallop of locomotor skills and the most of object control skills except the catch between males and females. The significant differences were also found between subjects from urban and rural areas. [Conclusion] Gross motor skill development of 5-year-old Kindergarten children in Myanmar had gender-based and region-based differences on both locomotor and object control skills. This study added a valuable information to the establishment of a normative reference of Kindergarten aged children for future studies.

  17. Gross motor skill development of 5-year-old Kindergarten children in Myanmar

    PubMed Central

    Aye, Thanda; Oo, Khin Saw; Khin, Myo Thuzar; Kuramoto-Ahuja, Tsugumi; Maruyama, Hitoshi

    2017-01-01

    [Purpose] The purpose of this study was to examine the gross motor skill development of 5-year-old Kindergarten children in Myanmar. [Subjects and Methods] Total 472 healthy Kindergarten children (237 males, 235 females) of 2016–2017 academic year from four schools in urban area and four schools in rural area of Myanmar were recruited. The gross motor skill development of all subjects was assessed with the test of gross motor development second edition (TGMD-2). All subjects performed two trials for each gross motor skill and the performance was video recorded and scored. The assessment procedures were done according to the standardized guidelines of TGMD-2. [Results] The majority of subjects had average level of gross motor skill rank. The significant differences were found on the run and gallop of locomotor skills and the most of object control skills except the catch between males and females. The significant differences were also found between subjects from urban and rural areas. [Conclusion] Gross motor skill development of 5-year-old Kindergarten children in Myanmar had gender-based and region-based differences on both locomotor and object control skills. This study added a valuable information to the establishment of a normative reference of Kindergarten aged children for future studies. PMID:29184287

  18. Control of a rotary pulsatile cardiac assist pump driven by an electric motor without a pressure sensor to avoid collapse of the pump inlet.

    PubMed

    Trinkl, J; Havlik, P; Mesana, T; Mitsui, N; Morita, S; Demunck, J L; Tourres, J L; Monties, J R

    1993-01-01

    Our ventricular assist device uses a valveless volumetric pump operating on the Maillard-Wankel rotary principle. It is driven by an electric motor and provides a semi pulsatile flow. At each cycle, blood is actively aspirated into the device, and overpumping results in collapse at the pump inlet. To prevent overpumping, it is necessary to ensure that pump intake does not exceed venous return. Poor long-term reliability rules out the use of current implantable pressure sensors for this purpose. To resolve this problem, we have developed a method of control based on monitoring of the intensity of electric current consumed by the motor. The method consists of real time monitoring of current intensity at the beginning of each pump cycle. A sudden change in intensity indicates underfilling, and motor speed is reduced to prevent collapse. The current consumed by the motor also depends on the afterload, but the form of the signal remains the same when afterload changes. After demonstrating the feasibility of this technique in a simulator, we are now testing it in animals. We were able to detect and prevent collapse due to overpumping by the cardiac assist device. This system also enables us to know the maximum possible assistance and to thus adapt assistance to the user.

  19. Robust feedback zoom tracking for digital video surveillance.

    PubMed

    Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong

    2012-01-01

    Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called "trace curve", which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance.

  20. A Preliminary Cost Study of the Dual Mode Inverter Controller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKeever, J.W.

    2005-01-28

    In 1998, the Power Electronics and Electric Machinery Research Center (PEEMRC) at the Oak Ridge National Laboratory (ORNL) started a program to investigate alternate field weakening schemes for permanent magnet (PM) motors. The adjective ''alternate'' was used because at that time, outside research emphasis was on motors with interior-mounted PMs (IPMs). The PEEMRC emphasis was placed on motors with surface-mounted PMs (SPMs) because of the relative ease of manufacturing SPM motors compared with the IPM motors. Today the PEEMRC is continuing research on SPMs while examining the IPMs that have been developed by industry. Out of this task--the goal ofmore » which was to find ways to drive PM motors that inherently have low inductance at high speeds where their back-emf exceeds the supply voltage--ORNL developed and demonstrated the dual mode inverter control (DMIC) [1,2] method of field weakening for SPM motors. The predecessor of DMIC is conventional phase advance (CPA), which was developed by UQM Technologies, Inc. [3]. Fig. 1 shows the three sets of anti-parallel thyristors in the dashed box that comprise the DMIC. If one removes the dashed box by shorting each set of anti-parallel thyristors, the configuration becomes a conventional full bridge inverter on the left driving a three phase motor on the right. CPA may be used to drive this configuration ORNL's initial analyses of CPA and DMIC were based on driving motors with trapezoidal back-emfs [4-6], obtained using double layer lapped stator windings with one slot per pole per phase. A PM motor with a sinusoidal back-emf obtained with two poles per slot per phase has been analyzed under DMIC operation as a University of Tennessee-Knoxville (UTK) doctoral dissertation [7]. In the process of this research, ORNL has completed an analysis that explains and quantifies the role of inductance in these methods of control. The Appendix includes information on the equations for the three components of phase inductance, L{sub gap}, L{sub slot}, and L{sub endturns}. PM motors inherently have a lower inductance because of the increase in effective air gap caused by the magnet, which is in the denominator of the equation for L{sub gap}. L{sub gap} accounts for about half of the phase inductance. Because of the low inductance, there is a propensity for currents to exceed the motor's rated value. DMIC solves this problem for low-inductance PM motors and, in addition, provides a number of safety features that protect against uncontrolled generator mode operation [8,9]; however, the DMIC topology adds a pair of anti-parallel thyristors in each of the three phases, thereby introducing additional silicon costs as well as additional voltage drops during operation. It poses the tradeoff question; under what conditions can the beneficial features of DMIC offset its additional silicon cost and voltage drop losses? The purpose of this report is to address the tradeoff question. Sections of the report will: (1) review the role of self-inductance in performance and control of PM motors, (2) discuss the bounding inductances for motors with trapezoidal back-emfs under CPA control, (3) discuss the bounding inductances for trapezoidal back-emfs under DMIC, (4) discuss the bounding inductances for the PM synchronous motor (PMSM), (5) present the analysis showing how DMIC minimizes current in PMSMs, (6) present the results of a cost study conducted for two motors driven using a CPA inverter and for two motors driven using DMIC, (7) discuss estimating life cycle cost benefits, and (8) present conclusions.« less

  1. Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis.

    PubMed

    Cervera, María A; Soekadar, Surjo R; Ushiba, Junichi; Millán, José Del R; Liu, Meigen; Birbaumer, Niels; Garipelli, Gangadhar

    2018-05-01

    Brain-computer interfaces (BCIs) can provide sensory feedback of ongoing brain oscillations, enabling stroke survivors to modulate their sensorimotor rhythms purposefully. A number of recent clinical studies indicate that repeated use of such BCIs might trigger neurological recovery and hence improvement in motor function. Here, we provide a first meta-analysis evaluating the clinical effectiveness of BCI-based post-stroke motor rehabilitation. Trials were identified using MEDLINE, CENTRAL, PEDro and by inspection of references in several review articles. We selected randomized controlled trials that used BCIs for post-stroke motor rehabilitation and provided motor impairment scores before and after the intervention. A random-effects inverse variance method was used to calculate the summary effect size. We initially identified 524 articles and, after removing duplicates, we screened titles and abstracts of 473 articles. We found 26 articles corresponding to BCI clinical trials, of these, there were nine studies that involved a total of 235 post-stroke survivors that fulfilled the inclusion criterion (randomized controlled trials that examined motor performance as an outcome measure) for the meta-analysis. Motor improvements, mostly quantified by the upper limb Fugl-Meyer Assessment (FMA-UE), exceeded the minimal clinically important difference (MCID=5.25) in six BCI studies, while such improvement was reached only in three control groups. Overall, the BCI training was associated with a standardized mean difference of 0.79 (95% CI: 0.37 to 1.20) in FMA-UE compared to control conditions, which is in the range of medium to large summary effect size. In addition, several studies indicated BCI-induced functional and structural neuroplasticity at a subclinical level. This suggests that BCI technology could be an effective intervention for post-stroke upper limb rehabilitation. However, more studies with larger sample size are required to increase the reliability of these results.

  2. Constraint-Induced Movement Therapy Results in Increased Motor Map Area in Subjects 3 to 9 Months After Stroke

    PubMed Central

    Sawaki, Lumy; Butler, Andrew J.; Leng, Xiaoyan; Wassenaar, Peter A.; Mohammad, Yousef M.; Blanton, Sarah; Sathian, K.; Nichols-Larsen, Deborah S.; Wolf, Steven L.; Good, David C.; Wittenberg, George F.

    2010-01-01

    Background Constraint-induced movement therapy (CIMT) has received considerable attention as an intervention to enhance motor recovery and cortical reorganization after stroke. Objective The present study represents the first multicenter effort to measure cortical reorganization induced by CIMT in subjects who are in the subacute stage of recovery. Methods A total of 30 stroke subjects in the subacute phase (>3 and <9 months poststroke) were recruited and randomized into experimental (receiving CIMT immediately after baseline evaluation) and control (receiving CIMT after 4 months) groups. Each subject was evaluated using transcranial magnetic stimulation (TMS) at baseline, 2 weeks after baseline, and at 4-month follow-up (ie, after CIMT in the experimental groups and before CIMT in the control groups). The primary clinical outcome measure was the Wolf Motor Function Test. Results Both experimental and control groups demonstrated improved hand motor function 2 weeks after baseline. The experimental group showed significantly greater improvement in grip force after the intervention and at follow-up (P = .049). After adjusting for the baseline measures, the experimental group had an increase in the TMS motor map area compared with the control group over a 4-month period; this increase was of borderline significance (P = .053). Conclusions Among subjects who had a stroke within the previous 3 to 9 months, CIMT produced statistically significant and clinically relevant improvements in arm motor function that persisted for at least 4 months. The corresponding enlargement of TMS motor maps, similar to that found in earlier studies of chronic stroke subjects, appears to play an important role in CIMT-dependent plasticity. PMID:18780885

  3. Applying machine learning to identify autistic adults using imitation: An exploratory study.

    PubMed

    Li, Baihua; Sharma, Arjun; Meng, James; Purushwalkam, Senthil; Gowen, Emma

    2017-01-01

    Autism spectrum condition (ASC) is primarily diagnosed by behavioural symptoms including social, sensory and motor aspects. Although stereotyped, repetitive motor movements are considered during diagnosis, quantitative measures that identify kinematic characteristics in the movement patterns of autistic individuals are poorly studied, preventing advances in understanding the aetiology of motor impairment, or whether a wider range of motor characteristics could be used for diagnosis. The aim of this study was to investigate whether data-driven machine learning based methods could be used to address some fundamental problems with regard to identifying discriminative test conditions and kinematic parameters to classify between ASC and neurotypical controls. Data was based on a previous task where 16 ASC participants and 14 age, IQ matched controls observed then imitated a series of hand movements. 40 kinematic parameters extracted from eight imitation conditions were analysed using machine learning based methods. Two optimal imitation conditions and nine most significant kinematic parameters were identified and compared with some standard attribute evaluators. To our knowledge, this is the first attempt to apply machine learning to kinematic movement parameters measured during imitation of hand movements to investigate the identification of ASC. Although based on a small sample, the work demonstrates the feasibility of applying machine learning methods to analyse high-dimensional data and suggest the potential of machine learning for identifying kinematic biomarkers that could contribute to the diagnostic classification of autism.

  4. Motor imaginary-based brain-machine interface design using programmable logic controllers for the disabled.

    PubMed

    Jeyabalan, Vickneswaran; Samraj, Andrews; Loo, Chu Kiong

    2010-10-01

    Aiming at the implementation of brain-machine interfaces (BMI) for the aid of disabled people, this paper presents a system design for real-time communication between the BMI and programmable logic controllers (PLCs) to control an electrical actuator that could be used in devices to help the disabled. Motor imaginary signals extracted from the brain’s motor cortex using an electroencephalogram (EEG) were used as a control signal. The EEG signals were pre-processed by means of adaptive recursive band-pass filtrations (ARBF) and classified using simplified fuzzy adaptive resonance theory mapping (ARTMAP) in which the classified signals are then translated into control signals used for machine control via the PLC. A real-time test system was designed using MATLAB for signal processing, KEP-Ware V4 OLE for process control (OPC), a wireless local area network router, an Omron Sysmac CPM1 PLC and a 5 V/0.3A motor. This paper explains the signal processing techniques, the PLC's hardware configuration, OPC configuration and real-time data exchange between MATLAB and PLC using the MATLAB OPC toolbox. The test results indicate that the function of exchanging real-time data can be attained between the BMI and PLC through OPC server and proves that it is an effective and feasible method to be applied to devices such as wheelchairs or electronic equipment.

  5. Position measurement of the direct drive motor of Large Aperture Telescope

    NASA Astrophysics Data System (ADS)

    Li, Ying; Wang, Daxing

    2010-07-01

    Along with the development of space and astronomy science, production of large aperture telescope and super large aperture telescope will definitely become the trend. It's one of methods to solve precise drive of large aperture telescope using direct drive technology unified designed of electricity and magnetism structure. A direct drive precise rotary table with diameter of 2.5 meters researched and produced by us is a typical mechanical & electrical integration design. This paper mainly introduces position measurement control system of direct drive motor. In design of this motor, position measurement control system requires having high resolution, and precisely aligning the position of rotor shaft and making measurement, meanwhile transferring position information to position reversing information corresponding to needed motor pole number. This system has chosen high precision metal band coder and absolute type coder, processing information of coders, and has sent 32-bit RISC CPU making software processing, and gained high resolution composite coder. The paper gives relevant laboratory test results at the end, indicating the position measurement can apply to large aperture telescope control system. This project is subsidized by Chinese National Natural Science Funds (10833004).

  6. Specificity of Dyspraxia in Children with Autism

    PubMed Central

    MacNeil, Lindsey K.; Mostofsky, Stewart H.

    2012-01-01

    Objective To explore the specificity of impaired praxis and postural knowledge to autism by examining three samples of children, including those with autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD), and typically developing (TD) children. Method Twenty-four children with ASD, 24 children with ADHD, and 24 TD children, ages 8–13, completed measures assessing basic motor control (the Physical and Neurological Exam for Subtle Signs; PANESS), praxis (performance of skilled gestures to command, with imitation, and tool use) and the ability to recognize correct hand postures necessary to perform these skilled gestures (the Postural Knowledge Test; PKT). Results Children with ASD performed significantly worse than TD children on all three assessments. In contrast, children with ADHD performed significantly worse than TD controls on PANESS but not on the praxis examination or PKT. Furthermore, children with ASD performed significantly worse than children with ADHD on both the praxis examination and PKT, but not on the PANESS. Conclusions Whereas both children with ADHD and children with ASD show impairments in basic motor control, impairments in performance and recognition of skilled motor gestures, consistent with dyspraxia, appear to be specific to autism. The findings suggest that impaired formation of perceptual-motor action models necessary to development of skilled gestures and other goal directed behavior is specific to autism; whereas, impaired basic motor control may be a more generalized finding. PMID:22288405

  7. Reverse matrix converter control method for PMSM drives using DPC

    NASA Astrophysics Data System (ADS)

    Bak, Yeongsu; Lee, Kyo-Beum

    2018-05-01

    This paper proposes a control method for a reverse matrix converter (RMC) that drives a three-phase permanent magnet synchronous motor (PMSM). In this proposed method, direct power control (DPC) is used to control the voltage source rectifier of the RMC. The RMC is an indirect matrix converter operating in the boost mode, in which the power-flow directions of the input and output are switched. It has a minimum voltage transfer ratio of 1/0.866 in a linear-modulation region. In this paper, a control method that uses DPC as an additional control method is proposed in order to control the RMC driving a PMSM in the output stage. Simulations and experimental results verify the effectiveness of the proposed control method.

  8. Model reference adaptive control (MRAC)-based parameter identification applied to surface-mounted permanent magnet synchronous motor

    NASA Astrophysics Data System (ADS)

    Zhong, Chongquan; Lin, Yaoyao

    2017-11-01

    In this work, a model reference adaptive control-based estimated algorithm is proposed for online multi-parameter identification of surface-mounted permanent magnet synchronous machines. By taking the dq-axis equations of a practical motor as the reference model and the dq-axis estimation equations as the adjustable model, a standard model-reference-adaptive-system-based estimator was established. Additionally, the Popov hyperstability principle was used in the design of the adaptive law to guarantee accurate convergence. In order to reduce the oscillation of identification result, this work introduces a first-order low-pass digital filter to improve precision regarding the parameter estimation. The proposed scheme was then applied to an SPM synchronous motor control system without any additional circuits and implemented using a DSP TMS320LF2812. For analysis, the experimental results reveal the effectiveness of the proposed method.

  9. Brain-machine interface control of a manipulator using small-world neural network and shared control strategy.

    PubMed

    Li, Ting; Hong, Jun; Zhang, Jinhua; Guo, Feng

    2014-03-15

    The improvement of the resolution of brain signal and the ability to control external device has been the most important goal in BMI research field. This paper describes a non-invasive brain-actuated manipulator experiment, which defined a paradigm for the motion control of a serial manipulator based on motor imagery and shared control. The techniques of component selection, spatial filtering and classification of motor imagery were involved. Small-world neural network (SWNN) was used to classify five brain states. To verify the effectiveness of the proposed classifier, we replace the SWNN classifier by a radial basis function (RBF) networks neural network, a standard multi-layered feed-forward backpropagation network (SMN) and a multi-SVM classifier, with the same features for the classification. The results also indicate that the proposed classifier achieves a 3.83% improvement over the best results of other classifiers. We proposed a shared control method consisting of two control patterns to expand the control of BMI from the software angle. The job of path building for reaching the 'end' point was designated as an assessment task. We recorded all paths contributed by subjects and picked up relevant parameters as evaluation coefficients. With the assistance of two control patterns and series of machine learning algorithms, the proposed BMI originally achieved the motion control of a manipulator in the whole workspace. According to experimental results, we confirmed the feasibility of the proposed BMI method for 3D motion control of a manipulator using EEG during motor imagery. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Shaohua

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaosmore » of PMSM and show the effectiveness and robustness of the proposed method.« less

  11. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain.

    PubMed

    Luo, Shaohua

    2014-09-01

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.

  12. Substantiation of Structure of Adaptive Control Systems for Motor Units

    NASA Astrophysics Data System (ADS)

    Ovsyannikov, S. I.

    2018-05-01

    The article describes the development of new electronic control systems, in particular motor units, for small-sized agricultural equipment. Based on the analysis of traffic control systems, the main course of development of the conceptual designs of motor units has been defined. The systems aimed to control the course motion of the motor unit in automatic mode using the adaptive systems have been developed. The article presents structural models of the conceptual motor units based on electrically controlled systems by the operation of drive motors and adaptive systems that make the motor units completely automated.

  13. Controller for computer control of brushless dc motors. [automobile engines

    NASA Technical Reports Server (NTRS)

    Hieda, L. S. (Inventor)

    1981-01-01

    A motor speed and torque controller for brushless d.c. motors provides an unusually smooth torque control arrangement. The controller provides a means for controlling a current waveform in each winding of a brushless dc motor by synchronization of an excitation pulse train from a programmable oscillator. Sensing of torque for synchronization is provided by a light beam chopper mounted on the motor rotor shaft. Speed and duty cycle are independently controlled by controlling the frequency and pulse width output of the programmable oscillator. A means is also provided so that current transitions from one motor winding to another is effected without abrupt changes in output torque.

  14. Training leads to increased auditory brain-computer interface performance of end-users with motor impairments.

    PubMed

    Halder, S; Käthner, I; Kübler, A

    2016-02-01

    Auditory brain-computer interfaces are an assistive technology that can restore communication for motor impaired end-users. Such non-visual brain-computer interface paradigms are of particular importance for end-users that may lose or have lost gaze control. We attempted to show that motor impaired end-users can learn to control an auditory speller on the basis of event-related potentials. Five end-users with motor impairments, two of whom with additional visual impairments, participated in five sessions. We applied a newly developed auditory brain-computer interface paradigm with natural sounds and directional cues. Three of five end-users learned to select symbols using this method. Averaged over all five end-users the information transfer rate increased by more than 1800% from the first session (0.17 bits/min) to the last session (3.08 bits/min). The two best end-users achieved information transfer rates of 5.78 bits/min and accuracies of 92%. Our results show that an auditory BCI with a combination of natural sounds and directional cues, can be controlled by end-users with motor impairment. Training improves the performance of end-users to the level of healthy controls. To our knowledge, this is the first time end-users with motor impairments controlled an auditory brain-computer interface speller with such high accuracy and information transfer rates. Further, our results demonstrate that operating a BCI with event-related potentials benefits from training and specifically end-users may require more than one session to develop their full potential. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Children with Heavy Prenatal Alcohol Exposure Experience Reduced Control of Isotonic Force

    PubMed Central

    Nguyen, Tanya T.; Levy, Susan S.; Riley, Edward P.; Thomas, Jennifer D.; Simmons, Roger W.

    2013-01-01

    Background Heavy prenatal alcohol exposure can result in diverse and extensive damage to the central nervous system, including the cerebellum, basal ganglia, and cerebral cortex. Given that these brain regions are involved in the generation and maintenance of motor force, we predicted that prenatal alcohol exposure would adversely affect this parameter of motor control. We previously reported that children with gestational alcohol exposure experience significant deficits in regulating isometric (i.e., constant) force. The purpose of the present study was to determine if these children exhibit similar deficits when producing isotonic (i.e., graded) force. Methods Children with heavy prenatal alcohol exposure and typically developing children completed a series of isotonic force contractions by exerting force on a load cell to match a criterion target force displayed on a computer monitor. Two levels of target force (5% or 20% of maximum voluntary force) were investigated in combination with varying levels of visual feedback. Results Compared to controls, children with heavy prenatal alcohol exposure generated isotonic force signals that were less accurate, more variable, and less complex in the time domain compared to control children. Specifically, interactions were found between group and visual feedback for response accuracy and signal complexity, suggesting that these children have greater difficulty altering their motor output when visual feedback is low. Conclusions These data suggest that prenatal alcohol exposure produces deficits in regulating isotonic force, which presumably result from alcohol-related damage to developing brain regions involved in motor control. These children will most likely experience difficulty performing basic motor skills and daily functional skills that require coordination of finely graded force. Therapeutic strategies designed to increase feedback and, consequently, facilitate visual-motor integration could improve isotonic force production in these children. PMID:22834891

  16. Limitations of the Conventional Phase Advance Method for Constant Power Operation of the Brushless DC Motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, J.S.

    2001-10-29

    The brushless dc motor (BDCM) has high-power density and efficiency relative to other motor types. These properties make the BDCM well suited for applications in electric vehicles provided a method can be developed for driving the motor over the 4 to 6:1 constant power speed range (CPSR) required by such applications. The present state of the art for constant power operation of the BDCM is conventional phase advance (CPA) [1]. In this paper, we identify key limitations of CPA. It is shown that the CPA has effective control over the developed power but that the current magnitude is relatively insensitivemore » to power output and is inversely proportional to motor inductance. If the motor inductance is low, then the rms current at rated power and high speed may be several times larger than the current rating. The inductance required to maintain rms current within rating is derived analytically and is found to be large relative to that of BDCM designs using high-strength rare earth magnets. Th us, the CPA requires a BDCM with a large equivalent inductance.« less

  17. A New Type of Motor: Pneumatic Step Motor

    PubMed Central

    Stoianovici, Dan; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Kavoussi, Louis

    2011-01-01

    This paper presents a new type of pneumatic motor, a pneumatic step motor (PneuStep). Directional rotary motion of discrete displacement is achieved by sequentially pressurizing the three ports of the motor. Pulsed pressure waves are generated by a remote pneumatic distributor. The motor assembly includes a motor, gearhead, and incremental position encoder in a compact, central bore construction. A special electronic driver is used to control the new motor with electric stepper indexers and standard motion control cards. The motor accepts open-loop step operation as well as closed-loop control with position feedback from the enclosed sensor. A special control feature is implemented to adapt classic control algorithms to the new motor, and is experimentally validated. The speed performance of the motor degrades with the length of the pneumatic hoses between the distributor and motor. Experimental results are presented to reveal this behavior and set the expectation level. Nevertheless, the stepper achieves easily controllable precise motion unlike other pneumatic motors. The motor was designed to be compatible with magnetic resonance medical imaging equipment, for actuating an image-guided intervention robot, for medical applications. For this reason, the motors were entirely made of nonmagnetic and dielectric materials such as plastics, ceramics, and rubbers. Encoding was performed with fiber optics, so that the motors are electricity free, exclusively using pressure and light. PneuStep is readily applicable to other pneumatic or hydraulic precision-motion applications. PMID:21528106

  18. Effects of a Supported Speed Treadmill Training Exercise Program on Impairment and Function for Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Johnston, Therese E.; Watson, Kyle E.; Ross, Sandy A.; Gates, Philip E.; Gaughan, John P.; Lauer, Richard T.; Tucker, Carole A.; Engsberg, Jack R.

    2011-01-01

    Aim: To compare the effects of a supported speed treadmill training exercise program (SSTTEP) with exercise on spasticity, strength, motor control, gait spatiotemporal parameters, gross motor skills, and physical function. Method: Twenty-six children (14 males, 12 females; mean age 9y 6mo, SD 2y 2mo) with spastic cerebral palsy (CP; diplegia, n =…

  19. Neuroplasticity in the context of motor rehabilitation after stroke

    PubMed Central

    Dimyan, Michael A.; Cohen, Leonardo G.

    2016-01-01

    Approximately one-third of patients with stroke exhibit persistent disability after the initial cerebrovascular episode, with motor impairments accounting for most poststroke disability. Exercise and training have long been used to restore motor function after stroke. Better training strategies and therapies to enhance the effects of these rehabilitative protocols are currently being developed for poststroke disability. The advancement of our understanding of the neuroplastic changes associated with poststroke motor impairment and the innate mechanisms of repair is crucial to this endeavor. Pharmaceutical, biological and electrophysiological treatments that augment neuroplasticity are being explored to further extend the boundaries of poststroke rehabilitation. Potential motor rehabilitation therapies, such as stem cell therapy, exogenous tissue engineering and brain–computer interface technologies, could be integral in helping patients with stroke regain motor control. As the methods for providing motor rehabilitation change, the primary goals of poststroke rehabilitation will be driven by the activity and quality of life needs of individual patients. This Review aims to provide a focused overview of neuroplasticity associated with poststroke motor impairment, and the latest experimental interventions being developed to manipulate neuroplasticity to enhance motor rehabilitation. PMID:21243015

  20. Neuroplasticity in the context of motor rehabilitation after stroke.

    PubMed

    Dimyan, Michael A; Cohen, Leonardo G

    2011-02-01

    Approximately one-third of patients with stroke exhibit persistent disability after the initial cerebrovascular episode, with motor impairments accounting for most poststroke disability. Exercise and training have long been used to restore motor function after stroke. Better training strategies and therapies to enhance the effects of these rehabilitative protocols are currently being developed for poststroke disability. The advancement of our understanding of the neuroplastic changes associated with poststroke motor impairment and the innate mechanisms of repair is crucial to this endeavor. Pharmaceutical, biological and electrophysiological treatments that augment neuroplasticity are being explored to further extend the boundaries of poststroke rehabilitation. Potential motor rehabilitation therapies, such as stem cell therapy, exogenous tissue engineering and brain-computer interface technologies, could be integral in helping patients with stroke regain motor control. As the methods for providing motor rehabilitation change, the primary goals of poststroke rehabilitation will be driven by the activity and quality of life needs of individual patients. This Review aims to provide a focused overview of neuroplasticity associated with poststroke motor impairment, and the latest experimental interventions being developed to manipulate neuroplasticity to enhance motor rehabilitation.

  1. Proactive Motor Control Reduces Monetary Risk Taking in Gambling

    PubMed Central

    Adams, Rachel; Chambers, Christopher D.

    2012-01-01

    Less supervision by the executive system after disruption of the right prefrontal cortex leads to increased risk taking in gambling because superficially attractive—but risky—choices are not suppressed. Similarly, people might gamble more in multitask situations than in single-task situations because concurrent executive processes usually interfere with each other. In the study reported here, we used a novel monetary decision-making paradigm to investigate whether multitasking could reduce rather than increase risk taking in gambling. We found that performing a task that induced cautious motor responding reduced gambling in a multitask situation (Experiment 1). We then found that a short period of inhibitory training lessened risk taking in gambling at least 2 hr later (Experiments 2 and 3). Our findings indicate that proactive motor control strongly affects monetary risk taking in gambling. The link between control systems at different cognitive levels might be exploited to develop new methods for rehabilitation of addiction and impulse-control disorders. PMID:22692336

  2. Fault-tolerant control of electric vehicles with in-wheel motors using actuator-grouping sliding mode controllers

    NASA Astrophysics Data System (ADS)

    Li, Boyuan; Du, Haiping; Li, Weihua

    2016-05-01

    Although electric vehicles with in-wheel motors have been regarded as one of the promising vehicle architectures in recent years, the probability of in-wheel motor fault is still a crucial issue due to the system complexity and large number of control actuators. In this study, a modified sliding mode control (SMC) is applied to achieve fault-tolerant control of electric vehicles with four-wheel-independent-steering (4WIS) and four-wheel-independent-driving (4WID). Unlike in traditional SMC, in this approach the steering geometry is re-arranged according to the location of faulty wheels in the modified SMC. Three SMC control laws for longitudinal velocity control, lateral velocity control and yaw rate control are designed based on specific vehicle motion scenarios. In addition the actuator-grouping SMC method is proposed so that driving actuators are grouped and each group of actuators can be used to achieve the specific control target, which avoids the strong coupling effect between each control target. Simulation results prove that the proposed modified SMC can achieve good vehicle dynamics control performance in normal driving and large steering angle turning scenarios. In addition, the proposed actuator-grouping SMC can solve the coupling effect of different control targets and the control performance is improved.

  3. Control Circuit For Two Stepping Motors

    NASA Technical Reports Server (NTRS)

    Ratliff, Roger; Rehmann, Kenneth; Backus, Charles

    1990-01-01

    Control circuit operates two independent stepping motors, one at a time. Provides following operating features: After selected motor stepped to chosen position, power turned off to reduce dissipation; Includes two up/down counters that remember at which one of eight steps each motor set. For selected motor, step indicated by illumination of one of eight light-emitting diodes (LED's) in ring; Selected motor advanced one step at time or repeatedly at rate controlled; Motor current - 30 mA at 90 degree positions, 60 mA at 45 degree positions - indicated by high or low intensity of LED that serves as motor-current monitor; Power-on reset feature provides trouble-free starts; To maintain synchronism between control circuit and motors, stepping of counters inhibited when motor power turned off.

  4. Over-focused? The relation between patients' inclination for conscious control and single- and dual-task motor performance after stroke.

    PubMed

    Denneman, R P M; Kal, E C; Houdijk, H; Kamp, J van der

    2018-05-01

    Many stroke patients are inclined to consciously control their movements. This is thought to negatively affect patients' motor performance, as it disrupts movement automaticity. However, it has also been argued that conscious control may sometimes benefit motor performance, depending on the task or patientś motor or cognitive capacity. To assess whether stroke patients' inclination for conscious control is associated with motor performance, and explore whether the putative association differs as a function of task (single- vs dual) or patientś motor and cognitive capacity. Univariate and multivariate linear regression analysis were used to assess associations between patients' disposition to conscious control (i.e., Conscious Motor Processing subscale of Movement-Specific Reinvestment Scale; MSRS-CMP) and single-task (Timed-up-and-go test; TuG) and motor dual-task costs (TuG while tone counting; motor DTC%). We determined whether these associations were influenced by patients' walking speed (i.e., 10-m-walk test) and cognitive capacity (i.e., working memory, attention, executive function). Seventy-eight clinical stroke patients (<6 months post-stroke) participated. Patients' conscious control inclination was not associated with single-task TuG performance. However, patients with a strong inclination for conscious control showed higher motor DTC%. These associations were irrespective of patients' motor and cognitive abilities. Patients' disposition for conscious control was not associated with single task motor performance, but was associated with higher motor dual task costs, regardless of patients' motor or cognitive abilities. Therapists should be aware that patients' conscious control inclination can influence their dual-task performance while moving. Longitudinal studies are required to test whether reducing patients' disposition for conscious control would improve dual-tasking post-stroke. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Summary of electric vehicle dc motor-controller tests

    NASA Technical Reports Server (NTRS)

    Mcbrien, E. F.; Tryon, H. B.

    1982-01-01

    The differences in the performance of dc motors are evaluated when operating with chopper type controllers, and when operating on direct current. The interactions between the motor and the controller which cause these differences are investigated. Motor-controlled tests provided some of the data the quantified motor efficiency variations for both ripple free and chopper modes of operation.

  6. Motor responses and weight gaining in neonates through use of two methods of earmuff and receiving silence in NICU.

    PubMed

    Abdeyazdan, Z; Ghasemi, S; Marofi, M; Berjis, N

    2014-01-01

    With technological advances in NICUs the survival rate of preterm infants has been increased. Because NICU environment is a potent source of stress for infants, its modification is an essential measure to decrease infants' morbidity. The purposes of this study were to compare the effects of wearing earmuff and provision silence for infants on their motor responses and gaining weight. In a randomized clinical trial 96 preterm infants were enrolled. Their motor responses were evaluated for two consecutive days in the morning and afternoon shifts, in the groups of earmuff and silence, and at similar time points in the control group. Also their weight was measured at days 1 and 10. In the two intervention groups, means of motor responses in infants were significantly less than in the control group, and weight gain of infants was more than the control group. However weight gain was more pronounced in the earmuff group. Both interventions led to decreasing number of motor responses and improvement of weight gain pattern, but these effects were more pronounced in earmuff group; thus because implementation of silence in NICUs has many barriers, it is suggested to use earmuff for preterm infants in these units. This trial obtained IRCT registration number IRCT2012092010812N2.

  7. Increased Inhibition in Non-Primary Motor Areas of String-Instrument Players: A Preliminary Study with Paired-Pulse Transcranial Magnetic Stimulation

    PubMed Central

    Vaalto, Selja; Julkunen, Petro; Säïsänen, Laura; Könönen, Mervi; Määttä, Sara; Karhu, Jari

    2016-01-01

    Background: The muscle representations in non-primary motor area (NPMA) are located in the dorsal premotor area (PMd) and in the border region between the premotor area and the supplementary motor area (SMA). Objective: We characterized the plasticity of intracortical inhibitory and excitatory circuits in muscle representations in primary motor cortex (M1) and in NPMA related to acquired fine motor skills. We compared local cortical inhibition and facilitation balance in M1 and in NPMA between control subjects (n = 6) and right-handed string-instrument players (n = 5). Methods: Navigated transcranial magnetic stimulation (TMS) was used to compare motor thresholds (MTs), motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in non-dominant hand muscle representations in M1 and NPMA. Results: String-instrument players showed reduced SICI in M1 in the actively used left hand abductor digiti minimi (ADM) muscle representation at 3 ms inter-stimulus interval (ISI) with a conditioning stimulus (CS) intensity of 80% of MT and increased SICI in NPMA in ADM representation at 2 ms ISI and CS intensity of 50% of MT in comparison with controls. No differences between string-instrument players and controls were found for the SICI in the left hand opponens pollicis (OP) muscle representation, which is a muscle not intensively trained in string-instrument players. Conclusions: These preliminary results indicate that the stronger inhibition in motor representations outside M1 in string-instrument players may be crucial when accurate movements of single muscles must be performed. In contrast, weaker inhibition in M1 in string-instrument players may benefit the performance of fast finger movements. PMID:29765844

  8. Speech motor development: Integrating muscles, movements, and linguistic units.

    PubMed

    Smith, Anne

    2006-01-01

    A fundamental problem for those interested in human communication is to determine how ideas and the various units of language structure are communicated through speaking. The physiological concepts involved in the control of muscle contraction and movement are theoretically distant from the processing levels and units postulated to exist in language production models. A review of the literature on adult speakers suggests that they engage complex, parallel processes involving many units, including sentence, phrase, syllable, and phoneme levels. Infants must develop multilayered interactions among language and motor systems. This discussion describes recent studies of speech motor performance relative to varying linguistic goals during the childhood, teenage, and young adult years. Studies of the developing interactions between speech motor and language systems reveal both qualitative and quantitative differences between the developing and the mature systems. These studies provide an experimental basis for a more comprehensive theoretical account of how mappings between units of language and units of action are formed and how they function. Readers will be able to: (1) understand the theoretical differences between models of speech motor control and models of language processing, as well as the nature of the concepts used in the two different kinds of models, (2) explain the concept of coarticulation and state why this phenomenon has confounded attempts to determine the role of linguistic units, such as syllables and phonemes, in speech production, (3) describe the development of speech motor performance skills and specify quantitative and qualitative differences between speech motor performance in children and adults, and (4) describe experimental methods that allow scientists to study speech and limb motor control, as well as compare units of action used to study non-speech and speech movements.

  9. Application of drive circuit based on L298N in direct current motor speed control system

    NASA Astrophysics Data System (ADS)

    Yin, Liuliu; Wang, Fang; Han, Sen; Li, Yuchen; Sun, Hao; Lu, Qingjie; Yang, Cheng; Wang, Quanzhao

    2016-10-01

    In the experiment of researching the nanometer laser interferometer, our design of laser interferometer circuit system is up to the wireless communication technique of the 802.15.4 IEEE standard, and we use the RF TI provided by Basic to receive the data on speed control system software. The system's hardware is connected with control module and the DC motor. However, in the experiment, we found that single chip microcomputer control module is very difficult to drive the DC motor directly. The reason is that the DC motor's starting and braking current is larger than the causing current of the single chip microcomputer control module. In order to solve this problem, we add a driving module that control board can transmit PWM wave signal through I/O port to drive the DC motor, the driving circuit board can come true the function of the DC motor's positive and reversal rotation and speed adjustment. In many various driving module, the L298N module's integrated level is higher compared with other driver module. The L298N model is easy to control, it not only can control the DC motor, but also achieve motor speed control by modulating PWM wave that the control panel output. It also has the over-current protection function, when the motor lock, the L298N model can protect circuit and motor. So we use the driver module based on L298N to drive the DC motor. It is concluded that the L298N driver circuit module plays a very important role in the process of driving the DC motor in the DC motor speed control system.

  10. An advanced robust method for speed control of switched reluctance motor

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Ming, Zhengfeng; Su, Zhanping; Cai, Zhuang

    2018-05-01

    This paper presents an advanced robust controller for the speed system of a switched reluctance motor (SRM) in the presence of nonlinearities, speed ripple, and external disturbances. It proposes that the adaptive fuzzy control is applied to regulate the motor speed in the outer loop, and the detector is used to obtain rotor detection in the inner loop. The new fuzzy logic tuning rules are achieved from the experience of the operator and the knowledge of the specialist. The fuzzy parameters are automatically adjusted online according to the error and its change of speed in the transient period. The designed detector can obtain the rotor's position accurately in each phase module. Furthermore, a series of contrastive simulations are completed between the proposed controller and proportion integration differentiation controller including low speed, medium speed, and high speed. Simulations show that the proposed robust controller enables the system reduced by at least 3% in overshoot, 6% in rise time, and 20% in setting time, respectively, and especially under external disturbances. Moreover, an actual SRM control system is constructed at 220 V 370 W. The experiment results further prove that the proposed robust controller has excellent dynamic performance and strong robustness.

  11. Myoelectrically controlled wrist robot for stroke rehabilitation

    PubMed Central

    2013-01-01

    Background Robot-assisted rehabilitation is an advanced new technology in stroke rehabilitation to provide intensive training. Post-stroke motor recovery depends on active rehabilitation by voluntary participation of patient’s paretic motor system as early as possible in order to promote reorganization of brain. However, voluntary residual motor efforts to the affected limb have not been involved enough in most robot-assisted rehabilitation for patients after stroke. The objective of this study is to evaluate the feasibility of robot-assisted rehabilitation using myoelectric control on upper limb motor recovery. Methods In the present study, an exoskeleton-type rehabilitation robotic system was designed to provide voluntarily controlled assisted torque to the affected wrist. Voluntary intention was involved by using the residual surface electromyography (EMG) from flexor carpi radialis(FCR) and extensor carpi radialis (ECR)on the affected limb to control the mechanical assistance provided by the robotic system during wrist flexion and extension in a 20-session training. The system also applied constant resistant torque to the affected wrist during the training. Sixteen subjects after stroke had been recruited for evaluating the tracking performance and therapeutical effects of myoelectrically controlled robotic system. Results With the myoelectrically-controlled assistive torque, stroke survivors could reach a larger range of motion with a significant decrease in the EMG signal from the agonist muscles. The stroke survivors could be trained in the unreached range with their voluntary residual EMG on the paretic side. After 20-session rehabilitation training, there was a non-significant increase in the range of motion and a significant decrease in the root mean square error (RMSE) between the actual wrist angle and target angle. Significant improvements also could be found in muscle strength and clinical scales. Conclusions These results indicate that robot-aided therapy with voluntary participation of patient’s paretic motor system using myoelectric control might have positive effect on upper limb motor recovery. PMID:23758925

  12. Primary Motor Cortex Representation of Handgrip Muscles in Patients with Leprosy

    PubMed Central

    Rangel, Maria Luíza Sales; Sanchez, Tiago Arruda; Moreira, Filipe Azaline; Hoefle, Sebastian; Souto, Inaiacy Bittencourt; da Cunha, Antônio José Ledo Alves

    2015-01-01

    Background Leprosy is an endemic infectious disease caused by Mycobacterium leprae that predominantly attacks the skin and peripheral nerves, leading to progressive impairment of motor, sensory and autonomic function. Little is known about how this peripheral neuropathy affects corticospinal excitability of handgrip muscles. Our purpose was to explore the motor cortex organization after progressive peripheral nerve injury and upper-limb dysfunction induced by leprosy using noninvasive transcranial magnetic stimulation (TMS). Methods In a cross-sectional study design, we mapped bilaterally in the primary motor cortex (M1) the representations of the hand flexor digitorum superficialis (FDS), as well as of the intrinsic hand muscles abductor pollicis brevis (APB), first dorsal interosseous (FDI) and abductor digiti minimi (ADM). All participants underwent clinical assessment, handgrip dynamometry and motor and sensory nerve conduction exams 30 days before mapping. Wilcoxon signed rank and Mann-Whitney tests were performed with an alpha-value of p<0.05. Findings Dynamometry performance of the patients’ most affected hand (MAH), was worse than that of the less affected hand (LAH) and of healthy controls participants (p = 0.031), confirming handgrip impairment. Motor threshold (MT) of the FDS muscle was higher in both hemispheres in patients as compared to controls, and lower in the hemisphere contralateral to the MAH when compared to that of the LAH. Moreover, motor evoked potential (MEP) amplitudes collected in the FDS of the MAH were higher in comparison to those of controls. Strikingly, MEPs in the intrinsic hand muscle FDI had lower amplitudes in the hemisphere contralateral to MAH as compared to those of the LAH and the control group. Taken together, these results are suggestive of a more robust representation of an extrinsic hand flexor and impaired intrinsic hand muscle function in the hemisphere contralateral to the MAH due to leprosy. Conclusion Decreased sensory-motor function induced by leprosy affects handgrip muscle representation in M1. PMID:26203653

  13. Mirror therapy enhances upper extremity motor recovery in stroke patients.

    PubMed

    Mirela Cristina, Luca; Matei, Daniela; Ignat, Bogdan; Popescu, Cristian Dinu

    2015-12-01

    The purpose of this study was to evaluate the effects of mirror therapy program in addition with physical therapy methods on upper limb recovery in patients with subacute ischemic stroke. 15 subjects followed a comprehensive rehabilitative treatment, 8 subjects received only control therapy (CT) and 7 subjects received mirror therapy (MT) for 30 min every day, five times a week, for 6 weeks in addition to the conventional therapy. Brunnstrom stages, Fugl-Meyer Assessment (upper extremity), the Ashworth Scale, and Bhakta Test (finger flexion scale) were used to assess changes in upper limb motor recovery and motor function after intervention. After 6 weeks of treatment, patients in both groups showed significant improvements in the variables measured. Patients who received MT showed greater improvements compared to the CT group. The MT treatment results included: improvement of motor functions, manual skills and activities of daily living. The best results were obtained when the treatment was started soon after the stroke. MT is an easy and low-cost method to improve motor recovery of the upper limb.

  14. Motor regulation problems and pain in adults diagnosed with ADHD

    PubMed Central

    2013-01-01

    Background Most children who are diagnosed with attention deficit-hyperactivity disorder (ADHD) have moderate-to-severe motor problems using the Motor Function Neurological Assessment battery (MFNU). The MFNU focuses on specific muscle adjustment problems associated with ADHD, especially motor inhibition problems and high muscle tone. Here we investigated whether adults with ADHD/hyperkinetic disorder (HKD) have similar motor problems. In our clinical experience, adults with ADHD often complain about back, shoulder, hip, and leg pain. We also investigate reported pain in adults with ADHD. Methods Twenty-five adult outpatients diagnosed with ADHD/HKD who were responders to methylphenidate (MPH) were compared to 23 non-ADHD controls on 16 MFNU subtests and using a ‘total score’ (‘TS’) parameter. The MFNU test leader was blinded to group identity. The two groups were also compared using the Pain Drawing and Numerical Pain Rating Scale. Results The adult ADHD group had significantly (p < .001) more motor problems (higher TS) than controls. On the muscle regulation subtests, 36–96% of the ADHD group showed ‘moderate’ to ‘severe’ problems compared to 13–52% of the control group, and 80% of the ADHD group reported widespread pain. Highly significant differences were found between the ADHD and control groups for the variables ‘pain level’ (p < .001) and ‘pain location’ (p < .001). Significant correlations were found between TS and ‘pain location’ and between TS and ‘pain level’. Conclusions These findings suggest that similar to children with ADHD, adults diagnosed with ADHD also have motor inhibition problems and heightened muscle tone. The presence of significantly higher pain levels and more widespread pain in the ADHD group compared to non-ADHD controls might indicate that pain is a long-term secondary effect of heightened muscle tone and restricted movement that can be demonstrated in children and adults by the MFNU battery. PMID:23642255

  15. Synergetic motor control paradigm for optimizing energy efficiency of multijoint reaching via tacit learning

    PubMed Central

    Hayashibe, Mitsuhiro; Shimoda, Shingo

    2014-01-01

    A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach. PMID:24616695

  16. Synergetic motor control paradigm for optimizing energy efficiency of multijoint reaching via tacit learning.

    PubMed

    Hayashibe, Mitsuhiro; Shimoda, Shingo

    2014-01-01

    A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach.

  17. Influence of Structural Parameters on the Performance of Vortex Valve Variable-Thrust Solid Rocket Motor

    NASA Astrophysics Data System (ADS)

    Wei, Xianggeng; Li, Jiang; He, Guoqiang

    2017-04-01

    The vortex valve solid variable thrust motor is a new solid motor which can achieve Vehicle system trajectory optimization and motor energy management. Numerical calculation was performed to investigate the influence of vortex chamber diameter, vortex chamber shape, and vortex chamber height of the vortex valve solid variable thrust motor on modulation performance. The test results verified that the calculation results are consistent with laboratory results with a maximum error of 9.5%. The research drew the following major conclusions: the optimal modulation performance was achieved in a cylindrical vortex chamber, increasing the vortex chamber diameter improved the modulation performance of the vortex valve solid variable thrust motor, optimal modulation performance could be achieved when the height of the vortex chamber is half of the vortex chamber outlet diameter, and the hot gas control flow could result in an enhancement of modulation performance. The results can provide the basis for establishing the design method of the vortex valve solid variable thrust motor.

  18. Motor control for a brushless DC motor

    NASA Technical Reports Server (NTRS)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  19. Position and orientation determination system and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harpring, Lawrence J.; Farfan, Eduardo B.; Gordon, John R.

    A position determination system and method is provided that may be used for obtaining position and orientation information of a detector in a contaminated room. The system includes a detector, a sensor operably coupled to the detector, and a motor coupled to the sensor to move the sensor around the detector. A CPU controls the operation of the motor to move the sensor around the detector and determines distance and angle data from the sensor to an object. The method includes moving a sensor around the detector and measuring distance and angle data from the sensor to an object atmore » incremental positions around the detector.« less

  20. Motor unit number estimation based on high-density surface electromyography decomposition.

    PubMed

    Peng, Yun; He, Jinbao; Yao, Bo; Li, Sheng; Zhou, Ping; Zhang, Yingchun

    2016-09-01

    To advance the motor unit number estimation (MUNE) technique using high density surface electromyography (EMG) decomposition. The K-means clustering convolution kernel compensation algorithm was employed to detect the single motor unit potentials (SMUPs) from high-density surface EMG recordings of the biceps brachii muscles in eight healthy subjects. Contraction forces were controlled at 10%, 20% and 30% of the maximal voluntary contraction (MVC). Achieved MUNE results and the representativeness of the SMUP pools were evaluated using a high-density weighted-average method. Mean numbers of motor units were estimated as 288±132, 155±87, 107±99 and 132±61 by using the developed new MUNE at 10%, 20%, 30% and 10-30% MVCs, respectively. Over 20 SMUPs were obtained at each contraction level, and the mean residual variances were lower than 10%. The new MUNE method allows a convenient and non-invasive collection of a large size of SMUP pool with great representativeness. It provides a useful tool for estimating the motor unit number of proximal muscles. The present new MUNE method successfully avoids the use of intramuscular electrodes or multiple electrical stimuli which is required in currently available MUNE techniques; as such the new MUNE method can minimize patient discomfort for MUNE tests. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Evidence of motor-control difficulties in children with attention deficit hyperactivity disorder, explored through a hierarchical motor-systems perspective.

    PubMed

    Macoun, Sarah J; Kerns, Kimberly A

    2016-01-01

    Attention deficit hyperactivity disorder (ADHD) may reflect a disorder of neural systems that regulate motor control. The current study investigates motor dysfunction in children with ADHD using a hierarchical motor-systems perspective where frontal-striatal/"medial" brain systems are viewed as regulating parietal/"lateral" brain systems in a top down manner, to inhibit automatic environmentally driven responses in favor of goal-directed behavior. It was hypothesized that due to frontal-striatal hypoactivation, children with ADHD would have difficulty with higher order motor control tasks felt to be dependent on these systems, yet have preserved general motor function. A total of 63 children-ADHD and matched controls-completed experimental motor tasks that required maintenance of internal motor representations and the ability to inhibit visually driven responses. Children also completed a measure of motor inhibition, and a portion of the sample completed general motor function tasks. On motor tasks that required them to maintain internal motor representations and to inhibit automatic motor responses, children with ADHD had significantly greater difficulty than controls, yet on measures of general motor dexterity, their performance was comparable. Children with ADHD displayed significantly greater intraindividual (subject) variability than controls. Intraindividual variability (IIV) contributed to variations in performance across the motor tasks, but did not account for all of the variance on all tasks. These findings suggest that children with ADHD may be more controlled by external stimuli than by internally represented information, possibly due to dysfunction of the medial motor system. However, it is likely that children with ADHD also display general motor-execution problems (as evidenced by IIV findings), suggesting that atypicalities may extend to both medial and lateral motor systems. Findings are interpreted within the context of contemporary theories regarding motor dysfunction in ADHD, and implications for understanding externalizing behaviors in ADHD are discussed.

  2. An Efficient Fuzzy Controller Design for Parallel Connected Induction Motor Drives

    NASA Astrophysics Data System (ADS)

    Usha, S.; Subramani, C.

    2018-04-01

    Generally, an induction motors are highly non-linear and has a complex time varying dynamics. This makes the speed control of an induction motor a challenging issue in the industries. But, due to the recent trends in the power electronic devices and intelligent controllers, the speed control of the induction motor is achieved by including non-linear characteristics also. Conventionally a single inverter is used to run one induction motor in industries. In the traction applications, two or more inductions motors are operated in parallel to reduce the size and cost of induction motors. In this application, the parallel connected induction motors can be driven by a single inverter unit. The stability problems may introduce in the parallel operation under low speed operating conditions. Hence, the speed deviations should be reduce with help of suitable controllers. The speed control of the parallel connected system is performed by PID controller and fuzzy logic controller. In this paper the speed response of the induction motor for the rating of IHP, 1440 rpm, and 50Hz with these controller are compared in time domain specifications. The stability analysis of the system also performed under low speed using matlab platform. The hardware model is developed for speed control using fuzzy logic controller which exhibited superior performances over the other controller.

  3. Piezoelectric self-sensing actuator for active vibration control of motorized spindle based on adaptive signal separation

    NASA Astrophysics Data System (ADS)

    He, Ye; Chen, Xiaoan; Liu, Zhi; Qin, Yi

    2018-06-01

    The motorized spindle is the core component of CNC machine tools, and the vibration of it reduces the machining precision and service life of the machine tools. Owing to the fast response, large output force, and displacement of the piezoelectric stack, it is often used as the actuator in the active vibration control of the spindle. A piezoelectric self-sensing actuator (SSA) can reduce the cost of the active vibration control system and simplify the structure by eliminating the use of a sensor, because a SSA can have both actuating and sensing functions at the same time. The signal separation method of a SSA based on a bridge circuit is widely applied because of its simple principle and easy implementation. However, it is difficult to maintain dynamic balance of the circuit. Prior research has used adaptive algorithm to balance of the bridge circuit on the flexible beam dynamically, but those algorithms need no correlation between sensing and control voltage, which limit the applications of SSA in the vibration control of the rotor-bearing system. Here, the electromechanical coupling model of the piezoelectric stack is established, followed by establishment of the dynamic model of the spindle system. Next, a new adaptive signal separation method based on the bridge circuit is proposed, which can separate relative small sensing voltage from related mixed voltage adaptively. The experimental results show that when the self-sensing signal obtained from the proposed method is used as a displacement signal, the vibration of the motorized spindle can be suppressed effectively through a linear quadratic Gaussian (LQG) algorithm.

  4. Sliding-mode control combined with improved adaptive feedforward for wafer scanner

    NASA Astrophysics Data System (ADS)

    Li, Xiaojie; Wang, Yiguang

    2018-03-01

    In this paper, a sliding-mode control method combined with improved adaptive feedforward is proposed for wafer scanner to improve the tracking performance of the closed-loop system. Particularly, In addition to the inverse model, the nonlinear force ripple effect which may degrade the tracking accuracy of permanent magnet linear motor (PMLM) is considered in the proposed method. The dominant position periodicity of force ripple is determined by using the Fast Fourier Transform (FFT) analysis for experimental data and the improved feedforward control is achieved by the online recursive least-squares (RLS) estimation of the inverse model and the force ripple. The improved adaptive feedforward is given in a general form of nth-order model with force ripple effect. This proposed method is motivated by the motion controller design of the long-stroke PMLM and short-stroke voice coil motor for wafer scanner. The stability of the closed-loop control system and the convergence of the motion tracking are guaranteed by the proposed sliding-mode feedback and adaptive feedforward methods theoretically. Comparative experiments on a precision linear motion platform can verify the correctness and effectiveness of the proposed method. The experimental results show that comparing to traditional method the proposed one has better performance of rapidity and robustness, especially for high speed motion trajectory. And, the improvements on both tracking accuracy and settling time can be achieved.

  5. Motor prediction in Brain-Computer Interfaces for controlling mobile robots.

    PubMed

    Geng, Tao; Gan, John Q

    2008-01-01

    EEG-based Brain-Computer Interface (BCI) can be regarded as a new channel for motor control except that it does not involve muscles. Normal neuromuscular motor control has two fundamental components: (1) to control the body, and (2) to predict the consequences of the control command, which is called motor prediction. In this study, after training with a specially designed BCI paradigm based on motor imagery, two subjects learnt to predict the time course of some features of the EEG signals. It is shown that, with this newly-obtained motor prediction skill, subjects can use motor imagery of feet to directly control a mobile robot to avoid obstacles and reach a small target in a time-critical scenario.

  6. [The mirror neuron system in motor and sensory rehabilitation].

    PubMed

    Oouchida, Yutaka; Izumi, Shinichi

    2014-06-01

    The discovery of the mirror neuron system has dramatically changed the study of motor control in neuroscience. The mirror neuron system provides a conceptual framework covering the aspects of motor as well as sensory functions in motor control. Previous studies of motor control can be classified as studies of motor or sensory functions, and these two classes of studies appear to have advanced independently. In rehabilitation requiring motor learning, such as relearning movement after limb paresis, however, sensory information of feedback for motor output as well as motor command are essential. During rehabilitation from chronic pain, motor exercise is one of the most effective treatments for pain caused by dysfunction in the sensory system. In rehabilitation where total intervention unifying the motor and sensory aspects of motor control is important, learning through imitation, which is associated with the mirror neuron system can be effective and suitable. In this paper, we introduce the clinical applications of imitated movement in rehabilitation from motor impairment after brain damage and phantom limb pain after limb amputation.

  7. Understanding molecular motor walking along a microtubule: a themosensitive asymmetric Brownian motor driven by bubble formation.

    PubMed

    Arai, Noriyoshi; Yasuoka, Kenji; Koishi, Takahiro; Ebisuzaki, Toshikazu; Zeng, Xiao Cheng

    2013-06-12

    The "asymmetric Brownian ratchet model", a variation of Feynman's ratchet and pawl system, is invoked to understand the kinesin walking behavior along a microtubule. The model system, consisting of a motor and a rail, can exhibit two distinct binding states, namely, the random Brownian state and the asymmetric potential state. When the system is transformed back and forth between the two states, the motor can be driven to "walk" in one direction. Previously, we suggested a fundamental mechanism, that is, bubble formation in a nanosized channel surrounded by hydrophobic atoms, to explain the transition between the two states. In this study, we propose a more realistic and viable switching method in our computer simulation of molecular motor walking. Specifically, we propose a thermosensitive polymer model with which the transition between the two states can be controlled by temperature pulses. Based on this new motor system, the stepping size and stepping time of the motor can be recorded. Remarkably, the "walking" behavior observed in the newly proposed model resembles that of the realistic motor protein. The bubble formation based motor not only can be highly efficient but also offers new insights into the physical mechanism of realistic biomolecule motors.

  8. Variable-Displacement Hydraulic Drive Unit

    NASA Technical Reports Server (NTRS)

    Lang, D. J.; Linton, D. J.; Markunas, A.

    1986-01-01

    Hydraulic power controlled through multiple feedback loops. In hydraulic drive unit, power closely matched to demand, thereby saving energy. Hydraulic flow to and from motor adjusted by motor-control valve connected to wobbler. Wobbler angle determines motor-control-valve position, which in turn determines motor displacement. Concept applicable to machine tools, aircraft controls, and marine controls.

  9. Graph theory applied to the analysis of motor activity in patients with schizophrenia and depression

    PubMed Central

    Fasmer, Erlend Eindride; Berle, Jan Øystein; Oedegaard, Ketil J.; Hauge, Erik R.

    2018-01-01

    Depression and schizophrenia are defined only by their clinical features, and diagnostic separation between them can be difficult. Disturbances in motor activity pattern are central features of both types of disorders. We introduce a new method to analyze time series, called the similarity graph algorithm. Time series of motor activity, obtained from actigraph registrations over 12 days in depressed and schizophrenic patients, were mapped into a graph and we then applied techniques from graph theory to characterize these time series, primarily looking for changes in complexity. The most marked finding was that depressed patients were found to be significantly different from both controls and schizophrenic patients, with evidence of less regularity of the time series, when analyzing the recordings with one hour intervals. These findings support the contention that there are important differences in control systems regulating motor behavior in patients with depression and schizophrenia. The similarity graph algorithm we have described can easily be applied to the study of other types of time series. PMID:29668743

  10. Graph theory applied to the analysis of motor activity in patients with schizophrenia and depression.

    PubMed

    Fasmer, Erlend Eindride; Fasmer, Ole Bernt; Berle, Jan Øystein; Oedegaard, Ketil J; Hauge, Erik R

    2018-01-01

    Depression and schizophrenia are defined only by their clinical features, and diagnostic separation between them can be difficult. Disturbances in motor activity pattern are central features of both types of disorders. We introduce a new method to analyze time series, called the similarity graph algorithm. Time series of motor activity, obtained from actigraph registrations over 12 days in depressed and schizophrenic patients, were mapped into a graph and we then applied techniques from graph theory to characterize these time series, primarily looking for changes in complexity. The most marked finding was that depressed patients were found to be significantly different from both controls and schizophrenic patients, with evidence of less regularity of the time series, when analyzing the recordings with one hour intervals. These findings support the contention that there are important differences in control systems regulating motor behavior in patients with depression and schizophrenia. The similarity graph algorithm we have described can easily be applied to the study of other types of time series.

  11. Influence of a high vacuum on the precise positioning using an ultrasonic linear motor.

    PubMed

    Kim, Wan-Soo; Lee, Dong-Jin; Lee, Sun-Kyu

    2011-01-01

    This paper presents an investigation of the ultrasonic linear motor stage for use in a high vacuum environment. The slider table is driven by the hybrid bolt-clamped Langevin-type ultrasonic linear motor, which is excited with its different modes of natural frequencies in both lateral and longitudinal directions. In general, the friction behavior in a vacuum environment becomes different from that in an environment of atmospheric pressure and this difference significantly affects the performance of the ultrasonic linear motor. In this paper, to consistently provide stable and high power of output in a high vacuum, frequency matching was conducted. Moreover, to achieve the fine control performance in the vacuum environment, a modified nominal characteristic trajectory following control method was adopted. Finally, the stage was operated under high vacuum condition, and the operating performances were investigated compared with that of a conventional PI compensator. As a result, robustness of positioning was accomplished in a high vacuum condition with nanometer-level accuracy.

  12. Fuzzy – PI controller to control the velocity parameter of Induction Motor

    NASA Astrophysics Data System (ADS)

    Malathy, R.; Balaji, V.

    2018-04-01

    The major application of Induction motor includes the usage of the same in industries because of its high robustness, reliability, low cost, highefficiency and good self-starting capability. Even though it has the above mentioned advantages, it also have some limitations: (1) the standard motor is not a true constant-speed machine, itsfull-load slip varies less than 1 % (in high-horsepower motors).And (2) it is not inherently capable of providing variable-speedoperation. In order to solve the above mentioned problem smart motor controls and variable speed controllers are used. Motor applications involve non linearity features, which can be controlled by Fuzzy logic controller as it is capable of handling those features with high efficiency and it act similar to human operator. This paper presents individuality of the plant modelling. The fuzzy logic controller (FLC)trusts on a set of linguistic if-then rules, a rule-based Mamdani for closed loop Induction Motor model. Themotor model is designed and membership functions are chosenaccording to the parameters of the motor model. Simulation results contains non linearity in induction motor model. A conventional PI controller iscompared practically to fuzzy logic controller using Simulink.

  13. Redundant unbalance compensation of an active magnetic bearing system

    NASA Astrophysics Data System (ADS)

    Hutterer, Markus; Kalteis, Gerald; Schrödl, Manfred

    2017-09-01

    To achieve a good running behavior of a magnetic levitated rotor, a well-developed position controller and different compensation methods are required. Two very important structures in this context are the reduction of the gyroscopic effect and the unbalance vibration. Both structures have in common that they need the angular velocity information for calculation. For industrial applications this information is normally provided by an angle sensor which is fixed on the rotor. The angle information is also necessary for the field oriented control of the electrical drive. The main drawback of external position sensors are the case of a breakdown or an error of the motor controller. Therefore, the magnetic bearing can get unstable, because no angular velocity information is provided. To overcome this problem the presented paper describes the development of a selfsensing unbalance rejection in combination with a selfsensing speed control of the motor controller. Selfsensing means in this context that no angle sensor is required for the unbalance or torque control. With such structures two redundant speed and angle information sources are available and can be used for the magnetic bearing and the motor controller without the usage of an angle sensor.

  14. Use of technology to facilitate physical activity in children with autism spectrum disorders: A pilot study.

    PubMed

    Bittner, Melissa D; Rigby, B Rhett; Silliman-French, Lisa; Nichols, David L; Dillon, Suzanna R

    2017-08-01

    Deficits in social behavior and communication skills are correlated with reduced gross motor skills in children with autism spectrum disorders (ASD). The ExerciseBuddy application (EB app) was designed to communicate these motor skills to those with ASD and integrates evidence-based practices such as visual support and video modeling supported by The National Professional Development Center on Autism Spectrum Disorders. The purpose of this study was to determine the effectiveness of the EB app in facilitating increased physiologic responses to physical activity via a continuous measurement of energy expenditure and heart rate versus practice-style teaching methods in children with ASD. Six children, ages 5 to 10years, diagnosed with ASD were recruited. Each participant performed a variety of locomotor or object control skills as defined by the Test of Gross Motor Development-2 once per week for 4weeks. Motor skills were communicated and demonstrated using either practice-style teaching methods or the instructional section of the EB app. Energy expenditure and heart rate were measured continuously during each 12-minute session. A Wilcoxon signed-rank test was performed to assess any differences between the use of the app and practice-style teaching methods. The use of the EB app elicited greater values for peak energy expenditure (p=0.043) and peak heart rate response (p=0.028) while performing locomotor skills but no differences were observed while performing object control skills. Similarities were observed with average physiologic responses between the use of the EB app and practice-style teaching methods. The use of the EB app may allow for a greater peak physiologic response during more dynamic movements and a similar average cardiovascular and metabolic response when compared to practice-style teaching methods in children with ASD. Published by Elsevier Inc.

  15. Implementation of a MFAC based position sensorless drive for high speed BLDC motors with nonideal back EMF.

    PubMed

    Li, Haitao; Ning, Xin; Li, Wenzhuo

    2017-03-01

    In order to improve the reliability and reduce power consumption of the high speed BLDC motor system, this paper presents a model free adaptive control (MFAC) based position sensorless drive with only a dc-link current sensor. The initial commutation points are obtained by detecting the phase of EMF zero-crossing point and then delaying 30 electrical degrees. According to the commutation error caused by the low pass filter (LPF) and other factors, the relationship between commutation error angle and dc-link current is analyzed, a corresponding MFAC based control method is proposed, and the commutation error can be corrected by the controller in real time. Both the simulation and experimental results show that the proposed correction method can achieve ideal commutation effect within the entire operating speed range. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Gross and fine motor function in fibromyalgia and chronic fatigue syndrome

    PubMed Central

    Rasouli, Omid; Fors, Egil A; Borchgrevink, Petter Chr; Öhberg, Fredrik; Stensdotter, Ann-Katrin

    2017-01-01

    Purpose This paper aimed to investigate motor proficiency in fine and gross motor function, with a focus on reaction time (RT) and movement skill, in patients with fibromyalgia (FM) and chronic fatigue syndrome (CFS) compared to healthy controls (HC). Methods A total of 60 individuals (20 CFS, 20 FM, and 20 HC), age 19–49 years, participated in this study. Gross motor function in the lower extremity was assessed using a RT task during gait initiation in response to an auditory trigger. Fine motor function in the upper extremity was measured during a precision task (the Purdue Pegboard test) where the number of pins inserted within 30 s was counted. Results No significant differences were found between FM and CFS in any parameters. FM and CFS groups had significantly longer RT than HC in the gait initiation (p=0.001, and p=0.004 respectively). In the Purdue Pegboard test, 20% in the FM group, 15% in the CFS groups, and 0% of HC group, scored below the threshold of the accepted performance. However, there were no significant differences between FM, CFS, and HC in this task (p=0.12). Conclusion Compared to controls, both CFS and FM groups displayed significantly longer RT in the gait initiation task. Generally, FM patients showed the worst results in both tests, although no group differences were found in fine motor control, according to the Purdue Pegboard test. PMID:28223840

  17. Implications of diadochokinesia in children with speech sound disorder.

    PubMed

    Wertzner, Haydée Fiszbein; Pagan-Neves, Luciana de Oliveira; Alves, Renata Ramos; Barrozo, Tatiane Faria

    2013-01-01

    To verify the performance of children with and without speech sound disorder in oral motor skills measured by oral diadochokinesia according to age and gender and to compare the results by two different methods of analysis. Participants were 72 subjects aged from 5 years to 7 years and 11 months divided into four subgroups according to the presence of speech sound disorder (Study Group and Control Group) and age (<6 years and 5 months and >6 years and 5 months). Diadochokinesia skills were assessed by the repetition of the sequences 'pa', 'ta', 'ka' and 'pataka' measured both manually and by the software Motor Speech Profile®. Gender was statistically different for both groups but it did not influence on the number of sequences per second produced. Correlation between the number of sequences per second and age was observed for all sequences (except for 'ka') only for the control group children. Comparison between groups did not indicate differences between the number of sequences per second and age. Results presented strong agreement between the values of oral diadochokinesia measured manually and by MSP. This research demonstrated the importance of using different methods of analysis on the functional evaluation of oro-motor processing aspects of children with speech sound disorder and evidenced the oro-motor difficulties on children aged under than eight years old.

  18. A Validation Study of a Smartphone-Based Finger Tapping Application for Quantitative Assessment of Bradykinesia in Parkinson’s Disease

    PubMed Central

    Lee, Chae Young; Kang, Seong Jun; Hong, Sang-Kyoon

    2016-01-01

    Background Most studies of smartphone-based assessments of motor symptoms in Parkinson’s disease (PD) focused on gait, tremor or speech. Studies evaluating bradykinesia using wearable sensors are limited by a small cohort size and study design. We developed an application named smartphone tapper (SmT) to determine its applicability for clinical purposes and compared SmT parameters to current standard methods in a larger cohort. Methods A total of 57 PD patients and 87 controls examined with motor UPDRS underwent timed tapping tests (TT) using SmT and mechanical tappers (MeT) according to CAPSIT-PD. Subjects were asked to alternately tap each side of two rectangles with an index finger at maximum speed for ten seconds. Kinematic measurements were compared between the two groups. Results The mean number of correct tapping (MCoT), mean total distance of finger movement (T-Dist), mean inter-tap distance, and mean inter-tap dwelling time (IT-DwT) were significantly different between PD patients and controls. MCoT, as assessed using SmT, significantly correlated with motor UPDRS scores, bradykinesia subscores and MCoT using MeT. Multivariate analysis using the SmT parameters, such as T-Dist or IT-DwT, as predictive variables and age and gender as covariates demonstrated that PD patients were discriminated from controls. ROC curve analysis of a regression model demonstrated that the AUC for T-Dist was 0.92 (95% CI 0.88–0.96). Conclusion Our results suggest that a smartphone tapping application is comparable to conventional methods for the assessment of motor dysfunction in PD and may be useful in clinical practice. PMID:27467066

  19. Rationale, design and methods for a randomised and controlled trial of the impact of virtual reality games on motor competence, physical activity, and mental health in children with developmental coordination disorder

    PubMed Central

    2011-01-01

    Background A healthy start to life requires adequate motor development and physical activity participation. Currently 5-15% of children have impaired motor development without any obvious disorder. These children are at greater risk of obesity, musculoskeletal disorders, low social confidence and poor mental health. Traditional electronic game use may impact on motor development and physical activity creating a vicious cycle. However new virtual reality (VR) game interfaces may provide motor experiences that enhance motor development and lead to an increase in motor coordination and better physical activity and mental health outcomes. VR games are beginning to be used for rehabilitation, however there is no reported trial of the impact of these games on motor coordination in children with developmental coordination disorder. Methods This cross-over randomised and controlled trial will examine whether motor coordination is enhanced by access to active electronic games and whether daily activity, attitudes to physical activity and mental health are also enhanced. Thirty children aged 10-12 years with poor motor coordination (≤ 15th percentile) will be recruited and randomised to a balanced ordering of 'no active electronic games' and 'active electronic games'. Each child will participate in both conditions for 16 weeks, and be assessed prior to participation and at the end of each condition. The primary outcome is motor coordination, assessed by kinematic and kinetic motion analysis laboratory measures. Physical activity and sedentary behaviour will be assessed by accelerometry, coordination in daily life by parent report questionnaire and attitudes to physical activity, self-confidence, anxiety and depressed mood will be assessed by self report questionnaire. A sample of 30 will provide a power of > 0.9 for detecting a 5 point difference in motor coordination on the MABC-2 TIS scale (mean 17, sd = 5). Discussion This is the first trial to examine the impact of new virtual reality games on motor coordination in children with developmental coordination disorder. The findings will provide critical information to understand whether these electronic games can be used to have a positive impact on the physical and mental health of these children. Given the importance of adequate motor coordination, physical activity and mental health in childhood, this project can inform interventions which could have a profound impact on the long term health of this group of children. Trial registration Australia and New Zealand Clinical Trials Register (ANZCTR): ACTRN12611000400965 PMID:21851587

  20. High-Speed Current dq PI Controller for Vector Controlled PMSM Drive

    PubMed Central

    Reaz, Mamun Bin Ibne; Rahman, Labonnah Farzana; Chang, Tae Gyu

    2014-01-01

    High-speed current controller for vector controlled permanent magnet synchronous motor (PMSM) is presented. The controller is developed based on modular design for faster calculation and uses fixed-point proportional-integral (PI) method for improved accuracy. Current dq controller is usually implemented in digital signal processor (DSP) based computer. However, DSP based solutions are reaching their physical limits, which are few microseconds. Besides, digital solutions suffer from high implementation cost. In this research, the overall controller is realizing in field programmable gate array (FPGA). FPGA implementation of the overall controlling algorithm will certainly trim down the execution time significantly to guarantee the steadiness of the motor. Agilent 16821A Logic Analyzer is employed to validate the result of the implemented design in FPGA. Experimental results indicate that the proposed current dq PI controller needs only 50 ns of execution time in 40 MHz clock, which is the lowest computational cycle for the era. PMID:24574913

  1. Dynamic modeling and characteristics analysis of a modal-independent linear ultrasonic motor.

    PubMed

    Li, Xiang; Yao, Zhiyuan; Zhou, Shengli; Lv, Qibao; Liu, Zhen

    2016-12-01

    In this paper, an integrated model is developed to analyze the fundamental characteristics of a modal-independent linear ultrasonic motor with double piezoelectric vibrators. The energy method is used to model the dynamics of the two piezoelectric vibrators. The interface forces are coupled into the dynamic equations of the two vibrators and the moving platform, forming a whole machine model of the motor. The behavior of the force transmission of the motor is analyzed via the resulting model to understand the drive mechanism. In particular, the relative contact length is proposed to describe the intermittent contact characteristic between the stator and the mover, and its role in evaluating motor performance is discussed. The relations between the output speed and various inputs to the motor and the start-stop transients of the motor are analyzed by numerical simulations, which are validated by experiments. Furthermore, the dead-zone behavior is predicted and clarified analytically using the proposed model, which is also observed in experiments. These results are useful for designing servo control scheme for the motor. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Differential reliance of chimpanzees and humans on automatic and deliberate control of motor actions.

    PubMed

    Kaneko, Takaaki; Tomonaga, Masaki

    2014-06-01

    Humans are often unaware of how they control their limb motor movements. People pay attention to their own motor movements only when their usual motor routines encounter errors. Yet little is known about the extent to which voluntary actions rely on automatic control and when automatic control shifts to deliberate control in nonhuman primates. In this study, we demonstrate that chimpanzees and humans showed similar limb motor adjustment in response to feedback error during reaching actions, whereas attentional allocation inferred from gaze behavior differed. We found that humans shifted attention to their own motor kinematics as errors were induced in motor trajectory feedback regardless of whether the errors actually disrupted their reaching their action goals. In contrast, chimpanzees shifted attention to motor execution only when errors actually interfered with their achieving a planned action goal. These results indicate that the species differed in their criteria for shifting from automatic to deliberate control of motor actions. It is widely accepted that sophisticated motor repertoires have evolved in humans. Our results suggest that the deliberate monitoring of one's own motor kinematics may have evolved in the human lineage. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Theories and control models and motor learning: clinical applications in neuro-rehabilitation.

    PubMed

    Cano-de-la-Cuerda, R; Molero-Sánchez, A; Carratalá-Tejada, M; Alguacil-Diego, I M; Molina-Rueda, F; Miangolarra-Page, J C; Torricelli, D

    2015-01-01

    In recent decades there has been a special interest in theories that could explain the regulation of motor control, and their applications. These theories are often based on models of brain function, philosophically reflecting different criteria on how movement is controlled by the brain, each being emphasised in different neural components of the movement. The concept of motor learning, regarded as the set of internal processes associated with practice and experience that produce relatively permanent changes in the ability to produce motor activities through a specific skill, is also relevant in the context of neuroscience. Thus, both motor control and learning are seen as key fields of study for health professionals in the field of neuro-rehabilitation. The major theories of motor control are described, which include, motor programming theory, systems theory, the theory of dynamic action, and the theory of parallel distributed processing, as well as the factors that influence motor learning and its applications in neuro-rehabilitation. At present there is no consensus on which theory or model defines the regulations to explain motor control. Theories of motor learning should be the basis for motor rehabilitation. The new research should apply the knowledge generated in the fields of control and motor learning in neuro-rehabilitation. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  4. The remapping of space in motor learning and human-machine interfaces

    PubMed Central

    Mussa-Ivaldi, F.A.; Danziger, Z.

    2009-01-01

    Studies of motor adaptation to patterns of deterministic forces have revealed the ability of the motor control system to form and use predictive representations of the environment. One of the most fundamental elements of our environment is space itself. This article focuses on the notion of Euclidean space as it applies to common sensory motor experiences. Starting from the assumption that we interact with the world through a system of neural signals, we observe that these signals are not inherently endowed with metric properties of the ordinary Euclidean space. The ability of the nervous system to represent these properties depends on adaptive mechanisms that reconstruct the Euclidean metric from signals that are not Euclidean. Gaining access to these mechanisms will reveal the process by which the nervous system handles novel sophisticated coordinate transformation tasks, thus highlighting possible avenues to create functional human-machine interfaces that can make that task much easier. A set of experiments is presented that demonstrate the ability of the sensory-motor system to reorganize coordination in novel geometrical environments. In these environments multiple degrees of freedom of body motions are used to control the coordinates of a point in a two-dimensional Euclidean space. We discuss how practice leads to the acquisition of the metric properties of the controlled space. Methods of machine learning based on the reduction of reaching errors are tested as a means to facilitate learning by adaptively changing he map from body motions to controlled device. We discuss the relevance of the results to the development of adaptive human machine interfaces and optimal control. PMID:19665553

  5. Reliability of the test of gross motor development second edition (TGMD-2) for Kindergarten children in Myanmar

    PubMed Central

    Aye, Thanda; Oo, Khin Saw; Khin, Myo Thuzar; Kuramoto-Ahuja, Tsugumi; Maruyama, Hitoshi

    2017-01-01

    [Purpose] The purpose of this study was to investigate reliability of the test of gross motor development second edition (TGMD-2) for Kindergarten children in Myanmar. [Subjects and Methods] Fifty healthy Kindergarten children (23 males, 27 females) whose parents/guardians had given written consent were participated. The subjects were explained and demonstrated all 12 gross motor skills of TGMD-2 before the assessment. Each subject individually performed two trials for each gross motor skill and the performance was video recorded. Three raters separately watched the video recordings and rated for inter-rater reliability. The second assessment was done one month later with 25 out of 50 subjects for test-rest reliability. The video recordings of 12 subjects were randomly selected from the first 50 recordings for intra-rater reliability six weeks after the first assessment. The agreement on the locomotor and object control raw scores and the gross motor quotient (GMQ) were calculated. [Results] The findings of all the reliability coefficients for the locomotor and object control raw scores and the GMQ were interpreted as good and excellent reliability. [Conclusion] The results represented that TGMD-2 is a highly reliable and appropriate assessment tool for assessing gross motor skill development of Kindergarten children in Myanmar. PMID:29184278

  6. Reliability of the test of gross motor development second edition (TGMD-2) for Kindergarten children in Myanmar.

    PubMed

    Aye, Thanda; Oo, Khin Saw; Khin, Myo Thuzar; Kuramoto-Ahuja, Tsugumi; Maruyama, Hitoshi

    2017-10-01

    [Purpose] The purpose of this study was to investigate reliability of the test of gross motor development second edition (TGMD-2) for Kindergarten children in Myanmar. [Subjects and Methods] Fifty healthy Kindergarten children (23 males, 27 females) whose parents/guardians had given written consent were participated. The subjects were explained and demonstrated all 12 gross motor skills of TGMD-2 before the assessment. Each subject individually performed two trials for each gross motor skill and the performance was video recorded. Three raters separately watched the video recordings and rated for inter-rater reliability. The second assessment was done one month later with 25 out of 50 subjects for test-rest reliability. The video recordings of 12 subjects were randomly selected from the first 50 recordings for intra-rater reliability six weeks after the first assessment. The agreement on the locomotor and object control raw scores and the gross motor quotient (GMQ) were calculated. [Results] The findings of all the reliability coefficients for the locomotor and object control raw scores and the GMQ were interpreted as good and excellent reliability. [Conclusion] The results represented that TGMD-2 is a highly reliable and appropriate assessment tool for assessing gross motor skill development of Kindergarten children in Myanmar.

  7. Generation of Spinal Motor Neurons from Human Pluripotent Stem Cells.

    PubMed

    Santos, David P; Kiskinis, Evangelos

    2017-01-01

    Human embryonic stem cells (ESCs) are characterized by their unique ability to self-renew indefinitely, as well as to differentiate into any cell type of the human body. Induced pluripotent stem cells (iPSCs) share these salient characteristics with ESCs and can easily be generated from any given individual by reprogramming somatic cell types such as fibroblasts or blood cells. The spinal motor neuron (MN) is a specialized neuronal subtype that synapses with muscle to control movement. Here, we present a method to generate functional, postmitotic, spinal motor neurons through the directed differentiation of ESCs and iPSCs by the use of small molecules. These cells can be utilized to study the development and function of human motor neurons in healthy and disease states.

  8. Development of a low-cost double rotor axial flux motor with soft magnetic composite and ferrite permanent magnet materials

    NASA Astrophysics Data System (ADS)

    Liu, Chengcheng; Zhu, Jianguo; Wang, Youhua; Guo, Youguang; Lei, Gang; Liu, Xiaojing

    2015-05-01

    This paper proposes a low-cost double rotor axial flux motor (DRAFM) with low cost soft magnetic composite (SMC) core and ferrite permanent magnets (PMs). The topology and operating principle of DRAFM and design considerations for best use of magnetic materials are presented. A 905 W 4800 rpm DRAFM is designed for replacing the high cost NdFeB permanent magnet synchronous motor (PMSM) in a refrigerator compressor. By using the finite element method, the electromagnetic parameters and performance of the DRAFM operated under the field oriented control scheme are calculated. Through the analysis, it is shown that that the SMC and ferrite PM materials can be good candidates for low-cost electric motor applications.

  9. Mean deviation coupling synchronous control for multiple motors via second-order adaptive sliding mode control.

    PubMed

    Li, Lebao; Sun, Lingling; Zhang, Shengzhou

    2016-05-01

    A new mean deviation coupling synchronization control strategy is developed for multiple motor control systems, which can guarantee the synchronization performance of multiple motor control systems and reduce complexity of the control structure with the increasing number of motors. The mean deviation coupling synchronization control architecture combining second-order adaptive sliding mode control (SOASMC) approach is proposed, which can improve synchronization control precision of multiple motor control systems and make speed tracking errors, mean speed errors of each motor and speed synchronization errors converge to zero rapidly. The proposed control scheme is robustness to parameter variations and random external disturbances and can alleviate the chattering phenomena. Moreover, an adaptive law is employed to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort. Performance comparisons with master-slave control, relative coupling control, ring coupling control, conventional PI control and SMC are investigated on a four-motor synchronization control system. Extensive comparative results are given to shown the good performance of the proposed control scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Nonpolluting automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoolboom, G.J.; Szabados, B.

    The advantages/disadvantages of energy storage devices, which can provide nonpolluting automobile systems are discussed. Four types of storage devices are identified: electrochemical (batteries); hydrogen; electromechanical (flywheels); and molten salt heat storage. A high-speed flywheel with a small permanent magnet motor/generator has more advantages than any of the other systems and might become a real competitor to the internal combustion engine. A flywheel/motor/generator system for automobiles now becomes practical, because of the technological advances in materials, bearings and solid state control circuits. The motor of choice is the squirrel cage induction motor, specially designed for automobile applications. The preferred controller formore » the induction motor is a forced commutated cycloconverter, which transforms a variable voltage/variable frequency source into a controlled variable-voltage/variable-frequency supply. A modulation strategy of the cycloconverter elements is selected to maintain a unity input displacement factor (power factor) under all conditions of loads voltages and frequencies. The system is similar to that of the existing automobile, if only one motor is used: master controller-controller-motor-gears (fixed)-differential-wheels. In the case of two motors, the mechanical differential is replaced by an electric one: master controller-controller-motor-gears (fixed)-wheel. A four-wheel drive vehicle is obtained when four motors with their own controllers are used. 24 refs.« less

  11. Robust Feedback Zoom Tracking for Digital Video Surveillance

    PubMed Central

    Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong

    2012-01-01

    Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called “trace curve”, which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance. PMID:22969388

  12. Start-up and control method and apparatus for resonant free piston Stirling engine

    DOEpatents

    Walsh, Michael M.

    1984-01-01

    A resonant free-piston Stirling engine having a new and improved start-up and control method and system. A displacer linear electrodynamic machine is provided having an armature secured to and movable with the displacer and having a stator supported by the Stirling engine housing in juxtaposition to the armature. A control excitation circuit is provided for electrically exciting the displacer linear electrodynamic machine with electrical excitation signals having substantially the same frequency as the desired frequency of operation of the Stirling engine. The excitation control circuit is designed so that it selectively and controllably causes the displacer electrodynamic machine to function either as a generator load to extract power from the displacer or the control circuit selectively can be operated to cause the displacer electrodynamic machine to operate as an electric drive motor to apply additional input power to the displacer in addition to the thermodynamic power feedback to the displacer whereby the displacer linear electrodynamic machine also is used in the electric drive motor mode as a means for initially starting the resonant free-piston Stirling engine.

  13. A new development on measurement and control software of SANS BATAN spectrometer (SMARTer) in Serpong, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharoto,; Suparno, Nadi; Putra, Edy Giri Rachman

    In 2005, the main computer for data acquisition and control system of Small-angle Neutron Scattering (SANS) BATAN Spectrometer (SMARTer) was replaced since it halted to operate the spectrometer. According to this replacement, the new software for data acquisition and control system has been developed in-house. Visual Basic programming language is used in developing the software. In the last two years, many developments have been made both in the hardware and also the software to conduct the experiment is more effective and efficient. Lately, the previous motor controller card (ISA Card) was replaced with the programmable motor controller card (PCI Card)more » for driving one motor of position sensitive detector (PSD), eight motors of four collimators, and six motors of six pinhole discs. This new control system software makes all motors can be moved simultaneously, then it reduces significantly the consuming time of setting up the instrument before running the experiment. Along with that development, the new data acquisition software under MS Windows operating system is also developed to drive a beam stopper in X-Y directions as well as to read the equipment status such as position of the collimators and PSD, to acquire neutron counts on monitor and PSD detectors, and also to manage 12 samples position automatically. A timer object which is set in one second to read the equipment status via serial port of the computer (RS232C), and general purpose interface board (GPIB) for reading the total counts of each pixel of the PSD from histogram memory was used in this new software. The experiment result displayed in real time on the main window, and the data is saved in the special format for further data reduction and analysis. The new software has been implemented and performed for experiment using a preset count or preset time mode for absolute scattering intensity method.« less

  14. A new development on measurement and control software of SANS BATAN spectrometer (SMARTer) in Serpong, Indonesia

    NASA Astrophysics Data System (ADS)

    Bharoto, Suparno, Nadi; Putra, Edy Giri Rachman

    2015-04-01

    In 2005, the main computer for data acquisition and control system of Small-angle Neutron Scattering (SANS) BATAN Spectrometer (SMARTer) was replaced since it halted to operate the spectrometer. According to this replacement, the new software for data acquisition and control system has been developed in-house. Visual Basic programming language is used in developing the software. In the last two years, many developments have been made both in the hardware and also the software to conduct the experiment is more effective and efficient. Lately, the previous motor controller card (ISA Card) was replaced with the programmable motor controller card (PCI Card) for driving one motor of position sensitive detector (PSD), eight motors of four collimators, and six motors of six pinhole discs. This new control system software makes all motors can be moved simultaneously, then it reduces significantly the consuming time of setting up the instrument before running the experiment. Along with that development, the new data acquisition software under MS Windows operating system is also developed to drive a beam stopper in X-Y directions as well as to read the equipment status such as position of the collimators and PSD, to acquire neutron counts on monitor and PSD detectors, and also to manage 12 samples position automatically. A timer object which is set in one second to read the equipment status via serial port of the computer (RS232C), and general purpose interface board (GPIB) for reading the total counts of each pixel of the PSD from histogram memory was used in this new software. The experiment result displayed in real time on the main window, and the data is saved in the special format for further data reduction and analysis. The new software has been implemented and performed for experiment using a preset count or preset time mode for absolute scattering intensity method.

  15. Analysis of Vibration and Acoustic Noise in Permanent Magnet Motors.

    NASA Astrophysics Data System (ADS)

    Hwang, Sangmoon

    The drive motor is a frequent source of vibration and acoustic noise in many precision spindle motors. One of the electromagnetic sources of vibration in permanent magnet motors is the torque ripple, consisting of the reluctance torque and electromagnetic torque fluctuation. This type of vibration is becoming more serious with the advent of new high-grade magnets with increased flux density. Acoustic noise of electromagnetic origin is difficult to predict and its exact mechanism is unclear. The mechanism of noise generation should be revealed to design a quieter motor which is the modern customer's demand. For motor operation at low speeds and loads, torque ripple due to the reluctance torque is often a source of vibration and control difficulty. The reluctance torque in a motor was calculated from the flux density by a finite element method and the Maxwell stress method. Effects of design parameters, such as stator slot width, permanent slot width, airgap length and magnetization direction, were investigated. Magnet pole shaping, by gradually decreasing the magnet thickness toward edges, yields a sinusoidal shape of the reluctance torque with reduced harmonics, thus reducing the vibration. This dissertation also presents two motor design techniques: stator tooth notching and rotor pole skewing with magnet pole shaping, and the effect of each method on the output torque. The analysis shows that the reluctance torque can be nearly eliminated by the suggested designs, with minimal sacrifice of the output torque. In permanent magnet DC motors, the most popular design type is the trapezoidal back electro-motive force (BEMF), for switched DC controllers. It is demonstrated that the output torque profile of one phase energized is qualitatively equivalent to the BEMF profile for motors with reduced reluctance torque. It implies that design of BEMF profile is possible by magnetic modeling of a motor, without expensive and time-consuming experiments for different designs. The effect of various design parameters on the output torque and torque ripple are discussed. Design parameters include winding patterns, magnetization direction, magnet arc length, number of segments in poles and magnet pole shaping. New designs of trapezoidal BEMF motors are proposed to reduce the electromagnetic torque ripple. Magnet stepping and magnet edge shaping with reduced arc length, significantly reduce torque ripple, with minimal sacrifice of the maximum output torque. Acoustic noise of electromagnetic origin is investigated using a magnetic frame which emulates a DC motor. The driving electromagnetic force is calculated using finite element analysis and the resulting vibration and acoustic noise is measured. Acoustic noise of purely electromagnetic origin was also tested with a DC brushless motor to confirm the results of the magnetic frame. The mechanism of noise generation in a DC motor is a quasi-static response of a stator not only at the fundamental frequency but also at higher harmonic frequencies of alternating switched DC, which is a current characteristic of a DC motor. Noise generation is significantly aggravated when some of those harmonics are close to the resonant frequencies of the stator. Therefore, acoustic noise is highly dependent upon the excitation current shape, as higher harmonics may match with resonant frequencies of the stator.

  16. Risk-Sensitivity in Sensorimotor Control

    PubMed Central

    Braun, Daniel A.; Nagengast, Arne J.; Wolpert, Daniel M.

    2011-01-01

    Recent advances in theoretical neuroscience suggest that motor control can be considered as a continuous decision-making process in which uncertainty plays a key role. Decision-makers can be risk-sensitive with respect to this uncertainty in that they may not only consider the average payoff of an outcome, but also consider the variability of the payoffs. Although such risk-sensitivity is a well-established phenomenon in psychology and economics, it has been much less studied in motor control. In fact, leading theories of motor control, such as optimal feedback control, assume that motor behaviors can be explained as the optimization of a given expected payoff or cost. Here we review evidence that humans exhibit risk-sensitivity in their motor behaviors, thereby demonstrating sensitivity to the variability of “motor costs.” Furthermore, we discuss how risk-sensitivity can be incorporated into optimal feedback control models of motor control. We conclude that risk-sensitivity is an important concept in understanding individual motor behavior under uncertainty. PMID:21283556

  17. What is the evidence of impaired motor skills and motor control among children with attention deficit hyperactivity disorder (ADHD)? Systematic review of the literature.

    PubMed

    Kaiser, M-L; Schoemaker, M M; Albaret, J-M; Geuze, R H

    2014-11-06

    This article presents a review of the studies that have analysed the motor skills of ADHD children without medication and the influence of medication on their motor skills. The following two questions guided the study: What is the evidence of impairment of motor skills and aspects of motor control among children with ADHD aged between 6 and 16 years? What are the effects of ADHD medication on motor skills and motor control? The following keywords were introduced in the main databases: attention disorder and/or ADHD, motor skills and/or handwriting, children, medication. Of the 45 articles retrieved, 30 described motor skills of children with ADHD and 15 articles analysed the influence of ADHD medication on motor skills and motor control. More than half of the children with ADHD have difficulties with gross and fine motor skills. The children with ADHD inattentive subtype seem to present more impairment of fine motor skills, slow reaction time, and online motor control during complex tasks. The proportion of children with ADHD who improved their motor skills to the normal range by using medication varied from 28% to 67% between studies. The children who still show motor deficit while on medication might meet the diagnostic criteria of developmental coordination disorder (DCD). It is important to assess motor skills among children with ADHD because of the risk of reduced participation in activities of daily living that require motor coordination and attention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. DNA Bipedal Motor Achieves a Large Number of Steps Due to Operation Using Microfluidics-Based Interface.

    PubMed

    Tomov, Toma E; Tsukanov, Roman; Glick, Yair; Berger, Yaron; Liber, Miran; Avrahami, Dorit; Gerber, Doron; Nir, Eyal

    2017-04-25

    Realization of bioinspired molecular machines that can perform many and diverse operations in response to external chemical commands is a major goal in nanotechnology, but current molecular machines respond to only a few sequential commands. Lack of effective methods for introduction and removal of command compounds and low efficiencies of the reactions involved are major reasons for the limited performance. We introduce here a user interface based on a microfluidics device and single-molecule fluorescence spectroscopy that allows efficient introduction and removal of chemical commands and enables detailed study of the reaction mechanisms involved in the operation of synthetic molecular machines. The microfluidics provided 64 consecutive DNA strand commands to a DNA-based motor system immobilized inside the microfluidics, driving a bipedal walker to perform 32 steps on a DNA origami track. The microfluidics enabled removal of redundant strands, resulting in a 6-fold increase in processivity relative to an identical motor operated without strand removal and significantly more operations than previously reported for user-controlled DNA nanomachines. In the motor operated without strand removal, redundant strands interfere with motor operation and reduce its performance. The microfluidics also enabled computer control of motor direction and speed. Furthermore, analysis of the reaction kinetics and motor performance in the absence of redundant strands, made possible by the microfluidics, enabled accurate modeling of the walker processivity. This enabled identification of dynamic boundaries and provided an explanation, based on the "trap state" mechanism, for why the motor did not perform an even larger number of steps. This understanding is very important for the development of future motors with significantly improved performance. Our universal interface enables two-way communication between user and molecular machine and, relying on concepts similar to that of solid-phase synthesis, removes limitations on the number of external stimuli. This interface, therefore, is an important step toward realization of reliable, processive, reproducible, and useful externally controlled DNA nanomachines.

  19. Linear motion device and method for inserting and withdrawing control rods

    DOEpatents

    Smith, Jay E.

    1984-01-01

    A linear motion device, more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core, is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.

  20. Controllable molecular motors engineered from myosin and RNA

    NASA Astrophysics Data System (ADS)

    Omabegho, Tosan; Gurel, Pinar S.; Cheng, Clarence Y.; Kim, Laura Y.; Ruijgrok, Paul V.; Das, Rhiju; Alushin, Gregory M.; Bryant, Zev

    2018-01-01

    Engineering biomolecular motors can provide direct tests of structure-function relationships and customized components for controlling molecular transport in artificial systems1 or in living cells2. Previously, synthetic nucleic acid motors3-5 and modified natural protein motors6-10 have been developed in separate complementary strategies to achieve tunable and controllable motor function. Integrating protein and nucleic-acid components to form engineered nucleoprotein motors may enable additional sophisticated functionalities. However, this potential has only begun to be explored in pioneering work harnessing DNA scaffolds to dictate the spacing, number and composition of tethered protein motors11-15. Here, we describe myosin motors that incorporate RNA lever arms, forming hybrid assemblies in which conformational changes in the protein motor domain are amplified and redirected by nucleic acid structures. The RNA lever arm geometry determines the speed and direction of motor transport and can be dynamically controlled using programmed transitions in the lever arm structure7,9. We have characterized the hybrid motors using in vitro motility assays, single-molecule tracking, cryo-electron microscopy and structural probing16. Our designs include nucleoprotein motors that reversibly change direction in response to oligonucleotides that drive strand-displacement17 reactions. In multimeric assemblies, the controllable motors walk processively along actin filaments at speeds of 10-20 nm s-1. Finally, to illustrate the potential for multiplexed addressable control, we demonstrate sequence-specific responses of RNA variants to oligonucleotide signals.

  1. Association between Late-Life Social Activity and Motor Decline in Older Adults

    PubMed Central

    Buchman, Aron S.; Boyle, Patricia A.; Wilson, Robert S.; Fleischman, Debra A.; Leurgans, Sue; Bennett, David A.

    2009-01-01

    Background Loss of motor function is a common consequence of aging, but little is known about factors that predict idiopathic motor decline. Methods We studied 906 persons without dementia, history of stroke or Parkinson's disease participating in the Rush Memory and Aging Project. At baseline, they rated their frequency of participation in common social activities. Outcome was annual change in global motor function, based on nine measures of muscle strength and nine motor performances. Results Mean social activity score at baseline was 2.6 (SD=0.58), with higher scores indicating more frequent participation in social activities. In a generalized estimating equation model, controlling for age, sex and education, motor function declined by about 0.05 unit/year [Estimate, 0.016; 95%CI (-0.057, -0.041); p=0.017]. Each 1-point decrease in social activity was associated with about a 33% more rapid rate of decline in motor function [Estimate, 0.016; 95%CI (0.003, 0.029); p=0.017)]. This amount of annual motor decline was associated with a more than 40% increased risk of death (Hazard Ratio: 1.44; 95%CI: 1.30, 1.60) and 65% increased risk of incident Katz disability (Hazard Ratio: 1.65; 95%CI: 1.48, 1.83). The association of social activity with change in motor function did not vary along demographic lines and was unchanged after controlling for potential confounders including late-life physical and cognitive activity, disability, global cognition, depressive symptoms, body composition and chronic medical conditions [Estimate, 0.025; 95%CI (0.005, 0.045); p=0.010]. Conclusion Less frequent participation in social activities is associated with a more rapid rate of motor decline in old age. PMID:19546415

  2. Combined Cognitive-Motor Rehabilitation in Virtual Reality Improves Motor Outcomes in Chronic Stroke - A Pilot Study.

    PubMed

    Faria, Ana L; Cameirão, Mónica S; Couras, Joana F; Aguiar, Joana R O; Costa, Gabriel M; Bermúdez I Badia, Sergi

    2018-01-01

    Stroke is one of the most common causes of acquired disability, leaving numerous adults with cognitive and motor impairments, and affecting patients' capability to live independently. Virtual Reality (VR) based methods for stroke rehabilitation have mainly focused on motor rehabilitation but there is increasing interest toward the integration of cognitive training for providing more effective solutions. Here we investigate the feasibility for stroke recovery of a virtual cognitive-motor task, the Reh@Task, which combines adapted arm reaching, and attention and memory training. 24 participants in the chronic stage of stroke, with cognitive and motor deficits, were allocated to one of two groups (VR, Control). Both groups were enrolled in conventional occupational therapy, which mostly involves motor training. Additionally, the VR group underwent training with the Reh@Task and the control group performed time-matched conventional occupational therapy. Motor and cognitive competences were assessed at baseline, end of treatment (1 month) and at a 1-month follow-up through the Montreal Cognitive Assessment, Single Letter Cancelation, Digit Cancelation, Bells Test, Fugl-Meyer Assessment Test, Chedoke Arm and Hand Activity Inventory, Modified Ashworth Scale, and Barthel Index. Our results show that both groups improved in motor function over time, but the Reh@Task group displayed significantly higher between-group outcomes in the arm subpart of the Fugl-Meyer Assessment Test. Improvements in cognitive function were significant and similar in both groups. Overall, these results are supportive of the viability of VR tools that combine motor and cognitive training, such as the Reh@Task. Trial Registration: This trial was not registered because it is a small clinical study that addresses the feasibility of a prototype device.

  3. Paravertebral Spinal Injection for the Treatment of Patients with Degenerative Facet Osteoarthropathy: Evidence of Motor Performance Improvements based on Objective Assessments

    PubMed Central

    Toosizadeh, Nima; Harati, Homayoon; Yen, Tzu-Chuan; Fastje, Cindy; Mohler, Jane; Najafi, Bijan; Dohm, Michael

    2016-01-01

    Background This study examined short- and long-term improvements in motor performance, quantified using wearable sensors, in response to facet spine injection in degenerative facet osteoarthropathy patients. Methods Adults with confirmed degenerative facet osteoarthropathy were recruited and were treated with medial or intermediate branch block injection. Self-report pain, health condition, and disability (Oswestry), as well as objective motor performance measures (gait, balance, and timed-up-and-go) were obtained in five sessions: pre-surgery (baseline), immediately after the injection, one-month, three-month, and 12-month follow-ups. Baseline motor performance parameters were compared with 10 healthy controls. Findings Thirty patients (age=50(14) years) and 10 controls (age=46(15) years) were recruited. All motor performance parameters were significantly different between groups. Results showed that average pain and Oswestry scores improved by 51% and 24%, respectively among patients, only one month after injection. Similarly, improvement in motor performance was most noticeable in one-month post-injection measurements; most improvements were observed in gait speed (14% normal walking, P<0.02), hip sway within balance tests (63% eyes-open P<0.01), and turning velocity within the timed-up-and-go test (28%, P<0.02). Better baseline motor performance led to better outcomes in terms of pain relief; baseline turning velocity was 18% faster among the responsive compared to the non-responsive patients. Interpretations Spinal injection can temporarily (one to three months) improve motor performance in degenerative facet osteoarthropathy patients. Successful pain relief in response to treatment is independent of demographic characteristics and initial pain but dependent on baseline motor performance. Immediate self-reported pain relief is unrelated to magnitude of gradual improvement in motor performance. PMID:27744005

  4. Combined Cognitive-Motor Rehabilitation in Virtual Reality Improves Motor Outcomes in Chronic Stroke – A Pilot Study

    PubMed Central

    Faria, Ana L.; Cameirão, Mónica S.; Couras, Joana F.; Aguiar, Joana R. O.; Costa, Gabriel M.; Bermúdez i Badia, Sergi

    2018-01-01

    Stroke is one of the most common causes of acquired disability, leaving numerous adults with cognitive and motor impairments, and affecting patients’ capability to live independently. Virtual Reality (VR) based methods for stroke rehabilitation have mainly focused on motor rehabilitation but there is increasing interest toward the integration of cognitive training for providing more effective solutions. Here we investigate the feasibility for stroke recovery of a virtual cognitive-motor task, the Reh@Task, which combines adapted arm reaching, and attention and memory training. 24 participants in the chronic stage of stroke, with cognitive and motor deficits, were allocated to one of two groups (VR, Control). Both groups were enrolled in conventional occupational therapy, which mostly involves motor training. Additionally, the VR group underwent training with the Reh@Task and the control group performed time-matched conventional occupational therapy. Motor and cognitive competences were assessed at baseline, end of treatment (1 month) and at a 1-month follow-up through the Montreal Cognitive Assessment, Single Letter Cancelation, Digit Cancelation, Bells Test, Fugl-Meyer Assessment Test, Chedoke Arm and Hand Activity Inventory, Modified Ashworth Scale, and Barthel Index. Our results show that both groups improved in motor function over time, but the Reh@Task group displayed significantly higher between-group outcomes in the arm subpart of the Fugl-Meyer Assessment Test. Improvements in cognitive function were significant and similar in both groups. Overall, these results are supportive of the viability of VR tools that combine motor and cognitive training, such as the Reh@Task. Trial Registration: This trial was not registered because it is a small clinical study that addresses the feasibility of a prototype device. PMID:29899719

  5. 78 FR 32223 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ...-OAR-2011-0135; FRL-9818-5] RIN 2060-A0 Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... extension of the public comment period for the proposed rule ``Control of Air Pollution from Motor Vehicles...

  6. Nonlinear Analysis of Motor Activity Shows Differences between Schizophrenia and Depression: A Study Using Fourier Analysis and Sample Entropy

    PubMed Central

    Hauge, Erik R.; Berle, Jan Øystein; Oedegaard, Ketil J.; Holsten, Fred; Fasmer, Ole Bernt

    2011-01-01

    The purpose of this study has been to describe motor activity data obtained by using wrist-worn actigraphs in patients with schizophrenia and major depression by the use of linear and non-linear methods of analysis. Different time frames were investigated, i.e., activity counts measured every minute for up to five hours and activity counts made hourly for up to two weeks. The results show that motor activity was lower in the schizophrenic patients and in patients with major depression, compared to controls. Using one minute intervals the depressed patients had a higher standard deviation (SD) compared to both the schizophrenic patients and the controls. The ratio between the root mean square successive differences (RMSSD) and SD was higher in the schizophrenic patients compared to controls. The Fourier analysis of the activity counts measured every minute showed that the relation between variance in the low and the high frequency range was lower in the schizophrenic patients compared to the controls. The sample entropy was higher in the schizophrenic patients compared to controls in the time series from the activity counts made every minute. The main conclusions of the study are that schizophrenic and depressive patients have distinctly different profiles of motor activity and that the results differ according to period length analysed. PMID:21297977

  7. Motor Decline in Clinically Presymptomatic Spinocerebellar Ataxia Type 2 Gene Carriers

    PubMed Central

    Velázquez-Perez, Luis; Díaz, Rosalinda; Pérez-González, Ruth; Canales, Nalia; Rodríguez-Labrada, Roberto; Medrano, Jacquelín; Sánchez, Gilberto; Almaguer-Mederos, Luis; Torres, Cira; Fernandez-Ruiz, Juan

    2009-01-01

    Background Motor deficits are a critical component of the clinical characteristics of patients with spinocerebellar ataxia type 2. However, there is no current information on the preclinical manifestation of those motor deficits in presymptomatic gene carriers. To further understand and characterize the onset of the clinical manifestation in this disease, we tested presymptomatic spinocerebellar ataxia type 2 gene carriers, and volunteers, in a task that evaluates their motor performance and their motor learning capabilities. Methods and Findings 28 presymptomatic spinocerebellar ataxia type 2 gene carriers and an equal number of control volunteers matched for age and gender participated in the study. Both groups were tested in a prism adaptation task known to be sensible to both motor performance and visuomotor learning deficits. Our results clearly show that although motor learning capabilities are intact, motor performance deficits are present even years before the clinical manifestation of the disease start. Conclusions The results show a clear deficit in motor performance that can be detected years before the clinical onset of the disease. This motor performance deficit appears before any motor learning or clinical manifestations of the disease. These observations identify the performance coefficient as an objective and quantitative physiological biomarker that could be useful to assess the efficiency of different therapeutic agents. PMID:19401771

  8. Perceptual and Motor Inhibition in Adolescents/Young Adults with Childhood-Diagnosed ADHD

    PubMed Central

    Bedard, Anne-Claude V.; Trampush, Joey W.; Newcorn, Jeffrey H.; Halperin, Jeffrey M.

    2010-01-01

    Objective This study examined perceptual and motor inhibition in a longitudinal sample of adolescents/young adults who were diagnosed with ADHD in childhood, and as a function of the relative persistence of ADHD. Method Ninety-eight participants diagnosed with ADHD in childhood were re-evaluated approximately 10 years later. Eighty-five never-ADHD controls similar in age, IQ, sociodemographic background, and gender distribution served as a comparison group. Participants were administered a psychiatric interview and the Stimulus and Response Conflict Tasks (Nassauer & Halperin, 2003). Results Participants with childhood ADHD demonstrated slower and less accurate responses to both control and conflict conditions relative to the comparison group, as well as more variable responses in both conditions of the motor inhibition task; there was no specific effect of childhood ADHD on perceptual or motor inhibition. ADHD persisters and partial remitters did not differ in overall accuracy, speed or variability in responding, but relative to partial remitters, persisters demonstrated greater slowing in response to perceptual conflict. Conclusions These findings are consistent with theories positing state regulation, but not inhibitory control deficits in the etiology of ADHD, and suggest that improved perceptual inhibition may be associated with better outcome for ADHD. PMID:20604617

  9. Motor control may support mirror neuron research with new hypotheses and methods. Reply to comments on "Grasping synergies: A motor-control approach to the mirror neuron mechanism"

    NASA Astrophysics Data System (ADS)

    D'Ausilio, Alessandro; Bartoli, Eleonora; Maffongelli, Laura

    2015-03-01

    We are grateful to all commentators for their insightful commentaries and observations that enrich our proposal. One of our aims was indeed to bridge the gap between fields of research that, progressing independently, are facing similar issues regarding the neural representation of motor knowledge. In this respect, we were pleased to receive feedback from eminent researchers on both the mirror neuron as well as the motor control fields. Their expertise covers animal and human neurophysiology, as well as the computational modeling of neural and behavioral processes. Given their heterogeneous cultural perspectives and research approaches, a number of important open questions were raised. For simplicity we separated these issues into four sections. In the first section we present methodological aspects regarding how synergies can be measured in paradigms investigating the human mirror system. The second section regards the fundamental definition of what exactly synergies might be. The third concerns how synergies can generate testable predictions in mirror neuron research. Finally, the fourth section deals with the ultimate question regarding the function of the mirror neuron system.

  10. Motorized control for mirror mount apparatus

    DOEpatents

    Cutburth, Ronald W.

    1989-01-01

    A motorized control and automatic braking system for adjusting mirror mount apparatus is disclosed. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.

  11. Improved transistorized AC motor controller for battery powered urban electric passenger vehicles

    NASA Technical Reports Server (NTRS)

    Peak, S. C.

    1982-01-01

    An ac motor controller for an induction motor electric vehicle drive system was designed, fabricated, tested, evaluated, and cost analyzed. A vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The power inverter is a three-phase bridge using power Darlington transistors. The induction motor was optimized for use with an inverter power source. The drive system has a constant torque output to base motor speed and a constant horsepower output to maximum speed. A gear shifting transmission is not required. The ac controller was scaled from the base 20 hp (41 hp peak) at 108 volts dec to an expanded horsepower and battery voltage range. Motor reversal was accomplished by electronic reversal of the inverter phase sequence. The ac controller can also be used as a boost chopper battery charger. The drive system was tested on a dynamometer and results are presented. The current-controlled pulse width modulation control scheme yielded improved motor current waveforms. The ac controller favors a higher system voltage.

  12. Gap Junction-Mediated Signaling from Motor Neurons Regulates Motor Generation in the Central Circuits of Larval Drosophila.

    PubMed

    Matsunaga, Teruyuki; Kohsaka, Hiroshi; Nose, Akinao

    2017-02-22

    In this study, we used the peristaltic crawling of Drosophila larvae as a model to study how motor patterns are regulated by central circuits. We built an experimental system that allows simultaneous application of optogenetics and calcium imaging to the isolated ventral nerve cord (VNC). We then investigated the effects of manipulating local activity of motor neurons (MNs) on fictive locomotion observed as waves of MN activity propagating along neuromeres. Optical inhibition of MNs with halorhodopsin3 in a middle segment (A4, A5, or A6), but not other segments, dramatically decreased the frequency of the motor waves. Conversely, local activation of MNs with channelrhodopsin2 in a posterior segment (A6 or A7) increased the frequency of the motor waves. Since peripheral nerves mediating sensory feedback were severed in the VNC preparation, these results indicate that MNs send signals to the central circuits to regulate motor pattern generation. Our results also indicate segmental specificity in the roles of MNs in motor control. The effects of the local MN activity manipulation were lost in shaking-B 2 ( shakB 2 ) or ogre 2 , gap-junction mutations in Drosophila , or upon acute application of the gap junction blocker carbenoxolone, implicating electrical synapses in the signaling from MNs. Cell-type-specific RNAi suggested shakB and ogre function in MNs and interneurons, respectively, during the signaling. Our results not only reveal an unexpected role for MNs in motor pattern regulation, but also introduce a powerful experimental system that enables examination of the input-output relationship among the component neurons in this system. SIGNIFICANCE STATEMENT Motor neurons are generally considered passive players in motor pattern generation, simply relaying information from upstream interneuronal circuits to the target muscles. This study shows instead that MNs play active roles in the control of motor generation by conveying information via gap junctions to the central pattern-generating circuits in larval Drosophila , providing novel insights into motor circuit control. The experimental system introduced in this study also presents a new approach for studying intersegmentally coordinated locomotion. Unlike traditional electrophysiology methods, this system enables the simultaneous recording and manipulation of populations of neurons that are genetically specified and span multiple segments. Copyright © 2017 the authors 0270-6474/17/372045-16$15.00/0.

  13. EEG classification for motor imagery and resting state in BCI applications using multi-class Adaboost extreme learning machine

    NASA Astrophysics Data System (ADS)

    Gao, Lin; Cheng, Wei; Zhang, Jinhua; Wang, Jue

    2016-08-01

    Brain-computer interface (BCI) systems provide an alternative communication and control approach for people with limited motor function. Therefore, the feature extraction and classification approach should differentiate the relative unusual state of motion intention from a common resting state. In this paper, we sought a novel approach for multi-class classification in BCI applications. We collected electroencephalographic (EEG) signals registered by electrodes placed over the scalp during left hand motor imagery, right hand motor imagery, and resting state for ten healthy human subjects. We proposed using the Kolmogorov complexity (Kc) for feature extraction and a multi-class Adaboost classifier with extreme learning machine as base classifier for classification, in order to classify the three-class EEG samples. An average classification accuracy of 79.5% was obtained for ten subjects, which greatly outperformed commonly used approaches. Thus, it is concluded that the proposed method could improve the performance for classification of motor imagery tasks for multi-class samples. It could be applied in further studies to generate the control commands to initiate the movement of a robotic exoskeleton or orthosis, which finally facilitates the rehabilitation of disabled people.

  14. Axonal loss in patients with inflammatory demyelinating polyneuropathy as determined by motor unit number estimation and MUNIX.

    PubMed

    Paramanathan, Sansuthan; Tankisi, Hatice; Andersen, Henning; Fuglsang-Frederiksen, Anders

    2016-01-01

    This study quantifies functioning axons and reinnervation by applying two methods multiple point stimulation (MPS) MUNE, and motor unit number index (MUNIX), in patients with acute- and chronic inflammatory demyelinating polyneuropathy (AIDP, CIDP). Nineteen patients with inflammatory demyelinating polyneuropathy (eleven AIDP and eight CIDP) were prospectively included. MPS MUNE and MUNIX examinations on the thenar muscle group by stimulating the median nerve were applied on all patients. Motor unit size was calculated as single motor unit potential (sMUP) and motor unit size index (MUSIX). The results were compared with twenty healthy subjects. In AIDP patients mean MPS MUNE (106) and MUNIX (80) were lower than control MPS MUNE (329) and MUNIX (215) (p<0.001). In CIDP patients both MPS MUNE (88) and MUNIX (67) were lower than controls (p<0.001). In CIDP patients sMUP (63) and MUSIX (90) were higher than control sMUP (35) and MUSIX (58) (p<0.05 and p<0.01). When AIDP and CIDP groups were combined the sensitivity for MPS MUNE and MUNIX were 89.5% and 68.4%, respectively. Decreased MPS MUNE and MUNIX suggest presence of axonal loss or loss of functioning axons in AIDP and CIDP. Increased motor unit size in CIDP patients indicates compensatory reinnervation. Moreover, both MPS MUNE and MUNIX can discriminate between disease versus non-disease. Estimation of the number and the average size of motor units may have clinical value for the assessment of axonal loss or loss of functioning axons in patients with AIDP and CIDP. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Identifying Residual Speech Sound Disorders in Bilingual Children: A Japanese-English Case Study

    PubMed Central

    Preston, Jonathan L.; Seki, Ayumi

    2012-01-01

    Purpose The purposes are to (1) describe the assessment of residual speech sound disorders (SSD) in bilinguals by distinguishing speech patterns associated with second language acquisition from patterns associated with misarticulations, and (2) describe how assessment of domains such as speech motor control and phonological awareness can provide a more complete understanding of SSDs in bilinguals. Method A review of Japanese phonology is provided to offer a context for understanding the transfer of Japanese to English productions. A case study of an 11-year-old is presented, demonstrating parallel speech assessments in English and Japanese. Speech motor and phonological awareness tasks were conducted in both languages. Results Several patterns were observed in the participant’s English that could be plausibly explained by the influence of Japanese phonology. However, errors indicating a residual SSD were observed in both Japanese and English. A speech motor assessment suggested possible speech motor control problems, and phonological awareness was judged to be within the typical range of performance in both languages. Conclusion Understanding the phonological characteristics of L1 can help clinicians recognize speech patterns in L2 associated with transfer. Once these differences are understood, patterns associated with a residual SSD can be identified. Supplementing a relational speech analysis with measures of speech motor control and phonological awareness can provide a more comprehensive understanding of a client’s strengths and needs. PMID:21386046

  16. Three-dimensional motor schema based navigation

    NASA Technical Reports Server (NTRS)

    Arkin, Ronald C.

    1989-01-01

    Reactive schema-based navigation is possible in space domains by extending the methods developed for ground-based navigation found within the Autonomous Robot Architecture (AuRA). Reformulation of two dimensional motor schemas for three dimensional applications is a straightforward process. The manifold advantages of schema-based control persist, including modular development, amenability to distributed processing, and responsiveness to environmental sensing. Simulation results show the feasibility of this methodology for space docking operations in a cluttered work area.

  17. CONTROL ROD DRIVE MECHANISM FOR A NUCLEAR REACTOR

    DOEpatents

    Hawke, B.C.; Liederbach, F.J.; Lones, W.

    1963-05-14

    A lead-screw-type control rod drive featuring an electric motor and a fluid motor arranged to provide a selectably alternative driving means is described. The electric motor serves to drive the control rod slowly during normal operation, while the fluid motor, assisted by an automatic declutching of the electric motor, affords high-speed rod insertion during a scram. (AEC)

  18. Pulse-Width-Modulating Driver for Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Salomon, Phil M.

    1991-01-01

    High-current pulse-width-modulating driver for brushless dc motor features optical coupling of timing signals from low-current control circuitry to high-current motor-driving circuitry. Provides high electrical isolation of motor-power supply, helping to prevent fast, high-current motor-driving pulses from being coupled through power supplies into control circuitry, where they interfere with low-current control signals.

  19. Independence of motor unit recruitment and rate modulation during precision force control.

    PubMed

    Kamen, G; Du, D C

    1999-01-01

    The vertebrate motor system chiefly employs motor unit recruitment and rate coding to modulate muscle force output. In this paper, we studied how the recruitment of new motor units altered the firing rate of already-active motor units during precision force production in the first dorsal interosseous muscle. Six healthy adults performed linearly increasing isometric voluntary contractions while motor unit activity and force output were recorded. After motor unit discharges were identified, motor unit firing rates were calculated before and after the instances of new motor unit recruitment. Three procedures were applied to compute motor unit firing rate, including the mean of a fixed number of inter-spike intervals and the constant width weighted Hanning window filter method, as well as a modified boxcar technique. In contrast to previous reports, the analysis of the firing rates of over 200 motor units revealed that reduction of the active firing rates was not a common mechanism used to accommodate the twitch force produced by the recruitment of a new motor unit. Similarly, during de-recruitment there was no tendency for motor unit firing rates to increase immediately following the cessation of activity in other motor units. Considerable consistency in recruitment behavior was observed during repeated contractions. However, firing rates during repeated contractions demonstrated considerably more fluctuation. It is concluded that the neuromuscular system does not use short-term preferential motor unit disfacilitation to effect precise regulation of muscular force output.

  20. Regardless-of-Speed Superconducting LSM Controlled-Repulsive MAGLEV Vehicle

    NASA Technical Reports Server (NTRS)

    Yoshida, Kinjiro; Egashira, Tatsuya; Hirai, Ryuichi

    1996-01-01

    This paper proposes a new repulsive Maglev vehicle which a superconducting linear synchronous motor (LSM) can levitate and propel simultaneously, independently of the vehicle speeds. The combined levitation and propulsion control is carried out by controlling mechanical-load angle and armature-current. Dynamic simulations show successful operations with good ride-quality by using a compact control method proposed here.

  1. Generation of complex motor patterns in american grasshopper via current-controlled thoracic electrical interfacing.

    PubMed

    Giampalmo, Susan L; Absher, Benjamin F; Bourne, W Tucker; Steves, Lida E; Vodenski, Vassil V; O'Donnell, Peter M; Erickson, Jonathan C

    2011-01-01

    Micro-air vehicles (MAVs) have attracted attention for their potential application to military applications, environmental sensing, and search and rescue missions. While progress is being made toward fabrication of a completely human-engineered MAV, another promising approach seeks to interface to, and take control of, an insect's nervous system. Cyborg insects take advantage of their innate exquisite loco-motor, navigation, and sensing abilities. Recently, several groups have demonstrated the feasibility of radio-controlled flight in the hawkmoth and beetle via electrical neural interfaces. Here, we report a method for eliciting the "jump" response in the American grasshopper (S. Americana). We found that stimulating the metathoracic T3 ganglion with constant-current square wave pulses with amplitude 186 ± 40 μA and frequency 190 ± 13 Hz reproducibly evoked (≥95% success rate) the desired motor activity in N=3 test subjects. To the best of our knowledge, this is the first report of an insect cyborg with a synchronous neuromuscular system.

  2. Design and control of a hand exoskeleton for use in extravehicular activities

    NASA Technical Reports Server (NTRS)

    Shields, B.; Peterson, S.; Strauss, A.; Main, J.

    1993-01-01

    To counter problems inherent in extravehicular activities (EVA) and complex space operations, an exoskeleton, a unique adaptive structure, has been designed. The exoskeleton fits on the hand and powers the proximal and middle phalanges of the index finger, the middle finger, and the combined ring and little finger. A kinematic analysis of the exoskeleton joints was performed using the loop-closure method. This analysis determined the angular displacement and velocity relationships of the exoskeleton joints. This information was used to determine the output power of the exoskeleton. Three small DC motors (one for each finger) are used to power the exoskeleton. The motors are mounted on the forearm. Power is transferred to the exoskeleton using lead screws. The control system for the exoskeleton measures the contact force between the operator and the exoskeleton. This information is used as the input to drive the actuation system. The control system allows the motor to rotate in both directions so that the operator may close or open the exoskeleton.

  3. [Implementation of control system and software design for limbs rehabilitation training based on PCI-1240].

    PubMed

    Zhu, Wenchao; Xu, Xiulin; Hu, Xiufang; An, Meijun

    2017-06-01

    This article presents the design of a motion control system for seated lower-limb rehabilitation training. The system is composed of lower limb exoskeleton, motor drive circuit, program of motion control, and so forth. The power of lower limbs joints is provided by six motors. The PCI-1240 motion control card is used as the core. This study achieved repetitive rotation training and gait trajectory training of lower limbs joints, of which the velocity, angle and time can be accurately controlled and adjusted. The experimental results showed that the motion control system can meet the requirement of repetitive rehabilitation training for patients with lower limb dysfunction. This article provides a new method to the research of motion control system in rehabilitation training, which can promote industrial automation technique to be used for health care, and conducive to the further study of the rehabilitation robot.

  4. Links between motor control and classroom behaviors: Moderation by low birth weight

    PubMed Central

    Razza, Rachel A.; Martin, Anne; Brooks-Gunn, Jeanne

    2016-01-01

    It is unclear from past research on effortful control whether one of its components, motor control, independently contributes to adaptive classroom behaviors. The goal of this study was to identify associations between early motor control, measured by the walk-a-line task at age 3, and teacher-reported learning-related behaviors (approaches to learning and attention problems) and behavior problems in kindergarten classrooms. Models tested whether children who were vulnerable to poorer learning behaviors and more behavior problems due to having been born low birth weight benefited more, less, or the same as other children from better motor control. Data were drawn from the national Fragile Families and Child-Wellbeing Study (n = 751). Regression models indicated that motor control was significantly associated with better approaches to learning and fewer behavior problems. Children who were low birth weight benefitted more than normal birth weight children from better motor control with respect to their approaches to learning, but equally with respect to behavior problems. Additionally, for low but not normal birth weight children, better motor control predicted fewer attention problems. These findings suggest that motor control follows a compensatory model of development for low birth weight children and classroom behaviors. PMID:27594776

  5. IgM ganglioside GM1 antibodies in patients with autoimmune disease or neuropathy, and controls.

    PubMed Central

    Bansal, A S; Abdul-Karim, B; Malik, R A; Goulding, P; Pumphrey, R S; Boulton, A J; Holt, P L; Wilson, P B

    1994-01-01

    AIMS--To compare the titre of anti-ganglioside antibodies (AGA) to GM1 ganglioside in patients with central and peripheral neurological disease and pure motor and sensorimotor neuropathy, in patients with classic autoimmune diseases, and controls. METHODS--AGA to GM1 were measured using an enzyme linked immunosorbent assay (ELISA) technique, highly purified bovine GM1 ganglioside, and sequential dilution of control and test sera. Antibody titre was calculated using the optical density readings of three consecutive serum dilutions multiplied by the dilution factor. RESULTS--A considerable overlap was evident in the titre of AGA to GM1 in control and test sera. High antibody titres were most frequent in patients with multifocal motor neuropathy with conduction block (MMNCB). Low AGA titre were observed in several patient groups. Compared with the controls, the median titre of AGA to GM1 was significantly higher in patients with multiple sclerosis, rheumatoid arthritis, primary Sjögren's syndrome and systemic lupus erythematosus. In contrast, the median titre in patients with diabetic peripheral neuropathy, motor neurone disease, sensorimotor neuropathy and chronic inflammatory demyelinating polyneuropathy was no different from that in normal control subjects. CONCLUSIONS--Estimation of AGA to GM1 may be helpful in the diagnosis of MMNCB in patients with a pure motor neuropathy but in few other conditions. Low titre AGA to GM1 are evident in several autoimmune conditions. The pathogenetic importance of AGA to GM1 in patients with neuropathy is not clear. PMID:8027366

  6. 78 FR 12808 - Buy America Waiver Notification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ...) Electrical Controls and Electrical Equipment; (2) Main Drive Electrical Motor; (3) Auxiliary Drive Electric Motor; (4) Span Lock Electric Motor & Controls for a specific project in the State of Washington. DATES... appropriate to use (1) Electrical Controls and Electrical Equipment; (2) Main Drive Electrical Motor; (3...

  7. Dysarthria and broader motor speech deficits in Dravet syndrome

    PubMed Central

    Turner, Samantha J.; Brown, Amy; Arpone, Marta; Anderson, Vicki; Morgan, Angela T.

    2017-01-01

    Objective: To analyze the oral motor, speech, and language phenotype in 20 children and adults with Dravet syndrome (DS) associated with mutations in SCN1A. Methods: Fifteen verbal and 5 minimally verbal DS patients with SCN1A mutations (aged 15 months-28 years) underwent a tailored assessment battery. Results: Speech was characterized by imprecise articulation, abnormal nasal resonance, voice, and pitch, and prosody errors. Half of verbal patients had moderate to severely impaired conversational speech intelligibility. Oral motor impairment, motor planning/programming difficulties, and poor postural control were typical. Nonverbal individuals had intentional communication. Cognitive skills varied markedly, with intellectual functioning ranging from the low average range to severe intellectual disability. Language impairment was congruent with cognition. Conclusions: We describe a distinctive speech, language, and oral motor phenotype in children and adults with DS associated with mutations in SCN1A. Recognizing this phenotype will guide therapeutic intervention in patients with DS. PMID:28148630

  8. A novel configuration for a brushless DC motor with an integrated planetary gear train

    NASA Astrophysics Data System (ADS)

    Yan, Hong-Sen; Wu, Yi-Chang

    2006-06-01

    This paper presents a novel configuration of a brushless DC (BLDC) motor with an integrated planetary gear train, which provides further functional and structural integrations to overcome inherent drawbacks of traditional designs. The effects of gear teeth on the magnetic field and performance of the BLDC motor are investigated. Two standard gear profile systems integrated on the stator with feasible numbers of gear teeth are introduced to reduce the cogging torque. An equivalent magnetic circuit model and an air-gap permeance model are applied to analytically analyze the magnetic field, while the validity is verified by 2-D finite-element method (FEM). Furthermore, the motor performance is discussed and compared with an existing design. The results show that the present design has the characteristics of lower cogging torque and torque ripple than the conventional design, which is of benefit to the widely applications on accurate motion and position control for BLDC motors.

  9. Clinical and electrophysiological impact of repetitive low-frequency transcranial magnetic stimulation on the sensory–motor network in patients with restless legs syndrome

    PubMed Central

    Cantone, Mariagiovanna; Aricò, Debora; Lanuzza, Bartolo; Cosentino, Filomena Irene Ilaria; Paci, Domenico; Papotto, Maurizio; Pennisi, Manuela; Bella, Rita; Pennisi, Giovanni; Paulus, Walter; Ferri, Raffaele

    2018-01-01

    Background: Based on the hyperexcitability and disinhibition observed in patients with restless legs syndrome (RLS) following transcranial magnetic stimulation (TMS), we conducted a study with low-frequency repetitive TMS (rTMS) over the primary motor (M1) and somatosensory cortical areas (S1) in patients with RLS. Methods: A total of 13 right-handed patients and 10 age-matched controls were studied using clinical scales and TMS. Measurements included resting motor threshold (rMT), motor-evoked potentials (MEPs), cortical silent period (CSP), and central motor conduction time (CMCT). A single evening session of rTMS (1 Hz, 20 trains, 50 stimuli each) was administered over the left M1, left S1, and sham stimulation over M1 in a random order. Clinical and TMS measures were repeated after each stimulation modality. Results: Baseline CSP was shorter in patients than in controls and remained shorter in patients for both motor and somatosensory stimulation. The patients reported a subjective improvement of both initiating and maintaining sleep the night after the rTMS over S1. Patients exhibited a decrease in rMT after rTMS of S1 only, although the effect was smaller than in controls. MEP latency and CMCT changed only in controls after stimulation. Sham stimulation was without effect on the observed variables. Conclusions: rTMS on S1-M1 connectivity alleviated the sensory–motor complaints of RLS patients. The TMS indexes of excitation and inhibition indicate an intracortical and corticospinal imbalance, mainly involving gamma-aminobutyric acid (GABA)ergic and glutamatergic circuitries, as well as an impairment of the short-term mechanisms of cortical plasticity. The rTMS-induced activation of the dorsal striatum with the consequent increase of dopamine release may have contributed to the clinical and neurophysiological outcome. PMID:29511386

  10. Effect of IQoro® training on impaired postural control and oropharyngeal motor function in patients with dysphagia after stroke.

    PubMed

    Hägg, Mary; Tibbling, Lita

    2016-07-01

    Conclusion All patients with dysphagia after stroke have impaired postural control. IQoro® screen (IQS) training gives a significant and lasting improvement of postural control running parallel with significant improvement of oropharyngeal motor dysfunction (OPMD). Objectives The present investigation aimed at studying the frequency of impaired postural control in patients with stroke-related dysphagia and if IQS training has any effect on impaired postural control in parallel with effect on OPMD. Method A prospective clinical study was carried out with 26 adult patients with stroke-related dysphagia. The training effect was compared between patients consecutively investigated at two different time periods, the first period with 15 patients included in the study more than half a year after stroke, the second period with 11 patients included within 1 month after stroke. Postural control tests and different oropharyngeal motor tests were performed before and after 3 months of oropharyngeal sensorimotor training with an IQS, and at a late follow-up (median 59 weeks after end of training). Result All patients had impaired postural control at baseline. Significant improvement in postural control and OPMD was observed after the completion of IQS training in both intervention groups. The improvements were still present at the late follow-up.

  11. Arduino-based automation of a DNA extraction system.

    PubMed

    Kim, Kyung-Won; Lee, Mi-So; Ryu, Mun-Ho; Kim, Jong-Won

    2015-01-01

    There have been many studies to detect infectious diseases with the molecular genetic method. This study presents an automation process for a DNA extraction system based on microfluidics and magnetic bead, which is part of a portable molecular genetic test system. This DNA extraction system consists of a cartridge with chambers, syringes, four linear stepper actuators, and a rotary stepper actuator. The actuators provide a sequence of steps in the DNA extraction process, such as transporting, mixing, and washing for the gene specimen, magnetic bead, and reagent solutions. The proposed automation system consists of a PC-based host application and an Arduino-based controller. The host application compiles a G code sequence file and interfaces with the controller to execute the compiled sequence. The controller executes stepper motor axis motion, time delay, and input-output manipulation. It drives the stepper motor with an open library, which provides a smooth linear acceleration profile. The controller also provides a homing sequence to establish the motor's reference position, and hard limit checking to prevent any over-travelling. The proposed system was implemented and its functionality was investigated, especially regarding positioning accuracy and velocity profile.

  12. Controller for a High-Power, Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Fleming, David J.; Makdad, Terence A.

    1987-01-01

    Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.

  13. Actigraphic Assessment of Motor Activity in Acutely Admitted Inpatients with Bipolar Disorder

    PubMed Central

    Krane-Gartiser, Karoline; Henriksen, Tone Elise Gjotterud; Morken, Gunnar; Vaaler, Arne; Fasmer, Ole Bernt

    2014-01-01

    Introduction Mania is associated with increased activity, whereas psychomotor retardation is often found in bipolar depression. Actigraphy is a promising tool for monitoring phase shifts and changes following treatment in bipolar disorder. The aim of this study was to compare recordings of motor activity in mania, bipolar depression and healthy controls, using linear and nonlinear analytical methods. Materials and Methods Recordings from 18 acutely hospitalized inpatients with mania were compared to 12 recordings from bipolar depression inpatients and 28 healthy controls. 24-hour actigraphy recordings and 64-minute periods of continuous motor activity in the morning and evening were analyzed. Mean activity and several measures of variability and complexity were calculated. Results Patients with depression had a lower mean activity level compared to controls, but higher variability shown by increased standard deviation (SD) and root mean square successive difference (RMSSD) over 24 hours and in the active morning period. The patients with mania had lower first lag autocorrelation compared to controls, and Fourier analysis showed higher variance in the high frequency part of the spectrum corresponding to the period from 2–8 minutes. Both patient groups had a higher RMSSD/SD ratio compared to controls. In patients with mania we found an increased complexity of time series in the active morning period, compared to patients with depression. The findings in the patients with mania are similar to previous findings in patients with schizophrenia and healthy individuals treated with a glutamatergic antagonist. Conclusion We have found distinctly different activity patterns in hospitalized patients with bipolar disorder in episodes of mania and depression, assessed by actigraphy and analyzed with linear and nonlinear mathematical methods, as well as clear differences between the patients and healthy comparison subjects. PMID:24586883

  14. Introduction of a method for quantitative evaluation of spontaneous motor activity development with age in infants.

    PubMed

    Disselhorst-Klug, Catherine; Heinze, Franziska; Breitbach-Faller, Nico; Schmitz-Rode, Thomas; Rau, Günter

    2012-04-01

    Coordination between perception and action is required to interact with the environment successfully. This is already trained by very young infants who perform spontaneous movements to learn how their body interacts with the environment. The strategies used by the infants for this purpose change with age. Therefore, very early progresses in action control made by the infants can be investigated by monitoring the development of spontaneous motor activity. In this paper, an objective method is introduced, which allows the quantitative evaluation of the development of spontaneous motor activity in newborns. The introduced methodology is based on the acquisition of spontaneous movement trajectories of the feet by 3D movement analysis and subsequent calculation of specific movement parameters from them. With these movement-based parameters, it was possible to provide an objective description of age-dependent developmental steps in healthy newborns younger than 6 months. Furthermore, it has been shown that pathologies like infantile cerebral palsy influence development of motor activity significantly. Since the introduced methodology is objective and quantitative, it is suitable to monitor how newborns train their cognitive processes, which will enable them to cope with their environment by motor interaction.

  15. Mild cognitive impairment affects motor control and skill learning.

    PubMed

    Wu, Qiaofeng; Chan, John S Y; Yan, Jin H

    2016-02-01

    Mild cognitive impairment (MCI) is a transitional phase between normal cognitive aging and dementia. As the world population is aging rapidly, more MCI patients will be identified, posing significant problems to society. Normal aging is associated with cognitive and motor decline, and MCI brings additional impairments. Compared to healthy older adults, MCI patients show poorer motor control in a variety of tasks. Efficient motor control and skill learning are essential for occupational and leisure purposes; degradation of motor behaviors in MCI patients often adversely affects their health and quality of life. In this article, we first define MCI and describe its pathology and neural correlates. After this, we review cognitive changes and motor control and skill learning in normal aging. This section is followed by a discussion of MCI-related degradation of motor behaviors. Finally, we propose that multicomponent interventions targeting both cognitive and motor domains can improve MCI patients' motor functions. Future research directions are also raised.

  16. The analysis and compensation of errors of precise simple harmonic motion control under high speed and large load conditions based on servo electric cylinder

    NASA Astrophysics Data System (ADS)

    Ma, Chen-xi; Ding, Guo-qing

    2017-10-01

    Simple harmonic waves and synthesized simple harmonic waves are widely used in the test of instruments. However, because of the errors caused by clearance of gear and time-delay error of FPGA, it is difficult to control servo electric cylinder in precise simple harmonic motion under high speed, high frequency and large load conditions. To solve the problem, a method of error compensation is proposed in this paper. In the method, a displacement sensor is fitted on the piston rod of the electric cylinder. By using the displacement sensor, the real-time displacement of the piston rod is obtained and fed back to the input of servo motor, then a closed loop control is realized. There is compensation of pulses in the next period of the synthetic waves. This paper uses FPGA as the processing core. The software mainly comprises a waveform generator, an Ethernet module, a memory module, a pulse generator, a pulse selector, a protection module, an error compensation module. A durability of shock absorbers is used as the testing platform. The durability mainly comprises a single electric cylinder, a servo motor for driving the electric cylinder, and the servo motor driver.

  17. Radiation Hazards

    DTIC Science & Technology

    1975-08-01

    memory difficulties. Psychic changes that include unstable mood, hypochondriasis, and anxiety have been observed. Compared to those in control groups ...and extrapyremidal motor systems. The incidence of neurosis was significantly higher than in controls . Experimental physiologic and EEG methods...differentiated from those in the control group and consequently could not be related to their microwave exposure (13). In a study reported by Czerski and

  18. Continuous Three-Dimensional Control of a Virtual Helicopter Using a Motor Imagery Based Brain-Computer Interface

    PubMed Central

    Doud, Alexander J.; Lucas, John P.; Pisansky, Marc T.; He, Bin

    2011-01-01

    Brain-computer interfaces (BCIs) allow a user to interact with a computer system using thought. However, only recently have devices capable of providing sophisticated multi-dimensional control been achieved non-invasively. A major goal for non-invasive BCI systems has been to provide continuous, intuitive, and accurate control, while retaining a high level of user autonomy. By employing electroencephalography (EEG) to record and decode sensorimotor rhythms (SMRs) induced from motor imaginations, a consistent, user-specific control signal may be characterized. Utilizing a novel method of interactive and continuous control, we trained three normal subjects to modulate their SMRs to achieve three-dimensional movement of a virtual helicopter that is fast, accurate, and continuous. In this system, the virtual helicopter's forward-backward translation and elevation controls were actuated through the modulation of sensorimotor rhythms that were converted to forces applied to the virtual helicopter at every simulation time step, and the helicopter's angle of left or right rotation was linearly mapped, with higher resolution, from sensorimotor rhythms associated with other motor imaginations. These different resolutions of control allow for interplay between general intent actuation and fine control as is seen in the gross and fine movements of the arm and hand. Subjects controlled the helicopter with the goal of flying through rings (targets) randomly positioned and oriented in a three-dimensional space. The subjects flew through rings continuously, acquiring as many as 11 consecutive rings within a five-minute period. In total, the study group successfully acquired over 85% of presented targets. These results affirm the effective, three-dimensional control of our motor imagery based BCI system, and suggest its potential applications in biological navigation, neuroprosthetics, and other applications. PMID:22046274

  19. Subclinical recurrent neck pain and its treatment impacts motor training-induced plasticity of the cerebellum and motor cortex

    PubMed Central

    Baarbé, Julianne K.; Yielder, Paul; Haavik, Heidi; Holmes, Michael W. R.

    2018-01-01

    The cerebellum processes pain inputs and is important for motor learning. Yet, how the cerebellum interacts with the motor cortex in individuals with recurrent pain is not clear. Functional connectivity between the cerebellum and motor cortex can be measured by a twin coil transcranial magnetic stimulation technique in which stimulation is applied to the cerebellum prior to stimulation over the motor cortex, which inhibits motor evoked potentials (MEPs) produced by motor cortex stimulation alone, called cerebellar inhibition (CBI). Healthy individuals without pain have been shown to demonstrate reduced CBI following motor acquisition. We hypothesized that CBI would not reduce to the same extent in those with mild-recurrent neck pain following the same motor acquisition task. We further hypothesized that a common treatment for neck pain (spinal manipulation) would restore reduced CBI following motor acquisition. Motor acquisition involved typing an eight-letter sequence of the letters Z,P,D,F with the right index finger. Twenty-seven neck pain participants received spinal manipulation (14 participants, 18–27 years) or sham control (13 participants, 19–24 years). Twelve healthy controls (20–27 years) also participated. Participants had CBI measured; they completed manipulation or sham control followed by motor acquisition; and then had CBI re-measured. Following motor acquisition, neck pain sham controls remained inhibited (58 ± 33% of test MEP) vs. healthy controls who disinhibited (98 ± 49% of test MEP, P<0.001), while the spinal manipulation group facilitated (146 ± 95% of test MEP, P<0.001). Greater inhibition in neck pain sham vs. healthy control groups suggests that neck pain may change cerebellar-motor cortex interaction. The change to facilitation suggests that spinal manipulation may reverse inhibitory effects of neck pain. PMID:29489878

  20. Spikes, Local Field Potentials, and Electrocorticogram Characterization during Motor Learning in Rats for Brain Machine Interface Tasks.

    PubMed

    Marzullo, T C; Dudley, J R; Miller, C R; Trejo, L; Kipke, D R

    2005-01-01

    Brain machine interface development typically falls into two arenas, invasive extracellular recording and non-invasive electroencephalogram recording methods. The relationship between action potentials and field potentials is not well understood, and investigation of interrelationships may improve design of neuroprosthetic control systems. Rats were trained on a motor learning task whereby they had to insert their noses into an aperture while simultaneously pressing down on levers with their forepaws; spikes, local field potentials (LFPs), and electrocorticograms (ECoGs) over the motor cortex were recorded and characterized. Preliminary results suggest that the LFP activity in lower cortical layers oscillates with the ECoG.

  1. Rapid control and feedback rates enhance neuroprosthetic control

    PubMed Central

    Shanechi, Maryam M.; Orsborn, Amy L.; Moorman, Helene G.; Gowda, Suraj; Dangi, Siddharth; Carmena, Jose M.

    2017-01-01

    Brain-machine interfaces (BMI) create novel sensorimotor pathways for action. Much as the sensorimotor apparatus shapes natural motor control, the BMI pathway characteristics may also influence neuroprosthetic control. Here, we explore the influence of control and feedback rates, where control rate indicates how often motor commands are sent from the brain to the prosthetic, and feedback rate indicates how often visual feedback of the prosthetic is provided to the subject. We developed a new BMI that allows arbitrarily fast control and feedback rates, and used it to dissociate the effects of each rate in two monkeys. Increasing the control rate significantly improved control even when feedback rate was unchanged. Increasing the feedback rate further facilitated control. We also show that our high-rate BMI significantly outperformed state-of-the-art methods due to higher control and feedback rates, combined with a different point process mathematical encoding model. Our BMI paradigm can dissect the contribution of different elements in the sensorimotor pathway, providing a unique tool for studying neuroprosthetic control mechanisms. PMID:28059065

  2. Rapid control and feedback rates enhance neuroprosthetic control

    NASA Astrophysics Data System (ADS)

    Shanechi, Maryam M.; Orsborn, Amy L.; Moorman, Helene G.; Gowda, Suraj; Dangi, Siddharth; Carmena, Jose M.

    2017-01-01

    Brain-machine interfaces (BMI) create novel sensorimotor pathways for action. Much as the sensorimotor apparatus shapes natural motor control, the BMI pathway characteristics may also influence neuroprosthetic control. Here, we explore the influence of control and feedback rates, where control rate indicates how often motor commands are sent from the brain to the prosthetic, and feedback rate indicates how often visual feedback of the prosthetic is provided to the subject. We developed a new BMI that allows arbitrarily fast control and feedback rates, and used it to dissociate the effects of each rate in two monkeys. Increasing the control rate significantly improved control even when feedback rate was unchanged. Increasing the feedback rate further facilitated control. We also show that our high-rate BMI significantly outperformed state-of-the-art methods due to higher control and feedback rates, combined with a different point process mathematical encoding model. Our BMI paradigm can dissect the contribution of different elements in the sensorimotor pathway, providing a unique tool for studying neuroprosthetic control mechanisms.

  3. Study on Active Suppression Control of Drivetrain Oscillations in an Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Cui, Ying

    2017-07-01

    Due to the low damping in a central driven electric vehicle and lack of passive damping mechanisms as compared with a conventional vehicle, the vehicle may endure torsional vibrations which may deteriorates the vehicle’s drivability. Thus active damping control strategy is required to reduce the undesirable oscillations in an EV. In this paper, the origin of the vibration and the design of a damping control method to suppress such oscillations to improve the drivability of an EV are studied. The traction motor torque that is given by the vehicle controller is adjusted according to the acceleration rate of the motor speed to attenuate the resonant frequency. Simulations and experiments are performed to validate the system. The results show that the proposed control system can effectively suppress oscillations and hence improve drivability.

  4. Inertial piezoelectric linear motor driven by a single-phase harmonic wave with automatic clamping mechanism

    NASA Astrophysics Data System (ADS)

    He, Liangguo; Chu, Yuheng; Hao, Sai; Zhao, Xiaoyong; Dong, Yuge; Wang, Yong

    2018-05-01

    A novel, single-phase, harmonic-driven, inertial piezoelectric linear motor using an automatic clamping mechanism was designed, fabricated, and tested to reduce the sliding friction and simplify the drive mechanism and power supply control of the inertial motor. A piezoelectric bimorph and a flexible hinge were connected in series to form the automatic clamping mechanism. The automatic clamping mechanism was used as the driving and clamping elements. A dynamic simulation by Simulink was performed to prove the feasibility of the motor. The finite element method software COMSOL was used to design the structure of the motor. An experimental setup was built to validate the working principle and evaluate the performance of the motor. The prototype motor outputted a no-load velocity of 3.178 mm/s at a voltage of 220 Vp-p and a maximum traction force of 4.25 N under a preload force of 8 N. The minimum resolution of 1.14 μm was achieved at a driving frequency of 74 Hz, a driving voltage of 50 Vp-p, and a preload force of 0 N.

  5. The neural optimal control hierarchy for motor control

    NASA Astrophysics Data System (ADS)

    DeWolf, T.; Eliasmith, C.

    2011-10-01

    Our empirical, neuroscientific understanding of biological motor systems has been rapidly growing in recent years. However, this understanding has not been systematically mapped to a quantitative characterization of motor control based in control theory. Here, we attempt to bridge this gap by describing the neural optimal control hierarchy (NOCH), which can serve as a foundation for biologically plausible models of neural motor control. The NOCH has been constructed by taking recent control theoretic models of motor control, analyzing the required processes, generating neurally plausible equivalent calculations and mapping them on to the neural structures that have been empirically identified to form the anatomical basis of motor control. We demonstrate the utility of the NOCH by constructing a simple model based on the identified principles and testing it in two ways. First, we perturb specific anatomical elements of the model and compare the resulting motor behavior with clinical data in which the corresponding area of the brain has been damaged. We show that damaging the assigned functions of the basal ganglia and cerebellum can cause the movement deficiencies seen in patients with Huntington's disease and cerebellar lesions. Second, we demonstrate that single spiking neuron data from our model's motor cortical areas explain major features of single-cell responses recorded from the same primate areas. We suggest that together these results show how NOCH-based models can be used to unify a broad range of data relevant to biological motor control in a quantitative, control theoretic framework.

  6. The "handwriting brain": a meta-analysis of neuroimaging studies of motor versus orthographic processes.

    PubMed

    Planton, Samuel; Jucla, Mélanie; Roux, Franck-Emmanuel; Démonet, Jean-François

    2013-01-01

    Handwriting is a modality of language production whose cerebral substrates remain poorly known although the existence of specific regions is postulated. The description of brain damaged patients with agraphia and, more recently, several neuroimaging studies suggest the involvement of different brain regions. However, results vary with the methodological choices made and may not always discriminate between "writing-specific" and motor or linguistic processes shared with other abilities. We used the "Activation Likelihood Estimate" (ALE) meta-analytical method to identify the cerebral network of areas commonly activated during handwriting in 18 neuroimaging studies published in the literature. Included contrasts were also classified according to the control tasks used, whether non-specific motor/output-control or linguistic/input-control. These data were included in two secondary meta-analyses in order to reveal the functional role of the different areas of this network. An extensive, mainly left-hemisphere network of 12 cortical and sub-cortical areas was obtained; three of which were considered as primarily writing-specific (left superior frontal sulcus/middle frontal gyrus area, left intraparietal sulcus/superior parietal area, right cerebellum) while others related rather to non-specific motor (primary motor and sensorimotor cortex, supplementary motor area, thalamus and putamen) or linguistic processes (ventral premotor cortex, posterior/inferior temporal cortex). This meta-analysis provides a description of the cerebral network of handwriting as revealed by various types of neuroimaging experiments and confirms the crucial involvement of the left frontal and superior parietal regions. These findings provide new insights into cognitive processes involved in handwriting and their cerebral substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, D.A.

    1996-05-21

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices are disclosed. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device. 16 figs.

  8. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, Donald A.

    1996-01-01

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device.

  9. Speed control for synchronous motors

    NASA Technical Reports Server (NTRS)

    Packard, H.; Schott, J.

    1981-01-01

    Feedback circuit controls fluctuations in speed of synchronous ac motor. Voltage proportional to phase angle is developed by phase detector, rectified, amplified, compared to threshold, and reapplied positively or negatively to motor excitation circuit. Speed control reduces wow and flutter of audio turntables and tape recorders, and enhances hunting in gyroscope motors.

  10. The posterior parietal cortex (PPC) mediates anticipatory motor control.

    PubMed

    Krause, Vanessa; Weber, Juliane; Pollok, Bettina

    2014-01-01

    Flexible and precisely timed motor control is based on functional interaction within a cortico-subcortical network. The left posterior parietal cortex (PPC) is supposed to be crucial for anticipatory motor control by sensorimotor feedback matching. Intention of the present study was to disentangle the specific relevance of the left PPC for anticipatory motor control using transcranial direct current stimulation (tDCS) since a causal link remains to be established. Anodal vs. cathodal tDCS was applied for 10 min over the left PPC in 16 right-handed subjects in separate sessions. Left primary motor cortex (M1) tDCS served as control condition and was applied in additional 15 subjects. Prior to and immediately after tDCS, subjects performed three tasks demanding temporal motor precision with respect to an auditory stimulus: sensorimotor synchronization as measure of anticipatory motor control, interval reproduction and simple reaction. Left PPC tDCS affected right hand synchronization but not simple reaction times. Motor anticipation was deteriorated by anodal tDCS, while cathodal tDCS yielded the reverse effect. The variability of interval reproduction was increased by anodal left M1 tDCS, whereas it was reduced by cathodal tDCS. No significant effects on simple reaction times were found. The present data support the hypothesis that left PPC is causally involved in right hand anticipatory motor control exceeding pure motor implementation as processed by M1 and possibly indicating subjective timing. Since M1 tDCS particularly affects motor implementation, the observed PPC effects are not likely to be explained by alterations of motor-cortical excitability. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Lyapunov exponent for aging process in induction motor

    NASA Astrophysics Data System (ADS)

    Bayram, Duygu; Ünnü, Sezen Yıdırım; Şeker, Serhat

    2012-09-01

    Nonlinear systems like electrical circuits and systems, mechanics, optics and even incidents in nature may pass through various bifurcations and steady states like equilibrium point, periodic, quasi-periodic, chaotic states. Although chaotic phenomena are widely observed in physical systems, it can not be predicted because of the nature of the system. On the other hand, it is known that, chaos is strictly dependent on initial conditions of the system [1-3]. There are several methods in order to define the chaos. Phase portraits, Poincaré maps, Lyapunov Exponents are the most common techniques. Lyapunov Exponents are the theoretical indicator of the chaos, named after the Russian mathematician Aleksandr Lyapunov (1857-1918). Lyapunov Exponents stand for the average exponential divergence or convergence of nearby system states, meaning estimating the quantitive measure of the chaotic attractor. Negative numbers of the exponents stand for a stable system whereas zero stands for quasi-periodic systems. On the other hand, at least if one of the exponents is positive, this situation is an indicator of the chaos. For estimating the exponents, the system should be modeled by differential equation but even in that case mathematical calculation of Lyapunov Exponents are not very practical and evaluation of these values requires a long signal duration [4-7]. For experimental data sets, it is not always possible to acquire the differential equations. There are several different methods in literature for determining the Lyapunov Exponents of the system [4, 5]. Induction motors are the most important tools for many industrial processes because they are cheap, robust, efficient and reliable. In order to have healthy processes in industrial applications, the conditions of the machines should be monitored and the different working conditions should be addressed correctly. To the best of our knowledge, researches related to Lyapunov exponents and electrical motors are mostly focused on the controlling the mechanical parameters of the electrical machines. Brushless DC motor (BLDCM) and the other general purpose permanent magnet (PM) motors are the most widely examined motors [1, 8, 9]. But the researches, about Lyapunov Exponent, subjected to the induction motors are mostly focused on the control theory of the motors. Flux estimation of rotor, external load disturbances and speed tracking and vector control position system are the main research areas for induction motors [10, 11, 12-14]. For all the data sets which can be collected from an induction motor, vibration data have the key role for understanding the mechanical behaviours like aging, bearing damage and stator insulation damage [15-18]. In this paper aging of an induction motor is investigated by using the vibration signals. The signals consist of new and aged motor data. These data are examined by their 2 dimensional phase portraits and the geometric interpretation is applied for detecting the Lyapunov Exponents. These values are compared in order to define the character and state estimation of the aging processes.

  12. Testing promotes effector transfer.

    PubMed

    Boutin, Arnaud; Panzer, Stefan; Salesse, Robin N; Blandin, Yannick

    2012-11-01

    The retrieval of information from memory during testing has recently been shown to promote transfer in the verbal domain. Motor-related research, however, has ignored testing as a relevant method to enhance motor transfer. We thus investigated whether testing has the potential to induce generalised motor memories by favouring effector transfer. Participants were required to reproduce a spatial-temporal pattern of elbow extensions and flexions with their dominant right arm. We tested the ability of participants to transfer the original pattern (extrinsic transformation; i.e., goal-based configuration) or the mirrored pattern (intrinsic transformation; i.e., movement-based configuration) to the unpractised non-dominant left arm. To evaluate how testing affects motor transfer at 24-h testing, participants were either administered an initial testing session during early practice (early testing group) or shortly after the end of practice (late testing group; i.e., no alternation between practice and testing sessions). No initial testing session was completed for the control group. We found better effector transfer at 24-h testing for the early testing group for both extrinsic and intrinsic transformations of the movement pattern when compared with the control group, while no testing benefit was observed for the late testing group. This indicates that testing positively affects motor learning, yielding enhanced long-term transfer capabilities. We thus demonstrate the critical role of retrieval practice via testing during the process of motor memory encoding, and provide the conditions under which testing effectively contributes to the generalisation of motor memories. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Displacement and force coupling control design for automotive active front steering system

    NASA Astrophysics Data System (ADS)

    Zhao, Wanzhong; Zhang, Han; Li, Yijun

    2018-06-01

    A displacement and force coupling control design for active front steering (AFS) system of vehicle is proposed in this paper. In order to investigate the displacement and force characteristics of the AFS system of the vehicle, the models of AFS system, vehicle, tire as well as the driver model are introduced. Then, considering the nonlinear characteristics of the tire force and external disturbance, a robust yaw rate control method is designed by applying a steering motor to generate an active steering angle to adjust the yaw stability of the vehicle. Based on mixed H2/H∞ control, the system robustness and yaw rate tracking performance are enforced by H∞ norm constraint and the control effort is captured through H2 norm. In addition, based on the AFS system, a planetary gear set and an assist motor are both added to realize the road feeling control in this paper to dismiss the influence of extra steering angle through a compensating method. Evaluation of the overall system is accomplished by simulations and experiments under various driving condition. The simulation and experiment results show the proposed control system has excellent tracking performance and road feeling performance, which can improve the cornering stability and maneuverability of vehicle.

  14. Improved lower extremity pedaling mechanics in individuals with stroke under maximal workloads.

    PubMed

    Linder, Susan M; Rosenfeldt, Anson B; Bazyk, Andrew S; Koop, Mandy Miller; Ozinga, Sarah; Alberts, Jay L

    2018-05-01

    Background Individuals with stroke present with motor control deficits resulting in the abnormal activation and timing of agonist and antagonist muscles and inefficient movement patterns. The analysis of pedaling biomechanics provides a window into understanding motor control deficits, which vary as a function of workload. Understanding the relationship between workload and motor control is critical when considering exercise prescription during stroke rehabilitation. Objectives To characterize pedaling kinematics and motor control processes under conditions in which workload was systematically increased to an eventual patient-specific maximum. Methods A cohort study was conducted in which 18 individuals with chronic stroke underwent a maximal exertion cardiopulmonary exercise test on a stationary cycle ergometer, during which pedaling torque was continuously recorded. Measures of force production, pedaling symmetry, and pedaling smoothness were obtained. Results Mean Torque increased significantly (p < 0.05) for both legs from initial to terminal workloads. Mean torque Symmetry Index, calculated for down and upstroke portions of the pedaling action, improved from 0.37(0.29) to 0.29(0.35) during downstroke (p = 0.007), and worsened during the upstroke: -0.37(0.38) to -0.62(0.46) (p < 0.001) from initial to terminal workloads. Low Torque Duration improved from initial to terminal workloads, decreasing from 121.1(52.9) to 58.1(39.6) degrees (p < 0.001), respectively. Smoothness of pedaling improved significantly from initial to terminal workloads (p < 0.001). Conclusions Improved pedaling kinematics at terminal workloads indicate that individuals with stroke demonstrate improved motor control with respect to the timing, sequencing, and activation of hemiparetic lower extremity musculature compared to lower workloads. Therapeutic prescription involving higher resistance may be necessary to sufficiently engage and activate the paretic lower extremity.

  15. Error-enhancing robot therapy to induce motor control improvement in childhood onset primary dystonia

    PubMed Central

    2012-01-01

    Background Robot-generated deviating forces during multijoint reaching movements have been applied to investigate motor control and to tune neuromotor adaptation. Can the application of force to limbs improve motor learning? In this framework, the response to altered dynamic environments of children affected by primary dystonia has never been studied. Methods As preliminary pilot study, eleven children with primary dystonia and eleven age-matched healthy control subjects were asked to perform upper limb movements, triangle-reaching (three directions) and circle-writing, using a haptic robot interacting with ad-hoc developed task-specific visual interfaces. Three dynamic conditions were provided, null additive external force (A), constant disturbing force (B) and deactivation of the additive external force again (C). The path length for each trial was computed, from the recorded position data and interaction events. Results The results show that the disturbing force affects significantly the movement outcomes in healthy but not in dystonic subjects, already compromised in the reference condition: the external alteration uncalibrates the healthy sensorimotor system, while the dystonic one is already strongly uncalibrated. The lack of systematic compensation for perturbation effects during B condition is reflected into the absence of after-effects in C condition, which would be the evidence that CNS generates a prediction of the perturbing forces using an internal model of the environment. The most promising finding is that in dystonic population the altered dynamic exposure seems to induce a subsequent improvement, i.e. a beneficial after-effect in terms of optimal path control, compared with the correspondent reference movement outcome. Conclusions The short-time error-enhancing training in dystonia could represent an effective approach for motor performance improvement, since the exposure to controlled dynamic alterations induces a refining of the existing but strongly imprecise motor scheme and sensorimotor patterns. PMID:22824547

  16. Microcomputer control of an electronically commutated dc motor

    NASA Astrophysics Data System (ADS)

    El-Sharkawi, M. A.; Coleman, J. S.; Mehdi, I. S.; Sommer, D. L.

    A microcomputer control system for an electronically commutated dc motor (ECM) has been designed, built and tested. A 3-hp, 270-volt, samarium-cobalt brushless dc motor is controlled by an Intel 8086-based microcomputer. The main functions of the microcomputer are to control the speed of the motor, to provide forward or reverse rotation, to brake, and to protect the motor and its power electronic switching circuits from overcurrents. The necessary interface circuits were designed and built, and the system components have been integrated and tested. It is shown that the proposed ECM system with the microcomputer control operate the motor reliably over a wide range of speeds. The purpose of this effort is to develop the motorcontroller for driving electromechanical actuators for flight control and other aircraft applications.

  17. Method for spinning up a three-axis controlled spacecraft

    NASA Technical Reports Server (NTRS)

    Vorlicek, Preston L. (Inventor)

    1988-01-01

    A three-axis controlled spacecraft (1), typically a satellite, is spun up about its roll axis (20) prior to firing a motor (2), i.e., a perigee kick motor, to achieve the requisite degree of angular momentum stiffness. Thrusters (21) for imparting rotation about the roll axis (20) are activated in open-loop fashion, typically at less than full duty cycle. Cross-axis torques induced by this rotational motion are compensated for by means of closed control loops for each of the pitch and yaw axes (30, 40, respectively). Each closed control loop combines a prebias torque (72) with torques (75, 74) representative of position and rate feedback information, respectively. A deadband (52) within each closed control loop can be widened during the spinup, to conserve fuel. Position feedback information (75) in each of the control loops is disabled upon saturation of the gyroscope associated with the roll axis (20).

  18. Spatiotemporal movement variability in ALS: Speaking rate effects on tongue, lower lip, and jaw motor control

    PubMed Central

    Kuruvilla-Dugdale, Mili; Mefferd, Antje

    2017-01-01

    Purpose Although it is frequently presumed that bulbar muscle degeneration in Amyotrophic Lateral Sclerosis (ALS) is associated with progressive loss of speech motor control, empirical evidence is limited. Furthermore, because speaking rate slows with disease progression and rate manipulations are used to improve intelligibility in ALS, this study sought to (i) determine between and within-group differences in articulatory motor control as a result of speaking rate changes and (ii) identify the strength of association between articulatory motor control and speech impairment severity. Method Ten talkers with ALS and 11 healthy controls repeated the target sentence at habitual, fast, and slow rates. The spatiotemporal variability index (STI) was calculated to determine tongue, lower lip, and jaw movement variability. Results During habitual speech, talkers with mild-moderate dysarthria displayed significantly lower tongue and lip movement variability whereas those with severe dysarthria showed greater variability compared to controls. Within-group rate effects were significant only for talkers with ALS. Specifically, lip and tongue movement variability significantly increased during slow speech relative to habitual and fast speech. Finally, preliminary associations between speech impairment severity and movement variability were moderate to strong in talkers with ALS. Conclusion Between-group differences for habitual speech and within-group effects for slow speech replicated previous findings for lower lip and jaw movements. Preliminary findings of moderate to strong associations between speech impairment severity and STI suggest that articulatory variability may vary from pathologically low (possibly indicating articulatory compensation) to pathologically high variability (possibly indicating loss of control) with dysarthria progression in ALS. PMID:28528293

  19. Integrated-Circuit Controller For Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Le, Dong Tuan

    1994-01-01

    Generic circuit performs commutation-logic and power-switching functions for control of brushless dc motor. Controller includes commutation-logic and associated control circuitry, power supply, and inverters containing power transistors. Major advantages of controller are size, weight, and power consumption can be made less than other brushless-dc-motor controllers.

  20. Reduced structural connectivity within a prefrontal-motor-subcortical network in amyotrophic lateral sclerosis.

    PubMed

    Buchanan, Colin R; Pettit, Lewis D; Storkey, Amos J; Abrahams, Sharon; Bastin, Mark E

    2015-05-01

    To investigate white matter structural connectivity changes associated with amyotrophic lateral sclerosis (ALS) using network analysis and compare the results with those obtained using standard voxel-based methods, specifically Tract-based Spatial Statistics (TBSS). MRI data were acquired from 30 patients with ALS and 30 age-matched healthy controls. For each subject, 85 grey matter regions (network nodes) were identified from high resolution structural MRI, and network connections formed from the white matter tracts generated by diffusion MRI and probabilistic tractography. Whole-brain networks were constructed using strong constraints on anatomical plausibility and a weighting reflecting tract-averaged fractional anisotropy (FA). Analysis using Network-based Statistics (NBS), without a priori selected regions, identified an impaired motor-frontal-subcortical subnetwork (10 nodes and 12 bidirectional connections), consistent with upper motor neuron pathology, in the ALS group compared with the controls (P = 0.020). Reduced FA in three of the impaired network connections, which involved fibers of the corticospinal tract, correlated with rate of disease progression (P ≤ 0.024). A novel network-tract comparison revealed that the connections involved in the affected network had a strong correspondence (mean overlap of 86.2%) with white matter tracts identified as having reduced FA compared with the control group using TBSS. These findings suggest that white matter degeneration in ALS is strongly linked to the motor cortex, and that impaired structural networks identified using NBS have a strong correspondence to affected white matter tracts identified using more conventional voxel-based methods. © 2014 Wiley Periodicals, Inc.

  1. Energy-saving technology of vector controlled induction motor based on the adaptive neuro-controller

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Karandeev, D.

    2015-10-01

    The ongoing evolution of the power system towards a Smart Grid implies an important role of intelligent technologies, but poses strict requirements on their control schemes to preserve stability and controllability. This paper presents the adaptive neuro-controller for the vector control of induction motor within Smart Gird. The validity and effectiveness of the proposed energy-saving technology of vector controlled induction motor based on adaptive neuro-controller are verified by simulation results at different operating conditions over a wide speed range of induction motor.

  2. Growth hormone combined with child-specific motor training improves motor development in infants with Prader-Willi syndrome: a randomized controlled trial.

    PubMed

    Reus, Linda; Pelzer, Ben J; Otten, Barto J; Siemensma, Elbrich P C; van Alfen-van der Velden, Janielle A A E M; Festen, Dederieke A M; Hokken-Koelega, Anita C S; Nijhuis-van der Sanden, Maria W G

    2013-10-01

    Although severe motor problems in infants with Prader-Willi syndrome (PWS) are striking, motor development has never been studied longitudinally and the results of growth hormone (GH) treatment on motor development are contradictory. The authors studied whether GH treatment can enhance the effect of physical training on motor development in infants with PWS. Twenty-two infants were followed for two years during a randomized controlled trial. The treatment and control groups began GH after baseline or following a control period, respectively. Both groups followed a child-specific physical training program. Motor performance was measured every three months. Multi-level regression analysis revealed that motor development differed significantly between infants (p<.001), and this could be partially explained by baseline motor developmental level (p<.01). GH treatment enhanced the effects of child-specific physical training on both motor developmental rate and motor developmental potential. Moreover, this effect was more pronounced when GH treatment was initiated at a younger age. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Using "human state aware" robots to enhance physical human-robot interaction in a cooperative scenario.

    PubMed

    Guerrero, Carlos Rodriguez; Fraile Marinero, Juan Carlos; Turiel, Javier Perez; Muñoz, Victor

    2013-11-01

    Human motor performance, speed and variability are highly susceptible to emotional states. This paper reviews the impact of the emotions on the motor control performance, and studies the possibility of improving the perceived skill/challenge relation on a multimodal neural rehabilitation scenario, by means of a biocybernetic controller that modulates the assistance provided by a haptic controlled robot in reaction to undesirable physical and mental states. Results from psychophysiological, performance and self assessment data for closed loop experiments in contrast with their open loop counterparts, suggest that the proposed method had a positive impact on the overall challenge/skill relation leading to an enhanced physical human-robot interaction experience. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Speed tracking and synchronization of multiple motors using ring coupling control and adaptive sliding mode control.

    PubMed

    Li, Le-Bao; Sun, Ling-Ling; Zhang, Sheng-Zhou; Yang, Qing-Quan

    2015-09-01

    A new control approach for speed tracking and synchronization of multiple motors is developed, by incorporating an adaptive sliding mode control (ASMC) technique into a ring coupling synchronization control structure. This control approach can stabilize speed tracking of each motor and synchronize its motion with other motors' motion so that speed tracking errors and synchronization errors converge to zero. Moreover, an adaptive law is exploited to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort and attenuate chattering. Performance comparisons with parallel control, relative coupling control and conventional PI control are investigated on a four-motor synchronization control system. Extensive simulation results show the effectiveness of the proposed control scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Acute tolerance to alcohol impairment of behavioral and cognitive mechanisms related to driving: drinking and driving on the descending limb

    PubMed Central

    Weafer, Jessica

    2015-01-01

    Rationale Alcohol effects on behavioral and cognitive mechanisms influence impaired driving performance and decisions to drive after drinking (Barry 1973; Moskowitz and Robinson 1987). To date, research has focused on the ascending limb of the blood alcohol curve, and there is little understanding of how acute tolerance to impairment of these mechanisms might influence driving behavior on the descending limb. Objectives To provide an integrated examination of the degree to which alcohol impairment of motor coordination and inhibitory control contributes to driving impairment and decisions to drive on the ascending and descending limbs of the blood alcohol curve. Methods Social-drinking adults (N=20) performed a testing battery that measured simulated driving performance and willingness to drive, as well as mechanisms related to driving: motor coordination (grooved pegboard), inhibitory control (cued go/no-go task), and subjective intoxication. Performance was tested in response to placebo and a moderate dose of alcohol (0.65 g/kg) twice at comparable blood alcohol concentrations: once on the ascending limb and again on the descending limb. Results Impaired motor coordination and subjective intoxication showed acute tolerance, whereas driving performance and inhibitory control showed no recovery from impairment. Greater motor impairment was associated with poorer driving performance under alcohol, and poorer inhibitory control was associated with more willingness to drive. Conclusions Findings suggest that acute tolerance to impairment of motor coordination is insufficient to promote recovery of driving performance and that the persistence of alcohol-induced disinhibition might contribute to risky decisions to drive on the descending limb. PMID:21960182

  6. Relations of Preschoolers’ Visual Motor and Object Manipulation Skills with Executive Function and Social Behavior

    PubMed Central

    MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M.; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly

    2017-01-01

    Purpose The purpose was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom over the preschool year. Method 92 children between the ages of 3–5 years old (mean age 4.31 years) were recruited to participate. Comprehensive measures of visual motor integration skills, object manipulation skills, executive function and social behaviors were administered in the fall and spring of the preschool year. Results Our findings indicated that children who had better visual-motor integration skills in the fall had better executive function scores, (B = .47 [.20], p < .05, β = .27) in the spring of the preschool year after controlling for age, gender, Head-Start status, and site location, but not after controlling for children’s baseline levels of executive function. In addition, children who demonstrated better object-manipulation skills in the fall showed significantly stronger social behavior in their classrooms (as rated by teachers) in the spring, including more self-control, (B −.03 [.00], p < .05, β = .40), more cooperation, (B = .02 [.01], p < .05, β = .28), and less externalizing/hyperactivity, (B = −.02 [.01], p < .05, β = −.28) after controlling for social behavior in the fall and other covariates. Conclusion Children’s visual motor integration and object manipulation skills in the fall have modest to moderate relations with executive function and social behaviors later in the preschool year. These findings have implications for early learning initiatives and school readiness. PMID:27732149

  7. Whole body heat stress increases motor cortical excitability and skill acquisition in humans

    PubMed Central

    Littmann, Andrew E.; Shields, Richard K.

    2015-01-01

    Objective Vigorous systemic exercise stimulates a cascade of molecular and cellular processes that enhance central nervous system (CNS) plasticity and performance. The influence of heat stress on CNS performance and learning is novel. We designed two experiments to determine whether passive heat stress 1) facilitated motor cortex excitability and 2) improved motor task acquisition compared to no heat stress. Methods Motor evoked potentials (MEPs) from the first dorsal interosseus (FDI) were collected before and after 30 minutes of heat stress at 73° C. A second cohort of subjects performed a motor learning task using the FDI either following heat or the no heat condition. Results Heat stress increased heart rate to 65% of age-predicted maximum. After heat, mean resting MEP amplitude increased 48% (P < 0.05). MEP stimulus-response amplitudes did not differ according to stimulus intensity. In the second experiment, heat stress caused a significant decrease in absolute and variable error (p < 0.05) during a novel movement task using the FDI. Conclusions Passive environmental heat stress 1) increases motor cortical excitability, and 2) enhances performance in a motor skill acquisition task. Significance Controlled heat stress may prime the CNS to enhance motor skill acquisition during rehabilitation. PMID:26616546

  8. Design and control of one precise tracking simulation bed for Chinese 20/30 meter optic/infrared telescope

    NASA Astrophysics Data System (ADS)

    Ren, Changzhi; Li, Xiaoyan; Song, Xiaoli; Niu, Yong; Li, Aihua; Zhang, Zhenchao

    2012-09-01

    Direct drive technology is the key to solute future 30-m and larger telescope motion system to guarantee a very high tracking accuracy, in spite of unbalanced and sudden loads such as wind gusts and in spite of a structure that, because of its size, can not be infinitely stiff. However, this requires the design and realization of unusually large torque motor that the torque slew rate must be extremely steep too. A conventional torque motor design appears inadequate. This paper explores one redundant unit permanent magnet synchronous motor and its simulation bed for 30-m class telescope. Because its drive system is one high integrated electromechanical system, one complexly electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. This paper discusses the design and control of the precise tracking simulation bed in detail.

  9. The propulsive design aspects on the world's first direct drive hybrid airplane

    NASA Astrophysics Data System (ADS)

    Nanda, Ankit

    The purpose of this thesis is to design a safe technology demonstrator by implementing a direct drive propulsion system for a gas-electric hybrid aircraft. This system was integrated on the Embry-Riddle Eco-Eagle for the Green Flight Challenge 2011. The aim of the system is to allow the pilot to use the electric motor as an independent power source to fly the aircraft once at cruise altitude, while having a gas engine to allow for higher power capability. The system was designed to incorporate the motor and the motor control unit provided by Flight Design and Drivetek AG alongside a Rotax 912ULS engine. The hardware is integrated such that the pilot would be able to fly the aircraft with controls similar to conventional general aviation aircraft. This thesis discusses the method of integration of the hybrid powerplant system into a Stemme S-10 and describes the various components of that system.

  10. The performance and efficiency of four motor/controller/battery systems for the simpler electric vehicles

    NASA Technical Reports Server (NTRS)

    Shipps, P. R.

    1980-01-01

    A test and analysis program performed on four complete propulsion systems for an urban electric vehicle (EV) is described and results given. A dc series motor and a permanent magnet (PM) motor were tested, each powered by an EV battery pack and controlled by (1) a series/parallel voltage-switching (V-switch) system; and (2) a system using a pulse width modulation, 400 Hz transistorized chopper. Dynamometer tests were first performed, followed by eV performance predictions and data correlating road tests. During dynamometer tests using chopper control; current, voltage, and power were measured on both the battery and motor sides of the chopper, using three types of instrumentation. Conventional dc instruments provided adequate accuracy for eV power and energy measurements, when used on the battery side of the controller. When using the chopper controller, the addition of a small choke inductor improved system efficiency in the lower duty cycle range (some 8% increase at 50% duty cycle) with both types of motors. Overall system efficiency rankings during road tests were: (1) series motor with V-switch; (2) PM motor with V-switch; (3) series motor with chopper; and (4) PM motor with chopper. Chopper control of the eV was smoother and required less driver skill than V-switch control.

  11. Sensor-less pseudo-sinusoidal drive for a permanent-magnet brushless ac motor

    NASA Astrophysics Data System (ADS)

    Liu, Li-Hsiang; Chern, Tzuen-Lih; Pan, Ping-Lung; Huang, Tsung-Mou; Tsay, Der-Min; Kuang, Jao-Hwa

    2012-04-01

    The precise rotor-position information is required for a permanent-magnet brushless ac motor (BLACM) drive. In the conventional sinusoidal drive method, either an encoder or a resolver is usually employed. For position sensor-less vector control schemes, the rotor flux estimation and torque components are obtained by complicated coordinate transformations. These computational intensive methods are susceptible to current distortions and parameter variations. To simplify the method complexity, this work presents a sensor-less pseudo-sinusoidal drive scheme with speed control for a three-phase BLACM. Based on the sinusoidal drive scheme, a floating period of each phase current is inserted for back electromotive force detection. The zero-crossing point is determined directly by the proposed scheme, and the rotor magnetic position and rotor speed can be estimated simultaneously. Several experiments for various active angle periods are undertaken. Furthermore, a current feedback control is included to minimize and compensate the torque fluctuation. The experimental results show that the proposed method has a competitive performance compared with the conventional drive manners for BLACM. The proposed scheme is straightforward, bringing the benefits of sensor-less drive and negating the need for coordinate transformations in the operating process.

  12. Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects

    PubMed Central

    Paillard, Thierry; Noé, Frédéric

    2015-01-01

    The different techniques and methods employed as well as the different quantitative and qualitative variables measured in order to objectify postural control are often chosen without taking into account the population studied, the objective of the postural test, and the environmental conditions. For these reasons, the aim of this review was to present and justify the different testing techniques and methods with their different quantitative and qualitative variables to make it possible to precisely evaluate each sensory, central, and motor component of the postural function according to the experiment protocol under consideration. The main practical and technological methods and techniques used in evaluating postural control were explained and justified according to the experimental protocol defined. The main postural conditions (postural stance, visual condition, balance condition, and test duration) were also analyzed. Moreover, the mechanistic exploration of the postural function often requires implementing disturbing postural conditions by using motor disturbance (mechanical disturbance), sensory stimulation (sensory manipulation), and/or cognitive disturbance (cognitive task associated with maintaining postural balance) protocols. Each type of disturbance was tackled in order to facilitate understanding of subtle postural control mechanisms and the means to explore them. PMID:26640800

  13. Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects.

    PubMed

    Paillard, Thierry; Noé, Frédéric

    2015-01-01

    The different techniques and methods employed as well as the different quantitative and qualitative variables measured in order to objectify postural control are often chosen without taking into account the population studied, the objective of the postural test, and the environmental conditions. For these reasons, the aim of this review was to present and justify the different testing techniques and methods with their different quantitative and qualitative variables to make it possible to precisely evaluate each sensory, central, and motor component of the postural function according to the experiment protocol under consideration. The main practical and technological methods and techniques used in evaluating postural control were explained and justified according to the experimental protocol defined. The main postural conditions (postural stance, visual condition, balance condition, and test duration) were also analyzed. Moreover, the mechanistic exploration of the postural function often requires implementing disturbing postural conditions by using motor disturbance (mechanical disturbance), sensory stimulation (sensory manipulation), and/or cognitive disturbance (cognitive task associated with maintaining postural balance) protocols. Each type of disturbance was tackled in order to facilitate understanding of subtle postural control mechanisms and the means to explore them.

  14. Method and apparatus for monitoring motor operated valve motor output torque and power at valve seating

    DOEpatents

    Casada, D.A.

    1996-01-16

    A method and apparatus are provided for monitoring a motor operated valve during the brief period when the valve seats and the torque switch trips to deenergize the valve motor. The method uses voltage measurements on the load side of a deenergizing switch that opens to deenergize the motor to determine, among other things, final motor rotational speed and the decelerating torque at motor deenergization. 14 figs.

  15. Method and apparatus for monitoring motor operated valve motor output torque and power at valve seating

    DOEpatents

    Casada, Donald A.

    1996-01-01

    A method and apparatus are provided for monitoring a motor operated valve during the brief period when the valve seats and the torque switch trips to deenergize the valve motor. The method uses voltage measurements on the load side of a deenergizing switch that opens to deenergize the motor to determine, among other things, final motor rotational speed and the decelerating torque at motor deenergization.

  16. Electrohydraulic linear actuator with two stepping motors controlled by overshoot-free algorithm

    NASA Astrophysics Data System (ADS)

    Milecki, Andrzej; Ortmann, Jarosław

    2017-11-01

    The paper describes electrohydraulic spool valves with stepping motors used as electromechanical transducers. A new concept of a proportional valve in which two stepping motors are working differentially is introduced. Such valve changes the fluid flow proportionally to the sum or difference of the motors' steps numbers. The valve design and principle of its operation is described. Theoretical equations and simulation models are proposed for all elements of the drive, i.e., the stepping motor units, hydraulic valve and cylinder. The main features of the valve and drive operation are described; some specific problem areas covering the nature of stepping motors and their differential work in the valve are also considered. The whole servo drive non-linear model is proposed and used further for simulation investigations. The initial simulation investigations of the drive with a new valve have shown that there is a significant overshoot in the drive step response, which is not allowed in positioning process. Therefore additional effort is spent to reduce the overshoot and in consequence reduce the settling time. A special predictive algorithm is proposed to this end. Then the proposed control method is tested and further improved in simulations. Further on, the model is implemented in reality and the whole servo drive system is tested. The investigation results presented in this paper, are showing an overshoot-free positioning process which enables high positioning accuracy.

  17. Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats

    PubMed Central

    Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus

    2015-01-01

    Purpose Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity–the synchronized discharge of individual motor units across muscles within time intervals of 5ms–for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Methods Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. Results For all tasks, except for singe-leg balance, coherence between 15–80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30–60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. Conclusion There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement task at hand. PMID:26529604

  18. Three-phase power factor controller with induced EMF sensing

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A power factor controller for an ac induction motor is provided which is of the type comprising thyristor switches connected in series with the motor, phase detectors for sensing the motor current and voltage and providing an output proportional to the phase difference between the motor voltage and current, and a control circuit, responsive to the output of the phase detector and to a power factor command signal, for controlling switching of the thyristor. The invention involves sensing the induced emf produced by the motor during the time interval when the thyristor is off and for producing a corresponding feedback signal for controlling switching of the thyristor. The sensed emf is also used to enhance soft starting of the motor.

  19. Relationship between writing skills and visual-motor control in low-vision students.

    PubMed

    Atasavun Uysal, Songül; Aki, Esra

    2012-08-01

    The purpose of this study was to investigate the relationship between handwriting skills and visual motor control among students with low vision and to compare this with the performance of their normal sighted peers. 42 students with low vision and 26 normal sighted peers participated. The Bruininks-Oseretsky Motor Proficiency Test-Short Form (BOTMP-SF), Jebsen Taylor Hand Function Test's writing subtest, and a legibility assessment were administered. Significant differences were found between groups for students' writing speed, legibility, and visual motor control. Visual motor control was correlated both writing speed and legibility. Students with low vision had poorer handwriting performance, with lower legibility and slower writing speed. Writing performance time was related to visual motor control in students with low vision.

  20. A propulsion and steering control system for the Mars rover

    NASA Technical Reports Server (NTRS)

    Turner, J. M.

    1980-01-01

    The design of a propulsion and steering control system for the Rensselaer Polytechnic Institute prototype autonomous Mars roving vehicle is presented. The vehicle is propelled and steered by four independent electric motors. The control system must regulate the speeds of the motors so they work in unison during turns and on irregular terrain. An analysis of the motor coordination problem on irregular terrain, where each motor must supply a different torque at a different speed is presented. A procedure was developed to match the output of each motor to the varying load. A design for the control system is given. The controller uses a microprocessor which interprets speed and steering commands from an off-board computer, and produces the appropriate drive voltages for the motors.

  1. Methods, systems and apparatus for adjusting modulation index to improve linearity of phase voltage commands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos-Lopez, Gabriel; Perisic, Milun; Kinoshita, Michael H.

    2017-03-14

    Embodiments of the present invention relate to methods, systems and apparatus for controlling operation of a multi-phase machine in a motor drive system. The disclosed embodiments provide a mechanism for adjusting modulation index of voltage commands to improve linearity of the voltage commands.

  2. Decreased Leftward ‘Aiming’ Motor-Intentional Spatial Cuing in Traumatic Brain Injury

    PubMed Central

    Wagner, Daymond; Eslinger, Paul J.; Barrett, A. M.

    2016-01-01

    Objective To characterize the mediation of attention and action in space following traumatic brain injury (TBI). Method Two exploratory analyses were performed to determine the influence of spatial ‘Aiming’ motor versus spatial ‘Where’ bias on line bisection in TBI participants. The first experiment compared performance according to severity and location of injury in TBI. The second experiment examined bisection performance in a larger TBI sample against a matched control group. In both experiments, participants bisected lines in near and far space using an apparatus that allowed for the fractionation of spatial Aiming versus Where error components. Results In the first experiment, participants with severe injuries tended to incur rightward error when starting from the right in far space, compared with participants with mild injuries. In the second experiment, when performance was examined at the individual level, more participants with TBI tended to incur rightward motor error compared to controls. Conclusions TBI may cause frontal-subcortical cognitive dysfunction and asymmetric motor perseveration, affecting spatial Aiming bias on line bisection. Potential effects on real-world function need further investigation. PMID:27571220

  3. Descending motor pathways and the spinal motor system - Limbic and non-limbic components

    NASA Technical Reports Server (NTRS)

    Holstege, Gert

    1991-01-01

    Research on descending motor pathways to caudal brainstem and spinal cord in the spinal motor system is reviewed. Particular attention is given to somatic and autonomic motoneurons in the spinal cord and brainstem, local projections to motoneurons, bulbospinal interneurons projecting to motoneurons, descending pathways of somatic motor control systems, and descending pathways involved in limbic motor control systems.

  4. CONTRIBUTION OF AXIAL MOTOR IMPAIRMENT TO PHYSICAL INACTIVITY IN PARKINSON'S DISEASE

    PubMed Central

    Bryant, Mon S; Hou, Jyhgong Gabriel; Collins, Robert L; Protas, Elizabeth J

    2015-01-01

    Objective To investigate the relationships between motor symptoms of Parkinson’s disease (PD) and activity limitations in persons with PD. Design/Methods Cross-sectional study of persons with mild to moderate PD (N=90). Associations among axial motor features, limb motor signs, the Physical Activity Scale for Elders (PASE), the ability to perform Activities of Daily Living (ADL) and level of ADL dependency were studied. A composite score of axial motor features included the following UPDRS items: speech, rigidity of the neck, arising from chair, posture, gait and postural stability. A composite score of limb motor signs included the following UPDRS items: tremor at rest of all extremities, action tremor, rigidity of all extremities, finger taps, hand movement, rapid alternating hand movements and foot tapping. Results Axial motor features of PD were significantly correlated with physical inactivity (p<.001), decreased ADL (p<.001) and increase in ADL dependency (p<.001). Limb motor signs significantly correlated with decreased ADL (p<.001) and level of ADL dependency (p=.035), but was not correlated with physical inactivity. After controlling for age, gender, disease duration and comorbidity, axial motor features contributed significantly to physical inactivity, decreased ADL and increase in ADL dependency, whereas the limb motor signs did not. Conclusions Axial motor impairment contributed to physical inactivity and decreased ability to perform ADLs in persons with PD. PMID:26368837

  5. Trade Electricity. Motors & Controls--Level 3. Standardized Curriculum.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Office of Occupational and Career Education.

    This curriculum guide consists of seven modules on motors and controls, one of the three divisions of the standardized trade electricity curriculum in high schools in New York City. The seven modules cover the following subjects: energy conservation wiring, direct current (DC) motor repair and rewinding, DC motor controls, alternating current (AC)…

  6. 49 CFR 383.31 - Notification of convictions for driver violations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., in any type of motor vehicle, a State or local law relating to motor vehicle traffic control (other... motor vehicle traffic control (other than a parking violation) in a State or jurisdiction other than the... violation(s) of State or local law relating to motor vehicle traffic control, for which the person was...

  7. 46 CFR 111.101-3 - General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (e) Each motor controller must be above the uppermost continuous deck. There must be a master switch at the controller and a master switch at the motor. The master switch at the motor must be disconnected from the circuit when the motor is started or stopped from the master switch at the controller. (f...

  8. Improvement of Hand Movement on Visual Target Tracking by Assistant Force of Model-Based Compensator

    NASA Astrophysics Data System (ADS)

    Ide, Junko; Sugi, Takenao; Nakamura, Masatoshi; Shibasaki, Hiroshi

    Human motor control is achieved by the appropriate motor commands generating from the central nerve system. A test of visual target tracking is one of the effective methods for analyzing the human motor functions. We have previously examined a possibility for improving the hand movement on visual target tracking by additional assistant force through a simulation study. In this study, a method for compensating the human hand movement on visual target tracking by adding an assistant force was proposed. Effectiveness of the compensation method was investigated through the experiment for four healthy adults. The proposed compensator precisely improved the reaction time, the position error and the variability of the velocity of the human hand. The model-based compensator proposed in this study is constructed by using the measurement data on visual target tracking for each subject. The properties of the hand movement for different subjects can be reflected in the structure of the compensator. Therefore, the proposed method has possibility to adjust the individual properties of patients with various movement disorders caused from brain dysfunctions.

  9. Debris control design achievements of the booster separation motors

    NASA Technical Reports Server (NTRS)

    Smith, G. W.; Chase, C. A.

    1985-01-01

    The stringent debris control requirements imposed on the design of the Space Shuttle booster separation motor are described along with the verification program implemented to ensure compliance with debris control objectives. The principal areas emphasized in the design and development of the Booster Separation Motor (BSM) relative to debris control were the propellant formulation and nozzle closures which protect the motors from aerodynamic heating and moisture. A description of the motor design requirements, the propellant formulation and verification program, and the nozzle closures design and verification are presented.

  10. A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs.

    PubMed

    Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J; Paz-Vicente, Rafael; Civit-Balcells, Anton

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control.

  11. A Neuro-Inspired Spike-Based PID Motor Controller for Multi-Motor Robots with Low Cost FPGAs

    PubMed Central

    Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J.; Paz-Vicente, Rafael; Civit-Balcells, Anton

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control. PMID:22666004

  12. Solar powered actuator with continuously variable auxiliary power control

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A solar powered system is disclosed in which a load such as a compressor is driven by a main induction motor powered by a solar array. An auxiliary motor shares the load with the solar powered motor in proportion to the amount of sunlight available, is provided with a power factor controller for controlling voltage applied to the auxiliary motor in accordance with the loading on that motor. In one embodiment, when sufficient power is available from the solar cell, the auxiliary motor is driven as a generator by excess power from the main motor so as to return electrical energy to the power company utility lines.

  13. Optimality, stochasticity, and variability in motor behavior

    PubMed Central

    Guigon, Emmanuel; Baraduc, Pierre; Desmurget, Michel

    2008-01-01

    Recent theories of motor control have proposed that the nervous system acts as a stochastically optimal controller, i.e. it plans and executes motor behaviors taking into account the nature and statistics of noise. Detrimental effects of noise are converted into a principled way of controlling movements. Attractive aspects of such theories are their ability to explain not only characteristic features of single motor acts, but also statistical properties of repeated actions. Here, we present a critical analysis of stochastic optimality in motor control which reveals several difficulties with this hypothesis. We show that stochastic control may not be necessary to explain the stochastic nature of motor behavior, and we propose an alternative framework, based on the action of a deterministic controller coupled with an optimal state estimator, which relieves drawbacks of stochastic optimality and appropriately explains movement variability. PMID:18202922

  14. Translation of EEG Spatial Filters from Resting to Motor Imagery Using Independent Component Analysis

    PubMed Central

    Wang, Yijun; Wang, Yu-Te; Jung, Tzyy-Ping

    2012-01-01

    Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) often use spatial filters to improve signal-to-noise ratio of task-related EEG activities. To obtain robust spatial filters, large amounts of labeled data, which are often expensive and labor-intensive to obtain, need to be collected in a training procedure before online BCI control. Several studies have recently developed zero-training methods using a session-to-session scenario in order to alleviate this problem. To our knowledge, a state-to-state translation, which applies spatial filters derived from one state to another, has never been reported. This study proposes a state-to-state, zero-training method to construct spatial filters for extracting EEG changes induced by motor imagery. Independent component analysis (ICA) was separately applied to the multi-channel EEG in the resting and the motor imagery states to obtain motor-related spatial filters. The resultant spatial filters were then applied to single-trial EEG to differentiate left- and right-hand imagery movements. On a motor imagery dataset collected from nine subjects, comparable classification accuracies were obtained by using ICA-based spatial filters derived from the two states (motor imagery: 87.0%, resting: 85.9%), which were both significantly higher than the accuracy achieved by using monopolar scalp EEG data (80.4%). The proposed method considerably increases the practicality of BCI systems in real-world environments because it is less sensitive to electrode misalignment across different sessions or days and does not require annotated pilot data to derive spatial filters. PMID:22666377

  15. Research and simulation of the decoupling transformation in AC motor vector control

    NASA Astrophysics Data System (ADS)

    He, Jiaojiao; Zhao, Zhongjie; Liu, Ken; Zhang, Yongping; Yao, Tuozhong

    2018-04-01

    Permanent magnet synchronous motor (PMSM) is a nonlinear, strong coupling, multivariable complex object, and transformation decoupling can solve the coupling problem of permanent magnet synchronous motor. This paper gives a permanent magnet synchronous motor (PMSM) mathematical model, introduces the permanent magnet synchronous motor vector control coordinate transformation in the process of modal matrix inductance matrix transform through the matrix related knowledge of different coordinates of diagonalization, which makes the coupling between the independent, realize the control of motor current and excitation the torque current coupling separation, and derived the coordinate transformation matrix, the thought to solve the coupling problem of AC motor. Finally, in the Matlab/Simulink environment, through the establishment and combination between the PMSM ontology, coordinate conversion module, built the simulation model of permanent magnet synchronous motor vector control, introduces the model of each part, and analyzed the simulation results.

  16. Controller design approach based on linear programming.

    PubMed

    Tanaka, Ryo; Shibasaki, Hiroki; Ogawa, Hiromitsu; Murakami, Takahiro; Ishida, Yoshihisa

    2013-11-01

    This study explains and demonstrates the design method for a control system with a load disturbance observer. Observer gains are determined by linear programming (LP) in terms of the Routh-Hurwitz stability criterion and the final-value theorem. In addition, the control model has a feedback structure, and feedback gains are determined to be the linear quadratic regulator. The simulation results confirmed that compared with the conventional method, the output estimated by our proposed method converges to a reference input faster when a load disturbance is added to a control system. In addition, we also confirmed the effectiveness of the proposed method by performing an experiment with a DC motor. © 2013 ISA. Published by ISA. All rights reserved.

  17. Study on the precision of the guide control system of independent wheel

    NASA Astrophysics Data System (ADS)

    ji, Y.; Ren, L.; Li, R.; Sun, W.

    2016-09-01

    The torque ripple of permanent magnet synchronous motor vector with active control is studied in this paper. The ripple appears because of the impact of position detection and current detection, the error generated in inverter and the influence of motor ontology (magnetic chain harmonic and the cogging effect and so on). Then, the simulation dynamic model of bogie with permanent magnet synchronous motor vector control system is established with MATLAB/Simulink. The stability of bogie with steering control is studied. The relationship between the error of the motor and the precision of the control system is studied. The result shows that the existing motor does not meet the requirements of the control system.

  18. Optimal Control Strategy Design Based on Dynamic Programming for a Dual-Motor Coupling-Propulsion System

    PubMed Central

    Zhang, Shuo; Zhang, Chengning; Han, Guangwei; Wang, Qinghui

    2014-01-01

    A dual-motor coupling-propulsion electric bus (DMCPEB) is modeled, and its optimal control strategy is studied in this paper. The necessary dynamic features of energy loss for subsystems is modeled. Dynamic programming (DP) technique is applied to find the optimal control strategy including upshift threshold, downshift threshold, and power split ratio between the main motor and auxiliary motor. Improved control rules are extracted from the DP-based control solution, forming near-optimal control strategies. Simulation results demonstrate that a significant improvement in reducing energy loss due to the dual-motor coupling-propulsion system (DMCPS) running is realized without increasing the frequency of the mode switch. PMID:25540814

  19. Optimal control strategy design based on dynamic programming for a dual-motor coupling-propulsion system.

    PubMed

    Zhang, Shuo; Zhang, Chengning; Han, Guangwei; Wang, Qinghui

    2014-01-01

    A dual-motor coupling-propulsion electric bus (DMCPEB) is modeled, and its optimal control strategy is studied in this paper. The necessary dynamic features of energy loss for subsystems is modeled. Dynamic programming (DP) technique is applied to find the optimal control strategy including upshift threshold, downshift threshold, and power split ratio between the main motor and auxiliary motor. Improved control rules are extracted from the DP-based control solution, forming near-optimal control strategies. Simulation results demonstrate that a significant improvement in reducing energy loss due to the dual-motor coupling-propulsion system (DMCPS) running is realized without increasing the frequency of the mode switch.

  20. Enhancing motor learning through peer tutoring.

    PubMed

    Feinberg, Judy R; Elkington, Sarah J; Dewey, Kimberly A; Dzielawa, Dawn M; Hayden, Nicky L; Blankenship, Staci L; Nahrwold, Christopher M; Smith, Jennifer L

    2002-01-01

    The purpose of this study was to examine the efficacy of incorporating mnemonic memory aids and having a subject teach another person a given task (peer tutoring) as a method of enhancing task acquisition and recall by the subject and to discuss the implications for occupational therapists who instruct clients in motor tasks such as therapeutic exercise programs. Sixty-seven college students were randomly assigned to one of three groups using different teaching methods for the purpose of learning a motor task, specifically the American Sign Language alphabet. Subjects who were taught using mnemonics and peer tutoring scored significantly better on post-testing two days following instruction than did the control groups. Use of these techniques did not increase direct teaching time by the instructor, nor did they incur additional costs. Thus, these techniques may be easily incorporated into client education to improve recall and performance.

  1. The relationship between executive function and fine motor control in young and older adults.

    PubMed

    Corti, Emily J; Johnson, Andrew R; Riddle, Hayley; Gasson, Natalie; Kane, Robert; Loftus, Andrea M

    2017-01-01

    The present study examined the relationship between executive function (EF) and fine motor control in young and older healthy adults. Participants completed 3 measures of executive function; a spatial working memory (SWM) task, the Stockings of Cambridge task (planning), and the Intra-Dimensional Extra-Dimensional Set-Shift task (set-shifting). Fine motor control was assessed using 3 subtests of the Purdue Pegboard (unimanual, bimanual, sequencing). For the younger adults, there were no significant correlations between measures of EF and fine motor control. For the older adults, all EFs significantly correlated with all measures of fine motor control. Three separate regressions examined whether planning, SWM and set-shifting independently predicted unimanual, bimanual, and sequencing scores for the older adults. Planning was the primary predictor of performance on all three Purdue subtests. A multiple-groups mediation model examined whether planning predicted fine motor control scores independent of participants' age, suggesting that preservation of planning ability may support fine motor control in older adults. Planning remained a significant predictor of unimanual performance in the older age group, but not bimanual or sequencing performance. The findings are discussed in terms of compensation theory, whereby planning is a key compensatory resource for fine motor control in older adults. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Enhanced robust fractional order proportional-plus-integral controller based on neural network for velocity control of permanent magnet synchronous motor.

    PubMed

    Zhang, Bitao; Pi, YouGuo

    2013-07-01

    The traditional integer order proportional-integral-differential (IO-PID) controller is sensitive to the parameter variation or/and external load disturbance of permanent magnet synchronous motor (PMSM). And the fractional order proportional-integral-differential (FO-PID) control scheme based on robustness tuning method is proposed to enhance the robustness. But the robustness focuses on the open-loop gain variation of controlled plant. In this paper, an enhanced robust fractional order proportional-plus-integral (ERFOPI) controller based on neural network is proposed. The control law of the ERFOPI controller is acted on a fractional order implement function (FOIF) of tracking error but not tracking error directly, which, according to theory analysis, can enhance the robust performance of system. Tuning rules and approaches, based on phase margin, crossover frequency specification and robustness rejecting gain variation, are introduced to obtain the parameters of ERFOPI controller. And the neural network algorithm is used to adjust the parameter of FOIF. Simulation and experimental results show that the method proposed in this paper not only achieve favorable tracking performance, but also is robust with regard to external load disturbance and parameter variation. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Individual Differences in Language Development: Relationship with Motor Skill at 21 Months

    ERIC Educational Resources Information Center

    Alcock, Katherine J.; Krawczyk, Kirsty

    2010-01-01

    Language development has long been associated with motor development, particularly manual gesture. We examined a variety of motor abilities--manual gesture including symbolic, meaningless and sequential memory, oral motor control, gross and fine motor control--in 129 children aged 21 months. Language abilities were assessed and cognitive and…

  4. Power factor control system for AC induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1977-01-01

    A power factor control system for use with ac induction motors was designed which samples lines voltage and current through the motor and decreases power input to the motor proportional to the detected phase displacement between current and voltage. This system provides, less power to the motor, as it is less loaded.

  5. [Children with developmental coordination disorder have difficulty with action representation].

    PubMed

    Gabbard, Carl; Cacola, Priscila

    The study of children with developmental coordination disorder (DCD) has emerged as a vibrant line of inquiry over the last two decades. The literature indicates quite clearly that children with DCD display deficits with an array of perceptual-motor and daily living skills. The movements of children with DCD are often described as clumsy and uncoordinated and lead to difficulties with performing many of the activities of daily living and sports that typically developing children perform easily. It has been hypothesized, based on limited research, that an underlying problem is a deficit in generating and/or monitoring an action representation termed the internal modeling deficit hypothesis. According to the hypothesis, children with DCD have significant limitations in their ability to accurately generate and utilize internal models of motor planning and control. The focus of this review is on one of the methods used to examine action representation-motor imagery, which theorists argue provides a window into the process of action representation. Included are research methods and possible brain structures involved. An addition, a paradigm unique with this population-estimation of reachability (distance) via motor imagery, will be described.

  6. Regaining motor control in musician's dystonia by restoring sensorimotor organization.

    PubMed

    Rosenkranz, Karin; Butler, Katherine; Williamon, Aaron; Rothwell, John C

    2009-11-18

    Professional musicians are an excellent model of long-term motor learning effects on structure and function of the sensorimotor system. However, intensive motor skill training has been associated with task-specific deficiency in hand motor control, which has a higher prevalence among musicians (musician's dystonia) than in the general population. Using a transcranial magnetic stimulation paradigm, we previously found an expanded spatial integration of proprioceptive input into the hand motor cortex [sensorimotor organization (SMO)] in healthy musicians. In musician's dystonia, however, this expansion was even larger. Whereas motor skills of musicians are likely to be supported by a spatially expanded SMO, we hypothesized that in musician's dystonia this might have developed too far and now disrupts rather than assists task-specific motor control. If so, motor control should be regained by reversing the excessive reorganization in musician's dystonia. Here, we test this hypothesis and show that a 15 min intervention with proprioceptive input (proprioceptive training) restored SMO in pianists with musician's dystonia to the pattern seen in healthy pianists. Crucially, task-specific motor control improved significantly and objectively as measured with a MIDI (musical instrument digital interface) piano, and the amount of behavioral improvement was significantly correlated to the degree of sensorimotor reorganization. In healthy pianists and nonmusicians, the SMO and motor performance remained essentially unchanged. These findings suggest that the differentiation of SMO in the hand motor cortex and the degree of motor control of intensively practiced tasks are significantly linked and finely balanced. Proprioceptive training restored this balance in musician's dystonia to the behaviorally beneficial level of healthy musicians.

  7. 40 CFR 80.500 - What are the implementation dates for the motor vehicle diesel fuel sulfur control program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the motor vehicle diesel fuel sulfur control program? 80.500 Section 80.500 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.500 What are the implementation dates for the motor vehicle diesel fuel sulfur control...

  8. 40 CFR 80.500 - What are the implementation dates for the motor vehicle diesel fuel sulfur control program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the motor vehicle diesel fuel sulfur control program? 80.500 Section 80.500 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.500 What are the implementation dates for the motor vehicle diesel fuel sulfur control...

  9. DC servo motor positioning with anti-windup implementation using C2000 ARM-Texas Instrument

    NASA Astrophysics Data System (ADS)

    Linggarjati, Jimmy

    2017-12-01

    One of the most important topics in control system is DC Motor. At this research, a positioning control system for a DC motor is investigated. Firstly, the DC Motor will be paramaterized to get the transfer function model, in order to be simulated in Matlab, and then implemented in a C2000-ARM microcontroller from TI (Texas Instrument). With this investigation, students in control system theory will be able to understand the importance of classical control theories, in relation to the real world implementation of the position control for the DC Motor, escpecially the importance of Anti-Windup technique in real-world implementation.

  10. Strong Functional Connectivity among Homotopic Brain Areas Is Vital for Motor Control in Unilateral Limb Movement.

    PubMed

    Wei, Pengxu; Zhang, Zuting; Lv, Zeping; Jing, Bin

    2017-01-01

    The mechanism underlying brain region organization for motor control in humans remains poorly understood. In this functional magnetic resonance imaging (fMRI) study, right-handed volunteers were tasked to maintain unilateral foot movements on the right and left sides as consistently as possible. We aimed to identify the similarities and differences between brain motor networks of the two conditions. We recruited 18 right-handed healthy volunteers aged 25 ± 2.3 years and used a whole-body 3T system for magnetic resonance (MR) scanning. Image analysis was performed using SPM8, Conn toolbox and Brain Connectivity Toolbox. We determined a craniocaudally distributed, mirror-symmetrical modular structure. The functional connectivity between homotopic brain areas was generally stronger than the intrahemispheric connections, and such strong connectivity led to the abovementioned modular structure. Our findings indicated that the interhemispheric functional interaction between homotopic brain areas is more intensive than the interaction along the conventional top-down and bottom-up pathways within the brain during unilateral limb movement. The detected strong interhemispheric horizontal functional interaction is an important aspect of motor control but often neglected or underestimated. The strong interhemispheric connectivity may explain the physiological phenomena and effects of promising therapeutic approaches. Further accurate and effective therapeutic methods may be developed on the basis of our findings.

  11. Test Platform for Advanced Digital Control of Brushless DC Motors (MSFC Center Director's Discretionary Fund)

    NASA Technical Reports Server (NTRS)

    Gwaltney, D. A.

    2002-01-01

    A FY 2001 Center Director's Discretionary Fund task to develop a test platform for the development, implementation. and evaluation of adaptive and other advanced control techniques for brushless DC (BLDC) motor-driven mechanisms is described. Important applications for BLDC motor-driven mechanisms are the translation of specimens in microgravity experiments and electromechanical actuation of nozzle and fuel valves in propulsion systems. Motor-driven aerocontrol surfaces are also being utilized in developmental X vehicles. The experimental test platform employs a linear translation stage that is mounted vertically and driven by a BLDC motor. Control approaches are implemented on a digital signal processor-based controller for real-time, closed-loop control of the stage carriage position. The goal of the effort is to explore the application of advanced control approaches that can enhance the performance of a motor-driven actuator over the performance obtained using linear control approaches with fixed gains. Adaptive controllers utilizing an exact model knowledge controller and a self-tuning controller are implemented and the control system performance is illustrated through the presentation of experimental results.

  12. Nanocrystalline cerium dioxide efficacy for gastrointestinal motility: potential for prokinetic treatment and prevention in elderly.

    PubMed

    Yefimenko, Olena Yu; Savchenko, Yuliya O; Falalyeyeva, Tetyana M; Beregova, Tetyana V; Zholobak, Nadiya M; Spivak, Mykola Ya; Shcherbakov, Oleksandr B; Bubnov, Rostyslav V

    2015-01-01

    Constipation is a common condition, with prevalence after 65 years, is a major colorectal cancer risk factor. Recent works have demonstrated advances in personalized, preventive nanomedicine, leading to the construction of new materials and nanodrugs, in particular, nanocrystalline cerium dioxide (NCD), having strong antioxidative prebiotic effect. The aim of our study was to investigate the influence of NCD on motor function of the stomach and colon in vivo and contractive activity of smooth muscles in different year-old rats. We included 80 rats: 3- (weight 130-160 g, n = 40) and 24-month old (weight 390-450 g, n = 40), divided into four groups as follows: І-control group; rats of II-ІV groups were injected intragastrically one injection per day during 10 days, 3 ml of water 3 ml/kg stabilizing solution, аnd 1 mmol/ml NCD, respectively. In all animals, we recorded spontaneous and carbachol-stimulated (0.01 mg/kg) gastrointestinal tract motor activity. We used the index of motor activity (IMA), expressed in cmH2O, for characterization of the motor function. We investigated smooth muscle contraction by tenzometric method, studied the spontaneous and stimulated motility by ballonographic method. IMA reduced by 21.1 + 0.2% (p < 0.01) in the old rats of the control group compared with the young rats. A 10-day administration of NCD increased IMA in the stomach of young rats by 9.3% (р < 0.001) vs the control group. The exposure of NCD increased the amplitude of contraction to 34.2 ± 5.4 mN (n = 10) in the stomach of old rats and increased by 32.1 ± 2.4% vs the control group (p < 0.05). NCD did not influence acetylcholine (ACh) contractions in the stomach of young rats; however, in the stomach of old rats, V nr increased by 90 ± 15.2% (р < 0.001). The index of motor activity is decreased in old rats. Nanocrystalline cerium dioxide increased the index of motor activity in all groups of rats and also evoked a significant increase of colon contractions in old rats.

  13. Method for assessing motor insulation on operating motors

    DOEpatents

    Kueck, John D.; Otaduy, Pedro J.

    1997-01-01

    A method for monitoring the condition of electrical-motor-driven devices. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques.

  14. Brain activation associated with eccentric movement: A narrative review of the literature.

    PubMed

    Perrey, Stéphane

    2018-02-01

    The movement occurring when a muscle exerts tension while lengthening is known as eccentric muscle action. Literature contains limited evidence on how our brain controls eccentric movement. However, how the cortical regions in the motor network are activated during eccentric muscle actions may be critical for understanding the underlying control mechanism of eccentric movements encountered in daily tasks. This is a novel topic that has only recently begun to be investigated through advancements in neuroimaging methods (electroencephalography, EEG; functional magnetic resonance imaging, fMRI). This review summarizes a selection of seven studies indicating mainly: longer time and higher cortical signal amplitude (EEG) for eccentric movement preparation and execution, greater magnitude of cortical signals with wider activated brain area (EEG, fMRI), and weaker brain functional connectivity (fMRI) between primary motor cortex (M1) and other cortical areas involved in the motor network during eccentric muscle actions. Only some differences among studies due to the forms of movement with overload were observed in the contralateral (to the active hand) M1 activity during eccentric movement. Altogether, the findings indicate an important challenge to the brain for controlling the eccentric movement. However, our understanding remains limited regarding the acute effects of eccentric exercise on cortical regions and their cooperation as functional networks that support motor functions. Further analysis and standardized protocols will provide deeper insights into how different cortical regions of the underlying motor network interplay with each other in increasingly demanding muscle exertions in eccentric mode.

  15. Approximation-Based Discrete-Time Adaptive Position Tracking Control for Interior Permanent Magnet Synchronous Motors.

    PubMed

    Yu, Jinpeng; Shi, Peng; Yu, Haisheng; Chen, Bing; Lin, Chong

    2015-07-01

    This paper considers the problem of discrete-time adaptive position tracking control for a interior permanent magnet synchronous motor (IPMSM) based on fuzzy-approximation. Fuzzy logic systems are used to approximate the nonlinearities of the discrete-time IPMSM drive system which is derived by direct discretization using Euler method, and a discrete-time fuzzy position tracking controller is designed via backstepping approach. In contrast to existing results, the advantage of the scheme is that the number of the adjustable parameters is reduced to two only and the problem of coupling nonlinearity can be overcome. It is shown that the proposed discrete-time fuzzy controller can guarantee the tracking error converges to a small neighborhood of the origin and all the signals are bounded. Simulation results illustrate the effectiveness and the potentials of the theoretic results obtained.

  16. Strength training, but not endurance training, reduces motor unit discharge rate variability.

    PubMed

    Vila-Chã, Carolina; Falla, Deborah

    2016-02-01

    This study evaluates and compares the effects of strength and endurance training on motor unit discharge rate variability and force steadiness of knee extensor muscles. Thirty sedentary healthy men (age, 26.0±3.8yrs) were randomly assigned to strength training, endurance training or a control group. Conventional endurance and strength training was performed 3days per week, over a period of 6weeks. Maximum voluntary contraction (MVC), time to task failure (at 30% MVC), coefficient of variation (CoV) of force and of the discharges rates of motor units from the vastus medialis obliquus and vastus lateralis were determined as subjects performed 20% and 30% MVC knee extension contractions before and after training. CoV of motor unit discharges rates was significantly reduced for both muscles following strength training (P<0.001), but did not change in the endurance (P=0.875) or control group (P=0.995). CoV of force was reduced after the strength training intervention only (P<0.01). Strength training, but not endurance training, reduces motor unit discharge rate variability and enhances force steadiness of the knee extensors. These results provide new insights into the neuromuscular adaptations that occur with different training methods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Utilization of a novel digital measurement tool for quantitative assessment of upper extremity motor dexterity: a controlled pilot study.

    PubMed

    Getachew, Ruth; Lee, Sunghoon I; Kimball, Jon A; Yew, Andrew Y; Lu, Derek S; Li, Charles H; Garst, Jordan H; Ghalehsari, Nima; Paak, Brian H; Razaghy, Mehrdad; Espinal, Marie; Ostowari, Arsha; Ghavamrezaii, Amir A; Pourtaheri, Sahar; Wu, Irene; Sarrafzadeh, Majid; Lu, Daniel C

    2014-08-13

    The current methods of assessing motor function rely primarily on the clinician's judgment of the patient's physical examination and the patient's self-administered surveys. Recently, computerized handgrip tools have been designed as an objective method to quantify upper-extremity motor function. This pilot study explores the use of the MediSens handgrip as a potential clinical tool for objectively assessing the motor function of the hand. Eleven patients with cervical spondylotic myelopathy (CSM) were followed for three months. Eighteen age-matched healthy participants were followed for two months. The neuromotor function and the patient-perceived motor function of these patients were assessed with the MediSens device and the Oswestry Disability Index respectively. The MediSens device utilized a target tracking test to investigate the neuromotor capacity of the participants. The mean absolute error (MAE) between the target curve and the curve tracing achieved by the participants was used as the assessment metric. The patients' adjusted MediSens MAE scores were then compared to the controls. The CSM patients were further classified as either "functional" or "nonfunctional" in order to validate the system's responsiveness. Finally, the correlation between the MediSens MAE score and the ODI score was investigated. The control participants had lower MediSens MAE scores of 8.09%±1.60%, while the cervical spinal disorder patients had greater MediSens MAE scores of 11.24%±6.29%. Following surgery, the functional CSM patients had an average MediSens MAE score of 7.13%±1.60%, while the nonfunctional CSM patients had an average score of 12.41%±6.32%. The MediSens MAE and the ODI scores showed a statistically significant correlation (r=-0.341, p<1.14×10⁻⁵). A Bland-Altman plot was then used to validate the agreement between the two scores. Furthermore, the percentage improvement of the the two scores after receiving the surgical intervention showed a significant correlation (r=-0.723, p<0.04). The MediSens handgrip device is capable of identifying patients with impaired motor function of the hand. The MediSens handgrip scores correlate with the ODI scores and may serve as an objective alternative for assessing motor function of the hand.

  18. Universal computer control system (UCCS) for space telerobots

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Szakaly, Zoltan

    1987-01-01

    A universal computer control system (UCCS) is under development for all motor elements of a space telerobot. The basic hardware architecture and software design of UCCS are described, together with the rich motor sensing, control, and self-test capabilities of this all-computerized motor control system. UCCS is integrated into a multibus computer environment with direct interface to higher level control processors, uses pulsewidth multiplier power amplifiers, and one unit can control up to sixteen different motors simultaneously at a high I/O rate. UCCS performance capabilities are illustrated by a few data.

  19. Induction motor speed control using varied duty cycle terminal voltage via PI controller

    NASA Astrophysics Data System (ADS)

    Azwin, A.; Ahmed, S.

    2018-03-01

    This paper deals with the PI speed controller for the three-phase induction motor using PWM technique. The PWM generated signal is utilized for voltage source inverter with an optimal duty cycle on a simplified induction motor model. A control algorithm for generating PWM control signal is developed. Obtained results shows that the steady state error and overshoot of the developed system is in the limit under different speed and load condition. The robustness of the control performance would be potential for induction motor performance improvement.

  20. Research on Control System of Three - phase Brushless DC Motor for Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Wang, Zhiwei; Jin, Hai; Guo, Jie; Su, Jie; Wang, Miao

    2017-12-01

    In order to study the three-phase brushless motor control system of electric vehicle, Freescale9S12XS128 chip is used as the control core, and the power MOSFET is used as the inverter device. The software is compiled by Codewarrior software. The speed control link adopts open-loop control, and the control chip collects the external sensor signal voltage Change control PWM signal output control three-phase brushless DC motor speed. The whole system consists of Hall position detection module, current detection module, power drive module and voltage detection module. The basic functions of three-phase brushless DC motor drive control are realized.

  1. Towards a user-friendly brain-computer interface: initial tests in ALS and PLS patients.

    PubMed

    Bai, Ou; Lin, Peter; Huang, Dandan; Fei, Ding-Yu; Floeter, Mary Kay

    2010-08-01

    Patients usually require long-term training for effective EEG-based brain-computer interface (BCI) control due to fatigue caused by the demands for focused attention during prolonged BCI operation. We intended to develop a user-friendly BCI requiring minimal training and less mental load. Testing of BCI performance was investigated in three patients with amyotrophic lateral sclerosis (ALS) and three patients with primary lateral sclerosis (PLS), who had no previous BCI experience. All patients performed binary control of cursor movement. One ALS patient and one PLS patient performed four-directional cursor control in a two-dimensional domain under a BCI paradigm associated with human natural motor behavior using motor execution and motor imagery. Subjects practiced for 5-10min and then participated in a multi-session study of either binary control or four-directional control including online BCI game over 1.5-2h in a single visit. Event-related desynchronization and event-related synchronization in the beta band were observed in all patients during the production of voluntary movement either by motor execution or motor imagery. The online binary control of cursor movement was achieved with an average accuracy about 82.1+/-8.2% with motor execution and about 80% with motor imagery, whereas offline accuracy was achieved with 91.4+/-3.4% with motor execution and 83.3+/-8.9% with motor imagery after optimization. In addition, four-directional cursor control was achieved with an accuracy of 50-60% with motor execution and motor imagery. Patients with ALS or PLS may achieve BCI control without extended training, and fatigue might be reduced during operation of a BCI associated with human natural motor behavior. The development of a user-friendly BCI will promote practical BCI applications in paralyzed patients. Copyright 2010 International Federation of Clinical Neurophysiology. All rights reserved.

  2. Variable Rail Voltage Control of a Brushless DC (BLDC) Motor

    DTIC Science & Technology

    2013-01-01

    Variable Rail Voltage Control of a Brushless DC ( BLDC ) Motor by Yuan Chen, Joseph Conroy, and William Nothwang ARL-TR-6308 January 2013...TR-6308 January 2013 Variable Rail Voltage Control of a Brushless DC ( BLDC ) Motor Yuan Chen, Joseph Conroy, and William Nothwang Sensors...DATES COVERED (From - To) 4. TITLE AND SUBTITLE Variable Rail Voltage Control of a Brushless DC ( BLDC ) Motor 5a. CONTRACT NUMBER 5b. GRANT

  3. Disruption of Functional Organization Within the Primary Motor Cortex in Children With Autism

    PubMed Central

    Nebel, Mary Beth; Joel, Suresh E.; Muschelli, John; Barber, Anita D.; Caffo, Brian S.; Pekar, James J.; Mostofsky, Stewart H.

    2013-01-01

    Accumulating evidence suggests that motor impairments are prevalent in autism spectrum disorder (ASD), relate to the social and communicative deficits at the core of the diagnosis and may reflect abnormal connectivity within brain networks underlying motor control and learning. Parcellation of resting-state functional connectivity data using spectral clustering approaches has been shown to be an effective means of visualizing functional organization within the brain but has most commonly been applied to explorations of normal brain function. This article presents a parcellation of a key area of the motor network, the primary motor cortex (M1), a key area of the motor control network, in adults, typically developing (TD) children and children with ASD and introduces methods for selecting the number of parcels, matching parcels across groups and testing group differences. The parcellation is based solely on patterns of connectivity between individual M1 voxels and all voxels outside of M1, and within all groups, a gross dorsomedial to ventrolateral organization emerged within M1 which was left–right symmetric. Although this gross organizational scheme was present in both groups of children, statistically significant group differences in the size and segregation of M1 parcels within regions of the motor homunculus corresponding to the upper and lower limbs were observed. Qualitative comparison of the M1 parcellation for children with ASD with that of younger and older TD children suggests that these organizational differences, with a lack of differentiation between lower limb/trunk regions and upper limb/hand regions, may be due, at least in part, to a delay in functional specialization within the motor cortex. PMID:23118015

  4. Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI.

    PubMed

    Chen, Xiaogang; Zhao, Bing; Wang, Yijun; Xu, Shengpu; Gao, Xiaorong

    2018-04-12

    Although robot technology has been successfully used to empower people who suffer from motor disabilities to increase their interaction with their physical environment, it remains a challenge for individuals with severe motor impairment, who do not have the motor control ability to move robots or prosthetic devices by manual control. In this study, to mitigate this issue, a noninvasive brain-computer interface (BCI)-based robotic arm control system using gaze based steady-state visual evoked potential (SSVEP) was designed and implemented using a portable wireless electroencephalogram (EEG) system. A 15-target SSVEP-based BCI using a filter bank canonical correlation analysis (FBCCA) method allowed users to directly control the robotic arm without system calibration. The online results from 12 healthy subjects indicated that a command for the proposed brain-controlled robot system could be selected from 15 possible choices in 4[Formula: see text]s (i.e. 2[Formula: see text]s for visual stimulation and 2[Formula: see text]s for gaze shifting) with an average accuracy of 92.78%, resulting in a 15 commands/min transfer rate. Furthermore, all subjects (even naive users) were able to successfully complete the entire move-grasp-lift task without user training. These results demonstrated an SSVEP-based BCI could provide accurate and efficient high-level control of a robotic arm, showing the feasibility of a BCI-based robotic arm control system for hand-assistance.

  5. Simulink(Trademark) Controller for a Reluctance Motor With a Four-Pole Rotor and 36-Tooth Stator

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Provenza, Andrew J.

    2017-01-01

    NASA Glenn Research Center has developed a Simulink(Trademark) controller logic for driving a room temperature, 36-teeth stator, four-pole rotor reluctance motor. The Simulink logic was extracted from an existing C++ motor controller that was previously employed to achieve a rotor speed of 3000 rpm. The Simulink controller has additional logic refinements that were not available in past C++ controller, such as the per rev logic component and its frequency filter. The filter provides a more accurate reading of the rotor input signals. The controller is versatile, and with slight modifications, can be used to drive other reluctance motor types incorporating dissimilar stator rotor pole combinations. The original C++ controller was designed with the goal (after appropriate modification) of controlling a future superconducting motor. This superconducting motor will be employed as a test bed for developing other superconducting aviation propulsion motors envisioned for future turbo-electric aircrafts. The Simulink results presented in this paper were generated from simulated rotor inputs. However, in an actual application, these simulated inputs are to be replaced by actual proximity probe signals emanating from D-Space hardware inputs.

  6. Improved Beam Jitter Control Methods for High Energy Laser Systems

    DTIC Science & Technology

    2009-12-01

    Figure 16. The inner loop is a rate control loop composed of a gimbal, power amplifier , controller, and servo components (gyro, motor, and encoder...system characterization experiments 1. WFOV Control Loop a. Resonance Frequency Random signals were applied to the power amplifier and output...Loop Stabilization By applying a disturbance to the input of the power amplifier and measuring torque error, one is able to determine the torque

  7. Method for assessing motor insulation on operating motors

    DOEpatents

    Kueck, J.D.; Otaduy, P.J.

    1997-03-18

    A method for monitoring the condition of electrical-motor-driven devices is disclosed. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques. 15 figs.

  8. Garcinia kola seeds may prevent cognitive and motor dysfunctions in a type 1 diabetes mellitus rat model partly by mitigating neuroinflammation.

    PubMed

    Seke Etet, Paul F; Farahna, Mohammed; Satti, Gwiria M H; Bushara, Yahia M; El-Tahir, Ahmed; Hamza, Muaawia A; Osman, Sayed Y; Dibia, Ambrose C; Vecchio, Lorella

    2017-04-15

    Background We reported recently that extracts of seeds of Garcinia kola, a plant with established hypoglycemic properties, prevented the loss of inflammation-sensible neuronal populations like Purkinje cells in a rat model of type 1 diabetes mellitus (T1DM). Here, we assessed G. kola extract ability to prevent the early cognitive and motor dysfunctions observed in this model. Methods Rats made diabetic by single injection of streptozotocin were treated daily with either vehicle solution (diabetic control group), insulin, or G. kola extract from the first to the 6th week post-injection. Then, cognitive and motor functions were assessed using holeboard and vertical pole behavioral tests, and animals were sacrificed. Brains were dissected out, cut, and processed for Nissl staining and immunohistochemistry. Results Hyperglycemia (209.26 %), body weight loss (-12.37 %), and T1DM-like cognitive and motor dysfunctions revealed behavioral tests in diabetic control animals were not observed in insulin and extract-treated animals. Similar, expressions of inflammation markers tumor necrosis factor (TNF), iba1 (CD68), and Glial fibrillary acidic protein (GFAP), as well as decreases of neuronal density in regions involved in cognitive and motor functions (-49.56 % motor cortex, -33.24 % medial septal nucleus, -41.8 % /-37.34 % cerebellar Purkinje /granular cell layers) were observed in diabetic controls but not in animals treated with insulin or G. kola. Conclusions Our results indicate that T1DM-like functional alterations are mediated, at least partly, by neuroinflammation and neuronal loss in this model. The prevention of the development of such alterations by early treatment with G. kola confirms the neuroprotective properties of the plant and warrant further mechanistic studies, considering the potential for human disease.

  9. A novel robust speed controller scheme for PMBLDC motor.

    PubMed

    Thirusakthimurugan, P; Dananjayan, P

    2007-10-01

    The design of speed and position controllers for permanent magnet brushless DC motor (PMBLDC) drive remains as an open problem in the field of motor drives. A precise speed control of PMBLDC motor is complex due to nonlinear coupling between winding currents and rotor speed. In addition, the nonlinearity present in the developed torque due to magnetic saturation of the rotor further complicates this issue. This paper presents a novel control scheme to the conventional PMBLDC motor drive, which aims at improving the robustness by complete decoupling of the design besides minimizing the mutual influence among the speed and current control loops. The interesting feature of this robust control scheme is its suitability for both static and dynamic aspects. The effectiveness of the proposed robust speed control scheme is verified through simulations.

  10. Development of magneto-rheologial fluid (MRF) based clutch for output torque control of AC motors

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. Hung; Do, H. M. Hieu; Nguyen, V. Quoc; Nguyen, N. Diep; Le, D. Thang

    2018-03-01

    In industry, the AC motor is widely used because of low price, power availability, low cost maintenance. The main disadvantages of AC motors compared to DC motors are difficulty in speed and torque control, requiring expensive controllers with complex control algorithms. This is the basic limitations in the widespread adoption of AC motor systems for industrial automation. One feasible solution for AC motor control is using MRF (magneto-rheological fluid) based clutches (shortly called MR clutches) Although there have been many studies on MR clutches, most of these clutches used traditional configuration with coils wound on the middle cylindrical part and a compotator is used to supply power to the coils. Therefore, this type of MR clutches possesses many disadvantages such as high friction and unstable applied current due to commutator, complex structure which causes difficulty in manufacture, assembly, and maintenance. In addition, the bottleneck problem of magnetic field is also a challenging issue. In this research, we will develop a new type of MR clutches that overcomes the abovementioned disadvantages of traditional MR clutches and more suitable for application in controlling of AC motor. Besides, in this study, speed and torque control system for AC motors using developed MR clutches is designed and experimental validated.

  11. Symptom-specific amygdala hyperactivity modulates motor control network in conversion disorder.

    PubMed

    Hassa, Thomas; Sebastian, Alexandra; Liepert, Joachim; Weiller, Cornelius; Schmidt, Roger; Tüscher, Oliver

    2017-01-01

    Initial historical accounts as well as recent data suggest that emotion processing is dysfunctional in conversion disorder patients and that this alteration may be the pathomechanistic neurocognitive basis for symptoms in conversion disorder. However, to date evidence of direct interaction of altered negative emotion processing with motor control networks in conversion disorder is still lacking. To specifically study the neural correlates of emotion processing interacting with motor networks we used a task combining emotional and sensorimotor stimuli both separately as well as simultaneously during functional magnetic resonance imaging in a well characterized group of 13 conversion disorder patients with functional hemiparesis and 19 demographically matched healthy controls. We performed voxelwise statistical parametrical mapping for a priori regions of interest within emotion processing and motor control networks. Psychophysiological interaction (PPI) was used to test altered functional connectivity of emotion and motor control networks. Only during simultaneous emotional stimulation and passive movement of the affected hand patients displayed left amygdala hyperactivity. PPI revealed increased functional connectivity in patients between the left amygdala and the (pre-)supplemental motor area and the subthalamic nucleus, key regions within the motor control network. These findings suggest a novel mechanistic direct link between dysregulated emotion processing and motor control circuitry in conversion disorder.

  12. Fundamental Study on Saving Energy for Electrified Railway System Applying High Temperature Superconductor Motor and Energy Storage System

    NASA Astrophysics Data System (ADS)

    Konishi, Takeshi; Nakamura, Taketsune; Amemiya, Naoyuki

    Induction motor instead of dc one has been applied widely for dc electric rolling stock because of the advantage of its utility and efficiency. However, further improvement of motor characteristics will be required to realize environment-friendly dc railway system in the future. It is important to study more efficient machine applying dc electric rolling stock for next generation high performance system. On the other hand, the methods to reuse regenerative energy produced by motors effectively are also important. Therefore, we carried out fundamental study on saving energy for electrified railway system. For the first step, we introduced the energy storage system applying electric double-layer capacitors (EDLC), and its control system. And then, we tried to obtain the specification of high temperature superconductor induction/synchronous motor (HTS-ISM), which performance is similar with that of the conventional induction motors. Furthermore, we tried to evaluate an electrified railway system applying energy storage system and HTS-ISM based on simulation. We succeeded in showing the effectiveness of the introductions of energy storage system and HTS-ISM in DC electrified railway system.

  13. Learning a stick-balancing task involves task-specific coupling between posture and hand displacements.

    PubMed

    Cluff, Tyler; Boulet, Jason; Balasubramaniam, Ramesh

    2011-08-01

    Theories of motor learning argue that the acquisition of novel motor skills requires a task-specific organization of sensory and motor subsystems. We examined task-specific coupling between motor subsystems as subjects learned a novel stick-balancing task. We focused on learning-induced changes in finger movements and body sway and investigated the effect of practice on their coupling. Eight subjects practiced balancing a cylindrical wooden stick for 30 min a day during a 20 day learning period. Finger movements and center of pressure trajectories were recorded in every fifth practice session (4 in total) using a ten camera VICON motion capture system interfaced with two force platforms. Motor learning was quantified using average balancing trial lengths, which increased with practice and confirmed that subjects learned the task. Nonlinear time series and phase space reconstruction methods were subsequently used to investigate changes in the spatiotemporal properties of finger movements, body sway and their progressive coupling. Systematic increases in subsystem coupling were observed despite reduced autocorrelation and differences in the temporal properties of center of pressure and finger trajectories. The average duration of these coupled trajectories increased systematically across the learning period. In short, the abrupt transition between coupled and decoupled subsystem dynamics suggested that stick balancing is regulated by a hierarchical control mechanism that switches from collective to independent control of the finger and center of pressure. In addition to traditional measures of motor performance, dynamical analyses revealed changes in motor subsystem organization that occurred when subjects learned a novel stick-balancing task.

  14. Controlling An Inverter-Driven Three-Phase Motor

    NASA Technical Reports Server (NTRS)

    Dolland, C.

    1984-01-01

    Control system for three-phase permanent-magnet motor driven by linecommutated inverter uses signals generated by integrating back emf of each phase of motor. High-pass filter network eliminates low-frequency components from control loop while maintaining desired power factor.

  15. Limits of Precision for Human Eye Motor Control

    DTIC Science & Technology

    1989-11-01

    APE (Watt & Andrews, 1981) or a staircase method similar to PEST (Taylor & Creelman , 1967) were used. The results from these different methods of...Freeman StCyr, G.J. & Fender, D.H. (1969) The interplay of drifts and flicks in binocular fixation. Vision Res. 9, 245-265 Taylor, M.M. & Creelman , C.D

  16. Eddy Current System and Method for Crack Detection

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor)

    2012-01-01

    An eddy current system and method enables detection of sub-surface damage in a cylindrical object. The invention incorporates a dual frequency, orthogonally wound eddy current probe mounted on a stepper motor-controlled scanning system. The system is designed to inspect for outer surface damage from the interior of the cylindrical object.

  17. Fine motor control

    MedlinePlus

    ... figure out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To have fine motor control, children need: Awareness and planning Coordination ...

  18. Method and apparatus for electromagnetically braking a motor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Radford, Nicolaus A (Inventor); Permenter, Frank Noble (Inventor); Parsons, Adam H (Inventor); Mehling, Joshua S (Inventor)

    2011-01-01

    An electromagnetic braking system and method is provided for selectively braking a motor using an electromagnetic brake having an electromagnet, a permanent magnet, a rotor assembly, and a brake pad. The brake assembly applies when the electromagnet is de-energized and releases when the electromagnet is energized. When applied the permanent magnet moves the brake pad into frictional engagement with a housing, and when released the electromagnet cancels the flux of the permanent magnet to allow a leaf spring to move the brake pad away from the housing. A controller has a DC/DC converter for converting a main bus voltage to a lower braking voltage based on certain parameters. The converter utilizes pulse-width modulation (PWM) to regulate the braking voltage. A calibrated gap is defined between the brake pad and permanent magnet when the brake assembly is released, and may be dynamically modified via the controller.

  19. The role of strategies in motor learning

    PubMed Central

    Taylor, Jordan A.; Ivry, Richard B.

    2015-01-01

    There has been renewed interest in the role of strategies in sensorimotor learning. The combination of new behavioral methods and computational methods has begun to unravel the interaction between processes related to strategic control and processes related to motor adaptation. These processes may operate on very different error signals. Strategy learning is sensitive to goal-based performance error. In contrast, adaptation is sensitive to prediction errors between the desired and actual consequences of a planned movement. The former guides what the desired movement should be, whereas the latter guides how to implement the desired movement. Whereas traditional approaches have favored serial models in which an initial strategy-based phase gives way to more automatized forms of control, it now seems that strategic and adaptive processes operate with considerable independence throughout learning, although the relative weight given the two processes will shift with changes in performance. As such, skill acquisition involves the synergistic engagement of strategic and adaptive processes. PMID:22329960

  20. Pull-pull position control of dual motor wire rope transmission.

    PubMed

    Guo, Quan; Jiao, Zongxia; Yan, Liang; Yu, Qian; Shang, Yaoxing

    2016-08-01

    Wire rope transmission is very efficient because of the small total moving object mass. The wire rope could only transmit pulling force. Therefore it has to be kept in a tightened state during transmission; in high speed applications the dynamic performance depends on the rope's stiffness, which can be adjusted by the wire rope tension. To improve the system dynamic performance output, this paper proposes a novel pull-pull method based on dual motors connected by wire ropes, for precise, high speed position control applications. The method can regulate target position and wire rope tension simultaneously. Wire ropes remain in a pre-tightening state at all times, which prevents the influence of elasticity and reduces the position tracking error in the changing direction process. Simulations and experiments were conducted; the results indicate that both position precision and superior dynamic performance can be synchronously achieved. The research is relevant to space craft precision pointing instruments.

  1. Sensorless control of ship propulsion interior permanent magnet synchronous motor based on a new sliding mode observer.

    PubMed

    Ren, Jun-Jie; Liu, Yan-Cheng; Wang, Ning; Liu, Si-Yuan

    2015-01-01

    This paper proposes a sensorless speed control strategy for ship propulsion interior permanent magnet synchronous motor (IPMSM) based on a new sliding-mode observer (SMO). In the SMO the low-pass filter and the method of arc-tangent calculation of extended electromotive force (EMF) or phase-locked loop (PLL) technique are not used. The calculation of the rotor speed is deduced from the Lyapunov function stability analysis. In order to reduce system chattering, sigmoid functions with switching gains being adaptively updated by fuzzy logic systems are innovatively incorporated into the SMO. Finally, simulation results for a 4.088 MW ship propulsion IPMSM and experimental results from a 7.5 kW IPMSM drive are provided to verify the effectiveness of the proposed SMO method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Relationship between postural control and fine motor skills in preterm infants at 6 and 12 months adjusted age.

    PubMed

    Wang, Tien-Ni; Howe, Tsu-Hsin; Hinojosa, Jim; Weinberg, Sharon L

    2011-01-01

    We examined the relationship between postural control and fine motor skills of preterm infants at 6 and 12 mo adjusted age. The Alberta Infant Motor Scale was used to measure postural control, and the Peabody Developmental Motor Scales II was used to measure fine motor skills. The data analyzed were taken from 105 medical records from a preterm infant follow-up clinic at an urban academic medical center in south Taiwan. Using multiple regression analyses, we found that the development of postural control is related to the development of fine motor skills, especially in the group of preterm infants with delayed postural control. This finding supports the theoretical assumption of proximal-distal development used by many occupational therapists to guide intervention. Further research is suggested to corroborate findings.

  3. A Bearingless Switched-Reluctance Motor for High Specific Power Applications

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Siebert, Mark

    2006-01-01

    A 12-8 switched-reluctance motor (SRM) is studied in bearingless (or self-levitated) operation with coil currents limited to the linear region to avoid magnetic saturation. The required motoring and levitating currents are summed and go into a single motor coil per pole to obtain the highest power output of the motor by having more space for motor coil winding. Two controllers are investigated for the bearingless SRM operation. First, a model-based controller using the radial force, which is adjusted by a factor derived from finite element analysis, is presented. Then a simple and practical observation-based controller using a PD (proportional-derivative) control algorithm is presented. Both controllers were experimentally demonstrated to 6500 rpm. This paper reports the initial efforts toward eventual self levitation of a SRM operating into strong magnetic core saturation at liquid nitrogen temperature.

  4. 41 CFR 109-38.5102 - Utilization controls and practices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Utilization controls and..., TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT 38.51-Utilization of Motor Equipment § 109-38.5102 Utilization controls and practices. Controls and practices to be used by DOE organizations and...

  5. Stimulation targeting higher motor areas in stroke rehabilitation: A proof-of-concept, randomized, double-blinded placebo-controlled study of effectiveness and underlying mechanisms

    PubMed Central

    Cunningham, David A.; Varnerin, Nicole; Machado, Andre; Bonnett, Corin; Janini, Daniel; Roelle, Sarah; Potter-Baker, Kelsey; Sankarasubramanian, Vishwanath; Wang, Xiaofeng; Yue, Guang; Plow, Ela B.

    2016-01-01

    Purpose To demonstrate, in a proof-of-concept study, whether potentiating ipsilesional higher motor areas (premotor cortex and supplementary motor area) augments and accelerates recovery associated with constraint induced movement. Methods In a randomized, double-blinded pilot clinical study, 12 patients with chronic stroke were assigned to receive anodal transcranial direct current stimulation (tDCS) (n = 6) or sham (n = 6) to the ipsilesional higher motor areas during constraint-induced movement therapy. We assessed functional and neurophysiologic outcomes before and after 5 weeks of therapy. Results Only patients receiving tDCS demonstrated gains in function and dexterity. Gains were accompanied by an increase in excitability of the contralesional rather than the ipsilesional hemisphere. Conclusions Our proof-of-concept study provides early evidence that stimulating higher motor areas can help recruit the contralesional hemisphere in an adaptive role in cases of greater ipsilesional injury. Whether this early evidence of promise translates to remarkable gains in functional recovery compared to existing approaches of stimulation remains to be confirmed in large-scale clinical studies that can reasonably dissociate stimulation of higher motor areas from that of the traditional primary motor cortices. PMID:26484700

  6. Motor imagery for severely motor-impaired patients: evidence for brain-computer interfacing as superior control solution.

    PubMed

    Höhne, Johannes; Holz, Elisa; Staiger-Sälzer, Pit; Müller, Klaus-Robert; Kübler, Andrea; Tangermann, Michael

    2014-01-01

    Brain-Computer Interfaces (BCIs) strive to decode brain signals into control commands for severely handicapped people with no means of muscular control. These potential users of noninvasive BCIs display a large range of physical and mental conditions. Prior studies have shown the general applicability of BCI with patients, with the conflict of either using many training sessions or studying only moderately restricted patients. We present a BCI system designed to establish external control for severely motor-impaired patients within a very short time. Within only six experimental sessions, three out of four patients were able to gain significant control over the BCI, which was based on motor imagery or attempted execution. For the most affected patient, we found evidence that the BCI could outperform the best assistive technology (AT) of the patient in terms of control accuracy, reaction time and information transfer rate. We credit this success to the applied user-centered design approach and to a highly flexible technical setup. State-of-the art machine learning methods allowed the exploitation and combination of multiple relevant features contained in the EEG, which rapidly enabled the patients to gain substantial BCI control. Thus, we could show the feasibility of a flexible and tailorable BCI application in severely disabled users. This can be considered a significant success for two reasons: Firstly, the results were obtained within a short period of time, matching the tight clinical requirements. Secondly, the participating patients showed, compared to most other studies, very severe communication deficits. They were dependent on everyday use of AT and two patients were in a locked-in state. For the most affected patient a reliable communication was rarely possible with existing AT.

  7. Motor Imagery for Severely Motor-Impaired Patients: Evidence for Brain-Computer Interfacing as Superior Control Solution

    PubMed Central

    Höhne, Johannes; Holz, Elisa; Staiger-Sälzer, Pit; Müller, Klaus-Robert; Kübler, Andrea; Tangermann, Michael

    2014-01-01

    Brain-Computer Interfaces (BCIs) strive to decode brain signals into control commands for severely handicapped people with no means of muscular control. These potential users of noninvasive BCIs display a large range of physical and mental conditions. Prior studies have shown the general applicability of BCI with patients, with the conflict of either using many training sessions or studying only moderately restricted patients. We present a BCI system designed to establish external control for severely motor-impaired patients within a very short time. Within only six experimental sessions, three out of four patients were able to gain significant control over the BCI, which was based on motor imagery or attempted execution. For the most affected patient, we found evidence that the BCI could outperform the best assistive technology (AT) of the patient in terms of control accuracy, reaction time and information transfer rate. We credit this success to the applied user-centered design approach and to a highly flexible technical setup. State-of-the art machine learning methods allowed the exploitation and combination of multiple relevant features contained in the EEG, which rapidly enabled the patients to gain substantial BCI control. Thus, we could show the feasibility of a flexible and tailorable BCI application in severely disabled users. This can be considered a significant success for two reasons: Firstly, the results were obtained within a short period of time, matching the tight clinical requirements. Secondly, the participating patients showed, compared to most other studies, very severe communication deficits. They were dependent on everyday use of AT and two patients were in a locked-in state. For the most affected patient a reliable communication was rarely possible with existing AT. PMID:25162231

  8. Postural sway and regional cerebellar volume in adults with attention-deficit/hyperactivity disorder

    PubMed Central

    Hove, Michael J.; Zeffiro, Thomas A.; Biederman, Joseph; Li, Zhi; Schmahmann, Jeremy; Valera, Eve M.

    2015-01-01

    Objective Motor abnormalities, including impaired balance and increased postural sway, are commonly reported in children with ADHD, but have yet to be investigated in adults with ADHD. Furthermore, although these abnormalities are thought to stem from cerebellar deficits, evidence for an association between the cerebellum and these motor deficits has yet to be provided for either adults or children with ADHD. Method In this study, we measured postural sway in adults with ADHD and controls, examining the relationship between sway and regional cerebellar gray matter volume. Thirty-two ADHD and 28 control participants completed various standing-posture tasks on a Wii balance board. Results Postural sway was significantly higher for the ADHD group compared to the healthy controls. Higher sway was positively associated with regional gray matter volume in the right posterior cerebellum (lobule VIII/IX). Conclusion These findings show that sway abnormalities commonly reported in children with ADHD are also present in adults, and for the first time show a relationship between postural control atypicalities and the cerebellum in this group. Our findings extend the literature on motor abnormalities in ADHD and contribute to our knowledge of their neural substrate. PMID:26106567

  9. Advanced dc motor controller for battery-powered electric vehicles

    NASA Technical Reports Server (NTRS)

    Belsterling, C. A.

    1981-01-01

    A motor generation set is connected to run from the dc source and generate a voltage in the traction motor armature circuit that normally opposes the source voltage. The functional feasibility of the concept is demonstrated with tests on a Proof of Principle System. An analog computer simulation is developed, validated with the results of the tests, applied to predict the performance of a full scale Functional Model dc Controller. The results indicate high efficiencies over wide operating ranges and exceptional recovery of regenerated energy. The new machine integrates both motor and generator on a single two bearing shaft. The control strategy produces a controlled bidirectional plus or minus 48 volts dc output from the generator permitting full control of a 96 volt dc traction motor from a 48 volt battery, was designed to control a 20 hp traction motor. The controller weighs 63.5 kg (140 lb.) and has a peak efficiency of 90% in random driving modes and 96% during the SAE J 227a/D driving cycle.

  10. Auto-positioning ultrasonic transducer system

    NASA Technical Reports Server (NTRS)

    Buchanan, Randy K. (Inventor)

    2010-01-01

    An ultrasonic transducer apparatus and process for determining the optimal transducer position for flow measurement along a conduit outer surface. The apparatus includes a transmitting transducer for transmitting an ultrasonic signal, said transducer affixed to a conduit outer surface; a guide rail attached to a receiving transducer for guiding movement of a receiving transducer along the conduit outer surface, wherein the receiving transducer receives an ultrasonic signal from the transmitting transducer and sends a signal to a data acquisition system; and a motor for moving the receiving transducer along the guide rail, wherein the motor is controlled by a controller. The method includes affixing a transmitting transducer to an outer surface of a conduit; moving a receiving transducer on the conduit outer surface, wherein the receiving transducer is moved along a guide rail by a motor; transmitting an ultrasonic signal from the transmitting transducer that is received by the receiving transducer; communicating the signal received by the receiving transducer to a data acquisition and control system; and repeating the moving, transmitting, and communicating along a length of the conduit.

  11. Motor Controller System For Large Dynamic Range of Motor Operation

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor); Dutton, Kenneth R. (Inventor); Paulson, Mitchell Scott (Inventor)

    2006-01-01

    A motor controller system uses a rotary sensor with a plurality of signal conditioning units, coupled to the rotary sensor. Each of these units, which is associated with a particular range of motor output shaft rotation rates, generate a feedback signal indicative of the position of the motor s output shaft. A controller (i) converts a selected motor output shaft rotation rate to a corresponding incremental amount of rotational movement for a selected fixed time period, (ii) selects, at periodic completions of the selected fixed time period, the feedback signal from one of the signal conditioning units for which the particular range of motor output shaft rotation rates associated therewith encompasses the selected motor output shaft rotation rate, and (iii) generates a motor drive signal based on a difference between the incremental amount of rotational movement and the feedback signal from the selected one of the signal conditioning Units.

  12. Straight and chopped dc performance data for a Prestolite MTC-4001 motor and a general electric EV-1 controller

    NASA Technical Reports Server (NTRS)

    Edie, P. C.

    1981-01-01

    Performance data on the Prestolite MTC-4001 series wound dc motor and General Electric EV-1 Chopper Controller is supplied for the electric vehicle manufacturer. Data are provided for both straight and chopped dc input to the motor, at 2 motor temperature levels. Testing was done at 6 voltage increments to the motor, and 2 voltage increments to the controller. Data results are presented in both tabular and graphical forms. Tabular information includes motor voltage and current input data, motor speed and torque output data, power data and temperature data. Graphical information includes torque-speed, motor power output-speed, torque-current, and efficiency-speed plots under the various operating conditions. The data resulting from this testing show the speed-torque plots to have the most variance with operating temperature. The maximum motor efficiency is between 76% and 82%, regardless of temperature or mode of operation.

  13. Remote control of molecular motors using light-activated gearshifting

    NASA Astrophysics Data System (ADS)

    Bryant, Zev

    2013-03-01

    Engineering molecular motors with dynamically controllable properties will allow selective perturbation of mechanical processes in vivo and provide sophisticated components for directed nanoscale transport in vitro. We previously constructed myosin motors that respond to a change in [Ca++] by reversing their direction of motion along the polarized actin filament. To expand the potential applications of controllable molecular motors, we have now developed myosins that shift gears in response to blue light illumination. Light is a versatile control signal that can be readily modulated in time and space, and is generally orthogonal to cellular signaling. Using structure-guided protein engineering, we have incorporated LOV photoreceptor domains into the lever arms of chimeric myosins, resulting in motors that robustly speed up, slow down, or switch directions upon illumination. These genetically encoded motors should be directly deployable inside living cells. Our successful designs include constructs based on two different myosin classes, and we show that optical velocity control can be implemented in motors that move at microns/sec speeds, enabling practical biological and bioengineering applications.

  14. MDMA (Ecstasy) association with impaired fMRI BOLD thalamic coherence and functional connectivity*

    PubMed Central

    Salomon, Ronald M.; Karageorgiou, John; Dietrich, Mary S.; McLellan, Jessica Y.; Charboneau, Evonne J.; Blackford, Jennifer U.; Cowan, Ronald L.

    2011-01-01

    Background MDMA exposure is associated with chronic serotonergic dysfunction in preclinical and clinical studies. A recent functional magnetic resonance imaging (fMRI) comparison of past MDMA users to non-MDMA-using controls revealed increased spatial extent and amplitude of activation in the supplementary motor area during motor tasks (Karageorgiou et al., 2009). Blood oxygenation level dependent (BOLD) data from that study were reanalyzed for intraregional coherence and for inter-regional temporal correlations between time series, as functional connectivity. Methods Fourteen MDMA users and ten controls reporting similar non-MDMA abuse performed finger taps during fMRI. Fourteen motor pathway regions plus a pontine raphé region were examined. Coherence was expressed as percent of voxels positively correlated with an intraregional index voxel. Functional connectivity was determined using wavelet correlations. Results Intraregional thalamic coherence was significantly diminished at low frequencies in MDMA users compared to controls (p=0.009). Inter-regional functional connectivity was significantly weaker for right thalamo - left caudate (p=0.002), right thalamo - left thalamus (p=0.007), right caudate - right postcentral (p=0.007) and right supplementary motor area - right precentral gyrus (p=0.011) region pairs compared to controls. When stratified by lifetime exposure, significant negative associations were observed between cumulative MDMA use and functional connectivity in seven other region-pairs, while only one region-pair showed a positive association. Conclusions Reported prior MDMA use was associated with deficits in BOLD intraregional coherence and inter-regional functional connectivity, even among functionally robust pathways involving motor regions. This suggests that MDMA use is associated with long-lasting effects on brain neurophysiology beyond the cognitive domain. PMID:21807471

  15. Increased sensorimotor network activity in DYT1 dystonia: a functional imaging study

    PubMed Central

    Argyelan, Miklos; Habeck, Christian; Ghilardi, M. Felice; Fitzpatrick, Toni; Dhawan, Vijay; Pourfar, Michael; Bressman, Susan B.; Eidelberg, David

    2010-01-01

    Neurophysiological studies have provided evidence of primary motor cortex hyperexcitability in primary dystonia, but several functional imaging studies suggest otherwise. To address this issue, we measured sensorimotor activation at both the regional and network levels in carriers of the DYT1 dystonia mutation and in control subjects. We used 15Oxygen-labelled water and positron emission tomography to scan nine manifesting DYT1 carriers, 10 non-manifesting DYT1 carriers and 12 age-matched controls while they performed a kinematically controlled motor task; they were also scanned in a non-motor audio-visual control condition. Within- and between-group contrasts were analysed with statistical parametric mapping. For network analysis, we first identified a normal motor-related activation pattern in a set of 39 motor and audio-visual scans acquired in an independent cohort of 18 healthy volunteer subjects. The expression of this pattern was prospectively quantified in the motor and control scans acquired in each of the gene carriers and controls. Network values for the three groups were compared with ANOVA and post hoc contrasts. Voxel-wise comparison of DYT1 carriers and controls revealed abnormally increased motor activation responses in the former group (P < 0.05, corrected; statistical parametric mapping), localized to the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and the inferior parietal cortex. Network analysis of the normative derivation cohort revealed a significant normal motor-related activation pattern topography (P < 0.0001) characterized by covarying neural activity in the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and cerebellum. In the study cohort, normal motor-related activation pattern expression measured during movement was abnormally elevated in the manifesting gene carriers (P < 0.001) but not in their non-manifesting counterparts. In contrast, in the non-motor control condition, abnormal increases in network activity were present in both groups of gene carriers (P < 0.001). In this condition, normal motor-related activation pattern expression in non-manifesting carriers was greater than in controls, but lower than in affected carriers. In the latter group, measures of normal motor-related activation pattern expression in the audio-visual condition correlated with independent dystonia clinical ratings (r = 0.70, P = 0.04). These findings confirm that overexcitability of the sensorimotor system is a robust feature of dystonia. The presence of elevated normal motor-related activation pattern expression in the non-motor condition suggests that abnormal integration of audio-visual input with sensorimotor network activity is an important trait feature of this disorder. Lastly, quantification of normal motor-related activation pattern expression in individual cases may have utility as an objective descriptor of therapeutic response in trials of new treatments for dystonia and related disorders. PMID:20207699

  16. Systematic Design of a Magnetically Levitated Brushless DC Motor for a Reversible Rotary Intra-Aortic Blood Pump.

    PubMed

    Wang, Yaxin; Logan, Thomas G; Smith, P Alex; Hsu, Po-Lin; Cohn, William E; Xu, Liping; McMahon, Richard A

    2017-10-01

    The IntraVAD is a miniature intra-aortic ventricular assist device (VAD) designed to work in series with the compromised left ventricle. A reverse-rotation control (RRc) mode has been developed to increase myocardial perfusion and reduce ventricular volume. The RRc mode includes forward rotation in systole and reverse rotation in diastole, which requires the IntraVAD to periodically reverse its rotational direction in synchrony with the cardiac cycle. This periodic reversal leads to changes in pressure force over the impeller, which makes the entire system less stable. To eliminate the mechanical wear of a contact bearing and provide active control over the axial position of the rotor, a miniature magnetically levitated bearing (i.e., the PM-Coil module) composed of two concentric permanent magnetic (PM) rings and a pair of coils-one on each side-was proposed to provide passive radial and active axial rotor stabilization. In the early design stage, the numerical finite element method (FEM) was used to optimize the geometry of the brushless DC (BLDC) motor and the maglev module, but constructing a new model each time certain design parameters were adjusted required substantial computation time. Because the design criteria for the module had to be modified to account for the magnetic force produced by the motor and for the hemodynamic changes associated with pump operation, a simplified analytic expression was derived for the expected magnetic forces. Suitable bearings could then be designed capable of overcoming these forces without repeating the complicated FEM simulation for the motor. Using this method at the initial design stage can inform the design of the miniature maglev BLDC motor for the proposed pulsatile axial-flow VAD. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  17. Exploring the impact of visual and movement based priming on a motor intervention in the acute phase post-stroke in persons with severe hemiparesis of the upper extremity

    PubMed Central

    Patel, Jigna; Qiu, Qinyin; Yarossi, Mathew; Merians, Alma; Massood, Supriya; Tunik, Eugene; Adamovich, Sergei; Fluet, Gerard

    2016-01-01

    Purpose Explore the potential benefits of using priming methods prior to an active hand task in the acute phase post-stroke in persons with severe upper extremity hemiparesis. Methods Five individuals were trained using priming techniques including virtual reality (VR) based visual mirror feedback and contralaterally controlled passive movement strategies prior to training with an active pinch force modulation task. Clinical, kinetic, and neurophysiological measurements were taken pre and post the training period. Clinical measures were taken at six months post training. Results The two priming simulations and active training were well tolerated early after stroke. Priming effects were suggested by increased maximal pinch force immediately after visual and movement based priming. Despite having no clinically observable movement distally, the subjects were able to volitionally coordinate isometric force and muscle activity (EMG) in a pinch tracing task. The Root Mean Square Error (RMSE) of force during the pinch trace task gradually decreased over the training period suggesting learning may have occurred. Changes in motor cortical neurophysiology were seen in the unaffected hemisphere using Transcranial Magnetic Stimulation (TMS) mapping. Significant improvements in motor recovery as measured by the Action Research Arm Test (ARAT) and the Upper Extremity Fugl Meyer Assessment (UEFMA) were demonstrated at six months post training by three of the five subjects. Conclusion This study suggests that an early hand-based intervention using visual and movement based priming activities and a scaled motor task allows participation by persons without the motor control required for traditionally presented rehabilitation and testing. PMID:27636200

  18. The quantitative assessment of motor activity in mania and schizophrenia.

    PubMed

    Minassian, Arpi; Henry, Brook L; Geyer, Mark A; Paulus, Martin P; Young, Jared W; Perry, William

    2010-01-01

    Increased motor activity is a cardinal feature of the mania of Bipolar Disorder (BD), and is thought to reflect dopaminergic dysregulation. Motor activity in BD has been studied almost exclusively with self-report and observer-rated scales, limiting the ability to objectively quantify this behavior. We used an ambulatory monitoring device to quantify motor activity in BD and schizophrenia (SCZ) patients in a novel exploratory paradigm, the human Behavioral Pattern Monitor (BPM). 28 patients in the manic phase of BD, 17 SCZ patients, and 21 nonpatient (NC) subjects were tested in the BPM, an unfamiliar room containing novel objects. Motor activity was measured with a wearable ambulatory monitoring device (LifeShirt). Manic BD patients exhibited higher levels of motor activity when exploring the novel environment than SCZ and NC groups. Motor activity showed some modest relationships with symptom ratings of mania and psychosis and was not related to smoking or body mass index. Although motor activity did not appear to be impacted significantly by antipsychotic or mood-stabilizing medications, this was a naturalistic study and medications were not controlled, thus limiting conclusions about potential medication effects on motor activity. Manic BD patients exhibit a unique signature of motoric overactivity in a novel exploratory environment. The use of an objective method to quantify exploration and motor activity may help characterize the unique aspects of BD and, because it is amenable to translational research, may further the study of the biological and genetic bases of the disease.

  19. Influence of mental practice and movement observation on motor memory, cognitive function and motor performance in the elderly

    PubMed Central

    Altermann, Caroline D. C.; Martins, Alexandre S.; Carpes, Felipe P.; Mello-Carpes, Pâmela B.

    2014-01-01

    Background With aging, it is important to maintain cognitive and motor functions to ensure autonomy and quality of life. During the acquisition of motor skills, it is necessary for the elderly to understand the purpose of the proposed activities. Physical and mental practice, as well as demonstrations, are strategies used to learn movements. Objectives To investigate the influence of mental practice and the observation of movement on motor memory and to understand the relationship between cognitive function and motor performance in the execution of a sequence of digital movements in the elderly. Method This was a cross-sectional study conducted with 45 young and 45 aged subjects. The instruments used were Mini-Mental State Examination (MMSE), Manual Preference Inventory and a Digital Motor Task (composed of a training of a sequence of movements, an interval and a test phase). The subjects were divided into three subgroups: control, mental practice and observation of movement. Results The elderly depend more strongly on mental practice for the acquisition of a motor memory. In comparing the performances of people in different age groups, we found that in the elderly, there was a negative correlation between the MMSE score and the execution time as well as the number of errors in the motor task. Conclusions For the elderly, mental practice can advantage motor performance. Also, there is a significant relationship between cognitive function, learning and the execution of new motor skills. PMID:24839046

  20. Variable-frequency inverter controls torque, speed, and braking in ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1974-01-01

    Dc to ac inverter provides optimum frequency and voltage to ac induction motor, in response to different motor-load and speed requirements. Inverter varies slip frequency of motor in proportion to required torque. Inverter protects motor from high current surges, controls negative slip to apply braking, and returns energy stored in momentum of load to dc power source.

Top