Sample records for motor control task

  1. Over-focused? The relation between patients' inclination for conscious control and single- and dual-task motor performance after stroke.

    PubMed

    Denneman, R P M; Kal, E C; Houdijk, H; Kamp, J van der

    2018-05-01

    Many stroke patients are inclined to consciously control their movements. This is thought to negatively affect patients' motor performance, as it disrupts movement automaticity. However, it has also been argued that conscious control may sometimes benefit motor performance, depending on the task or patientś motor or cognitive capacity. To assess whether stroke patients' inclination for conscious control is associated with motor performance, and explore whether the putative association differs as a function of task (single- vs dual) or patientś motor and cognitive capacity. Univariate and multivariate linear regression analysis were used to assess associations between patients' disposition to conscious control (i.e., Conscious Motor Processing subscale of Movement-Specific Reinvestment Scale; MSRS-CMP) and single-task (Timed-up-and-go test; TuG) and motor dual-task costs (TuG while tone counting; motor DTC%). We determined whether these associations were influenced by patients' walking speed (i.e., 10-m-walk test) and cognitive capacity (i.e., working memory, attention, executive function). Seventy-eight clinical stroke patients (<6 months post-stroke) participated. Patients' conscious control inclination was not associated with single-task TuG performance. However, patients with a strong inclination for conscious control showed higher motor DTC%. These associations were irrespective of patients' motor and cognitive abilities. Patients' disposition for conscious control was not associated with single task motor performance, but was associated with higher motor dual task costs, regardless of patients' motor or cognitive abilities. Therapists should be aware that patients' conscious control inclination can influence their dual-task performance while moving. Longitudinal studies are required to test whether reducing patients' disposition for conscious control would improve dual-tasking post-stroke. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The Applicability of Rhythm-Motor Tasks to a New Dual Task Paradigm for Older Adults

    PubMed Central

    Kim, Soo Ji; Cho, Sung-Rae; Yoo, Ga Eul

    2017-01-01

    Given the interplay between cognitive and motor functions during walking, cognitive demands required during gait have been investigated with regard to dual task performance. Along with the needs to understand how the type of concurrent task while walking affects gait performance, there are calls for diversified dual tasks that can be applied to older adults with varying levels of cognitive decline. Therefore, this study aimed to examine how rhythm-motor tasks affect dual task performance and gait control, compared to a traditional cognitive-motor task. Also, it examined whether rhythm-motor tasks are correlated with traditional cognitive-motor task performance and cognitive measures. Eighteen older adults without cognitive impairment participated in this study. Each participant was instructed to walk at self-paced tempo without performing a concurrent task (single walking task) and walk while separately performing two types of concurrent tasks: rhythm-motor and cognitive-motor tasks. Rhythm-motor tasks included instrument playing (WalkIP), matching to rhythmic cueing (WalkRC), and instrument playing while matching to rhythmic cueing (WalkIP+RC). The cognitive-motor task involved counting forward by 3s (WalkCount.f3). In each condition, dual task costs (DTC), a measure for how dual tasks affect gait parameters, were measured in terms of walking speed and stride length. The ratio of stride length to walking speed, a measure for dynamic control of gait, was also examined. The results of this study demonstrated that the task type was found to significantly influence these measures. Rhythm-motor tasks were found to interfere with gait parameters to a lesser extent than the cognitive-motor task (WalkCount.f3). In terms of ratio measures, stride length remained at a similar level, walking speed greatly decreased in the WalkCount.f3 condition. Significant correlations between dual task-related measures during rhythm-motor and cognitive-motor tasks support the potential of applying rhythm-motor tasks to dual task methodology. This study presents how rhythm-motor tasks demand cognitive control at different levels than those engaged by cognitive-motor tasks. It also indicates how these new dual tasks can effectively mediate dual task performance indicative of fall risks, while requiring increased cognitive resources but facilitating gait control as a compensatory strategy to maintain gait stability. PMID:29375462

  3. Evidence of motor-control difficulties in children with attention deficit hyperactivity disorder, explored through a hierarchical motor-systems perspective.

    PubMed

    Macoun, Sarah J; Kerns, Kimberly A

    2016-01-01

    Attention deficit hyperactivity disorder (ADHD) may reflect a disorder of neural systems that regulate motor control. The current study investigates motor dysfunction in children with ADHD using a hierarchical motor-systems perspective where frontal-striatal/"medial" brain systems are viewed as regulating parietal/"lateral" brain systems in a top down manner, to inhibit automatic environmentally driven responses in favor of goal-directed behavior. It was hypothesized that due to frontal-striatal hypoactivation, children with ADHD would have difficulty with higher order motor control tasks felt to be dependent on these systems, yet have preserved general motor function. A total of 63 children-ADHD and matched controls-completed experimental motor tasks that required maintenance of internal motor representations and the ability to inhibit visually driven responses. Children also completed a measure of motor inhibition, and a portion of the sample completed general motor function tasks. On motor tasks that required them to maintain internal motor representations and to inhibit automatic motor responses, children with ADHD had significantly greater difficulty than controls, yet on measures of general motor dexterity, their performance was comparable. Children with ADHD displayed significantly greater intraindividual (subject) variability than controls. Intraindividual variability (IIV) contributed to variations in performance across the motor tasks, but did not account for all of the variance on all tasks. These findings suggest that children with ADHD may be more controlled by external stimuli than by internally represented information, possibly due to dysfunction of the medial motor system. However, it is likely that children with ADHD also display general motor-execution problems (as evidenced by IIV findings), suggesting that atypicalities may extend to both medial and lateral motor systems. Findings are interpreted within the context of contemporary theories regarding motor dysfunction in ADHD, and implications for understanding externalizing behaviors in ADHD are discussed.

  4. Aging and Concurrent Task Performance: Cognitive Demand and Motor Control

    ERIC Educational Resources Information Center

    Albinet, Cedric; Tomporowski, Phillip D.; Beasman, Kathryn

    2006-01-01

    A motor task that requires fine control of upper limb movements and a cognitive task that requires executive processing--first performing them separately and then concurrently--was performed by 18 young and 18 older adults. The motor task required participants to tap alternatively on two targets, the sizes of which varied systematically. The…

  5. Differences in Visuo-Motor Control in Skilled vs. Novice Martial Arts Athletes during Sustained and Transient Attention Tasks: A Motor-Related Cortical Potential Study

    PubMed Central

    Sanchez-Lopez, Javier; Fernandez, Thalia; Silva-Pereyra, Juan; Martinez Mesa, Juan A.; Di Russo, Francesco

    2014-01-01

    Cognitive and motor processes are essential for optimal athletic performance. Individuals trained in different skills and sports may have specialized cognitive abilities and motor strategies related to the characteristics of the activity and the effects of training and expertise. Most studies have investigated differences in motor-related cortical potential (MRCP) during self-paced tasks in athletes but not in stimulus-related tasks. The aim of the present study was to identify the differences in performance and MRCP between skilled and novice martial arts athletes during two different types of tasks: a sustained attention task and a transient attention task. Behavioral and electrophysiological data from twenty-two martial arts athletes were obtained while they performed a continuous performance task (CPT) to measure sustained attention and a cued continuous performance task (c-CPT) to measure transient attention. MRCP components were analyzed and compared between groups. Electrophysiological data in the CPT task indicated larger prefrontal positive activity and greater posterior negativity distribution prior to a motor response in the skilled athletes, while novices showed a significantly larger response-related P3 after a motor response in centro-parietal areas. A different effect occurred in the c-CPT task in which the novice athletes showed strong prefrontal positive activity before a motor response and a large response-related P3, while in skilled athletes, the prefrontal activity was absent. We propose that during the CPT, skilled athletes were able to allocate two different but related processes simultaneously according to CPT demand, which requires controlled attention and controlled motor responses. On the other hand, in the c-CPT, skilled athletes showed better cue facilitation, which permitted a major economy of resources and “automatic” or less controlled responses to relevant stimuli. In conclusion, the present data suggest that motor expertise enhances neural flexibility and allows better adaptation of cognitive control to the requested task. PMID:24621480

  6. Differences in visuo-motor control in skilled vs. novice martial arts athletes during sustained and transient attention tasks: a motor-related cortical potential study.

    PubMed

    Sanchez-Lopez, Javier; Fernandez, Thalia; Silva-Pereyra, Juan; Martinez Mesa, Juan A; Di Russo, Francesco

    2014-01-01

    Cognitive and motor processes are essential for optimal athletic performance. Individuals trained in different skills and sports may have specialized cognitive abilities and motor strategies related to the characteristics of the activity and the effects of training and expertise. Most studies have investigated differences in motor-related cortical potential (MRCP) during self-paced tasks in athletes but not in stimulus-related tasks. The aim of the present study was to identify the differences in performance and MRCP between skilled and novice martial arts athletes during two different types of tasks: a sustained attention task and a transient attention task. Behavioral and electrophysiological data from twenty-two martial arts athletes were obtained while they performed a continuous performance task (CPT) to measure sustained attention and a cued continuous performance task (c-CPT) to measure transient attention. MRCP components were analyzed and compared between groups. Electrophysiological data in the CPT task indicated larger prefrontal positive activity and greater posterior negativity distribution prior to a motor response in the skilled athletes, while novices showed a significantly larger response-related P3 after a motor response in centro-parietal areas. A different effect occurred in the c-CPT task in which the novice athletes showed strong prefrontal positive activity before a motor response and a large response-related P3, while in skilled athletes, the prefrontal activity was absent. We propose that during the CPT, skilled athletes were able to allocate two different but related processes simultaneously according to CPT demand, which requires controlled attention and controlled motor responses. On the other hand, in the c-CPT, skilled athletes showed better cue facilitation, which permitted a major economy of resources and "automatic" or less controlled responses to relevant stimuli. In conclusion, the present data suggest that motor expertise enhances neural flexibility and allows better adaptation of cognitive control to the requested task.

  7. Upper limb motor function in young adults with spina bifida and hydrocephalus

    PubMed Central

    Salman, M. S.; Jewell, D.; Hetherington, R.; Spiegler, B. J.; MacGregor, D. L.; Drake, J. M.; Humphreys, R. P.; Gentili, F.

    2011-01-01

    Objective The objective of the study was to measure upper limb motor function in young adults with spina bifida meningomyelocele (SBM) and typically developing age peers. Method Participants were 26 young adults with SBM, with a Verbal or Performance IQ score of at least 70 on the Wechsler scales, and 27 age- and gender-matched controls. Four upper limb motor function tasks were performed under four different visual and cognitive challenge conditions. Motor independence was assessed by questionnaire. Results Fewer SBM than control participants obtained perfect posture and rebound scores. The SBM group performed less accurately and was more disrupted by cognitive challenge than controls on limb dysmetria tasks. The SBM group was slower than controls on the diadochokinesis task. Adaptive motor independence was related to one upper limb motor task, arm posture, and upper rather than lower spinal lesions were associated with less motor independence. Conclusions Young adults with SBM have significant limitations in upper limb function and are more disrupted by some challenges while performing upper limb motor tasks. Within the group of young adults with SBM, upper spinal lesions compromise motor independence more than lower spinal lesions. PMID:19672605

  8. Performance in complex motor tasks deteriorates in hyperthermic humans.

    PubMed

    Piil, Jacob F; Lundbye-Jensen, Jesper; Trangmar, Steven J; Nybo, Lars

    2017-01-01

    Heat stress, leading to elevations in whole-body temperature, has a marked impact on both physical performance and cognition in ecological settings. Lab experiments confirm this for physically demanding activities, whereas observations are inconsistent for tasks involving cognitive processing of information or decision-making prior to responding. We hypothesized that divergences could relate to task complexity and developed a protocol consisting of 1) simple motor task [TARGET_pinch], 2) complex motor task [Visuo-motor tracking], 3) simple math task [MATH_type], 4) combined motor-math task [MATH_pinch]. Furthermore, visuo-motor tracking performance was assessed both in a separate- and a multipart protocol (complex motor tasks alternating with the three other tasks). Following familiarization, each of the 10 male subjects completed separate and multipart protocols in randomized order in the heat (40°C) or control condition (20°C) with testing at baseline (seated rest) and similar seated position, following exercise-induced hyperthermia (core temperature ∼ 39.5°C in the heat and 38.2°C in control condition). All task scores were unaffected by control exercise or passive heat exposure, but visuo-motor tracking performance was reduced by 10.7 ± 6.5% following exercise-induced hyperthermia when integrated in the multipart protocol and 4.4 ± 5.7% when tested separately (both P < 0.05 ). TARGET_pinch precision declined by 2.6 ± 1.3% ( P < 0.05 ), while no significant changes were observed for the math tasks. These results indicate that heat per se has little impact on simple motor or cognitive test performance, but complex motor performance is impaired by hyperthermia and especially so when multiple tasks are combined.

  9. Impaired motor inhibition in adults who stutter - evidence from speech-free stop-signal reaction time tasks.

    PubMed

    Markett, Sebastian; Bleek, Benjamin; Reuter, Martin; Prüss, Holger; Richardt, Kirsten; Müller, Thilo; Yaruss, J Scott; Montag, Christian

    2016-10-01

    Idiopathic stuttering is a fluency disorder characterized by impairments during speech production. Deficits in the motor control circuits of the basal ganglia have been implicated in idiopathic stuttering but it is unclear how these impairments relate to the disorder. Previous work has indicated a possible deficiency in motor inhibition in children who stutter. To extend these findings to adults, we designed two experiments to probe executive motor control in people who stutter using manual reaction time tasks that do not rely on speech production. We used two versions of the stop-signal reaction time task, a measure for inhibitory motor control that has been shown to rely on the basal ganglia circuits. We show increased stop-signal reaction times in two independent samples of adults who stutter compared to age- and sex-matched control groups. Additional measures involved simple reaction time measurements and a task-switching task where no group difference was detected. Results indicate a deficiency in inhibitory motor control in people who stutter in a task that does not rely on overt speech production and cannot be explained by general deficits in executive control or speeded motor execution. This finding establishes the stop-signal reaction time as a possible target for future experimental and neuroimaging studies on fluency disorders and is a further step towards unraveling the contribution of motor control deficits to idiopathic stuttering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Potentiation of motor sub-networks for motor control but not working memory: Interaction of dACC and SMA revealed by resting-state directed functional connectivity

    PubMed Central

    Diwadkar, Vaibhav A.; Asemi, Avisa; Burgess, Ashley; Chowdury, Asadur; Bressler, Steven L.

    2017-01-01

    The dorsal Anterior Cingulate Cortex (dACC) and the Supplementary Motor Area (SMA) are known to interact during motor coordination behavior. We previously discovered that the directional influences underlying this interaction in a visuo-motor coordination task are asymmetric, with the dACC→SMA influence being significantly greater than that in the reverse direction. To assess the specificity of this effect, here we undertook an analysis of the interaction between dACC and SMA in two distinct contexts. In addition to the motor coordination task, we also assessed these effects during a (n-back) working memory task. We applied directed functional connectivity analysis to these two task paradigms, and also to the rest condition of each paradigm, in which rest blocks were interspersed with task blocks. We report here that the previously known asymmetric interaction between dACC and SMA, with dACC→SMA dominating, was significantly larger in the motor coordination task than the memory task. Moreover the asymmetry between dACC and SMA was reversed during the rest condition of the motor coordination task, but not of the working memory task. In sum, the dACC→SMA influence was significantly greater in the motor task than the memory task condition, and the SMA→dACC influence was significantly greater in the motor rest than the memory rest condition. We interpret these results as suggesting that the potentiation of motor sub-networks during the motor rest condition supports the motor control of SMA by dACC during the active motor task condition. PMID:28278267

  11. Extracting motor synergies from random movements for low-dimensional task-space control of musculoskeletal robots.

    PubMed

    Fu, Kin Chung Denny; Dalla Libera, Fabio; Ishiguro, Hiroshi

    2015-10-08

    In the field of human motor control, the motor synergy hypothesis explains how humans simplify body control dimensionality by coordinating groups of muscles, called motor synergies, instead of controlling muscles independently. In most applications of motor synergies to low-dimensional control in robotics, motor synergies are extracted from given optimal control signals. In this paper, we address the problems of how to extract motor synergies without optimal data given, and how to apply motor synergies to achieve low-dimensional task-space tracking control of a human-like robotic arm actuated by redundant muscles, without prior knowledge of the robot. We propose to extract motor synergies from a subset of randomly generated reaching-like movement data. The essence is to first approximate the corresponding optimal control signals, using estimations of the robot's forward dynamics, and to extract the motor synergies subsequently. In order to avoid modeling difficulties, a learning-based control approach is adopted such that control is accomplished via estimations of the robot's inverse dynamics. We present a kernel-based regression formulation to estimate the forward and the inverse dynamics, and a sliding controller in order to cope with estimation error. Numerical evaluations show that the proposed method enables extraction of motor synergies for low-dimensional task-space control.

  12. Skill in Expert Dogs

    ERIC Educational Resources Information Center

    Helton, William S.

    2007-01-01

    The motor control of novice participants is often cognitively demanding and susceptible to interference by other tasks. As people develop expertise, their motor control becomes less susceptible to interference from other tasks. Researchers propose a transition in human motor skill from active control to automaticity. This progression may also be…

  13. Task specific grip force control in writer's cramp.

    PubMed

    Schneider, A S; Fürholzer, W; Marquardt, C; Hermsdörfer, J

    2014-04-01

    Writer's cramp is defined as a task specific focal dystonia generating hypertonic muscle co-contractions during handwriting resulting in impaired writing performance and exaggerated finger force. However, little is known about the generalisation of grip force across tasks others than writing. The aim of the study was to directly compare regulation of grip forces during handwriting with force regulation in other fine-motor tasks in patients and control subjects. Handwriting, lifting and cyclic movements of a grasped object were investigated in 21 patients and 14 controls. The applied forces were registered in all three tasks and compared between groups and tasks. In addition, task-specific measures of fine-motor skill were assessed. As expected, patients generated exaggerated forces during handwriting compared to control subjects. However there were no statistically significant group differences during lifting and cyclic movements. The control group revealed a generalisation of grip forces across manual tasks whereas in patients there was no such correlation. We conclude that increased finger forces during handwriting are a task-specific phenomenon that does not necessarily generalise to other fine-motor tasks. Force control of patients with writer's cramp in handwriting and other fine-motor tasks is characterised by individualised control strategies. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Subthalamic nucleus stimulation selectively improves motor and visual memory performance in Parkinson's disease.

    PubMed

    Mollion, Hélène; Dominey, Peter Ford; Broussolle, Emmanuel; Ventre-Dominey, Jocelyne

    2011-09-01

    Although the treatment of Parkinson's disease via subthalamic stimulation yields remarkable improvements in motor symptoms, its effects on memory function are less clear. In this context, we previously demonstrated dissociable effects of levodopa therapy on parkinsonian performance in spatial and nonspatial visual working memory. Here we used the same protocol with an additional, purely motor task to investigate visual memory and motor performance in 2 groups of patients with Parkinson's disease with or without subthalamic stimulation. In each stimulation condition, subjects performed a simple motor task and 3 successive cognitive tasks: 1 conditional color-response association task and 2 visual (spatial and nonspatial) working memory tasks. The Parkinson's groups were compared with a control group of age-matched healthy subjects. Our principal results demonstrated that (1) in the motor task, stimulated patients were significantly improved with respect to nonstimulated patients and did not differ significantly from healthy controls, and (2) in the cognitive tasks, stimulated patients were significantly improved with respect to nonstimulated patients, but both remained significantly impaired when compared with healthy controls. These results demonstrate selective effects of subthalamic stimulation on parkinsonian disorders of motor and visual memory functions, with clear motor improvement for stimulated patients and a partial improvement for their visual memory processing. Copyright © 2011 Movement Disorder Society.

  15. Task-relevant cognitive and motor functions are prioritized during prolonged speed-accuracy motor task performance.

    PubMed

    Solianik, Rima; Satas, Andrius; Mickeviciene, Dalia; Cekanauskaite, Agne; Valanciene, Dovile; Majauskiene, Daiva; Skurvydas, Albertas

    2018-06-01

    This study aimed to explore the effect of prolonged speed-accuracy motor task on the indicators of psychological, cognitive, psychomotor and motor function. Ten young men aged 21.1 ± 1.0 years performed a fast- and accurate-reaching movement task and a control task. Both tasks were performed for 2 h. Despite decreased motivation, and increased perception of effort as well as subjective feeling of fatigue, speed-accuracy motor task performance improved during the whole period of task execution. After the motor task, the increased working memory function and prefrontal cortex oxygenation at rest and during conflict detection, and the decreased efficiency of incorrect response inhibition and visuomotor tracking were observed. The speed-accuracy motor task increased the amplitude of motor-evoked potentials, while grip strength was not affected. These findings demonstrate that to sustain the performance of 2-h speed-accuracy task under conditions of self-reported fatigue, task-relevant functions are maintained or even improved, whereas less critical functions are impaired.

  16. Self-Control of Task Difficulty during Training Enhances Motor Learning of a Complex Coincidence-Anticipation Task

    ERIC Educational Resources Information Center

    Andrieux, Mathieu; Danna, Jeremy; Thon, Bernard

    2012-01-01

    The aim of the present work was to analyze the influence of self-controlled task difficulty on motor learning. Participants had to intercept three targets falling at different velocities by displacing a stylus above a digitizer. Task difficulty corresponded to racquet width. Half the participants (self-control condition) could choose the racquet…

  17. Improving Motor Control in Walking: A Randomized Clinical Trial in Older Adults with Subclinical Walking Difficulty

    PubMed Central

    Brach, Jennifer S.; Lowry, Kristin; Perera, Subashan; Hornyak, Victoria; Wert, David; Studenski, Stephanie A.; VanSwearingen, Jessie M.

    2016-01-01

    Objective The objective was to test the proposed mechanism of action of a task-specific motor learning intervention by examining its effect on measures of the motor control of gait. Design Single blinded randomized clinical trial. Setting University research laboratory. Participants Forty older adults 65 years of age and older, with gait speed >1.0 m/s and impaired motor skill (Figure of 8 walk time > 8 secs). Interventions The two interventions included a task-oriented motor learning and a standard exercise program. Both interventions lasted 12 weeks, with twice weekly one hour physical therapist supervised sessions. Main Outcome Measures Two measure of the motor control of gait, gait variability and smoothness of walking, were assessed pre and post intervention by assessors masked to treatment arm. Results Of 40 randomized subjects; 38 completed the trial (mean age 77.1±6.0 years). Motor control group improved more than standard group in double support time variability (0.13 vs. 0.05 m/s; adjusted difference, AD=0.006, p=0.03). Smoothness of walking in the anterior/posterior direction improved more in motor control than standard for all conditions (usual: AD=0.53, p=0.05; narrow: AD=0.56, p=0.01; dual task: AD=0.57, p=0.04). Conclusions Among older adults with subclinical walking difficulty, there is initial evidence that task-oriented motor learning exercise results in gains in the motor control of walking, while standard exercise does not. Task-oriented motor learning exercise is a promising intervention for improving timing and coordination deficits related to mobility difficulties in older adults, and needs to be evaluated in a definitive larger trial. PMID:25448244

  18. Supplementary motor area activation in patients with frontal lobe tumors and arteriovenous malformations.

    PubMed

    Sailor, Janet; Meyerand, M Elizabeth; Moritz, Chad H; Fine, Jason; Nelson, Lindsey; Badie, Behnam; Haughton, Victor M

    2003-10-01

    Some patients who undergo surgical resection of portions of the supplementary motor area (SMA) have severe postoperative motor and language deficits, whereas others have no deficits. We tested the hypothesis that in some patients with lesions affecting the SMA, the contralateral SMA exhibits some of the activation normally associated with the ipsilateral SMA. Functional MR imaging studies in seven healthy volunteers and 19 patients with frontal lobe tumors or arteriovenous malformations were reviewed retrospectively. The hemisphere in which the SMA activation predominated was tabulated for right and left motor tasks. The relative hemispheric dominance in the SMA for the right and left motor tasks was compared in the healthy and patient groups and with the location of the lesion in the patient group. None of the control subjects performing a right hand motor task activated predominantly the right SMA. Fifty percent of the patients with lesions overlapping the left SMA performing the right motor task activated predominantly the right SMA. Fifty-seven percent of control subjects performing the left hand motor task activated the left SMA predominantly. One hundred percent of patients with lesions overlapping the right frontal SMA performing the left motor task activated the left SMA predominantly. Differences between patients and controls were statistically significant. A lesion that contacts or overlaps the SMA is associated with an increased functional MR imaging response within the contralateral SMA.

  19. Task-specificity of unilateral anodal and dual-M1 tDCS effects on motor learning.

    PubMed

    Karok, Sophia; Fletcher, David; Witney, Alice G

    2017-01-08

    Task-specific effects of transcranial direct current stimulation (tDCS) on motor learning were investigated in 30 healthy participants. In a sham-controlled, mixed design, participants trained on 3 different motor tasks (Purdue Pegboard Test, Visuomotor Grip Force Tracking Task and Visuomotor Wrist Rotation Speed Control Task) over 3 consecutive days while receiving either unilateral anodal over the right primary motor cortex (M1), dual-M1 or sham stimulation. Retention sessions were administered 7 and 28 days after the end of training. In the Purdue Pegboard Test, both anodal and dual-M1 stimulation reduced average completion time approximately equally, an improvement driven by online learning effects and maintained for about 1 week. The Visuomotor Grip Force Tracking Task and the Visuomotor Wrist Rotation Speed Control Task were associated with an advantage of dual-M1 tDCS in consolidation processes both between training sessions and when testing at long-term retention; both were maintained for at least 1 month. This study demonstrates that M1-tDCS enhances and sustains motor learning with different electrode montages. Stimulation-induced effects emerged at different learning phases across the tasks, which strongly suggests that the influence of tDCS on motor learning is dynamic with respect to the functional recruitment of the distributed motor system at the time of stimulation. Divergent findings regarding M1-tDCS effects on motor learning may partially be ascribed to task-specific consequences and the effects of offline consolidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Regaining motor control in musician's dystonia by restoring sensorimotor organization.

    PubMed

    Rosenkranz, Karin; Butler, Katherine; Williamon, Aaron; Rothwell, John C

    2009-11-18

    Professional musicians are an excellent model of long-term motor learning effects on structure and function of the sensorimotor system. However, intensive motor skill training has been associated with task-specific deficiency in hand motor control, which has a higher prevalence among musicians (musician's dystonia) than in the general population. Using a transcranial magnetic stimulation paradigm, we previously found an expanded spatial integration of proprioceptive input into the hand motor cortex [sensorimotor organization (SMO)] in healthy musicians. In musician's dystonia, however, this expansion was even larger. Whereas motor skills of musicians are likely to be supported by a spatially expanded SMO, we hypothesized that in musician's dystonia this might have developed too far and now disrupts rather than assists task-specific motor control. If so, motor control should be regained by reversing the excessive reorganization in musician's dystonia. Here, we test this hypothesis and show that a 15 min intervention with proprioceptive input (proprioceptive training) restored SMO in pianists with musician's dystonia to the pattern seen in healthy pianists. Crucially, task-specific motor control improved significantly and objectively as measured with a MIDI (musical instrument digital interface) piano, and the amount of behavioral improvement was significantly correlated to the degree of sensorimotor reorganization. In healthy pianists and nonmusicians, the SMO and motor performance remained essentially unchanged. These findings suggest that the differentiation of SMO in the hand motor cortex and the degree of motor control of intensively practiced tasks are significantly linked and finely balanced. Proprioceptive training restored this balance in musician's dystonia to the behaviorally beneficial level of healthy musicians.

  1. Motion and Form Coherence Detection in Autistic Spectrum Disorder: Relationship to Motor Control and 2:4 Digit Ratio

    ERIC Educational Resources Information Center

    Milne, Elizabeth; White, Sarah; Campbell, Ruth; Swettenham, John; Hansen, Peter; Ramus, Franck

    2006-01-01

    Children with autistic spectrum disorder and controls performed tasks of coherent motion and form detection, and motor control. Additionally, the ratio of the 2nd and 4th digits of these children, which is thought to be an indicator of foetal testosterone, was measured. Children in the experimental group were impaired at tasks of motor control,…

  2. Motor Task Variation Induces Structural Learning

    PubMed Central

    Braun, Daniel A.; Aertsen, Ad; Wolpert, Daniel M.; Mehring, Carsten

    2009-01-01

    Summary When we have learned a motor skill, such as cycling or ice-skating, we can rapidly generalize to novel tasks, such as motorcycling or rollerblading [1–8]. Such facilitation of learning could arise through two distinct mechanisms by which the motor system might adjust its control parameters. First, fast learning could simply be a consequence of the proximity of the original and final settings of the control parameters. Second, by structural learning [9–14], the motor system could constrain the parameter adjustments to conform to the control parameters' covariance structure. Thus, facilitation of learning would rely on the novel task parameters' lying on the structure of a lower-dimensional subspace that can be explored more efficiently. To test between these two hypotheses, we exposed subjects to randomly varying visuomotor tasks of fixed structure. Although such randomly varying tasks are thought to prevent learning, we show that when subsequently presented with novel tasks, subjects exhibit three key features of structural learning: facilitated learning of tasks with the same structure, strong reduction in interference normally observed when switching between tasks that require opposite control strategies, and preferential exploration along the learned structure. These results suggest that skill generalization relies on task variation and structural learning. PMID:19217296

  3. Motor task variation induces structural learning.

    PubMed

    Braun, Daniel A; Aertsen, Ad; Wolpert, Daniel M; Mehring, Carsten

    2009-02-24

    When we have learned a motor skill, such as cycling or ice-skating, we can rapidly generalize to novel tasks, such as motorcycling or rollerblading [1-8]. Such facilitation of learning could arise through two distinct mechanisms by which the motor system might adjust its control parameters. First, fast learning could simply be a consequence of the proximity of the original and final settings of the control parameters. Second, by structural learning [9-14], the motor system could constrain the parameter adjustments to conform to the control parameters' covariance structure. Thus, facilitation of learning would rely on the novel task parameters' lying on the structure of a lower-dimensional subspace that can be explored more efficiently. To test between these two hypotheses, we exposed subjects to randomly varying visuomotor tasks of fixed structure. Although such randomly varying tasks are thought to prevent learning, we show that when subsequently presented with novel tasks, subjects exhibit three key features of structural learning: facilitated learning of tasks with the same structure, strong reduction in interference normally observed when switching between tasks that require opposite control strategies, and preferential exploration along the learned structure. These results suggest that skill generalization relies on task variation and structural learning.

  4. Virtual and Actual Humanoid Robot Control with Four-Class Motor-Imagery-Based Optical Brain-Computer Interface

    PubMed Central

    Kim, Youngmoo E.

    2017-01-01

    Motor-imagery tasks are a popular input method for controlling brain-computer interfaces (BCIs), partially due to their similarities to naturally produced motor signals. The use of functional near-infrared spectroscopy (fNIRS) in BCIs is still emerging and has shown potential as a supplement or replacement for electroencephalography. However, studies often use only two or three motor-imagery tasks, limiting the number of available commands. In this work, we present the results of the first four-class motor-imagery-based online fNIRS-BCI for robot control. Thirteen participants utilized upper- and lower-limb motor-imagery tasks (left hand, right hand, left foot, and right foot) that were mapped to four high-level commands (turn left, turn right, move forward, and move backward) to control the navigation of a simulated or real robot. A significant improvement in classification accuracy was found between the virtual-robot-based BCI (control of a virtual robot) and the physical-robot BCI (control of the DARwIn-OP humanoid robot). Differences were also found in the oxygenated hemoglobin activation patterns of the four tasks between the first and second BCI. These results corroborate previous findings that motor imagery can be improved with feedback and imply that a four-class motor-imagery-based fNIRS-BCI could be feasible with sufficient subject training. PMID:28804712

  5. Virtual and Actual Humanoid Robot Control with Four-Class Motor-Imagery-Based Optical Brain-Computer Interface.

    PubMed

    Batula, Alyssa M; Kim, Youngmoo E; Ayaz, Hasan

    2017-01-01

    Motor-imagery tasks are a popular input method for controlling brain-computer interfaces (BCIs), partially due to their similarities to naturally produced motor signals. The use of functional near-infrared spectroscopy (fNIRS) in BCIs is still emerging and has shown potential as a supplement or replacement for electroencephalography. However, studies often use only two or three motor-imagery tasks, limiting the number of available commands. In this work, we present the results of the first four-class motor-imagery-based online fNIRS-BCI for robot control. Thirteen participants utilized upper- and lower-limb motor-imagery tasks (left hand, right hand, left foot, and right foot) that were mapped to four high-level commands (turn left, turn right, move forward, and move backward) to control the navigation of a simulated or real robot. A significant improvement in classification accuracy was found between the virtual-robot-based BCI (control of a virtual robot) and the physical-robot BCI (control of the DARwIn-OP humanoid robot). Differences were also found in the oxygenated hemoglobin activation patterns of the four tasks between the first and second BCI. These results corroborate previous findings that motor imagery can be improved with feedback and imply that a four-class motor-imagery-based fNIRS-BCI could be feasible with sufficient subject training.

  6. Self-Controlled Practice Enhances Motor Learning in Introverts and Extroverts

    ERIC Educational Resources Information Center

    Kaefer, Angélica; Chiviacowsky, Suzete; Meira, Cassio de Miranda, Jr.; Tani, Go

    2014-01-01

    Purpose: The purpose of the present study was to investigate the effects of self-controlled feedback on the learning of a sequential-timing motor task in introverts and extroverts. Method: Fifty-six university students were selected by the Eysenck Personality Questionnaire. They practiced a motor task consisting of pressing computer keyboard keys…

  7. Brain oscillatory signatures of motor tasks

    PubMed Central

    Birbaumer, Niels

    2015-01-01

    Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral part of motor regulation. Changes in task-specific frequency power compared with rest were similar between motor tasks, and only significant differences in the time course and some narrow specific frequency bands were observed between motor tasks. We identified EEG features representing active and passive proprioception (with and without muscle contraction) and active intention and passive involvement (with and without voluntary effort) differentiating brain oscillations during motor tasks that could substantially support the design of novel motor BCI-based rehabilitation therapies. The BCI task induced significantly different brain activity compared with the other motor tasks, indicating neural processes unique to the use of body actuators control in a BCI context. PMID:25810484

  8. The relationship between executive function and fine motor control in young and older adults.

    PubMed

    Corti, Emily J; Johnson, Andrew R; Riddle, Hayley; Gasson, Natalie; Kane, Robert; Loftus, Andrea M

    2017-01-01

    The present study examined the relationship between executive function (EF) and fine motor control in young and older healthy adults. Participants completed 3 measures of executive function; a spatial working memory (SWM) task, the Stockings of Cambridge task (planning), and the Intra-Dimensional Extra-Dimensional Set-Shift task (set-shifting). Fine motor control was assessed using 3 subtests of the Purdue Pegboard (unimanual, bimanual, sequencing). For the younger adults, there were no significant correlations between measures of EF and fine motor control. For the older adults, all EFs significantly correlated with all measures of fine motor control. Three separate regressions examined whether planning, SWM and set-shifting independently predicted unimanual, bimanual, and sequencing scores for the older adults. Planning was the primary predictor of performance on all three Purdue subtests. A multiple-groups mediation model examined whether planning predicted fine motor control scores independent of participants' age, suggesting that preservation of planning ability may support fine motor control in older adults. Planning remained a significant predictor of unimanual performance in the older age group, but not bimanual or sequencing performance. The findings are discussed in terms of compensation theory, whereby planning is a key compensatory resource for fine motor control in older adults. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Altered cortical processing of motor inhibition in schizophrenia.

    PubMed

    Lindberg, Påvel G; Térémetz, Maxime; Charron, Sylvain; Kebir, Oussama; Saby, Agathe; Bendjemaa, Narjes; Lion, Stéphanie; Crépon, Benoît; Gaillard, Raphaël; Oppenheim, Catherine; Krebs, Marie-Odile; Amado, Isabelle

    2016-12-01

    Inhibition is considered a key mechanism in schizophrenia. Short-latency intracortical inhibition (SICI) in the motor cortex is reduced in schizophrenia and is considered to reflect locally deficient γ-aminobutyric acid (GABA)-ergic modulation. However, it remains unclear how SICI is modulated during motor inhibition and how it relates to neural processing in other cortical areas. Here we studied motor inhibition Stop signal task (SST) in stabilized patients with schizophrenia (N = 28), healthy siblings (N = 21) and healthy controls (n = 31) matched in general cognitive status and educational level. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) were used to investigate neural correlates of motor inhibition. SST performance was similar in patients and controls. SICI was modulated by the task as expected in healthy controls and siblings but was reduced in patients with schizophrenia during inhibition despite equivalent motor inhibition performance. fMRI showed greater prefrontal and premotor activation during motor inhibition in schizophrenia. Task-related modulation of SICI was higher in subjects who showed less inhibition-related activity in pre-supplementary motor area (SMA) and cingulate motor area. An exploratory genetic analysis of selected markers of inhibition (GABRB2, GAD1, GRM1, and GRM3) did not explain task-related differences in SICI or cortical activation. In conclusion, this multimodal study provides direct evidence of a task-related deficiency in SICI modulation in schizophrenia likely reflecting deficient GABA-A related processing in motor cortex. Compensatory activation of premotor areas may explain similar motor inhibition in patients despite local deficits in intracortical processing. Task-related modulation of SICI may serve as a useful non-invasive GABAergic marker in development of therapeutic strategies in schizophrenia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Motor control and the management of musculoskeletal dysfunction.

    PubMed

    van Vliet, Paulette M; Heneghan, Nicola R

    2006-08-01

    This paper aims to develop understanding of three important motor control issues--feedforward mechanisms, cortical plasticity and task-specificity and assess the implications for musculoskeletal practice. A model of control for the reach-to-grasp movement illustrates how the central nervous system integrates sensorimotor processes to control complex movements. Feedforward mechanisms, an essential element of motor control, are altered in neurologically intact patients with chronic neck pain and low back pain. In healthy subjects, cortical mapping studies using transcranial magnetic stimulation have demonstrated that neural pathways adapt according to what and how much is practised. Neuroplasticity has also been demonstrated in a number of musculoskeletal conditions, where cortical maps are altered compared to normal. Behavioural and neurophysiological studies indicate that environmental and task constraints such as the goal of the task and an object's shape and size, are determinants of the motor schema for reaching and other movements. Consideration of motor control issues as well as signs and symptoms, may facilitate management of musculoskeletal conditions and improve outcome. Practice of entire everyday tasks at an early stage and systematic variation of the task is recommended. Training should be directed with the aim of re-educating feedforward mechanisms where necessary and the amount of practice should be sufficient to cause changes in cortical activity.

  11. Working Memory Training Improves Dual-Task Performance on Motor Tasks.

    PubMed

    Kimura, Takehide; Kaneko, Fuminari; Nagahata, Keita; Shibata, Eriko; Aoki, Nobuhiro

    2017-01-01

    The authors investigated whether working memory training improves motor-motor dual-task performance consisted of upper and lower limb tasks. The upper limb task was a simple reaction task and the lower limb task was an isometric knee extension task. 45 participants (age = 21.8 ± 1.6 years) were classified into a working memory training group (WM-TRG), dual-task training group, or control group. The training duration was 2 weeks (15 min, 4 times/week). Our results indicated that working memory capacity increased significantly only in the WM-TRG. Dual-task performance improved in the WM-TRG and dual-task training group. Our study provides the novel insight that working memory training improves dual-task performance without specific training on the target motor task.

  12. The "Motor" in Implicit Motor Sequence Learning: A Foot-stepping Serial Reaction Time Task.

    PubMed

    Du, Yue; Clark, Jane E

    2018-05-03

    This protocol describes a modified serial reaction time (SRT) task used to study implicit motor sequence learning. Unlike the classic SRT task that involves finger-pressing movements while sitting, the modified SRT task requires participants to step with both feet while maintaining a standing posture. This stepping task necessitates whole body actions that impose postural challenges. The foot-stepping task complements the classic SRT task in several ways. The foot-stepping SRT task is a better proxy for the daily activities that require ongoing postural control, and thus may help us better understand sequence learning in real-life situations. In addition, response time serves as an indicator of sequence learning in the classic SRT task, but it is unclear whether response time, reaction time (RT) representing mental process, or movement time (MT) reflecting the movement itself, is a key player in motor sequence learning. The foot-stepping SRT task allows researchers to disentangle response time into RT and MT, which may clarify how motor planning and movement execution are involved in sequence learning. Lastly, postural control and cognition are interactively related, but little is known about how postural control interacts with learning motor sequences. With a motion capture system, the movement of the whole body (e.g., the center of mass (COM)) can be recorded. Such measures allow us to reveal the dynamic processes underlying discrete responses measured by RT and MT, and may aid in elucidating the relationship between postural control and the explicit and implicit processes involved in sequence learning. Details of the experimental set-up, procedure, and data processing are described. The representative data are adopted from one of our previous studies. Results are related to response time, RT, and MT, as well as the relationship between the anticipatory postural response and the explicit processes involved in implicit motor sequence learning.

  13. Obsessive-compulsive disorder: a disorder of pessimal (non-functional) motor behavior.

    PubMed

    Zor, R; Keren, H; Hermesh, H; Szechtman, H; Mort, J; Eilam, D

    2009-10-01

    To determine whether in addition to repetitiveness, the motor rituals of patients with obsessive-compulsive disorder (OCD) involve reduced functionality due to numerous and measurable acts that are irrelevant and unnecessary for task completion. Comparing motor rituals of OCD patients with behavior of non-patient control individuals who were instructed to perform the same motor task. Obsessive-compulsive disorder behavior comprises abundant acts that were not performed by the controls. These acts seem unnecessary or even irrelevant for the task that the patients were performing, and therefore are termed 'non-functional'. Non-functional acts comprise some 60% of OCD motor behavior. Moreover, OCD behavior consists of short chains of functional acts bounded by long chains of non-functional acts. The abundance of irrelevant or unnecessary acts in OCD motor rituals represents reduced functionality in terms of task completion, typifying OCD rituals as pessimal behavior (antonym of optimal behavior).

  14. Quantitative Motor Performance and Sleep Benefit in Parkinson Disease

    PubMed Central

    van Gilst, Merel M.; van Mierlo, Petra; Bloem, Bastiaan R.; Overeem, Sebastiaan

    2015-01-01

    Study Objectives: Many people with Parkinson disease experience “sleep benefit”: temporarily improved mobility upon awakening. Here we used quantitative motor tasks to assess the influence of sleep on motor functioning in Parkinson disease. Design: Eighteen Parkinson patients with and 20 without subjective sleep benefit and 20 healthy controls participated. Before and directly after a regular night sleep and an afternoon nap, subjects performed the timed pegboard dexterity task and quantified finger tapping task. Subjective ratings of motor functioning and mood/vigilange were included. Sleep was monitored using polysomnography. Results: On both tasks, patients were overall slower than healthy controls (night: F2,55 = 16.938, P < 0.001; nap: F2,55 = 15.331, P < 0.001). On the pegboard task, there was a small overall effect of night sleep (F1,55 = 9.695, P = 0.003); both patients and controls were on average slightly slower in the morning. However, in both tasks there was no sleep*group interaction for nighttime sleep nor for afternoon nap. There was a modest correlation between the score on the pegboard task and self-rated motor symptoms among patients (rho = 0.233, P = 0.004). No correlations in task performance and mood/vigilance or sleep time/efficiency were found. Conclusions: A positive effect of sleep on motor function is commonly reported by Parkinson patients. Here we show that the subjective experience of sleep benefit is not paralleled by an actual improvement in motor functioning. Sleep benefit therefore appears to be a subjective phenomenon and not a Parkinson-specific reduction in symptoms. Citation: van Gilst MM, van Mierlo P, Bloem BR, Overeem S. Quantitative Motor Performance and Sleep Benefit in Parkinson Disease. SLEEP 2015;38(10):1567–1573. PMID:25902811

  15. Nondeclarative learning in children with specific language impairment: predicting regularities in the visuomotor, phonological, and cognitive domains.

    PubMed

    Mayor-Dubois, C; Zesiger, P; Van der Linden, M; Roulet-Perez, E

    2014-01-01

    Ullman (2004) suggested that Specific Language Impairment (SLI) results from a general procedural learning deficit. In order to test this hypothesis, we investigated children with SLI via procedural learning tasks exploring the verbal, motor, and cognitive domains. Results showed that compared with a Control Group, the children with SLI (a) were unable to learn a phonotactic learning task, (b) were able but less efficiently to learn a motor learning task and (c) succeeded in a cognitive learning task. Regarding the motor learning task (Serial Reaction Time Task), reaction times were longer and learning slower than in controls. The learning effect was not significant in children with an associated Developmental Coordination Disorder (DCD), and future studies should consider comorbid motor impairment in order to clarify whether impairments are related to the motor rather than the language disorder. Our results indicate that a phonotactic learning but not a cognitive procedural deficit underlies SLI, thus challenging Ullmans' general procedural deficit hypothesis, like a few other recent studies.

  16. Quantitative Motor Performance and Sleep Benefit in Parkinson Disease.

    PubMed

    van Gilst, Merel M; van Mierlo, Petra; Bloem, Bastiaan R; Overeem, Sebastiaan

    2015-10-01

    Many people with Parkinson disease experience "sleep benefit": temporarily improved mobility upon awakening. Here we used quantitative motor tasks to assess the influence of sleep on motor functioning in Parkinson disease. Eighteen Parkinson patients with and 20 without subjective sleep benefit and 20 healthy controls participated. Before and directly after a regular night sleep and an afternoon nap, subjects performed the timed pegboard dexterity task and quantified finger tapping task. Subjective ratings of motor functioning and mood/vigilange were included. Sleep was monitored using polysomnography. On both tasks, patients were overall slower than healthy controls (night: F2,55 = 16.938, P < 0.001; nap: F2,55 = 15.331, P < 0.001). On the pegboard task, there was a small overall effect of night sleep (F1,55 = 9.695, P = 0.003); both patients and controls were on average slightly slower in the morning. However, in both tasks there was no sleep*group interaction for nighttime sleep nor for afternoon nap. There was a modest correlation between the score on the pegboard task and self-rated motor symptoms among patients (rho = 0.233, P = 0.004). No correlations in task performance and mood/vigilance or sleep time/efficiency were found. A positive effect of sleep on motor function is commonly reported by Parkinson patients. Here we show that the subjective experience of sleep benefit is not paralleled by an actual improvement in motor functioning. Sleep benefit therefore appears to be a subjective phenomenon and not a Parkinson-specific reduction in symptoms. © 2015 Associated Professional Sleep Societies, LLC.

  17. Effect of cognitive and motor tasks on postural stability in Parkinson's disease: a posturographic study.

    PubMed

    Marchese, Roberta; Bove, Marco; Abbruzzese, Giovanni

    2003-06-01

    To analyse the effect of concomitant cognitive or motor task performance on balance control in Parkinson's disease (PD), we performed a posturographic study in 24 PD patients and in 20 sex- and age-matched control subjects. Postural sway was measured with eyes open (EO) and eyes closed (EC) during quiet stance and during performance of calculation or motor sequence of thumb opposition to the other fingers. No difference of centre of foot pressure (COP) parameters was observed during quiet standing (either EO or EC) between patients and controls, but visual deprivation induced in both groups a worsening of postural stability. COP area was significantly increased in PD patients during dual task performance, whereas no difference of COP path and x-y axes was observed. The effects induced by the performance of cognitive or motor task were significantly more evident in PD patients with clinical evidence of postural instability (presence of prior falls in the history). This study demonstrates that dual task interference on postural control can be observed in PD patients during performance of cognitive as well as motor tasks. The balance deterioration during dual task performance was significantly enhanced in patients with history of prior falls. These findings have some implications for the strategies to be used in reducing the risk of fall in PD. Copyright 2003 Movement Disorder Society

  18. People with chronic facial pain perform worse than controls at a facial emotion recognition task, but it is not all about the emotion.

    PubMed

    von Piekartz, H; Wallwork, S B; Mohr, G; Butler, D S; Moseley, G L

    2015-04-01

    Alexithymia, or a lack of emotional awareness, is prevalent in some chronic pain conditions and has been linked to poor recognition of others' emotions. Recognising others' emotions from their facial expression involves both emotional and motor processing, but the possible contribution of motor disruption has not been considered. It is possible that poor performance on emotional recognition tasks could reflect problems with emotional processing, motor processing or both. We hypothesised that people with chronic facial pain would be less accurate in recognising others' emotions from facial expressions, would be less accurate in a motor imagery task involving the face, and that performance on both tasks would be positively related. A convenience sample of 19 people (15 females) with chronic facial pain and 19 gender-matched controls participated. They undertook two tasks; in the first task, they identified the facial emotion presented in a photograph. In the second, they identified whether the person in the image had a facial feature pointed towards their left or right side, a well-recognised paradigm to induce implicit motor imagery. People with chronic facial pain performed worse than controls at both tasks (Facially Expressed Emotion Labelling (FEEL) task P < 0·001; left/right judgment task P < 0·001). Participants who were more accurate at one task were also more accurate at the other, regardless of group (P < 0·001, r(2)  = 0·523). Participants with chronic facial pain were worse than controls at both the FEEL emotion recognition task and the left/right facial expression task and performance covaried within participants. We propose that disrupted motor processing may underpin or at least contribute to the difficulty that facial pain patients have in emotion recognition and that further research that tests this proposal is warranted. © 2014 John Wiley & Sons Ltd.

  19. Abnormal functional motor lateralization in healthy siblings of patients with schizophrenia.

    PubMed

    Altamura, Mario; Fazio, Leonardo; De Salvia, Michela; Petito, Annamaria; Blasi, Giuseppe; Taurisano, Paolo; Romano, Raffaella; Gelao, Barbara; Bellomo, Antonello; Bertolino, Alessandro

    2012-07-30

    Earlier neuroimaging studies of motor function in schizophrenia have demonstrated reduced functional lateralization in the motor network during motor tasks. Here, we used event-related functional magnetic resonance imaging during a visually guided motor task in 18 clinically unaffected siblings of patients with schizophrenia and 24 matched controls to investigate if abnormal functional lateralization is related to genetic risk for this brain disorder. Whereas activity associated with motor task performance was mainly contralateral with only a marginal ipsilateral component in healthy participants, unaffected siblings had strong bilateral activity with significantly greater response in ipsilateral and contralateral premotor areas as well as in contralateral subcortical motor regions relative to controls. Reduced lateralization in siblings was also identified with a measure of laterality quotient. These findings suggest that abnormal functional lateralization of motor circuitry is related to genetic risk of schizophrenia. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Cortical Contribution to Linear, Non-linear and Frequency Components of Motor Variability Control during Standing.

    PubMed

    König Ignasiak, Niklas; Habermacher, Lars; Taylor, William R; Singh, Navrag B

    2017-01-01

    Motor variability is an inherent feature of all human movements and reflects the quality of functional task performance. Depending on the requirements of the motor task, the human sensory-motor system is thought to be able to flexibly govern the appropriate level of variability. However, it remains unclear which neurophysiological structures are responsible for the control of motor variability. In this study, we tested the contribution of cortical cognitive resources on the control of motor variability (in this case postural sway) using a dual-task paradigm and furthermore observed potential changes in control strategy by evaluating Ia-afferent integration (H-reflex). Twenty healthy subjects were instructed to stand relaxed on a force plate with eyes open and closed, as well as while trying to minimize sway magnitude and performing a "subtracting-sevens" cognitive task. In total 25 linear and non-linear parameters were used to evaluate postural sway, which were combined using a Principal Components procedure. Neurophysiological response of Ia-afferent reflex loop was quantified using the Hoffman reflex. In order to assess the contribution of the H-reflex on the sway outcome in the different standing conditions multiple mixed-model ANCOVAs were performed. The results suggest that subjects were unable to further minimize their sway, despite actively focusing to do so. The dual-task had a destabilizing effect on PS, which could partly (by 4%) be counter-balanced by increasing reliance on Ia-afferent information. The effect of the dual-task was larger than the protective mechanism of increasing Ia-afferent information. We, therefore, conclude that cortical structures, as compared to peripheral reflex loops, play a dominant role in the control of motor variability.

  1. A unifying motor control framework for task-specific dystonia

    PubMed Central

    Rothwell, John C.; Edwards, Mark J.

    2018-01-01

    Task-specific dystonia is a movement disorder characterized by the development of a painless loss of dexterity specific to a particular motor skill. This disorder is prevalent among writers, musicians, dancers and athletes. No current treatment is predictably effective and the disorder generally ends the careers of affected individuals. There are a number of limitations with traditional dystonic disease models for task-specific dystonia. We therefore review emerging evidence that the disorder has its origins within normal compensatory mechanisms of a healthy motor system in which the representation and reproduction of motor skill is disrupted. We describe how risk factors for task-specific dystonia can be stratified and translated into mechanisms of dysfunctional motor control. The proposed model aims to define new directions for experimental research and stimulate therapeutic advances for this highly disabling disorder. PMID:29104291

  2. The neural correlates of learned motor acuity

    PubMed Central

    Yang, Juemin; Caffo, Brian; Mazzoni, Pietro; Krakauer, John W.

    2014-01-01

    We recently defined a component of motor skill learning as “motor acuity,” quantified as a shift in the speed-accuracy trade-off function for a task. These shifts are primarily driven by reductions in movement variability. To determine the neural correlates of improvement in motor acuity, we devised a motor task compatible with magnetic resonance brain imaging that required subjects to make finely controlled wrist movements under visual guidance. Subjects were imaged on day 1 and day 5 while they performed this task and were trained outside the scanner on intervening days 2, 3, and 4. The potential confound of performance changes between days 1 and 5 was avoided by constraining movement time to a fixed duration. After training, subjects showed a marked increase in success rate and a reduction in trial-by-trial variability for the trained task but not for an untrained control task, without changes in mean trajectory. The decrease in variability for the trained task was associated with increased activation in contralateral primary motor and premotor cortical areas and in ipsilateral cerebellum. A global nonlocalizing multivariate analysis confirmed that learning was associated with increased overall brain activation. We suggest that motor acuity is acquired through increases in the number of neurons recruited in contralateral motor cortical areas and in ipsilateral cerebellum, which could reflect increased signal-to-noise ratio in motor output and improved state estimation for feedback corrections, respectively. PMID:24848466

  3. Effects of Dispositional Mindfulness on the Self-Controlled Learning of a Novel Motor Task

    ERIC Educational Resources Information Center

    Kee, Ying Hwa; Liu, Yeou-Teh

    2011-01-01

    Current literature suggests that mindful learning is beneficial to learning but its links with motor learning is seldom examined. In the present study, we examine the effects of learners' mindfulness disposition on the self-controlled learning of a novel motor task. Thirty-two participants undertook five practice sessions, in addition to a pre-,…

  4. Movement Interferes with Visuospatial Working Memory during the Encoding: An ERP Study

    PubMed Central

    Gunduz Can, Rumeysa; Schack, Thomas; Koester, Dirk

    2017-01-01

    The present study focuses on the functional interactions of cognition and manual action control. Particularly, we investigated the neurophysiological correlates of the dual-task costs of a manual-motor task (requiring grasping an object, holding it, and subsequently placing it on a target) for working memory (WM) domains (verbal and visuospatial) and processes (encoding and retrieval). Thirty participants were tested in a cognitive-motor dual-task paradigm, in which a single block (a verbal or visuospatial WM task) was compared with a dual block (concurrent performance of a WM task and a motor task). Event-related potentials (ERPs) were analyzed separately for the encoding and retrieval processes of verbal and visuospatial WM domains both in single and dual blocks. The behavioral analyses show that the motor task interfered with WM and decreased the memory performance. The performance decrease was larger for the visuospatial task compared with the verbal task, i.e., domain-specific memory costs were obtained. The ERP analyses show the domain-specific interference also at the neurophysiological level, which is further process-specific to encoding. That is, comparing the patterns of WM-related ERPs in the single block and dual block, we showed that visuospatial ERPs changed only for the encoding process when a motor task was performed at the same time. Generally, the present study provides evidence for domain- and process-specific interactions of a prepared manual-motor movement with WM (visuospatial domain during the encoding process). This study, therefore, provides an initial neurophysiological characterization of functional interactions of WM and manual actions in a cognitive-motor dual-task setting, and contributes to a better understanding of the neuro-cognitive mechanisms of motor action control. PMID:28611714

  5. Cognitive and motor dual task gait training improve dual task gait performance after stroke - A randomized controlled pilot trial.

    PubMed

    Liu, Yan-Ci; Yang, Yea-Ru; Tsai, Yun-An; Wang, Ray-Yau

    2017-06-22

    This study investigated effects of cognitive and motor dual task gait training on dual task gait performance in stroke. Participants (n = 28) were randomly assigned to cognitive dual task gait training (CDTT), motor dual task gait training (MDTT), or conventional physical therapy (CPT) group. Participants in CDTT or MDTT group practiced the cognitive or motor tasks respectively during walking. Participants in CPT group received strengthening, balance, and gait training. The intervention was 30 min/session, 3 sessions/week for 4 weeks. Three test conditions to evaluate the training effects were single walking, walking while performing cognitive task (serial subtraction), and walking while performing motor task (tray-carrying). Parameters included gait speed, dual task cost of gait speed (DTC-speed), cadence, stride time, and stride length. After CDTT, cognitive-motor dual task gait performance (stride length and DTC-speed) was improved (p = 0.021; p = 0.015). After MDTT, motor dual task gait performance (gait speed, stride length, and DTC-speed) was improved (p = 0.008; p = 0.008; p = 0.008 respectively). It seems that CDTT improved cognitive dual task gait performance and MDTT improved motor dual task gait performance although such improvements did not reach significant group difference. Therefore, different types of dual task gait training can be adopted to enhance different dual task gait performance in stroke.

  6. Relationship of ocular accommodation and motor skills performance in developmental coordination disorder.

    PubMed

    Rafique, Sara A; Northway, Nadia

    2015-08-01

    Ocular accommodation provides a well-focussed image, feedback for accurate eye movement control, and cues for depth perception. To accurately perform visually guided motor tasks, integration of ocular motor systems is essential. Children with motor coordination impairment are established to be at higher risk of accommodation anomalies. The aim of the present study was to examine the relationship between ocular accommodation and motor tasks, which are often overlooked, in order to better understand the problems experienced by children with motor coordination impairment. Visual function, gross and fine motor skills were assessed in children with developmental coordination disorder (DCD) and typically developing control children. Children with DCD had significantly poorer accommodation facility and amplitude dynamics compared to controls. Results indicate a relationship between impaired accommodation and motor skills. Specifically, accommodation anomalies correlated with visual motor, upper limb and fine dexterity task performance. Consequently, we argue accommodation anomalies influence the ineffective coordination of action and perception in DCD. Furthermore, reading disabilities were related to poorer motor performance. We postulate the role of the fastigial nucleus as a common pathway for accommodation and motor deficits. Implications of the findings and recommended visual screening protocols are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Discerning measures of conscious brain processes associated with superior early motor performance: Capacity, coactivation, and character.

    PubMed

    van Duijn, Tina; Buszard, Tim; Hoskens, Merel C J; Masters, Rich S W

    2017-01-01

    This study explored the relationship between working memory (WM) capacity, corticocortical communication (EEG coherence), and propensity for conscious control of movement during the performance of a complex far-aiming task. We were specifically interested in the role of these variables in predicting motor performance by novices. Forty-eight participants completed (a) an assessment of WM capacity (an adapted Rotation Span task), (b) a questionnaire that assessed the propensity to consciously control movement (the Movement Specific Reinvestment Scale), and (c) a hockey push-pass task. The hockey push-pass task was performed in a single task (movement only) condition and a combined task (movement plus decision) condition. Electroencephalography (EEG) was used to examine brain activity during the single task. WM capacity best predicted single task performance. WM capacity in combination with T8-Fz coherence (between the visuospatial and motor regions of the brain) best predicted combined task performance. We discuss the implied roles of visuospatial information processing capacity, neural coactivation, and propensity for conscious processing during performance of complex motor tasks. © 2017 Elsevier B.V. All rights reserved.

  8. Motor unit recruitment for dynamic tasks: current understanding and future directions.

    PubMed

    Hodson-Tole, Emma F; Wakeling, James M

    2009-01-01

    Skeletal muscle contains many muscle fibres that are functionally grouped into motor units. For any motor task there are many possible combinations of motor units that could be recruited and it has been proposed that a simple rule, the 'size principle', governs the selection of motor units recruited for different contractions. Motor units can be characterised by their different contractile, energetic and fatigue properties and it is important that the selection of motor units recruited for given movements allows units with the appropriate properties to be activated. Here we review what is currently understood about motor unit recruitment patterns, and assess how different recruitment patterns are more or less appropriate for different movement tasks. During natural movements the motor unit recruitment patterns vary (not always holding to the size principle) and it is proposed that motor unit recruitment is likely related to the mechanical function of the muscles. Many factors such as mechanics, sensory feedback, and central control influence recruitment patterns and consequently an integrative approach (rather than reductionist) is required to understand how recruitment is controlled during different movement tasks. Currently, the best way to achieve this is through in vivo studies that relate recruitment to mechanics and behaviour. Various methods for determining motor unit recruitment patterns are discussed, in particular the recent wavelet-analysis approaches that have allowed motor unit recruitment to be assessed during natural movements. Directions for future studies into motor recruitment within and between functional task groups and muscle compartments are suggested.

  9. Regaining motor control in musician's dystonia by restoring sensorimotor organisation

    PubMed Central

    Rosenkranz, Karin; Butler, Katherine; Williamon, Aaron; Rothwell, John C.

    2010-01-01

    Professional musicians are an excellent human model of long term effects of skilled motor training on the structure and function of the motor system. However, such effects are accompanied by an increased risk of developing motor abnormalities, in particular musician's dystonia. Previously we found that there was an expanded spatial integration of proprioceptive input into the hand area of motor cortex (sensorimotor organisation, SMO) in healthy musicians as tested with a transcranial magnetic stimulation (TMS) paradigm. In musician's dystonia, this expansion was even larger, resulting in a complete lack of somatotopic organisation. We hypothesised that the disordered motor control in musician's dystonia is a consequence of the disordered SMO. In the present paper we test this idea by giving pianists with musician's dystonia 15 min experience of a modified proprioceptive training task. This restored SMO towards that seen in healthy pianists. Crucially, motor control of the affected task improved significantly and objectively as measured with a MIDI piano, and the amount of behavioural improvement was significantly correlated to the degree of sensorimotor re-organisation. In healthy pianists and non-musicians, the SMO and motor performance remained essentially unchanged. These findings suggest a link between the differentiation of SMO in the hand motor cortex and the degree of motor control of intensively practiced tasks in highly skilled individuals. PMID:19923295

  10. Examining impairment of adaptive compensation for stabilizing motor repetitions in stroke survivors.

    PubMed

    Kim, Yushin; Koh, Kyung; Yoon, BumChul; Kim, Woo-Sub; Shin, Joon-Ho; Park, Hyung-Soon; Shim, Jae Kun

    2017-12-01

    The hand, one of the most versatile but mechanically redundant parts of the human body, suffers more and longer than other body parts after stroke. One of the rehabilitation paradigms, task-oriented rehabilitation, encourages motor repeatability, the ability to produce similar motor performance over repetitions through compensatory strategies while taking advantage of the motor system's redundancy. The previous studies showed that stroke survivors inconsistently performed a given motor task with limited motor solutions. We hypothesized that stroke survivors would exhibit deficits in motor repeatability and adaptive compensation compared to healthy controls in during repetitive force-pulse (RFP) production tasks using multiple fingers. Seventeen hemiparetic stroke survivors and seven healthy controls were asked to repeatedly press force sensors as fast as possible using the four fingers of each hand. The hierarchical variability decomposition model was employed to compute motor repeatability and adaptive compensation across finger-force impulses, respectively. Stroke survivors showed decreased repeatability and adaptive compensation of force impulses between individual fingers as compared to the control (p < 0.05). The stroke survivors also showed decreased pulse frequency and greater peak-to-peak time variance than the control (p < 0.05). Force-related variables, such as mean peak force and peak force interval variability, demonstrated no significant difference between groups. Our findings indicate that stroke-induced brain injury negatively affects their ability to exploit their redundant or abundant motor system in an RFP task.

  11. How is a motor skill learned? Change and invariance at the levels of task success and trajectory control

    PubMed Central

    Krakauer, John W.; Mazzoni, Pietro

    2012-01-01

    The public pays large sums of money to watch skilled motor performance. Notably, however, in recent decades motor skill learning (performance improvement beyond baseline levels) has received less experimental attention than motor adaptation (return to baseline performance in the setting of an external perturbation). Motor skill can be assessed at the levels of task success and movement quality, but the link between these levels remains poorly understood. We devised a motor skill task that required visually guided curved movements of the wrist without a perturbation, and we defined skill learning at the task level as a change in the speed–accuracy trade-off function (SAF). Practice in restricted speed ranges led to a global shift of the SAF. We asked how the SAF shift maps onto changes in trajectory kinematics, to establish a link between task-level performance and fine motor control. Although there were small changes in mean trajectory, improved performance largely consisted of reduction in trial-to-trial variability and increase in movement smoothness. We found evidence for improved feedback control, which could explain the reduction in variability but does not preclude other explanations such as an increased signal-to-noise ratio in cortical representations. Interestingly, submovement structure remained learning invariant. The global generalization of the SAF across a wide range of difficulty suggests that skill for this task is represented in a temporally scalable network. We propose that motor skill acquisition can be characterized as a slow reduction in movement variability, which is distinct from faster model-based learning that reduces systematic error in adaptation paradigms. PMID:22514286

  12. Forelimb training drives transient map reorganization in ipsilateral motor cortex

    PubMed Central

    Pruitt, David T.; Schmid, Ariel N.; Danaphongse, Tanya T.; Flanagan, Kate E.; Morrison, Robert A.; Kilgard, Michael P.; Rennaker, Robert L.; Hays, Seth A.

    2016-01-01

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. PMID:27392641

  13. Forelimb training drives transient map reorganization in ipsilateral motor cortex.

    PubMed

    Pruitt, David T; Schmid, Ariel N; Danaphongse, Tanya T; Flanagan, Kate E; Morrison, Robert A; Kilgard, Michael P; Rennaker, Robert L; Hays, Seth A

    2016-10-15

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Transcranial direct current stimulation (tDCS) to the supplementary motor area (SMA) influences performance on motor tasks.

    PubMed

    Hupfeld, K E; Ketcham, C J; Schneider, H D

    2017-03-01

    The supplementary motor area (SMA) is believed to be highly involved in the planning and execution of both simple and complex motor tasks. This study aimed to examine the role of the SMA in planning the movements required to complete reaction time, balance, and pegboard tasks using anodal transcranial direct current stimulation (tDCS), which passes a weak electrical current between two electrodes, in order to modulate neuronal activity. Twenty healthy adults were counterbalanced to receive either tDCS (experimental condition) or no tDCS (control condition) for 3 days. During administration of tDCS, participants performed a balance task significantly faster than controls. After tDCS, subjects significantly improved their simple and choice reaction time. These results demonstrate that the SMA is highly involved in planning and executing fine and gross motor skill tasks and that tDCS is an effective modality for increasing SMA-related performance on these tasks. The findings may be generalizable and therefore indicate implications for future interventions using tDCS as a therapeutic tool.

  15. Sensory-guided motor tasks benefit from mental training based on serial prediction

    PubMed Central

    Binder, Ellen; Hagelweide, Klara; Wang, Ling E.; Kornysheva, Katja; Grefkes, Christian; Fink, Gereon R.; Schubotz, Ricarda I.

    2017-01-01

    Mental strategies have been suggested to constitute a promising approach to improve motor abilities in both healthy subjects and patients. This behavioural effect has been shown to be associated with changes of neural activity in premotor areas, not only during movement execution, but also while performing motor imagery or action observation. However, how well such mental tasks are performed is often difficult to assess, especially in patients. We here used a novel mental training paradigm based on the serial prediction task (SPT) in order to activate premotor circuits in the absence of a motor task. We then tested whether this intervention improves motor-related performance such as sensorimotor transformation. Two groups of healthy young participants underwent a single-blinded five-day cognitive training schedule and were tested in four different motor tests on the day before and after training. One group (N = 22) received the SPT-training and the other one (N = 21) received a control training based on a serial match-to-sample task. The results revealed significant improvements of the SPT-group in a sensorimotor timing task, i.e. synchronization of finger tapping to a visually presented rhythm, as well as improved visuomotor coordination in a sensory-guided pointing task compared to the group that received the control training. However, mental training did not show transfer effects on motor abilities in healthy subjects beyond the trained modalities as evident by non-significant changes in the Jebsen–Taylor handfunctiontest. In summary, the data suggest that mental training based on the serial prediction task effectively engages sensorimotor circuits and thereby improves motor behaviour. PMID:24321273

  16. Reduced Dual-Task Performance in MS Patients Is Further Decreased by Muscle Fatigue.

    PubMed

    Wolkorte, Ria; Heersema, Dorothea J; Zijdewind, Inge

    2015-06-01

    Multiple sclerosis (MS) can be accompanied by motor, cognitive, and sensory impairments. Additionally, MS patients often report fatigue as one of their most debilitating symptoms. It is, therefore, expected that MS patients will have difficulties in performing cognitive-motor dual tasks (DTs), especially in a fatiguing condition. To determine whether MS patients are more challenged by a DT than controls in a fatiguing and less-fatiguing condition and whether DT performance is associated with perceived fatigue. A group of 19 MS patients and 19 age-, sex-, and education-matched controls performed a cognitive task (2-choice reaction time task) separately or concurrent with a low-force or a high-force motor task (index finger abduction at 10% or 30% maximal voluntary contraction). MS patients performed less well on a cognitive task than controls. Cognitive task performance under DT conditions decreased more for MS patients. Moreover, under high-force DT conditions, cognitive performance declined in both groups but to a larger degree for MS patients. Besides a decline in cognitive task performance, MS patients also showed a stronger decrease in motor performance under high-force DT conditions. DT costs were positively related to perceived fatigue as measured by questionnaires. Compared with controls, MS patients performed less well on DTs as demonstrated by a reduction in both cognitive and motor performances. This performance decrease was stronger under fatiguing conditions and was related to the sense of fatigue of MS patients. These data illustrate problems that MS patients may encounter in daily life because of their fatigue. © The Author(s) 2014.

  17. Motor control is decision-making.

    PubMed

    Wolpert, Daniel M; Landy, Michael S

    2012-12-01

    Motor behavior may be viewed as a problem of maximizing the utility of movement outcome in the face of sensory, motor and task uncertainty. Viewed in this way, and allowing for the availability of prior knowledge in the form of a probability distribution over possible states of the world, the choice of a movement plan and strategy for motor control becomes an application of statistical decision theory. This point of view has proven successful in recent years in accounting for movement under risk, inferring the loss function used in motor tasks, and explaining motor behavior in a wide variety of circumstances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. The Effect of Self-Regulated and Experimenter-Imposed Practice Schedules on Motor Learning for Tasks of Varying Difficulty

    ERIC Educational Resources Information Center

    Keetch, Katherine M.; Lee, Timothy D.

    2007-01-01

    Research suggests that allowing individuals to control their own practice schedule has a positive effect on motor learning. In this experiment we examined the effect of task difficulty and self-regulated practice strategies on motor learning. The task was to move a mouse-operated cursor through pattern arrays that differed in two levels of…

  19. Behavioral responses of trained squirrel and rhesus monkeys during oculomotor tasks

    PubMed Central

    Heiney, Shane A.; Blazquez, Pablo M.

    2018-01-01

    The oculomotor system is the motor system of choice for many neuroscientists studying motor control and learning because of its simplicity, easy control of inputs (e.g., visual stimulation), and precise control and measurement of motor outputs (eye position). This is especially true in primates, which are easily trained to perform oculomotor tasks. Here we provide the first detailed characterization of the oculomotor performance of trained squirrel monkeys, primates used extensively in oculomotor physiology, during saccade and smooth pursuit tasks, and compare it to that of the rhesus macaque. We found that both primates have similar oculomotor behavior but the rhesus shows a larger oculomotor range, better performance for horizontal saccades above 10 degrees, and better horizontal smooth pursuit gain to target velocities above 15 deg/s. These results are important for interspecies comparisons and necessary when selecting the best stimuli to study motor control and motor learning in the oculomotor systems of these primates. PMID:21656216

  20. Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats.

    PubMed

    Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus

    2015-01-01

    Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity-the synchronized discharge of individual motor units across muscles within time intervals of 5ms-for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. For all tasks, except for singe-leg balance, coherence between 15-80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30-60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement task at hand.

  1. Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats

    PubMed Central

    Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus

    2015-01-01

    Purpose Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity–the synchronized discharge of individual motor units across muscles within time intervals of 5ms–for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Methods Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. Results For all tasks, except for singe-leg balance, coherence between 15–80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30–60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. Conclusion There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement task at hand. PMID:26529604

  2. Real-time changes in corticospinal excitability related to motor imagery of a force control task.

    PubMed

    Tatemoto, Tsuyoshi; Tsuchiya, Junko; Numata, Atsuki; Osawa, Ryuji; Yamaguchi, Tomofumi; Tanabe, Shigeo; Kondo, Kunitsugu; Otaka, Yohei; Sugawara, Kenichi

    2017-09-29

    To investigate real-time excitability changes in corticospinal pathways related to motor imagery in a changing force control task, using transcranial magnetic stimulation (TMS). Ten healthy volunteers learnt to control the contractile force of isometric right wrist dorsiflexion in order to track an on-screen sine wave form. Participants performed the trained task 40 times with actual muscle contraction in order to construct the motor image. They were then instructed to execute the task without actual muscle contraction, but by imagining contraction of the right wrist in dorsiflexion. Motor evoked potentials (MEPs), induced by TMS in the right extensor carpi radialis muscle (ECR) and flexor carpi radialis muscle (FCR), were measured during motor imagery. MEPs were induced at five time points: prior to imagery, during the gradual generation of the imaged wrist dorsiflexion (Increasing phase), the peak value of the sine wave, during the gradual reduction (Decreasing phase), and after completion of the task. The MEP ratio, as the ratio of imaged MEPs to resting-state, was compared between pre- and post-training at each time point. In the ECR muscle, the MEP ratio significantly increased during the Increasing phase and at the peak force of dorsiflexion imagery after training. Moreover, the MEP ratio was significantly greater in the Increasing phase than in the Decreasing phase. In the FCR, there were no significant consistent changes. Corticospinal excitability during motor imagery in an isometric contraction task was modulated in relation to the phase of force control after image construction. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Interactive effect of acute pain and motor learning acquisition on sensorimotor integration and motor learning outcomes

    PubMed Central

    Dancey, Erin; Andrew, Danielle; Yielder, Paul

    2016-01-01

    Previous work has demonstrated differential changes in early somatosensory evoked potentials (SEPs) when motor learning acquisition occurred in the presence of acute pain; however, the learning task was insufficiently complex to determine how these underlying neurophysiological differences impacted learning acquisition and retention. To address this limitation, we have utilized a complex motor task in conjunction with SEPs. Two groups of 12 participants (n = 24) were randomly assigned to either a capsaicin (capsaicin cream) or a control (inert lotion) group. SEP amplitudes were collected at baseline, after application, and after motor learning acquisition. Participants performed a motor acquisition task followed by a pain-free retention task within 24–48 h. After motor learning acquisition, the amplitude of the N20 SEP peak significantly increased (P < 0.05) and the N24 SEP peak significantly decreased (P < 0.001) for the control group while the N18 SEP peak significantly decreased (P < 0.01) for the capsaicin group. The N30 SEP peak was significantly increased (P < 0.001) after motor learning acquisition for both groups. The P25 SEP peak decreased significantly (P < 0.05) after the application of capsaicin cream. Both groups improved in accuracy after motor learning acquisition (P < 0.001). The capsaicin group outperformed the control group before motor learning acquisition (P < 0.05) and after motor learning acquisition (P < 0.05) and approached significance at retention (P = 0.06). Improved motor learning in the presence of capsaicin provides support for the enhancement of motor learning while in acute pain. In addition, the changes in SEP peak amplitudes suggest that early SEP changes reflect neurophysiological alterations accompanying both motor learning and mild acute pain. PMID:27535371

  4. Cognitive Resources Necessary for Motor Control in Older Adults Are Reduced by Walking and Coordination Training

    PubMed Central

    Godde, Ben; Voelcker-Rehage, Claudia

    2017-01-01

    We examined if physical exercise interventions were effective to reduce cognitive brain resources recruited while performing motor control tasks in older adults. Forty-three older adults (63–79 years of age) participated in either a walking (n = 17) or a motor coordination (n = 15) intervention (1 year, 3 times per week) or were assigned to a control group (n = 11) doing relaxation and stretching exercises. Pre and post the intervention period, we applied functional MRI to assess brain activation during imagery of forward and backward walking and during counting backwards from 100 as control task. In both experimental groups, activation in the right dorsolateral prefrontal cortex (DLPFC) during imagery of forward walking decreased from pre- to post-test (Effect size: −1.55 and −1.16 for coordination and walking training, respectively; Cohen’s d). Regression analysis revealed a significant positive association between initial motor status and activation change in the right DLPFC (R2 = 0.243, F(3,39) = 4.18, p = 0.012). Participants with lowest motor status at pretest profited most from the interventions. Data suggest that physical training in older adults is effective to free up cognitive resources otherwise needed for the control of locomotion. Training benefits may become particularly apparent in so-called dual-task situations where subjects must perform motor and cognitive tasks concurrently. PMID:28443006

  5. The Effect of Haptic Guidance on Learning a Hybrid Rhythmic-Discrete Motor Task.

    PubMed

    Marchal-Crespo, Laura; Bannwart, Mathias; Riener, Robert; Vallery, Heike

    2015-01-01

    Bouncing a ball with a racket is a hybrid rhythmic-discrete motor task, combining continuous rhythmic racket movements with discrete impact events. Rhythmicity is exceptionally important in motor learning, because it underlies fundamental movements such as walking. Studies suggested that rhythmic and discrete movements are governed by different control mechanisms at different levels of the Central Nervous System. The aim of this study is to evaluate the effect of fixed/fading haptic guidance on learning to bounce a ball to a desired apex in virtual reality with varying gravity. Changing gravity changes dominance of rhythmic versus discrete control: The higher the value of gravity, the more rhythmic the task; lower values reduce the bouncing frequency and increase dwell times, eventually leading to a repetitive discrete task that requires initiation and termination, resembling target-oriented reaching. Although motor learning in the ball-bouncing task with varying gravity has been studied, the effect of haptic guidance on learning such a hybrid rhythmic-discrete motor task has not been addressed. We performed an experiment with thirty healthy subjects and found that the most effective training condition depended on the degree of rhythmicity: Haptic guidance seems to hamper learning of continuous rhythmic tasks, but it seems to promote learning for repetitive tasks that resemble discrete movements.

  6. Emergence of Virtual Reality as a Tool for Upper Limb Rehabilitation: Incorporation of Motor Control and Motor Learning Principles

    PubMed Central

    Weiss, Patrice L.; Keshner, Emily A.

    2015-01-01

    The primary focus of rehabilitation for individuals with loss of upper limb movement as a result of acquired brain injury is the relearning of specific motor skills and daily tasks. This relearning is essential because the loss of upper limb movement often results in a reduced quality of life. Although rehabilitation strives to take advantage of neuroplastic processes during recovery, results of traditional approaches to upper limb rehabilitation have not entirely met this goal. In contrast, enriched training tasks, simulated with a wide range of low- to high-end virtual reality–based simulations, can be used to provide meaningful, repetitive practice together with salient feedback, thereby maximizing neuroplastic processes via motor learning and motor recovery. Such enriched virtual environments have the potential to optimize motor learning by manipulating practice conditions that explicitly engage motivational, cognitive, motor control, and sensory feedback–based learning mechanisms. The objectives of this article are to review motor control and motor learning principles, to discuss how they can be exploited by virtual reality training environments, and to provide evidence concerning current applications for upper limb motor recovery. The limitations of the current technologies with respect to their effectiveness and transfer of learning to daily life tasks also are discussed. PMID:25212522

  7. Sensorimotor Rhythm BCI with Simultaneous High Definition-Transcranial Direct Current Stimulation Alters Task Performance.

    PubMed

    Baxter, Bryan S; Edelman, Bradley J; Nesbitt, Nicholas; He, Bin

    Transcranial direct current stimulation (tDCS) has been used to alter the excitability of neurons within the cerebral cortex. Improvements in motor learning have been found in multiple studies when tDCS was applied to the motor cortex before or during task learning. The motor cortex is also active during the performance of motor imagination, a cognitive task during which a person imagines, but does not execute, a movement. Motor imagery can be used with noninvasive brain computer interfaces (BCIs) to control virtual objects in up to three dimensions, but to master control of such devices requires long training times. To evaluate the effect of high-definition tDCS on the performance and underlying electrophysiology of motor imagery based BCI. We utilize high-definition tDCS to investigate the effect of stimulation on motor imagery-based BCI performance across and within sessions over multiple training days. We report a decreased time-to-hit with anodal stimulation both within and across sessions. We also found differing electrophysiological changes of the stimulated sensorimotor cortex during online BCI task performance for left vs. right trials. Cathodal stimulation led to a decrease in alpha and beta band power during task performance compared to sham stimulation for right hand imagination trials. These results suggest that unilateral tDCS over the sensorimotor motor cortex differentially affects cortical areas based on task specific neural activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The Effects of Divided Attention on Speech Motor, Verbal Fluency, and Manual Task Performance

    ERIC Educational Resources Information Center

    Dromey, Christopher; Shim, Erin

    2008-01-01

    Purpose: The goal of this study was to evaluate aspects of the "functional distance hypothesis," which predicts that tasks regulated by brain networks in closer anatomic proximity will interfere more with each other than tasks controlled by spatially distant regions. Speech, verbal fluency, and manual motor tasks were examined to ascertain whether…

  9. Developing Metacognitive Behaviour in Physical Education Classes: The Use of Task-Pertinent Learning Strategies

    ERIC Educational Resources Information Center

    Lidor, Ronnie

    2004-01-01

    Research in motor learning and sport pedagogy has shown that task-pertinent learning strategies enhance the learning and performance of self-paced motor tasks. Strategy research has typically been conducted under laboratory conditions in which artificial self-paced tasks were executed under well-controlled conditions. The purpose of this study was…

  10. Motor cortex is required for learning but not executing a motor skill

    PubMed Central

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu; Dhawale, Ashesh; Kampff, Adam R.; Ölveczky, Bence P.

    2018-01-01

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, yet its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex’s established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in ‘tutoring’ these circuits during learning. PMID:25892304

  11. AExaCTT - Aerobic Exercise and Consecutive Task-specific Training for the upper limb after stroke: Protocol for a randomised controlled pilot study.

    PubMed

    Valkenborghs, Sarah R; Visser, Milanka M; Dunn, Ashlee; Erickson, Kirk I; Nilsson, Michael; Callister, Robin; van Vliet, Paulette

    2017-09-01

    Motor function may be enhanced if aerobic exercise is paired with motor training. One potential mechanism is that aerobic exercise increases levels of brain-derived neurotrophic factor (BDNF), which is important in neuroplasticity and involved in motor learning and motor memory consolidation. This study will examine the feasibility of a parallel-group assessor-blinded randomised controlled trial investigating whether task-specific training preceded by aerobic exercise improves upper limb function more than task-specific training alone, and determine the effect size of changes in primary outcome measures. People with upper limb motor dysfunction after stroke will be allocated to either task-specific training or aerobic exercise and consecutive task-specific training. Both groups will perform 60 hours of task-specific training over 10 weeks, comprised of 3 × 1 hour sessions per week with a therapist and 3 × 1 hours of home-based self-practice per week. The combined intervention group will also perform 30 minutes of aerobic exercise (70-85%HR max ) immediately prior to the 1 hour of task-specific training with the therapist. Recruitment, adherence, retention, participant acceptability, and adverse events will be recorded. Clinical outcome measures will be performed pre-randomisation at baseline, at completion of the training program, and at 1 and 6 months follow-up. Primary clinical outcome measures will be the Action Research Arm Test (ARAT) and the Wolf Motor Function Test (WMFT). If aerobic exercise prior to task-specific training is acceptable, and a future phase 3 randomised controlled trial seems feasible, it should be pursued to determine the efficacy of this combined intervention for people after stroke.

  12. Levodopa response differs in Parkinson's motor subtypes: A task-based effective connectivity study.

    PubMed

    Mohl, Brianne; Berman, Brian D; Shelton, Erika; Tanabe, Jody

    2017-06-15

    Parkinson's disease (PD) is a circuit-level disorder with clinically-determined motor subtypes. Despite evidence suggesting each subtype may have different pathophysiology, few neuroimaging studies have examined levodopa-induced differences in neural activation between tremor dominant (TD) and postural instability/gait difficulty (PIGD) subtype patients during a motor task. The goal of this functional MRI (fMRI) study was to examine task-induced activation and connectivity in the cortico-striatal-thalamo-cortical motor circuit in healthy controls, TD patients, and PIGD patients before and after levodopa administration. Fourteen TD and 12 PIGD cognitively-intact patients and 21 age- and sex-matched healthy controls completed a right-hand, paced tapping fMRI paradigm. Collectively, PD patients off medication (OFF) showed hypoactivation of the motor cortex relative to healthy controls, even when controlling for performance. After levodopa intake, the PIGD patients had significantly increased activation in the left putamen compared with TD patients and healthy controls. Psychophysiological interaction analysis revealed that levodopa increased effective connectivity between the posterior putamen and other areas of the motor circuit during tapping in TD patients, but not in PIGD patients. This novel, levodopa-induced difference in the neural responses between PD motor subtypes may have significant implications for elucidating the mechanisms underlying the distinct phenotypic manifestations and enabling the classification of motor subtypes objectively using fMRI. © 2017 Wiley Periodicals, Inc.

  13. Kinesthetic motor imagery modulates body sway.

    PubMed

    Rodrigues, E C; Lemos, T; Gouvea, B; Volchan, E; Imbiriba, L A; Vargas, C D

    2010-08-25

    The aim of this study was to investigate the effect of imagining an action implicating the body axis in the kinesthetic and visual motor imagery modalities upon the balance control system. Body sway analysis (measurement of center of pressure, CoP) together with electromyography (EMG) recording and verbal evaluation of imagery abilities were obtained from subjects during four tasks, performed in the upright position: to execute bilateral plantar flexions; to imagine themselves executing bilateral plantar flexions (kinesthetic modality); to imagine someone else executing the same movement (visual modality), and to imagine themselves singing a song (as a control imagery task). Body sway analysis revealed that kinesthetic imagery leads to a general increase in CoP oscillation, as reflected by an enhanced area of displacement. This effect was also verified for the CoP standard deviation in the medial-lateral direction. An increase in the trembling displacement (equivalent to center of pressure minus center of gravity) restricted to the anterior-posterior direction was also observed to occur during kinesthetic imagery. The visual imagery task did not differ from the control (sing) task for any of the analyzed parameters. No difference in the subjects' ability to perform the imagery tasks was found. No modulation of EMG data were observed across imagery tasks, indicating that there was no actual execution during motor imagination. These results suggest that motor imagery performed in the kinesthetic modality evokes motor representations involved in balance control. Copyright (c)10 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Continuously Adaptive vs. Discrete Changes of Task Difficulty in the Training of a Complex Perceptual-Motor Task.

    ERIC Educational Resources Information Center

    Wood, Milton E.

    The purpose of the effort was to determine the benefits to be derived from the adaptive training technique of automatically adjusting task difficulty as a function of a student skill during early learning of a complex perceptual motor task. A digital computer provided the task dynamics, scoring, and adaptive control of a second-order, two-axis,…

  15. Neuropsychological Investigation of Motor Impairments in Autism

    PubMed Central

    Duffield, Tyler; Trontel, Haley; Bigler, Erin D.; Froehlich, Alyson; Prigge, Molly B.; Travers, Brittany; Green, Ryan R.; Cariello, Annahir N.; Cooperrider, Jason; Nielsen, Jared; Alexander, Andrew; Anderson, Jeffrey; Fletcher, P. Thomas; Lange, Nicholas; Zielinski, Brandon; Lainhart, Janet

    2013-01-01

    It is unclear how standardized neuropsychological measures of motor function relate to brain volumes of motor regions in autism spectrum disorder (ASD). An all male sample composed of 59 ASD and 30 controls (ages 5–33 years) completed three measures of motor function: strength of grip (SOG), finger tapping test (FTT), and grooved peg-board test (GPT). Likewise, all participants underwent magnetic resonance imaging with region of interest (ROI) volumes obtained to include the following regions: motor cortex (pre-central gyrus), somatosensory cortex (post-central gyrus), thalamus, basal ganglia, cerebellum and caudal middle frontal gyrus. These traditional neuropsychological measures of motor function are assumed to differ in motor complexity with GPT requiring the most followed by FTT and SOG. Performance by ASD participants on the GPT and FTT differed significantly from controls, with the largest effect size differences observed on the more complex GPT task. Differences on the SOG task between the two groups were non-significant. Since more complex motor tasks tap more complex networks, poorer GPT performance by those with ASD may reflect less efficient motor networks. There was no gross pathology observed in classic motor areas of the brain in ASD, as region of interest (ROI) volumes did not differ, but FTT was negatively related to motor cortex volume in ASD. The results suggest a hierarchical motor disruption in ASD, with difficulties evident only in more complex tasks as well as a potential anomalous size-function relation in motor cortex in ASD. PMID:23985036

  16. Children show limited movement repertoire when learning a novel motor skill.

    PubMed

    Lee, Mei-Hua; Farshchiansadegh, Ali; Ranganathan, Rajiv

    2017-09-27

    Examining age differences in motor learning using real-world tasks is often problematic due to task novelty and biomechanical confounds. Here, we investigated how children and adults acquire a novel motor skill in a virtual environment. Participants of three different age groups (9-year-olds, 12-year-olds, and adults) learned to use their upper body movements to control a cursor on a computer screen. Results showed that 9-year-old and 12-year-old children showed poorer ability to control the cursor at the end of practice. Critically, when we investigated the movement coordination, we found that the lower task performance of children was associated with limited exploration of their movement repertoire. These results reveal the critical role of motor exploration in understanding developmental differences in motor learning. © 2017 John Wiley & Sons Ltd.

  17. Motor Sequence Learning-Induced Neural Efficiency in Functional Brain Connectivity

    PubMed Central

    Karim, Helmet T; Huppert, Theodore J; Erickson, Kirk I; Wollam, Mariegold E; Sparto, Patrick J; Sejdić, Ervin; VanSwearingen, Jessie M

    2016-01-01

    Previous studies have shown the functional neural circuitry differences before and after an explicitly learned motor sequence task, but have not assessed these changes during the process of motor skill learning. Functional magnetic resonance imaging activity was measured while participants (n=13) were asked to tap their fingers to visually presented sequences in blocks that were either the same sequence repeated (learning block) or random sequences (control block). Motor learning was associated with a decrease in brain activity during learning compared to control. Lower brain activation was noted in the posterior parietal association area and bilateral thalamus during the later periods of learning (not during the control). Compared to the control condition, we found the task-related motor learning was associated with decreased connectivity between the putamen and left inferior frontal gyrus and left middle cingulate brain regions. Motor learning was associated with changes in network activity, spatial extent, and connectivity. PMID:27845228

  18. Non-motor tasks improve adaptive brain-computer interface performance in users with severe motor impairment

    PubMed Central

    Faller, Josef; Scherer, Reinhold; Friedrich, Elisabeth V. C.; Costa, Ursula; Opisso, Eloy; Medina, Josep; Müller-Putz, Gernot R.

    2014-01-01

    Individuals with severe motor impairment can use event-related desynchronization (ERD) based BCIs as assistive technology. Auto-calibrating and adaptive ERD-based BCIs that users control with motor imagery tasks (“SMR-AdBCI”) have proven effective for healthy users. We aim to find an improved configuration of such an adaptive ERD-based BCI for individuals with severe motor impairment as a result of spinal cord injury (SCI) or stroke. We hypothesized that an adaptive ERD-based BCI, that automatically selects a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (“Auto-AdBCI”) could allow for higher control performance than a conventional SMR-AdBCI. To answer this question we performed offline analyses on two sessions (21 data sets total) of cue-guided, five-class electroencephalography (EEG) data recorded from individuals with SCI or stroke. On data from the twelve individuals in Session 1, we first identified three bipolar derivations for the SMR-AdBCI. In a similar way, we determined three bipolar derivations and four mental tasks for the Auto-AdBCI. We then simulated both, the SMR-AdBCI and the Auto-AdBCI configuration on the unseen data from the nine participants in Session 2 and compared the results. On the unseen data of Session 2 from individuals with SCI or stroke, we found that automatically selecting a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (Auto-AdBCI) significantly (p < 0.01) improved classification performance compared to an adaptive ERD-based BCI that only used motor imagery tasks (SMR-AdBCI; average accuracy of 75.7 vs. 66.3%). PMID:25368546

  19. Interference effects between memory systems in the acquisition of a skill.

    PubMed

    Gagné, Marie-Hélène; Cohen, Henri

    2016-10-01

    There is now converging evidence that the declarative memory system (hippocampus dependent) contributes to sequential motor learning in concert with the procedural memory system (striatum dependent). Because of the competition for shared neuronal resources, introducing a declarative memory task can impair learning of a new motor sequence and interference may occur during the procedural consolidation process. Here, we investigated the extent to which interference effects between memory systems are seen at the retrieval phase of skill learning. Healthy participants were assigned to a control (n = 15) or a declarative condition (n = 15) and trained on a sequence of finger movements (FOS task). Both groups showed similar improvement at the end of the practice session on the first day. Twenty-four hours later, controls were tested solely on the FOS task, while subjects in the declarative condition first engaged in a visuospatial task. Additional offline gains in performance were observed only in the control condition. The introduction of a visuospatial memory task just before retrieval of the motor skill was sufficient to eliminate these gains. This suggests that interference between procedural and declarative memory systems may also occur during subsequent motor recall. It is proposed that the interference effects are linked, in part, to the spatial nature of the motor and declarative tasks, which specifically depends upon hippocampal involvement.

  20. Altered motor network activation and functional connectivity in adult Tourette's syndrome.

    PubMed

    Werner, Cornelius J; Stöcker, Tony; Kellermann, Thilo; Bath, Jessica; Beldoch, Margarete; Schneider, Frank; Wegener, Hans Peter; Shah, Jon N; Neuner, Irene

    2011-11-01

    Tourette's syndrome (TS) is a developmental neuropsychiatric disorder characterized by motor and vocal tics as well as psychiatric comorbidities. Disturbances of the fronto-striatal-thalamic pathways responsible for motor control and impulse inhibition have been previously described in other studies. Although differences in motor performance are well recognized, imaging data elucidating the neuronal correlates are scarce. Here, we examined 19 adult TS patients (13 men, aged 22-52 years, mean = 34.3 years) and 18 age- and sex-matched controls (13 men, aged 24-57 years, mean = 37.6 years) in a functional magnetic resonance imaging study at 1.5 T. We corrected for possible confounds introduced by tics, motion, and brain-structural differences as well as age, sex, comorbidities, and medication. Patients and controls were asked to perform a sequential finger-tapping task using their right, left, and both hands, respectively. Task performance was monitored by simultaneous MR-compatible video recording. Although behavioral data obtained during scanning did not show significant differences across groups, we observed differential neuronal activation patterns depending on both handedness (dominant vs. nondominant) and tapping frequency in frontal, parietal, and subcortical areas. When controlling for open motor performance, a failure of deactivation in easier task conditions was found in the subgenual cingulate cortex in the TS patients. In addition, performance-related functional connectivity of lower- and higher-order motor networks differed between patients and controls. In summary, although open performance was comparable, patients showed different neuronal networks and connectivity patterns when performing increasingly demanding tasks, further illustrating the impact of the disease on the motor system. Copyright © 2011 Wiley-Liss, Inc.

  1. Consecutive learning of opposing unimanual motor tasks using the right arm followed by the left arm causes intermanual interference

    PubMed Central

    Thürer, Benjamin; Stein, Thorsten

    2017-01-01

    Intermanual transfer (motor memory generalization across arms) and motor memory interference (impairment of retest performance in consecutive motor learning) are well-investigated motor learning phenomena. However, the interplay of these phenomena remains elusive, i.e., whether intermanual interference occurs when two unimanual tasks are consecutively learned using different arms. Here, we examine intermanual interference when subjects consecutively adapt their right and left arm movements to novel dynamics. We considered two force field tasks A and B which were of the same structure but mirrored orientation (B = -A). The first test group (ABA-group) consecutively learned task A using their right arm and task B using their left arm before being retested for task A with their right arm. Another test group (AAA-group) learned only task A in the same right-left-right arm schedule. Control subjects learned task A using their right arm without intermediate left arm learning. All groups were able to adapt their right arm movements to force field A and both test groups showed significant intermanual transfer of this initial learning to the contralateral left arm of 21.9% (ABA-group) and 27.6% (AAA-group). Consecutively, both test groups adapted their left arm movements to force field B (ABA-group) or force field A (AAA-group). For the ABA-group, left arm learning caused significant intermanual interference of the initially learned right arm task (68.3% performance decrease). The performance decrease of the AAA-group (10.2%) did not differ from controls (15.5%). These findings suggest that motor control and learning of right and left arm movements involve partly similar neural networks or underlie a vital interhemispheric connectivity. Moreover, our results suggest a preferred internal task representation in extrinsic Cartesian-based coordinates rather than in intrinsic joint-based coordinates because interference was absent when learning was performed in extrinsically equivalent fashion (AAA-group) but interference occurred when learning was performed in intrinsically equivalent fashion (ABA-group). PMID:28459833

  2. Consecutive learning of opposing unimanual motor tasks using the right arm followed by the left arm causes intermanual interference.

    PubMed

    Stockinger, Christian; Thürer, Benjamin; Stein, Thorsten

    2017-01-01

    Intermanual transfer (motor memory generalization across arms) and motor memory interference (impairment of retest performance in consecutive motor learning) are well-investigated motor learning phenomena. However, the interplay of these phenomena remains elusive, i.e., whether intermanual interference occurs when two unimanual tasks are consecutively learned using different arms. Here, we examine intermanual interference when subjects consecutively adapt their right and left arm movements to novel dynamics. We considered two force field tasks A and B which were of the same structure but mirrored orientation (B = -A). The first test group (ABA-group) consecutively learned task A using their right arm and task B using their left arm before being retested for task A with their right arm. Another test group (AAA-group) learned only task A in the same right-left-right arm schedule. Control subjects learned task A using their right arm without intermediate left arm learning. All groups were able to adapt their right arm movements to force field A and both test groups showed significant intermanual transfer of this initial learning to the contralateral left arm of 21.9% (ABA-group) and 27.6% (AAA-group). Consecutively, both test groups adapted their left arm movements to force field B (ABA-group) or force field A (AAA-group). For the ABA-group, left arm learning caused significant intermanual interference of the initially learned right arm task (68.3% performance decrease). The performance decrease of the AAA-group (10.2%) did not differ from controls (15.5%). These findings suggest that motor control and learning of right and left arm movements involve partly similar neural networks or underlie a vital interhemispheric connectivity. Moreover, our results suggest a preferred internal task representation in extrinsic Cartesian-based coordinates rather than in intrinsic joint-based coordinates because interference was absent when learning was performed in extrinsically equivalent fashion (AAA-group) but interference occurred when learning was performed in intrinsically equivalent fashion (ABA-group).

  3. Multi-Tasking and Choice of Training Data Influencing Parietal ERP Expression and Single-Trial Detection-Relevance for Neuroscience and Clinical Applications.

    PubMed

    Kirchner, Elsa A; Kim, Su Kyoung

    2018-01-01

    Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent ( targets ), motor-task irrelevant infrequent ( deviants ), and motor-task irrelevant frequent ( standards ) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive ERPs can successfully be detected while subjects are performing additional ongoing motor activity. This supports single-trial detection of ERPs evoked by target events to, e.g., infer a patient's attentional state during therapeutic intervention.

  4. Multi-Tasking and Choice of Training Data Influencing Parietal ERP Expression and Single-Trial Detection—Relevance for Neuroscience and Clinical Applications

    PubMed Central

    Kirchner, Elsa A.; Kim, Su Kyoung

    2018-01-01

    Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent (targets), motor-task irrelevant infrequent (deviants), and motor-task irrelevant frequent (standards) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive ERPs can successfully be detected while subjects are performing additional ongoing motor activity. This supports single-trial detection of ERPs evoked by target events to, e.g., infer a patient's attentional state during therapeutic intervention. PMID:29636660

  5. Cognitive-motor interference during fine and gross motor tasks in children with Developmental Coordination Disorder (DCD).

    PubMed

    Schott, Nadja; El-Rajab, Inaam; Klotzbier, Thomas

    2016-10-01

    While typically developing children produce relatively automatized postural control processes, children with DCD seem to exhibit an automatization deficit. Dual tasks with various cognitive loads seem to be an effective way to assess the automatic deficit hypothesis. The aims of the study were: (1) to examine the effect of a concurrent cognitive task on fine and gross motor tasks in children with DCD, and (2) to determine whether the effect varied with different difficulty levels of the concurrent task. We examined dual-task performance (Trail-Making-Test, Trail-Walking-Test) in 20 children with DCD and 39 typically developing children. Based on the idea of the Trail-Making-Test, participants walked along a fixed pathway, following a prescribed path, delineated by target markers of (1) increasing sequential numbers, and (2) increasing sequential numbers and letters. The motor and cognitive dual-task effects (DTE) were calculated for each task. Regardless of the cognitive task, children with DCD performed equally well in fine and gross motor tasks, and were slower in the dual task conditions than under single task-conditions, compared with children without DCD. Increased cognitive task complexity resulted in slow trail walking as well as slower trail tracing. The motor interference for the gross motor tasks was least for the simplest conditions and greatest for the complex conditions and was more pronounced in children with DCD. Cognitive interference was low irrespective of the motor task. Children with DCD show a different approach to allocation of cognitive resources, and have difficulties making motor skills automatic. The latter notion is consistent with impaired cerebellar function and the "automatization deficit hypothesis", suggesting that any deficit in the automatization process will appear if conscious monitoring of the motor skill is made more difficult by integrating another task requiring attentional resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Intended actions and unexpected outcomes: automatic and controlled processing in a rapid motor task

    PubMed Central

    Cheyne, Douglas O.; Ferrari, Paul; Cheyne, James A.

    2012-01-01

    Human action involves a combination of controlled and automatic behavior. These processes may interact in tasks requiring rapid response selection or inhibition, where temporal constraints preclude timely intervention by conscious, controlled processes over automatized prepotent responses. Such contexts tend to produce frequent errors, but also rapidly executed correct responses, both of which may sometimes be perceived as surprising, unintended, or “automatic”. In order to identify neural processes underlying these two aspects of cognitive control, we measured neuromagnetic brain activity in 12 right-handed subjects during manual responses to rapidly presented digits, with an infrequent target digit that required switching response hand (bimanual task) or response finger (unimanual task). Automaticity of responding was evidenced by response speeding (shorter response times) prior to both failed and fast correct switches. Consistent with this automaticity interpretation of fast correct switches, we observed bilateral motor preparation, as indexed by suppression of beta band (15–30 Hz) oscillations in motor cortex, prior to processing of the switch cue in the bimanual task. In contrast, right frontal theta activity (4–8 Hz) accompanying correct switch responses began after cue onset, suggesting that it reflected controlled inhibition of the default response. Further, this activity was reduced on fast correct switch trials suggesting a more automatic mode of inhibitory control. We also observed post-movement (event-related negativity) ERN-like responses and theta band increases in medial and anterior frontal regions that were significantly larger on error trials, and may reflect a combination of error and delayed inhibitory signals. We conclude that both automatic and controlled processes are engaged in parallel during rapid motor tasks, and that the relative strength and timing of these processes may underlie both optimal task performance and subjective experiences of automaticity or control. PMID:22912612

  7. A quantitative meta-analysis and review of motor learning in the human brain

    PubMed Central

    Hardwick, Robert M.; Rottschy, Claudia; Miall, R. Chris; Eickhoff, Simon B.

    2013-01-01

    Neuroimaging studies have improved our understanding of which brain structures are involved in motor learning. Despite this, questions remain regarding the areas that contribute consistently across paradigms with different task demands. For instance, sensorimotor tasks focus on learning novel movement kinematics and dynamics, while serial response time task (SRTT) variants focus on sequence learning. These differing task demands are likely to elicit quantifiably different patterns of neural activity on top of a potentially consistent core network. The current study identified consistent activations across 70 motor learning experiments using activation likelihood estimation (ALE) meta-analysis. A global analysis of all tasks revealed a bilateral cortical–subcortical network consistently underlying motor learning across tasks. Converging activations were revealed in the dorsal premotor cortex, supplementary motor cortex, primary motor cortex, primary somatosensory cortex, superior parietal lobule, thalamus, putamen and cerebellum. These activations were broadly consistent across task specific analyses that separated sensorimotor tasks and SRTT variants. Contrast analysis indicated that activity in the basal ganglia and cerebellum was significantly stronger for sensorimotor tasks, while activity in cortical structures and the thalamus was significantly stronger for SRTT variants. Additional conjunction analyses then indicated that the left dorsal premotor cortex was activated across all analyses considered, even when controlling for potential motor confounds. The highly consistent activation of the left dorsal premotor cortex suggests it is a critical node in the motor learning network. PMID:23194819

  8. Cognitive performance under motor demands - On the influence of task difficulty and postural control.

    PubMed

    Liebherr, Magnus; Weiland-Breckle, Hanna; Grewe, Tanja; Schumacher, Petra B

    2018-04-01

    We often walk around when we have to think about something, but suddenly stop when we are confronted with a demanding cognitive task, such as calculating 1540*24. While previous neurophysiological research investigated cognitive and motor performance separately, findings that combine both are rare. To get a deeper understanding of the influence of motor demands as well as the difficulty of a simultaneously performed cognitive task, we investigated 20 healthy individuals. Participants performed two cognitive tasks with different levels of difficulty while sitting or standing on one leg. In addition to behavioral data, we recorded the electroencephalogram from 26Ag/AgCI scalp electrodes. The critical time-windows, predefined by visual inspection, yielded an early (200-300 ms, P2) and a subsequent positivity (350-500 ms, P3). Statistical analysis of the early time window registered a motor × cognition interaction. Resolution of this interaction revealed an effect of the cognitive task in the one-legged stance motor condition, with a more pronounced positivity for the difficult task. No significant differences between cognitive tasks emerged for the simple motor condition. The time-window between 350 and 500 ms registered main effects of the motor task and a trend for the cognitive task. While the influence of cognitive task difficulty (in the P3) is in accordance with previous studies, the motor task effect is specific to one-legged stance (cf. no effects for running in previous research). The motor-cognition interaction found in the P2 indicates that the more difficult motor task (one-legged stance) facilitates cognitive task performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The Effect of a Six-Month Dancing Program on Motor-Cognitive Dual-Task Performance in Older Adults.

    PubMed

    Hamacher, Dennis; Hamacher, Daniel; Rehfeld, Kathrin; Hökelmann, Anita; Schega, Lutz

    2015-10-01

    Dancing is a complex sensorimotor activity involving physical and mental elements which have positive effects on cognitive functions and motor control. The present randomized controlled trial aims to analyze the effects of a dancing program on the performance on a motor-cognitive dual task. Data of 35 older adults, who were assigned to a dancing group or a health-related exercise group, are presented in the study. In pretest and posttest, we assessed cognitive performance and variability of minimum foot clearance, stride time, and stride length while walking. Regarding the cognitive performance and the stride-to-stride variability of minimum foot clearance, interaction effects have been found, indicating that dancing lowers gait variability to a higher extent than conventional health-related exercise. The data show that dancing improves minimum foot clearance variability and cognitive performance in a dual-task situation. Multi-task exercises (like dancing) might be a powerful tool to improve motor-cognitive dual-task performance.

  10. Contribution from motor unit firing adaptations and muscle co-activation during fatigue.

    PubMed

    Contessa, Paola; Letizi, John; De Luca, Gianluca; Kline, Joshua C

    2018-03-14

    The control of motor unit firing behavior during fatigue is still debated in the literature. Most studies agree that the central nervous system increases the excitation to the motoneuron pool to compensate for decreased force contributions of individual motor units and sustain muscle force output during fatigue. However, some studies claim that motor units may decrease their firing rates despite increased excitation, contradicting the direct relationship between firing rates and excitation that governs the voluntary control of motor units. To investigate whether the control of motor units in fact changes with fatigue, we measured motor unit firing behavior during repeated contractions of the first dorsal interosseous (FDI) muscle while concurrently monitoring the activation of surrounding muscles - including the flexor carpi radialis, extensor carpi radialis, and pronator teres. Across all subjects, we observed an overall increase in FDI activation and motor unit firing rates by the end of the fatigue task. However, in some subjects we observed increases in FDI activation and motor unit firing rates only during the initial phase of the fatigue task, followed by subsequent decreases during the late phase of the fatigue task while the co-activation of surrounding muscles increased. These findings indicate that the strategy for sustaining force output may occasionally change leading to increases in the relative activation of surrounding muscles while the excitation to the fatiguing muscle decreases. Importantly, irrespective of changes in the strategy for sustaining force output, the control properties regulating motor unit firing behavior remain unchanged during fatigue.

  11. Using the Hand Laterality Judgement Task to Assess Motor Imagery: A Study of Practice Effects in Repeated Measurements

    ERIC Educational Resources Information Center

    Boonstra, Anne M.; de Vries, Sjoerd J.; Veenstra, Evelien; Tepper, Marga; Feenstra, Wya; Otten, Egbert

    2012-01-01

    The aim of this study was to determine whether there is a practice effect on the Hand Laterality Judgement Task (HLJT). The HLJT task is a mental rotation task that can be used to assess motor imagery ability in stroke patients. Thirty-three healthy individuals performed the HLJT and two control tasks twice at a 3-week interval. Differences in the…

  12. A developmental dose-response analysis of the effects of methylphenidate on the peer interactions of attention deficit disordered boys.

    PubMed

    Cunningham, C E; Siegel, L S; Offord, D R

    1985-11-01

    Mixed dyads of 42 normal and 42 ADD boys were videotaped in free play, co-operative task, and simulated classrooms. ADD boys received placebo, 0.15 mg/kg, and 0.50 mg/kg of methylphenidate. ADD boys were more active and off task, watched peers less, and scored lower on mathematics and visual-motor tasks. Older boys interacted less, ignored peer interactions and play more frequently, were less controlling, and more compliant. In class, methylphenidate improved visual motor scores, and reduced the controlling behaviour, activity level, and off task behaviour of ADD boys. Normal peers displayed reciprocal reductions in controlling behaviour, activity level, and off task behaviour.

  13. Low elementary movement speed is associated with poor motor skill in Turner's syndrome.

    PubMed

    Nijhuis-van der Sanden, Maria W G; Smits-Engelsman, Bouwien C M; Eling, Paul A T M; Nijhuis, Bianca J G; Van Galen, Gerard P

    2002-01-01

    The article aims to discriminate between 2 features that in principle both may be characteristic of the frequently observed poor motor performance in girls with Turner's syndrome (TS). On the one hand, a reduced movement speed that is independent of variations in spatial accuracy demands and therefore suggests a problem in motor execution. On the other hand, a disproportional slowing down of movement speed under spatial-accuracy demands, indicating a more central problem in motor programming. To assess their motor performance problems, 15 girls with TS (age 9.6-13.0 years) and 14 female controls (age 9.1-13.0 years) were tested using the Movement Assessment Battery for Children (MABC). In additionally, an experimental procedure using a variant of Fitts' graphic aiming task was used to try and disentangle the role of spatial-accuracy demands in different motor task conditions. The results of the MABC reestablish that overall motor performance in girls with TS is poor. The data from the Fitts' task reveal that TS girls move with the same accuracy as their normal peers but show a significantly lower speed independent of task difficulty. We conclude that a problem in motor execution is the main factor determining performance differences between girls with TS and controls.

  14. The role of inattention and hyperactivity/impulsivity in the fine motor coordination in children with ADHD.

    PubMed

    Fenollar-Cortés, Javier; Gallego-Martínez, Ana; Fuentes, Luis J

    2017-10-01

    Deficits in fine motor coordination have been suggested to be associated with Attention-Deficit/Hyperactivity Disorder (ADHD). However, despite the negative impact of poor fine motor skills on academic achievement, researchers have paid little attention to this problem. The aim of this study was to explore the relationship between ADHD dimensions and fine motor performance. Participants were 43 children with a diagnosis of ADHD aged between 7 and 14 years (M=9.61; 81% male) and 42 typically developing (TP) children in the same age range (M=10.76; 75.2% male). Children with ADHD performed worse than TP on all tasks (δ Fine_motor_tasks, -0.19 to -0.44). After controlling for age and ADHD-HY (hyperactivity/impulsivity), higher scores on ADHD-IN (inattentiveness) predicted a larger number of mistakes among all psychomotricity tasks and conditions (β 0.39-0.58, ps<0.05). The ADHD group showed poorer fine motor performance than controls across all fine motor coordination tasks. However, lower performance (more mistakes), was related to the inattention dimension but not to the hyperactivity/impulsivity dimensions. Authors recommend including training and enhancement of the fine motor skills for more comprehensive ADHD treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Arterial spin labeling reveals relationships between resting cerebral perfusion and motor learning in Parkinson's disease.

    PubMed

    Barzgari, Amy; Sojkova, Jitka; Maritza Dowling, N; Pozorski, Vincent; Okonkwo, Ozioma C; Starks, Erika J; Oh, Jennifer; Thiesen, Frances; Wey, Alexandra; Nicholas, Christopher R; Johnson, Sterling; Gallagher, Catherine L

    2018-05-09

    Parkinson's disease (PD) is an age-related neurodegenerative disease that produces changes in movement, cognition, sleep, and autonomic function. Motor learning involves acquisition of new motor skills through practice, and is affected by PD. The purpose of the present study was to evaluate regional differences in resting cerebral blood flow (rCBF), measured using arterial spin labeling (ASL) MRI, during a finger-typing task of motor skill acquisition in PD patients compared to age- and gender-matched controls. Voxel-wise multiple linear regression models were used to examine the relationship between rCBF and several task variables, including initial speed, proficiency gain, and accuracy. In these models, a task-by-disease group interaction term was included to investigate where the relationship between rCBF and task performance was influenced by PD. At baseline, perfusion was lower in PD subjects than controls in the right occipital cortex. The task-by-disease group interaction for initial speed was significantly related to rCBF (p < 0.05, corrected) in several brain regions involved in motor learning, including the occipital, parietal, and temporal cortices, cerebellum, anterior cingulate, and the superior and middle frontal gyri. In these regions, PD patients showed higher rCBF, and controls lower rCBF, with improved performance. Within the control group, proficiency gain over 12 typing trials was related to greater rCBF in cerebellar, occipital, and temporal cortices. These results suggest that higher rCBF within networks involved in motor learning enable PD patients to compensate for disease-related deficits.

  16. Learning a stick-balancing task involves task-specific coupling between posture and hand displacements.

    PubMed

    Cluff, Tyler; Boulet, Jason; Balasubramaniam, Ramesh

    2011-08-01

    Theories of motor learning argue that the acquisition of novel motor skills requires a task-specific organization of sensory and motor subsystems. We examined task-specific coupling between motor subsystems as subjects learned a novel stick-balancing task. We focused on learning-induced changes in finger movements and body sway and investigated the effect of practice on their coupling. Eight subjects practiced balancing a cylindrical wooden stick for 30 min a day during a 20 day learning period. Finger movements and center of pressure trajectories were recorded in every fifth practice session (4 in total) using a ten camera VICON motion capture system interfaced with two force platforms. Motor learning was quantified using average balancing trial lengths, which increased with practice and confirmed that subjects learned the task. Nonlinear time series and phase space reconstruction methods were subsequently used to investigate changes in the spatiotemporal properties of finger movements, body sway and their progressive coupling. Systematic increases in subsystem coupling were observed despite reduced autocorrelation and differences in the temporal properties of center of pressure and finger trajectories. The average duration of these coupled trajectories increased systematically across the learning period. In short, the abrupt transition between coupled and decoupled subsystem dynamics suggested that stick balancing is regulated by a hierarchical control mechanism that switches from collective to independent control of the finger and center of pressure. In addition to traditional measures of motor performance, dynamical analyses revealed changes in motor subsystem organization that occurred when subjects learned a novel stick-balancing task.

  17. Effect of task-oriented training and high-variability practice on gross motor performance and activities of daily living in children with spastic diplegia.

    PubMed

    Kwon, Hae-Yeon; Ahn, So-Yoon

    2016-10-01

    [Purpose] This study investigates how a task-oriented training and high-variability practice program can affect the gross motor performance and activities of daily living for children with spastic diplegia and provides an effective and reliable clinical database for future improvement of motor performances skills. [Subjects and Methods] This study randomly assigned seven children with spastic diplegia to each intervention group including that of a control group, task-oriented training group, and a high-variability practice group. The control group only received neurodevelopmental treatment for 40 minutes, while the other two intervention groups additionally implemented a task-oriented training and high-variability practice program for 8 weeks (twice a week, 60 min per session). To compare intra and inter-relationships of the three intervention groups, this study measured gross motor performance measure (GMPM) and functional independence measure for children (WeeFIM) before and after 8 weeks of training. [Results] There were statistically significant differences in the amount of change before and after the training among the three intervention groups for the gross motor performance measure and functional independence measure. [Conclusion] Applying high-variability practice in a task-oriented training course may be considered an efficient intervention method to improve motor performance skills that can tune to movement necessary for daily livelihood through motor experience and learning of new skills as well as change of tasks learned in a complex environment or similar situations to high-variability practice.

  18. Motor and Executive Control in Repetitive Timing of Brief Intervals

    ERIC Educational Resources Information Center

    Holm, Linus; Ullen, Fredrik; Madison, Guy

    2013-01-01

    We investigated the causal role of executive control functions in the production of brief time intervals by means of a concurrent task paradigm. To isolate the influence of executive functions on timing from motor coordination effects, we dissociated executive load from the number of effectors used in the dual task situation. In 3 experiments,…

  19. Core stability exercise is as effective as task-oriented motor training in improving motor proficiency in children with developmental coordination disorder: a randomized controlled pilot study.

    PubMed

    Au, Mei K; Chan, Wai M; Lee, Lin; Chen, Tracy Mk; Chau, Rosanna Mw; Pang, Marco Yc

    2014-10-01

    To compare the effectiveness of a core stability program with a task-oriented motor training program in improving motor proficiency in children with developmental coordination disorder (DCD). Randomized controlled pilot trial. Outpatient unit in a hospital. Twenty-two children diagnosed with DCD aged 6-9 years were randomly allocated to the core stability program or the task-oriented motor program. Both groups underwent their respective face-to-face training session once per week for eight consecutive weeks. They were also instructed to carry out home exercises on a daily basis during the intervention period. Short Form of the Bruininks-Oseretsky Test of Motor Proficiency (Second Edition) and Sensory Organization Test at pre- and post-intervention. Intention-to-treat analysis revealed no significant between-group difference in the change of motor proficiency standard score (P=0.717), and composite equilibrium score derived from the Sensory Organization Test (P=0.100). Further analysis showed significant improvement in motor proficiency in both the core stability (mean change (SD)=6.3(5.4); p=0.008) and task-oriented training groups (mean change(SD)=5.1(4.0); P=0.007). The composite equilibrium score was significantly increased in the task-oriented training group (mean change (SD)=6.0(5.5); P=0.009), but not in the core stability group (mean change(SD) =0.0(9.6); P=0.812). In the task-oriented training group, compliance with the home program was positively correlated with change in motor proficiency (ρ=0.680, P=0.030) and composite equilibrium score (ρ=0.638, P=0.047). The core stability exercise program is as effective as task-oriented training in improving motor proficiency among children with DCD. © The Author(s) 2014.

  20. Older Adults can Learn to Learn New Motor Skills

    PubMed Central

    Seidler, Rachael D.

    2007-01-01

    Many studies have demonstrated that aging is associated with declines in skill acquisition. In the current study, we tested whether older adults could acquire general, transferable knowledge about skill learning processes. Older adult participants learned five different motor tasks. Two older adult control groups performed the same number of trials, but learned only one task. The experimental group exhibited faster learning than that seen in the control groups. These data demonstrate that older adults can learn to learn new motor skills. PMID:17602760

  1. Perceptual-motor skill learning in Gilles de la Tourette syndrome. Evidence for multiple procedural learning and memory systems.

    PubMed

    Marsh, Rachel; Alexander, Gerianne M; Packard, Mark G; Zhu, Hongtu; Peterson, Bradley S

    2005-01-01

    Procedural learning and memory systems likely comprise several skills that are differentially affected by various illnesses of the central nervous system, suggesting their relative functional independence and reliance on differing neural circuits. Gilles de la Tourette syndrome (GTS) is a movement disorder that involves disturbances in the structure and function of the striatum and related circuitry. Recent studies suggest that patients with GTS are impaired in performance of a probabilistic classification task that putatively involves the acquisition of stimulus-response (S-R)-based habits. Assessing the learning of perceptual-motor skills and probabilistic classification in the same samples of GTS and healthy control subjects may help to determine whether these various forms of procedural (habit) learning rely on the same or differing neuroanatomical substrates and whether those substrates are differentially affected in persons with GTS. Therefore, we assessed perceptual-motor skill learning using the pursuit-rotor and mirror tracing tasks in 50 patients with GTS and 55 control subjects who had previously been compared at learning a task of probabilistic classifications. The GTS subjects did not differ from the control subjects in performance of either the pursuit rotor or mirror-tracing tasks, although they were significantly impaired in the acquisition of a probabilistic classification task. In addition, learning on the perceptual-motor tasks was not correlated with habit learning on the classification task in either the GTS or healthy control subjects. These findings suggest that the differing forms of procedural learning are dissociable both functionally and neuroanatomically. The specific deficits in the probabilistic classification form of habit learning in persons with GTS are likely to be a consequence of disturbances in specific corticostriatal circuits, but not the same circuits that subserve the perceptual-motor form of habit learning.

  2. Combining afferent stimulation and mirror therapy for rehabilitating motor function, motor control, ambulation, and daily functions after stroke.

    PubMed

    Lin, Keh-chung; Huang, Pai-chuan; Chen, Yu-ting; Wu, Ching-yi; Huang, Wen-ling

    2014-02-01

    Mirror therapy (MT) and mesh glove (MG) afferent stimulation may be effective in reducing motor impairment after stroke. A hybrid intervention of MT combined with MG (MT + MG) may broaden aspects of treatment benefits. To demonstrate the comparative effects of MG + MT, MT, and a control treatment (CT) on the outcomes of motor impairments, manual dexterity, ambulation function, motor control, and daily function. Forty-three chronic stroke patients with mild to moderate upper extremity impairment were randomly assigned to receive MT + MG, MT, or CT for 1.5 hours/day, 5 days/week for 4 weeks. Outcome measures were the Fugl-Meyer Assessment (FMA) and muscle tone measured by Myoton-3 for motor impairment and the Box and Block Test (BBT) and 10-Meter Walk Test (10 MWT) for motor function. Secondary outcomes included kinematic parameters for motor control and the Motor Activity Log and ABILHAND Questionnaire for daily function. FMA total scores were significantly higher and synergistic shoulder abduction during reach was less in the MT + MG and MT groups compared with the CT group. Performance on the BBT and the 10 MWT (velocity and stride length in self-paced task and velocity in as-quickly-as-possible task) were improved after MT + MG compared with MT. MT + MG improved manual dexterity and ambulation. MT + MG and MT reduced motor impairment and synergistic shoulder abduction more than CT. Future studies may integrate functional task practice into treatments to enhance functional outcomes in patients with various levels of motor severity. The long-term effects of MG + MT remain to be evaluated.

  3. Impairment of Auditory-Motor Timing and Compensatory Reorganization after Ventral Premotor Cortex Stimulation

    PubMed Central

    Kornysheva, Katja; Schubotz, Ricarda I.

    2011-01-01

    Integrating auditory and motor information often requires precise timing as in speech and music. In humans, the position of the ventral premotor cortex (PMv) in the dorsal auditory stream renders this area a node for auditory-motor integration. Yet, it remains unknown whether the PMv is critical for auditory-motor timing and which activity increases help to preserve task performance following its disruption. 16 healthy volunteers participated in two sessions with fMRI measured at baseline and following rTMS (rTMS) of either the left PMv or a control region. Subjects synchronized left or right finger tapping to sub-second beat rates of auditory rhythms in the experimental task, and produced self-paced tapping during spectrally matched auditory stimuli in the control task. Left PMv rTMS impaired auditory-motor synchronization accuracy in the first sub-block following stimulation (p<0.01, Bonferroni corrected), but spared motor timing and attention to task. Task-related activity increased in the homologue right PMv, but did not predict the behavioral effect of rTMS. In contrast, anterior midline cerebellum revealed most pronounced activity increase in less impaired subjects. The present findings suggest a critical role of the left PMv in feed-forward computations enabling accurate auditory-motor timing, which can be compensated by activity modulations in the cerebellum, but not in the homologue region contralateral to stimulation. PMID:21738657

  4. Motor cortex is required for learning but not for executing a motor skill.

    PubMed

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu L; Dhawale, Ashesh K; Kampff, Adam R; Ölveczky, Bence P

    2015-05-06

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, but its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex's established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in "tutoring" these circuits during learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Neural correlates of motor recovery after stroke: a longitudinal fMRI study

    PubMed Central

    Ward, N. S.; Brown, M. M.; Thompson, A. J.; Frackowiak, R. S. J.

    2013-01-01

    Summary Recovery of motor function after stroke may occur over weeks or months and is often attributed to cerebral reorganization. We have investigated the longitudinal relationship between recovery after stroke and task-related brain activation during a motor task as measured using functional MRI (fMRI). Eight first-ever stroke patients presenting with hemiparesis resulting from cerebral infarction sparing the primary motor cortex, and four control subjects were recruited. Subjects were scanned on a number of occasions whilst performing an isometric dynamic visually paced hand grip task. Recovery in the patient group was assessed using a battery of outcome measures at each time point. Task-related brain activations decreased over sessions as a function of recovery in a number of primary and non-primary motor regions in all patients, but no session effects were seen in the controls. Furthermore, consistent decreases across sessions correlating with recovery were seen across the whole patient group independent of rate of recovery or initial severity, in primary motor cortex, premotor and prefrontal cortex, supplementary motor areas, cingulate sulcus, temporal lobe, striate cortex, cerebellum, thalamus and basal ganglia. Although recovery-related increases were seen in different brain regions in four patients, there were no consistent effects across the group. These results further our understanding of the recovery process by demonstrating for the first time a clear temporal relationship between recovery and task-related activation of the motor system after stroke. PMID:12937084

  6. Force related hemodynamic responses during execution and imagery of a hand grip task: A functional near infrared spectroscopy study.

    PubMed

    Wriessnegger, Selina C; Kirchmeyr, Daniela; Bauernfeind, Günther; Müller-Putz, Gernot R

    2017-10-01

    We examined force related hemodynamic changes during the performance of a motor execution (ME) and motor imagery (MI) task by means of multichannel functional near infrared spectroscopy (fNIRS). The hemodynamic responses of fourteen healthy participants were measured while they performed a hand grip execution or imagery task with low and high grip forces. We found an overall higher increase of [oxy-Hb] concentration changes during ME for both grip forces but with a delayed peak maximum for the lower grip force. During the MI task with lower grip force, the [oxy-Hb] level increases are stronger compared to the MI with higher grip force. The facilitation in performing MI with higher grip strength might thus indicate less inhibition of the actual motor act which could also explain the later increase onset of [oxy-Hb] in the ME task with the lower grip force. Our results suggest that execution and imagery of a hand grip task with high and low grip forces, leads to different cortical activation patterns. Since impaired control of grip forces during object manipulation in particular is one aspect of fine motor control deficits after stroke, our study will contribute to future rehabilitation programs enhancing patient's grip force control. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Successful Transfer of a Motor Learning Strategy to a Novel Sport.

    PubMed

    Kearney, Philip E; Judge, Phil

    2017-10-01

    This study investigated whether secondary school students who were taught a motor learning strategy could transfer their knowledge of the strategy to learning a novel task. Twenty adolescents were randomly allocated to a strategy or control group. The strategy group was taught Singer's five-step learning strategy, while the control group received information on the evolution and biomechanics of the basketball free throw. Both groups received three 1-hour practice sessions on a modified basketball shooting task. After one month, participants were introduced to the transfer task, golf putting. Performance accuracy was recorded for all tasks, and participants completed questionnaires regarding strategy use during practice. Participants taught the five-step learning strategy successfully recalled and applied it after a 1-month interval, and they demonstrated superior performance on both acquisition and transfer tasks, relative to the control group. Physical education teachers and coaches should consider using this learning strategy to enhance the learning of closed motor skills.

  8. Detection of reduced interhemispheric cortical communication during task execution in multiple sclerosis patients using functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Jimenez, Jon J.; Yang, Runze; Nathoo, Nabeela; Varshney, Vishal P.; Golestani, Ali-Mohammad; Goodyear, Bradley G.; Metz, Luanne M.; Dunn, Jeff F.

    2014-07-01

    Multiple sclerosis (MS) impairs brain activity through demyelination and loss of axons. Increased brain activity is accompanied by increases in microvascular hemoglobin oxygen saturation (oxygenation) and total hemoglobin, which can be measured using functional near-infrared spectroscopy (fNIRS). Due to the potentially reduced size and integrity of the white matter tracts within the corpus callosum, it may be expected that MS patients have reduced functional communication between the left and right sides of the brain; this could potentially be an indicator of disease progression. To assess interhemispheric communication in MS, we used fNIRS during a unilateral motor task and the resting state. The magnitude of the change in hemoglobin parameters in the motor cortex was significantly reduced in MS patients during the motor task relative to healthy control subjects. There was also a significant decrease in interhemispheric communication between the motor cortices (expressed as coherence) in MS patients compared to controls during the motor task, but not during the resting state. fNIRS assessment of interhemispheric coherence during task execution may be a useful marker in disorders with white matter damage or axonal loss, including MS.

  9. What Is the Contribution of Ia-Afference for Regulating Motor Output Variability during Standing?

    PubMed

    König, Niklas; Ferraro, Matteo G; Baur, Heiner; Taylor, William R; Singh, Navrag B

    2017-01-01

    Motor variability is an inherent feature of all human movements, and describes the system's stability and rigidity during the performance of functional motor tasks such as balancing. In order to ensure successful task execution, the nervous system is thought to be able to flexibly select the appropriate level of variability. However, it remains unknown which neurophysiological pathways are utilized for the control of motor output variability. In responding to natural variability (in this example sway), it is plausible that the neuro-physiological response to muscular elongation contributes to restoring a balanced upright posture. In this study, the postural sway of 18 healthy subjects was observed while their visual and mechano-sensory system was perturbed. Simultaneously, the contribution of Ia-afferent information for controlling the motor task was assessed by means of H-reflex. There was no association between postural sway and Ia-afference in the eyes open condition, however up to 4% of the effects of eye closure on the magnitude of sway can be compensated by increased reliance on Ia-afference. Increasing the biomechanical demands by adding up to 40% bodyweight around the trunk induced a specific sway response, such that the magnitude of sway remained unchanged but its dynamic structure became more regular and stable (by up to 18%). Such regular sway patterns have been associated with enhanced cognitive involvement in controlling motor tasks. It therefore appears that the nervous system applies different control strategies in response to the perturbations: The loss of visual information is compensated by increased reliance on other receptors; while the specific regular sway pattern associated with additional weight-bearing was independent of Ia-afferent information, suggesting the fundamental involvement of supraspinal centers for the control of motor output variability.

  10. Neural Correlates of Task Cost for Stance Control with an Additional Motor Task: Phase-Locked Electroencephalogram Responses

    PubMed Central

    Hwang, Ing-Shiou; Huang, Cheng-Ya

    2016-01-01

    With appropriate reallocation of central resources, the ability to maintain an erect posture is not necessarily degraded by a concurrent motor task. This study investigated the neural control of a particular postural-suprapostural procedure involving brain mechanisms to solve crosstalk between posture and motor subtasks. Participants completed a single posture task and a dual-task while concurrently conducting force-matching and maintaining a tilted stabilometer stance at a target angle. Stabilometer movements and event-related potentials (ERPs) were recorded. The added force-matching task increased the irregularity of postural response rather than the size of postural response prior to force-matching. In addition, the added force-matching task during stabilometer stance led to marked topographic ERP modulation, with greater P2 positivity in the frontal and sensorimotor-parietal areas of the N1-P2 transitional phase and in the sensorimotor-parietal area of the late P2 phase. The time-frequency distribution of the ERP primary principal component revealed that the dual-task condition manifested more pronounced delta (1–4 Hz) and beta (13–35 Hz) synchronizations but suppressed theta activity (4–8 Hz) before force-matching. The dual-task condition also manifested coherent fronto-parietal delta activity in the P2 period. In addition to a decrease in postural regularity, this study reveals spatio-temporal and temporal-spectral reorganizations of ERPs in the fronto-sensorimotor-parietal network due to the added suprapostural motor task. For a particular set of postural-suprapostural task, the behavior and neural data suggest a facilitatory role of autonomous postural response and central resource expansion with increasing interregional interactions for task-shift and planning the motor-suprapostural task. PMID:27010634

  11. Motor demands impact speed of information processing in Autism Spectrum Disorders

    PubMed Central

    Kenworthy, Lauren; Yerys, Benjamin E.; Weinblatt, Rachel; Abrams, Danielle N.; Wallace, Gregory L.

    2015-01-01

    Objective The apparent contradiction between preserved or even enhanced perceptual processing speed on inspection time tasks in autism spectrum disorders (ASD) and impaired performance on complex processing speed tasks that require motor output (e.g. Wechsler Processing Speed Index) has not yet been systematically investigated. This study investigates whether adding motor output demands to an inspection time task impairs ASD performance compared to that of typically developing control (TDC) children. Method The performance of children with ASD (n=28; mean FSIQ=115) and TDC (n=25; mean FSIQ=122) children was compared on processing speed tasks with increasing motor demand. Correlations were run between ASD task performance and Autism Diagnostic Observation Schedule (ADOS) Communication scores. Results Performance by the ASD and TDC groups on a simple perceptual processing speed task with minimal motor demand was equivalent, though it diverged (ASD worse than TDC) on two tasks with the same stimuli, but increased motor output demands. ASD performance on the moderate but not the high speeded motor output demand task was negatively correlated with ADOS communication symptoms. Conclusions These data address the apparent contradiction between preserved inspection time in the context of slowed “processing speed” in ASD. They show that processing speed is preserved when motor demands are minimized, but that increased motor output demands interfere with the ability to act on perceptual processing of simple stimuli. Reducing motor demands (e.g. through the use of computers) may increase the capacity of people with ASD to demonstrate good perceptual processing in a variety of educational, vocational and social settings. PMID:23937483

  12. The transition to increased automaticity during finger sequence learning in adult males who stutter.

    PubMed

    Smits-Bandstra, Sarah; De Nil, Luc; Rochon, Elizabeth

    2006-01-01

    The present study compared the automaticity levels of persons who stutter (PWS) and persons who do not stutter (PNS) on a practiced finger sequencing task under dual task conditions. Automaticity was defined as the amount of attention required for task performance. Twelve PWS and 12 control subjects practiced finger tapping sequences under single and then dual task conditions. Control subjects performed the sequencing task significantly faster and less variably under single versus dual task conditions while PWS' performance was consistently slow and variable (comparable to the dual task performance of control subjects) under both conditions. Control subjects were significantly more accurate on a colour recognition distracter task than PWS under dual task conditions. These results suggested that control subjects transitioned to quick, accurate and increasingly automatic performance on the sequencing task after practice, while PWS did not. Because most stuttering treatment programs for adults include practice and automatization of new motor speech skills, findings of this finger sequencing study and future studies of speech sequence learning may have important implications for how to maximize stuttering treatment effectiveness. As a result of this activity, the participant will be able to: (1) Define automaticity and explain the importance of dual task paradigms to investigate automaticity; (2) Relate the proposed relationship between motor learning and automaticity as stated by the authors; (3) Summarize the reviewed literature concerning the performance of PWS on dual tasks; and (4) Explain why the ability to transition to automaticity during motor learning may have important clinical implications for stuttering treatment effectiveness.

  13. Speed, Variability, and Timing of Motor Output in ADHD: Which Measures are Useful for Endophenotypic Research?

    PubMed Central

    Altink, Marieke E.; Oosterlaan, Jaap; Beem, Leo; Buschgens, Cathelijne J. M.; Buitelaar, Jan; Sergeant, Joseph A.

    2007-01-01

    Attention-Deficit/Hyperactivity Disorder (ADHD) shares a genetic basis with motor coordination problems and probably motor timing problems. In line with this, comparable problems in motor timing should be observed in first degree relatives and might, therefore, form a suitable endophenotypic candidate. This hypothesis was investigated in 238 ADHD-families (545 children) and 147 control-families (271 children). A motor timing task was administered, in which children had to produce a 1,000 ms interval. In addition to this task, two basic motor tasks were administered to examine speed and variability of motor output, when no timing component was required. Results indicated that variability in motor timing is a useful endophenotypic candidate: It was clearly associated with ADHD, it was also present in non-affected siblings, and it correlated within families. Accuracy (under- versus over-production) in motor timing appeared less useful: Even though accuracy was associated with ADHD (probands and affected siblings had a tendency to under-produce the 1,000 ms interval compared to controls), non-affected siblings did not differ from controls and sibling correlations were only marginally significant. Slow and variable motor output without timing component also appears present in ADHD, but not in non-affected siblings, suggesting these deficits not to be related to a familial vulnerability for ADHD. Deficits in motor timing could not be explained by deficits already present in basic motor output without a timing component. This suggests abnormalities in motor timing were predominantly related to deficient motor timing processes and not to general deficient motor functioning. The finding that deficits in motor timing run in ADHD-families suggests this to be a fruitful domain for further exploration in relation to the genetic underpinnings of ADHD. PMID:18071893

  14. Impedance learning for robotic contact tasks using natural actor-critic algorithm.

    PubMed

    Kim, Byungchan; Park, Jooyoung; Park, Shinsuk; Kang, Sungchul

    2010-04-01

    Compared with their robotic counterparts, humans excel at various tasks by using their ability to adaptively modulate arm impedance parameters. This ability allows us to successfully perform contact tasks even in uncertain environments. This paper considers a learning strategy of motor skill for robotic contact tasks based on a human motor control theory and machine learning schemes. Our robot learning method employs impedance control based on the equilibrium point control theory and reinforcement learning to determine the impedance parameters for contact tasks. A recursive least-square filter-based episodic natural actor-critic algorithm is used to find the optimal impedance parameters. The effectiveness of the proposed method was tested through dynamic simulations of various contact tasks. The simulation results demonstrated that the proposed method optimizes the performance of the contact tasks in uncertain conditions of the environment.

  15. Muscle Feasibility for Cosmos Rhesus

    NASA Technical Reports Server (NTRS)

    Edgerton, V. Reggie (Principal Investigator); Roland, Roy R.; Hodgson, John A.

    1994-01-01

    The following tasks were proposed for the Cosmos project: 1) Complete recordings of all preflight candidates during performance of a foot pedal motor control task while in the space capsule mock-up. 2) Complete recordings of all preflight candidates during locomotion and postural tasks. 3) Complete recordings of 24-hour spontaneous cage activity in the two flight monkeys before and after flight and of at least three control (non-flight) monkeys after the flight has been completed. 4) Complete recordings of the foot pedal and motor control tasks during flight and postflight as scheduled. 5) Complete recordings of the vertical drop test pre, during and postflight for the two flight and three control monkeys. 6) Complete recordings of locomotion and posture tests of the two flight monkeys postflight. 7) Complete recordings of locomotion and postural tests of at least three control (non-flight) monkeys during the postflight period. 8) Recalibrate buckles of the two flight and of at least three control monkeys postflight. 9) Complete analysis of the 24 hour EMG recordings of all monkeys. 10) Complete analysis of the foot pedal, locomotor and postural motor control tasks for the two flight and three control monkeys. It was proposed that efforts in the first postflight year be concentrated on the two flight animals and three postflight animals.

  16. Combined Cognitive-Motor Rehabilitation in Virtual Reality Improves Motor Outcomes in Chronic Stroke - A Pilot Study.

    PubMed

    Faria, Ana L; Cameirão, Mónica S; Couras, Joana F; Aguiar, Joana R O; Costa, Gabriel M; Bermúdez I Badia, Sergi

    2018-01-01

    Stroke is one of the most common causes of acquired disability, leaving numerous adults with cognitive and motor impairments, and affecting patients' capability to live independently. Virtual Reality (VR) based methods for stroke rehabilitation have mainly focused on motor rehabilitation but there is increasing interest toward the integration of cognitive training for providing more effective solutions. Here we investigate the feasibility for stroke recovery of a virtual cognitive-motor task, the Reh@Task, which combines adapted arm reaching, and attention and memory training. 24 participants in the chronic stage of stroke, with cognitive and motor deficits, were allocated to one of two groups (VR, Control). Both groups were enrolled in conventional occupational therapy, which mostly involves motor training. Additionally, the VR group underwent training with the Reh@Task and the control group performed time-matched conventional occupational therapy. Motor and cognitive competences were assessed at baseline, end of treatment (1 month) and at a 1-month follow-up through the Montreal Cognitive Assessment, Single Letter Cancelation, Digit Cancelation, Bells Test, Fugl-Meyer Assessment Test, Chedoke Arm and Hand Activity Inventory, Modified Ashworth Scale, and Barthel Index. Our results show that both groups improved in motor function over time, but the Reh@Task group displayed significantly higher between-group outcomes in the arm subpart of the Fugl-Meyer Assessment Test. Improvements in cognitive function were significant and similar in both groups. Overall, these results are supportive of the viability of VR tools that combine motor and cognitive training, such as the Reh@Task. Trial Registration: This trial was not registered because it is a small clinical study that addresses the feasibility of a prototype device.

  17. Combined Cognitive-Motor Rehabilitation in Virtual Reality Improves Motor Outcomes in Chronic Stroke – A Pilot Study

    PubMed Central

    Faria, Ana L.; Cameirão, Mónica S.; Couras, Joana F.; Aguiar, Joana R. O.; Costa, Gabriel M.; Bermúdez i Badia, Sergi

    2018-01-01

    Stroke is one of the most common causes of acquired disability, leaving numerous adults with cognitive and motor impairments, and affecting patients’ capability to live independently. Virtual Reality (VR) based methods for stroke rehabilitation have mainly focused on motor rehabilitation but there is increasing interest toward the integration of cognitive training for providing more effective solutions. Here we investigate the feasibility for stroke recovery of a virtual cognitive-motor task, the Reh@Task, which combines adapted arm reaching, and attention and memory training. 24 participants in the chronic stage of stroke, with cognitive and motor deficits, were allocated to one of two groups (VR, Control). Both groups were enrolled in conventional occupational therapy, which mostly involves motor training. Additionally, the VR group underwent training with the Reh@Task and the control group performed time-matched conventional occupational therapy. Motor and cognitive competences were assessed at baseline, end of treatment (1 month) and at a 1-month follow-up through the Montreal Cognitive Assessment, Single Letter Cancelation, Digit Cancelation, Bells Test, Fugl-Meyer Assessment Test, Chedoke Arm and Hand Activity Inventory, Modified Ashworth Scale, and Barthel Index. Our results show that both groups improved in motor function over time, but the Reh@Task group displayed significantly higher between-group outcomes in the arm subpart of the Fugl-Meyer Assessment Test. Improvements in cognitive function were significant and similar in both groups. Overall, these results are supportive of the viability of VR tools that combine motor and cognitive training, such as the Reh@Task. Trial Registration: This trial was not registered because it is a small clinical study that addresses the feasibility of a prototype device. PMID:29899719

  18. Motor sequence learning-induced neural efficiency in functional brain connectivity.

    PubMed

    Karim, Helmet T; Huppert, Theodore J; Erickson, Kirk I; Wollam, Mariegold E; Sparto, Patrick J; Sejdić, Ervin; VanSwearingen, Jessie M

    2017-02-15

    Previous studies have shown the functional neural circuitry differences before and after an explicitly learned motor sequence task, but have not assessed these changes during the process of motor skill learning. Functional magnetic resonance imaging activity was measured while participants (n=13) were asked to tap their fingers to visually presented sequences in blocks that were either the same sequence repeated (learning block) or random sequences (control block). Motor learning was associated with a decrease in brain activity during learning compared to control. Lower brain activation was noted in the posterior parietal association area and bilateral thalamus during the later periods of learning (not during the control). Compared to the control condition, we found the task-related motor learning was associated with decreased connectivity between the putamen and left inferior frontal gyrus and left middle cingulate brain regions. Motor learning was associated with changes in network activity, spatial extent, and connectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Brain dynamics of post-task resting state are influenced by expertise: Insights from baseball players.

    PubMed

    Muraskin, Jordan; Dodhia, Sonam; Lieberman, Gregory; Garcia, Javier O; Verstynen, Timothy; Vettel, Jean M; Sherwin, Jason; Sajda, Paul

    2016-12-01

    Post-task resting state dynamics can be viewed as a task-driven state where behavioral performance is improved through endogenous, non-explicit learning. Tasks that have intrinsic value for individuals are hypothesized to produce post-task resting state dynamics that promote learning. We measured simultaneous fMRI/EEG and DTI in Division-1 collegiate baseball players and compared to a group of controls, examining differences in both functional and structural connectivity. Participants performed a surrogate baseball pitch Go/No-Go task before a resting state scan, and we compared post-task resting state connectivity using a seed-based analysis from the supplementary motor area (SMA), an area whose activity discriminated players and controls in our previous results using this task. Although both groups were equally trained on the task, the experts showed differential activity in their post-task resting state consistent with motor learning. Specifically, we found (1) differences in bilateral SMA-L Insula functional connectivity between experts and controls that may reflect group differences in motor learning, (2) differences in BOLD-alpha oscillation correlations between groups suggests variability in modulatory attention in the post-task state, and (3) group differences between BOLD-beta oscillations that may indicate cognitive processing of motor inhibition. Structural connectivity analysis identified group differences in portions of the functionally derived network, suggesting that functional differences may also partially arise from variability in the underlying white matter pathways. Generally, we find that brain dynamics in the post-task resting state differ as a function of subject expertise and potentially result from differences in both functional and structural connectivity. Hum Brain Mapp 37:4454-4471, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  20. Gross and fine motor function in fibromyalgia and chronic fatigue syndrome.

    PubMed

    Rasouli, Omid; Fors, Egil A; Borchgrevink, Petter Chr; Öhberg, Fredrik; Stensdotter, Ann-Katrin

    2017-01-01

    This paper aimed to investigate motor proficiency in fine and gross motor function, with a focus on reaction time (RT) and movement skill, in patients with fibromyalgia (FM) and chronic fatigue syndrome (CFS) compared to healthy controls (HC). A total of 60 individuals (20 CFS, 20 FM, and 20 HC), age 19-49 years, participated in this study. Gross motor function in the lower extremity was assessed using a RT task during gait initiation in response to an auditory trigger. Fine motor function in the upper extremity was measured during a precision task (the Purdue Pegboard test) where the number of pins inserted within 30 s was counted. No significant differences were found between FM and CFS in any parameters. FM and CFS groups had significantly longer RT than HC in the gait initiation ( p =0.001, and p =0.004 respectively). In the Purdue Pegboard test, 20% in the FM group, 15% in the CFS groups, and 0% of HC group, scored below the threshold of the accepted performance. However, there were no significant differences between FM, CFS, and HC in this task ( p =0.12). Compared to controls, both CFS and FM groups displayed significantly longer RT in the gait initiation task. Generally, FM patients showed the worst results in both tests, although no group differences were found in fine motor control, according to the Purdue Pegboard test.

  1. Cathodal Transcranial Direct Current Stimulation Over Left Dorsolateral Prefrontal Cortex Area Promotes Implicit Motor Learning in a Golf Putting Task.

    PubMed

    Zhu, Frank F; Yeung, Andrew Y; Poolton, Jamie M; Lee, Tatia M C; Leung, Gilberto K K; Masters, Rich S W

    2015-01-01

    Implicit motor learning is characterized by low dependence on working memory and stable performance despite stress, fatigue, or multi-tasking. However, current paradigms for implicit motor learning are based on behavioral interventions that are often task-specific and limited when applied in practice. To investigate whether cathodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) area during motor learning suppressed working memory activity and reduced explicit verbal-analytical involvement in movement control, thereby promoting implicit motor learning. Twenty-seven healthy individuals practiced a golf putting task during a Training Phase while receiving either real cathodal tDCS stimulation over the left DLPFC area or sham stimulation. Their performance was assessed during a Test phase on another day. Verbal working memory capacity was assessed before and after the Training Phase, and before the Test Phase. Compared to sham stimulation, real stimulation suppressed verbal working memory activity after the Training Phase, but enhanced golf putting performance during the Training Phase and the Test Phase, especially when participants were required to multi-task. Cathodal tDCS over the left DLPFC may foster implicit motor learning and performance in complex real-life motor tasks that occur during sports, surgery or motor rehabilitation. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. MACOP modular architecture with control primitives

    PubMed Central

    Waegeman, Tim; Hermans, Michiel; Schrauwen, Benjamin

    2013-01-01

    Walking, catching a ball and reaching are all tasks in which humans and animals exhibit advanced motor skills. Findings in biological research concerning motor control suggest a modular control hierarchy which combines movement/motor primitives into complex and natural movements. Engineers inspire their research on these findings in the quest for adaptive and skillful control for robots. In this work we propose a modular architecture with control primitives (MACOP) which uses a set of controllers, where each controller becomes specialized in a subregion of its joint and task-space. Instead of having a single controller being used in this subregion [such as MOSAIC (modular selection and identification for control) on which MACOP is inspired], MACOP relates more to the idea of continuously mixing a limited set of primitive controllers. By enforcing a set of desired properties on the mixing mechanism, a mixture of primitives emerges unsupervised which successfully solves the control task. We evaluate MACOP on a numerical model of a robot arm by training it to generate desired trajectories. We investigate how the tracking performance is affected by the number of controllers in MACOP and examine how the individual controllers and their generated control primitives contribute to solving the task. Furthermore, we show how MACOP compensates for the dynamic effects caused by a fixed control rate and the inertia of the robot. PMID:23888140

  3. Self-controlled practice enhances motor learning in introverts and extroverts.

    PubMed

    Kaefer, Angélica; Chiviacowsky, Suzete; Meira, Cassio de Miranda; Tani, Go

    2014-06-01

    The purpose of the present study was to investigate the effects of self-controlled feedback on the learning of a sequential-timing motor task in introverts and extroverts. Fifty-six university students were selected by the Eysenck Personality Questionnaire. They practiced a motor task consisting of pressing computer keyboard keys in a specific spatial and temporal pattern. The experiment consisted of practice, retention, and transfer phases. The participants were distributed into 4 groups, formed by the combination of personality trait (extraversion/introversion) and type of feedback frequency (self-controlled/yoked). The results showed superior learning for the groups that practiced in a self-controlled schedule, in relation to groups who practiced in an externally controlled schedule, F(1, 52) = 4.13, p < .05, eta2 = .07, regardless of personality trait. We conclude that self-controlled practice enhances motor learning in introverts and extroverts.

  4. Nonverbal Social Communication and Gesture Control in Schizophrenia

    PubMed Central

    Walther, Sebastian; Stegmayer, Katharina; Sulzbacher, Jeanne; Vanbellingen, Tim; Müri, René; Strik, Werner; Bohlhalter, Stephan

    2015-01-01

    Schizophrenia patients are severely impaired in nonverbal communication, including social perception and gesture production. However, the impact of nonverbal social perception on gestural behavior remains unknown, as is the contribution of negative symptoms, working memory, and abnormal motor behavior. Thus, the study tested whether poor nonverbal social perception was related to impaired gesture performance, gestural knowledge, or motor abnormalities. Forty-six patients with schizophrenia (80%), schizophreniform (15%), or schizoaffective disorder (5%) and 44 healthy controls matched for age, gender, and education were included. Participants completed 4 tasks on nonverbal communication including nonverbal social perception, gesture performance, gesture recognition, and tool use. In addition, they underwent comprehensive clinical and motor assessments. Patients presented impaired nonverbal communication in all tasks compared with controls. Furthermore, in contrast to controls, performance in patients was highly correlated between tasks, not explained by supramodal cognitive deficits such as working memory. Schizophrenia patients with impaired gesture performance also demonstrated poor nonverbal social perception, gestural knowledge, and tool use. Importantly, motor/frontal abnormalities negatively mediated the strong association between nonverbal social perception and gesture performance. The factors negative symptoms and antipsychotic dosage were unrelated to the nonverbal tasks. The study confirmed a generalized nonverbal communication deficit in schizophrenia. Specifically, the findings suggested that nonverbal social perception in schizophrenia has a relevant impact on gestural impairment beyond the negative influence of motor/frontal abnormalities. PMID:25646526

  5. Reduced activation and altered laterality in two neuroleptic-naive catatonic patients during a motor task in functional MRI.

    PubMed

    Northoff, G; Braus, D F; Sartorius, A; Khoram-Sefat, D; Russ, M; Eckert, J; Herrig, M; Leschinger, A; Bogerts, B; Henn, F A

    1999-07-01

    Catatonia, a symptom complex with motor, affective and cognitive symptoms seen in a variety of psychotic conditions and with organic disease, was examined using a motor task using functional magnetic resonance imaging (fMRI). Two acute catatonic patients and two age- and sex-matched healthy controls performed sequential finger opposition (SFO) after being medicated with 2 mg of lorazepam (i.v.). Functional magnetic resonance images were collected using a gradient echo pulse sequence (EPI). Patients with catatonia showed reduced motor activation of the contralateral motor cortex during SFO of the right hand, ipsilateral activation was similar for patients and controls. There were no differences in the activation of the SMA. During left hand activation the right-handed catatonic patients showed more activation in the ipsilateral cortex, a reversal from the normal pattern of activation in which the contralateral side shows four to five times more activation than the ipsilateral side. In catatonic patients there is a decreased activation in motor cortex during a motor task compared to matched medicated healthy controls. In addition activation of the non-dominant side, left-handed activity in right-handed patients, results in a total reversal of the normal pattern of lateral activation suggesting a disturbance in hemispheric localization of activity during a catatonic state.

  6. Cognitive demand and predictive adaptational responses in dynamic stability control.

    PubMed

    Bohm, Sebastian; Mersmann, Falk; Bierbaum, Stefanie; Dietrich, Ralf; Arampatzis, Adamantios

    2012-09-21

    We studied the effects of a concurrent cognitive task on predictive motor control, a feedforward mechanism of dynamic stability control, during disturbed gait in young and old adults. Thirty-two young and 27 elderly male healthy subjects participated and were randomly assigned to either control or dual task groups. By means of a covered exchangeable element the surface condition on a gangway could be altered to induce gait perturbations. The experimental protocol included a baseline on hard surface and an adaptation phase with twelve trials on soft surface. After the first, sixth and last soft surface trial, the surface condition was changed to hard (H1-3), to examine after-effects and, thus, to quantify predictive motor control. Dynamic stability was assessed using the 'margin of stability (MoS)' as a criterion for the stability state of the human body (extrapolated center of mass concept). In H1-3 the young participants significantly increased the MoS at touchdown of the disturbed leg compared to baseline. The magnitude and the rate of these after-effects were unaffected by the dual task condition. The old participants presented a trend to after-effects (i.e., increase of MoS) in H3 but only under the dual task condition.In conclusion, the additional cognitive demand did not compromise predictive motor control during disturbed walking in the young and old participants. In contrast to the control group, the old dual task group featured a trend to predictive motor adjustments, which may be a result of a higher state of attention or arousal due to the dual task paradigm. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Drive control and position measurement of RailCab vehicles driven by linear motors

    NASA Astrophysics Data System (ADS)

    Pottharst, Andreas; Henke, Christian; Schneider, Tobias; Böcker, Joachim; Grotstollen, Horst

    2006-11-01

    The novel railway system RailCab makes use of autonomous vehicles which are driven by an AC linear motor. Depending on the track-side motor part, long-stator or short-stator operations are possible. The paper deals with the operation of the doubly-fed induction motor which is used for motion control and for transferring the energy required onboard the vehicle. This type of linear motor synchronization of the traveling fields generated by the stationary primary and moving secondary windings is an important and demanding task because the instantaneous positions of the vehicle or the primary traveling wave must be determined with high accuracy. The paper shows how this task is solved at the moment and what improvements are under development.

  8. Posture-Motor and Posture-Ideomotor Dual-Tasking: A Putative Marker of Psychomotor Retardation and Depressive Rumination in Patients With Major Depressive Disorder.

    PubMed

    Aftanas, Lyubomir I; Bazanova, Olga M; Novozhilova, Nataliya V

    2018-01-01

    Background: Recent studies have demonstrated that the assessment of postural performance may be a potentially reliable and objective marker of the psychomotor retardation (PMR) in the major depressive disorder (MDD). One of the important facets of MDD-related PMR is reflected in disrupted central mechanisms of psychomotor control, heavily influenced by compelling maladaptive depressive rumination. In view of this we designed a research paradigm that included sequential execution of simple single-posture task followed by more challenging divided attention posture tasks, involving concurring motor and ideomotor workloads. Another difficulty dimension assumed executing of all the tasks with eyes open (EO) (easy) and closed (EC) (difficult) conditions. We aimed at investigating the interplay between the severity of MDD, depressive rumination, and efficiency of postural performance. Methods: Compared with 24 age- and body mass index-matched healthy controls (HCs), 26 patients with MDD sequentially executed three experimental tasks: (1) single-posture task of maintaining a quiet stance (ST), (2) actual posture-motor dual task (AMT); and (3) mental/imaginary posture-motor dual task (MMT). All the tasks were performed in the EO and the EC conditions. The primary dependent variable was the amount of kinetic energy ( E ) expended for the center of pressure deviations (CoPDs), whereas the absolute divided attention cost index showed energy cost to the dual-tasking vs. the single-posture task according to the formula: Δ E = ( E Dual-task - E Single-task ). Results: The signs of PMR in the MDD group were objectively indexed by deficient posture control in the EC condition along with overall slowness of fine motor and ideomotor activity. Another important and probably more challenging feature of the findings was that the posture deficit manifested in the ST condition was substantially and significantly attenuated in the MMT and AMT performance dual-tasking activity. A multiple linear regression analysis evidenced further that the dual-tasking energy cost (i.e., Δ E ) significantly predicted clinical scores of severity of MDD and depressive rumination. Conclusion: The findings allow to suggest that execution of concurrent actual or imaginary fine motor task with closed visual input deallocates attentional resources from compelling maladaptive depressive rumination thereby attenuating severity of absolute dual-tasking energy costs for balance maintenance in patients with MDD. Significance: Quantitative assessment of PMR through measures of the postural performance in dual-tasking may be useful to capture the negative impact of past depressive episodes, optimize the personalized treatment selection, and improve the understanding of the pathophysiological mechanisms underlying MDD.

  9. Cognitive-motor integration deficits in young adult athletes following concussion.

    PubMed

    Brown, Jeffrey A; Dalecki, Marc; Hughes, Cindy; Macpherson, Alison K; Sergio, Lauren E

    2015-01-01

    The ability to perform visually-guided motor tasks requires the transformation of visual information into programmed motor outputs. When the guiding visual information does not align spatially with the motor output, the brain processes rules to integrate the information for an appropriate motor response. Here, we look at how performance on such tasks is affected in young adult athletes with concussion history. Participants displaced a cursor from a central to peripheral targets on a vertical display by sliding their finger along a touch sensitive screen in one of two spatial planes. The addition of a memory component, along with variations in cursor feedback increased task complexity across conditions. Significant main effects between participants with concussion history and healthy controls without concussion history were observed in timing and accuracy measures. Importantly, the deficits were distinctly more pronounced for participants with concussion history compared to healthy controls, especially when the brain had to control movements having two levels of decoupling between vision and action. A discriminant analysis correctly classified athletes with a history of concussion based on task performance with an accuracy of 94 %, despite the majority of these athletes being rated asymptomatic by current standards. These findings correspond to our previous work with adults at risk of developing dementia, and support the use of cognitive motor integration as an enhanced assessment tool for those who may have mild brain dysfunction. Such a task may provide a more sensitive metric of performance relevant to daily function than what is currently in use, to assist in return to play/work/learn decisions.

  10. Sequence Effect in Parkinson’s Disease Is Related to Motor Energetic Cost

    PubMed Central

    Tinaz, Sule; Pillai, Ajay S.; Hallett, Mark

    2016-01-01

    Bradykinesia is the most disabling motor symptom of Parkinson’s disease (PD). The sequence effect (SE), a feature of bradykinesia, refers to the rapid decrement in amplitude and speed of repetitive movements (e.g., gait, handwriting) and is a major cause of morbidity in PD. Previous research has revealed mixed results regarding the role of dopaminergic treatment in the SE. However, external cueing has been shown to improve it. In this study, we aimed to characterize the SE systematically and relate this phenomenon to the energetic cost of movement within the context of cost–benefit framework of motor control. We used a dynamic isometric motor task with auditory pacing to assess the SE in motor output during a 15-s task segment in PD patients and matched controls. All participants performed the task with both hands, and without and with visual feedback (VF). Patients were also tested in “on”- and “off”-dopaminergic states. Patients in the “off” state did not show higher SE compared to controls, partly due to large variance in their performance. However, patients in the “on” state and in the absence of VF showed significantly higher SE compared to controls. Patients expended higher total motor energy compared to controls in all conditions and regardless of their medication status. In this experimental situation, the SE in PD is associated with the cumulative energetic cost of movement. Dopaminergic treatment, critical for internal triggering of movement, fails to maintain the motor vigor across responses. The high motor cost may be related to failure to incorporate limbic/motivational cues into the motor plan. VF may facilitate performance by shifting the driving of movement from internal to external or, alternatively, by functioning as a motivational cue. PMID:27252678

  11. Hand digit control in children: motor overflow in multi-finger pressing force vector space during maximum voluntary force production.

    PubMed

    Shim, Jae Kun; Karol, Sohit; Hsu, Jeffrey; de Oliveira, Marcio Alves

    2008-04-01

    The aim of this study was to investigate the contralateral motor overflow in children during single-finger and multi-finger maximum force production tasks. Forty-five right handed children, 5-11 years of age produced maximum isometric pressing force in flexion or extension with single fingers or all four fingers of their right hand. The forces produced by individual fingers of the right and left hands were recorded and analyzed in four-dimensional finger force vector space. The results showed that increases in task (right) hand finger forces were linearly associated with non-task (left) hand finger forces. The ratio of the non-task hand finger force magnitude to the corresponding task hand finger force magnitude, termed motor overflow magnitude (MOM), was greater in extension than flexion. The index finger flexion task showed the smallest MOM values. The similarity between the directions of task hand and non-task hand finger force vectors in four-dimensional finger force vector space, termed motor overflow direction (MOD), was the greatest for index and smallest for little finger tasks. MOM of a four-finger task was greater than the sum of MOMs of single-finger tasks, and this phenomenon was termed motor overflow surplus. Contrary to previous studies, no single-finger or four-finger tasks showed significant changes of MOM or MOD with the age of children. We conclude that the contralateral motor overflow in children during finger maximum force production tasks is dependent upon the task fingers and the magnitude and direction of task finger forces.

  12. [Neuromodulatory effects of bromazepam when individuals were exposed to a motor learning task: quantitative electroencephalography (qEEG)].

    PubMed

    Salles, José Inácio; Bastos, Victor Hugo; Cunha, Marlo; Machado, Dionis; Cagy, Maurício; Furtado, Vernon; Basile, Luis Fernando; Piedade, Roberto; Ribeiro, Pedro

    2006-03-01

    The sedative effects of bromazepam on cognitive and performance have been widely investigated. A number of different approaches have assessed the influence of bromazepam when individuals are engaged to a motor task. In this context, the present study aimed to investigate electrophysiological changes when individuals were exposed to a typewriting task after taking 6 mg of bromazepam. qEEG data were simultaneously recorded during the task. In particular, relative power in delta band (0.5-3.5 Hz) was analyzed. Time of execution and errors during the task were registered as behavioral variables. The experimental group, bromazepam 6 mg, showed a better motor performance and higher relative power than control individuals (placebo). These results suggest that the use of bromazepam reduces anxiety levels as expected and thus, produces an increment in motor performance.

  13. Using ipsilateral motor signals in the unaffected cerebral hemisphere as a signal platform for brain-computer interfaces in hemiplegic stroke survivors

    NASA Astrophysics Data System (ADS)

    Bundy, David T.; Wronkiewicz, Mark; Sharma, Mohit; Moran, Daniel W.; Corbetta, Maurizio; Leuthardt, Eric C.

    2012-06-01

    Brain-computer interface (BCI) systems have emerged as a method to restore function and enhance communication in motor impaired patients. To date, this has been applied primarily to patients who have a compromised motor outflow due to spinal cord dysfunction, but an intact and functioning cerebral cortex. The cortical physiology associated with movement of the contralateral limb has typically been the signal substrate that has been used as a control signal. While this is an ideal control platform in patients with an intact motor cortex, these signals are lost after a hemispheric stroke. Thus, a different control signal is needed that could provide control capability for a patient with a hemiparetic limb. Previous studies have shown that there is a distinct cortical physiology associated with ipsilateral, or same-sided, limb movements. Thus far, it was unknown whether stroke survivors could intentionally and effectively modulate this ipsilateral motor activity from their unaffected hemisphere. Therefore, this study seeks to evaluate whether stroke survivors could effectively utilize ipsilateral motor activity from their unaffected hemisphere to achieve this BCI control. To investigate this possibility, electroencephalographic (EEG) signals were recorded from four chronic hemispheric stroke patients as they performed (or attempted to perform) real and imagined hand tasks using either their affected or unaffected hand. Following performance of the screening task, the ability of patients to utilize a BCI system was investigated during on-line control of a one-dimensional control task. Significant ipsilateral motor signals (associated with movement intentions of the affected hand) in the unaffected hemisphere, which were found to be distinct from rest and contralateral signals, were identified and subsequently used for a simple online BCI control task. We demonstrate here for the first time that EEG signals from the unaffected hemisphere, associated with overt and imagined movements of the affected hand, can enable stroke survivors to control a one-dimensional computer cursor rapidly and accurately. This ipsilateral motor activity enabled users to achieve final target accuracies between 68% and 91% within 15 min. These findings suggest that ipsilateral motor activity from the unaffected hemisphere in stroke survivors could provide a physiological substrate for BCI operation that can be further developed as a long-term assistive device or potentially provide a novel tool for rehabilitation.

  14. Measurement of functional task difficulty during motor learning: What level of difficulty corresponds to the optimal challenge point?

    PubMed

    Akizuki, Kazunori; Ohashi, Yukari

    2015-10-01

    The relationship between task difficulty and learning benefit was examined, as was the measurability of task difficulty. Participants were required to learn a postural control task on an unstable surface at one of four different task difficulty levels. Results from the retention test showed an inverted-U relationship between task difficulty during acquisition and motor learning. The second-highest level of task difficulty was the most effective for motor learning, while learning was delayed at the most and least difficult levels. Additionally, the results indicate that salivary α-amylase and the performance dimension of the National Aeronautics and Space Administration-Task Load Index (NASA-TLX) are useful indices of task difficulty. Our findings suggested that instructors may be able to adjust task difficulty based on salivary α-amylase and the performance dimension of the NASA-TLX to enhance learning. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Increased gamma band power during movement planning coincides with motor memory retrieval.

    PubMed

    Thürer, Benjamin; Stockinger, Christian; Focke, Anne; Putze, Felix; Schultz, Tanja; Stein, Thorsten

    2016-01-15

    The retrieval of motor memory requires a previous memory encoding and subsequent consolidation of the specific motor memory. Previous work showed that motor memory seems to rely on different memory components (e.g., implicit, explicit). However, it is still unknown if explicit components contribute to the retrieval of motor memories formed by dynamic adaptation tasks and which neural correlates are linked to memory retrieval. We investigated the lower and higher gamma bands of subjects' electroencephalography during encoding and retrieval of a dynamic adaptation task. A total of 24 subjects were randomly assigned to a treatment and control group. Both groups adapted to a force field A on day 1 and were re-exposed to the same force field A on day 3 of the experiment. On day 2, treatment group learned an interfering force field B whereas control group had a day rest. Kinematic analyses showed that control group improved their initial motor performance from day 1 to day 3 but treatment group did not. This behavioral result coincided with an increased higher gamma band power in the electrodes over prefrontal areas on the initial trials of day 3 for control but not treatment group. Intriguingly, this effect vanished with the subsequent re-adaptation on day 3. We suggest that improved re-test performance in a dynamic motor adaptation task is contributed by explicit memory and that gamma bands in the electrodes over the prefrontal cortex are linked to these explicit components. Furthermore, we suggest that the contribution of explicit memory vanishes with the subsequent re-adaptation while task automaticity increases. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Effect of Yoga practice on reducing cognitive-motor interference for improving dynamic balance control in healthy adults.

    PubMed

    Subramaniam, Savitha; Bhatt, Tanvi

    2017-02-01

    The purpose of our study was to investigate the effects of Yoga on reducing cognitive-motor interference (CMI) for maintaining balance control during varied balance tasks. Yoga (N=10) and age-similar non-practitioners (N=10) performed three balance tasks including the Limits of Stability test (LOS - Intentional balance), Motor Control test (MCT - Reactive balance), and Sensory Organization Test (SOT -condition 6: inducing both somatosensory and visual conflicts) under single-task (ST) and dual-task (DT, addition of a cognitive working memory task) conditions. The motor performance was assessed by recording the response time (RT) and movement velocity (MV) of the center of pressure (CoP) on LOS test, weight symmetry (WS) of CoP on the MCT test and equilibrium (EQ) of CoP on the SOT test. Cognitive performance was recorded as the number of correct responses enumerated in sitting (ST) and under DT conditions. The Motor cost (MC) and cognitive cost (CC) were computed using the formula ([ST-DT]/ST)*100 for all the variables. Greater cost indicates lower performance under DT versus ST condition. The Yoga group showed a significantly lesser MC for both MCT and SOT tests (p<0.05) in comparison to their counterparts. The CC were significantly lower on LOS and MCT test for the Yoga group (p<0.05). Results suggest that Yoga practice can significantly reduce CMI by improving allocation and utilization of attentional resources for both balance control and executive cognitive functioning; thus resulting in better performance under DT conditions. Copyright © 2016. Published by Elsevier Ltd.

  17. Dimensional reduction in sensorimotor systems: A framework for understanding muscle coordination of posture

    PubMed Central

    Ting, Lena H.

    2014-01-01

    The simple act of standing up is an important and essential motor behavior that most humans and animals achieve with ease. Yet, maintaining standing balance involves complex sensorimotor transformations that must continually integrate a large array of sensory inputs and coordinate multiple motor outputs to muscles throughout the body. Multiple, redundant local sensory signals are integrated to form an estimate of a few global, task-level variables important to postural control, such as body center of mass position and body orientation with respect to Earth-vertical. Evidence suggests that a limited set of muscle synergies, reflecting preferential sets of muscle activation patterns, are used to move task variables such as center of mass position in a predictable direction following a postural perturbations. We propose a hierarchal feedback control system that allows the nervous system the simplicity of performing goal-directed computations in task-variable space, while maintaining the robustness afforded by redundant sensory and motor systems. We predict that modulation of postural actions occurs in task-variable space, and in the associated transformations between the low-dimensional task-space and high-dimensional sensor and muscle spaces. Development of neuromechanical models that reflect these neural transformations between low and high-dimensional representations will reveal the organizational principles and constraints underlying sensorimotor transformations for balance control, and perhaps motor tasks in general. This framework and accompanying computational models could be used to formulate specific hypotheses about how specific sensory inputs and motor outputs are generated and altered following neural injury, sensory loss, or rehabilitation. PMID:17925254

  18. On Supporting Physical Skill Discovery

    NASA Astrophysics Data System (ADS)

    Furukawa, Koichi; Suwa, Masaki; Kato, Takaaki

    One of the main difficulties in motor skill acquisition is attributed to body control based on wrong mental models. This is true to various domains such as playing sports and playing musical instruments. In order to acquire adequate motor skill by modifying false belief, we need to help people find appropriate key points in achieving a body control and integrate them. In this paper, we investigate three approaches to realize such support. The first one is to encourage exploration of the relations among key points constituting a motor skill, using a technique of meta-cognitive verbalization. The second one is to represent a motor skill by appropriate mechanical models. The third one is to integrate rules for component tasks in achieving a compound task. These three approaches, we argue, help people build an integrated mental model consisting of multiple relations among various key points, one that seems to be indispensable for acquisition of motor skills. These ideas suggest the possibility to create new skill rules to perform difficult tasks automatically.

  19. When action is not enough: tool-use reveals tactile-dependent access to Body Schema.

    PubMed

    Cardinali, L; Brozzoli, C; Urquizar, C; Salemme, R; Roy, A C; Farnè, A

    2011-11-01

    Proper motor control of our own body implies a reliable representation of body parts. This information is supposed to be stored in the Body Schema (BS), a body representation that appears separate from a more perceptual body representation, the Body Image (BI). The dissociation between BS for action and BI for perception, originally based on neuropsychological evidence, has recently become the focus of behavioural studies in physiological conditions. By inducing the rubber hand illusion in healthy participants, Kammers et al. (2009) showed perceptual changes attributable to the BI to which the BS, as indexed via motor tasks, was immune. To more definitively support the existence of dissociable body representations in physiological conditions, here we tested for the opposite dissociation, namely, whether a tool-use paradigm would induce a functional update of the BS (via a motor localization task) without affecting the BI (via a perceptual localization task). Healthy subjects were required to localize three anatomical landmarks on their right arm, before and after using the same arm to control a tool. In addition to this classical task-dependency approach, we assessed whether preferential access to the BS could also depend upon the way positional information about forearm targets is provided, to subsequently execute the same task. To this aim, participants performed either verbally or tactually driven versions of the motor and perceptual localization tasks. Results showed that both the motor and perceptual tasks were sensitive to the update of the forearm representation, but only when the localization task (perceptual or motor) was driven by a tactile input. This pattern reveals that the motor output is not sufficient per se, but has to be coupled with tactually mediated information to guarantee access to the BS. These findings shade a new light on the action-perception models of body representations and underlie how functional plasticity may be a useful tool to clarify their operational definition. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Sequence for the Training of Eye-Hand Coordination Needed for the Organization of Handwriting Tasks

    ERIC Educational Resources Information Center

    Trester, Mary Fran

    1971-01-01

    Suggested is a sequence of 11 class activities, progressing from gross to fine motor skills, to assist the development of skills required to perform handwriting tasks successfully, for use particularly with children who lack fine motor control and eye-hand coordination. (KW)

  1. Balance Training Reduces Brain Activity during Motor Simulation of a Challenging Balance Task in Older Adults: An fMRI Study

    PubMed Central

    Ruffieux, Jan; Mouthon, Audrey; Keller, Martin; Mouthon, Michaël; Annoni, Jean-Marie; Taube, Wolfgang

    2018-01-01

    Aging is associated with a shift from an automatic to a more cortical postural control strategy, which goes along with deteriorations in postural stability. Although balance training has been shown to effectively counteract these behavioral deteriorations, little is known about the effect of balance training on brain activity during postural tasks in older adults. We, therefore, assessed postural stability and brain activity using fMRI during motor imagery alone (MI) and in combination with action observation (AO; i.e., AO+MI) of a challenging balance task in older adults before and after 5 weeks of balance training. Results showed a nonsignificant trend toward improvements in postural stability after balance training, accompanied by reductions in brain activity during AO+MI of the balance task in areas relevant for postural control, which have been shown to be over-activated in older adults during (simulation of) motor performance, including motor, premotor, and multisensory vestibular areas. This suggests that balance training may reverse the age-related cortical over-activations and lead to changes in the control of upright posture toward the one observed in young adults. PMID:29472847

  2. Balance Training Reduces Brain Activity during Motor Simulation of a Challenging Balance Task in Older Adults: An fMRI Study.

    PubMed

    Ruffieux, Jan; Mouthon, Audrey; Keller, Martin; Mouthon, Michaël; Annoni, Jean-Marie; Taube, Wolfgang

    2018-01-01

    Aging is associated with a shift from an automatic to a more cortical postural control strategy, which goes along with deteriorations in postural stability. Although balance training has been shown to effectively counteract these behavioral deteriorations, little is known about the effect of balance training on brain activity during postural tasks in older adults. We, therefore, assessed postural stability and brain activity using fMRI during motor imagery alone (MI) and in combination with action observation (AO; i.e., AO+MI) of a challenging balance task in older adults before and after 5 weeks of balance training. Results showed a nonsignificant trend toward improvements in postural stability after balance training, accompanied by reductions in brain activity during AO+MI of the balance task in areas relevant for postural control, which have been shown to be over-activated in older adults during (simulation of) motor performance, including motor, premotor, and multisensory vestibular areas. This suggests that balance training may reverse the age-related cortical over-activations and lead to changes in the control of upright posture toward the one observed in young adults.

  3. The Neural Mechanism Exploration of Adaptive Motor Control: Dynamical Economic Cell Allocation in the Primary Motor Cortex.

    PubMed

    Li, Wei; Guo, Yangyang; Fan, Jing; Ma, Chaolin; Ma, Xuan; Chen, Xi; He, Jiping

    2017-05-01

    Adaptive flexibility is of significance for the smooth and efficient movements in goal attainment. However, the underlying work mechanism of the cerebral cortex in adaptive motor control still remains unclear. How does the cerebral cortex organize and coordinate the activity of a large population of cells in the implementation of various motor strategies? To explore this issue, single-unit activities from the M1 region and kinematic data were recorded simultaneously in monkeys performing 3D reach-to-grasp tasks with different perturbations. Varying motor control strategies were employed and achieved in different perturbed tasks, via the dynamic allocation of cells to modulate specific movement parameters. An economic principle was proposed for the first time to describe a basic rule for cell allocation in the primary motor cortex. This principle, defined as the Dynamic Economic Cell Allocation Mechanism (DECAM), guarantees benefit maximization in cell allocation under limited neuronal resources, and avoids committing resources to uneconomic investments for unreliable factors with no or little revenue. That is to say, the cells recruited are always preferentially allocated to those factors with reliable return; otherwise, the cells are dispatched to respond to other factors about task. The findings of this study might partially reveal the working mechanisms underlying the role of the cerebral cortex in adaptive motor control, wherein is also of significance for the design of future intelligent brain-machine interfaces and rehabilitation device.

  4. Gross and fine motor function in fibromyalgia and chronic fatigue syndrome

    PubMed Central

    Rasouli, Omid; Fors, Egil A; Borchgrevink, Petter Chr; Öhberg, Fredrik; Stensdotter, Ann-Katrin

    2017-01-01

    Purpose This paper aimed to investigate motor proficiency in fine and gross motor function, with a focus on reaction time (RT) and movement skill, in patients with fibromyalgia (FM) and chronic fatigue syndrome (CFS) compared to healthy controls (HC). Methods A total of 60 individuals (20 CFS, 20 FM, and 20 HC), age 19–49 years, participated in this study. Gross motor function in the lower extremity was assessed using a RT task during gait initiation in response to an auditory trigger. Fine motor function in the upper extremity was measured during a precision task (the Purdue Pegboard test) where the number of pins inserted within 30 s was counted. Results No significant differences were found between FM and CFS in any parameters. FM and CFS groups had significantly longer RT than HC in the gait initiation (p=0.001, and p=0.004 respectively). In the Purdue Pegboard test, 20% in the FM group, 15% in the CFS groups, and 0% of HC group, scored below the threshold of the accepted performance. However, there were no significant differences between FM, CFS, and HC in this task (p=0.12). Conclusion Compared to controls, both CFS and FM groups displayed significantly longer RT in the gait initiation task. Generally, FM patients showed the worst results in both tests, although no group differences were found in fine motor control, according to the Purdue Pegboard test. PMID:28223840

  5. Brain mechanisms controlling decision making and motor planning.

    PubMed

    Ramakrishnan, Arjun; Murthy, Aditya

    2013-01-01

    Accumulator models of decision making provide a unified framework to understand decision making and motor planning. In these models, the evolution of a decision is reflected in the accumulation of sensory information into a motor plan that reaches a threshold, leading to choice behavior. While these models provide an elegant framework to understand performance and reaction times, their ability to explain complex behaviors such as decision making and motor control of sequential movements in dynamic environments is unclear. To examine and probe the limits of online modification of decision making and motor planning, an oculomotor "redirect" task was used. Here, subjects were expected to change their eye movement plan when a new saccade target appeared. Based on task performance, saccade reaction time distributions, computational models of behavior, and intracortical microstimulation of monkey frontal eye fields, we show how accumulator models can be tested and extended to study dynamic aspects of decision making and motor control. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Disentangling fine motor skills' relations to academic achievement: the relative contributions of visual-spatial integration and visual-motor coordination.

    PubMed

    Carlson, Abby G; Rowe, Ellen; Curby, Timothy W

    2013-01-01

    Recent research has established a connection between children's fine motor skills and their academic performance. Previous research has focused on fine motor skills measured prior to elementary school, while the present sample included children ages 5-18 years old, making it possible to examine whether this link remains relevant throughout childhood and adolescence. Furthermore, the majority of research linking fine motor skills and academic achievement has not determined which specific components of fine motor skill are driving this relation. The few studies that have looked at associations of separate fine motor tasks with achievement suggest that copying tasks that tap visual-spatial integration skills are most closely related to achievement. The present study examined two separate elements of fine motor skills--visual-motor coordination and visual-spatial integration--and their associations with various measures of academic achievement. Visual-motor coordination was measured using tracing tasks, while visual-spatial integration was measured using copy-a-figure tasks. After controlling for gender, socioeconomic status, IQ, and visual-motor coordination, and visual-spatial integration explained significant variance in children's math and written expression achievement. Knowing that visual-spatial integration skills are associated with these two achievement domains suggests potential avenues for targeted math and writing interventions for children of all ages.

  7. A Single-Session Preliminary Evaluation of an Affordable BCI-Controlled Arm Exoskeleton and Motor-Proprioception Platform.

    PubMed

    Elnady, Ahmed Mohamed; Zhang, Xin; Xiao, Zhen Gang; Yong, Xinyi; Randhawa, Bubblepreet Kaur; Boyd, Lara; Menon, Carlo

    2015-01-01

    Traditional, hospital-based stroke rehabilitation can be labor-intensive and expensive. Furthermore, outcomes from rehabilitation are inconsistent across individuals and recovery is hard to predict. Given these uncertainties, numerous technological approaches have been tested in an effort to improve rehabilitation outcomes and reduce the cost of stroke rehabilitation. These techniques include brain-computer interface (BCI), robotic exoskeletons, functional electrical stimulation (FES), and proprioceptive feedback. However, to the best of our knowledge, no studies have combined all these approaches into a rehabilitation platform that facilitates goal-directed motor movements. Therefore, in this paper, we combined all these technologies to test the feasibility of using a BCI-driven exoskeleton with FES (robotic training device) to facilitate motor task completion among individuals with stroke. The robotic training device operated to assist a pre-defined goal-directed motor task. Because it is hard to predict who can utilize this type of technology, we considered whether the ability to adapt skilled movements with proprioceptive feedback would predict who could learn to control a BCI-driven robotic device. To accomplish this aim, we developed a motor task that requires proprioception for completion to assess motor-proprioception ability. Next, we tested the feasibility of robotic training system in individuals with chronic stroke (n = 9) and found that the training device was well tolerated by all the participants. Ability on the motor-proprioception task did not predict the time to completion of the BCI-driven task. Both participants who could accurately target (n = 6) and those who could not (n = 3), were able to learn to control the BCI device, with each BCI trial lasting on average 2.47 min. Our results showed that the participants' ability to use proprioception to control motor output did not affect their ability to use the BCI-driven exoskeleton with FES. Based on our preliminary results, we show that our robotic training device has potential for use as therapy for a broad range of individuals with stroke.

  8. A Single-Session Preliminary Evaluation of an Affordable BCI-Controlled Arm Exoskeleton and Motor-Proprioception Platform

    PubMed Central

    Elnady, Ahmed Mohamed; Zhang, Xin; Xiao, Zhen Gang; Yong, Xinyi; Randhawa, Bubblepreet Kaur; Boyd, Lara; Menon, Carlo

    2015-01-01

    Traditional, hospital-based stroke rehabilitation can be labor-intensive and expensive. Furthermore, outcomes from rehabilitation are inconsistent across individuals and recovery is hard to predict. Given these uncertainties, numerous technological approaches have been tested in an effort to improve rehabilitation outcomes and reduce the cost of stroke rehabilitation. These techniques include brain–computer interface (BCI), robotic exoskeletons, functional electrical stimulation (FES), and proprioceptive feedback. However, to the best of our knowledge, no studies have combined all these approaches into a rehabilitation platform that facilitates goal-directed motor movements. Therefore, in this paper, we combined all these technologies to test the feasibility of using a BCI-driven exoskeleton with FES (robotic training device) to facilitate motor task completion among individuals with stroke. The robotic training device operated to assist a pre-defined goal-directed motor task. Because it is hard to predict who can utilize this type of technology, we considered whether the ability to adapt skilled movements with proprioceptive feedback would predict who could learn to control a BCI-driven robotic device. To accomplish this aim, we developed a motor task that requires proprioception for completion to assess motor-proprioception ability. Next, we tested the feasibility of robotic training system in individuals with chronic stroke (n = 9) and found that the training device was well tolerated by all the participants. Ability on the motor-proprioception task did not predict the time to completion of the BCI-driven task. Both participants who could accurately target (n = 6) and those who could not (n = 3), were able to learn to control the BCI device, with each BCI trial lasting on average 2.47 min. Our results showed that the participants’ ability to use proprioception to control motor output did not affect their ability to use the BCI-driven exoskeleton with FES. Based on our preliminary results, we show that our robotic training device has potential for use as therapy for a broad range of individuals with stroke. PMID:25870554

  9. Deficits in inhibitory force control in young adults with ADHD.

    PubMed

    Neely, Kristina A; Wang, Peiyuan; Chennavasin, Amanda P; Samimy, Shaadee; Tucker, Jacqueline; Merida, Andrea; Perez-Edgar, Koraly; Huang-Pollock, Cynthia

    2017-05-01

    Poor inhibitory control is a well-established cognitive correlate of adults with ADHD. However, the simple reaction time (RT) task used in a majority of studies records performance errors only via the presence or absence of a single key press. This all-or-nothing response makes it impossible to capture subtle differences in underlying processes that shape performance. Subsequently, all-or-nothing tasks may underestimate the prevalence of executive function deficits in ADHD. The current study measured inhibitory control using a standard Go/No-Go RT task and a more sensitive continuous grip force task among adults with (N=51, 22 female) and without (N=51, 29 female) ADHD. Compared to adults without ADHD, adults with ADHD made more failed inhibits in the classic Go/No-Go paradigm and produced greater and more variable force during motor inhibition. The amount of force produced on failed inhibits was a stronger predictor of ADHD-related symptoms than the number of commissions in the standard RT task. Adults with ADHD did not differ from those without ADHD on the mean force and variability of force produced in Go trials. These findings suggest that the use of a precise and continuous motor task, such as the force task used here, provides additional information about the nature of inhibitory motor control in adults with ADHD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Motor development in 9-month-old infants in relation to cultural differences and iron status.

    PubMed

    Angulo-Barroso, Rosa M; Schapiro, Lauren; Liang, Weilang; Rodrigues, Onike; Shafir, Tal; Kaciroti, Niko; Jacobson, Sandra W; Lozoff, Betsy

    2011-03-01

    Motor development, which allows infants to explore their environment, promoting cognitive, social, and perceptual development, can be influenced by cultural practices and nutritional factors, such as iron deficiency. This study compared fine and gross motor development in 209 9-month-old infants from urban areas of China, Ghana, and USA (African-Americans) and considered effects of iron status. Iron deficiency anemia was most common in the Ghana sample (55%) followed by USA and China samples. Controlling for iron status, Ghanaian infants displayed precocity in gross motor development and most fine-motor reach-and-grasp tasks. US African-Americans performed the poorest in all tasks except bimanual coordination and the large ball. Controlling for cultural site, iron status showed linear trends for gross motor milestones and fine motor skills with small objects. Our findings add to the sparse literature on infant fine motor development across cultures. The results also indicate the need to consider nutritional factors when examining cultural differences in infant development. Copyright © 2010 Wiley Periodicals, Inc.

  11. Motor Development in 9-Month-Old Infants in Relation to Cultural Differences and Iron Status

    PubMed Central

    Schapiro, Lauren; Liang, Weilang; Rodrigues, Onike; Shafir, Tal; Kaciroti, Niko; Jacobson, Sandra W.; Lozoff, Betsy

    2011-01-01

    Motor development, which allows infants to explore their environment, promoting cognitive, social, and perceptual development, can be influenced by cultural practices and nutritional factors, such as iron deficiency. This study compared fine and gross motor development in 209 9-month-old infants from urban areas of China, Ghana, and USA (African-Americans) and considered effects of iron status. Iron deficiency anemia was most common in the Ghana sample (55%) followed by USA and China samples. Controlling for iron status, Ghanaian infants displayed precocity in gross motor development and most fine-motor reach-and-grasp tasks. US African-Americans performed the poorest in all tasks except bimanual coordination and the large ball. Controlling for cultural site, iron status showed linear trends for gross motor milestones and fine motor skills with small objects. Our findings add to the sparse literature on infant fine motor development across cultures. The results also indicate the need to consider nutritional factors when examining cultural differences in infant development. PMID:21298634

  12. Structural integrity of callosal midbody influences intermanual transfer in a motor reaction-time task.

    PubMed

    Bonzano, Laura; Tacchino, Andrea; Roccatagliata, Luca; Mancardi, Giovanni Luigi; Abbruzzese, Giovanni; Bove, Marco

    2011-02-01

    Training one hand on a motor task results in performance improvements in the other hand, also when stimuli are randomly presented (nonspecific transfer). Corpus callosum (CC) is the main structure involved in interhemispheric information transfer; CC pathology occurs in patients with multiple sclerosis (PwMS) and is related to altered performance of tasks requiring interhemispheric transfer of sensorimotor information. To investigate the role of CC in nonspecific transfer during a pure motor reaction-time task, we combined motor behavior with diffusion tensor imaging analysis in PwMS. Twenty-two PwMS and 10 controls, all right-handed, were asked to respond to random stimuli with appropriate finger opposition movements with the right (learning) and then the left (transfer) hand. PwMS were able to improve motor performance reducing response times with practice with a trend similar to controls and preserved the ability to transfer the acquired motor information from the learning to the transfer hand. A higher variability in the transfer process, indicated by a significantly larger standard deviation of mean nonspecific transfer, was found in the PwMS group with respect to the control group, suggesting the presence of subtle impairments in interhemispheric communication in some patients. Then, we correlated the amount of nonspecific transfer with mean fractional anisotropy (FA) values, indicative of microstructural damage, obtained in five CC subregions identified on PwMS's FA maps. A significant correlation was found only in the subregion including posterior midbody (Pearson's r = 0.74, P = 0.003), which thus seems to be essential for the interhemispheric transfer of information related to pure sensorimotor tasks. Copyright © 2010 Wiley-Liss, Inc.

  13. Motor learning.

    PubMed

    Wolpert, Daniel M; Flanagan, J Randall

    2010-06-08

    Although learning a motor skill, such as a tennis stroke, feels like a unitary experience, researchers who study motor control and learning break the processes involved into a number of interacting components. These components can be organized into four main groups. First, skilled performance requires the effective and efficient gathering of sensory information, such as deciding where and when to direct one's gaze around the court, and thus an important component of skill acquisition involves learning how best to extract task-relevant information. Second, the performer must learn key features of the task such as the geometry and mechanics of the tennis racket and ball, the properties of the court surface, and how the wind affects the ball's flight. Third, the player needs to set up different classes of control that include predictive and reactive control mechanisms that generate appropriate motor commands to achieve the task goals, as well as compliance control that specifies, for example, the stiffness with which the arm holds the racket. Finally, the successful performer can learn higher-level skills such as anticipating and countering the opponent's strategy and making effective decisions about shot selection. In this Primer we shall consider these components of motor learning using as an example how we learn to play tennis. 2010 Elsevier Ltd. All rights reserved.

  14. Effects of simultaneously performed cognitive and physical training in older adults

    PubMed Central

    2013-01-01

    Background While many studies confirm the positive effect of cognitive and physical training on cognitive performance of older adults, only little is known about the effects of simultaneously performed cognitive and physical training. In the current study, older adults simultaneously performed a verbal working memory and a cardiovascular training to improve cognitive and motor-cognitive dual task performance. Twenty training sessions of 30 minutes each were conducted over a period of ten weeks, with a test session before, in the middle, and after the training. Training gains were tested in measures of selective attention, paired-associates learning, executive control, reasoning, memory span, information processing speed, and motor-cognitive dual task performance in the form of walking and simultaneously performing a working memory task. Results Sixty-three participants with a mean age of 71.8 ± 4.9 years (range 65 to 84) either performed the simultaneous training (N = 21), performed a single working memory training (N = 16), or attended no training at all (N = 26). The results indicate similar training progress and larger improvements in the executive control task for both training groups when compared to the passive control group. In addition, the simultaneous training resulted in larger improvements compared to the single cognitive training in the paired-associates task and was able to reduce the step-to-step variability during the motor-cognitive dual task when compared to the single cognitive training and the passive control group. Conclusions The simultaneous training of cognitive and physical abilities presents a promising training concept to improve cognitive and motor-cognitive dual task performance, offering greater potential on daily life functioning, which usually involves the recruitment of multiple abilities and resources rather than a single one. PMID:24053148

  15. Corollary Discharge Failure in an Oculomotor Task Is Related to Delusional Ideation in Healthy Individuals.

    PubMed

    Malassis, Raphaëlle; Del Cul, Antoine; Collins, Thérèse

    2015-01-01

    Predicting the sensory consequences of saccadic eye movements likely plays a crucial role in planning sequences of saccades and in maintaining visual stability despite saccade-caused retinal displacements. Deficits in predictive activity, such as that afforded by a corollary discharge signal, have been reported in patients with schizophrenia, and may lead to the emergence of positive symptoms, in particular delusions of control and auditory hallucinations. We examined whether a measure of delusional thinking in the general, non-clinical population correlated with measures of predictive activity in two oculomotor tasks. The double-step task measured predictive activity in motor control, and the in-flight displacement task measured predictive activity in trans-saccadic visual perception. Forty-one healthy adults performed both tasks and completed a questionnaire to assess delusional thinking. The quantitative measure of predictive activity we obtained correlated with the tendency towards delusional ideation, but only for the motor task, and not the perceptual task: Individuals with higher levels of delusional thinking showed less self-movement information use in the motor task. Variation of the degree of self-generated movement knowledge as a function of the prevalence of delusional ideation in the normal population strongly supports the idea that corollary discharge deficits measured in schizophrenic patients in previous researches are not due to neuroleptic medication. We also propose that this difference in results between the perceptual and the motor tasks may point to a dissociation between corollary discharge for perception and corollary discharge for action.

  16. Corollary Discharge Failure in an Oculomotor Task Is Related to Delusional Ideation in Healthy Individuals

    PubMed Central

    Malassis, Raphaëlle; Del Cul, Antoine; Collins, Thérèse

    2015-01-01

    Predicting the sensory consequences of saccadic eye movements likely plays a crucial role in planning sequences of saccades and in maintaining visual stability despite saccade-caused retinal displacements. Deficits in predictive activity, such as that afforded by a corollary discharge signal, have been reported in patients with schizophrenia, and may lead to the emergence of positive symptoms, in particular delusions of control and auditory hallucinations. We examined whether a measure of delusional thinking in the general, non-clinical population correlated with measures of predictive activity in two oculomotor tasks. The double-step task measured predictive activity in motor control, and the in-flight displacement task measured predictive activity in trans-saccadic visual perception. Forty-one healthy adults performed both tasks and completed a questionnaire to assess delusional thinking. The quantitative measure of predictive activity we obtained correlated with the tendency towards delusional ideation, but only for the motor task, and not the perceptual task: Individuals with higher levels of delusional thinking showed less self-movement information use in the motor task. Variation of the degree of self-generated movement knowledge as a function of the prevalence of delusional ideation in the normal population strongly supports the idea that corollary discharge deficits measured in schizophrenic patients in previous researches are not due to neuroleptic medication. We also propose that this difference in results between the perceptual and the motor tasks may point to a dissociation between corollary discharge for perception and corollary discharge for action. PMID:26305115

  17. The Effects of a Secondary Task on Forward and Backward Walking in Parkinson Disease

    PubMed Central

    Hackney, Madeleine E.; Earhart, Gammon M.

    2009-01-01

    Background People with Parkinson disease (PD) often fall while multi-tasking or walking backward, unavoidable activities in daily living. Dual tasks involving cognitive demand during gait and unfamiliar motor skills like backward walking could identify those with fall risk, but dual tasking while walking backward has not been examined in those with PD, those who experience Freezing of Gait (FOG), or healthy older controls. Methods Seventy-eight people with PD (mean age = 65.1±9.5 years, Female: 28%) and 74 age- and sex-matched controls (mean age = 65.0±10.0 years, Female: 23%) participated. A computerized walkway measured gait velocity, stride length, swing and stance percent, cadence, heel to heel base of support, functional ambulation profile, and gait asymmetry during forward and backward walking with and without a secondary cognitive task. Results Direction and task effects on walking performance were similar between healthy controls and those with PD. However, those with PD were more affected than controls, and freezers were more affected than non-freezers, by backward walking and dual tasking. Walking backward seemed to impact gait more than dual tasking in those with PD, although the subset of freezers appeared particularly impacted by both challenges. Conclusion People with PD are impaired while performing complex motor and mental tasks simultaneously, which may put them at risk for falling. Those with FOG are more adversely affected by both motor and mental challenges than those without. Evaluation of backward walking while performing a secondary task might be an effective clinical tool to identify locomotor difficulties. PMID:19675121

  18. Lack of muscle contractile property changes at the time of perceived physical exhaustion suggests central mechanisms contributing to early motor task failure in patients with cancer-related fatigue.

    PubMed

    Kisiel-Sajewicz, Katarzyna; Davis, Mellar P; Siemionow, Vlodek; Seyidova-Khoshknabi, Dilara; Wyant, Alexandria; Walsh, Declan; Hou, Juliet; Yue, Guang H

    2012-09-01

    Fatigue is one of the most common symptoms reported by cancer survivors, and fatigue worsens when patients are engaged in muscle exertion, which results in early motor task failure. Central fatigue plays a significant role, more than muscle (peripheral) fatigue, in contributing to early task failure in cancer-related fatigue (CRF). The purpose of this study was to determine if muscle contractile property alterations (reflecting muscle fatigue) occurred at the end of a low-intensity muscle contraction to exhaustion and if these properties differed between those with CRF and healthy controls. Ten patients (aged 59.9±10.6 years, seven women) with advanced solid cancer and CRF and 12 age- and gender-matched healthy controls (aged 46.6±12.8 years, nine women) performed a sustained contraction of the right arm elbow flexion at 30% maximal level until exhaustion. Peak twitch force, time to peak twitch force, rate of peak twitch force development, and half relaxation time derived from electrical stimulation-evoked twitches were analyzed pre- and post-sustained contraction. CRF patients reported significantly greater fatigue as measured by the Brief Fatigue Inventory and failed the motor task earlier, 340±140 vs. 503±155 seconds in controls. All contractile property parameters did not change significantly in CRF but did change significantly in controls. CRF patients perceive physical exhaustion sooner during a motor fatigue task with minimal muscular fatigue. The observation supports that central fatigue is a more significant factor than peripheral fatigue in causing fatigue feelings and limits motor function in cancer survivors with fatigue symptoms. Copyright © 2012. Published by Elsevier Inc.

  19. Fine and gross motor skills: The effects on skill-focused dual-tasks.

    PubMed

    Raisbeck, Louisa D; Diekfuss, Jed A

    2015-10-01

    Dual-task methodology often directs participants' attention towards a gross motor skill involved in the execution of a skill, but researchers have not investigated the comparative effects of attention on fine motor skill tasks. Furthermore, there is limited information about participants' subjective perception of workload with respect to task performance. To examine this, the current study administered the NASA-Task Load Index following a simulated shooting dual-task. The task required participants to stand 15 feet from a projector screen which depicted virtual targets and fire a modified Glock 17 handgun equipped with an infrared laser. Participants performed the primary shooting task alone (control), or were also instructed to focus their attention on a gross motor skill relevant to task execution (gross skill-focused) and a fine motor skill relevant to task execution (fine skill-focused). Results revealed that workload was significantly greater during the fine skill-focused task for both skill levels, but performance was only affected for the lesser-skilled participants. Shooting performance for the lesser-skilled participants was greater during the gross skill-focused condition compared to the fine skill-focused condition. Correlational analyses also demonstrated a significant negative relationship between shooting performance and workload during the gross skill-focused task for the higher-skilled participants. A discussion of the relationship between skill type, workload, skill level, and performance in dual-task paradigms is presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Whole body heat stress increases motor cortical excitability and skill acquisition in humans

    PubMed Central

    Littmann, Andrew E.; Shields, Richard K.

    2015-01-01

    Objective Vigorous systemic exercise stimulates a cascade of molecular and cellular processes that enhance central nervous system (CNS) plasticity and performance. The influence of heat stress on CNS performance and learning is novel. We designed two experiments to determine whether passive heat stress 1) facilitated motor cortex excitability and 2) improved motor task acquisition compared to no heat stress. Methods Motor evoked potentials (MEPs) from the first dorsal interosseus (FDI) were collected before and after 30 minutes of heat stress at 73° C. A second cohort of subjects performed a motor learning task using the FDI either following heat or the no heat condition. Results Heat stress increased heart rate to 65% of age-predicted maximum. After heat, mean resting MEP amplitude increased 48% (P < 0.05). MEP stimulus-response amplitudes did not differ according to stimulus intensity. In the second experiment, heat stress caused a significant decrease in absolute and variable error (p < 0.05) during a novel movement task using the FDI. Conclusions Passive environmental heat stress 1) increases motor cortical excitability, and 2) enhances performance in a motor skill acquisition task. Significance Controlled heat stress may prime the CNS to enhance motor skill acquisition during rehabilitation. PMID:26616546

  1. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.

    PubMed

    DiGiovanna, Jack; Dominici, Nadia; Friedli, Lucia; Rigosa, Jacopo; Duis, Simone; Kreider, Julie; Beauparlant, Janine; van den Brand, Rubia; Schieppati, Marco; Micera, Silvestro; Courtine, Grégoire

    2016-10-05

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. We mapped the neuronal population responses in the hindlimb motor cortex to hindlimb kinematics and hindlimb muscle synergies across a spectrum of natural locomotion behaviors. Robust task-specific neuronal population responses revealed that the rat motor cortex displays similar modulation as other mammals during locomotion. However, the reduced motor cortex activity during more automated behaviors suggests a relationship between the degree of engagement and task complexity. This relationship emphasizes the importance of the behavioral procedure to engage the motor cortex during motor control studies, gait rehabilitation, and locomotor neuroprosthetic developments in rats. Copyright © 2016 the authors 0270-6474/16/3610440-16$15.00/0.

  2. Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context. Experiments and an Information-Theoretic Ambiguity Model

    PubMed Central

    Grau-Moya, Jordi; Ortega, Pedro A.; Braun, Daniel A.

    2016-01-01

    A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects’ choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects’ choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain. PMID:27124723

  3. Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context. Experiments and an Information-Theoretic Ambiguity Model.

    PubMed

    Grau-Moya, Jordi; Ortega, Pedro A; Braun, Daniel A

    2016-01-01

    A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects' choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects' choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain.

  4. Multiple Language Use Influences Oculomotor Task Performance: Neurophysiological Evidence of a Shared Substrate between Language and Motor Control

    PubMed Central

    Heidlmayr, Karin; Doré-Mazars, Karine; Aparicio, Xavier; Isel, Frédéric

    2016-01-01

    In the present electroencephalographical study, we asked to which extent executive control processes are shared by both the language and motor domain. The rationale was to examine whether executive control processes whose efficiency is reinforced by the frequent use of a second language can lead to a benefit in the control of eye movements, i.e. a non-linguistic activity. For this purpose, we administrated to 19 highly proficient late French-German bilingual participants and to a control group of 20 French monolingual participants an antisaccade task, i.e. a specific motor task involving control. In this task, an automatic saccade has to be suppressed while a voluntary eye movement in the opposite direction has to be carried out. Here, our main hypothesis is that an advantage in the antisaccade task should be observed in the bilinguals if some properties of the control processes are shared between linguistic and motor domains. ERP data revealed clear differences between bilinguals and monolinguals. Critically, we showed an increased N2 effect size in bilinguals, thought to reflect better efficiency to monitor conflict, combined with reduced effect sizes on markers reflecting inhibitory control, i.e. cue-locked positivity, the target-locked P3 and the saccade-locked presaccadic positivity (PSP). Moreover, effective connectivity analyses (dynamic causal modelling; DCM) on the neuronal source level indicated that bilinguals rely more strongly on ACC-driven control while monolinguals rely on PFC-driven control. Taken together, our combined ERP and effective connectivity findings may reflect a dynamic interplay between strengthened conflict monitoring, associated with subsequently more efficient inhibition in bilinguals. Finally, L2 proficiency and immersion experience constitute relevant factors of the language background that predict efficiency of inhibition. To conclude, the present study provided ERP and effective connectivity evidence for domain-general executive control involvement in handling multiple language use, leading to a control advantage in bilingualism. PMID:27832065

  5. Motor Planning and Control in Autism. A Kinematic Analysis of Preschool Children

    ERIC Educational Resources Information Center

    Forti, Sara; Valli, Angela; Perego, Paolo; Nobile, Maria; Crippa, Alessandro; Molteni, Massimo

    2011-01-01

    Kinematic recordings in a reach and drop task were compared between 12 preschool children with autism without mental retardation and 12 gender and age-matched normally developing children. Our aim was to investigate whether motor anomalies in autism may depend more on a planning ability dysfunction or on a motor control deficit. Planning and…

  6. Classification of EEG signals to identify variations in attention during motor task execution.

    PubMed

    Aliakbaryhosseinabadi, Susan; Kamavuako, Ernest Nlandu; Jiang, Ning; Farina, Dario; Mrachacz-Kersting, Natalie

    2017-06-01

    Brain-computer interface (BCI) systems in neuro-rehabilitation use brain signals to control external devices. User status such as attention affects BCI performance; thus detecting the user's attention drift due to internal or external factors is essential for high detection accuracy. An auditory oddball task was applied to divert the users' attention during a simple ankle dorsiflexion movement. Electroencephalogram signals were recorded from eighteen channels. Temporal and time-frequency features were projected to a lower dimension space and used to analyze the effect of two attention levels on motor tasks in each participant. Then, a global feature distribution was constructed with the projected time-frequency features of all participants from all channels and applied for attention classification during motor movement execution. Time-frequency features led to significantly better classification results with respect to the temporal features, particularly for electrodes located over the motor cortex. Motor cortex channels had a higher accuracy in comparison to other channels in the global discrimination of attention level. Previous methods have used the attention to a task to drive external devices, such as the P300 speller. However, here we focus for the first time on the effect of attention drift while performing a motor task. It is possible to explore user's attention variation when performing motor tasks in synchronous BCI systems with time-frequency features. This is the first step towards an adaptive real-time BCI with an integrated function to reveal attention shifts from the motor task. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Motor-sensory confluence in tactile perception.

    PubMed

    Saig, Avraham; Gordon, Goren; Assa, Eldad; Arieli, Amos; Ahissar, Ehud

    2012-10-03

    Perception involves motor control of sensory organs. However, the dynamics underlying emergence of perception from motor-sensory interactions are not yet known. Two extreme possibilities are as follows: (1) motor and sensory signals interact within an open-loop scheme in which motor signals determine sensory sampling but are not affected by sensory processing and (2) motor and sensory signals are affected by each other within a closed-loop scheme. We studied the scheme of motor-sensory interactions in humans using a novel object localization task that enabled monitoring the relevant overt motor and sensory variables. We found that motor variables were dynamically controlled within each perceptual trial, such that they gradually converged to steady values. Training on this task resulted in improvement in perceptual acuity, which was achieved solely by changes in motor variables, without any change in the acuity of sensory readout. The within-trial dynamics is captured by a hierarchical closed-loop model in which lower loops actively maintain constant sensory coding, and higher loops maintain constant sensory update flow. These findings demonstrate interchangeability of motor and sensory variables in perception, motor convergence during perception, and a consistent hierarchical closed-loop perceptual model.

  8. Effect of divided attention on gait in subjects with and without cognitive impairment.

    PubMed

    Pettersson, Anna F; Olsson, Elisabeth; Wahlund, Lars-Olof

    2007-03-01

    The aim of this study was to investigate the influence of cognition on motor function using 2 simple everyday tasks, talking and walking, in younger subjects with Alzheimer's disease and mild cognitive impairment. A second aim was to evaluate reliability for the dual-task test Talking While Walking. Walking speed during single and dual task and time change between single and dual task were compared between groups. The test procedure was repeated after 1 week. Subjects with AD had lower walking speed and greater time change between single and dual task compared with healthy controls. Reliability for Talking While Walking was very good. The results show that motor function in combination with a cognitive task, as well as motor function alone, influences subjects with Alzheimer's disease in a negative way and that decreased walking speed during single- and dual-task performance may be an early symptom in Alzheimer's disease.

  9. It's how you get there: walking down a virtual alley activates premotor and parietal areas.

    PubMed

    Wagner, Johanna; Solis-Escalante, Teodoro; Scherer, Reinhold; Neuper, Christa; Müller-Putz, Gernot

    2014-01-01

    Voluntary drive is crucial for motor learning, therefore we are interested in the role that motor planning plays in gait movements. In this study we examined the impact of an interactive Virtual Environment (VE) feedback task on the EEG patterns during robot assisted walking. We compared walking in the VE modality to two control conditions: walking with a visual attention paradigm, in which visual stimuli were unrelated to the motor task; and walking with mirror feedback, in which participants observed their own movements. Eleven healthy participants were considered. Application of independent component analysis to the EEG revealed three independent component clusters in premotor and parietal areas showing increased activity during walking with the adaptive VE training paradigm compared to the control conditions. During the interactive VE walking task spectral power in frequency ranges 8-12, 15-20, and 23-40 Hz was significantly (p ≤ 0.05) decreased. This power decrease is interpreted as a correlate of an active cortical area. Furthermore activity in the premotor cortex revealed gait cycle related modulations significantly different (p ≤ 0.05) from baseline in the frequency range 23-40 Hz during walking. These modulations were significantly (p ≤ 0.05) reduced depending on gait cycle phases in the interactive VE walking task compared to the control conditions. We demonstrate that premotor and parietal areas show increased activity during walking with the adaptive VE training paradigm, when compared to walking with mirror- and movement unrelated feedback. Previous research has related a premotor-parietal network to motor planning and motor intention. We argue that movement related interactive feedback enhances motor planning and motor intention. We hypothesize that this might improve gait recovery during rehabilitation.

  10. Characterization of fine motor development: dynamic analysis of children's drawing movements.

    PubMed

    Lin, Qiushi; Luo, Jianfei; Wu, Zhongcheng; Shen, Fei; Sun, Zengwu

    2015-04-01

    In this study, we investigated children's fine motor development by analyzing drawing trajectories, kinematics and kinetics. Straight lines drawing task and circles drawing task were performed by using a force sensitive tablet. Forty right-handed and Chinese mother-tongue students aged 6-12, attending classes from grade 1 to 5, were engaged in the experiment. Three spatial parameters, namely cumulative trace length, vector length of straight line and vertical diameter of circle were determined. Drawing duration, mean drawing velocity, and number of peaks in stroke velocity profile (NPV) were derived as kinematic parameters. Besides mean normal force, two kinetic indices were proposed: normalized force angle regulation (NFR) and variation of fine motor control (VFC) for circles drawing task. The maturation and automation of fine motor ability were reflected by increased drawing velocity, reduced drawing duration, NPV and NFR, with decreased VFC in circles drawing task. Grade and task main effects as well as significant correlations between age and parameters suggest that factors such as schooling, age and task should be considered in the assessment of fine motor skills. Compared with kinematic parameters, findings of NFR and VFC revealed that kinetics is another important perspective in the analysis of fine motor movement. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Investigating neural efficiency of elite karate athletes during a mental arithmetic task using EEG.

    PubMed

    Duru, Adil Deniz; Assem, Moataz

    2018-02-01

    Neural efficiency is proposed as one of the neural mechanisms underlying elite athletic performances. Previous sports studies examined neural efficiency using tasks that involve motor functions. In this study we investigate the extent of neural efficiency beyond motor tasks by using a mental subtraction task. A group of elite karate athletes are compared to a matched group of non-athletes. Electroencephalogram is used to measure cognitive dynamics during resting and increased mental workload periods. Mainly posterior alpha band power of the karate players was found to be higher than control subjects under both tasks. Moreover, event related synchronization/desynchronization has been computed to investigate the neural efficiency hypothesis among subjects. Finally, this study is the first study to examine neural efficiency related to a cognitive task, not a motor task, in elite karate players using ERD/ERS analysis. The results suggest that the effect of neural efficiency in the brain is global rather than local and thus might be contributing to the elite athletic performances. Also the results are in line with the neural efficiency hypothesis tested for motor performance studies.

  12. Two-photon imaging of neuronal activity in motor cortex of marmosets during upper-limb movement tasks.

    PubMed

    Ebina, Teppei; Masamizu, Yoshito; Tanaka, Yasuhiro R; Watakabe, Akiya; Hirakawa, Reiko; Hirayama, Yuka; Hira, Riichiro; Terada, Shin-Ichiro; Koketsu, Daisuke; Hikosaka, Kazuo; Mizukami, Hiroaki; Nambu, Atsushi; Sasaki, Erika; Yamamori, Tetsuo; Matsuzaki, Masanori

    2018-05-14

    Two-photon imaging in behaving animals has revealed neuronal activities related to behavioral and cognitive function at single-cell resolution. However, marmosets have posed a challenge due to limited success in training on motor tasks. Here we report the development of protocols to train head-fixed common marmosets to perform upper-limb movement tasks and simultaneously perform two-photon imaging. After 2-5 months of training sessions, head-fixed marmosets can control a manipulandum to move a cursor to a target on a screen. We conduct two-photon calcium imaging of layer 2/3 neurons in the motor cortex during this motor task performance, and detect task-relevant activity from multiple neurons at cellular and subcellular resolutions. In a two-target reaching task, some neurons show direction-selective activity over the training days. In a short-term force-field adaptation task, some neurons change their activity when the force field is on. Two-photon calcium imaging in behaving marmosets may become a fundamental technique for determining the spatial organization of the cortical dynamics underlying action and cognition.

  13. Long-Term Stability of Motor Cortical Activity: Implications for Brain Machine Interfaces and Optimal Feedback Control.

    PubMed

    Flint, Robert D; Scheid, Michael R; Wright, Zachary A; Solla, Sara A; Slutzky, Marc W

    2016-03-23

    The human motor system is capable of remarkably precise control of movements--consider the skill of professional baseball pitchers or surgeons. This precise control relies upon stable representations of movements in the brain. Here, we investigated the stability of cortical activity at multiple spatial and temporal scales by recording local field potentials (LFPs) and action potentials (multiunit spikes, MSPs) while two monkeys controlled a cursor either with their hand or directly from the brain using a brain-machine interface. LFPs and some MSPs were remarkably stable over time periods ranging from 3 d to over 3 years; overall, LFPs were significantly more stable than spikes. We then assessed whether the stability of all neural activity, or just a subset of activity, was necessary to achieve stable behavior. We showed that projections of neural activity into the subspace relevant to the task (the "task-relevant space") were significantly more stable than were projections into the task-irrelevant (or "task-null") space. This provides cortical evidence in support of the minimum intervention principle, which proposes that optimal feedback control (OFC) allows the brain to tightly control only activity in the task-relevant space while allowing activity in the task-irrelevant space to vary substantially from trial to trial. We found that the brain appears capable of maintaining stable movement representations for extremely long periods of time, particularly so for neural activity in the task-relevant space, which agrees with OFC predictions. It is unknown whether cortical signals are stable for more than a few weeks. Here, we demonstrate that motor cortical signals can exhibit high stability over several years. This result is particularly important to brain-machine interfaces because it could enable stable performance with infrequent recalibration. Although we can maintain movement accuracy over time, movement components that are unrelated to the goals of a task (such as elbow position during reaching) often vary from trial to trial. This is consistent with the minimum intervention principle of optimal feedback control. We provide evidence that the motor cortex acts according to this principle: cortical activity is more stable in the task-relevant space and more variable in the task-irrelevant space. Copyright © 2016 the authors 0270-6474/16/363623-10$15.00/0.

  14. Role of cerebellum in learning postural tasks.

    PubMed

    Ioffe, M E; Chernikova, L A; Ustinova, K I

    2007-01-01

    For a long time, the cerebellum has been known to be a structure related to posture and equilibrium control. According to the anatomic structure of inputs and internal structure of the cerebellum, its role in learning was theoretically reasoned and experimentally proved. The hypothesis of an inverse internal model based on feedback-error learning mechanism combines feedforward control by the cerebellum and feedback control by the cerebral motor cortex. The cerebellar cortex is suggested to acquire internal models of the body and objects in the external world. During learning of a new tool the motor cortex receives feedback from the realized movement while the cerebellum produces only feedforward command. To realize a desired movement without feedback of the realized movement, the cerebellum needs to form an inverse model of the hand/arm system. This suggestion was supported by FMRi data. The role of cerebellum in learning new postural tasks mainly concerns reorganization of natural synergies. A learned postural pattern in dogs has been shown to be disturbed after lesions of the cerebral motor cortex or cerebellar nuclei. In humans, learning voluntary control of center of pressure position is greatly disturbed after cerebellar lesions. However, motor cortex and basal ganglia are also involved in the feedback learning postural tasks.

  15. Sensori-Motor Learning with Movement Sonification: Perspectives from Recent Interdisciplinary Studies.

    PubMed

    Bevilacqua, Frédéric; Boyer, Eric O; Françoise, Jules; Houix, Olivier; Susini, Patrick; Roby-Brami, Agnès; Hanneton, Sylvain

    2016-01-01

    This article reports on an interdisciplinary research project on movement sonification for sensori-motor learning. First, we describe different research fields which have contributed to movement sonification, from music technology including gesture-controlled sound synthesis, sonic interaction design, to research on sensori-motor learning with auditory-feedback. In particular, we propose to distinguish between sound-oriented tasks and movement-oriented tasks in experiments involving interactive sound feedback. We describe several research questions and recently published results on movement control, learning and perception. In particular, we studied the effect of the auditory feedback on movements considering several cases: from experiments on pointing and visuo-motor tracking to more complex tasks where interactive sound feedback can guide movements, or cases of sensory substitution where the auditory feedback can inform on object shapes. We also developed specific methodologies and technologies for designing the sonic feedback and movement sonification. We conclude with a discussion on key future research challenges in sensori-motor learning with movement sonification. We also point out toward promising applications such as rehabilitation, sport training or product design.

  16. Motor Recovery After Subcortical Stroke Depends on Modulation of Extant Motor Networks.

    PubMed

    Sharma, Nikhil; Baron, Jean-Claude

    2015-01-01

    Stroke is the leading cause of long-term disability. Functional imaging studies report widespread changes in movement-related cortical networks after stroke. Whether these are a result of stroke-specific cognitive processes or reflect modulation of existing movement-related networks is unknown. Understanding this distinction is critical in establishing more effective restorative therapies after stroke. Using multivariate analysis (tensor-independent component analysis - TICA), we map the neural networks involved during motor imagery (MI) and executed movement (EM) in subcortical stroke patients and age-matched controls. Twenty subcortical stroke patients and 17 age-matched controls were recruited. They were screened for their ability to carry out MI (Chaotic MI Assessment). The fMRI task was a right-hand finger-thumb opposition sequence (auditory-paced 1 Hz; 2, 3, 4, 5, 2…). Two separate runs were acquired (MI and rest and EM and rest; block design). There was no distinction between groups or tasks until the last stage of analysis, which allowed TICA to identify independent components (ICs) that were common or distinct to each group or task with no prior assumptions. TICA defined 28 ICs. ICs representing artifacts were excluded. ICs were only included if the subject scores were significant (for either EM or MI). Seven ICs remained that involved the primary and secondary motor networks. All ICs were shared between the stroke and age-matched controls. Five ICs were common to both tasks and three were exclusive to EM. Two ICs were related to motor recovery and one with time since stroke onset, but all were shared with age-matched controls. No IC was exclusive to stroke patients. We report that the cortical networks in stroke patients that relate to recovery of motor function represent modulation of existing cortical networks present in age-matched controls. The absence of cortical networks specific to stroke patients suggests that motor adaptation and other potential confounders (e.g., effort and additional muscle use) are not responsible for the changes in the cortical networks reported after stroke. This highlights that recovery of motor function after subcortical stroke involves preexisting cortical networks that could help identify more effective restorative therapies.

  17. Motor loop dysfunction causes impaired cognitive sequencing in patients suffering from Parkinson's disease.

    PubMed

    Schönberger, Anna R; Hagelweide, Klara; Pelzer, Esther A; Fink, Gereon R; Schubotz, Ricarda I

    2015-10-01

    Cognitive impairment in Parkinson's disease (PD) is often attributed to dopamine deficiency in the prefrontal-basal ganglia-thalamo-cortical loops. Although recent studies point to a close interplay between motor and cognitive abilities in PD, the so-called "motor loop" connecting supplementary motor area (SMA) and putamen has been considered solely with regard to the patients' motor impairment. Our study challenges this view by testing patients with the serial prediction task (SPT), a cognitive task that requires participants to predict stimulus sequences and particularly engages premotor sites of the motor loop. We hypothesised that affection of the motor loop causes impaired SPT performance, especially when the internal sequence representation is challenged by suspension of external stimuli. As shown for motor tasks, we further expected this impairment to be compensated by hyperactivity of the lateral premotor cortex (PM). We tested 16 male PD patients ON and OFF dopaminergic medication and 16 male age-matched healthy controls in an functional Magnetic Resonance Imaging study. All subjects performed two versions of the SPT: one with on-going sequences (SPT0), and one with sequences containing non-informative wildcards (SPT+) increasing the demands on mnemonic sequence representation. Patients ON (compared to controls) revealed an impaired performance coming along with hypoactivity of SMA and putamen. Patients OFF compared to ON medication, while showing poorer performance, exhibited a significantly increased PM activity for SPT+ vs. SPT0. Furthermore, patients' performance positively co-varied with PM activity, corroborating a compensatory account. Our data reveal a contribution of the motor loop to cognitive impairment in PD, and suggest a close interplay of SMA and PM beyond motor control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Motor skills in Czech children with attention-deficit/hyperactivity disorder and their neurotypical counterparts.

    PubMed

    Scharoun, S M; Bryden, P J; Otipkova, Z; Musalek, M; Lejcarova, A

    2013-11-01

    Attention-deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed neurobehavioural disorder. Characterized by recurring problems with impulsiveness and inattention in combination with hyperactivity, motor impairments have also been well documented in the literature. The aim of this study was to compare the fine and gross motor skills of male and female children with ADHD and their neurotypical counterparts within seven skill assessments. This included three fine motor tasks: (1) spiral tracing, (2) dot filling, (3) tweezers and beads; and four gross motor tasks: (1) twistbox, (2) foot tapping, (3) small plate finger tapping, and (4) large plate finger tapping. It was hypothesized that children with ADHD would display poorer motor skills in comparison to neurotypical controls in both fine and gross motor assessments. However, statistically significant differences between the groups only emerged in four of the seven tasks (spiral tracing, dot filling, tweezers and beads and foot tapping). In line with previous findings, the complexity underlying upper limb tasks solidified the divide in performance between children with ADHD and their neurotypical counterparts. In light of similar research, impairments in lower limb motor skill were also observed. Future research is required to further delineate trends in motor difficulties in ADHD, while further investigating the underlying mechanisms of impairment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment

    PubMed Central

    Mantilla, Carlos B.; Seven, Yasin B.; Sieck, Gary C.

    2014-01-01

    Motor units are the final element of neuromotor control. In manner analogous to the organization of neuromotor control in other skeletal muscles, diaphragm motor units comprise phrenic motoneurons located in the cervical spinal cord that innervate the diaphragm muscle, the main inspiratory muscle in mammals. Diaphragm motor units play a primary role in sustaining ventilation, but are also active in other non-ventilatory behaviors, including coughing, sneezing, vomiting, defecation and parturition. Diaphragm muscle fibers comprise all fiber types. Thus, diaphragm motor units display substantial differences in contractile and fatigue properties, but importantly properties of the motoneuron and muscle fibers within a motor unit are matched. As in other skeletal muscles, diaphragm motor units are recruited in order such that motor units that display greater fatigue resistance are recruited earlier and more often than more fatigable motor units. The properties of the motor unit population are critical determinants of the function of a skeletal muscle across the range of possible motor tasks. Accordingly, fatigue-resistant motor units are sufficient to generate the forces necessary for ventilatory behaviors whereas more fatigable units are only activated during expulsive behaviors important for airway clearance. Neuromotor control of diaphragm motor units may reflect selective inputs from distinct pattern generators distributed according to the motor unit properties necessary to accomplish these different motor tasks. In contrast, widely-distributed inputs to phrenic motoneurons from various pattern generators (e.g., for breathing, coughing or vocalization) would dictate recruitment order based on intrinsic electrophysiological properties. PMID:24746055

  20. Synergistic Effects on the Elderly People's Motor Control by Wearable Skin-Stretch Device Combined with Haptic Joystick

    PubMed Central

    Yoon, Han U.; Anil Kumar, Namita; Hur, Pilwon

    2017-01-01

    Cutaneous sensory feedback can be used to provide additional sensory cues to a person performing a motor task where vision is a dominant feedback signal. A haptic joystick has been widely used to guide a user by providing force feedback. However, the benefit of providing force feedback is still debatable due to performance dependency on factors such as the user's skill-level, task difficulty. Meanwhile, recent studies have shown the feasibility of improving a motor task performance by providing skin-stretch feedback. Therefore, a combination of two aforementioned feedback types is deemed to be promising to promote synergistic effects to consistently improve the person's motor performance. In this study, we aimed at identifying the effect of the combined haptic and skin-stretch feedbacks on the aged person's driving motor performance. For the experiment, 15 healthy elderly subjects (age 72.8 ± 6.6 years) were recruited and were instructed to drive a virtual power-wheelchair through four different courses with obstacles. Four augmented sensory feedback conditions were tested: no feedback, force feedback, skin-stretch feedback, and a combination of both force and skin-stretch feedbacks. While the haptic force was provided to the hand by the joystick, the skin-stretch was provided to the steering forearm by a custom-designed wearable skin-stretch device. We tested two hypotheses: (i) an elderly individual's motor control would benefit from receiving information about a desired trajectory from multiple sensory feedback sources, and (ii) the benefit does not depend on task difficulty. Various metrics related to skills and safety were used to evaluate the control performance. Repeated measure ANOVA was performed for those metrics with two factors: task scenario and the type of the augmented sensory feedback. The results revealed that elderly subjects' control performance significantly improved when the combined feedback of both haptic force and skin-stretch feedback was applied. The proposed approach suggest the feasibility to improve people's task performance by the synergistic effects of multiple augmented sensory feedback modalities. PMID:28690514

  1. Verbal monitoring in Parkinson’s disease: A comparison between internal and external monitoring

    PubMed Central

    Mertens, Jolien; Mariën, Peter; Santens, Patrick; Pickut, Barbara A.; Hartsuiker, Robert J.

    2017-01-01

    Patients with Parkinson’s disease (PD) display a variety of impairments in motor and non-motor language processes; speech is decreased on motor aspects such as amplitude, prosody and speed and on linguistic aspects including grammar and fluency. Here we investigated whether verbal monitoring is impaired and what the relative contributions of the internal and external monitoring route are on verbal monitoring in patients with PD relative to controls. Furthermore, the data were used to investigate whether internal monitoring performance could be predicted by internal speech perception tasks, as perception based monitoring theories assume. Performance of 18 patients with Parkinson’s disease was measured on two cognitive performance tasks and a battery of 11 linguistic tasks, including tasks that measured performance on internal and external monitoring. Results were compared with those of 16 age-matched healthy controls. PD patients and controls generally performed similarly on the linguistic and monitoring measures. However, we observed qualitative differences in the effects of noise masking on monitoring and disfluencies and in the extent to which the linguistic tasks predicted monitoring behavior. We suggest that the patients differ from healthy subjects in their recruitment of monitoring channels. PMID:28832595

  2. Potential interactions among linguistic, autonomic, and motor factors in speech.

    PubMed

    Kleinow, Jennifer; Smith, Anne

    2006-05-01

    Though anecdotal reports link certain speech disorders to increases in autonomic arousal, few studies have described the relationship between arousal and speech processes. Additionally, it is unclear how increases in arousal may interact with other cognitive-linguistic processes to affect speech motor control. In this experiment we examine potential interactions between autonomic arousal, linguistic processing, and speech motor coordination in adults and children. Autonomic responses (heart rate, finger pulse volume, tonic skin conductance, and phasic skin conductance) were recorded simultaneously with upper and lower lip movements during speech. The lip aperture variability (LA variability index) across multiple repetitions of sentences that varied in length and syntactic complexity was calculated under low- and high-arousal conditions. High arousal conditions were elicited by performance of the Stroop color word task. Children had significantly higher lip aperture variability index values across all speaking tasks, indicating more variable speech motor coordination. Increases in syntactic complexity and utterance length were associated with increases in speech motor coordination variability in both speaker groups. There was a significant effect of Stroop task, which produced increases in autonomic arousal and increased speech motor variability in both adults and children. These results provide novel evidence that high arousal levels can influence speech motor control in both adults and children. (c) 2006 Wiley Periodicals, Inc.

  3. Exploring the impact of visual and movement based priming on a motor intervention in the acute phase post-stroke in persons with severe hemiparesis of the upper extremity.

    PubMed

    Patel, Jigna; Qiu, Qinyin; Yarossi, Mathew; Merians, Alma; Massood, Supriya; Tunik, Eugene; Adamovich, Sergei; Fluet, Gerard

    2017-07-01

    Explore the potential benefits of using priming methods prior to an active hand task in the acute phase post-stroke in persons with severe upper extremity hemiparesis. Five individuals were trained using priming techniques including virtual reality (VR) based visual mirror feedback and contralaterally controlled passive movement strategies prior to training with an active pinch force modulation task. Clinical, kinetic, and neurophysiological measurements were taken pre and post the training period. Clinical measures were taken at six months post training. The two priming simulations and active training were well tolerated early after stroke. Priming effects were suggested by increased maximal pinch force immediately after visual and movement based priming. Despite having no clinically observable movement distally, the subjects were able to volitionally coordinate isometric force and muscle activity (EMG) in a pinch tracing task. The Root Mean Square Error (RMSE) of force during the pinch trace task gradually decreased over the training period suggesting learning may have occurred. Changes in motor cortical neurophysiology were seen in the unaffected hemisphere using Transcranial Magnetic Stimulation (TMS) mapping. Significant improvements in motor recovery as measured by the Action Research Arm Test (ARAT) and the Upper Extremity Fugl Meyer Assessment (UEFMA) were demonstrated at six months post training by three of the five subjects. This study suggests that an early hand-based intervention using visual and movement based priming activities and a scaled motor task allows participation by persons without the motor control required for traditionally presented rehabilitation and testing. Implications for Rehabilitation Rehabilitation of individuals with severely paretic upper extremities after stroke is challenging due to limited movement capacity and few options for therapeutic training. Long-term functional recovery of the arm after stroke depends on early return of active hand control, establishing a need for acute training methods focused distally. This study demonstrates the feasibility of an early hand-based intervention using virtual reality based priming and scaled motor activities which can allow for participation by persons without the motor control required for traditionally presented rehabilitation and testing.

  4. Automatic Online Motor Control Is Intact in Parkinson's Disease With and Without Perceptual Awareness.

    PubMed

    Merritt, Kate E; Seergobin, Ken N; Mendonça, Daniel A; Jenkins, Mary E; Goodale, Melvyn A; MacDonald, Penny A

    2017-01-01

    In the double-step paradigm, healthy human participants automatically correct reaching movements when targets are displaced. Motor deficits are prominent in Parkinson's disease (PD) patients. In the lone investigation of online motor correction in PD using the double-step task, a recent study found that PD patients performed unconscious adjustments appropriately but seemed impaired for consciously-perceived modifications. Conscious perception of target movement was achieved by linking displacement to movement onset. PD-related bradykinesia disproportionately prolonged preparatory phases for movements to original target locations for patients, potentially accounting for deficits. Eliminating this confound in a double-step task, we evaluated the effect of conscious awareness of trajectory change on online motor corrections in PD. On and off dopaminergic therapy, PD patients ( n = 14) and healthy controls ( n = 14) reached to peripheral visual targets that remained stationary or unexpectedly moved during an initial saccade. Saccade latencies in PD are comparable to controls'. Hence, target displacements occurred at equal times across groups. Target jump size affected conscious awareness, confirmed in an independent target displacement judgment task. Small jumps were subliminal, but large target displacements were consciously perceived. Contrary to the previous result, PD patients performed online motor corrections normally and automatically, irrespective of conscious perception. Patients evidenced equivalent movement durations for jump and stay trials, and trajectories for patients and controls were identical, irrespective of conscious perception. Dopaminergic therapy had no effect on performance. In summary, online motor control is intact in PD, unaffected by conscious perceptual awareness. The basal ganglia are not implicated in online corrective responses.

  5. The impact of threat and cognitive stress on speech motor control in people who stutter.

    PubMed

    Lieshout, Pascal van; Ben-David, Boaz; Lipski, Melinda; Namasivayam, Aravind

    2014-06-01

    In the present study, an Emotional Stroop and Classical Stroop task were used to separate the effect of threat content and cognitive stress from the phonetic features of words on motor preparation and execution processes. A group of 10 people who stutter (PWS) and 10 matched people who do not stutter (PNS) repeated colour names for threat content words and neutral words, as well as for traditional Stroop stimuli. Data collection included speech acoustics and movement data from upper lip and lower lip using 3D EMA. PWS in both tasks were slower to respond and showed smaller upper lip movement ranges than PNS. For the Emotional Stroop task only, PWS were found to show larger inter-lip phase differences compared to PNS. General threat words were executed with faster lower lip movements (larger range and shorter duration) in both groups, but only PWS showed a change in upper lip movements. For stutter specific threat words, both groups showed a more variable lip coordination pattern, but only PWS showed a delay in reaction time compared to neutral words. Individual stuttered words showed no effects. Both groups showed a classical Stroop interference effect in reaction time but no changes in motor variables. This study shows differential motor responses in PWS compared to controls for specific threat words. Cognitive stress was not found to affect stuttering individuals differently than controls or that its impact spreads to motor execution processes. After reading this article, the reader will be able to: (1) discuss the importance of understanding how threat content influences speech motor control in people who stutter and non-stuttering speakers; (2) discuss the need to use tasks like the Emotional Stroop and Regular Stroop to separate phonetic (word-bound) based impact on fluency from other factors in people who stutter; and (3) describe the role of anxiety and cognitive stress on speech motor processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Walking execution is not affected by divided attention in patients with multiple sclerosis with no disability, but there is a motor planning impairment.

    PubMed

    Nogueira, Leandro Alberto Calazans; Santos, Luciano Teixeira Dos; Sabino, Pollyane Galinari; Alvarenga, Regina Maria Papais; Thuler, Luiz Claudio Santos

    2013-08-01

    We analysed the cognitive influence on walking in multiple sclerosis (MS) patients, in the absence of clinical disability. A case-control study was conducted with 12 MS patients with no disability and 12 matched healthy controls. Subjects were referred for completion a timed walk test of 10 m and a 3D-kinematic analysis. Participants were instructed to walk at a comfortable speed in a dual-task (arithmetic task) condition, and motor planning was measured by mental chronometry. Scores of walking speed and cadence showed no statistically significant differences between the groups in the three conditions. The dual-task condition showed an increase in the double support duration in both groups. Motor imagery analysis showed statistically significant differences between real and imagined walking in patients. MS patients with no disability did not show any influence of divided attention on walking execution. However, motor planning was overestimated as compared with real walking.

  7. Global models: Robot sensing, control, and sensory-motor skills

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S.

    1989-01-01

    Robotics research has begun to address the modeling and implementation of a wide variety of unstructured tasks. Examples include automated navigation, platform servicing, custom fabrication and repair, deployment and recovery, and science exploration. Such tasks are poorly described at onset; the workspace layout is partially unfamiliar, and the task control sequence is only qualitatively characterized. The robot must model the workspace, plan detailed physical actions from qualitative goals, and adapt its instantaneous control regimes to unpredicted events. Developing robust representations and computational approaches for these sensing, planning, and control functions is a major challenge. The underlying domain constraints are very general, and seem to offer little guidance for well-bounded approximation of object shape and motion, manipulation postures and trajectories, and the like. This generalized modeling problem is discussed, with an emphasis on the role of sensing. It is also discussed that unstructured tasks often have, in fact, a high degree of underlying physical symmetry, and such implicit knowledge should be drawn on to model task performance strategies in a methodological fashion. A group-theoretic decomposition of the workspace organization, task goals, and their admissible interactions are proposed. This group-mechanical approach to task representation helps to clarify the functional interplay of perception and control, in essence, describing what perception is specifically for, versus how it is generically modeled. One also gains insight how perception might logically evolve in response to needs of more complex motor skills. It is discussed why, of the many solutions that are often mathematically admissible to a given sensory motor-coordination problem, one may be preferred over others.

  8. Electrifying the motor engram: effects of tDCS on motor learning and control

    PubMed Central

    de Xivry, Jean-Jacques Orban; Shadmehr, Reza

    2014-01-01

    Learning to control our movements accompanies neuroplasticity of motor areas of the brain. The mechanisms of neuroplasticity are diverse and produce what is referred to as the motor engram, i.e. the neural trace of the motor memory. Transcranial direct current stimulation (tDCS) alters the neural and behavioral correlates of motor learning, but its precise influence on the motor engram is unknown. In this review, we summarize the effects of tDCS on neural activity and suggest a few key principles: 1) firing rates are increased by anodal polarization and decreased by cathodal polarization, 2) anodal polarization strengthens newly formed associations, and 3) polarization modulates the memory of new/preferred firing patterns. With these principles in mind, we review the effects of tDCS on motor control, motor learning, and clinical applications. The increased spontaneous and evoked firing rates may account for the modulation of dexterity in non-learning tasks by tDCS. The facilitation of new association may account for the effect of tDCS on learning in sequence tasks while the ability of tDCS to strengthen memories of new firing patterns may underlie the effect of tDCS on consolidation of skills. We then describe the mechanisms of neuroplasticity of motor cortical areas and how they might be influenced by tDCS. We end with current challenges for the fields of brain stimulation and motor learning. PMID:25200178

  9. Electrifying the motor engram: effects of tDCS on motor learning and control.

    PubMed

    Orban de Xivry, Jean-Jacques; Shadmehr, Reza

    2014-11-01

    Learning to control our movements is accompanied by neuroplasticity of motor areas of the brain. The mechanisms of neuroplasticity are diverse and produce what is referred to as the motor engram, i.e., the neural trace of the motor memory. Transcranial direct current stimulation (tDCS) alters the neural and behavioral correlates of motor learning, but its precise influence on the motor engram is unknown. In this review, we summarize the effects of tDCS on neural activity and suggest a few key principles: (1) Firing rates are increased by anodal polarization and decreased by cathodal polarization, (2) anodal polarization strengthens newly formed associations, and (3) polarization modulates the memory of new/preferred firing patterns. With these principles in mind, we review the effects of tDCS on motor control, motor learning, and clinical applications. The increased spontaneous and evoked firing rates may account for the modulation of dexterity in non-learning tasks by tDCS. The facilitation of new association may account for the effect of tDCS on learning in sequence tasks while the ability of tDCS to strengthen memories of new firing patterns may underlie the effect of tDCS on consolidation of skills. We then describe the mechanisms of neuroplasticity of motor cortical areas and how they might be influenced by tDCS. We end with current challenges for the fields of brain stimulation and motor learning.

  10. Lateralized Motor Control Processes Determine Asymmetry of Interlimb Transfer

    PubMed Central

    Sainburg, Robert L.; Schaefer, Sydney Y.; Yadav, Vivek

    2016-01-01

    This experiment tested the hypothesis that interlimb transfer of motor performance depends on recruitment of motor control processes that are specialized to the hemisphere contralateral to the arm that is initially trained. Right-handed participants performed a single-joint task, in which reaches were targeted to 4 different distances. While the speed and accuracy was similar for both hands, the underlying control mechanisms used to vary movement speed with distance were systematically different between the arms: The amplitude of the initial acceleration profiles scaled greater with movement speed for the right-dominant arm, while the duration of the initial acceleration profile scaled greater with movement speed for the left-non-dominant arm. These two processes were previously shown to be differentially disrupted by left and right hemisphere damage, respectively. We now hypothesize that task practice with the right arm might reinforce left-hemisphere mechanisms that vary acceleration amplitude with distance, while practice with the left arm might reinforce right-hemisphere mechanisms that vary acceleration duration with distance. We thus predict that following right arm practice, the left arm should show increased contributions of acceleration amplitude to peak velocities, and following left arm practice, the right arm should show increased contributions of acceleration duration to peak velocities. Our findings support these predictions, indicating that asymmetry in interlimb transfer of motor performance, at least in the task used here, depends on recruitment of lateralized motor control processes. PMID:27491479

  11. Note on hand use in the manipulation of joysticks by rhesus monkeys (Macaca mulatta) and chimpanzees (Pan troglodytes)

    NASA Technical Reports Server (NTRS)

    Hopkins, William D.; Washburn, David A.; Rumbaugh, Duane M.

    1989-01-01

    MacNeilage et al. (1987) have proposed that nonhuman primate handedness may be contingent on the specific task requirements, with visual-spatial tasks yielding left-hand preferences and fine-motor tasks producing right-hand preferences. This study reports hand preferences in the manipulation of joysticks by 2 rhesus monkeys and 3 chimpanzees. Reach data were also collected for comparison with preference data for manipulation of the joystick. The data indicated that all 5 subjects demonstrated significant right-hand preferences in manipulating the joystick. In contrast, no significant hand preferences were found for the reach data. Reaction-time data also indicated that the right hand could perform a perceptual-motor task better than the left hand in all 5 subjects. Overall, the data indicate that reach tasks may not be sensitive enough measures to produce reliable hand preferences, whereas tasks that assess fine-motor control produce significant hand preferences.

  12. An examination of handedness and footedness in children with high functioning autism and Asperger syndrome.

    PubMed

    Markoulakis, R; Scharoun, S M; Bryden, P J; Fletcher, P C

    2012-10-01

    Motor control deficits have been documented in children with high functioning autism and Asperger syndrome (HFA/AS), but the extent to which these disorders affect the children's footedness must be delineated. Twelve typically developing (TD) children and 12 children with HFA/AS, ages 6-9 years, were recruited. Motor control skills were assessed through a variety of footedness tasks to determine location and nature of impairment, regarding motor dominance. Overall, greater inconsistencies in dominance arose in children with HFA/AS, through disparities in measures of preference. Results will have broader implications for understanding motor impairments in children with HFA/AS as determined by comparing performance on footedness tasks, as well as for the design of interventions to account for these deficits.

  13. The effect of amblyopia on fine motor skills in children.

    PubMed

    Webber, Ann L; Wood, Joanne M; Gole, Glen A; Brown, Brian

    2008-02-01

    In an investigation of the functional impact of amblyopia in children, the fine motor skills of amblyopes and age-matched control subjects were compared. The influence of visual factors that might predict any decrement in fine motor skills was also explored. Vision and fine motor skills were tested in a group of children (n = 82; mean age, 8.2 +/- 1.7 [SD] years) with amblyopia of different causes (infantile esotropia, n = 17; acquired strabismus, n = 28; anisometropia, n = 15; mixed, n = 13; and deprivation n = 9), and age-matched control children (n = 37; age 8.3 +/- 1.3 years). Visual motor control (VMC) and upper limb speed and dexterity (ULSD) items of the Bruininks-Oseretsky Test of Motor Proficiency were assessed, and logMAR visual acuity (VA) and Randot stereopsis were measured. Multiple regression models were used to identify the visual determinants of fine motor skills performance. Amblyopes performed significantly poorer than control subjects on 9 of 16 fine motor skills subitems and for the overall age-standardized scores for both VMC and ULSD items (P < 0.05). The effects were most evident on timed tasks. The etiology of amblyopia and level of binocular function significantly affected fine motor skill performance on both items; however, when examined in a multiple regression model that took into account the intercorrelation between visual characteristics, poorer fine motor skills performance was associated with strabismus (F(1,75) = 5.428; P = 0.022), but not with the level of binocular function, refractive error, or visual acuity in either eye. Fine motor skills were reduced in children with amblyopia, particularly those with strabismus, compared with control subjects. The deficits in motor performance were greatest on manual dexterity tasks requiring speed and accuracy.

  14. Handedness results from Complementary Hemispheric Dominance, not Global Hemispheric Dominance: Evidence from Mechanically Coupled Bilateral Movements.

    PubMed

    Woytowicz, Elizabeth J; Westlake, Kelly P; Whitall, Jill; Sainburg, Robert L

    2018-05-09

    Two contrasting views of handedness can be described as 1) complementary dominance, in which each hemisphere is specialized for different aspects of motor control, and 2) global dominance, in which the hemisphere contralateral to the dominant arm is specialized for all aspects of motor control. The present study sought to determine which motor lateralization hypothesis best predicts motor performance during common bilateral task of stabilizing an object (e.g. bread) with one hand while applying forces to the object (e.g. slicing) using the other hand. We designed an experimental equivalent of this task, performed in a virtual environment with the unseen arms supported by frictionless air-sleds. The hands were connected by a spring, and the task was to maintain the position of one hand, while moving the other hand to a target. Thus, the reaching hand was required to take account of the spring load to make smooth and accurate trajectories, while the stabilizer hand was required to impede the spring load to keep a constant position. Right-handed subjects performed two task sessions (right hand reach and left hand stabilize; left hand reach and right hand stabilize) with the order of the sessions counterbalanced between groups. Our results indicate a hand by task-component interaction, such that the right hand showed straighter reaching performance while the left showed more stable holding performance. These findings provide support for the complementary dominance hypothesis and suggest that the specializations of each cerebral hemisphere for impedance and dynamic control mechanisms are expressed during bilateral interactive tasks.

  15. Effects of Tongue Force Training on Orolingual Motor Cortical Representation

    PubMed Central

    Guggenmos, David J.; Barbay, Scott; Bethel-Brown, Crystal; Nudo, Randolph J.; Stanford, John A.

    2009-01-01

    Previous research has demonstrated that training rats in a skilled reaching condition will induce task-related changes in the caudal forelimb area of motor cortex. The purpose of the present study was to determine whether task-specific changes can be induced within the orofacial area of the motor cortex in rats. Specifically, we compared changes of the orofacial motor cortical representation in lick-trained rats to age-matched controls. For one month, six water-restricted Sprague-Dawley rats were trained to lick an isometric force-sensing disc at increasing forces for water reinforcement. The rats were trained daily for six minutes starting with forces of 1g, and increasing over the course of the month to 10, 15, 20, 25 and finally 30 g. One to three days following the last training session, the animals were subjected to a neurophysiological motor mapping procedure in which motor representations corresponding to the orofacial and adjacent areas were defined using intracortical microstimulation (ICMS) techniques. We found no statistical difference in the topographical representation of the control (mean = 2.03 mm2) vs. trained (1.87 mm2) rats. This result indicates that force training alone is insufficient to drive changes in the size of the cortical representation. We also recorded the minimum current threshold required to elicit a motor response at each site of microstimulation. We found that the lick-trained rats had a significantly lower average minimum threshold (29.1 ± 1.0 μA) for evoking movements related to the task compared to control rats (34.6 ± 1.1 μA). These results indicate that while tongue force training alone does not produce lasting changes in the size of the orofacial cortical motor representation, tongue force training decreases the current thresholds necessary for eliciting an ICMS-evoked motor response. PMID:19428638

  16. Mental chronometry and mental rotation abilities in stroke patients with different degrees of sensory deficit.

    PubMed

    Liepert, Joachim; Büsching, Imke; Sehle, Aida; Schoenfeld, Mircea Ariel

    2016-11-22

    Motor imagery is used for treatment of motor deficits after stroke. Clinical observations suggested that motor imagery abilities might be reduced in patients with severe sensory deficits. This study investigated the influence of somatosensory deficits on temporal (mental chronometry, MC) and spatial aspects of motor imagery abilities. Stroke patients (n = 70; <6 months after stroke) were subdivided into 3 groups according to their somatosensory functions. Group 1 (n = 31) had no sensory deficits, group 2 (n = 27) had a mild to moderate sensory impairment and group 3 (n = 12) had severe sensory deficits. Patients and a healthy age-matched control group (n = 23) participated in a mental chronometry task (Box and Block Test, BBT) and a mental rotation task (Hand Identification Test, HIT). MC abilities were expressed as a ratio (motor execution time-motor imagery time/motor execution time). MC for the affected hand was significantly impaired in group 3 in comparison to stroke patients of group 1 (p = 0.006), group 2 (p = 0.005) and healthy controls (p < 0.001). For the non-affected hand MC was similar across all groups. Stroke patients had a slower BBT motor execution than healthy controls (p < 0.001), and group 1 executed the task faster than group 3 (p = 0.002). The percentage of correct responses in the HIT was similar for all groups. Severe sensory deficits impair mental chronometry abilities but have no impact on mental rotation abilities. Future studies should explore whether the presence of severe sensory deficits in stroke patients reduces the benefit from motor imagery therapy.

  17. Whole body heat stress increases motor cortical excitability and skill acquisition in humans.

    PubMed

    Littmann, Andrew E; Shields, Richard K

    2016-02-01

    Vigorous systemic exercise stimulates a cascade of molecular and cellular processes that enhance central nervous system (CNS) plasticity and performance. The influence of heat stress on CNS performance and learning is novel. We designed two experiments to determine whether passive heat stress (1) facilitated motor cortex excitability and (2) improved motor task acquisition compared to no heat stress. Motor evoked potentials (MEPs) from the first dorsal interosseus (FDI) were collected before and after 30 min of heat stress at 73 °C. A second cohort of subjects performed a motor learning task using the FDI either following heat or the no heat condition. Heat stress increased heart rate to 65% of age-predicted maximum. After heat, mean resting MEP amplitude increased 48% (p<0.05). MEP stimulus-response amplitudes did not differ according to stimulus intensity. In the second experiment, heat stress caused a significant decrease in absolute and variable error (p<0.05) during a novel movement task using the FDI. Passive environmental heat stress (1) increases motor cortical excitability, and (2) enhances performance in a motor skill acquisition task. Controlled heat stress may prime the CNS to enhance motor skill acquisition during rehabilitation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Sequence-specific procedural learning deficits in children with specific language impairment.

    PubMed

    Hsu, Hsinjen Julie; Bishop, Dorothy V M

    2014-05-01

    This study tested the procedural deficit hypothesis of specific language impairment (SLI) by comparing children's performance in two motor procedural learning tasks and an implicit verbal sequence learning task. Participants were 7- to 11-year-old children with SLI (n = 48), typically developing age-matched children (n = 20) and younger typically developing children matched for receptive grammar (n = 28). In a serial reaction time task, the children with SLI performed at the same level as the grammar-matched children, but poorer than age-matched controls in learning motor sequences. When tested with a motor procedural learning task that did not involve learning sequential relationships between discrete elements (i.e. pursuit rotor), the children with SLI performed comparably with age-matched children and better than younger grammar-matched controls. In addition, poor implicit learning of word sequences in a verbal memory task (the Hebb effect) was found in the children with SLI. Together, these findings suggest that SLI might be characterized by deficits in learning sequence-specific information, rather than generally weak procedural learning. © 2014 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  19. Grip Force Control Is Dependent on Task Constraints in Children with and without Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Law, Sui-Heung; Lo, Sing Kai; Chow, Susanna; Cheing, Gladys L.Y.

    2011-01-01

    Excessive grip force (GF) is often found in children with developmental coordination disorder (DCD). However, their GF control may vary when task constraints are imposed upon their motor performance. This study aimed to investigate how their GF control changes in response to task demands, and to examine their tactile sensitivity. Twenty-one…

  20. Walking and talking: an investigation of cognitive-motor dual tasking in multiple sclerosis.

    PubMed

    Hamilton, F; Rochester, L; Paul, L; Rafferty, D; O'Leary, C P; Evans, J J

    2009-10-01

    Deficits in motor functioning, including walking, and in cognitive functions, including attention, are known to be prevalent in multiple sclerosis (MS), though little attention has been paid to how impairments in these areas of functioning interact. This study investigated the effects of performing a concurrent cognitive task when walking in people with MS. Level of task demand was manipulated to investigate whether this affected level of dual-task decrement. Eighteen participants with MS and 18 healthy controls took part. Participants completed walking and cognitive tasks under single- and dual-task conditions. Compared to healthy controls, MS participants showed greater decrements in performance under dual-task conditions in cognitive task performance, walking speed and swing time variability. In the MS group, the degree of decrement under dual-task conditions was related to levels of fatigue, a measure of general cognitive functioning and self-reported everyday cognitive errors, but not to measures of disease severity or duration. Difficulty with walking and talking in MS may be a result of a divided attention deficit or of overloading of the working memory system, and further investigation is needed. We suggest that difficulty with walking and talking in MS may lead to practical problems in everyday life, including potentially increasing the risk of falls. Clinical tools to assess cognitive-motor dual-tasking ability are needed.

  1. Haptic fMRI: combining functional neuroimaging with haptics for studying the brain's motor control representation.

    PubMed

    Menon, Samir; Brantner, Gerald; Aholt, Chris; Kay, Kendrick; Khatib, Oussama

    2013-01-01

    A challenging problem in motor control neuroimaging studies is the inability to perform complex human motor tasks given the Magnetic Resonance Imaging (MRI) scanner's disruptive magnetic fields and confined workspace. In this paper, we propose a novel experimental platform that combines Functional MRI (fMRI) neuroimaging, haptic virtual simulation environments, and an fMRI-compatible haptic device for real-time haptic interaction across the scanner workspace (above torso ∼ .65×.40×.20m(3)). We implement this Haptic fMRI platform with a novel haptic device, the Haptic fMRI Interface (HFI), and demonstrate its suitability for motor neuroimaging studies. HFI has three degrees-of-freedom (DOF), uses electromagnetic motors to enable high-fidelity haptic rendering (>350Hz), integrates radio frequency (RF) shields to prevent electromagnetic interference with fMRI (temporal SNR >100), and is kinematically designed to minimize currents induced by the MRI scanner's magnetic field during motor displacement (<2cm). HFI possesses uniform inertial and force transmission properties across the workspace, and has low friction (.05-.30N). HFI's RF noise levels, in addition, are within a 3 Tesla fMRI scanner's baseline noise variation (∼.85±.1%). Finally, HFI is haptically transparent and does not interfere with human motor tasks (tested for .4m reaches). By allowing fMRI experiments involving complex three-dimensional manipulation with haptic interaction, Haptic fMRI enables-for the first time-non-invasive neuroscience experiments involving interactive motor tasks, object manipulation, tactile perception, and visuo-motor integration.

  2. Motor demand-dependent activation of ipsilateral motor cortex.

    PubMed

    Buetefisch, Cathrin M; Revill, Kate Pirog; Shuster, Linda; Hines, Benjamin; Parsons, Michael

    2014-08-15

    The role of ipsilateral primary motor cortex (M1) in hand motor control during complex task performance remains controversial. Bilateral M1 activation is inconsistently observed in functional (f)MRI studies of unilateral hand performance. Two factors limit the interpretation of these data. As the motor tasks differ qualitatively in these studies, it is conceivable that M1 contributions differ with the demand on skillfulness. Second, most studies lack the verification of a strictly unilateral execution of the motor task during the acquisition of imaging data. Here, we use fMRI to determine whether ipsilateral M1 activity depends on the demand for precision in a pointing task where precision varied quantitatively while movement trajectories remained equal. Thirteen healthy participants used an MRI-compatible joystick to point to targets of four different sizes in a block design. A clustered acquisition technique allowed simultaneous fMRI/EMG data collection and confirmed that movements were strictly unilateral. Accuracy of performance increased with target size. Overall, the pointing task revealed activation in contralateral and ipsilateral M1, extending into contralateral somatosensory and parietal areas. Target size-dependent activation differences were found in ipsilateral M1 extending into the temporal/parietal junction, where activation increased with increasing demand on accuracy. The results suggest that ipsilateral M1 is active during the execution of a unilateral motor task and that its activity is modulated by the demand on precision. Copyright © 2014 the American Physiological Society.

  3. External Control of Knowledge of Results: Learner Involvement Enhances Motor Skill Transfer.

    PubMed

    Figueiredo, L S; Ugrinowitsch, H; Freire, A B; Shea, J B; Benda, R N

    2018-04-01

    Providing the learner control over aspects of practice has improved the process of motor skill acquisition, and self-controlled knowledge of results (KR) schedules have shown specific advantages over externally controlled ones. A possible explanation is that self-controlled KR schedules lead learners to more active task involvement, permitting deeper information processing. This study tested this explanatory hypothesis. Thirty undergraduate volunteers of both sexes, aged 18 to 35, all novices in the task, practiced transporting a tennis ball in a specified sequence within a time goal. We compared a high-involvement group (involvement yoked, IY), notified in advance about upcoming KR trials, to self-controlled KR (SC) and yoked KR (YK) groups. The experiment consisted of three phases: acquisition, retention, and transfer. We found both IY and SC groups to be superior to YK for transfer of learning. Postexperiment participant questionnaires confirmed a preference for receiving KR after learner-perceived good trials, even though performance on those trials did not differ from performance on trials without KR. Equivalent IY and SC performances provide support for the benefits of task involvement and deeper information processing when KR is self-controlled in motor skill acquisition.

  4. Shoulder motor performance assessment in the sagittal plane in children with hemiplegia during single joint pointing tasks.

    PubMed

    Formica, Domenico; Petrarca, Maurizio; Rossi, Stefano; Zollo, Loredana; Guglielmelli, Eugenio; Cappa, Paolo

    2014-07-29

    Pointing is a motor task extensively used during daily life activities and it requires complex visuo-motor transformation to select the appropriate movement strategy. The study of invariant characteristics of human movements has led to several theories on how the brain solves the redundancy problem, but the application of these theories on children affected by hemiplegia is limited. This study aims at giving a quantitative assessment of the shoulder motor behaviour in children with hemiplegia during pointing tasks. Eight children with hemiplegia were involved in the study and were asked to perform movements on the sagittal plane with both arms, at low and high speed. Subject movements were recorded using an optoelectronic system; a 4-DOF model of children arm has been developed to calculate kinematic and dynamic variables. A set of evaluation indexes has been extracted in order to quantitatively assess whether and how children modify their motor control strategies when perform movements with the more affected or less affected arm. In low speed movements, no differences can be seen in terms of movement duration and peak velocity between the More Affected arm (MA) and the Less Affected arm (LA), as well as in the main characteristics of movement kinematics and dynamics. As regards fast movements, remarkable differences in terms of strategies of motor control can be observed: while movements with LA did not show any significant difference in Dimensionless Jerk Index (JI) and Dimensionless Torque-change Cost index (TC) between the elevation and lowering phases, suggesting that motor control optimization is similar for movements performed with or against gravity, movements with MA showed a statistically significant increase of both JI and TC during lowering phase. Results suggest the presence of a different control strategy for fast movements in particular during lowering phase. Results suggest that motor control is not able to optimize Jerk and Torque-change cost functions in the same way when controls the two arms, suggesting that children with hemiplegia do not actively control MA lowering fast movements, in order to take advantage of the passive inertial body properties, rather than to attempt its optimal control.

  5. Association between fine motor skills and binocular visual function in children with reading difficulties.

    PubMed

    Niechwiej-Szwedo, Ewa; Alramis, Fatimah; Christian, Lisa W

    2017-12-01

    Performance of fine motor skills (FMS) assessed by a clinical test battery has been associated with reading achievement in school-age children. However, the nature of this association remains to be established. The aim of this study was to assess FMS in children with reading difficulties using two experimental tasks, and to determine if performance is associated with reduced binocular function. We hypothesized that in comparison to an age- and sex-matched control group, children identified with reading difficulties will perform worse only on a motor task that has been shown to rely on binocular input. To test this hypothesis, motor performance was assessed using two tasks: bead-threading and peg-board in 19 children who were reading below expected grade and age-level. Binocular vision assessment included tests for stereoacuity, fusional vergence, amplitude of accommodation, and accommodative facility. In comparison to the control group, children with reading difficulties performed significantly worse on the bead-threading task. In contrast, performance on the peg-board task was similar in both groups. Accommodative facility was the only measure of binocular function significantly associated with motor performance. Findings from our exploratory study suggest that normal binocular vision may provide an important sensory input for the optimal development of FMS and reading. Given the small sample size tested in the current study, further investigation to assess the contribution of binocular vision to the development and performance of FMS and reading is warranted. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Relationships between Task-Oriented Postural Control and Motor Ability in Children and Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Wang, Hui-Yi; Long, I-Man; Liu, Mei-Fang

    2012-01-01

    Individuals with Down syndrome (DS) have been characterized by greater postural sway in quiet stance and insufficient motor ability. However, there is a lack of studies to explore the properties of dynamic postural sway, especially under conditions of task-oriented movement. The purpose of this study was to investigate the relationships between…

  7. An Inexpensive and Automated Method for Presenting Olfactory or Tactile Stimuli to Rats in a Two-Choice Discrimination Task

    ERIC Educational Resources Information Center

    Iversen, Iver H.

    2008-01-01

    An inexpensive and automated method for presentation of olfactory or tactile stimuli in a two-choice task for rats was implemented with the use of a computer-controlled bidirectional motor. The motor rotated a disk that presented two stimuli of different texture for tactile discrimination, or different odor for olfactory discrimination. Because…

  8. A mathematical tool to generate complex whole body motor tasks and test hypotheses on underlying motor planning.

    PubMed

    Tagliabue, Michele; Pedrocchi, Alessandra; Pozzo, Thierry; Ferrigno, Giancarlo

    2008-01-01

    In spite of the complexity of human motor behavior, difficulties in mathematical modeling have restricted to rather simple movements attempts to identify the motor planning criterion used by the central nervous system. This paper presents a novel-simulation technique able to predict the "desired trajectory" corresponding to a wide range of kinematic and kinetic optimality criteria for tasks involving many degrees of freedom and the coordination between goal achievement and balance maintenance. Employment of proper time discretization, inverse dynamic methods and constrained optimization technique are combined. The application of this simulator to a planar whole body pointing movement shows its effectiveness in managing system nonlinearities and instability as well as in ensuring the anatomo-physiological feasibility of predicted motor plans. In addition, the simulator's capability to simultaneously optimize competing movement aspects represents an interesting opportunity for the motor control community, in which the coexistence of several controlled variables has been hypothesized.

  9. Comparison of Motor Inhibition in Variants of the Instructed-Delay Choice Reaction Time Task

    PubMed Central

    Quoilin, Caroline; Lambert, Julien; Jacob, Benvenuto; Klein, Pierre-Alexandre; Duque, Julie

    2016-01-01

    Using instructed-delay choice reaction time (RT) paradigms, many previous studies have shown that the motor system is transiently inhibited during response preparation: motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex are typically suppressed during the delay period. This effect has been observed in both selected and non-selected effectors, although MEP changes in selected effectors have been more inconsistent across task versions. Here, we compared changes in MEP amplitudes in three different variants of an instructed-delay choice RT task. All variants required participants to choose between left and right index finger movements but the responses were either provided “in the air” (Variant 1), on a regular keyboard (Variant 2), or on a response device designed to control from premature responses (Variant 3). The task variants also differed according to the visual layout (more concrete in Variant 3) and depending on whether participants received a feedback of their performance (absent in Variant 1). Behavior was globally comparable between the three variants of the task although the propensity to respond prematurely was highest in Variant 2 and lowest in Variant 3. MEPs elicited in a non-selected hand were similarly suppressed in the three variants of the task. However, significant differences emerged when considering MEPs elicited in the selected hand: these MEPs were suppressed in Variants 1 and 3 whereas they were often facilitated in Variant 2, especially in the right dominant hand. In conclusion, MEPs elicited in selected muscles seem to be more sensitive to small variations to the task design than those recorded in non-selected effectors, probably because they reflect a complex combination of inhibitory and facilitatory influences on the motor output system. Finally, the use of a standard keyboard seems to be particularly inappropriate because it encourages participants to respond promptly with no means to control for premature responses, probably increasing the relative amount of facilitatory influences at the time motor inhibition is probed. PMID:27579905

  10. Comparison of Motor Inhibition in Variants of the Instructed-Delay Choice Reaction Time Task.

    PubMed

    Quoilin, Caroline; Lambert, Julien; Jacob, Benvenuto; Klein, Pierre-Alexandre; Duque, Julie

    2016-01-01

    Using instructed-delay choice reaction time (RT) paradigms, many previous studies have shown that the motor system is transiently inhibited during response preparation: motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex are typically suppressed during the delay period. This effect has been observed in both selected and non-selected effectors, although MEP changes in selected effectors have been more inconsistent across task versions. Here, we compared changes in MEP amplitudes in three different variants of an instructed-delay choice RT task. All variants required participants to choose between left and right index finger movements but the responses were either provided "in the air" (Variant 1), on a regular keyboard (Variant 2), or on a response device designed to control from premature responses (Variant 3). The task variants also differed according to the visual layout (more concrete in Variant 3) and depending on whether participants received a feedback of their performance (absent in Variant 1). Behavior was globally comparable between the three variants of the task although the propensity to respond prematurely was highest in Variant 2 and lowest in Variant 3. MEPs elicited in a non-selected hand were similarly suppressed in the three variants of the task. However, significant differences emerged when considering MEPs elicited in the selected hand: these MEPs were suppressed in Variants 1 and 3 whereas they were often facilitated in Variant 2, especially in the right dominant hand. In conclusion, MEPs elicited in selected muscles seem to be more sensitive to small variations to the task design than those recorded in non-selected effectors, probably because they reflect a complex combination of inhibitory and facilitatory influences on the motor output system. Finally, the use of a standard keyboard seems to be particularly inappropriate because it encourages participants to respond promptly with no means to control for premature responses, probably increasing the relative amount of facilitatory influences at the time motor inhibition is probed.

  11. Interaction of attentional and motor control processes in handwriting.

    PubMed

    Brown, T L; Donnenwirth, E E

    1990-01-01

    The interaction between attentional capacity, motor control processes, and strategic adaptations to changing task demands was investigated in handwriting, a continuous (rather than discrete) skilled performance. Twenty-four subjects completed 12 two-minute handwriting samples under instructions stressing speeded handwriting, normal handwriting, or highly legible handwriting. For half of the writing samples, a concurrent auditory monitoring task was imposed. Subjects copied either familiar (English) or unfamiliar (Latin) passages. Writing speed, legibility ratings, errors in writing and in the secondary auditory task, and a derived measure of the average number of characters held in short-term memory during each sample ("planning unit size") were the dependent variables. The results indicated that the ability to adapt to instructions stressing speed or legibility was substantially constrained by the concurrent listening task and by text familiarity. Interactions between instructions, task concurrence, and text familiarity in the legibility ratings, combined with further analyses of planning unit size, indicated that information throughput from temporary storage mechanisms to motor processes mediated the loss of flexibility effect. Overall, the results suggest that strategic adaptations of a skilled performance to changing task circumstances are sensitive to concurrent attentional demands and that departures from "normal" or "modal" performance require attention.

  12. Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment.

    PubMed

    Mantilla, Carlos B; Seven, Yasin B; Sieck, Gary C

    2014-01-01

    Motor units are the final element of neuromotor control. In manner analogous to the organization of neuromotor control in other skeletal muscles, diaphragm motor units comprise phrenic motoneurons located in the cervical spinal cord that innervate the diaphragm muscle, the main inspiratory muscle in mammals. Diaphragm motor units play a primary role in sustaining ventilation but are also active in other nonventilatory behaviors, including coughing, sneezing, vomiting, defecation, and parturition. Diaphragm muscle fibers comprise all fiber types. Thus, diaphragm motor units display substantial differences in contractile and fatigue properties, but importantly, properties of the motoneuron and muscle fibers within a motor unit are matched. As in other skeletal muscles, diaphragm motor units are recruited in order such that motor units that display greater fatigue resistance are recruited earlier and more often than more fatigable motor units. The properties of the motor unit population are critical determinants of the function of a skeletal muscle across the range of possible motor tasks. Accordingly, fatigue-resistant motor units are sufficient to generate the forces necessary for ventilatory behaviors, whereas more fatigable units are only activated during expulsive behaviors important for airway clearance. Neuromotor control of diaphragm motor units may reflect selective inputs from distinct pattern generators distributed according to the motor unit properties necessary to accomplish these different motor tasks. In contrast, widely distributed inputs to phrenic motoneurons from various pattern generators (e.g., for breathing, coughing, or vocalization) would dictate recruitment order based on intrinsic electrophysiological properties. © 2014 Elsevier B.V. All rights reserved.

  13. Is Rest Really Rest? Resting State Functional Connectivity during Rest and Motor Task Paradigms.

    PubMed

    Jurkiewicz, Michael T; Crawley, Adrian P; Mikulis, David J

    2018-04-18

    Numerous studies have identified the default mode network (DMN) within the brain of healthy individuals, which has been attributed to the ongoing mental activity of the brain during the wakeful resting-state. While engaged during specific resting-state fMRI paradigms, it remains unclear as to whether traditional block-design simple movement fMRI experiments significantly influence the default mode network or other areas. Using blood-oxygen level dependent (BOLD) fMRI we characterized the pattern of functional connectivity in healthy subjects during a resting-state paradigm and compared this to the same resting-state analysis performed on motor task data residual time courses after regressing out the task paradigm. Using seed-voxel analysis to define the DMN, the executive control network (ECN), and sensorimotor, auditory and visual networks, the resting-state analysis of the residual time courses demonstrated reduced functional connectivity in the motor network and reduced connectivity between the insula and the ECN compared to the standard resting-state datasets. Overall, performance of simple self-directed motor tasks does little to change the resting-state functional connectivity across the brain, especially in non-motor areas. This would suggest that previously acquired fMRI studies incorporating simple block-design motor tasks could be mined retrospectively for assessment of the resting-state connectivity.

  14. Language and motor abilities of preschool children who stutter: Evidence from behavioral and kinematic indices of nonword repetition performance

    PubMed Central

    Smith, Anne; Goffman, Lisa; Sasisekaran, Jayanthi; Weber-Fox, Christine

    2012-01-01

    Stuttering is a disorder of speech production that typically arises in the preschool years, and many accounts of its onset and development implicate language and motor processes as critical underlying factors. There have, however, been very few studies of speech motor control processes in preschool children who stutter. Hearing novel nonwords and reproducing them engages multiple neural networks, including those involved in phonological analysis and storage and speech motor programming and execution. We used this task to explore speech motor and language abilities of 31 children aged 4–5 years who were diagnosed as stuttering. We also used sensitive and specific standardized tests of speech and language abilities to determine which of the children who stutter had concomitant language and/or phonological disorders. Approximately half of our sample of stuttering children had language and/or phonological disorders. As previous investigations would suggest, the stuttering children with concomitant language or speech sound disorders produced significantly more errors on the nonword repetition task compared to typically developing children. In contrast, the children who were diagnosed as stuttering, but who had normal speech sound and language abilities, performed the nonword repetition task with equal accuracy compared to their normally fluent peers. Analyses of interarticulator motions during accurate and fluent productions of the nonwords revealed that the children who stutter (without concomitant disorders) showed higher variability in oral motor coordination indices. These results provide new evidence that preschool children diagnosed as stuttering lag their typically developing peers in maturation of speech motor control processes. Educational objectives The reader will be able to: (a) discuss why performance on nonword repetition tasks has been investigated in children who stutter; (b) discuss why children who stutter in the current study had a higher incidence of concomitant language deficits compared to several other studies; (c) describe how performance differed on a nonword repetition test between children who stutter who do and do not have concomitant speech or language deficits; (d) make a general statement about speech motor control for nonword production in children who stutter compared to controls. PMID:23218217

  15. Dual Task of Fine Motor Skill and Problem Solving in Individuals With Multiple Sclerosis: A Pilot Study.

    PubMed

    Goverover, Y; Sandroff, B M; DeLuca, J

    2018-04-01

    To (1) examine and compare dual-task performance in patients with multiple sclerosis (MS) and healthy controls (HCs) using mathematical problem-solving questions that included an everyday competence component while performing an upper extremity fine motor task; and (2) examine whether difficulties in dual-task performance are associated with problems in performing an everyday internet task. Pilot study, mixed-design with both a within and between subjects' factor. A nonprofit rehabilitation research institution and the community. Participants (N=38) included persons with MS (n=19) and HCs (n=19) who were recruited from a nonprofit rehabilitation research institution and from the community. Not applicable. Participant were presented with 2 testing conditions: (1) solving mathematical everyday problems or placing bolts into divots (single-task condition); and (2) solving problems while putting bolts into divots (dual-task condition). Additionally, participants were required to perform a test of everyday internet competence. As expected, dual-task performance was significantly worse than either of the single-task tasks (ie, number of bolts into divots or correct answers, and time to answer the questions). Cognitive but not motor dual-task cost was associated with worse performance in activities of everyday internet tasks. Cognitive dual-task cost is significantly associated with worse performance of everyday technology. This was not observed in the motor dual-task cost. The implications of dual-task costs on everyday activity are discussed. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. Eye Gaze Correlates of Motor Impairment in VR Observation of Motor Actions.

    PubMed

    Alves, J; Vourvopoulos, A; Bernardino, A; Bermúdez I Badia, S

    2016-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Methodologies, Models and Algorithms for Patients Rehabilitation". Identify eye gaze correlates of motor impairment in a virtual reality motor observation task in a study with healthy participants and stroke patients. Participants consisted of a group of healthy subjects (N = 20) and a group of stroke survivors (N = 10). Both groups were required to observe a simple reach-and-grab and place-and-release task in a virtual environment. Additionally, healthy subjects were required to observe the task in a normal condition and a constrained movement condition. Eye movements were recorded during the observation task for later analysis. For healthy participants, results showed differences in gaze metrics when comparing the normal and arm-constrained conditions. Differences in gaze metrics were also found when comparing dominant and non-dominant arm for saccades and smooth pursuit events. For stroke patients, results showed longer smooth pursuit segments in action observation when observing the paretic arm, thus providing evidence that the affected circuitry may be activated for eye gaze control during observation of the simulated motor action. This study suggests that neural motor circuits are involved, at multiple levels, in observation of motor actions displayed in a virtual reality environment. Thus, eye tracking combined with action observation tasks in a virtual reality display can be used to monitor motor deficits derived from stroke, and consequently can also be used for rehabilitation of stroke patients.

  17. Sensory and motoric influences on attention dynamics during standing balance recovery in young and older adults.

    PubMed

    Redfern, Mark S; Chambers, April J; Jennings, J Richard; Furman, Joseph M

    2017-08-01

    This study investigated the impact of attention on the sensory and motor actions during postural recovery from underfoot perturbations in young and older adults. A dual-task paradigm was used involving disjunctive and choice reaction time (RT) tasks to auditory and visual stimuli at different delays from the onset of two types of platform perturbations (rotations and translations). The RTs were increased prior to the perturbation (preparation phase) and during the immediate recovery response (response initiation) in young and older adults, but this interference dissipated rapidly after the perturbation response was initiated (<220 ms). The sensory modality of the RT task impacted the results with interference being greater for the auditory task compared to the visual task. As motor complexity of the RT task increased (disjunctive versus choice) there was greater interference from the perturbation. Finally, increasing the complexity of the postural perturbation by mixing the rotational and translational perturbations together increased interference for the auditory RT tasks, but did not affect the visual RT responses. These results suggest that sensory and motoric components of postural control are under the influence of different dynamic attentional processes.

  18. A tweaking principle for executive control: neuronal circuit mechanism for rule-based task switching and conflict resolution.

    PubMed

    Ardid, Salva; Wang, Xiao-Jing

    2013-12-11

    A hallmark of executive control is the brain's agility to shift between different tasks depending on the behavioral rule currently in play. In this work, we propose a "tweaking hypothesis" for task switching: a weak rule signal provides a small bias that is dramatically amplified by reverberating attractor dynamics in neural circuits for stimulus categorization and action selection, leading to an all-or-none reconfiguration of sensory-motor mapping. Based on this principle, we developed a biologically realistic model with multiple modules for task switching. We found that the model quantitatively accounts for complex task switching behavior: switch cost, congruency effect, and task-response interaction; as well as monkey's single-neuron activity associated with task switching. The model yields several testable predictions, in particular, that category-selective neurons play a key role in resolving sensory-motor conflict. This work represents a neural circuit model for task switching and sheds insights in the brain mechanism of a fundamental cognitive capability.

  19. An Inverse Optimal Control Approach to Explain Human Arm Reaching Control Based on Multiple Internal Models.

    PubMed

    Oguz, Ozgur S; Zhou, Zhehua; Glasauer, Stefan; Wollherr, Dirk

    2018-04-03

    Human motor control is highly efficient in generating accurate and appropriate motor behavior for a multitude of tasks. This paper examines how kinematic and dynamic properties of the musculoskeletal system are controlled to achieve such efficiency. Even though recent studies have shown that the human motor control relies on multiple models, how the central nervous system (CNS) controls this combination is not fully addressed. In this study, we utilize an Inverse Optimal Control (IOC) framework in order to find the combination of those internal models and how this combination changes for different reaching tasks. We conducted an experiment where participants executed a comprehensive set of free-space reaching motions. The results show that there is a trade-off between kinematics and dynamics based controllers depending on the reaching task. In addition, this trade-off depends on the initial and final arm configurations, which in turn affect the musculoskeletal load to be controlled. Given this insight, we further provide a discomfort metric to demonstrate its influence on the contribution of different inverse internal models. This formulation together with our analysis not only support the multiple internal models (MIMs) hypothesis but also suggest a hierarchical framework for the control of human reaching motions by the CNS.

  20. Mild cognitive impairment affects motor control and skill learning.

    PubMed

    Wu, Qiaofeng; Chan, John S Y; Yan, Jin H

    2016-02-01

    Mild cognitive impairment (MCI) is a transitional phase between normal cognitive aging and dementia. As the world population is aging rapidly, more MCI patients will be identified, posing significant problems to society. Normal aging is associated with cognitive and motor decline, and MCI brings additional impairments. Compared to healthy older adults, MCI patients show poorer motor control in a variety of tasks. Efficient motor control and skill learning are essential for occupational and leisure purposes; degradation of motor behaviors in MCI patients often adversely affects their health and quality of life. In this article, we first define MCI and describe its pathology and neural correlates. After this, we review cognitive changes and motor control and skill learning in normal aging. This section is followed by a discussion of MCI-related degradation of motor behaviors. Finally, we propose that multicomponent interventions targeting both cognitive and motor domains can improve MCI patients' motor functions. Future research directions are also raised.

  1. Nature of Motor Imitation Problems in School-Aged Boys with Autism: A Motor or a Cognitive Problem?

    ERIC Educational Resources Information Center

    Vanvuchelen, Marleen; Roeyers, Herbert; De Weerdt, Willy

    2007-01-01

    This case-control study explores the underlying mechanisms of imitation problems in boys with autism by manipulating imitation task variables and by correlating imitation performance with competence on general motor tests (Movement Assessment Battery for Children and Peabody Developmental Motor Scales). Fifty-five boys participated in this study:…

  2. Speech and nonspeech: What are we talking about?

    PubMed

    Maas, Edwin

    2017-08-01

    Understanding of the behavioural, cognitive and neural underpinnings of speech production is of interest theoretically, and is important for understanding disorders of speech production and how to assess and treat such disorders in the clinic. This paper addresses two claims about the neuromotor control of speech production: (1) speech is subserved by a distinct, specialised motor control system and (2) speech is holistic and cannot be decomposed into smaller primitives. Both claims have gained traction in recent literature, and are central to a task-dependent model of speech motor control. The purpose of this paper is to stimulate thinking about speech production, its disorders and the clinical implications of these claims. The paper poses several conceptual and empirical challenges for these claims - including the critical importance of defining speech. The emerging conclusion is that a task-dependent model is called into question as its two central claims are founded on ill-defined and inconsistently applied concepts. The paper concludes with discussion of methodological and clinical implications, including the potential utility of diadochokinetic (DDK) tasks in assessment of motor speech disorders and the contraindication of nonspeech oral motor exercises to improve speech function.

  3. Associations between tongue movement pattern consistency and formant movement pattern consistency in response to speech behavioral modificationsa)

    PubMed Central

    Mefferd, Antje S.

    2016-01-01

    The degree of speech movement pattern consistency can provide information about speech motor control. Although tongue motor control is particularly important because of the tongue's primary contribution to the speech acoustic signal, capturing tongue movements during speech remains difficult and costly. This study sought to determine if formant movements could be used to estimate tongue movement pattern consistency indirectly. Two age groups (seven young adults and seven older adults) and six speech conditions (typical, slow, loud, clear, fast, bite block speech) were selected to elicit an age- and task-dependent performance range in tongue movement pattern consistency. Kinematic and acoustic spatiotemporal indexes (STI) were calculated based on sentence-length tongue movement and formant movement signals, respectively. Kinematic and acoustic STI values showed strong associations across talkers and moderate to strong associations for each talker across speech tasks; although, in cases where task-related tongue motor performance changes were relatively small, the acoustic STI values were poorly associated with kinematic STI values. These findings suggest that, depending on the sensitivity needs, formant movement pattern consistency could be used in lieu of direct kinematic analysis to indirectly examine speech motor control. PMID:27908069

  4. Automatic Online Motor Control Is Intact in Parkinson’s Disease With and Without Perceptual Awareness

    PubMed Central

    Seergobin, Ken N.; Mendonça, Daniel A.

    2017-01-01

    Abstract In the double-step paradigm, healthy human participants automatically correct reaching movements when targets are displaced. Motor deficits are prominent in Parkinson’s disease (PD) patients. In the lone investigation of online motor correction in PD using the double-step task, a recent study found that PD patients performed unconscious adjustments appropriately but seemed impaired for consciously-perceived modifications. Conscious perception of target movement was achieved by linking displacement to movement onset. PD-related bradykinesia disproportionately prolonged preparatory phases for movements to original target locations for patients, potentially accounting for deficits. Eliminating this confound in a double-step task, we evaluated the effect of conscious awareness of trajectory change on online motor corrections in PD. On and off dopaminergic therapy, PD patients (n = 14) and healthy controls (n = 14) reached to peripheral visual targets that remained stationary or unexpectedly moved during an initial saccade. Saccade latencies in PD are comparable to controls’. Hence, target displacements occurred at equal times across groups. Target jump size affected conscious awareness, confirmed in an independent target displacement judgment task. Small jumps were subliminal, but large target displacements were consciously perceived. Contrary to the previous result, PD patients performed online motor corrections normally and automatically, irrespective of conscious perception. Patients evidenced equivalent movement durations for jump and stay trials, and trajectories for patients and controls were identical, irrespective of conscious perception. Dopaminergic therapy had no effect on performance. In summary, online motor control is intact in PD, unaffected by conscious perceptual awareness. The basal ganglia are not implicated in online corrective responses. PMID:29085900

  5. Handwriting Development, Competency, and Intervention

    ERIC Educational Resources Information Center

    Feder, Katya P.; Majnemer, Annette

    2007-01-01

    Failure to attain handwriting competency during the school-age years often has far-reaching negative effects on both academic success and self-esteem. This complex occupational task has many underlying component skills that may interfere with handwriting performance. Fine motor control, bilateral and visual-motor integration, motor planning,…

  6. An fMRI study of musicians with focal dystonia during tapping tasks.

    PubMed

    Kadota, Hiroshi; Nakajima, Yasoichi; Miyazaki, Makoto; Sekiguchi, Hirofumi; Kohno, Yutaka; Amako, Masatoshi; Arino, Hiroshi; Nemoto, Koichi; Sakai, Naotaka

    2010-07-01

    Musician's dystonia is a type of task specific dystonia for which the pathophysiology is not clear. In this study, we performed functional magnetic resonance imaging to investigate the motor-related brain activity associated with musician's dystonia. We compared brain activities measured from subjects with focal hand dystonia and normal (control) musicians during right-hand, left-hand, and both-hands tapping tasks. We found activations in the thalamus and the basal ganglia during the tapping tasks in the control group but not in the dystonia group. For both groups, we detected significant activations in the contralateral sensorimotor areas, including the premotor area and cerebellum, during each tapping task. Moreover, direct comparison between the dystonia and control groups showed that the dystonia group had greater activity in the ipsilateral premotor area during the right-hand tapping task and less activity in the left cerebellum during the both-hands tapping task. Thus, the dystonic musicians showed irregular activation patterns in the motor-association system. We suggest that irregular neural activity patterns in dystonic subjects reflect dystonic neural malfunction and consequent compensatory activity to maintain appropriate voluntary movements.

  7. Building a Framework for a Dual Task Taxonomy

    PubMed Central

    McIsaac, Tara L.; Lamberg, Eric M.; Muratori, Lisa M.

    2015-01-01

    The study of dual task interference has gained increasing attention in the literature for the past 35 years, with six MEDLINE citations in 1979 growing to 351 citations indexed in 2014 and a peak of 454 cited papers in 2013. Increasingly, researchers are examining dual task cost in individuals with pathology, including those with neurodegenerative diseases. While the influence of these papers has extended from the laboratory to the clinic, the field has evolved without clear definitions of commonly used terms and with extreme variations in experimental procedures. As a result, it is difficult to examine the interference literature as a single body of work. In this paper we present a new taxonomy for classifying cognitive-motor and motor-motor interference within the study of dual task behaviors that connects traditional concepts of learning and principles of motor control with current issues of multitasking analysis. As a first step in the process we provide an operational definition of dual task, distinguishing it from a complex single task. We present this new taxonomy, inclusive of both cognitive and motor modalities, as a working model; one that we hope will generate discussion and create a framework from which one can view previous studies and develop questions of interest. PMID:25961027

  8. Practice reduces task relevant variance modulation and forms nominal trajectory

    NASA Astrophysics Data System (ADS)

    Osu, Rieko; Morishige, Ken-Ichi; Nakanishi, Jun; Miyamoto, Hiroyuki; Kawato, Mitsuo

    2015-12-01

    Humans are capable of achieving complex tasks with redundant degrees of freedom. Much attention has been paid to task relevant variance modulation as an indication of online feedback control strategies to cope with motor variability. Meanwhile, it has been discussed that the brain learns internal models of environments to realize feedforward control with nominal trajectories. Here we examined trajectory variance in both spatial and temporal domains to elucidate the relative contribution of these control schemas. We asked subjects to learn reaching movements with multiple via-points, and found that hand trajectories converged to stereotyped trajectories with the reduction of task relevant variance modulation as learning proceeded. Furthermore, variance reduction was not always associated with task constraints but was highly correlated with the velocity profile. A model assuming noise both on the nominal trajectory and motor command was able to reproduce the observed variance modulation, supporting an expression of nominal trajectories in the brain. The learning-related decrease in task-relevant modulation revealed a reduction in the influence of optimal feedback around the task constraints. After practice, the major part of computation seems to be taken over by the feedforward controller around the nominal trajectory with feedback added only when it becomes necessary.

  9. The assessment of preschool children's motor skills after familiarization with motor tests.

    PubMed

    Tomac, Zvonimir; Hraski, Zeljko; Sporis, Goran

    2012-07-01

    This research study was conducted to establish the influence of familiarization on the information component of movement in a motor task for the assessment of preschool children's motor skills. The sample included 50 children whose mean age was 5.9 years (71.5 months). The experimental group consisted of 27 children who were 5.9 years (71.5 months) old, and the control group consisted of 23 children who were 5.9 years (71.5 months) old. The examinees performed 2 motor tasks, standing long jump (SJ, explosive strength) and standing on 1 leg on a beam "flamingo test" (FT, balance). The experimental group underwent a period of familiarization with the motor task in 3 sessions with 5 trials every 3 days. The results indicate statistically significant differences in the final testing between both groups of examinees; the experimental group mean was 112.73 cm, and the control group mean was 100.62 in the SJ test (p = 0.00), and the experimental group mean was 27.10 seconds and the control group mean was 15.01 seconds in the FT (for balance) (p = 0.00). The results obtained in this research indicate that children significantly improved the results in the motor test of strength and balance, being influenced by familiarization. It was confirmed that it was necessary for preschool children to be familiar with the test and it is not justified to use testing and assessment protocols and standards for adults. Physical educators and coaches, when testing preschool children, should introduce children to tests to obtain the best result.

  10. HCN channels segregate stimulation‐evoked movement responses in neocortex and allow for coordinated forelimb movements in rodents

    PubMed Central

    Farrell, Jordan S.; Palmer, Laura A.; Singleton, Anna C.; Pittman, Quentin J.; Teskey, G. Campbell

    2016-01-01

    Key points The present study tested whether HCN channels contribute to the organization of motor cortex and to skilled motor behaviour during a forelimb reaching task.Experimental reductions in HCN channel signalling increase the representation of complex multiple forelimb movements in motor cortex as assessed by intracortical microstimulation.Global HCN1KO mice exhibit reduced reaching accuracy and atypical movements during a single‐pellet reaching task relative to wild‐type controls.Acute pharmacological inhibition of HCN channels in forelimb motor cortex decreases reaching accuracy and increases atypical movements during forelimb reaching. Abstract The mechanisms by which distinct movements of a forelimb are generated from the same area of motor cortex have remained elusive. Here we examined a role for HCN channels, given their ability to alter synaptic integration, in the expression of forelimb movement responses during intracortical microstimulation (ICMS) and movements of the forelimb on a skilled reaching task. We used short‐duration high‐resolution ICMS to evoke forelimb movements following pharmacological (ZD7288), experimental (electrically induced cortical seizures) or genetic approaches that we confirmed with whole‐cell patch clamp to substantially reduce I h current. We observed significant increases in the number of multiple movement responses evoked at single sites in motor maps to all three experimental manipulations in rats or mice. Global HCN1 knockout mice were less successful and exhibited atypical movements on a skilled‐motor learning task relative to wild‐type controls. Furthermore, in reaching‐proficient rats, reaching accuracy was reduced and forelimb movements were altered during infusion of ZD7288 within motor cortex. Thus, HCN channels play a critical role in the separation of overlapping movement responses and allow for successful reaching behaviours. These data provide a novel mechanism for the encoding of multiple movement responses within shared networks of motor cortex. This mechanism supports a viewpoint of primary motor cortex as a site of dynamic integration for behavioural output. PMID:27568501

  11. The role of tactile sensation in online and offline hierarchical control of multi-finger force synergy.

    PubMed

    Koh, Kyung; Kwon, Hyun Joon; Yoon, Bum Chul; Cho, Yongseok; Shin, Joon-Ho; Hahn, Jin-Oh; Miller, Ross H; Kim, Yoon Hyuk; Shim, Jae Kun

    2015-09-01

    The hand, one of the most versatile but mechanically redundant parts of the human body, must overcome imperfect motor commands and inherent noise in both the sensory and motor systems in order to produce desired motor actions. For example, it is nearly impossible to produce a perfectly consistent note during a single violin stroke or to produce the exact same note over multiple strokes, which we denote online and offline control, respectively. To overcome these challenges, the central nervous system synergistically integrates multiple sensory modalities and coordinates multiple motor effectors. Among these sensory modalities, tactile sensation plays an important role in manual motor tasks by providing hand-object contact information. The purpose of this study was to investigate the role of tactile feedback in individual finger actions and multi-finger interactions during constant force production tasks. We developed analytical techniques for the linear decomposition of the overall variance in the motor system in both online and offline control. We removed tactile feedback from the fingers and demonstrated that tactile sensors played a critical role in the online control of synergistic interactions between fingers. In contrast, the same sensors did not contribute to offline control. We also demonstrated that when tactile feedback was removed from the fingers, the combined motor output of individual fingers did not change while individual finger behaviors did. This finding supports the idea of hierarchical control where individual fingers at the lower level work together to stabilize the performance of combined motor output at the higher level.

  12. Self-modulation of primary motor cortex activity with motor and motor imagery tasks using real-time fMRI-based neurofeedback

    PubMed Central

    Berman, Brian D.; Horovitz, Silvina G.; Venkataraman, Gaurav; Hallett, Mark

    2011-01-01

    Advances in fMRI data acquisition and processing have made it possible to analyze brain activity as rapidly as the images are acquired allowing this information to be fed back to subjects in the scanner. The ability of subjects to learn to volitionally control localized brain activity within motor cortex using such real-time fMRI-based neurofeedback (NF) is actively being investigated as it may have clinical implications for motor rehabilitation after central nervous system injury and brain-computer interfaces. We investigated the ability of fifteen healthy volunteers to use NF to modulate brain activity within the primary motor cortex (M1) during a finger tapping and tapping imagery task. The M1 hand area ROI (ROIm) was functionally localized during finger tapping and a visual representation of BOLD signal changes within the ROIm fed back to the subject in the scanner. Surface EMG was used to assess motor output during tapping and ensure no motor activity was present during motor imagery task. Subjects quickly learned to modulate brain activity within their ROIm during the finger-tapping task, which could be dissociated from the magnitude of the tapping, but did not show a significant increase within the ROIm during the hand motor imagery task at the group level despite strongly activating a network consistent with the performance of motor imagery. The inability of subjects to modulate M1 proper with motor imagery may reflect an inherent difficulty in activating synapses in this area, with or without NF, since such activation may lead to M1 neuronal output and obligatory muscle activity. Future real-time fMRI-based NF investigations involving motor cortex may benefit from focusing attention on cortical regions other than M1 for feedback training or alternative feedback strategies such as measures of functional connectivity within the motor system. PMID:21803163

  13. Individual Differences Influencing Immediate Effects of Internal and External Focus Instructions on Children's Motor Performance.

    PubMed

    van Abswoude, Femke; Nuijen, Nienke B; van der Kamp, John; Steenbergen, Bert

    2018-06-01

    A large pool of evidence supports the beneficial effect of an external focus of attention on motor skill performance in adults. In children, this effect has been studied less and results are inconclusive. Importantly, individual differences are often not taken into account. We investigated the role of working memory, conscious motor control, and task-specific focus preferences on performance with an internal and external focus of attention in children. Twenty-five children practiced a golf putting task in both an internal focus condition and external focus condition. Performance was defined as the average distance toward the hole in 3 blocks of 10 trials. Task-specific focus preference was determined by asking how much effort it took to apply the instruction in each condition. In addition, working memory capacity and conscious motor control were assessed. Children improved performance in both the internal focus condition and external focus condition (ŋ p 2  = .47), with no difference between conditions (ŋ p 2  = .01). Task-specific focus preference was the only factor moderately related to the difference between performance with an internal focus and performance with an external focus (r = .56), indicating better performance for the preferred instruction in Block 3. Children can benefit from instruction with both an internal and external focus of attention to improve short-term motor performance. Individual, task-specific focus preference influenced the effect of the instructions, with children performing better with their preferred focus. The results highlight that individual differences are a key factor in the effectiveness in children's motor performance. The precise mechanisms underpinning this effect warrant further research.

  14. Task-specificity of bilateral anticipatory activation of the deep abdominal muscles in healthy and chronic low back pain populations.

    PubMed

    Massé-Alarie, Hugo; Beaulieu, Louis-David; Preuss, Richard; Schneider, Cyril

    2015-02-01

    Cross-sectional study of lumbopelvic muscle activation during rapid limb movements in chronic low back pain (CLBP) patients and healthy controls. Controversy exists over whether bilateral anticipatory activation of the deep abdominal muscles represents a normal motor control strategy prior to all rapid limb movements, or if this is simply a task-specific strategy appropriate for only certain movement conditions. To assess the onset timing of the transversus abdominis/internal oblique muscles (TrA/IO) during two rapid limb movement tasks with different postural demands - bilateral shoulder flexion in standing, unilateral hip extension in prone lying - as well as differences between CLBP and controls. Twelve CLBP and 13 controls performed the two tasks in response to an auditory cue. Surface EMG was acquired bilaterally from five muscles, including TrA/IO. In both groups, 50% of bilateral shoulder flexion trials showed bilateral anticipatory TrA/IO activation. This was rare, however, in unilateral hip extension for which only the TrA/IO contralateral to the moving leg showed anticipatory activation. The only significant difference in lumbo-pelvic muscle onset timing between CLBP and controls was a delay in semitendinosus activation during bilateral shoulder flexion in standing. Our data suggest that bilateral anticipatory TrA/IO activation is a task-specific motor control strategy, appropriate for only certain rapid limb movement conditions. Furthermore, the presence of altered semitendinosus onset timing in the CLBP group during bilateral shoulder flexion may be reflective of other possible lumbo-pelvic motor control alterations among this population. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Functional MRI evidence for fine motor praxis dysfunction in children with persistent speech disorders

    PubMed Central

    Redle, Erin; Vannest, Jennifer; Maloney, Thomas; Tsevat, Rebecca K.; Eikenberry, Sarah; Lewis, Barbara; Shriberg, Lawrence D.; Tkach, Jean; Holland, Scott K.

    2014-01-01

    Children with persistent speech disorders (PSD) often present with overt or subtle motor deficits; the possibility that speech disorders and motor deficits could arise from a shared neurological base is currently unknown. Functional MRI (fMRI) was used to examine the brain networks supporting fine motor praxis in children with PSD and without clinically identified fine motor deficits. Methods This case-control study included 12 children with PSD (mean age 7.42 years, 4 female) and 12 controls (mean age 7.44 years, 4 female). Children completed behavioral evaluations using standardized motor assessments and parent reported functional measures. During fMRI scanning, participants completed a cued finger tapping task contrasted passive listening. A general linear model approach identified brain regions associated with finger tapping in each group and regions that differed between groups. The relationship between regional fMRI activation and fine motor skill was assessed using a regression analysis. Results Children with PSD had significantly poorer results for rapid speech production and fine motor praxis skills, but did not differ on classroom functional skills. Functional MRI results showed that children with PSD had significantly more activation in the cerebellum during finger tapping. Positive correlations between performance on a fine motor praxis test and activation multiple cortical regions were noted for children with PSD but not for controls. Conclusions Over-activation in the cerebellum during a motor task may reflect a subtle abnormality in the non-speech motor neural circuitry in children with PSD. PMID:25481413

  16. Region and task-specific activation of Arc in primary motor cortex of rats following motor skill learning.

    PubMed

    Hosp, J A; Mann, S; Wegenast-Braun, B M; Calhoun, M E; Luft, A R

    2013-10-10

    Motor learning requires protein synthesis within the primary motor cortex (M1). Here, we show that the immediate early gene Arc/Arg3.1 is specifically induced in M1 by learning a motor skill. Arc mRNA was quantified using a fluorescent in situ hybridization assay in adult Long-Evans rats learning a skilled reaching task (SRT), in rats performing reaching-like forelimb movement without learning (ACT) and in rats that were trained in the operant but not the motor elements of the task (controls). Apart from M1, Arc expression was assessed within the rostral motor area (RMA), primary somatosensory cortex (S1), striatum (ST) and cerebellum. In SRT animals, Arc mRNA levels in M1 contralateral to the trained limb were 31% higher than ipsilateral (p<0.001), 31% higher than in the contralateral M1 of ACT animals (p<0.001) and 48% higher than in controls (p<0.001). Arc mRNA expression in SRT was positively correlated with learning success between two sessions (r=0.52; p=0.026). For RMA, S1, ST or cerebellum no significant differences in Arc mRNA expression were found between hemispheres or across behaviors. As Arc expression has been related to different forms of cellular plasticity, these findings suggest a link between M1 Arc expression and motor skill learning in rats. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Preliminary pilot fMRI study of neuropostural optimization with a noninvasive asymmetric radioelectric brain stimulation protocol in functional dysmetria

    PubMed Central

    Mura, Marco; Castagna, Alessandro; Fontani, Vania; Rinaldi, Salvatore

    2012-01-01

    Purpose This study assessed changes in functional dysmetria (FD) and in brain activation observable by functional magnetic resonance imaging (fMRI) during a leg flexion-extension motor task following brain stimulation with a single radioelectric asymmetric conveyer (REAC) pulse, according to the precisely defined neuropostural optimization (NPO) protocol. Population and methods Ten healthy volunteers were assessed using fMRI conducted during a simple motor task before and immediately after delivery of a single REAC-NPO pulse. The motor task consisted of a flexion-extension movement of the legs with the knees bent. FD signs and brain activation patterns were compared before and after REAC-NPO. Results A single 250-millisecond REAC-NPO treatment alleviated FD, as evidenced by patellar asymmetry during a sit-up motion, and modulated activity patterns in the brain, particularly in the cerebellum, during the performance of the motor task. Conclusion Activity in brain areas involved in motor control and coordination, including the cerebellum, is altered by administration of a REAC-NPO treatment and this effect is accompanied by an alleviation of FD. PMID:22536071

  18. Home-based interventions improve trained, but not novel, dual-task balance performance in older adults: A randomized controlled trial.

    PubMed

    Wongcharoen, Suleeporn; Sungkarat, Somporn; Munkhetvit, Peeraya; Lugade, Vipul; Silsupadol, Patima

    2017-02-01

    The purpose of this study was to compare the efficacy of four different home-based interventions on dual-task balance performance and to determine the generalizability of the four trainings to untrained tasks. Sixty older adults, aged 65 and older, were randomly assigned to one of four home-based interventions: single-task motor training, single-task cognitive training, dual-task motor-cognitive training, and dual-task cognitive-cognitive training. Participants received 60-min individualized training sessions, 3 times a week for 4 weeks. Prior to and following the training program, participants were asked to walk under two single-task conditions (i.e. narrow walking and obstacle crossing) and two dual-task conditions (i.e. a trained narrow walking while performing verbal fluency task and an untrained obstacle crossing while counting backward by 3s task). A nine-camera motion capture system was used to collect the trajectories of 32 reflective markers placed on bony landmarks of participants. Three-dimensional kinematics of the whole body center of mass and base of support were computed. Results from the extrapolated center of mass displacement indicated that motor-cognitive training was more effective than the single-task motor training to improve dual-task balance performance (p=0.04, ES=0.11). Interestingly, balance performance under both single-task and dual-task conditions can also be improved through a non-motor, single-task cognitive training program (p=0.01, ES=0.13, and p=0.01, ES=0.11, respectively). However, improved dual-task processing skills during training were not transferred to the novel dual task (p=0.15, ES=0.09). This is the first study demonstrating that home-based dual-task training can be effectively implemented to improve balance performance during gait in older adults. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Self-Controlled Amount of Practice Benefits Learning of a Motor Skill

    ERIC Educational Resources Information Center

    Post, Phillip G.; Fairbrother, Jeffrey T.; Barros, Joao A. C.

    2011-01-01

    Self-control over factors involving task-related information (e.g., feedback) can enhance motor learning. It is unknown if these benefits extend to manipulations that do not directly affect such information. The purpose of this study was to determine if self-control over the amount of practice would also facilitate learning. Participants learned…

  20. Physical Activity Predicts Performance in an Unpracticed Bimanual Coordination Task.

    PubMed

    Boisgontier, Matthieu P; Serbruyns, Leen; Swinnen, Stephan P

    2017-01-01

    Practice of a given physical activity is known to improve the motor skills related to this activity. However, whether unrelated skills are also improved is still unclear. To test the impact of physical activity on an unpracticed motor task, 26 young adults completed the international physical activity questionnaire and performed a bimanual coordination task they had never practiced before. Results showed that higher total physical activity predicted higher performance in the bimanual task, controlling for multiple factors such as age, physical inactivity, music practice, and computer games practice. Linear mixed models allowed this effect of physical activity to be generalized to a large population of bimanual coordination conditions. This finding runs counter to the notion that generalized motor abilities do not exist and supports the existence of a "learning to learn" skill that could be improved through physical activity and that impacts performance in tasks that are not necessarily related to the practiced activity.

  1. Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia*

    PubMed Central

    Kim, Sung-Phil; Simeral, John D; Hochberg, Leigh R; Donoghue, John P; Black, Michael J

    2010-01-01

    Computer-mediated connections between human motor cortical neurons and assistive devices promise to improve or restore lost function in people with paralysis. Recently, a pilot clinical study of an intracortical neural interface system demonstrated that a tetraplegic human was able to obtain continuous two-dimensional control of a computer cursor using neural activity recorded from his motor cortex. This control, however, was not sufficiently accurate for reliable use in many common computer control tasks. Here, we studied several central design choices for such a system including the kinematic representation for cursor movement, the decoding method that translates neuronal ensemble spiking activity into a control signal and the cursor control task used during training for optimizing the parameters of the decoding method. In two tetraplegic participants, we found that controlling a cursor's velocity resulted in more accurate closed-loop control than controlling its position directly and that cursor velocity control was achieved more rapidly than position control. Control quality was further improved over conventional linear filters by using a probabilistic method, the Kalman filter, to decode human motor cortical activity. Performance assessment based on standard metrics used for the evaluation of a wide range of pointing devices demonstrated significantly improved cursor control with velocity rather than position decoding. PMID:19015583

  2. Ankle Training With a Robotic Device Improves Hemiparetic Gait After a Stroke

    PubMed Central

    Forrester, Larry W.; Roy, Anindo; Krebs, Hermano Igo; Macko, Richard F.

    2013-01-01

    Background Task-oriented therapies such as treadmill exercise can improve gait velocity after stroke, but slow velocities and abnormal gait patterns often persist, suggesting a need for additional strategies to improve walking. Objectives To determine the effects of a 6-week visually guided, impedance controlled, ankle robotics intervention on paretic ankle motor control and gait function in chronic stroke. Methods This was a single-arm pilot study with a convenience sample of 8 stroke survivors with chronic hemiparetic gait, trained and tested in a laboratory. Subjects trained in dorsiflexion–plantarflexion by playing video games with the robot during three 1-hour training sessions weekly, totaling 560 repetitions per session. Assessments included paretic ankle ranges of motion, strength, motor control, and overground gait function. Results Improved paretic ankle motor control was seen as increased target success, along with faster and smoother movements. Walking velocity also increased significantly, whereas durations of paretic single support increased and double support decreased. Conclusions Robotic feedback training improved paretic ankle motor control with improvements in floor walking. Increased walking speeds were comparable with reports from other task-oriented, locomotor training approaches used in stroke, suggesting that a focus on ankle motor control may provide a valuable adjunct to locomotor therapies. PMID:21115945

  3. Heart rate variability during motor and cognitive tasks in females with major depressive disorder

    PubMed Central

    Nugent, Allison Carol; Bain, Earle Eugene; Thayer, Julian Francis; Sollers, John James; Drevets, Wayne Curtis

    2010-01-01

    Research indicates that major depressive disorder (MDD) is associated with alterations in autonomic control, particularly cardiac control as measured by heart rate variability (HRV). In this preliminary study, we investigated the neural correlates of autonomic control by measuring both HRV and associated brain activity during the performance of mildly stressful tasks. Medically healthy female subjects with MDD (N=10) and healthy controls (N=7) underwent H2 15O-PET and ECG recording while performing a handgrip motor task and an n-back task. Indices of HRV were calculated and correlated with regional cerebral blood flow (rCBF). Differences in the rCBF and HRV correlations between depressed and healthy subjects were evident in both the medial and lateral orbital cortices. In addition, these areas appeared to be involved in different facets of autonomic control with regard to sympathetic or parasympathetic dominance of cardiac control. These results are consistent with the known roles of networks within the orbital cortex in both autonomic control and the pathophysiology of MDD. PMID:21129936

  4. Watch and Learn: Seeing Is Better than Doing when Acquiring Consecutive Motor Tasks

    PubMed Central

    Larssen, Beverley C.; Ong, Nicole T.; Hodges, Nicola J.

    2012-01-01

    During motor adaptation learning, consecutive physical practice of two different tasks compromises the retention of the first. However, there is evidence that observational practice, while still effectively aiding acquisition, will not lead to interference and hence prove to be a better practice method. Observers and Actors practised in a clockwise (Task A) followed by a counterclockwise (Task B) visually rotated environment, and retention was immediately assessed. An Observe-all and Act-all group were compared to two groups who both physically practised Task A, but then only observed (ObsB) or did not see or practice Task B (NoB). The two observer groups and the NoB control group better retained Task A than Actors, although importantly only the observer groups learnt Task B. RT data and explicit awareness of the rotation suggested that the observers had acquired their respective tasks in a more strategic manner than Actor and Control groups. We conclude that observational practice benefits learning of multiple tasks more than physical practice due to the lack of updating of implicit, internal models for aiming in the former. PMID:22723909

  5. Comprehension of handwriting development: Pen-grip kinetics in handwriting tasks and its relation to fine motor skills among school-age children.

    PubMed

    Lin, Yu-Chen; Chao, Yen-Li; Wu, Shyi-Kuen; Lin, Ho-Hsio; Hsu, Chieh-Hsiang; Hsu, Hsiao-Man; Kuo, Li-Chieh

    2017-10-01

    Numerous tools have been developed to evaluate handwriting performances by analysing written products. However, few studies have directly investigated kinetic performances of digits when holding a pen. This study thus attempts to investigate pen-grip kinetics during writing tasks of school-age children and explore the relationship between the kinetic factors and fine motor skills. This study recruited 181 children aged from 5 to 12 years old and investigated the effects of age on handwriting kinetics and the relationship between these and fine motor skills. The forces applied from the digits and pen-tip were measured during writing tasks via a force acquisition pen, and the children's fine motor performances were also evaluated. The results indicate that peak force and average force might not be direct indicators of handwriting performance for normally developing children at this age. Younger children showed larger force variation and lower adjustment frequency during writing, which might indicate they had poorer force control than the older children. Force control when handling a pen is significantly correlated with fine motor performance, especially in relation to the manual dexterity. A novel system is proposed for analysing school-age children's force control while handwriting. We observed the development of force control in relation to pen grip among the children with different ages in this study. The findings suggested that manipulation skill may be crucial when children are establishing their handwriting capabilities. © 2017 Occupational Therapy Australia.

  6. Learning-induced Dependence of Neuronal Activity in Primary Motor Cortex on Motor Task Condition.

    PubMed

    Cai, X; Shimansky, Y; He, Jiping

    2005-01-01

    A brain-computer interface (BCI) system such as a cortically controlled robotic arm must have a capacity of adjusting its function to a specific environmental condition. We studied this capacity in non-human primates based on chronic multi-electrode recording from the primary motor cortex of a monkey during the animal's performance of a center-out 3D reaching task and adaptation to external force perturbations. The main condition-related feature of motor cortical activity observed before the onset of force perturbation was a phasic raise of activity immediately before the perturbation onset. This feature was observed during a series of perturbation trials, but were absent under no perturbations. After adaptation has been completed, it usually was taking the subject only one trial to recognize a change in the condition to switch the neuronal activity accordingly. These condition-dependent features of neuronal activity can be used by a BCI for recognizing a change in the environmental condition and making corresponding adjustments, which requires that the BCI-based control system possess such advanced properties of the neural motor control system as capacity to learn and adapt.

  7. Individuated finger control in focal hand dystonia: an fMRI study

    PubMed Central

    Moore, Ryan D; Gallea, Cecile; Horovitz, Silvina G; Hallett, Mark

    2012-01-01

    Objectives To better understand deficient selective motor control in focal hand dystonia by determining changes in striatal activation and connectivity in patients performing individuated finger control. Methods Functional imaging with a 3-Tesla magnetic resonance scanner was performed on 18 patients and 17 controls during non-symptom producing tasks requiring right-handed individuated or coupled finger control. A global linear model and psychophysiologic interactions model compared individuated to coupled tasks for patients and controls separately, and the results were submitted to a group analysis. The sensorimotor (posterior) and associative (anterior) putamen were considered as seed regions for the connectivity analysis. Results Compared to controls, patients had significant differences in activations and connectivity during individuated compared to coupled tasks: (i) decreased activations in the bilateral postcentral gyri, right associative posterior parietal areas, right cerebellum and left posterior putamen, while activations in the left anterior putamen were not different; (ii) increased connectivity of the left posterior putamen with the left cerebellum and left sensorimotor cortex; (iii) increased connectivity of the left anterior putamen with bilateral supplementary motor areas, the left premotor cortex, and left cerebellum. Interpretation Decreased activations in the sensorimotor putamen and cerebellum controlling the affected hand might underlie low levels of surround inhibition during individuated tasks. For identical motor performance in both groups, increased connectivity of sensorimotor and associative striato-cortical circuits in FHD suggests that both affected and unaffected territories of the striatum participate in compensatory processes. PMID:22484405

  8. Individuated finger control in focal hand dystonia: an fMRI study.

    PubMed

    Moore, Ryan D; Gallea, Cecile; Horovitz, Silvina G; Hallett, Mark

    2012-07-16

    To better understand deficient selective motor control in focal hand dystonia by determining changes in striatal activation and connectivity in patients performing individuated finger control. Functional imaging with a 3-Tesla magnetic resonance scanner was performed on 18 patients and 17 controls during non-symptom producing tasks requiring right-handed individuated or coupled finger control. A global linear model and psychophysiologic interaction model compared individuated to coupled tasks for patients and controls separately, and the results were submitted to a group analysis. The sensorimotor (posterior) and associative (anterior) parts of the putamen were considered as seed regions for the connectivity analysis. Compared to controls, patients had significant differences in activations and connectivity during individuated compared to coupled tasks: (i) decreased activations in the bilateral postcentral gyri, right associative posterior parietal areas, right cerebellum and left posterior putamen, while activations in the left anterior putamen were not different; (ii) increased connectivity of the left posterior putamen with the left cerebellum and left sensorimotor cortex; and (iii) increased connectivity of the left anterior putamen with bilateral supplementary motor areas, the left premotor cortex, and left cerebellum. Decreased activations in the sensorimotor putamen and cerebellum controlling the affected hand might underlie low levels of surround inhibition during individuated tasks. For identical motor performance in both groups, increased connectivity of sensorimotor and associative striato-cortical circuits in FHD suggests that both affected and unaffected territories of the striatum participate in compensatory processes. Published by Elsevier Inc.

  9. Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity.

    PubMed

    Lizier, Joseph T; Heinzle, Jakob; Horstmann, Annette; Haynes, John-Dylan; Prokopenko, Mikhail

    2011-02-01

    The human brain undertakes highly sophisticated information processing facilitated by the interaction between its sub-regions. We present a novel method for interregional connectivity analysis, using multivariate extensions to the mutual information and transfer entropy. The method allows us to identify the underlying directed information structure between brain regions, and how that structure changes according to behavioral conditions. This method is distinguished in using asymmetric, multivariate, information-theoretical analysis, which captures not only directional and non-linear relationships, but also collective interactions. Importantly, the method is able to estimate multivariate information measures with only relatively little data. We demonstrate the method to analyze functional magnetic resonance imaging time series to establish the directed information structure between brain regions involved in a visuo-motor tracking task. Importantly, this results in a tiered structure, with known movement planning regions driving visual and motor control regions. Also, we examine the changes in this structure as the difficulty of the tracking task is increased. We find that task difficulty modulates the coupling strength between regions of a cortical network involved in movement planning and between motor cortex and the cerebellum which is involved in the fine-tuning of motor control. It is likely these methods will find utility in identifying interregional structure (and experimentally induced changes in this structure) in other cognitive tasks and data modalities.

  10. Different motor tasks impact differently on cognitive performance of older persons during dual task tests.

    PubMed

    Simoni, David; Rubbieri, Gaia; Baccini, Marco; Rinaldi, Lucio; Becheri, Dimitri; Forconi, Tatiana; Mossello, Enrico; Zanieri, Samanta; Marchionni, Niccolò; Di Bari, Mauro

    2013-07-01

    Dual task paradigm states that the introduction of a second task during a cognitive or motor performance results in a decreased performance in either task. Treadmill walk, often used in clinical applications of dual task testing, has never been compared to overground walk, to ascertain its susceptibility to interference from a second task. We compared the effects of overground and treadmill gait on dual task performance. Gait kinematic parameters and cognitive performance were obtained in 29 healthy older adults (mean age 75 years, 14 females) when they were walking freely on a sensorized carpet or during treadmill walking with an optoelectronic system, in single task or dual task conditions, using alternate repetition of letters as a cognitive verbal task. During overground walking, speed, cadence, step length stride length, and double support time (all with P value<0.001) and cognitive performance (number of correct words, P<0.001) decreased substantially from single to dual task testing. When subjects walked at a fixed speed on the treadmill, cadence decreased significantly (P=0.005), whereas cognitive performance remained unaffected. Both motor and cognitive performances decline during dual task testing with overground walking. Conversely, cognitive performance remains unaffected in dual task testing on the treadmill. In the light of current dual task paradigm, these findings may have relevant implication for our understanding of motor control, as they suggest that treadmill walk does not involve brain areas susceptible to interference from the introduction of a cognitive task. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The Use of Cognitive Cues for Anticipatory Strategies in a Dynamic Postural Control Task - Validation of a Novel Approach to Dual-Task Testing.

    PubMed

    Laessoe, Uffe; Grarup, Bo; Bangshaab, Jette

    2016-01-01

    Dual-task testing is relevant in the assessment of postural control. A combination of a primary (motor) and a secondary (distracting cognitive) tasks is most often used. It remains a challenge however, to standardize and monitor the cognitive task. In this study a new dual-task testing approach with a facilitating, rather than distracting, cognitive component was evaluated. Thirty-one community-dwelling elderly and fifteen young people were tested with respect to their ability to use anticipatory postural control strategies. The motor task consisted of twenty-five repetitive tasks in which the participants needed to exceed their limit of stability in order to touch one out of eight lights. The participants performed three tests. In two of the tests the color cues of the lights allowed the participants to utilize cognitive strategies to plan their next movement and improve their performance time. The young performed the baseline motor task test in an average of 29 seconds, while the average time for the elderly was 44 seconds. When comparing the performance time with a leading cue to the time with no cue, the young group improved their performance time significantly better than the elderly did: young: 17% (5), elderly: 5% (8); p<0.001. Similar differences were seen with a more complicated leading cue: young: 12% (5), elderly: 4% (9); p<0.01. The reliability of the test showed moderate to substantial agreement (ICC = 0.74), with a small learning effect between two sessions. The dual-task test was sensitive enough to discriminate between elderly and young people. It revealed that the elderly did not utilize cognitive cues for their anticipatory postural control strategies as well as the young were able to. The test procedure was feasible and comprehensible for the participants, and it may be relevant to standardize a similar test for an alternative dual-task approach in the clinical setting.

  12. Plasticity of cortical inhibition in dystonia is impaired after motor learning and Paired-Associative Stimulation

    PubMed Central

    Meunier, Sabine; Russmann, Heike; Shamim, Ejaz; Lamy, Jean-Charles; Hallett, Mark

    2012-01-01

    Summary Artificial induction of plasticity by paired associative stimulation (PAS) in healthy subjects (HV) demonstrates Hebbian-like plasticity in selected inhibitory networks as well as excitatory ones. In a group of 17 patients with focal hand dystonia and a group of 19 HV, we evaluated how PAS and the learning of a simple motor task influence the circuits supporting long interval intracortical inhibition (LICI, reflecting activity of GABAB interneurons) and long latency afferent inhibition (LAI, reflecting activity of somatosensory inputs to the motor cortex). In HV, PAS and motor learning induced LTP-like plasticity of excitatory networks and a lasting decrease of LAI and LICI in the motor representation of the targeted or trained muscle. The better the motor performance, the larger was the decrease of LAI. Although motor performance in the patient group was similar to that of the control group, LAI did not decrease during the motor learning as it did in the control group. In contrast, LICI was normally modulated. In patients the results after PAS did not match those obtained after motor learning: LAI was paradoxically increased and LICI did not exhibit any change. In the normal situation, decreased excitability in inhibitory circuits after induction of LTP-like plasticity may help to shape the cortical maps according to the new sensorimotor task. In patients, the abnormal or absent modulation of afferent and intracortical long-interval inhibition might indicate maladaptive plasticity that possibly contributes to the difficulty that they have to learn a new sensorimotor task.“ PMID:22429246

  13. An overview of adaptive model theory: solving the problems of redundancy, resources, and nonlinear interactions in human movement control.

    PubMed

    Neilson, Peter D; Neilson, Megan D

    2005-09-01

    Adaptive model theory (AMT) is a computational theory that addresses the difficult control problem posed by the musculoskeletal system in interaction with the environment. It proposes that the nervous system creates motor maps and task-dependent synergies to solve the problems of redundancy and limited central resources. These lead to the adaptive formation of task-dependent feedback/feedforward controllers able to generate stable, noninteractive control and render nonlinear interactions unobservable in sensory-motor relationships. AMT offers a unified account of how the nervous system might achieve these solutions by forming internal models. This is presented as the design of a simulator consisting of neural adaptive filters based on cerebellar circuitry. It incorporates a new network module that adaptively models (in real time) nonlinear relationships between inputs with changing and uncertain spectral and amplitude probability density functions as is the case for sensory and motor signals.

  14. A Common Function of Basal Ganglia-Cortical Circuits Subserving Speed in Both Motor and Cognitive Domains.

    PubMed

    Hanakawa, Takashi; Goldfine, Andrew M; Hallett, Mark

    2017-01-01

    Distinct regions of the frontal cortex connect with their basal ganglia and thalamic counterparts, constituting largely segregated basal ganglia-thalamo-cortical (BTC) circuits. However, any common role of the BTC circuits in different behavioral domains remains unclear. Indeed, whether dysfunctional motor and cognitive BTC circuits are responsible for motor slowing and cognitive slowing, respectively, in Parkinson's disease (PD) is a matter of debate. Here, we used an effortful behavioral paradigm in which the effects of task rate on accuracy were tested in movement, imagery, and calculation tasks in humans. Using nonlinear fitting, we separated baseline accuracy ( A base ) and "agility" (ability to function quickly) components of performance in healthy participants and then confirmed reduced agility and preserved A base for the three tasks in PD. Using functional magnetic resonance imaging (fMRI) and diffusion tractography, we explored the neural substrates underlying speeded performance of the three tasks in healthy participants, suggesting the involvement of distinct BTC circuits in cognitive and motor agility. Language and motor BTC circuits were specifically active during speeded performance of the calculation and movement tasks, respectively, whereas premotor BTC circuits revealed activity for speeded performance of all tasks. Finally, PD showed reduced task rate-correlated activity in the language BTC circuits for speeded calculation, in the premotor BTC circuit for speeded imagery, and in the motor BTC circuits for speeded movement, as compared with controls. The present study casts light on the anatomo-functional organization of the BTC circuits and their parallel roles in invigorating movement and cognition through a function of dopamine.

  15. A Common Function of Basal Ganglia-Cortical Circuits Subserving Speed in Both Motor and Cognitive Domains

    PubMed Central

    2017-01-01

    Abstract Distinct regions of the frontal cortex connect with their basal ganglia and thalamic counterparts, constituting largely segregated basal ganglia-thalamo-cortical (BTC) circuits. However, any common role of the BTC circuits in different behavioral domains remains unclear. Indeed, whether dysfunctional motor and cognitive BTC circuits are responsible for motor slowing and cognitive slowing, respectively, in Parkinson’s disease (PD) is a matter of debate. Here, we used an effortful behavioral paradigm in which the effects of task rate on accuracy were tested in movement, imagery, and calculation tasks in humans. Using nonlinear fitting, we separated baseline accuracy (Abase) and “agility” (ability to function quickly) components of performance in healthy participants and then confirmed reduced agility and preserved Abase for the three tasks in PD. Using functional magnetic resonance imaging (fMRI) and diffusion tractography, we explored the neural substrates underlying speeded performance of the three tasks in healthy participants, suggesting the involvement of distinct BTC circuits in cognitive and motor agility. Language and motor BTC circuits were specifically active during speeded performance of the calculation and movement tasks, respectively, whereas premotor BTC circuits revealed activity for speeded performance of all tasks. Finally, PD showed reduced task rate-correlated activity in the language BTC circuits for speeded calculation, in the premotor BTC circuit for speeded imagery, and in the motor BTC circuits for speeded movement, as compared with controls. The present study casts light on the anatomo-functional organization of the BTC circuits and their parallel roles in invigorating movement and cognition through a function of dopamine. PMID:29379873

  16. Adaptive Postural Control for Joint Immobilization during Multitask Performance

    PubMed Central

    Hsu, Wei-Li

    2014-01-01

    Motor abundance is an essential feature of adaptive control. The range of joint combinations enabled by motor abundance provides the body with the necessary freedom to adopt different positions, configurations, and movements that allow for exploratory postural behavior. This study investigated the adaptation of postural control to joint immobilization during multi-task performance. Twelve healthy volunteers (6 males and 6 females; 21–29 yr) without any known neurological deficits, musculoskeletal conditions, or balance disorders participated in this study. The participants executed a targeting task, alone or combined with a ball-balancing task, while standing with free or restricted joint motions. The effects of joint configuration variability on center of mass (COM) stability were examined using uncontrolled manifold (UCM) analysis. The UCM method separates joint variability into two components: the first is consistent with the use of motor abundance, which does not affect COM position (VUCM); the second leads to COM position variability (VORT). The analysis showed that joints were coordinated such that their variability had a minimal effect on COM position. However, the component of joint variability that reflects the use of motor abundance to stabilize COM (VUCM) was significant decreased when the participants performed the combined task with immobilized joints. The component of joint variability that leads to COM variability (VORT) tended to increase with a reduction in joint degrees of freedom. The results suggested that joint immobilization increases the difficulty of stabilizing COM when multiple tasks are performed simultaneously. These findings are important for developing rehabilitation approaches for patients with limited joint movements. PMID:25329477

  17. Evaluation of Teaching Signals for Motor Control in the Cerebellum during Real-World Robot Application.

    PubMed

    Pinzon Morales, Ruben Dario; Hirata, Yutaka

    2016-12-20

    Motor learning in the cerebellum is believed to entail plastic changes at synapses between parallel fibers and Purkinje cells, induced by the teaching signal conveyed in the climbing fiber (CF) input. Despite the abundant research on the cerebellum, the nature of this signal is still a matter of debate. Two types of movement error information have been proposed to be plausible teaching signals: sensory error (SE) and motor command error (ME); however, their plausibility has not been tested in the real world. Here, we conducted a comparison of different types of CF teaching signals in real-world engineering applications by using a realistic neuronal network model of the cerebellum. We employed a direct current motor (simple task) and a two-wheeled balancing robot (difficult task). We demonstrate that SE, ME or a linear combination of the two is sufficient to yield comparable performance in a simple task. When the task is more difficult, although SE slightly outperformed ME, these types of error information are all able to adequately control the robot. We categorize granular cells according to their inputs and the error signal revealing that different granule cells are preferably engaged for SE, ME or their combination. Thus, unlike previous theoretical and simulation studies that support either SE or ME, it is demonstrated for the first time in a real-world engineering application that both SE and ME are adequate as the CF teaching signal in a realistic computational cerebellar model, even when the control task is as difficult as stabilizing a two-wheeled balancing robot.

  18. Evaluation of Teaching Signals for Motor Control in the Cerebellum during Real-World Robot Application

    PubMed Central

    Pinzon Morales, Ruben Dario; Hirata, Yutaka

    2016-01-01

    Motor learning in the cerebellum is believed to entail plastic changes at synapses between parallel fibers and Purkinje cells, induced by the teaching signal conveyed in the climbing fiber (CF) input. Despite the abundant research on the cerebellum, the nature of this signal is still a matter of debate. Two types of movement error information have been proposed to be plausible teaching signals: sensory error (SE) and motor command error (ME); however, their plausibility has not been tested in the real world. Here, we conducted a comparison of different types of CF teaching signals in real-world engineering applications by using a realistic neuronal network model of the cerebellum. We employed a direct current motor (simple task) and a two-wheeled balancing robot (difficult task). We demonstrate that SE, ME or a linear combination of the two is sufficient to yield comparable performance in a simple task. When the task is more difficult, although SE slightly outperformed ME, these types of error information are all able to adequately control the robot. We categorize granular cells according to their inputs and the error signal revealing that different granule cells are preferably engaged for SE, ME or their combination. Thus, unlike previous theoretical and simulation studies that support either SE or ME, it is demonstrated for the first time in a real-world engineering application that both SE and ME are adequate as the CF teaching signal in a realistic computational cerebellar model, even when the control task is as difficult as stabilizing a two-wheeled balancing robot. PMID:27999381

  19. Parallel Alterations of Functional Connectivity during Execution and Imagination after Motor Imagery Learning

    PubMed Central

    Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li

    2012-01-01

    Background Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. Methodology/Principal Findings Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. Conclusions/Significance These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that the potential value of MI learning in motor function rehabilitation and motor skill learning deserves more attention and further investigation. PMID:22629308

  20. Toward a Model-Based Predictive Controller Design in Brain–Computer Interfaces

    PubMed Central

    Kamrunnahar, M.; Dias, N. S.; Schiff, S. J.

    2013-01-01

    A first step in designing a robust and optimal model-based predictive controller (MPC) for brain–computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8–23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications. PMID:21267657

  1. Toward a model-based predictive controller design in brain-computer interfaces.

    PubMed

    Kamrunnahar, M; Dias, N S; Schiff, S J

    2011-05-01

    A first step in designing a robust and optimal model-based predictive controller (MPC) for brain-computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8-23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications.

  2. Manipulating motor performance and memory through real-time fMRI neurofeedback.

    PubMed

    Scharnowski, Frank; Veit, Ralf; Zopf, Regine; Studer, Petra; Bock, Simon; Diedrichsen, Jörn; Goebel, Rainer; Mathiak, Klaus; Birbaumer, Niels; Weiskopf, Nikolaus

    2015-05-01

    Task performance depends on ongoing brain activity which can be influenced by attention, arousal, or motivation. However, such modulating factors of cognitive efficiency are unspecific, can be difficult to control, and are not suitable to facilitate neural processing in a regionally specific manner. Here, we non-pharmacologically manipulated regionally specific brain activity using technically sophisticated real-time fMRI neurofeedback. This was accomplished by training participants to simultaneously control ongoing brain activity in circumscribed motor and memory-related brain areas, namely the supplementary motor area and the parahippocampal cortex. We found that learned voluntary control over these functionally distinct brain areas caused functionally specific behavioral effects, i.e. shortening of motor reaction times and specific interference with memory encoding. The neurofeedback approach goes beyond improving cognitive efficiency by unspecific psychological factors such as attention, arousal, or motivation. It allows for directly manipulating sustained activity of task-relevant brain regions in order to yield specific behavioral or cognitive effects. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Working memory contributes to elevated motor activity in adults with ADHD: an examination of the role of central executive and storage/rehearsal processes.

    PubMed

    Hudec, Kristen L; Alderson, R Matt; Kasper, Lisa J; Patros, Connor H G

    2014-05-01

    The relationship between working memory (WM) and objectively measured motor activity was examined in adults with ADHD and healthy controls (HCs). Thirty-five adults (ADHD = 20, HC = 15) were grouped using self-report and collateral-report measures in addition to a semistructured clinical interview. All participants completed control conditions with minimal WM demands, and separate phonological (PH) and visuospatial (VS) WM tasks with recall demands ranging from four to seven stimuli. The ADHD group exhibited significantly more motor activity relative to the HC group, and both groups exhibited greater activity during PH and VS WM tasks, relative to control conditions. Finally, the central executive (CE) and PH storage/rehearsal subsystems were associated with large-magnitude between-group differences in activity. Findings suggest that increased demands on WM, particularly the CE and PH storage/rehearsal, contribute to ADHD-related hyperactivity, though a portion of excessive motor activity in adults with ADHD may occur independently of WM demands.

  4. Manipulating motor performance and memory through real-time fMRI neurofeedback

    PubMed Central

    Scharnowski, Frank; Veit, Ralf; Zopf, Regine; Studer, Petra; Bock, Simon; Diedrichsen, Jörn; Goebel, Rainer; Mathiak, Klaus; Birbaumer, Niels; Weiskopf, Nikolaus

    2015-01-01

    Task performance depends on ongoing brain activity which can be influenced by attention, arousal, or motivation. However, such modulating factors of cognitive efficiency are unspecific, can be difficult to control, and are not suitable to facilitate neural processing in a regionally specific manner. Here, we non-pharmacologically manipulated regionally specific brain activity using technically sophisticated real-time fMRI neurofeedback. This was accomplished by training participants to simultaneously control ongoing brain activity in circumscribed motor and memory-related brain areas, namely the supplementary motor area and the parahippocampal cortex. We found that learned voluntary control over these functionally distinct brain areas caused functionally specific behavioral effects, i.e. shortening of motor reaction times and specific interference with memory encoding. The neurofeedback approach goes beyond improving cognitive efficiency by unspecific psychological factors such as attention, arousal, or motivation. It allows for directly manipulating sustained activity of task-relevant brain regions in order to yield specific behavioral or cognitive effects. PMID:25796342

  5. Effects of dual task difficulty in motor and cognitive performance: Differences between adults and adolescents.

    PubMed

    Bustillo-Casero, Pilar; Villarrasa-Sapiña, Israel; García-Massó, Xavier

    2017-10-01

    In the present study our aim was to compare dual-task performance in thirteen adolescents and fifteen young adults while concurrently performing a cognitive and a motor task. The postural control variables were obtained under three different conditions: i) bipedal stance, ii) tandem stance and iii) unipedal stance. The cognitive task consisted of a backward digit span test in which the participants were asked to memorize a sequence of numbers and then repeat the number in reverse order at three different difficulty levels (i.e. with 3, 4 and 5 digits). The difficulty of the cognitive task was seen to have different effects on adolescents and young adults. Adolescents seem to prioritize postural control during high difficulty postural conditions while a cross-domain competition model appeared in easy postural conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Hyperactivity in boys with attention deficit/hyperactivity disorder (ADHD): the association between deficient behavioral inhibition, attentional processes, and objectively measured activity.

    PubMed

    Alderson, R Matt; Rapport, Mark D; Kasper, Lisa J; Sarver, Dustin E; Kofler, Michael J

    2012-01-01

    Contemporary models of ADHD hypothesize that hyperactivity reflects a byproduct of inhibition deficits. The current study investigated the relationship between children's motor activity and behavioral inhibition by experimentally manipulating demands placed on the limited-resource inhibition system. Twenty-two boys (ADHD = 11, TD = 11) between the ages of 8 and 12 years completed a conventional stop-signal task, two choice-task variants (no-tone, ignore-tone), and control tasks while their motor activity was measured objectively by actigraphs placed on their nondominant wrist and ankles. All children exhibited significantly higher activity rates under all three experimental tasks relative to control conditions, and children with ADHD moved significantly more than typically developing children across conditions. No differences in activity level were observed between the inhibition and noninhibition experimental tasks for either group, indicating that activity level was primarily associated with basic attentional rather than behavioral inhibition processes.

  7. Inhibitory Control of Memory Retrieval and Motor Processing Associated with the Right Lateral Prefrontal Cortex: Evidence from Deficits in Individuals with ADHD

    ERIC Educational Resources Information Center

    Depue, B. E.; Burgess, G. C.; Willcutt, E. G.; Ruzic, L.; Banich, M. T.

    2010-01-01

    Studies of inhibitory control have focused on inhibition of motor responses. Individuals with ADHD consistently show reductions in inhibitory control and exhibit reduced activity of rLPFC activity compared to controls when performing such tasks. Recently these same brain regions have been implicated in the inhibition of memory retrieval. The…

  8. Differential sensitivity of cranial and limb motor function to nigrostriatal dopamine depletion

    PubMed Central

    Plowman, Emily K.; Maling, Nicholas; Rivera, Benjamin J.; Larson, Krista; Thomas, Nagheme J.; Fowler, Stephen C.; Manfredsson, Fredric P.; Shrivastav, Rahul; Kleim, Jeffrey A.

    2012-01-01

    The present study determined the differential effects of unilateral striatal dopamine depletion on cranial motor versus limb motor function. Forty male Long Evans rats were first trained on a comprehensive motor testing battery that dissociated cranial versus limb motor function and included: cylinder forepaw placement, single pellet reaching, vermicelli pasta handling; sunflower seed opening, pasta biting acoustics, and a licking task. Following baseline testing, animals were randomized to either a 6-hydroxydopamine (6-OHDA) (n = 20) or control (n = 20) group. Animals in the 6-OHDA group received unilateral intrastriatal 6-OHDA infusions to induce striatal dopamine depletion. Six-weeks following infusion, all animals were re-tested on the same battery of motor tests. Near infrared densitometry was performed on sections taken through the striatum that were immunohistochemically stained for tyrosine hydroxylase (TH). Animals in the 6-OHDA condition showed a mean reduction in TH staining of 88.27%. Although 6-OHDA animals were significantly impaired on all motor tasks, limb motor deficits were more severe than cranial motor impairments. Further, performance on limb motor tasks was correlated with degree of TH depletion while performance on cranial motor impairments showed no significant correlation. These results suggest that limb motor function may be more sensitive to striatal dopaminergic depletion than cranial motor function and is consistent with the clinical observation that therapies targeting the nigrostriatal dopaminergic system in Parkinson’s disease are more effective for limb motor symptoms than cranial motor impairments. PMID:23018122

  9. Performance improvements from imagery: evidence that internal visual imagery is superior to external visual imagery for slalom performance

    PubMed Central

    Callow, Nichola; Roberts, Ross; Hardy, Lew; Jiang, Dan; Edwards, Martin Gareth

    2013-01-01

    We report three experiments investigating the hypothesis that use of internal visual imagery (IVI) would be superior to external visual imagery (EVI) for the performance of different slalom-based motor tasks. In Experiment 1, three groups of participants (IVI, EVI, and a control group) performed a driving-simulation slalom task. The IVI group achieved significantly quicker lap times than EVI and the control group. In Experiment 2, participants performed a downhill running slalom task under both IVI and EVI conditions. Performance was again quickest in the IVI compared to EVI condition, with no differences in accuracy. Experiment 3 used the same group design as Experiment 1, but with participants performing a downhill ski-slalom task. Results revealed the IVI group to be significantly more accurate than the control group, with no significant differences in time taken to complete the task. These results support the beneficial effects of IVI for slalom-based tasks, and significantly advances our knowledge related to the differential effects of visual imagery perspectives on motor performance. PMID:24155710

  10. Automatic motor task selection via a bandit algorithm for a brain-controlled button

    NASA Astrophysics Data System (ADS)

    Fruitet, Joan; Carpentier, Alexandra; Munos, Rémi; Clerc, Maureen

    2013-02-01

    Objective. Brain-computer interfaces (BCIs) based on sensorimotor rhythms use a variety of motor tasks, such as imagining moving the right or left hand, the feet or the tongue. Finding the tasks that yield best performance, specifically to each user, is a time-consuming preliminary phase to a BCI experiment. This study presents a new adaptive procedure to automatically select (online) the most promising motor task for an asynchronous brain-controlled button. Approach. We develop for this purpose an adaptive algorithm UCB-classif based on the stochastic bandit theory and design an EEG experiment to test our method. We compare (offline) the adaptive algorithm to a naïve selection strategy which uses uniformly distributed samples from each task. We also run the adaptive algorithm online to fully validate the approach. Main results. By not wasting time on inefficient tasks, and focusing on the most promising ones, this algorithm results in a faster task selection and a more efficient use of the BCI training session. More precisely, the offline analysis reveals that the use of this algorithm can reduce the time needed to select the most appropriate task by almost half without loss in precision, or alternatively, allow us to investigate twice the number of tasks within a similar time span. Online tests confirm that the method leads to an optimal task selection. Significance. This study is the first one to optimize the task selection phase by an adaptive procedure. By increasing the number of tasks that can be tested in a given time span, the proposed method could contribute to reducing ‘BCI illiteracy’.

  11. Heritability of motor control and motor learning

    PubMed Central

    Missitzi, Julia; Gentner, Reinhard; Misitzi, Angelica; Geladas, Nickos; Politis, Panagiotis; Klissouras, Vassilis; Classen, Joseph

    2013-01-01

    Abstract The aim of this study was to elucidate the relative contribution of genes and environment on individual differences in motor control and acquisition of a force control task, in view of recent association studies showing that several candidate polymorphisms may have an effect on them. Forty‐four healthy female twins performed brisk isometric abductions with their right thumb. Force was recorded by a transducer and fed back to the subject on a computer screen. The task was to place the tracing of the peak force in a force window defined between 30% and 40% of the subject's maximum force, as determined beforehand. The initial level of proficiency was defined as the number of attempts reaching the force window criterion within the first 100 trials. The difference between the number of successful trials within the last and the first 100 trials was taken as a measure of motor learning. For motor control, defined by the initial level of proficiency, the intrapair differences in monozygotic (MZ) and dizygotic (DZ) twins were 6.8 ± 7.8 and 13.8 ± 8.4, and the intrapair correlations 0.77 and 0.39, respectively. Heritability was estimated at 0.68. Likewise for motor learning intrapair differences in the increment of the number of successful trials in MZ and DZ twins were 5.4 ± 5.2 and 12.8 ± 7, and the intrapair correlations 0.58 and 0.19. Heritability reached 0.70. The present findings suggest that heredity accounts for a major part of existing differences in motor control and motor learning, but uncertainty remains which gene polymorphisms may be responsible. PMID:24744865

  12. Body side-specific control of motor activity during turning in a walking animal

    PubMed Central

    Gruhn, Matthias; Rosenbaum, Philipp; Bockemühl, Till; Büschges, Ansgar

    2016-01-01

    Animals and humans need to move deftly and flexibly to adapt to environmental demands. Despite a large body of work on the neural control of walking in invertebrates and vertebrates alike, the mechanisms underlying the motor flexibility that is needed to adjust the motor behavior remain largely unknown. Here, we investigated optomotor-induced turning and the neuronal mechanisms underlying the differences between the leg movements of the two body sides in the stick insect Carausius morosus. We present data to show that the generation of turning kinematics in an insect are the combined result of descending unilateral commands that change the leg motor output via task-specific modifications in the processing of local sensory feedback as well as modification of the activity of local central pattern generating networks in a body-side-specific way. To our knowledge, this is the first study to demonstrate the specificity of such modifications in a defined motor task. DOI: http://dx.doi.org/10.7554/eLife.13799.001 PMID:27130731

  13. Passive motion paradigm: an alternative to optimal control.

    PubMed

    Mohan, Vishwanathan; Morasso, Pietro

    2011-01-01

    IN THE LAST YEARS, OPTIMAL CONTROL THEORY (OCT) HAS EMERGED AS THE LEADING APPROACH FOR INVESTIGATING NEURAL CONTROL OF MOVEMENT AND MOTOR COGNITION FOR TWO COMPLEMENTARY RESEARCH LINES: behavioral neuroscience and humanoid robotics. In both cases, there are general problems that need to be addressed, such as the "degrees of freedom (DoFs) problem," the common core of production, observation, reasoning, and learning of "actions." OCT, directly derived from engineering design techniques of control systems quantifies task goals as "cost functions" and uses the sophisticated formal tools of optimal control to obtain desired behavior (and predictions). We propose an alternative "softer" approach passive motion paradigm (PMP) that we believe is closer to the biomechanics and cybernetics of action. The basic idea is that actions (overt as well as covert) are the consequences of an internal simulation process that "animates" the body schema with the attractor dynamics of force fields induced by the goal and task-specific constraints. This internal simulation offers the brain a way to dynamically link motor redundancy with task-oriented constraints "at runtime," hence solving the "DoFs problem" without explicit kinematic inversion and cost function computation. We argue that the function of such computational machinery is not only restricted to shaping motor output during action execution but also to provide the self with information on the feasibility, consequence, understanding and meaning of "potential actions." In this sense, taking into account recent developments in neuroscience (motor imagery, simulation theory of covert actions, mirror neuron system) and in embodied robotics, PMP offers a novel framework for understanding motor cognition that goes beyond the engineering control paradigm provided by OCT. Therefore, the paper is at the same time a review of the PMP rationale, as a computational theory, and a perspective presentation of how to develop it for designing better cognitive architectures.

  14. History of Illicit Stimulant Use Is Not Associated with Long-Lasting Changes in Learning of Fine Motor Skills in Humans

    PubMed Central

    Todd, Gabrielle; Pearson-Dennett, Verity; Flavel, Stanley C.; Haberfield, Miranda; Edwards, Hannah; White, Jason M.

    2016-01-01

    Little is known about the long-lasting effect of use of illicit stimulant drugs on learning of new motor skills. We hypothesised that abstinent individuals with a history of primarily methamphetamine and ecstasy use would exhibit normal learning of a visuomotor tracking task compared to controls. The study involved three groups: abstinent stimulant users (n = 21; 27 ± 6 yrs) and two gender-matched control groups comprising nondrug users (n = 16; 22 ± 4 yrs) and cannabis users (n = 16; 23 ± 5 yrs). Motor learning was assessed with a three-minute visuomotor tracking task. Subjects were instructed to follow a moving target on a computer screen with movement of the index finger. Metacarpophalangeal joint angle and first dorsal interosseous electromyographic activity were recorded. Pattern matching was assessed by cross-correlation of the joint angle and target traces. Distance from the target (tracking error) was also calculated. Motor learning was evident in the visuomotor task. Pattern matching improved over time (cross-correlation coefficient) and tracking error decreased. However, task performance did not differ between the groups. The results suggest that learning of a new fine visuomotor skill is unchanged in individuals with a history of illicit stimulant use. PMID:26819778

  15. History of Illicit Stimulant Use Is Not Associated with Long-Lasting Changes in Learning of Fine Motor Skills in Humans.

    PubMed

    Todd, Gabrielle; Pearson-Dennett, Verity; Flavel, Stanley C; Haberfield, Miranda; Edwards, Hannah; White, Jason M

    2016-01-01

    Little is known about the long-lasting effect of use of illicit stimulant drugs on learning of new motor skills. We hypothesised that abstinent individuals with a history of primarily methamphetamine and ecstasy use would exhibit normal learning of a visuomotor tracking task compared to controls. The study involved three groups: abstinent stimulant users (n = 21; 27 ± 6 yrs) and two gender-matched control groups comprising nondrug users (n = 16; 22 ± 4 yrs) and cannabis users (n = 16; 23 ± 5 yrs). Motor learning was assessed with a three-minute visuomotor tracking task. Subjects were instructed to follow a moving target on a computer screen with movement of the index finger. Metacarpophalangeal joint angle and first dorsal interosseous electromyographic activity were recorded. Pattern matching was assessed by cross-correlation of the joint angle and target traces. Distance from the target (tracking error) was also calculated. Motor learning was evident in the visuomotor task. Pattern matching improved over time (cross-correlation coefficient) and tracking error decreased. However, task performance did not differ between the groups. The results suggest that learning of a new fine visuomotor skill is unchanged in individuals with a history of illicit stimulant use.

  16. Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson's disease.

    PubMed

    Obeso, Ignacio; Wilkinson, Leonora; Casabona, Enrique; Bringas, Maria Luisa; Álvarez, Mario; Álvarez, Lázaro; Pavón, Nancy; Rodríguez-Oroz, Maria-Cruz; Macías, Raúl; Obeso, Jose A; Jahanshahi, Marjan

    2011-07-01

    Recent imaging studies in healthy controls with a conditional stop signal reaction time (RT) task have implicated the subthalamic nucleus (STN) in response inhibition and the pre-supplementary motor area (pre-SMA) in conflict resolution. Parkinson's disease (PD) is characterized by striatal dopamine deficiency and overactivity of the STN and underactivation of the pre-SMA during movement. We used the conditional stop signal RT task to investigate whether PD produced similar or dissociable effects on response initiation, response inhibition and response initiation under conflict. In addition, we also examined inhibition of prepotent responses on three cognitive tasks: the Stroop, random number generation and Hayling sentence completion. PD patients were impaired on the conditional stop signal reaction time task, with response initiation both in situations with or without conflict and response inhibition all being significantly delayed, and had significantly greater difficulty in suppressing prepotent or habitual responses on the Stroop, Hayling and random number generation tasks relative to controls. These results demonstrate the existence of a generalized inhibitory deficit in PD, which suggest that PD is a disorder of inhibition as well as activation and that in situations of conflict, executive control over responses is compromised.

  17. Single-session tDCS-supported retraining does not improve fine motor control in musician's dystonia.

    PubMed

    Buttkus, Franziska; Baur, Volker; Jabusch, Hans-Christian; de la Cruz Gomez-Pellin, Maria; Paulus, Walter; Nitsche, Michael A; Altenmüller, Eckart

    2011-01-01

    Focal dystonia in musicians (MD) is a task-specific movement disorder with a loss of voluntary motor control during instrumental playing. Defective inhibition on different levels of the central nervous system is involved in the pathophysiology. Sensorimotor retraining is a therapeutic approach to MD and aims to establish non-dystonic movements. Transcranial direct current stimulation (tDCS) modulates cortical excitability and alters motor performance. In this study, tDCS of the motor cortex was expected to assist retraining at the instrument. Nine professional pianists suffering from MD were included in a placebo-controlled double-blinded study. Retraining consisted of slow, voluntarily controlled movements on the piano and was combined with tDCS. Patients were treated with three stimulation protocols: anodal tDCS, cathodal tDCS and placebo stimulation. No beneficial effects of single-session tDCS-supported sensorimotor retraining on fine motor control in pianists with MD were found in all three conditions. The main cause of the negative result of this study may be the short intervention time. One retraining session with a duration of 20 min seems not sufficient to improve symptoms of MD. Additionally, a single tDCS session might not be sufficient to modify sensorimotor learning of a highly skilled task in musicians with dystonia.

  18. Fault tolerant vector control of induction motor drive

    NASA Astrophysics Data System (ADS)

    Odnokopylov, G.; Bragin, A.

    2014-10-01

    For electric composed of technical objects hazardous industries, such as nuclear, military, chemical, etc. an urgent task is to increase their resiliency and survivability. The construction principle of vector control system fault-tolerant asynchronous electric. Displaying recovery efficiency three-phase induction motor drive in emergency mode using two-phase vector control system. The process of formation of a simulation model of the asynchronous electric unbalance in emergency mode. When modeling used coordinate transformation, providing emergency operation electric unbalance work. The results of modeling transient phase loss motor stator. During a power failure phase induction motor cannot save circular rotating field in the air gap of the motor and ensure the restoration of its efficiency at rated torque and speed.

  19. Visual Discrimination and Motor Reproduction of Movement by Individuals with Mental Retardation.

    ERIC Educational Resources Information Center

    Shinkfield, Alison J.; Sparrow, W. A.; Day, R. H.

    1997-01-01

    Visual discrimination and motor reproduction tasks involving computer-simulated arm movements were administered to 12 adults with mental retardation and a gender-matched control group. The purpose was to examine whether inadequacies in visual perception account for the poorer motor performance of this population. Results indicate both perceptual…

  20. Cerebral network deficits in post-acute catatonic schizophrenic patients measured by fMRI.

    PubMed

    Scheuerecker, J; Ufer, S; Käpernick, M; Wiesmann, M; Brückmann, H; Kraft, E; Seifert, D; Koutsouleris, N; Möller, H J; Meisenzahl, E M

    2009-03-01

    Twelve patients with catatonic schizophrenia and 12 matched healthy controls were examined with functional MRI while performing a motor task. The aim of our study was to identify the intracerebral pathophysiological correlates of motor symptoms in catatonic patients. The motor task included three conditions: a self-initiated (SI), an externally triggered (ET) and a rest condition. Statistical analysis was performed with SPM5. During the self-initiated movements patients showed significantly less activation than healthy controls in the supplementary motor area (SMA), the prefrontal and parietal cortex. Our results suggest a dysfunction of the "medial motor system" in catatonic patients. Self-initiated and externally triggered movements are mediated by different motor loops. The "medial loop" includes the SMA, thalamus and basal ganglia, and is necessary for self-initiated movements. The "lateral loop" includes parts of the cerebellum, lateral premotor cortex, thalamus and parietal association areas. It is involved in the execution of externally triggered movements. Our findings are in agreement with earlier behavioral data, which show deficits in self-initiated movements in catatonic patients but no impairment of externally triggered movements.

  1. Transfer of short-term motor learning across the lower limbs as a function of task conception and practice order.

    PubMed

    Stöckel, Tino; Wang, Jinsung

    2011-11-01

    Interlimb transfer of motor learning, indicating an improvement in performance with one limb following training with the other, often occurs asymmetrically (i.e., from non-dominant to dominant limb or vice versa, but not both). In the present study, we examined whether interlimb transfer of the same motor task could occur asymmetrically and in opposite directions (i.e., from right to left leg vs. left to right leg) depending on individuals' conception of the task. Two experimental conditions were tested: In a dynamic control condition, the process of learning was facilitated by providing the subjects with a type of information that forced them to focus on dynamic features of a given task (force impulse); and in a spatial control condition, it was done with another type of information that forced them to focus on visuomotor features of the same task (distance). Both conditions employed the same leg extension task. In addition, a fully-crossed transfer paradigm was used in which one group of subjects initially practiced with the right leg and were tested with the left leg for a transfer test, while the other group used the two legs in the opposite order. The results showed that the direction of interlimb transfer varied depending on the condition, such that the right and the left leg benefited from initial training with the opposite leg only in the spatial and the dynamic condition, respectively. Our finding suggests that manipulating the conception of a leg extension task has a substantial influence on the pattern of interlimb transfer in such a way that the direction of transfer can even be opposite depending on whether the task is conceived as a dynamic or spatial control task. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Differential Contribution of Bilateral Supplementary Motor Area to the Effective Connectivity Networks Induced by Task Conditions Using Dynamic Causal Modeling

    PubMed Central

    Tao, Zhongping; Zhang, Mu

    2014-01-01

    Abstract Functional imaging studies have indicated hemispheric asymmetry of activation in bilateral supplementary motor area (SMA) during unimanual motor tasks. However, the hemispherically special roles of bilateral SMAs on primary motor cortex (M1) in the effective connectivity networks (ECN) during lateralized tasks remain unclear. Aiming to study the differential contribution of bilateral SMAs during the motor execution and motor imagery tasks, and the hemispherically asymmetric patterns of ECN among regions involved, the present study used dynamic causal modeling to analyze the functional magnetic resonance imaging data of the unimanual motor execution/imagery tasks in 12 right-handed subjects. Our results demonstrated that distributions of network parameters underlying motor execution and motor imagery were significantly different. The variation was mainly induced by task condition modulations of intrinsic coupling. Particularly, regardless of the performing hand, the task input modulations of intrinsic coupling from the contralateral SMA to contralateral M1 were positive during motor execution, while varied to be negative during motor imagery. The results suggested that the inhibitive modulation suppressed the overt movement during motor imagery. In addition, the left SMA also helped accomplishing left hand tasks through task input modulation of left SMA→right SMA connection, implying that hemispheric recruitment occurred when performing nondominant hand tasks. The results specified differential and altered contributions of bilateral SMAs to the ECN during unimanual motor execution and motor imagery, and highlighted the contributions induced by the task input of motor execution/imagery. PMID:24606178

  3. The influence of focused-attention meditation states on the cognitive control of sequence learning.

    PubMed

    Chan, Russell W; Immink, Maarten A; Lushington, Kurt

    2017-10-01

    Cognitive control processes influence how motor sequence information is utilised and represented. Since cognitive control processes are shared amongst goal-oriented tasks, motor sequence learning and performance might be influenced by preceding cognitive tasks such as focused-attention meditation (FAM). Prior to a serial reaction time task (SRTT), participants completed either a single-session of FAM, a single-session of FAM followed by delay (FAM+) or no meditation (CONTROL). Relative to CONTROL, FAM benefitted performance in early, random-ordered blocks. However, across subsequent sequence learning blocks, FAM+ supported the highest levels of performance improvement resulting in superior performance at the end of the SRTT. Performance following FAM+ demonstrated greater reliance on embedded sequence structures than FAM. These findings illustrate that increased top-down control immediately after FAM biases the implementation of stimulus-based planning. Introduction of a delay following FAM relaxes top-down control allowing for implementation of response-based planning resulting in sequence learning benefits. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Relations between fine motor skill and parental report of attention in young children with neurofibromatosis type 1.

    PubMed

    Casnar, Christy L; Janke, Kelly M; van der Fluit, Faye; Brei, Natalie G; Klein-Tasman, Bonita P

    2014-01-01

    Neurofibromatosis type 1 (NF1) is one of the most common genetic disorders presenting in approximately 1 in 3,500 live births. NF1 is a highly variable condition with a large number of complications. A common complication is neuropsychological problems, including developmental delays and learning difficulties that affect as many as 60% of patients. Research has suggested that school-aged children with NF1 often have poorer fine motor skills and are at greater risk for attention difficulties than the general population. Thirty-eight children with NF1 and 23 unaffected children between the ages of 4 and 6 years, who are enrolled in a study of early development in NF1, were included in the present study. Varying levels of fine motor functioning were examined (simple to complex fine motor tasks). For children with NF1, significant difficulties were demonstrated on lab-based mid-level and complex fine motor tasks, even after controlling for nonverbal reasoning abilities, but not on simple fine motor tasks. Parental report also indicated difficulties in everyday adaptive fine motor functioning. No significant correlations were found between complex fine motor ability and attention difficulties. This study provides much needed descriptive data on the early emergence of fine motor difficulties and attention difficulties in young children with NF1.

  5. Network connectivity and individual responses to brain stimulation in the human motor system.

    PubMed

    Cárdenas-Morales, Lizbeth; Volz, Lukas J; Michely, Jochen; Rehme, Anne K; Pool, Eva-Maria; Nettekoven, Charlotte; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2014-07-01

    The mechanisms driving cortical plasticity in response to brain stimulation are still incompletely understood. We here explored whether neural activity and connectivity in the motor system relate to the magnitude of cortical plasticity induced by repetitive transcranial magnetic stimulation (rTMS). Twelve right-handed volunteers underwent functional magnetic resonance imaging during rest and while performing a simple hand motor task. Resting-state functional connectivity, task-induced activation, and task-related effective connectivity were assessed for a network of key motor areas. We then investigated the effects of intermittent theta-burst stimulation (iTBS) on motor-evoked potentials (MEP) for up to 25 min after stimulation over left primary motor cortex (M1) or parieto-occipital vertex (for control). ITBS-induced increases in MEP amplitudes correlated negatively with movement-related fMRI activity in left M1. Control iTBS had no effect on M1 excitability. Subjects with better response to M1-iTBS featured stronger preinterventional effective connectivity between left premotor areas and left M1. In contrast, resting-state connectivity did not predict iTBS aftereffects. Plasticity-related changes in M1 following brain stimulation seem to depend not only on local factors but also on interconnected brain regions. Predominantly activity-dependent properties of the cortical motor system are indicative of excitability changes following induction of cortical plasticity with rTMS. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Neurofeedback fMRI-mediated learning and consolidation of regional brain activation during motor imagery

    PubMed Central

    Yoo, Seung-Schik; Lee, Jong-Hwan; O’Leary, Heather; Panych, Lawrence P.; Jolesz, Ferenc A.

    2009-01-01

    We report the long-term effect of real-time functional MRI (rtfMRI) training on voluntary regulation of the level of activation from a hand motor area. During the performance of a motor imagery task of a right hand, blood-oxygenation-level-dependent (BOLD) signal originating from a primary motor area was presented back to the subject in real-time. Demographically matched individuals also received the same procedure without valid feedback information. Followed by the initial rtfMRI sessions, both groups underwent two-week long, daily-practice of the task. Off-line data analysis revealed that the individuals in the experimental group were able to increase the level of BOLD signal from the regulatory target to a greater degree compared to the control group. Furthermore, the learned level of activation was maintained after the two-week period, with the recruitment of additional neural circuitries such as the hippocampus and the limbo-thalamo-cortical pathway. The activation obtained from the control group, in the absence of proper feedback, was indifferent across the training conditions. The level of BOLD activity from the target regulatory region was positively correlated with a self evaluative score within the experimental group, while the majority of control subjects had difficulty adopting a strategy to attain the desired level of functional regulation. Our results suggest that rtfMRI helped individuals learn how to increase region-specific cortical activity associated with a motor imagery task, and the level of increased activation in motor areas was consolidated after the two-week self-practice period, with the involvement of neural circuitries implicated in motor skill learning. PMID:19526048

  7. Differences in Learning Volitional (Manual) and Non-Volitional (Posture) Aspects of a Complex Motor Skill in Young Adult Dyslexic and Skilled Readers

    PubMed Central

    Sela, Itamar; Karni, Avi

    2012-01-01

    The ‘Cerebellar Deficit Theory’ of developmental dyslexia proposes that a subtle developmental cerebellar dysfunction leads to deficits in attaining ‘automatic’ procedures and therefore manifests as subtle motor impairments (e.g., balance control, motor skill learning) in addition to the reading and phonological difficulties. A more recent version of the theory suggests a core deficit in motor skill acquisition. This study was undertaken to compare the time-course and the nature of practice-related changes in volitional (manual) and non-volitional (posture) motor performance in dyslexic and typical readers while learning a new movement sequence. Seventeen dyslexic and 26 skilled young adult readers underwent a three-session training program in which they practiced a novel sequence of manual movements while standing in a quiet stance position. Both groups exhibited robust and well-retained gains in speed, with no loss of accuracy, on the volitional, manual, aspects of the task, with a time-course characteristic of procedural learning. However, the dyslexic readers exhibited a pervasive slowness in the initiation of volitional performance. In addition, while typical readers showed clear and well-retained task-related adaptation of the balance and posture control system, the dyslexic readers had significantly larger sway and variance of sway throughout the three sessions and were less efficient in adapting the posture control system to support the acquisition of the novel movement sequence. These results support the notion of a non-language-related deficit in developmental dyslexia, one related to the recruitment of motor systems for effective task performance rather than to a general motor learning disability. PMID:23049736

  8. Adaptive robotic control driven by a versatile spiking cerebellar network.

    PubMed

    Casellato, Claudia; Antonietti, Alberto; Garrido, Jesus A; Carrillo, Richard R; Luque, Niceto R; Ros, Eduardo; Pedrocchi, Alessandra; D'Angelo, Egidio

    2014-01-01

    The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  9. Re-examining sleep׳s effect on motor skills: How to access performance on the finger tapping task?

    PubMed

    Ribeiro Pereira, Sofia Isabel; Beijamini, Felipe; Vincenzi, Roberta Almeida; Louzada, Fernando Mazzilli

    2015-01-01

    Here our goal was to determine the magnitude of sleep-related motor skill enhancement. Performance on the finger tapping task (FTT) was evaluated after a 90 min daytime nap (n=15) or after quiet wakefulness (n=15). By introducing a slight modification in the formula used to calculate the offline gains we were able to refine the estimated magnitude of sleep׳s effect on motor skills. The raw value of improvement after a nap decreased after this correction (from ~15% to ~5%), but remained significantly higher than the control. These results suggest that sleep does indeed play a role in motor skill consolidation.

  10. Not all choices are created equal: Task-relevant choices enhance motor learning compared to task-irrelevant choices.

    PubMed

    Carter, Michael J; Ste-Marie, Diane M

    2017-12-01

    Lewthwaite et al. (2015) reported that the learning benefits of exercising choice (i.e., their self-controlled condition) are not restricted to task-relevant features (e.g., feedback). They found that choosing one's golf ball color (Exp. 1) or choosing which of two tasks to perform at a later time plus which of two artworks to hang (Exp. 2) resulted in better retention than did being denied these same choices (i.e., yoked condition). The researchers concluded that the learning benefits derived from choice, whether irrelevant or relevant to the to-be-learned task, are predominantly motivational because choice is intrinsically rewarding and satisfies basic psychological needs. However, the absence of a group that made task-relevant choices and the lack of psychological measures significantly weakened their conclusions. Here, we investigated how task-relevant and task-irrelevant choices affect motor-skill learning. Participants practiced a spatiotemporal motor task in either a task-relevant group (choice over feedback schedule), a task-irrelevant group (choice over the color of an arm-wrap plus game selection), or a no-choice group. The results showed significantly greater learning in the task-relevant group than in both the task-irrelevant and no-choice groups, who did not differ significantly. Critically, these learning differences were not attributed to differences in perceptions of competence or autonomy, but instead to superior error-estimation abilities. These results challenge the perspective that motivational influences are the root cause of self-controlled learning advantages. Instead, the findings add to the growing evidence highlighting that the informational value gained from task-relevant choices makes a greater relative contribution to these advantages than motivational influences do.

  11. Multi-finger synergies and the muscular apparatus of the hand.

    PubMed

    Cuadra, Cristian; Bartsch, Angelo; Tiemann, Paula; Reschechtko, Sasha; Latash, Mark L

    2018-05-01

    We explored whether the synergic control of the hand during multi-finger force production tasks depends on the hand muscles involved. Healthy subjects performed accurate force production tasks and targeted force pulses while pressing against loops positioned at the level of fingertips, middle phalanges, and proximal phalanges. This varied the involvement of the extrinsic and intrinsic finger flexors. The framework of the uncontrolled manifold (UCM) hypothesis was used to analyze the structure of inter-trial variance, motor equivalence, and anticipatory synergy adjustments prior to the force pulse in the spaces of finger forces and finger modes (hypothetical finger-specific control signals). Subjects showed larger maximal force magnitudes at the proximal site of force production. There were synergies stabilizing total force during steady-state phases across all three sites of force production; no differences were seen across the sites in indices of structure of variance, motor equivalence, or anticipatory synergy adjustments. Indices of variance, which did not affect the task (within the UCM), correlated with motor equivalent motion between the steady states prior to and after the force pulse; in contrast, variance affecting task performance did not correlate with non-motor equivalent motion. The observations are discussed within the framework of hierarchical control with referent coordinates for salient effectors at each level. The findings suggest that multi-finger synergies are defined at the level of abundant transformation between the low-dimensional hand level and higher dimensional finger level while being relatively immune to transformations between the finger level and muscle level. The results also support the scheme of control with two classes of neural variables that define referent coordinates and gains in back-coupling loops between hierarchical control levels.

  12. Functional MRI evidence for fine motor praxis dysfunction in children with persistent speech disorders.

    PubMed

    Redle, Erin; Vannest, Jennifer; Maloney, Thomas; Tsevat, Rebecca K; Eikenberry, Sarah; Lewis, Barbara; Shriberg, Lawrence D; Tkach, Jean; Holland, Scott K

    2015-02-09

    Children with persistent speech disorders (PSD) often present with overt or subtle motor deficits; the possibility that speech disorders and motor deficits could arise from a shared neurological base is currently unknown. Functional MRI (fMRI) was used to examine the brain networks supporting fine motor praxis in children with PSD and without clinically identified fine motor deficits. This case-control study included 12 children with PSD (mean age 7.42 years, four female) and 12 controls (mean age 7.44 years, four female). Children completed behavioral evaluations using standardized motor assessments and parent reported functional measures. During fMRI scanning, participants completed a cued finger tapping task contrasted passive listening. A general linear model approach identified brain regions associated with finger tapping in each group and regions that differed between groups. The relationship between regional fMRI activation and fine motor skill was assessed using a regression analysis. Children with PSD had significantly poorer results for rapid speech production and fine motor praxis skills, but did not differ on classroom functional skills. Functional MRI results showed that children with PSD had significantly more activation in the cerebellum during finger tapping. Positive correlations between performance on a fine motor praxis test and activation multiple cortical regions were noted for children with PSD but not for controls. Over-activation in the cerebellum during a motor task may reflect a subtle abnormality in the non-speech motor neural circuitry in children with PSD. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Determination of awareness in patients with severe brain injury using EEG power spectral analysis

    PubMed Central

    Goldfine, Andrew M.; Victor, Jonathan D.; Conte, Mary M.; Bardin, Jonathan C.; Schiff, Nicholas D.

    2011-01-01

    Objective To determine whether EEG spectral analysis could be used to demonstrate awareness in patients with severe brain injury. Methods We recorded EEG from healthy controls and three patients with severe brain injury, ranging from minimally conscious state (MCS) to locked-in-state (LIS), while they were asked to imagine motor and spatial navigation tasks. We assessed EEG spectral differences from 4 to 24 Hz with univariate comparisons (individual frequencies) and multivariate comparisons (patterns across the frequency range). Results In controls, EEG spectral power differed at multiple frequency bands and channels during performance of both tasks compared to a resting baseline. As patterns of signal change were inconsistent between controls, we defined a positive response in patient subjects as consistent spectral changes across task performances. One patient in MCS and one in LIS showed evidence of motor imagery task performance, though with patterns of spectral change different from the controls. Conclusion EEG power spectral analysis demonstrates evidence for performance of mental imagery tasks in healthy controls and patients with severe brain injury. Significance EEG power spectral analysis can be used as a flexible bedside tool to demonstrate awareness in brain-injured patients who are otherwise unable to communicate. PMID:21514214

  14. Spatial-Orientation Priming Impedes Rather than Facilitates the Spontaneous Control of Hand-Retraction Speeds in Patients with Parkinson’s Disease

    PubMed Central

    Yanovich, Polina; Isenhower, Robert W.; Sage, Jacob; Torres, Elizabeth B.

    2013-01-01

    Background Often in Parkinson’s disease (PD) motor-related problems overshadow latent non-motor deficits as it is difficult to dissociate one from the other with commonly used observational inventories. Here we ask if the variability patterns of hand speed and acceleration would be revealing of deficits in spatial-orientation related decisions as patients performed a familiar reach-to-grasp task. To this end we use spatial-orientation priming which normally facilitates motor-program selection and asked whether in PD spatial-orientation priming helps or hinders performance. Methods To dissociate spatial-orientation- and motor-related deficits participants performed two versions of the task. The biomechanical version (DEFAULT) required the same postural- and hand-paths as the orientation-priming version (primed-UP). Any differences in the patients here could not be due to motor issues as the tasks were biomechanically identical. The other priming version (primed-DOWN) however required additional spatial and postural processing. We assessed in all three cases both the forward segment deliberately aimed towards the spatial-target and the retracting segment, spontaneously bringing the hand to rest without an instructed goal. Results and Conclusions We found that forward and retracting segments belonged in two different statistical classes according to the fluctuations of speed and acceleration maxima. Further inspection revealed conservation of the forward (voluntary) control of speed but in PD a discontinuity of this control emerged during the uninstructed retractions which was absent in NC. Two PD groups self-emerged: one group in which priming always affected the retractions and the other in which only the more challenging primed-DOWN condition was affected. These PD-groups self-formed according to the speed variability patterns, which systematically changed along a gradient that depended on the priming, thus dissociating motor from spatial-orientation issues. Priming did not facilitate the motor task in PD but it did reveal a breakdown in the spatial-orientation decision that was independent of the motor-postural path. PMID:23843963

  15. Clumsiness in fine motor tasks: evidence from the quantitative drawing evaluation of children with Down Syndrome.

    PubMed

    Vimercati, S L; Galli, M; Stella, G; Caiazzo, G; Ancillao, A; Albertini, G

    2015-03-01

    Drawing tests are commonly used for the clinical evaluation of cognitive capabilities in children with learning disabilities. We analysed quantitatively the drawings of children with Down Syndrome (DS) and of healthy, mental age-matched controls to characterise the features of fine motor skills in DS during a drawing task, with particular attention to clumsiness, a well-known feature of DS gross movements. Twenty-three children with DS and 13 controls hand-copied the figures of a circle, a cross and a square on a sheet. An optoelectronic system allowed the acquisition of the three-dimensional track of the drawing. The participants' posture and upper limb movements were analysed as well. Results showed that the participants with DS tended to draw faster but with less accuracy than controls. While clumsiness in gross movements manifests mainly as slow, less efficient movements, it manifests as high velocity and inaccurate movements in fine motor tasks such as drawing. © 2014 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  16. Hemodynamic Response of the Supplementary Motor Area during Locomotor Tasks with Upright versus Horizontal Postures in Humans

    PubMed Central

    Obayashi, Shigeru; Nakajima, Katsumi; Hara, Yukihiro

    2016-01-01

    To understand cortical mechanisms related to truncal posture control during human locomotion, we investigated hemodynamic responses in the supplementary motor area (SMA) with quadrupedal and bipedal gaits using functional near-infrared spectroscopy in 10 healthy adults. The subjects performed three locomotor tasks where the degree of postural instability varied biomechanically, namely, hand-knee quadrupedal crawling (HKQuad task), upright quadrupedalism using bilateral Lofstrand crutches (UpQuad task), and typical upright bipedalism (UpBi task), on a treadmill. We measured the concentration of oxygenated hemoglobin (oxy-Hb) during the tasks. The oxy-Hb significantly decreased in the SMA during the HKQuad task, whereas it increased during the UpQuad task. No significant responses were observed during the UpBi task. Based on the degree of oxy-Hb responses, we ranked these locomotor tasks as UpQuad > UpBi > HKQuad. The order of the different tasks did not correspond with postural instability of the tasks. However, qualitative inspection of oxy-Hb time courses showed that oxy-Hb waveform patterns differed between upright posture tasks (peak-plateau-trough pattern for the UpQuad and UpBi tasks) and horizontal posture task (downhill pattern for the HKQuad task). Thus, the SMA may contribute to the control of truncal posture accompanying locomotor movements in humans. PMID:27413555

  17. Motor recovery after stroke: a systematic review.

    PubMed

    Langhorne, Peter; Coupar, Fiona; Pollock, Alex

    2009-08-01

    Loss of functional movement is a common consequence of stroke for which a wide range of interventions has been developed. In this Review, we aimed to provide an overview of the available evidence on interventions for motor recovery after stroke through the evaluation of systematic reviews, supplemented by recent randomised controlled trials. Most trials were small and had some design limitations. Improvements in recovery of arm function were seen for constraint-induced movement therapy, electromyographic biofeedback, mental practice with motor imagery, and robotics. Improvements in transfer ability or balance were seen with repetitive task training, biofeedback, and training with a moving platform. Physical fitness training, high-intensity therapy (usually physiotherapy), and repetitive task training improved walking speed. Although the existing evidence is limited by poor trial designs, some treatments do show promise for improving motor recovery, particularly those that have focused on high-intensity and repetitive task-specific practice.

  18. Sensor-Motor Maps for Describing Linear Reflex Composition in Hopping.

    PubMed

    Schumacher, Christian; Seyfarth, André

    2017-01-01

    In human and animal motor control several sensory organs contribute to a network of sensory pathways modulating the motion depending on the task and the phase of execution to generate daily motor tasks such as locomotion. To better understand the individual and joint contribution of reflex pathways in locomotor tasks, we developed a neuromuscular model that describes hopping movements. In this model, we consider the influence of proprioceptive length (LFB), velocity (VFB) and force feedback (FFB) pathways of a leg extensor muscle on hopping stability, performance and efficiency (metabolic effort). Therefore, we explore the space describing the blending of the monosynaptic reflex pathway gains. We call this reflex parameter space a sensor-motor map . The sensor-motor maps are used to visualize the functional contribution of sensory pathways in multisensory integration. We further evaluate the robustness of these sensor-motor maps to changes in tendon elasticity, body mass, segment length and ground compliance. The model predicted that different reflex pathway compositions selectively optimize specific hopping characteristics (e.g., performance and efficiency). Both FFB and LFB were pathways that enable hopping. FFB resulted in the largest hopping heights, LFB enhanced hopping efficiency and VFB had the ability to disable hopping. For the tested case, the topology of the sensor-motor maps as well as the location of functionally optimal compositions were invariant to changes in system designs (tendon elasticity, body mass, segment length) or environmental parameters (ground compliance). Our results indicate that different feedback pathway compositions may serve different functional roles. The topology of the sensor-motor map was predicted to be robust against changes in the mechanical system design indicating that the reflex system can use different morphological designs, which does not apply for most robotic systems (for which the control often follows a specific design). Consequently, variations in body mechanics are permitted with consistent compositions of sensory feedback pathways. Given the variability in human body morphology, such variations are highly relevant for human motor control.

  19. The Effect of Prior Task Success on Older Adults' Memory Performance: Examining the Influence of Different Types of Task Success.

    PubMed

    Geraci, Lisa; Hughes, Matthew L; Miller, Tyler M; De Forrest, Ross L

    2016-01-01

    Negative aging stereotypes can lead older adults to perform poorly on memory tests. Yet, memory performance can be improved if older adults have a single successful experience on a cognitive test prior to participating in a memory experiment (Geraci & Miller, 2013, Psychology and Aging, 28, 340-345). The current study examined the effects of different types of prior task experience on subsequent memory performance. Before participating in a verbal free recall experiment, older adults in Experiment 1 successfully completed either a verbal or a visual cognitive task or no task. In Experiment 2, they successfully completed either a motor task or no task before participating in the free recall experiment. Results from Experiment 1 showed that relative to control (no prior task), participants who had prior success, either on a verbal or a visual task, had better subsequent recall performance. Experiment 2 showed that prior success on a motor task, however, did not lead to a later memory advantage relative to control. These findings demonstrate that older adults' memory can be improved by a successful prior task experience so long as that experience is in a cognitive domain.

  20. Motor Learning in Stroke: Trained Patients Are Not Equal to Untrained Patients With Less Impairment

    PubMed

    Hardwick, Robert M; Rajan, Vikram A; Bastian, Amy J; Krakauer, John W; Celnik, Pablo A

    2017-02-01

    Stroke rehabilitation assumes motor learning contributes to motor recovery, yet motor learning in stroke has received little systematic investigation. Here we aimed to illustrate that despite matching levels of performance on a task, a trained patient should not be considered equal to an untrained patient with less impairment. We examined motor learning in healthy control participants and groups of stroke survivors with mild-to-moderate or moderate-to-severe motor impairment. Participants performed a series of isometric contractions of the elbow flexors to navigate an on-screen cursor to different targets, and trained to perform this task over a 4-day period. The speed-accuracy trade-off function (SAF) was assessed for each group, controlling for differences in self-selected movement speeds between individuals. The initial SAF for each group was proportional to their impairment. All groups were able to improve their performance through skill acquisition. Interestingly, training led the moderate-to-severe group to match the untrained (baseline) performance of the mild-to-moderate group, while the trained mild-to-moderate group matched the untrained (baseline) performance of the controls. Critically, this did not make the two groups equivalent; they differed in their capacity to improve beyond this matched performance level. Specifically, the trained groups had reached a plateau, while the untrained groups had not. Despite matching levels of performance on a task, a trained patient is not equal to an untrained patient with less impairment. This has important implications for decisions both on the focus of rehabilitation efforts for chronic stroke, as well as for returning to work and other activities.

  1. Functional mobility in a divided attention task in older adults with cognitive impairment.

    PubMed

    Borges, Sheila de Melo; Radanovic, Márcia; Forlenza, Orestes Vicente

    2015-01-01

    Motor disorders may occur in mild cognitive impairment (MCI) and at early stages of Alzheimer's disease (AD), particularly under divided attention conditions. We examined functional mobility in 104 older adults (42 with MCI, 26 with mild AD, and 36 cognitively healthy) using the Timed Up and Go test (TUG) under 4 experimental conditions: TUG single task, TUG plus a cognitive task, TUG plus a manual task, and TUG plus a cognitive and a manual task. Statistically significant differences in mean time of execution were found in all four experimental conditions when comparing MCI and controls (p < .001), and when comparing MCI and AD patients (p < .05). Receiver-operating characteristic curve analyses showed that all four testing conditions could differentiate the three groups (area under the curve > .8, p < .001 for MCI vs. controls; area under the curve > .7, p < .001 for MCI vs. AD). The authors conclude that functional motor deficits occurring in MCI can be assessed by the TUG test, in single or dual task modality.

  2. Basic Timing Abilities Stay Intact in Patients with Musician's Dystonia

    PubMed Central

    van der Steen, M. C.; van Vugt, Floris T.; Keller, Peter E.; Altenmüller, Eckart

    2014-01-01

    Task-specific focal dystonia is a movement disorder that is characterized by the loss of voluntary motor control in extensively trained movements. Musician's dystonia is a type of task-specific dystonia that is elicited in professional musicians during instrumental playing. The disorder has been associated with deficits in timing. In order to test the hypothesis that basic timing abilities are affected by musician's dystonia, we investigated a group of patients (N = 15) and a matched control group (N = 15) on a battery of sensory and sensorimotor synchronization tasks. Results did not show any deficits in auditory-motor processing for patients relative to controls. Both groups benefited from a pacing sequence that adapted to their timing (in a sensorimotor synchronization task at a stable tempo). In a purely perceptual task, both groups were able to detect a misaligned metronome when it was late rather than early relative to a musical beat. Overall, the results suggest that basic timing abilities stay intact in patients with musician's dystonia. This supports the idea that musician's dystonia is a highly task-specific movement disorder in which patients are mostly impaired in tasks closely related to the demands of actually playing their instrument. PMID:24667273

  3. Impairment of a parieto-premotor network specialized for handwriting in writer's cramp

    PubMed Central

    Najee-ullah, Muslimah 'Ali; Hallett, Mark

    2016-01-01

    Handwriting with the dominant hand is a highly skilled task singularly acquired in humans. This skill is the isolated deficit in patients with writer's cramp (WC), a form of dystonia with maladaptive plasticity, acquired through intensive and repetitive motor practice. When a skill is highly trained, a motor program is created in the brain to execute the same movement kinematics regardless of the effector used for the task. The task- and effector-specific symptoms in WC suggest that a problem particularly occurs in the brain when the writing motor program is carried out by the dominant hand. In the present MRI study involving 12 WC patients (with symptoms only affecting the right dominant hand during writing) and 15 age matched unaffected controls we showed that: (1) the writing program recruited the same network regardless of the effector used to write in both groups; (2) dominant handwriting recruited a segregated parieto-premotor network only in the control group; (3) local structural alteration of the premotor area, the motor component of this network, predicted functional connectivity deficits during dominant handwriting and symptom duration in the patient group. Dysfunctions and structural abnormalities of a segregated parieto-premotor network in WC patients suggest that network specialization in focal brain areas is crucial for well-learned motor skill. PMID:27466043

  4. Cognitive Control Structures in the Imitation Learning of Spatial Sequences and Rhythms-An fMRI Study.

    PubMed

    Sakreida, Katrin; Higuchi, Satomi; Di Dio, Cinzia; Ziessler, Michael; Turgeon, Martine; Roberts, Neil; Vogt, Stefan

    2018-03-01

    Imitation learning involves the acquisition of novel motor patterns based on action observation (AO). We used event-related functional magnetic resonance imaging to study the imitation learning of spatial sequences and rhythms during AO, motor imagery (MI), and imitative execution in nonmusicians and musicians. While both tasks engaged the fronto-parietal mirror circuit, the spatial sequence task recruited posterior parietal and dorsal premotor regions more strongly. The rhythm task involved an additional network for auditory working memory. This partial dissociation supports the concept of task-specific mirror mechanisms. Two regions of cognitive control were identified: 1) dorsolateral prefrontal cortex (DLPFC) was found to be more strongly activated during MI of novel spatial sequences, which allowed us to extend the 2-level model of imitation learning by Buccino et al. (2004) to spatial sequences. 2) During imitative execution of both tasks, the posterior medial frontal cortex was robustly activated, along with the DLPFC, which suggests that both regions are involved in the cognitive control of imitation learning. The musicians' selective behavioral advantage for rhythm imitation was reflected cortically in enhanced sensory-motor processing during AO and by the absence of practice-related activation differences in DLPFC during rhythm execution. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Common features of fluency-evoking conditions studied in stuttering subjects and controls: an H(2)15O PET study.

    PubMed

    Stager, Sheila V; Jeffries, Keith J; Braun, Allen R

    2003-01-01

    We used H(2)15O PET to characterize the common features of two successful but markedly different fluency-evoking conditions -- paced speech and singing -- in order to identify brain mechanisms that enable fluent speech in people who stutter. To do so, we compared responses under fluency-evoking conditions with responses elicited by tasks that typically elicit dysfluent speech (quantifying the degree of stuttering and using this measure as a confounding covariate in our analyses). We evaluated task-related activations in both stuttering subjects and age- and gender-matched controls. Areas that were either uniquely activated during fluency-evoking conditions, or in which the magnitude of activation was significantly greater during fluency-evoking than dysfluency-evoking tasks included auditory association areas that process speech and voice and motor regions related to control of the larynx and oral articulators. This suggests that a common fluency-evoking mechanism might relate to more effective coupling of auditory and motor systems -- that is, more efficient self-monitoring, allowing motor areas to more effectively modify speech. These effects were seen in both PWS and controls, suggesting that they are due to the sensorimotor or cognitive demands of the fluency-evoking tasks themselves. While responses seen in both groups were bilateral, however, the fluency-evoking tasks elicited more robust activation of auditory and motor regions within the left hemisphere of stuttering subjects, suggesting a role for the left hemisphere in compensatory processes that enable fluency. The reader will learn about and be able to: (1) compare brain activation patterns under fluency- and dysfluency-evoking conditions in stuttering and control subjects; (2) appraise the common features, both central and peripheral, of fluency-evoking conditions; and (3) discuss ways in which neuroimaging methods can be used to understand the pathophysiology of stuttering.

  6. Athletic background is related to superior trunk proprioceptive ability, postural control, and neuromuscular responses to sudden perturbations.

    PubMed

    Glofcheskie, Grace O; Brown, Stephen H M

    2017-04-01

    Trunk motor control is essential for athletic performance, and inadequate trunk motor control has been linked to an increased risk of developing low back and lower limb injury in athletes. Research is limited in comparing relationships between trunk neuromuscular control, postural control, and trunk proprioception in athletes from different sporting backgrounds. To test for these relationships, collegiate level long distance runners and golfers, along with non-athletic controls were recruited. Trunk postural control was investigated using a seated balance task. Neuromuscular control in response to sudden trunk loading perturbations was measured using electromyography and kinematics. Proprioceptive ability was examined using active trunk repositioning tasks. Both athlete groups demonstrated greater trunk postural control (less centre of pressure movement) during the seated task compared to controls. Athletes further demonstrated faster trunk muscle activation onsets, higher muscle activation amplitudes, and less lumbar spine angular displacement in response to sudden trunk loading perturbations when compared to controls. Golfers demonstrated less absolute error and variable error in trunk repositioning tasks compared to both runners and controls, suggestive of greater proprioceptive ability. This suggests an interactive relationship between neuromuscular control, postural control, and proprioception in athletes, and that differences exist between athletes of various training backgrounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Neural control of finger movement via intracortical brain-machine interface

    NASA Astrophysics Data System (ADS)

    Irwin, Z. T.; Schroeder, K. E.; Vu, P. P.; Bullard, A. J.; Tat, D. M.; Nu, C. S.; Vaskov, A.; Nason, S. R.; Thompson, D. E.; Bentley, J. N.; Patil, P. G.; Chestek, C. A.

    2017-12-01

    Objective. Intracortical brain-machine interfaces (BMIs) are a promising source of prosthesis control signals for individuals with severe motor disabilities. Previous BMI studies have primarily focused on predicting and controlling whole-arm movements; precise control of hand kinematics, however, has not been fully demonstrated. Here, we investigate the continuous decoding of precise finger movements in rhesus macaques. Approach. In order to elicit precise and repeatable finger movements, we have developed a novel behavioral task paradigm which requires the subject to acquire virtual fingertip position targets. In the physical control condition, four rhesus macaques performed this task by moving all four fingers together in order to acquire a single target. This movement was equivalent to controlling the aperture of a power grasp. During this task performance, we recorded neural spikes from intracortical electrode arrays in primary motor cortex. Main results. Using a standard Kalman filter, we could reconstruct continuous finger movement offline with an average correlation of ρ  =  0.78 between actual and predicted position across four rhesus macaques. For two of the monkeys, this movement prediction was performed in real-time to enable direct brain control of the virtual hand. Compared to physical control, neural control performance was slightly degraded; however, the monkeys were still able to successfully perform the task with an average target acquisition rate of 83.1%. The monkeys’ ability to arbitrarily specify fingertip position was also quantified using an information throughput metric. During brain control task performance, the monkeys achieved an average 1.01 bits s-1 throughput, similar to that achieved in previous studies which decoded upper-arm movements to control computer cursors using a standard Kalman filter. Significance. This is, to our knowledge, the first demonstration of brain control of finger-level fine motor skills. We believe that these results represent an important step towards full and dexterous control of neural prosthetic devices.

  8. Postural Stabilization Strategies to Motor Contagion Induced by Action Observation Are Impaired in Parkinson’s Disease

    PubMed Central

    Pelosin, Elisa; Bisio, Ambra; Pozzo, Thierry; Lagravinese, Giovanna; Crisafulli, Oscar; Marchese, Roberta; Abbruzzese, Giovanni; Avanzino, Laura

    2018-01-01

    Postural reactions can be influenced by concomitant tasks or different contexts and are modulated by a higher order motor control. Recent studies investigated postural changes determined by motor contagion induced by action observation (chameleon effect) showing that observing a model in postural disequilibrium induces an increase in healthy subjects’ body sway. Parkinson’s disease (PD) is associated with postural instability and impairments in cognitively controlled balance tasks. However, no studies investigated if viewing postural imbalance might influence postural stability in PD and if patients are able to inhibit a visual postural perturbation. In this study, an action observation paradigm for assessing postural reaction to motor contagion in PD subjects and healthy older adults was used. Postural stability changes were measured during the observation of a static stimulus (control condition) and during a point-light display of a gymnast balancing on a rope (biological stimulus). Our results showed that, during the observation of the biological stimulus, sway area and antero-posterior and medio-lateral displacements of center of pressure significantly increased only in PD participants, whereas correct stabilization reactions were present in elderly subjects. These results demonstrate that PD leads to a decreased capacity to control automatic imitative tendencies induced by motor contagion. This behavior could be the consequence either of an inability to inhibit automatic imitative tendencies or of the cognitive load requested by the task. Whatever the case, the issue about the ability to inhibit automatic imitative tendencies could be crucial for PD patients since it might increase falls risk and injuries. PMID:29545771

  9. Deficits in discrimination after experimental frontal brain injury are mediated by motivation and can be improved by nicotinamide administration.

    PubMed

    Vonder Haar, Cole; Maass, William R; Jacobs, Eric A; Hoane, Michael R

    2014-10-15

    One of the largest challenges in experimental neurotrauma work is the development of models relevant to the human condition. This includes both creating similar pathophysiology as well as the generation of relevant behavioral deficits. Recent studies have shown that there is a large potential for the use of discrimination tasks in rats to detect injury-induced deficits. The literature on discrimination and TBI is still limited, however. The current study investigated motivational and motor factors that could potentially contribute to deficits in discrimination. In addition, the efficacy of a neuroprotective agent, nicotinamide, was assessed. Rats were trained on a discrimination task and motivation task, given a bilateral frontal controlled cortical impact TBI (+3.0 AP, 0.0 ML from bregma), and then reassessed. They were also assessed on motor ability and Morris water maze (MWM) performance. Experiment 1 showed that TBI resulted in large deficits in discrimination and motivation. No deficits were observed on gross motor measures; however, the vehicle group showed impairments in fine motor control. Both injured groups were impaired on the reference memory MWM, but only nicotinamide-treated rats were impaired on the working memory MWM. Nicotinamide administration improved performance on discrimination and motivation measures. Experiment 2 evaluated retraining on the discrimination task and suggested that motivation may be a large factor underlying discrimination deficits. Retrained rats improved considerably on the discrimination task. The tasks evaluated in this study demonstrate robust deficits and may improve the detection of pharmaceutical effects by being very sensitive to pervasive cognitive deficits that occur after frontal TBI.

  10. Plasticity of cortical inhibition in dystonia is impaired after motor learning and paired-associative stimulation.

    PubMed

    Meunier, Sabine; Russmann, Heike; Shamim, Ejaz; Lamy, Jean-Charles; Hallett, Mark

    2012-03-01

    Artificial induction of plasticity by paired associative stimulation (PAS) in healthy volunteers (HV) demonstrates Hebbian-like plasticity in selected inhibitory networks as well as excitatory networks. In a group of 17 patients with focal hand dystonia and a group of 19 HV, we evaluated how PAS and the learning of a simple motor task influence the circuits supporting long-interval intracortical inhibition (LICI, reflecting activity of GABA(B) interneurons) and long-latency afferent inhibition (LAI, reflecting activity of somatosensory inputs to the motor cortex). In HV, PAS and motor learning induced long-term potentiation (LTP)-like plasticity of excitatory networks and a lasting decrease of LAI and LICI in the motor representation of the targeted or trained muscle. The better the motor performance, the larger was the decrease of LAI. Although motor performance in the patient group was similar to that of the control group, LAI did not decrease during the motor learning as it did in the control group. In contrast, LICI was normally modulated. In patients the results after PAS did not match those obtained after motor learning: LAI was paradoxically increased and LICI did not exhibit any change. In the normal situation, decreased excitability in inhibitory circuits after induction of LTP-like plasticity may help to shape the cortical maps according to the new sensorimotor task. In patients, the abnormal or absent modulation of afferent and intracortical long-interval inhibition might indicate maladaptive plasticity that possibly contributes to the difficulty that they have to learn a new sensorimotor task. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  11. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study.

    PubMed

    Jeunet, Camille; Jahanpour, Emilie; Lotte, Fabien

    2016-06-01

    While promising, electroencephaloraphy based brain-computer interfaces (BCIs) are barely used due to their lack of reliability: 15% to 30% of users are unable to control a BCI. Standard training protocols may be partly responsible as they do not satisfy recommendations from psychology. Our main objective was to determine in practice to what extent standard training protocols impact users' motor imagery based BCI (MI-BCI) control performance. We performed two experiments. The first consisted in evaluating the efficiency of a standard BCI training protocol for the acquisition of non-BCI related skills in a BCI-free context, which enabled us to rule out the possible impact of BCIs on the training outcome. Thus, participants (N = 54) were asked to perform simple motor tasks. The second experiment was aimed at measuring the correlations between motor tasks and MI-BCI performance. The ten best and ten worst performers of the first study were recruited for an MI-BCI experiment during which they had to learn to perform two MI tasks. We also assessed users' spatial ability and pre-training μ rhythm amplitude, as both have been related to MI-BCI performance in the literature. Around 17% of the participants were unable to learn to perform the motor tasks, which is close to the BCI illiteracy rate. This suggests that standard training protocols are suboptimal for skill teaching. No correlation was found between motor tasks and MI-BCI performance. However, spatial ability played an important role in MI-BCI performance. In addition, once the spatial ability covariable had been controlled for, using an ANCOVA, it appeared that participants who faced difficulty during the first experiment improved during the second while the others did not. These studies suggest that (1) standard MI-BCI training protocols are suboptimal for skill teaching, (2) spatial ability is confirmed as impacting on MI-BCI performance, and (3) when faced with difficult pre-training, subjects seemed to explore more strategies and therefore learn better.

  12. Effective reinforcement learning following cerebellar damage requires a balance between exploration and motor noise.

    PubMed

    Therrien, Amanda S; Wolpert, Daniel M; Bastian, Amy J

    2016-01-01

    Reinforcement and error-based processes are essential for motor learning, with the cerebellum thought to be required only for the error-based mechanism. Here we examined learning and retention of a reaching skill under both processes. Control subjects learned similarly from reinforcement and error-based feedback, but showed much better retention under reinforcement. To apply reinforcement to cerebellar patients, we developed a closed-loop reinforcement schedule in which task difficulty was controlled based on recent performance. This schedule produced substantial learning in cerebellar patients and controls. Cerebellar patients varied in their learning under reinforcement but fully retained what was learned. In contrast, they showed complete lack of retention in error-based learning. We developed a mechanistic model of the reinforcement task and found that learning depended on a balance between exploration variability and motor noise. While the cerebellar and control groups had similar exploration variability, the patients had greater motor noise and hence learned less. Our results suggest that cerebellar damage indirectly impairs reinforcement learning by increasing motor noise, but does not interfere with the reinforcement mechanism itself. Therefore, reinforcement can be used to learn and retain novel skills, but optimal reinforcement learning requires a balance between exploration variability and motor noise. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  13. Effective reinforcement learning following cerebellar damage requires a balance between exploration and motor noise

    PubMed Central

    Therrien, Amanda S.; Wolpert, Daniel M.

    2016-01-01

    Abstract See Miall and Galea (doi: 10.1093/awv343 ) for a scientific commentary on this article. Reinforcement and error-based processes are essential for motor learning, with the cerebellum thought to be required only for the error-based mechanism. Here we examined learning and retention of a reaching skill under both processes. Control subjects learned similarly from reinforcement and error-based feedback, but showed much better retention under reinforcement. To apply reinforcement to cerebellar patients, we developed a closed-loop reinforcement schedule in which task difficulty was controlled based on recent performance. This schedule produced substantial learning in cerebellar patients and controls. Cerebellar patients varied in their learning under reinforcement but fully retained what was learned. In contrast, they showed complete lack of retention in error-based learning. We developed a mechanistic model of the reinforcement task and found that learning depended on a balance between exploration variability and motor noise. While the cerebellar and control groups had similar exploration variability, the patients had greater motor noise and hence learned less. Our results suggest that cerebellar damage indirectly impairs reinforcement learning by increasing motor noise, but does not interfere with the reinforcement mechanism itself. Therefore, reinforcement can be used to learn and retain novel skills, but optimal reinforcement learning requires a balance between exploration variability and motor noise. PMID:26626368

  14. The embodied nature of motor imagery processes highlighted by short-term limb immobilization.

    PubMed

    Meugnot, Aurore; Almecija, Yves; Toussaint, Lucette

    2014-01-01

    We investigated the embodied nature of motor imagery processes through a recent use-dependent plasticity approach, a short-term limb immobilization paradigm. A splint placed on the participants' left-hand during a brief period of 24 h was used for immobilization. The immobilized participants performed two mental rotation tasks (a hand mental rotation task and a number mental rotation task) before (pre-test) and immediately after (post-test) the splint removal. The control group did not undergo the immobilization procedure. The main results showed an immobilization-induced effect on left-hand stimuli, resulting in a lack of task-repetition benefit. By contrast, accuracy was higher and response times were shorter for right-hand stimuli. No immobilization-induced effects appeared for number stimuli. These results revealed that the cognitive representation of hand movements can be modified by a brief period of sensorimotor deprivation, supporting the hypothesis of the embodied nature of motor simulation processes.

  15. Enhancing motor learning through peer tutoring.

    PubMed

    Feinberg, Judy R; Elkington, Sarah J; Dewey, Kimberly A; Dzielawa, Dawn M; Hayden, Nicky L; Blankenship, Staci L; Nahrwold, Christopher M; Smith, Jennifer L

    2002-01-01

    The purpose of this study was to examine the efficacy of incorporating mnemonic memory aids and having a subject teach another person a given task (peer tutoring) as a method of enhancing task acquisition and recall by the subject and to discuss the implications for occupational therapists who instruct clients in motor tasks such as therapeutic exercise programs. Sixty-seven college students were randomly assigned to one of three groups using different teaching methods for the purpose of learning a motor task, specifically the American Sign Language alphabet. Subjects who were taught using mnemonics and peer tutoring scored significantly better on post-testing two days following instruction than did the control groups. Use of these techniques did not increase direct teaching time by the instructor, nor did they incur additional costs. Thus, these techniques may be easily incorporated into client education to improve recall and performance.

  16. Relational Speech Timing in Dysarthria Associated with Cerebellar Lesions in Different Loci: Word Context

    ERIC Educational Resources Information Center

    Vandana, V. P.; Manjula, R.

    2006-01-01

    Cerebellum plays an important role in speech motor control. Various tasks like sustained phonation, diadochokinesis and conversation have been used to tap the speech timing abilities of dysarthric clients with cerebellar lesion. It has recently been proposed that not all areas of the cerebellum may be involved in speech motor control; especially…

  17. Dissociation between the Procedural Learning of Letter Names and Motor Sequences in Developmental Dyslexia

    ERIC Educational Resources Information Center

    Gabay, Yafit; Schiff, Rachel; Vakil, Eli

    2012-01-01

    Motor sequence learning has been studied extensively in Developmental dyslexia (DD). The purpose of the present research was to examine procedural learning of letter names and motor sequences in individuals with DD and control groups. Both groups completed the Serial Search Task which enabled the assessment of learning of letter names and motor…

  18. Motor Prediction at the Edge of Instability: Alteration of Grip Force Control during Changes in Bimanual Coordination

    ERIC Educational Resources Information Center

    Danion, Frederic; Jirsa, Viktor K.

    2010-01-01

    Predicting the consequences of actions is fundamental for skilled motor behavior. We investigated whether motor prediction is influenced by the fact that some movements are easier to perform and stabilize than others. Twelve subjects performed a bimanual rhythmical task either symmetrically or asymmetrically (the latter being more difficult and…

  19. Age-Dependent Relationship between Socio-Adaptability and Motor Coordination in High Functioning Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Kostrubiec, Viviane; Huys, Raoul; Jas, Brunhilde; Kruck, Jeanne

    2018-01-01

    Abnormal perceptual-motor coordination is hypothesized here to be involved in social deficits of autism spectrum disorder (ASD). To test this hypothesis, high functioning children with ASD and typical controls, similar in age as well as verbal and perceptive performance, performed perceptual-motor coordination tasks and several social competence…

  20. Action observation has a positive impact on rehabilitation of motor deficits after stroke.

    PubMed

    Ertelt, Denis; Small, Steven; Solodkin, Ana; Dettmers, Christian; McNamara, Adam; Binkofski, Ferdinand; Buccino, Giovanni

    2007-01-01

    Evidence exists that the observation of actions activates the same cortical motor areas that are involved in the performance of the observed actions. The neural substrate for this is the mirror neuron system. We harness this neuronal system and its ability to re-enact stored motor representations as a means for rehabilitating motor control. We combined observation of daily actions with concomitant physical training of the observed actions in a new neurorehabilitative program (action observation therapy). Eight stroke patients with moderate, chronic motor deficit of the upper limb as a consequence of medial artery infarction participated. A significant improvement of motor functions in the course of a 4-week treatment, as compared to the stable pre-treatment baseline, and compared with a control group have been found. The improvement lasted for at least 8 weeks after the end of the intervention. Additionally, the effects of action observation therapy on the reorganization of the motor system were investigated by functional magnetic resonance imaging (fMRI), using an independent sensorimotor task consisting of object manipulation. The direct comparison of neural activations between experimental and control groups after training with those elicited by the same task before training yielded a significant rise in activity in the bilateral ventral premotor cortex, bilateral superior temporal gyrus, the supplementary motor area (SMA) and the contralateral supramarginal gyrus. Our results provide pieces of evidence that action observation has a positive additional impact on recovery of motor functions after stroke by reactivation of motor areas, which contain the action observation/action execution matching system.

  1. Exploring the impact of visual and movement based priming on a motor intervention in the acute phase post-stroke in persons with severe hemiparesis of the upper extremity

    PubMed Central

    Patel, Jigna; Qiu, Qinyin; Yarossi, Mathew; Merians, Alma; Massood, Supriya; Tunik, Eugene; Adamovich, Sergei; Fluet, Gerard

    2016-01-01

    Purpose Explore the potential benefits of using priming methods prior to an active hand task in the acute phase post-stroke in persons with severe upper extremity hemiparesis. Methods Five individuals were trained using priming techniques including virtual reality (VR) based visual mirror feedback and contralaterally controlled passive movement strategies prior to training with an active pinch force modulation task. Clinical, kinetic, and neurophysiological measurements were taken pre and post the training period. Clinical measures were taken at six months post training. Results The two priming simulations and active training were well tolerated early after stroke. Priming effects were suggested by increased maximal pinch force immediately after visual and movement based priming. Despite having no clinically observable movement distally, the subjects were able to volitionally coordinate isometric force and muscle activity (EMG) in a pinch tracing task. The Root Mean Square Error (RMSE) of force during the pinch trace task gradually decreased over the training period suggesting learning may have occurred. Changes in motor cortical neurophysiology were seen in the unaffected hemisphere using Transcranial Magnetic Stimulation (TMS) mapping. Significant improvements in motor recovery as measured by the Action Research Arm Test (ARAT) and the Upper Extremity Fugl Meyer Assessment (UEFMA) were demonstrated at six months post training by three of the five subjects. Conclusion This study suggests that an early hand-based intervention using visual and movement based priming activities and a scaled motor task allows participation by persons without the motor control required for traditionally presented rehabilitation and testing. PMID:27636200

  2. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.

    PubMed

    Jiang, Jun; Zhou, Zongtan; Yin, Erwei; Yu, Yang; Liu, Yadong; Hu, Dewen

    2015-11-01

    Motor imagery (MI)-based brain-computer interfaces (BCIs) allow disabled individuals to control external devices voluntarily, helping us to restore lost motor functions. However, the number of control commands available in MI-based BCIs remains limited, limiting the usability of BCI systems in control applications involving multiple degrees of freedom (DOF), such as control of a robot arm. To address this problem, we developed a novel Morse code-inspired method for MI-based BCI design to increase the number of output commands. Using this method, brain activities are modulated by sequences of MI (sMI) tasks, which are constructed by alternately imagining movements of the left or right hand or no motion. The codes of the sMI task was detected from EEG signals and mapped to special commands. According to permutation theory, an sMI task with N-length allows 2 × (2(N)-1) possible commands with the left and right MI tasks under self-paced conditions. To verify its feasibility, the new method was used to construct a six-class BCI system to control the arm of a humanoid robot. Four subjects participated in our experiment and the averaged accuracy of the six-class sMI tasks was 89.4%. The Cohen's kappa coefficient and the throughput of our BCI paradigm are 0.88 ± 0.060 and 23.5bits per minute (bpm), respectively. Furthermore, all of the subjects could operate an actual three-joint robot arm to grasp an object in around 49.1s using our approach. These promising results suggest that the Morse code-inspired method could be used in the design of BCIs for multi-DOF control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Relationship between Reaction Time, Fine Motor Control, and Visual-Spatial Perception on Vigilance and Visual-Motor Tasks in 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Howley, Sarah A.; Prasad, Sarah E.; Pender, Niall P.; Murphy, Kieran C.

    2012-01-01

    22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and…

  4. Decomposing mechanisms of abnormal saccade generation in schizophrenia patients: Contributions of volitional initiation, motor preparation, and fixation release.

    PubMed

    Reuter, Benedikt; Elsner, Björn; Möllers, David; Kathmann, Norbert

    2016-11-01

    Clinical and theoretical models suggest deficient volitional initiation of action in schizophrenia patients. Recent research provided an experimental model of testing this assumption using saccade tasks. However, inconsistent findings necessitate a specification of conditions on which the deficit may occur. The present study sought to detect mechanisms that may contribute to poor performance. Sixteen schizophrenia patients and 16 healthy control participants performed visually guided and two types of volitional saccade tasks. All tasks varied as to whether the initial fixation stimulus disappeared (fixation stimulus offset) or continued during saccade initiation, and whether a direction cue allowed motor preparation of the specific saccade. Saccade latencies of the two groups were differentially affected by task type, fixation stimulus offset, and cueing, suggesting abnormal volitional saccade generation, fixation release, and motor preparation in schizophrenia. However, substantial performance deficits may only occur if all affected processes are required in a task. © 2016 Society for Psychophysiological Research.

  5. Empirical Support for 'Hastening-Through-Re-Automatization' by Contrasting Two Motor-Cognitive Dual Tasks.

    PubMed

    Langhanns, Christine; Müller, Hermann

    2018-01-01

    Motor-cognitive dual tasks have been intensely studied and it has been demonstrated that even well practiced movements like walking show signs of interference when performed concurrently with a challenging cognitive task. Typically walking speed is reduced, at least in elderly persons. In contrast to these findings, some authors report an increased movement frequency under dual-task conditions, which they call hastening . A tentative explanation has been proposed, assuming that the respective movements are governed by an automatic control regime. Though, under single-task conditions, these automatic processes are supervised by "higher-order" cognitive control processes. However, when a concurrent cognitive task binds all cognitive resources, the automatic process is freed from the detrimental effect of cognitive surveillance, allowing higher movement frequencies. Fast rhythmic movements (>1 Hz) should more likely be governed by such an automatic process than low frequency discrete repetitive movements. Fifteen subjects performed two repetitive movements under single and dual-task condition, that is, in combination with a mental calculation task. According to the expectations derived from the explanatory concept, we found an increased movement frequency under dual-task conditions only for the fast rhythmic movement (paddleball task) but not for the slower discrete repetitive task (pegboard task). fNIRS measurements of prefrontal cortical load confirmed the idea of an automatic processing in the paddleball task, whereas the pegboard task seems to be more controlled by processes interfering with the calculation related processing.

  6. Empirical Support for ‘Hastening-Through-Re-Automatization’ by Contrasting Two Motor-Cognitive Dual Tasks

    PubMed Central

    Langhanns, Christine; Müller, Hermann

    2018-01-01

    Motor-cognitive dual tasks have been intensely studied and it has been demonstrated that even well practiced movements like walking show signs of interference when performed concurrently with a challenging cognitive task. Typically walking speed is reduced, at least in elderly persons. In contrast to these findings, some authors report an increased movement frequency under dual-task conditions, which they call hastening. A tentative explanation has been proposed, assuming that the respective movements are governed by an automatic control regime. Though, under single-task conditions, these automatic processes are supervised by “higher-order” cognitive control processes. However, when a concurrent cognitive task binds all cognitive resources, the automatic process is freed from the detrimental effect of cognitive surveillance, allowing higher movement frequencies. Fast rhythmic movements (>1 Hz) should more likely be governed by such an automatic process than low frequency discrete repetitive movements. Fifteen subjects performed two repetitive movements under single and dual-task condition, that is, in combination with a mental calculation task. According to the expectations derived from the explanatory concept, we found an increased movement frequency under dual-task conditions only for the fast rhythmic movement (paddleball task) but not for the slower discrete repetitive task (pegboard task). fNIRS measurements of prefrontal cortical load confirmed the idea of an automatic processing in the paddleball task, whereas the pegboard task seems to be more controlled by processes interfering with the calculation related processing. PMID:29887815

  7. Links between motor control and classroom behaviors: Moderation by low birth weight

    PubMed Central

    Razza, Rachel A.; Martin, Anne; Brooks-Gunn, Jeanne

    2016-01-01

    It is unclear from past research on effortful control whether one of its components, motor control, independently contributes to adaptive classroom behaviors. The goal of this study was to identify associations between early motor control, measured by the walk-a-line task at age 3, and teacher-reported learning-related behaviors (approaches to learning and attention problems) and behavior problems in kindergarten classrooms. Models tested whether children who were vulnerable to poorer learning behaviors and more behavior problems due to having been born low birth weight benefited more, less, or the same as other children from better motor control. Data were drawn from the national Fragile Families and Child-Wellbeing Study (n = 751). Regression models indicated that motor control was significantly associated with better approaches to learning and fewer behavior problems. Children who were low birth weight benefitted more than normal birth weight children from better motor control with respect to their approaches to learning, but equally with respect to behavior problems. Additionally, for low but not normal birth weight children, better motor control predicted fewer attention problems. These findings suggest that motor control follows a compensatory model of development for low birth weight children and classroom behaviors. PMID:27594776

  8. Attention to Automatic Movements in Parkinson's Disease: Modified Automatic Mode in the Striatum

    PubMed Central

    Wu, Tao; Liu, Jun; Zhang, Hejia; Hallett, Mark; Zheng, Zheng; Chan, Piu

    2015-01-01

    We investigated neural correlates when attending to a movement that could be made automatically in healthy subjects and Parkinson's disease (PD) patients. Subjects practiced a visuomotor association task until they could perform it automatically, and then directed their attention back to the automated task. Functional MRI was obtained during the early-learning, automatic stage, and when re-attending. In controls, attention to automatic movement induced more activation in the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex, and rostral supplementary motor area. The motor cortex received more influence from the cortical motor association regions. In contrast, the pattern of the activity and connectivity of the striatum remained at the level of the automatic stage. In PD patients, attention enhanced activity in the DLPFC, premotor cortex, and cerebellum, but the connectivity from the putamen to the motor cortex decreased. Our findings demonstrate that, in controls, when a movement achieves the automatic stage, attention can influence the attentional networks and cortical motor association areas, but has no apparent effect on the striatum. In PD patients, attention induces a shift from the automatic mode back to the controlled pattern within the striatum. The shifting between controlled and automatic behaviors relies in part on striatal function. PMID:24925772

  9. Brain effective connectivity during motor-imagery and execution following stroke and rehabilitation.

    PubMed

    Bajaj, Sahil; Butler, Andrew J; Drake, Daniel; Dhamala, Mukesh

    2015-01-01

    Brain areas within the motor system interact directly or indirectly during motor-imagery and motor-execution tasks. These interactions and their functionality can change following stroke and recovery. How brain network interactions reorganize and recover their functionality during recovery and treatment following stroke are not well understood. To contribute to answering these questions, we recorded blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI) signals from 10 stroke survivors and evaluated dynamical causal modeling (DCM)-based effective connectivity among three motor areas: primary motor cortex (M1), pre-motor cortex (PMC) and supplementary motor area (SMA), during motor-imagery and motor-execution tasks. We compared the connectivity between affected and unaffected hemispheres before and after mental practice and combined mental practice and physical therapy as treatments. The treatment (intervention) period varied in length between 14 to 51 days but all patients received the same dose of 60 h of treatment. Using Bayesian model selection (BMS) approach in the DCM approach, we found that, after intervention, the same network dominated during motor-imagery and motor-execution tasks but modulatory parameters suggested a suppressive influence of SM A on M1 during the motor-imagery task whereas the influence of SM A on M1 was unrestricted during the motor-execution task. We found that the intervention caused a reorganization of the network during both tasks for unaffected as well as for the affected hemisphere. Using Bayesian model averaging (BMA) approach, we found that the intervention improved the regional connectivity among the motor areas during both the tasks. The connectivity between PMC and M1 was stronger in motor-imagery tasks whereas the connectivity from PMC to M1, SM A to M1 dominated in motor-execution tasks. There was significant behavioral improvement (p = 0.001) in sensation and motor movements because of the intervention as reflected by behavioral Fugl-Meyer (FMA) measures, which were significantly correlated (p = 0.05) with a subset of connectivity. These findings suggest that PMC and M1 play a crucial role during motor-imagery as well as during motor-execution task. In addition, M1 causes more exchange of causal information among motor areas during a motor-execution task than during a motor-imagery task due to its interaction with SM A. This study expands our understanding of motor network involved during two different tasks, which are commonly used during rehabilitation following stroke. A clear understanding of the effective connectivity networks leads to a better treatment in helping stroke survivors regain motor ability.

  10. Self-Control of Haptic Assistance for Motor Learning: Influences of Frequency and Opinion of Utility

    PubMed Central

    Williams, Camille K.; Tseung, Victrine; Carnahan, Heather

    2017-01-01

    Studies of self-controlled practice have shown benefits when learners controlled feedback schedule, use of assistive devices and task difficulty, with benefits attributed to information processing and motivational advantages of self-control. Although haptic assistance serves as feedback, aids task performance and modifies task difficulty, researchers have yet to explore whether self-control over haptic assistance could be beneficial for learning. We explored whether self-control of haptic assistance would be beneficial for learning a tracing task. Self-controlled participants selected practice blocks on which they would receive haptic assistance, while participants in a yoked group received haptic assistance on blocks determined by a matched self-controlled participant. We inferred learning from performance on retention tests without haptic assistance. From qualitative analysis of open-ended questions related to rationales for/experiences of the haptic assistance that was chosen/provided, themes emerged regarding participants’ views of the utility of haptic assistance for performance and learning. Results showed that learning was directly impacted by the frequency of haptic assistance for self-controlled participants only and view of haptic assistance. Furthermore, self-controlled participants’ views were significantly associated with their requested haptic assistance frequency. We discuss these findings as further support for the beneficial role of self-controlled practice for motor learning. PMID:29255438

  11. Task-Based Mirror Therapy Augmenting Motor Recovery in Poststroke Hemiparesis: A Randomized Controlled Trial.

    PubMed

    Arya, Kamal Narayan; Pandian, Shanta; Kumar, Dharmendra; Puri, Vinod

    2015-08-01

    To establish the effect of the task-based mirror therapy (TBMT) on the upper limb recovery in stroke. A pilot, randomized, controlled, assessor-blinded trial was conducted in a rehabilitation institute. A convenience sample of 33 poststroke (mean duration, 12.5 months) hemiparetic subjects was randomized into 2 groups (experimental, 17; control, 16). The subjects were allocated to receive either TBMT or standard motor rehabilitation-40 sessions (5/week) for a period of 8 weeks. The TBMT group received movements using various goal-directed tasks and a mirror box. The movements were performed by the less-affected side superimposed on the affected side. The main outcome measures were Brunnstrom recovery stage (BRS) and Fugl-Meyer assessment (FMA)-FMA of upper extremity (FMA-UE), including upper arm (FMA-UA) and wrist-hand (FMA-WH). The TBMT group exhibited highly significant improvement on mean scores of FMA-WH (P < .001) and FMA-UE (P < .001) at postassessment in comparison to the control group. Furthermore, there was a 12% increase in the number of subjects at BRS stage 5 (out of synergy movement) in the experimental group as compared to a 0% rise at the same stage in the control group. This pilot trial confirmed the role of TBMT in improving the wrist-hand motor recovery in poststroke hemiparesis. MT using tasks may be used as an adjunct in stroke rehabilitation. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  12. Test Platform for Advanced Digital Control of Brushless DC Motors (MSFC Center Director's Discretionary Fund)

    NASA Technical Reports Server (NTRS)

    Gwaltney, D. A.

    2002-01-01

    A FY 2001 Center Director's Discretionary Fund task to develop a test platform for the development, implementation. and evaluation of adaptive and other advanced control techniques for brushless DC (BLDC) motor-driven mechanisms is described. Important applications for BLDC motor-driven mechanisms are the translation of specimens in microgravity experiments and electromechanical actuation of nozzle and fuel valves in propulsion systems. Motor-driven aerocontrol surfaces are also being utilized in developmental X vehicles. The experimental test platform employs a linear translation stage that is mounted vertically and driven by a BLDC motor. Control approaches are implemented on a digital signal processor-based controller for real-time, closed-loop control of the stage carriage position. The goal of the effort is to explore the application of advanced control approaches that can enhance the performance of a motor-driven actuator over the performance obtained using linear control approaches with fixed gains. Adaptive controllers utilizing an exact model knowledge controller and a self-tuning controller are implemented and the control system performance is illustrated through the presentation of experimental results.

  13. Inconsistency in serial choice decision and motor reaction times dissociate in younger and older adults.

    PubMed

    Bunce, David; MacDonald, Stuart W S; Hultsch, David F

    2004-12-01

    Intraindividual variability (inconsistency) in reaction time (RT) latencies was investigated in a group of younger (M=25.46 years) and older (M=69.29 years) men. Both groups performed 300 trials in 2-, 4-, and 8-choice RT conditions where RTs for decision and motor components of the task were recorded separately. A dissociation was evident in that inconsistency was greater in older adults for decision RTs when task demands relating to the number of choices and fatigue arising from time-on-task were high. For younger persons, a weak trend toward greater inconsistency in motor RTs was evident. The results are consistent with accounts suggesting that inconsistency in neurobiological mechanisms increases with age, and that attentional lapses or fluctuations in executive control contribute to RT inconsistency.

  14. A cognitive dual task affects gait variability in patients suffering from chronic low back pain.

    PubMed

    Hamacher, Dennis; Hamacher, Daniel; Schega, Lutz

    2014-11-01

    Chronic pain and gait variability in a dual-task situation are both associated with higher risk of falling. Executive functions regulate (dual-task) gait variability. A possible cause explaining why chronic pain increases risk of falling in an everyday dual-task situation might be that pain interferes with executive functions and results in a diminished dual-task capability with performance decrements on the secondary task. The main goal of this experiment was to evaluate the specific effects of a cognitive dual task on gait variability in chronic low back pain (CLBP) patients. Twelve healthy participants and twelve patients suffering from CLBP were included. The subjects were asked to perform a cognitive single task, a walking single task and a motor-cognitive dual task. Stride variability of trunk movements was calculated. A two-way ANOVA was performed to compare single-task walking with dual-task walking and the single cognitive task performance with the motor-cognitive dual-task performance. We did not find any differences in both of the single-task performances between groups. However, regarding single-task walking and dual-task walking, we observed an interaction effect indicating that low back pain patients show significantly higher gait variability in the dual-task condition as compared to controls. Our data suggest that chronic pain reduces motor-cognitive dual-task performance capability. We postulate that the detrimental effects are caused by central mechanisms where pain interferes with executive functions which, in turn, might contribute to increased risk of falling.

  15. Effect of type of cognitive task and walking speed on cognitive-motor interference during dual-task walking.

    PubMed

    Patel, P; Lamar, M; Bhatt, T

    2014-02-28

    We aimed to determine the effect of distinctly different cognitive tasks and walking speed on cognitive-motor interference of dual-task walking. Fifteen healthy adults performed four cognitive tasks: visuomotor reaction time (VMRT) task, word list generation (WLG) task, serial subtraction (SS) task, and the Stroop (STR) task while sitting and during walking at preferred-speed (dual-task normal walking) and slow-speed (dual-task slow-speed walking). Gait speed was recorded to determine effect on walking. Motor and cognitive costs were measured. Dual-task walking had a significant effect on motor and cognitive parameters. At preferred-speed, the motor cost was lowest for the VMRT task and highest for the STR task. In contrast, the cognitive cost was highest for the VMRT task and lowest for the STR task. Dual-task slow walking resulted in increased motor cost and decreased cognitive cost only for the STR task. Results show that the motor and cognitive cost of dual-task walking depends heavily on the type and perceived complexity of the cognitive task being performed. Cognitive cost for the STR task was low irrespective of walking speed, suggesting that at preferred-speed individuals prioritize complex cognitive tasks requiring higher attentional and processing resources over walking. While performing VMRT task, individuals preferred to prioritize more complex walking task over VMRT task resulting in lesser motor cost and increased cognitive cost for VMRT task. Furthermore, slow walking can assist in diverting greater attention towards complex cognitive tasks, improving its performance while walking. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Excessive motor overflow reveals abnormal inter-hemispheric connectivity in Friedreich ataxia.

    PubMed

    Low, Sze-Cheen; Corben, Louise A; Delatycki, Martin B; Ternes, Anne-Marie; Addamo, Patricia K; Georgiou-Karistianis, Nellie

    2013-07-01

    This study sought to characterise force variability and motor overflow in 12 individuals with Friedreich ataxia (FRDA) and 12 age- and gender-matched controls. Participants performed a finger-pressing task by exerting 30 and 70 % of their maximum finger force using the index finger of the right and left hand. Control of force production was measured as force variability, while any involuntary movements occurring on the finger of the other, passive hand, was measured as motor overflow. Significantly greater force variability in individuals with FRDA compared with controls is indicative of cortico-cerebellar disruption affecting motor control. Meanwhile, significantly greater motor overflow in this group provides the first evidence of possible abnormal inter-hemispheric activity that may be attributable to asymmetrical neuronal loss in the dentate nucleus. Overall, this study demonstrated a differential engagement in the underlying default processes of the motor system in FRDA.

  17. The processing of actions and action-words in amyotrophic lateral sclerosis patients.

    PubMed

    Papeo, Liuba; Cecchetto, Cinzia; Mazzon, Giulia; Granello, Giulia; Cattaruzza, Tatiana; Verriello, Lorenzo; Eleopra, Roberto; Rumiati, Raffaella I

    2015-03-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with prime consequences on the motor function and concomitant cognitive changes, most frequently in the domain of executive functions. Moreover, poorer performance with action-verbs versus object-nouns has been reported in ALS patients, raising the hypothesis that the motor dysfunction deteriorates the semantic representation of actions. Using action-verbs and manipulable-object nouns sharing semantic relationship with the same motor representations, the verb-noun difference was assessed in a group of 21 ALS-patients with severely impaired motor behavior, and compared with a normal sample's performance. ALS-group performed better on nouns than verbs, both in production (action and object naming) and comprehension (word-picture matching). This observation implies that the interpretation of the verb-noun difference in ALS cannot be accounted by the relatedness of verbs to motor representations, but has to consider the role of other semantic and/or morpho-phonological dimensions that distinctively define the two grammatical classes. Moreover, this difference in the ALS-group was not greater than the noun-verb difference in the normal sample. The mental representation of actions also involves an executive-control component to organize, in logical/temporal order, the individual motor events (or sub-goals) that form a purposeful action. We assessed this ability with action sequencing tasks, requiring participants to re-construct a purposeful action from the scrambled presentation of its constitutive motor events, shown in the form of photographs or short sentences. In those tasks, ALS-group's performance was significantly poorer than controls'. Thus, the executive dysfunction manifested in the sequencing deficit -but not the selective verb deficit- appears as a consistent feature of the cognitive profile associated with ALS. We suggest that ALS can offer a valuable model to study the relationship between (frontal) motor centers and the executive-control machinery housed in the frontal brain, and the implications of executive dysfunctions in tasks such as action processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Simulation For Task Practice in Technical Training.

    ERIC Educational Resources Information Center

    Mallory, W. J.

    1981-01-01

    Describes two programs used by the Ford Motor Company to train manufacturing skilled trades personnel. Programmable Controller Maintenance Training Program for Industrial Technicians and Troubleshooting Strategy Program use simulation and provide improved task performance after training. (JOW)

  19. Motor "dexterity"?: Evidence that left hemisphere lateralization of motor circuit connectivity is associated with better motor performance in children.

    PubMed

    Barber, Anita D; Srinivasan, Priti; Joel, Suresh E; Caffo, Brian S; Pekar, James J; Mostofsky, Stewart H

    2012-01-01

    Motor control relies on well-established motor circuits, which are critical for typical child development. Although many imaging studies have examined task activation during motor performance, none have examined the relationship between functional intrinsic connectivity and motor ability. The current study investigated the relationship between resting state functional connectivity within the motor network and motor performance assessment outside of the scanner in 40 typically developing right-handed children. Better motor performance correlated with greater left-lateralized (mean left hemisphere-mean right hemisphere) motor circuit connectivity. Speed, rhythmicity, and control of movements were associated with connectivity within different individual region pairs: faster speed was associated with more left-lateralized putamen-thalamus connectivity, less overflow with more left-lateralized supplementary motor-primary motor connectivity, and less dysrhythmia with more left-lateralized supplementary motor-anterior cerebellar connectivity. These findings suggest that for right-handed children, superior motor development depends on the establishment of left-hemisphere dominance in intrinsic motor network connectivity.

  20. The cerebellum and cognition: evidence from functional imaging studies.

    PubMed

    Stoodley, Catherine J

    2012-06-01

    Evidence for a role of the human cerebellum in cognitive functions comes from anatomical, clinical and neuroimaging data. Functional neuroimaging reveals cerebellar activation during a variety of cognitive tasks, including language, visual-spatial, executive, and working memory processes. It is important to note that overt movement is not a prerequisite for cerebellar activation: the cerebellum is engaged during conditions which either control for motor output or do not involve motor responses. Resting-state functional connectivity data reveal that, in addition to networks underlying motor control, the cerebellum is part of "cognitive" networks with prefrontal and parietal association cortices. Consistent with these findings, regional differences in activation patterns within the cerebellum are evident depending on the task demands, suggesting that the cerebellum can be broadly divided into functional regions based on the patterns of anatomical connectivity between different regions of the cerebellum and sensorimotor and association areas of the cerebral cortex. However, the distinct contribution of the cerebellum to cognitive tasks is not clear. Here, the functional neuroimaging evidence for cerebellar involvement in cognitive functions is reviewed and related to hypotheses as to why the cerebellum is active during such tasks. Identifying the precise role of the cerebellum in cognition-as well as the mechanism by which the cerebellum modulates performance during a wide range of tasks-remains a challenge for future investigations.

  1. Proactive Motor Control Reduces Monetary Risk Taking in Gambling

    PubMed Central

    Adams, Rachel; Chambers, Christopher D.

    2012-01-01

    Less supervision by the executive system after disruption of the right prefrontal cortex leads to increased risk taking in gambling because superficially attractive—but risky—choices are not suppressed. Similarly, people might gamble more in multitask situations than in single-task situations because concurrent executive processes usually interfere with each other. In the study reported here, we used a novel monetary decision-making paradigm to investigate whether multitasking could reduce rather than increase risk taking in gambling. We found that performing a task that induced cautious motor responding reduced gambling in a multitask situation (Experiment 1). We then found that a short period of inhibitory training lessened risk taking in gambling at least 2 hr later (Experiments 2 and 3). Our findings indicate that proactive motor control strongly affects monetary risk taking in gambling. The link between control systems at different cognitive levels might be exploited to develop new methods for rehabilitation of addiction and impulse-control disorders. PMID:22692336

  2. Testing cognition in the wild: factors affecting performance and individual consistency in two measures of avian cognition.

    PubMed

    Shaw, Rachael C

    2017-01-01

    Developing cognitive tasks to reliably quantify individual differences in cognitive ability is critical to advance our understanding of the fitness consequences of cognition in the wild. Several factors may influence individual performance in a cognitive task, with some being unrelated to the cognitive ability that is the target of the test. It is therefore essential to assess how extraneous factors may affect task performance, particularly for those tasks that are frequently used to quantify individual differences in cognitive ability. The current study therefore measured the performance of wild North Island robins in two tasks commonly used to measure individual differences in avian cognition: a novel motor task and a detour reaching task. The robins' performance in the motor task was affected by prior experience; individuals that had previously participated in a similar task that required a different motor action pattern outperformed naïve subjects. By contrast, detour reaching performance was influenced by an individual's body condition, suggesting that energetic state may affect inhibitory control in robins. Designing tasks that limit the influence of past experience and developing means of standardising motivation across animals tested in the wild remain key challenges to improving current measurements of cognitive ability in birds. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Improvements in motor tasks through the use of smartphone technology for individuals with Duchenne muscular dystrophy.

    PubMed

    Capelini, Camila Miliani; da Silva, Talita Dias; Tonks, James; Watson, Suzanna; Alvarez, Mayra Priscila Boscolo; de Menezes, Lilian Del Ciello; Favero, Francis Meire; Caromano, Fátima Aparecida; Massetti, Thais; de Mello Monteiro, Carlos Bandeira

    2017-01-01

    In individuals severely affected with Duchenne muscular dystrophy (DMD), virtual reality has recently been used as a tool to enhance community interaction. Smartphones offer the exciting potential to improve communication, access, and participation, and present the unique opportunity to directly deliver functionality to people with disabilities. To verify whether individuals with DMD improve their motor performance when undertaking a visual motor task using a smartphone game. Fifty individuals with DMD and 50 healthy, typically developing (TD) controls, aged 10-34 years participated in the study. The functional characterization of the sample was determined through Vignos, Egen Klassifikation, and the Motor Function Measure scales. To complete the task, individuals moved a virtual ball around a virtual maze and the time in seconds was measured after every attempt in order to analyze improvement of performance after the practice trials. Motor performance (time to finish each maze) was measured in phases of acquisition, short-term retention, and transfer. Use of the smartphone maze game promoted improvement in performance during acquisition in both groups, which remained in the retention phase. At the transfer phases, with alternative maze tasks, the performance in DMD group was similar to the performance of TD group, with the exception of the transfer to the contralateral hand (nondominant). However, the group with DMD demonstrated longer movement time at all stages of learning, compared with the TD group. The practice of a visual motor task delivered via smartphone game promoted an improvement in performance with similar patterns of learning in both groups. Performance can be influenced by task difficulty, and for people with DMD, motor deficits are responsible for the lower speed of execution. This study indicates that individuals with DMD showed improved performance in a short-term motor learning protocol using a smartphone. We advocate that this technology could be used to promote function in this population.

  4. Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses.

    PubMed

    Ramos-Murguialday, Ander; Schürholz, Markus; Caggiano, Vittorio; Wildgruber, Moritz; Caria, Andrea; Hammer, Eva Maria; Halder, Sebastian; Birbaumer, Niels

    2012-01-01

    Brain computer interface (BCI) technology has been proposed for motor neurorehabilitation, motor replacement and assistive technologies. It is an open question whether proprioceptive feedback affects the regulation of brain oscillations and therefore BCI control. We developed a BCI coupled on-line with a robotic hand exoskeleton for flexing and extending the fingers. 24 healthy participants performed five different tasks of closing and opening the hand: (1) motor imagery of the hand movement without any overt movement and without feedback, (2) motor imagery with movement as online feedback (participants see and feel their hand, with the exoskeleton moving according to their brain signals, (3) passive (the orthosis passively opens and closes the hand without imagery) and (4) active (overt) movement of the hand and rest. Performance was defined as the difference in power of the sensorimotor rhythm during motor task and rest and calculated offline for different tasks. Participants were divided in three groups depending on the feedback receiving during task 2 (the other tasks were the same for all participants). Group 1 (n = 9) received contingent positive feedback (participants' sensorimotor rhythm (SMR) desynchronization was directly linked to hand orthosis movements), group 2 (n = 8) contingent "negative" feedback (participants' sensorimotor rhythm synchronization was directly linked to hand orthosis movements) and group 3 (n = 7) sham feedback (no link between brain oscillations and orthosis movements). We observed that proprioceptive feedback (feeling and seeing hand movements) improved BCI performance significantly. Furthermore, in the contingent positive group only a significant motor learning effect was observed enhancing SMR desynchronization during motor imagery without feedback in time. Furthermore, we observed a significantly stronger SMR desynchronization in the contingent positive group compared to the other groups during active and passive movements. To summarize, we demonstrated that the use of contingent positive proprioceptive feedback BCI enhanced SMR desynchronization during motor tasks.

  5. Improvements in motor tasks through the use of smartphone technology for individuals with Duchenne muscular dystrophy

    PubMed Central

    Capelini, Camila Miliani; da Silva, Talita Dias; Tonks, James; Watson, Suzanna; Alvarez, Mayra Priscila Boscolo; de Menezes, Lilian Del Ciello; Favero, Francis Meire; Caromano, Fátima Aparecida; Massetti, Thais; de Mello Monteiro, Carlos Bandeira

    2017-01-01

    Background In individuals severely affected with Duchenne muscular dystrophy (DMD), virtual reality has recently been used as a tool to enhance community interaction. Smartphones offer the exciting potential to improve communication, access, and participation, and present the unique opportunity to directly deliver functionality to people with disabilities. Objective To verify whether individuals with DMD improve their motor performance when undertaking a visual motor task using a smartphone game. Patients and methods Fifty individuals with DMD and 50 healthy, typically developing (TD) controls, aged 10–34 years participated in the study. The functional characterization of the sample was determined through Vignos, Egen Klassifikation, and the Motor Function Measure scales. To complete the task, individuals moved a virtual ball around a virtual maze and the time in seconds was measured after every attempt in order to analyze improvement of performance after the practice trials. Motor performance (time to finish each maze) was measured in phases of acquisition, short-term retention, and transfer. Results Use of the smartphone maze game promoted improvement in performance during acquisition in both groups, which remained in the retention phase. At the transfer phases, with alternative maze tasks, the performance in DMD group was similar to the performance of TD group, with the exception of the transfer to the contralateral hand (nondominant). However, the group with DMD demonstrated longer movement time at all stages of learning, compared with the TD group. Conclusion The practice of a visual motor task delivered via smartphone game promoted an improvement in performance with similar patterns of learning in both groups. Performance can be influenced by task difficulty, and for people with DMD, motor deficits are responsible for the lower speed of execution. This study indicates that individuals with DMD showed improved performance in a short-term motor learning protocol using a smartphone. We advocate that this technology could be used to promote function in this population. PMID:28860778

  6. Gait post-stroke: Pathophysiology and rehabilitation strategies.

    PubMed

    Beyaert, C; Vasa, R; Frykberg, G E

    2015-11-01

    We reviewed neural control and biomechanical description of gait in both non-disabled and post-stroke subjects. In addition, we reviewed most of the gait rehabilitation strategies currently in use or in development and observed their principles in relation to recent pathophysiology of post-stroke gait. In both non-disabled and post-stroke subjects, motor control is organized on a task-oriented basis using a common set of a few muscle modules to simultaneously achieve body support, balance control, and forward progression during gait. Hemiparesis following stroke is due to disruption of descending neural pathways, usually with no direct lesion of the brainstem and cerebellar structures involved in motor automatic processes. Post-stroke, improvements of motor activities including standing and locomotion are variable but are typically characterized by a common postural behaviour which involves the unaffected side more for body support and balance control, likely in response to initial muscle weakness of the affected side. Various rehabilitation strategies are regularly used or in development, targeting muscle activity, postural and gait tasks, using more or less high-technology equipment. Reduced walking speed often improves with time and with various rehabilitation strategies, but asymmetric postural behaviour during standing and walking is often reinforced, maintained, or only transitorily decreased. This asymmetric compensatory postural behaviour appears to be robust, driven by support and balance tasks maintaining the predominant use of the unaffected side over the initially impaired affected side. Based on these elements, stroke rehabilitation including affected muscle strengthening and often stretching would first need to correct the postural asymmetric pattern by exploiting postural automatic processes in various particular motor tasks secondarily beneficial to gait. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Reduced Cognitive-Motor Interference on Voluntary Balance Control in Older Tai Chi Practitioners.

    PubMed

    Varghese, Rini; Hui-Chan, Christina W Y; Bhatt, Tanvi

    2016-01-01

    Recent dual-task studies suggest that Tai Chi practitioners displayed better control of standing posture and maintained a quicker response time of postural muscle activation during a stepping down activity. Whether this effect extends to voluntary balance control, specifically the limits of excursion of the center of pressure, remains to be examined. The purpose of this study was to evaluate the cognitive-motor interference pattern by examining the effects of a concurrently performed cognitive task on attention of voluntary balance control in older adults who are long-term practitioners of Tai Chi. Ten older Tai Chi practitioners and 10 age-matched nonpractitioners performed a voluntary balance task that required them to shift their weight to reach a preset target in the forward and backward directions, with (single task, ST) and without (dual task, DT) a secondary cognitive task, which was the counting backward task. The counting backward task required the individual to compute and verbalize a series of arithmetic differences between a given pair of randomly generated numbers. The cognitive task was also performed independently (cognitive-ST). All trials were performed in a random order. Balance outcomes included reaction time, movement velocity, and maximal excursion of the center of pressure provided by the NeuroCom system. Cognitive outcome was the number of correct responses generated within the 8-second trial during the ST and DT conditions. Outcome variables were analyzed using a 2-factor, group by task, analysis of variance. DT costs for the variables were calculated as the relative difference between ST and DT conditions and were compared between the 2 groups using independent t tests. Tai Chi practitioners displayed shorter reaction times (P < .001) and faster movement velocities (P < .05) of their center of pressure than older nonpractitioners for both directions; however, no difference was found between the maximal excursions of the 2 groups. Cost analyses revealed that reaction time and cognitive costs were significantly lower in the Tai Chi practitioners for both forward and backward directions (P < .05); however, similar findings for movement velocity costs were significant only in the backward direction (P < .05). Our results suggest that Tai Chi practitioners expended fewer motor and cognitive resources than older nonpractitioners during a fairly complex (dynamic) postural equilibrium task while performing a verbal working memory task. They exhibited lesser cognitive-motor interference and thus better allocation of attentional resources toward the voluntary balance control task. Given that dynamic balance is a crucial prerequisite for walking and dual-tasking ability is considered to be a significant predictor of falls in older adults, our results might point at the possible long-term benefits of Tai Chi practice to counteract age-related decline in dual-tasking ability. Findings present preliminary data for further investigation, especially related to potential benefits in fall prevention.

  8. Impaired Interlimb Coordination of Voluntary Leg Movements in Poststroke Hemiparesis

    PubMed Central

    Tseng, Shih-Chiao

    2010-01-01

    Appropriate interlimb coordination of the lower extremities is particularly important for a variety of functional human motor behaviors such as jumping, kicking a ball, or simply walking. Specific interlimb coordination patterns may be especially impaired after a lesion to the motor system such as stroke, yet this has not been thoroughly examined to date. The purpose of this study was to investigate the motor deficits in individuals with chronic stroke and hemiparesis when performing unilateral versus bilateral inphase versus bilateral antiphase voluntary cyclic ankle movements. We recorded ankle angular trajectories and muscle activity from the dorsiflexors and plantarflexors and compared these between subjects with stroke and a group of healthy age-matched control subjects. Results showed clear abnormalities in both the kinematics and EMG of the stroke subjects, with significant movement degradation during the antiphase task compared with either the unilateral or the inphase task. The abnormalities included prolonged cycle durations, reduced ankle excursions, decreased agonist EMG bursts, and reduced EMG modulation across movement phases. By comparison, the control group showed nearly identical performance across all task conditions. These findings suggest that stroke involving the corticospinal system projection to the leg specifically impairs one or more components of the neural circuitry involved in lower extremity interlimb coordination. The express susceptibility of the antiphase pattern to exaggerated motor deficits could contribute to functional deficits in a number of antiphase leg movement tasks, including walking. PMID:20463199

  9. Effect of the cognitive-motor dual-task using auditory cue on balance of surviviors with chronic stroke: a pilot study.

    PubMed

    Choi, Wonjae; Lee, GyuChang; Lee, Seungwon

    2015-08-01

    To investigate the effect of a cognitive-motor dual-task using auditory cues on the balance of patients with chronic stroke. Randomized controlled trial. Inpatient rehabilitation center. Thirty-seven individuals with chronic stroke. The participants were randomly allocated to the dual-task group (n=19) and the single-task group (n=18). The dual-task group performed a cognitive-motor dual-task in which they carried a circular ring from side to side according to a random auditory cue during treadmill walking. The single-task group walked on a treadmill only. All subjects completed 15 min per session, three times per week, for four weeks with conventional rehabilitation five times per week over the four weeks. Before and after intervention, both static and dynamic balance were measured with a force platform and using the Timed Up and Go (TUG) test. The dual-task group showed significant improvement in all variables compared to the single-task group, except for anteroposterior (AP) sway velocity with eyes open and TUG at follow-up: mediolateral (ML) sway velocity with eye open (dual-task group vs. single-task group: 2.11 mm/s vs. 0.38 mm/s), ML sway velocity with eye close (2.91 mm/s vs. 1.35 mm/s), AP sway velocity with eye close (4.84 mm/s vs. 3.12 mm/s). After intervention, all variables showed significant improvement in the dual-task group compared to baseline. The study results suggest that the performance of a cognitive-motor dual-task using auditory cues may influence balance improvements in chronic stroke patients. © The Author(s) 2014.

  10. Distributed cerebellar plasticity implements generalized multiple-scale memory components in real-robot sensorimotor tasks.

    PubMed

    Casellato, Claudia; Antonietti, Alberto; Garrido, Jesus A; Ferrigno, Giancarlo; D'Angelo, Egidio; Pedrocchi, Alessandra

    2015-01-01

    The cerebellum plays a crucial role in motor learning and it acts as a predictive controller. Modeling it and embedding it into sensorimotor tasks allows us to create functional links between plasticity mechanisms, neural circuits and behavioral learning. Moreover, if applied to real-time control of a neurorobot, the cerebellar model has to deal with a real noisy and changing environment, thus showing its robustness and effectiveness in learning. A biologically inspired cerebellar model with distributed plasticity, both at cortical and nuclear sites, has been used. Two cerebellum-mediated paradigms have been designed: an associative Pavlovian task and a vestibulo-ocular reflex, with multiple sessions of acquisition and extinction and with different stimuli and perturbation patterns. The cerebellar controller succeeded to generate conditioned responses and finely tuned eye movement compensation, thus reproducing human-like behaviors. Through a productive plasticity transfer from cortical to nuclear sites, the distributed cerebellar controller showed in both tasks the capability to optimize learning on multiple time-scales, to store motor memory and to effectively adapt to dynamic ranges of stimuli.

  11. Effects of Single Compared to Dual Task Practice on Learning a Dynamic Balance Task in Young Adults

    PubMed Central

    Kiss, Rainer; Brueckner, Dennis; Muehlbauer, Thomas

    2018-01-01

    Background: In everyday life, people engage in situations involving the concurrent processing of motor (balance) and cognitive tasks (i.e., “dual task situations”) that result in performance declines in at least one of the given tasks. The concurrent practice of both the motor and cognitive task may counteract these performance decrements. The purpose of this study was to examine the effects of single task (ST) compared to dual task (DT) practice on learning a dynamic balance task. Methods: Forty-eight young adults were randomly assigned to either a ST (i.e., motor or cognitive task training only) or a DT (i.e., motor-cognitive training) practice condition. The motor task required participants to stand on a platform and keeping the platform as close to horizontal as possible. In the cognitive task, participants were asked to recite serial subtractions of three. For 2 days, participants of the ST groups practiced the motor or cognitive task only, while the participants of the DT group concurrently performed both. Root-mean-square error (RMSE) for the motor and total number of correct calculations for the cognitive task were computed. Results: During practice, all groups improved their respective balance and/or cognitive task performance. With regard to the assessment of learning on day 3, we found significantly smaller RMSE values for the ST motor (d = 1.31) and the DT motor-cognitive (d = 0.76) practice group compared to the ST cognitive practice group but not between the ST motor and the DT motor-cognitive practice group under DT test condition. Further, we detected significantly larger total numbers of correct calculations under DT test condition for the ST cognitive (d = 2.19) and the DT motor-cognitive (d = 1.55) practice group compared to the ST motor practice group but not between the ST cognitive and the DT motor-cognitive practice group. Conclusion: We conclude that ST practice resulted in an effective modulation of the trained domain (i.e., motor or cognitive) while only DT practice resulted in an effective modulation of both domains (i.e., motor and cognitive). Thus, particularly DT practice frees up central resources that were used for an effective modulation of motor and cognitive processing mechanisms. PMID:29593614

  12. Resting-state connectivity predicts visuo-motor skill learning.

    PubMed

    Manuel, Aurélie L; Guggisberg, Adrian G; Thézé, Raphaël; Turri, Francesco; Schnider, Armin

    2018-08-01

    Spontaneous brain activity at rest is highly organized even when the brain is not explicitly engaged in a task. Functional connectivity (FC) in the alpha frequency band (α, 8-12 Hz) during rest is associated with improved performance on various cognitive and motor tasks. In this study we explored how FC is associated with visuo-motor skill learning and offline consolidation. We tested two hypotheses by which resting-state FC might achieve its impact on behavior: preparing the brain for an upcoming task or consolidating training gains. Twenty-four healthy participants were assigned to one of two groups: The experimental group (n = 12) performed a computerized mirror-drawing task. The control group (n = 12) performed a similar task but with concordant cursor direction. High-density 156-channel resting-state EEG was recorded before and after learning. Subjects were tested for offline consolidation 24h later. The Experimental group improved during training and showed offline consolidation. Increased α-FC between the left superior parietal cortex and the rest of the brain before training and decreased α-FC in the same region after training predicted learning. Resting-state FC following training did not predict offline consolidation and none of these effects were present in controls. These findings indicate that resting-state alpha-band FC is primarily implicated in providing optimal neural resources for upcoming tasks. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Age-Related Differences in Cortical and Subcortical Activities during Observation and Motor Imagery of Dynamic Postural Tasks: An fMRI Study.

    PubMed

    Mouthon, A; Ruffieux, J; Mouthon, M; Hoogewoud, H-M; Annoni, J-M; Taube, W

    2018-01-01

    Age-related changes in brain activation other than in the primary motor cortex are not well known with respect to dynamic balance control. Therefore, the current study aimed to explore age-related differences in the control of static and dynamic postural tasks using fMRI during mental simulation of balance tasks. For this purpose, 16 elderly (72 ± 5 years) and 16 young adults (27 ± 5 years) were asked to mentally simulate a static and a dynamic balance task by motor imagery (MI), action observation (AO), or the combination of AO and MI (AO + MI). Age-related differences were detected in the form of larger brain activations in elderly compared to young participants, especially in the challenging dynamic task when applying AO + MI. Interestingly, when MI (no visual input) was contrasted to AO (visual input), elderly participants revealed deactivation of subcortical areas. The finding that the elderly demonstrated overactivation in mostly cortical areas in challenging postural conditions with visual input (AO + MI and AO) but deactivation in subcortical areas during MI (no vision) may indicate that elderly individuals allocate more cortical resources to the internal representation of dynamic postural tasks. Furthermore, it might be assumed that they depend more strongly on visual input to activate subcortical internal representations.

  14. Age-Related Differences in Cortical and Subcortical Activities during Observation and Motor Imagery of Dynamic Postural Tasks: An fMRI Study

    PubMed Central

    Ruffieux, J.; Mouthon, M.; Hoogewoud, H.-M.; Taube, W.

    2018-01-01

    Age-related changes in brain activation other than in the primary motor cortex are not well known with respect to dynamic balance control. Therefore, the current study aimed to explore age-related differences in the control of static and dynamic postural tasks using fMRI during mental simulation of balance tasks. For this purpose, 16 elderly (72 ± 5 years) and 16 young adults (27 ± 5 years) were asked to mentally simulate a static and a dynamic balance task by motor imagery (MI), action observation (AO), or the combination of AO and MI (AO + MI). Age-related differences were detected in the form of larger brain activations in elderly compared to young participants, especially in the challenging dynamic task when applying AO + MI. Interestingly, when MI (no visual input) was contrasted to AO (visual input), elderly participants revealed deactivation of subcortical areas. The finding that the elderly demonstrated overactivation in mostly cortical areas in challenging postural conditions with visual input (AO + MI and AO) but deactivation in subcortical areas during MI (no vision) may indicate that elderly individuals allocate more cortical resources to the internal representation of dynamic postural tasks. Furthermore, it might be assumed that they depend more strongly on visual input to activate subcortical internal representations. PMID:29675037

  15. Motor laterality as an indicator of speech laterality.

    PubMed

    Flowers, Kenneth A; Hudson, John M

    2013-03-01

    The determination of speech laterality, especially where it is anomalous, is both a theoretical issue and a practical problem for brain surgery. Handedness is commonly thought to be related to speech representation, but exactly how is not clearly understood. This investigation analyzed handedness by preference rating and performance on a reliable task of motor laterality in 34 patients undergoing a Wada test, to see if they could provide an indicator of speech laterality. Hand usage preference ratings divided patients into left, right, and mixed in preference. Between-hand differences in movement time on a pegboard task determined motor laterality. Results were correlated (χ2) with speech representation as determined by a standard Wada test. It was found that patients whose between-hand difference in speed on the motor task was small or inconsistent were the ones whose Wada test speech representation was likely to be ambiguous or anomalous, whereas all those with a consistently large between-hand difference showed clear unilateral speech representation in the hemisphere controlling the better hand (χ2 = 10.45, df = 1, p < .01, η2 = 0.55) This relationship prevailed across hand preference and level of skill in the hands itself. We propose that motor and speech laterality are related where they both involve a central control of motor output sequencing and that a measure of that aspect of the former will indicate the likely representation of the latter. A between-hand measure of motor laterality based on such a measure may indicate the possibility of anomalous speech representation. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  16. Motor intensive anti-gravity training improves performance in dynamic balance related tasks in persons with Parkinson's disease.

    PubMed

    Malling, Anne Sofie B; Jensen, Bente R

    2016-01-01

    Recent studies indicate that the effect of training on motor performance in persons with Parkinson's disease (PDP) is dependent on motor intensity. However, training of high motor intensity can be hard to apply in PDP due to e.g. bradykinesia, rigidity, tremor and postural instability. Therefore, the aim was to study the effect of motor intensive training performed in a safe anti-gravity environment using lower-body positive pressure (LBPP) technology on performance during dynamic balance related tasks. Thirteen male PDP went through an 8-week control period followed by 8 weeks of motor intensive antigravity training. Seventeen healthy males constituted a control group (CON). Performance during a five repetition sit-to-stand test (STS; sagittal plane) and a dynamic postural balance test (DPB; transversal plane) was evaluated. Effect measures were completion time, functional rates of force development, directional changes and force variance. STS completion time improved by 24% to the level of CON which was explained by shorter sitting-time and standing-time and larger numeric rate of force change during lowering to the chair, indicating faster vertical directional change and improved relaxation. DPB completion time tended to improve and was accompanied by improvements of functional medial and lateral rates of force development and higher vertical force variance during DPB. Our results suggest that the performance improvements may relate to improved inter-limb coordination. It is concluded that 8 weeks of motor intensive training in a safe LBPP environment improved performance during dynamic balance related tasks in PDP. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Design of a robotic vehicle with self-contained intelligent wheels

    NASA Astrophysics Data System (ADS)

    Poulson, Eric A.; Jacob, John S.; Gunderson, Robert W.; Abbott, Ben A.

    1998-08-01

    The Center for Intelligent Systems has developed a small robotic vehicle named the Advanced Rover Chassis 3 (ARC 3) with six identical intelligent wheel units attached to a payload via a passive linkage suspension system. All wheels are steerable, so the ARC 3 can move in any direction while rotating at any rate allowed by the terrain and motors. Each intelligent wheel unit contains a drive motor, steering motor, batteries, and computer. All wheel units are identical, so manufacturing, programing, and spare replacement are greatly simplified. The intelligent wheel concept would allow the number and placement of wheels on the vehicle to be changed with no changes to the control system, except to list the position of all the wheels relative to the vehicle center. The task of controlling the ARC 3 is distributed between one master computer and the wheel computers. Tasks such as controlling the steering motors and calculating the speed of each wheel relative to the vehicle speed in a corner are dependent on the location of a wheel relative to the vehicle center and ar processed by the wheel computers. Conflicts between the wheels are eliminated by computing the vehicle velocity control in the master computer. Various approaches to this distributed control problem, and various low level control methods, have been explored.

  18. Haptic-Based Perception-Empathy Biofeedback Enhances Postural Motor Learning During High-Cognitive Load Task in Healthy Older Adults

    PubMed Central

    Yasuda, Kazuhiro; Saichi, Kenta; Iwata, Hiroyasu

    2018-01-01

    Falls and fall-induced injuries are major global public health problems, and sensory input impairment in older adults results in significant limitations in feedback-type postural control. A haptic-based biofeedback (BF) system can be used for augmenting somatosensory input in older adults, and the application of this BF system can increase the objectivity of the feedback and encourage comparison with that provided by a trainer. Nevertheless, an optimal BF system that focuses on interpersonal feedback for balance training in older adults has not been proposed. Thus, we proposed a haptic-based perception-empathy BF system that provides information regarding the older adult's center-of-foot pressure pattern to the trainee and trainer for refining the motor learning effect. The first objective of this study was to examine the effect of this balance training regimen in healthy older adults performing a postural learning task. Second, this study aimed to determine whether BF training required high cognitive load to clarify its practicability in real-life settings. Twenty older adults were assigned to two groups: BF and control groups. Participants in both groups tried balance training in the single-leg stance while performing a cognitive task (i.e., serial subtraction task). Retention was tested 24 h later. Testing comprised balance performance measures (i.e., 95% confidence ellipse area and mean velocity of sway) and dual-task performance (number of responses and correct answers). Measurements of postural control using a force plate revealed that the stability of the single-leg stance was significantly lower in the BF group than in the control group during the balance task. The BF group retained the improvement in the 95% confidence ellipse area 24 h after the retention test. Results of dual-task performance during the balance task were not different between the two groups. These results confirmed the potential benefit of the proposed balance training regimen in designing successful motor learning programs for preventing falls in older adults. PMID:29868597

  19. Haptic-Based Perception-Empathy Biofeedback Enhances Postural Motor Learning During High-Cognitive Load Task in Healthy Older Adults.

    PubMed

    Yasuda, Kazuhiro; Saichi, Kenta; Iwata, Hiroyasu

    2018-01-01

    Falls and fall-induced injuries are major global public health problems, and sensory input impairment in older adults results in significant limitations in feedback-type postural control. A haptic-based biofeedback (BF) system can be used for augmenting somatosensory input in older adults, and the application of this BF system can increase the objectivity of the feedback and encourage comparison with that provided by a trainer. Nevertheless, an optimal BF system that focuses on interpersonal feedback for balance training in older adults has not been proposed. Thus, we proposed a haptic-based perception-empathy BF system that provides information regarding the older adult's center-of-foot pressure pattern to the trainee and trainer for refining the motor learning effect. The first objective of this study was to examine the effect of this balance training regimen in healthy older adults performing a postural learning task. Second, this study aimed to determine whether BF training required high cognitive load to clarify its practicability in real-life settings. Twenty older adults were assigned to two groups: BF and control groups. Participants in both groups tried balance training in the single-leg stance while performing a cognitive task (i.e., serial subtraction task). Retention was tested 24 h later. Testing comprised balance performance measures (i.e., 95% confidence ellipse area and mean velocity of sway) and dual-task performance (number of responses and correct answers). Measurements of postural control using a force plate revealed that the stability of the single-leg stance was significantly lower in the BF group than in the control group during the balance task. The BF group retained the improvement in the 95% confidence ellipse area 24 h after the retention test. Results of dual-task performance during the balance task were not different between the two groups. These results confirmed the potential benefit of the proposed balance training regimen in designing successful motor learning programs for preventing falls in older adults.

  20. Does Post-task Declarative Learning Have an Influence on Early Motor Memory Consolidation Over Day? An fMRI Study

    PubMed Central

    Rothkirch, Inken; Wolff, Stephan; Margraf, Nils G.; Pedersen, Anya; Witt, Karsten

    2018-01-01

    Previous studies demonstrated the influence of the post-learning period on procedural motor memory consolidation. In an early period after the acquisition, motor skills are vulnerable to modifications during wakefulness. Indeed, specific interventions such as world-list learning within this early phase of motor memory consolidation seem to enhance motor performance as an indicator for successful consolidation. This finding highlights the idea that manipulations of procedural and declarative memory systems during the early phase of memory consolidation over wakefulness may influence off-line consolidation. Using functional magnetic resonance imaging (fMRI) during initial motor sequence learning and motor sequence recall, we indirectly assess the influence of a secondary task taken place in the early phase of memory consolidation. All participants were scanned using fMRI during the learning phase of a serial reaction time task (SRTT) at 8 a.m. Afterwards, they were randomly assigned to one of five conditions. One group performed a declarative verbal, one a declarative nonverbal learning task. Two groups worked on attention tasks. A control group passed a resting condition. Participants stayed awake the whole day and performed the SRTT in the MRI scanner 12 h later at 8 p.m. At the behavioral level, the analysis of the reaction times failed to show a significant group difference. The primary analysis assessing fMRI data based on the contrast (sequence – random) between learning and retrieval also did not show any significant group differences. Therefore, our main analysis do not support the hypothesis that a secondary task influences the retrieval of the SRTT. In a more liberal fMRI analysis, we compared only the sequence blocks of the SRTT from learning to recall. BOLD signal decreased in the ipsilateral cerebellum and the supplementary motor area solely in the verbal learning group. Although our primary analysis failed to show significant changes between our groups, results of the secondary analysis could be an indication for a beneficial effect of the verbal declarative task in the early post-learning phase. A nonverbal learning task did not affect the activation within the motor network. Further studies are needed to replicate this finding and to assess the usefulness of this manipulation. PMID:29755315

  1. Does Post-task Declarative Learning Have an Influence on Early Motor Memory Consolidation Over Day? An fMRI Study.

    PubMed

    Rothkirch, Inken; Wolff, Stephan; Margraf, Nils G; Pedersen, Anya; Witt, Karsten

    2018-01-01

    Previous studies demonstrated the influence of the post-learning period on procedural motor memory consolidation. In an early period after the acquisition, motor skills are vulnerable to modifications during wakefulness. Indeed, specific interventions such as world-list learning within this early phase of motor memory consolidation seem to enhance motor performance as an indicator for successful consolidation. This finding highlights the idea that manipulations of procedural and declarative memory systems during the early phase of memory consolidation over wakefulness may influence off-line consolidation. Using functional magnetic resonance imaging (fMRI) during initial motor sequence learning and motor sequence recall, we indirectly assess the influence of a secondary task taken place in the early phase of memory consolidation. All participants were scanned using fMRI during the learning phase of a serial reaction time task (SRTT) at 8 a.m. Afterwards, they were randomly assigned to one of five conditions. One group performed a declarative verbal, one a declarative nonverbal learning task. Two groups worked on attention tasks. A control group passed a resting condition. Participants stayed awake the whole day and performed the SRTT in the MRI scanner 12 h later at 8 p.m. At the behavioral level, the analysis of the reaction times failed to show a significant group difference. The primary analysis assessing fMRI data based on the contrast (sequence - random) between learning and retrieval also did not show any significant group differences. Therefore, our main analysis do not support the hypothesis that a secondary task influences the retrieval of the SRTT. In a more liberal fMRI analysis, we compared only the sequence blocks of the SRTT from learning to recall. BOLD signal decreased in the ipsilateral cerebellum and the supplementary motor area solely in the verbal learning group. Although our primary analysis failed to show significant changes between our groups, results of the secondary analysis could be an indication for a beneficial effect of the verbal declarative task in the early post-learning phase. A nonverbal learning task did not affect the activation within the motor network. Further studies are needed to replicate this finding and to assess the usefulness of this manipulation.

  2. Altered visual strategies and attention are related to increased force fluctuations during a pinch grip task in older adults.

    PubMed

    Keenan, Kevin G; Huddleston, Wendy E; Ernest, Bradley E

    2017-11-01

    The purpose of the study was to determine the visual strategies used by older adults during a pinch grip task and to assess the relations between visual strategy, deficits in attention, and increased force fluctuations in older adults. Eye movements of 23 older adults (>65 yr) were monitored during a low-force pinch grip task while subjects viewed three common visual feedback displays. Performance on the Grooved Pegboard test and an attention task (which required no concurrent hand movements) was also measured. Visual strategies varied across subjects and depended on the type of visual feedback provided to the subjects. First, while viewing a high-gain compensatory feedback display (horizontal bar moving up and down with force), 9 of 23 older subjects adopted a strategy of performing saccades during the task, which resulted in 2.5 times greater force fluctuations in those that exhibited saccades compared with those who maintained fixation near the target line. Second, during pursuit feedback displays (force trace moving left to right across screen and up and down with force), all subjects exhibited multiple saccades, and increased force fluctuations were associated ( r s = 0.6; P = 0.002) with fewer saccades during the pursuit task. Also, decreased low-frequency (<4 Hz) force fluctuations and Grooved Pegboard times were significantly related ( P = 0.033 and P = 0.005, respectively) with higher (i.e., better) attention z scores. Comparison of these results with our previously published results in young subjects indicates that saccadic eye movements and attention are related to force control in older adults. NEW & NOTEWORTHY The significant contributions of the study are the addition of eye movement data and an attention task to explain differences in hand motor control across different visual displays in older adults. Older participants used different visual strategies across varying feedback displays, and saccadic eye movements were related with motor performance. In addition, those older individuals with deficits in attention had impaired motor performance on two different hand motor control tasks, including the Grooved Pegboard test. Copyright © 2017 the American Physiological Society.

  3. Defective cerebellar control of cortical plasticity in writer’s cramp

    PubMed Central

    Hubsch, Cecile; Roze, Emmanuel; Popa, Traian; Russo, Margherita; Balachandran, Ammu; Pradeep, Salini; Mueller, Florian; Brochard, Vanessa; Quartarone, Angelo; Degos, Bertrand; Vidailhet, Marie; Kishore, Asha

    2013-01-01

    A large body of evidence points to a role of basal ganglia dysfunction in the pathophysiology of dystonia, but recent studies indicate that cerebellar dysfunction may also be involved. The cerebellum influences sensorimotor adaptation by modulating sensorimotor plasticity of the primary motor cortex. Motor cortex sensorimotor plasticity is maladaptive in patients with writer’s cramp. Here we examined whether putative cerebellar dysfunction in dystonia is linked to these patients’ maladaptive plasticity. To that end we compared the performances of patients and healthy control subjects in a reaching task involving a visuomotor conflict generated by imposing a random deviation (−40° to 40°) on the direction of movement of the mouse/cursor. Such a task is known to involve the cerebellum. We also compared, between patients and healthy control subjects, how the cerebellum modulates the extent and duration of an ongoing sensorimotor plasticity in the motor cortex. The cerebellar cortex was excited or inhibited by means of repeated transcranial magnetic stimulation before artificial sensorimotor plasticity was induced in the motor cortex by paired associative stimulation. Patients with writer’s cramp were slower than the healthy control subjects to reach the target and, after having repeatedly adapted their trajectories to the deviations, they were less efficient than the healthy control subjects to perform reaching movement without imposed deviation. It was interpreted as impaired washing-out abilities. In healthy subjects, cerebellar cortex excitation prevented the paired associative stimulation to induce a sensorimotor plasticity in the primary motor cortex, whereas cerebellar cortex inhibition led the paired associative stimulation to be more efficient in inducing the plasticity. In patients with writer’s cramp, cerebellar cortex excitation and inhibition were both ineffective in modulating sensorimotor plasticity. In patients with writer’s cramp, but not in healthy subjects, behavioural parameters reflecting their capacity for adapting to the rotation and for washing-out of an earlier adaptation predicted the efficacy of inhibitory cerebellar conditioning to influence sensorimotor plasticity: the better the online adaptation, the smaller the influence of cerebellar inhibitory stimulation on motor cortex plasticity. Altered cerebellar encoding of incoming afferent volleys may result in decoupling the motor component from the afferent information flow, and also in maladjusted sensorimotor calibration. The loss of cerebellar control over sensorimotor plasticity might also lead to building up an incorrect motor program to specific adaptation tasks such as writing. PMID:23801734

  4. Motor Skill Development in Italian Pre-School Children Induced by Structured Activities in a Specific Playground.

    PubMed

    Tortella, Patrizia; Haga, Monika; Loras, Håvard; Sigmundsson, Hermundur; Fumagalli, Guido

    2016-01-01

    This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s) appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens.

  5. Motor Skill Development in Italian Pre-School Children Induced by Structured Activities in a Specific Playground

    PubMed Central

    Tortella, Patrizia; Haga, Monika; Loras, Håvard

    2016-01-01

    This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s) appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens. PMID:27462985

  6. Neural correlates of learning in an electrocorticographic motor-imagery brain-computer interface

    PubMed Central

    Blakely, Tim M.; Miller, Kai J.; Rao, Rajesh P. N.; Ojemann, Jeffrey G.

    2014-01-01

    Human subjects can learn to control a one-dimensional electrocorticographic (ECoG) brain-computer interface (BCI) using modulation of primary motor (M1) high-gamma activity (signal power in the 75–200 Hz range). However, the stability and dynamics of the signals over the course of new BCI skill acquisition have not been investigated. In this study, we report 3 characteristic periods in evolution of the high-gamma control signal during BCI training: initial, low task accuracy with corresponding low power modulation in the gamma spectrum, followed by a second period of improved task accuracy with increasing average power separation between activity and rest, and a final period of high task accuracy with stable (or decreasing) power separation and decreasing trial-to-trial variance. These findings may have implications in the design and implementation of BCI control algorithms. PMID:25599079

  7. Non-physical practice improves task performance in an unstable, perturbed environment: motor imagery and observational balance training

    PubMed Central

    Taube, Wolfgang; Lorch, Michael; Zeiter, Sibylle; Keller, Martin

    2014-01-01

    For consciously performed motor tasks executed in a defined and constant way, both motor imagery (MI) and action observation (AO) have been shown to promote motor learning. It is not known whether these forms of non-physical training also improve motor actions when these actions have to be variably applied in an unstable and unpredictable environment. The present study therefore investigated the influence of MI balance training (MI_BT) and a balance training combining AO and MI (AO+MI_BT) on postural control of undisturbed and disturbed upright stance on unstable ground. As spinal reflex excitability after classical (i.e., physical) balance training (BT) is generally decreased, we tested whether non-physical BT also has an impact on spinal reflex circuits. Thirty-six participants were randomly allocated into an MI_BT group, in which participants imagined postural exercises, an AO+MI_BT group, in which participants observed videos of other people performing balance exercises and imagined being the person in the video, and a non-active control group (CON). Before and after 4 weeks of non-physical training, balance performance was assessed on a free-moving platform during stance without perturbation and during perturbed stance. Soleus H-reflexes were recorded during stable and unstable stance. The post-measurement revealed significantly decreased postural sway during undisturbed and disturbed stance after both MI_BT and AO+MI_BT. Spinal reflex excitability remained unchanged. This is the first study showing that non-physical training (MI_BT and AO+MI_BT) not only promotes motor learning of “rigid” postural tasks but also improves performance of highly variable and unpredictable balance actions. These findings may be relevant to improve postural control and thus reduce the risk of falls in temporarily immobilized patients. PMID:25538598

  8. Gait bradykinesia in Parkinson's disease: a change in the motor program which controls the synergy of gait.

    PubMed

    Warabi, Tateo; Furuyama, Hiroyasu; Sugai, Eri; Kato, Masamichi; Yanagisawa, Nobuo

    2018-01-01

    This study examined how gait bradykinesia is changed by the motor programming in Parkinson's disease. Thirty-five idiopathic Parkinson's disease patients and nine age-matched healthy subjects participated in this study. After the patients fixated on a visual-fixation target (conditioning-stimulus), the voluntary-gait was triggered by a visual on-stimulus. While the subject walked on a level floor, soleus, tibialis anterior EMG latencies, and the y-axis-vector of the sole-floor reaction force were examined. Three paradigms were used to distinguish between the off-/on-latencies. The gap-task: the visual-fixation target was turned off; 200 ms before the on-stimulus was engaged (resulting in a 200 ms-gap). EMG latency was not influenced by the visual-fixation target. The overlap-task: the on-stimulus was turned on during the visual-fixation target presentation (200 ms-overlap). The no-gap-task: the fixation target was turned off and the on-stimulus was turned on simultaneously. The onset of EMG pause following the tonic soleus EMG was defined as the off-latency of posture (termination). The onset of the tibialis anterior EMG burst was defined as the on-latency of gait (initiation). In the gap-task, the on-latency was unchanged in all of the subjects. In Parkinson's disease, the visual-fixation target prolonged both the off-/on-latencies in the overlap-task. In all tasks, the off-latency was prolonged and the off-/on-latencies were unsynchronized, which changed the synergic movement to a slow, short-step-gait. The synergy of gait was regulated by two independent sensory-motor programs of the off- and on-latency levels. In Parkinson's disease, the delayed gait initiation was due to the difficulty in terminating the sensory-motor program which controls the subject's fixation. The dynamic gait bradykinesia was involved in the difficulty (long off-latency) in terminating the motor program of the prior posture/movement.

  9. Reconciling the influence of task-set switching and motor inhibition processes on stop signal after-effects.

    PubMed

    Anguera, Joaquin A; Lyman, Kyle; Zanto, Theodore P; Bollinger, Jacob; Gazzaley, Adam

    2013-01-01

    Executive response functions can be affected by preceding events, even if they are no longer associated with the current task at hand. For example, studies utilizing the stop signal task have reported slower response times to "GO" stimuli when the preceding trial involved the presentation of a "STOP" signal. However, the neural mechanisms that underlie this behavioral after-effect are unclear. To address this, behavioral and electroencephalography (EEG) measures were examined in 18 young adults (18-30 years) on "GO" trials following a previously "Successful Inhibition" trial (pSI), a previously "Failed Inhibition" trial (pFI), and a previous "GO" trial (pGO). Like previous research, slower response times were observed during both pSI and pFI trials (i.e., "GO" trials that were preceded by a successful and unsuccessful inhibition trial, respectively) compared to pGO trials (i.e., "GO" trials that were preceded by another "GO" trial). Interestingly, response time slowing was greater during pSI trials compared to pFI trials, suggesting executive control is influenced by both task set switching and persisting motor inhibition processes. Follow-up behavioral analyses indicated that these effects resulted from between-trial control adjustments rather than repetition priming effects. Analyses of inter-electrode coherence (IEC) and inter-trial coherence (ITC) indicated that both pSI and pFI trials showed greater phase synchrony during the inter-trial interval compared to pGO trials. Unlike the IEC findings, differential ITC was present within the beta and alpha frequency bands in line with the observed behavior (pSI > pFI > pGO), suggestive of more consistent phase synchrony involving motor inhibition processes during the ITI at a regional level. These findings suggest that between-trial control adjustments involved with task-set switching and motor inhibition processes influence subsequent performance, providing new insights into the dynamic nature of executive control.

  10. The Effects of a Performance Base Curriculum on the Gross Motor Development of Preschool Children during Teacher Training: A Pilot Study.

    ERIC Educational Resources Information Center

    van der Mars, Hans; Butterfield, Stephen A.

    This pilot study used a task-analyzed performance base curriculum as an intervention on the gross motor development of 24 children aged three to six, 15 in a treatment group, 9 in a control group. Pre- and post-training data on gross motor development (relating to 10 motor skills) were collected using the Ohio State University Scale of Intra Gross…

  11. Impulsive behavior in adults with attention deficit/ hyperactivity disorder: characterization of attentional, motor and cognitive impulsiveness.

    PubMed

    Malloy-Diniz, L; Fuentes, D; Leite, W Borges; Correa, H; Bechara, A

    2007-07-01

    Attention-deficit/hyperactivity disorder (ADHD) is characterized by inattention and/or hyperactivity/impulsivity. Impulsivity persists in adults with ADHD and might be the basis of much of the impairment observed in the daily lives of such individuals. The objective of this study was to address the presence, and more importantly, the three dimensions of impulsivity: attentional, non-planning and motor, in how they may relate to neuropsychological mechanisms of impulse control. We studied a sample of 50 adults with ADHD and 51 healthy comparison controls using the Barratt Impulsivity Scale Version 11 (BIS), and neuropsychological tasks, namely the Continuous Performance Task (CPT-II) and the Iowa Gambling Task (IGT). The ADHD group showed more signs of impulsivity on the three dimensions of BIS, committed more errors of omission and commission on the CPT-II, and made more disadvantageous choices on the IGT. These results support the existence of deficits related to three components of impulsivity: motor, cognitive, and attentional among adults with ADHD. Most importantly, this study also highlights the complementary nature of self-report questionnaires and neuropsychological tasks in the assessment of impulsivity in ADHD adults.

  12. Therapeutic immobilisation for small guitar player’s dystonia: a case report

    PubMed Central

    Waissman, Flavia; Pereira, João Santos; Nascimento, Osvaldo J M

    2009-01-01

    The development of focal hand dystonia through repetitive tasks is a result of degradation of cortical somatosensory representation due to repetitive fast stimuli sufficient to alter the sensory-motor stimulus, harming the motor control. A sensory-motor training program can modify this disorder. A behavioural intervention focusing on movement could help reduce or eliminate these conditions. PMID:21686815

  13. Auditory-Motor Processing of Speech Sounds

    PubMed Central

    Möttönen, Riikka; Dutton, Rebekah; Watkins, Kate E.

    2013-01-01

    The motor regions that control movements of the articulators activate during listening to speech and contribute to performance in demanding speech recognition and discrimination tasks. Whether the articulatory motor cortex modulates auditory processing of speech sounds is unknown. Here, we aimed to determine whether the articulatory motor cortex affects the auditory mechanisms underlying discrimination of speech sounds in the absence of demanding speech tasks. Using electroencephalography, we recorded responses to changes in sound sequences, while participants watched a silent video. We also disrupted the lip or the hand representation in left motor cortex using transcranial magnetic stimulation. Disruption of the lip representation suppressed responses to changes in speech sounds, but not piano tones. In contrast, disruption of the hand representation had no effect on responses to changes in speech sounds. These findings show that disruptions within, but not outside, the articulatory motor cortex impair automatic auditory discrimination of speech sounds. The findings provide evidence for the importance of auditory-motor processes in efficient neural analysis of speech sounds. PMID:22581846

  14. Changes in gait while backward counting in demented older adults with frontal lobe dysfunction.

    PubMed

    Allali, Gilles; Kressig, Reto W; Assal, Frédéric; Herrmann, François R; Dubost, Véronique; Beauchet, Olivier

    2007-10-01

    Gait disorders caused by dementia have been associated with frontal lobe dysfunction. Dual-tasking is used to explore the involvement of cortical level in gait control. It has been shown that dual-task induced gait changes that could be related to (1) the efficiency of executive function, (2) the level of difficulty involved in the walking-associated task, or (3) the articulo-motor components comprised in the walking-associated task. A better understanding of dual-task related changes in demented subjects with frontal lobe dysfunction could help us to clarify the role of the frontal lobe in motor gait control. To assess and compare the effects of two mental arithmetic tasks involving similar articulo-motor components but different level of difficulty on the mean values and coefficient of variation (CV) of stride time among demented older adults with impaired executive function. The mean values and coefficients of variation of stride time were measured using a GAITRite-System among 16 demented older adults with impaired executive function while walking with and without forward counting (FC) and backward counting (BC). The mean values and CV of stride time were significantly higher under both dual-task conditions than during a simple walking task (p<0.05). The change in CV of stride time during BC was significantly higher when compared with the change during FC (p=0.015), whereas the change in mean value was not significant (p=0.056). There was no difference between the dual-task and single task condition as far the number of enumerated figures were concerned (p=0.678 for FC and p=0.069 for BC), but significantly fewer figures were enumerated while BC compared with FC (p<0.001). BC provoked more changes in gait parameters than FC with major modification in gait variability related to an inappropriate focusing of attention. These findings suggest that the CV may be a suitable criterion for the assessment of gait control.

  15. A Stimulus-Independent Hybrid BCI Based on Motor Imagery and Somatosensory Attentional Orientation.

    PubMed

    Yao, Lin; Sheng, Xinjun; Zhang, Dingguo; Jiang, Ning; Mrachacz-Kersting, Natalie; Zhu, Xiangyang; Farina, Dario

    2017-09-01

    Distinctive EEG signals from the motor and somatosensory cortex are generated during mental tasks of motor imagery (MI) and somatosensory attentional orientation (SAO). In this paper, we hypothesize that a combination of these two signal modalities provides improvements in a brain-computer interface (BCI) performance with respect to using the two methods separately, and generate novel types of multi-class BCI systems. Thirty two subjects were randomly divided into a Control-Group and a Hybrid-Group. In the Control-Group, the subjects performed left and right hand motor imagery (i.e., L-MI and R-MI). In the Hybrid-Group, the subjects performed the four mental tasks (i.e., L-MI, R-MI, L-SAO, and R-SAO). The results indicate that combining two of the tasks in a hybrid manner (such as L-SAO and R-MI) resulted in a significantly greater classification accuracy than when using two MI tasks. The hybrid modality reached 86.1% classification accuracy on average, with a 7.70% increase with respect to MI ( ), and 7.21% to SAO ( ) alone. Moreover, all 16 subjects in the hybrid modality reached at least 70% accuracy, which is considered the threshold for BCI illiteracy. In addition to the two-class results, the classification accuracy was 68.1% and 54.1% for the three-class and four-class hybrid BCI. Combining the induced brain signals from motor and somatosensory cortex, the proposed stimulus-independent hybrid BCI has shown improved performance with respect to individual modalities, reducing the portion of BCI-illiterate subjects, and provided novel types of multi-class BCIs.

  16. Spikes, Local Field Potentials, and Electrocorticogram Characterization during Motor Learning in Rats for Brain Machine Interface Tasks.

    PubMed

    Marzullo, T C; Dudley, J R; Miller, C R; Trejo, L; Kipke, D R

    2005-01-01

    Brain machine interface development typically falls into two arenas, invasive extracellular recording and non-invasive electroencephalogram recording methods. The relationship between action potentials and field potentials is not well understood, and investigation of interrelationships may improve design of neuroprosthetic control systems. Rats were trained on a motor learning task whereby they had to insert their noses into an aperture while simultaneously pressing down on levers with their forepaws; spikes, local field potentials (LFPs), and electrocorticograms (ECoGs) over the motor cortex were recorded and characterized. Preliminary results suggest that the LFP activity in lower cortical layers oscillates with the ECoG.

  17. Brain effective connectivity during motor-imagery and execution following stroke and rehabilitation

    PubMed Central

    Bajaj, Sahil; Butler, Andrew J.; Drake, Daniel; Dhamala, Mukesh

    2015-01-01

    Brain areas within the motor system interact directly or indirectly during motor-imagery and motor-execution tasks. These interactions and their functionality can change following stroke and recovery. How brain network interactions reorganize and recover their functionality during recovery and treatment following stroke are not well understood. To contribute to answering these questions, we recorded blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI) signals from 10 stroke survivors and evaluated dynamical causal modeling (DCM)-based effective connectivity among three motor areas: primary motor cortex (M1), pre-motor cortex (PMC) and supplementary motor area (SMA), during motor-imagery and motor-execution tasks. We compared the connectivity between affected and unaffected hemispheres before and after mental practice and combined mental practice and physical therapy as treatments. The treatment (intervention) period varied in length between 14 to 51 days but all patients received the same dose of 60 h of treatment. Using Bayesian model selection (BMS) approach in the DCM approach, we found that, after intervention, the same network dominated during motor-imagery and motor-execution tasks but modulatory parameters suggested a suppressive influence of SM A on M1 during the motor-imagery task whereas the influence of SM A on M1 was unrestricted during the motor-execution task. We found that the intervention caused a reorganization of the network during both tasks for unaffected as well as for the affected hemisphere. Using Bayesian model averaging (BMA) approach, we found that the intervention improved the regional connectivity among the motor areas during both the tasks. The connectivity between PMC and M1 was stronger in motor-imagery tasks whereas the connectivity from PMC to M1, SM A to M1 dominated in motor-execution tasks. There was significant behavioral improvement (p = 0.001) in sensation and motor movements because of the intervention as reflected by behavioral Fugl-Meyer (FMA) measures, which were significantly correlated (p = 0.05) with a subset of connectivity. These findings suggest that PMC and M1 play a crucial role during motor-imagery as well as during motor-execution task. In addition, M1 causes more exchange of causal information among motor areas during a motor-execution task than during a motor-imagery task due to its interaction with SM A. This study expands our understanding of motor network involved during two different tasks, which are commonly used during rehabilitation following stroke. A clear understanding of the effective connectivity networks leads to a better treatment in helping stroke survivors regain motor ability. PMID:26236627

  18. A Single Bout of High-Intensity Interval Training Improves Motor Skill Retention in Individuals With Stroke.

    PubMed

    Nepveu, Jean-Francois; Thiel, Alexander; Tang, Ada; Fung, Joyce; Lundbye-Jensen, Jesper; Boyd, Lara A; Roig, Marc

    2017-08-01

    One bout of high-intensity cardiovascular exercise performed immediately after practicing a motor skill promotes changes in the neuroplasticity of the motor cortex and facilitates motor learning in nondisabled individuals. To determine if a bout of exercise performed at high intensity is sufficient to induce neuroplastic changes and improve motor skill retention in patients with chronic stroke. Twenty-two patients with different levels of motor impairment were recruited. On the first session, the effects of a maximal graded exercise test on corticospinal and intracortical excitability were assessed from the affected and unaffected primary motor cortex representational area of a hand muscle with transcranial magnetic stimulation. On the second session, participants were randomly assigned to an exercise or a nonexercise control group. Immediately after practicing a motor task, the exercise group performed 15 minutes of high-intensity interval training while the control group rested. Twenty-four hours after motor practice all participants completed a test of the motor task to assess skill retention. The graded exercise test reduced interhemispheric imbalances in GABA A -mediated short-interval intracortical inhibition but changes in other markers of excitability were not statistically significant. The group that performed high-intensity interval training showed a better retention of the motor skill. The performance of a maximal graded exercise test triggers only modest neuroplastic changes in patients with chronic stroke. However, a single bout of high-intensity interval training performed immediately after motor practice improves skill retention, which could potentially accelerate motor recovery in these individuals.

  19. Shared internal models for feedforward and feedback control.

    PubMed

    Wagner, Mark J; Smith, Maurice A

    2008-10-15

    A child often learns to ride a bicycle in the driveway, free of unforeseen obstacles. Yet when she first rides in the street, we hope that if a car suddenly pulls out in front of her, she will combine her innate goal of avoiding an accident with her learned knowledge of the bicycle, and steer away or brake. In general, when we train to perform a new motor task, our learning is most robust if it updates the rules of online error correction to reflect the rules and goals of the new task. Here we provide direct evidence that, after a new feedforward motor adaptation, motor feedback responses to unanticipated errors become precisely task appropriate, even when such errors were never experienced during training. To study this ability, we asked how, if at all, do online responses to occasional, unanticipated force pulses during reaching arm movements change after adapting to altered arm dynamics? Specifically, do they change in a task-appropriate manner? In our task, subjects learned novel velocity-dependent dynamics. However, occasional force-pulse perturbations produced unanticipated changes in velocity. Therefore, after adaptation, task-appropriate responses to unanticipated pulses should compensate corresponding changes in velocity-dependent dynamics. We found that after adaptation, pulse responses precisely compensated these changes, although they were never trained to do so. These results provide evidence for a smart feedback controller which automatically produces responses specific to the learned dynamics of the current task. To accomplish this, the neural processes underlying feedback control must (1) be capable of accurate real-time state prediction for velocity via a forward model and (2) have access to recently learned changes in internal models of limb dynamics.

  20. Action Priority: Early Neurophysiological Interaction of Conceptual and Motor Representations

    PubMed Central

    Koester, Dirk; Schack, Thomas

    2016-01-01

    Handling our everyday life, we often react manually to verbal requests or instruction, but the functional interrelations of motor control and language are not fully understood yet, especially their neurophysiological basis. Here, we investigated whether specific motor representations for grip types interact neurophysiologically with conceptual information, that is, when reading nouns. Participants performed lexical decisions and, for words, executed a grasp-and-lift task on objects of different sizes involving precision or power grips while the electroencephalogram was recorded. Nouns could denote objects that require either a precision or a power grip and could, thus, be (in)congruent with the performed grasp. In a control block, participants pointed at the objects instead of grasping them. The main result revealed an event-related potential (ERP) interaction of grip type and conceptual information which was not present for pointing. Incongruent compared to congruent conditions elicited an increased positivity (100–200 ms after noun onset). Grip type effects were obtained in response-locked analyses of the grasping ERPs (100–300 ms at left anterior electrodes). These findings attest that grip type and conceptual information are functionally related when planning a grasping action but such an interaction could not be detected for pointing. Generally, the results suggest that control of behaviour can be modulated by task demands; conceptual noun information (i.e., associated action knowledge) may gain processing priority if the task requires a complex motor response. PMID:27973539

  1. Sharing control between humans and automation using haptic interface: primary and secondary task performance benefits.

    PubMed

    Griffiths, Paul G; Gillespie, R Brent

    2005-01-01

    This paper describes a paradigm for human/automation control sharing in which the automation acts through a motor coupled to a machine's manual control interface. The manual interface becomes a haptic display, continually informing the human about automation actions. While monitoring by feel, users may choose either to conform to the automation or override it and express their own control intentions. This paper's objective is to demonstrate that adding automation through haptic display can be used not only to improve performance on a primary task but also to reduce perceptual demands or free attention for a secondary task. Results are presented from three experiments in which 11 participants completed a lane-following task using a motorized steering wheel on a fixed-base driving simulator. The automation behaved like a copilot, assisting with lane following by applying torques to the steering wheel. Results indicate that haptic assist improves lane following by least 30%, p < .0001, while reducing visual demand by 29%, p < .0001, or improving reaction time in a secondary tone localization task by 18 ms, p = .0009. Potential applications of this research include the design of automation interfaces based on haptics that support human/automation control sharing better than traditional push-button automation interfaces.

  2. Patterns of physiological activity accompanying performance on a perceptual-motor task.

    DOT National Transportation Integrated Search

    1969-04-01

    Air traffic controllers are required to spend considerable periods of time observing radar displays. Yet, information regarding physiological measures which best reflect the attentional process in complex vigilance tasks is generally lacking. As an i...

  3. Sequencing bilateral robot-assisted arm therapy and constraint-induced therapy improves reach to press and trunk kinematics in patients with stroke.

    PubMed

    Hsieh, Yu-wei; Liing, Rong-jiuan; Lin, Keh-chung; Wu, Ching-yi; Liou, Tsan-hon; Lin, Jui-chi; Hung, Jen-wen

    2016-03-22

    The combination of robot-assisted therapy (RT) and a modified form of constraint-induced therapy (mCIT) shows promise for improving motor function of patients with stroke. However, whether the changes of motor control strategies are concomitant with the improvements in motor function after combination of RT and mCIT (RT + mCIT) is unclear. This study investigated the effects of the sequential combination of RT + mCIT compared with RT alone on the strategies of motor control measured by kinematic analysis and on motor function and daily performance measured by clinical scales. The study enrolled 34 patients with chronic stroke. The data were derived from part of a single-blinded randomized controlled trial. Participants in the RT + mCIT and RT groups received 20 therapy sessions (90 to 105 min/day, 5 days for 4 weeks). Patients in the RT + mCIT group received 10 RT sessions for first 2 weeks and 10 mCIT sessions for the next 2 weeks. The Bi-Manu-Track was used in RT sessions to provide bilateral practice of wrist and forearm movements. The primary outcome was kinematic variables in a task of reaching to press a desk bell. Secondary outcomes included scores on the Wolf Motor Function Test, Functional Independence Measure, and Nottingham Extended Activities of Daily Living. All outcome measures were administered before and after intervention. RT + mCIT and RT demonstrated different benefits on motor control strategies. RT + mCIT uniquely improved motor control strategies by reducing shoulder abduction, increasing elbow extension, and decreasing trunk compensatory movement during the reaching task. Motor function and quality of the affected limb was improved, and patients achieved greater independence in instrumental activities of daily living. Force generation at movement initiation was improved in the patients who received RT. A combination of RT and mCIT could be an effective approach to improve stroke rehabilitation outcomes, achieving better motor control strategies, motor function, and functional independence of instrumental activities of daily living. ClinicalTrials.gov. NCT01727648.

  4. Relationship between Speech Production and Perception in People Who Stutter.

    PubMed

    Lu, Chunming; Long, Yuhang; Zheng, Lifen; Shi, Guang; Liu, Li; Ding, Guosheng; Howell, Peter

    2016-01-01

    Speech production difficulties are apparent in people who stutter (PWS). PWS also have difficulties in speech perception compared to controls. It is unclear whether the speech perception difficulties in PWS are independent of, or related to, their speech production difficulties. To investigate this issue, functional MRI data were collected on 13 PWS and 13 controls whilst the participants performed a speech production task and a speech perception task. PWS performed poorer than controls in the perception task and the poorer performance was associated with a functional activity difference in the left anterior insula (part of the speech motor area) compared to controls. PWS also showed a functional activity difference in this and the surrounding area [left inferior frontal cortex (IFC)/anterior insula] in the production task compared to controls. Conjunction analysis showed that the functional activity differences between PWS and controls in the left IFC/anterior insula coincided across the perception and production tasks. Furthermore, Granger Causality Analysis on the resting-state fMRI data of the participants showed that the causal connection from the left IFC/anterior insula to an area in the left primary auditory cortex (Heschl's gyrus) differed significantly between PWS and controls. The strength of this connection correlated significantly with performance in the perception task. These results suggest that speech perception difficulties in PWS are associated with anomalous functional activity in the speech motor area, and the altered functional connectivity from this area to the auditory area plays a role in the speech perception difficulties of PWS.

  5. Impairment of a parieto-premotor network specialized for handwriting in writer's cramp.

    PubMed

    Gallea, Cecile; Horovitz, Silvina G; Najee-Ullah, Muslimah 'Ali; Hallett, Mark

    2016-12-01

    Handwriting with the dominant hand is a highly skilled task singularly acquired in humans. This skill is the isolated deficit in patients with writer's cramp (WC), a form of dystonia with maladaptive plasticity, acquired through intensive and repetitive motor practice. When a skill is highly trained, a motor program is created in the brain to execute the same movement kinematics regardless of the effector used for the task. The task- and effector-specific symptoms in WC suggest that a problem particularly occurs in the brain when the writing motor program is carried out by the dominant hand. In this MRI study involving 12 WC patients (with symptoms only affecting the right dominant hand during writing) and 15 age matched unaffected controls we showed that: (1) the writing program recruited the same network regardless of the effector used to write in both groups; (2) dominant handwriting recruited a segregated parieto-premotor network only in the control group; (3) local structural alteration of the premotor area, the motor component of this network, predicted functional connectivity deficits during dominant handwriting and symptom duration in the patient group. Dysfunctions and structural abnormalities of a segregated parieto-premotor network in WC patients suggest that network specialization in focal brain areas is crucial for well-learned motor skill. Hum Brain Mapp 37:4363-4375, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Characterization of cognitive and motor performance during dual-tasking in healthy older adults and patients with Parkinson's disease.

    PubMed

    Wild, Lucia Bartmann; de Lima, Daiane Borba; Balardin, Joana Bisol; Rizzi, Luana; Giacobbo, Bruno Lima; Oliveira, Henrique Bianchi; de Lima Argimon, Irani Iracema; Peyré-Tartaruga, Leonardo Alexandre; Rieder, Carlos R M; Bromberg, Elke

    2013-02-01

    The primary purpose of this study was to investigate the effect of dual-tasking on cognitive performance and gait parameters in patients with idiopathic Parkinson's disease (PD) without dementia. The impact of cognitive task complexity on cognition and walking was also examined. Eighteen patients with PD (ages 53-88, 10 women; Hoehn and Yahr stage I-II) and 18 older adults (ages 61-84; 10 women) completed two neuropsychological measures of executive function/attention (the Stroop Test and Wisconsin Card Sorting Test). Cognitive performance and gait parameters related to functional mobility of stride were measured under single (cognitive task only) and dual-task (cognitive task during walking) conditions with different levels of difficulty and different types of stimuli. In addition, dual-task cognitive costs were calculated. Although cognitive performance showed no significant difference between controls and PD patients during single or dual-tasking conditions, only the patients had a decrease in cognitive performance during walking. Gait parameters of patients differed significantly from controls at single and dual-task conditions, indicating that patients gave priority to gait while cognitive performance suffered. Dual-task cognitive costs of patients increased with task complexity, reaching significantly higher values then controls in the arithmetic task, which was correlated with scores on executive function/attention (Stroop Color-Word Page). Baseline motor functioning and task executive/attentional load affect the performance of cognitive tasks of PD patients while walking. These findings provide insight into the functional strategies used by PD patients in the initial phases of the disease to manage dual-task interference.

  7. Individualized behavioral assessments and maternal ratings of mastery motivation in mental age-matched toddlers with and without motor delay.

    PubMed

    Wang, Pei-Jung; Morgan, George A; Hwang, Ai-Wen; Liao, Hua-Fang

    2013-01-01

    Mastery motivation is a precursor of future developmental outcomes. Evidence about whether toddlers with motor delay have lower mastery motivation is inconclusive. The purpose of this study was to examine differences between mental age-matched toddlers with and without motor delay on various mastery motivation indicators. A mental age- and sex-matched case-control study was performed. Twenty-two children with motor delay, aged 23 to 47 months, and 22 children who were developing typically, aged 15 to 29 months, were recruited. Persistence and mastery pleasure were measured with behavioral tasks that were moderately challenging for each child and with maternal ratings using the Dimensions of Mastery Questionnaire (DMQ). The DMQ was rated by each child's mother based on her perception of her child's motivation. Two types of structured tasks (a puzzle and a cause-effect toy selected to be moderately challenging for each child) were administered in a laboratory setting and recorded on videos. Paired t tests or Wilcoxon signed rank tests were used to examine group differences in persistence and mastery pleasure (α=.007, 2-tailed). Children with motor delay were rated lower on DMQ persistence than the typically developing group, but they did not show significantly lower persistence on the structured tasks. There were no significant differences in mastery pleasure between the 2 groups on either measure. Large within-sample variability on the tasks and small sample size makes subgroup analysis (eg, different severities) difficult. Toddlers with motor delay did not show lower persistence and pleasure when given tasks that were moderately challenging; however, their mothers tended to view them as having lower motivation. Clinicians and parents should provide appropriately challenging tasks to increase children's success and motivation.

  8. Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Phil; Simeral, John D.; Hochberg, Leigh R.; Donoghue, John P.; Black, Michael J.

    2008-12-01

    Computer-mediated connections between human motor cortical neurons and assistive devices promise to improve or restore lost function in people with paralysis. Recently, a pilot clinical study of an intracortical neural interface system demonstrated that a tetraplegic human was able to obtain continuous two-dimensional control of a computer cursor using neural activity recorded from his motor cortex. This control, however, was not sufficiently accurate for reliable use in many common computer control tasks. Here, we studied several central design choices for such a system including the kinematic representation for cursor movement, the decoding method that translates neuronal ensemble spiking activity into a control signal and the cursor control task used during training for optimizing the parameters of the decoding method. In two tetraplegic participants, we found that controlling a cursor's velocity resulted in more accurate closed-loop control than controlling its position directly and that cursor velocity control was achieved more rapidly than position control. Control quality was further improved over conventional linear filters by using a probabilistic method, the Kalman filter, to decode human motor cortical activity. Performance assessment based on standard metrics used for the evaluation of a wide range of pointing devices demonstrated significantly improved cursor control with velocity rather than position decoding. Disclosure. JPD is the Chief Scientific Officer and a director of Cyberkinetics Neurotechnology Systems (CYKN); he holds stock and receives compensation. JDS has been a consultant for CYKN. LRH receives clinical trial support from CYKN.

  9. Classical eyeblink conditioning in Parkinson's disease.

    PubMed

    Daum, I; Schugens, M M; Breitenstein, C; Topka, H; Spieker, S

    1996-11-01

    Patients with Parkinson's disease (PD) show impairments of a range of motor learning tasks, including tracking or serial reaction time task learning. Our study investigated whether such deficits would also be seen on a simple type of motor learning, classic conditioning of the eyeblink response. Medicated and unmediated patients with PD showed intact unconditioned eyeblink responses and significant learning across acquisition; the learning rates did not differ from those of healthy control subjects. The overall frequency of conditioned responses was significantly higher in the medicated patients with PD relative to control subjects, and there was also some evidence of facilitation in the unmedicated patients with PD. Conditioning of electrodermal and electrocortical responses was comparable in all groups. The findings are discussed in terms of enhanced excitability of brainstem pathways in PD and of the involvement of different neuronal circuits in different types of motor learning.

  10. Changes of motor-cortical oscillations associated with motor learning.

    PubMed

    Pollok, B; Latz, D; Krause, V; Butz, M; Schnitzler, A

    2014-09-05

    Motor learning results from practice but also between practice sessions. After skill acquisition early consolidation results in less interference with other motor tasks and even improved performance of the newly learned skill. A specific significance of the primary motor cortex (M1) for early consolidation has been suggested. Since synchronized oscillatory activity is assumed to facilitate neuronal plasticity, we here investigate alterations of motor-cortical oscillations by means of event-related desynchronization (ERD) at alpha (8-12 Hz) and beta (13-30 Hz) frequencies in healthy humans. Neuromagnetic activity was recorded using a 306-channel whole-head magnetoencephalography (MEG) system. ERD was investigated in 15 subjects during training on a serial reaction time task and 10 min after initial training. The data were compared with performance during a randomly varying sequence serving as control condition. The data reveal a stepwise decline of alpha-band ERD associated with faster reaction times replicating previous findings. The amount of beta-band suppression was significantly correlated with reduction of reaction times. While changes of alpha power have been related to lower cognitive control after initial skill acquisition, the present data suggest that the amount of beta suppression represents a neurophysiological marker of early cortical reorganization associated with motor learning. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. A randomised controlled trial of sensory awareness training and additional motor practice for learning scalpel skills in podiatry students.

    PubMed

    Causby, Ryan S; McDonnell, Michelle N; Reed, Lloyd; Hillier, Susan L

    2016-12-05

    The process of using a scalpel, like all other motor activities, is dependent upon the successful integration of afferent (sensory), cognitive and efferent (motor) processes. During learning of these skills, even if motor practice is carefully monitored there is still an inherent risk involved. It is also possible that this strategy could reinforce high levels of anxiety experienced by the student and affect student self-efficacy, causing detrimental effects on motor learning. An alternative training strategy could be through targeting sensory rather than motor processes. Second year podiatry students who were about to commence learning scalpel skills were recruited. Participants were randomly allocated into sensory awareness training (Sensory), additional motor practice (Motor) or usual teaching only (Control) groups. Participants were then evaluated on psychological measures (Intrinsic Motivation Inventory) and dexterity measures (Purdue Pegboard, Grooved Pegboard Test and a grip-lift task). A total of 44 participants were included in the study. There were no baseline differences or significant differences between the three groups over time on the Perceived Competence, Effort/ Importance or Pressure/ Tension, psychological measures. All groups showed a significant increase in Perceived Competence over time (F 1,41  = 13.796, p = 0.001). Only one variable for the grip-lift task (Preload Duration for the non-dominant hand) showed a significant difference over time between the groups (F 2,41  = 3.280, p = 0.038), specifically, Motor and Control groups. The use of sensory awareness training, or additional motor practice did not provide a more effective alternative compared with usual teaching. Further research may be warranted using more engaged training, provision of supervision and greater participant numbers. Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN12616001428459 . Registered 13 th October 2016. Registered Retrospectively.

  12. Sensorless position estimation and control of permanent-magnet synchronous motors using a saturation model

    NASA Astrophysics Data System (ADS)

    Kassem Jebai, Al; Malrait, François; Martin, Philippe; Rouchon, Pierre

    2016-03-01

    Sensorless control of permanent-magnet synchronous motors at low velocity remains a challenging task. A now well-established method consists of injecting a high-frequency signal and using the rotor saliency, both geometric and magnetic-saturation induced. This paper proposes a clear and original analysis based on second-order averaging of how to recover the position information from signal injection; this analysis blends well with a general model of magnetic saturation. It also proposes a simple parametric model of the saturated motor, based on an energy function which simply encompasses saturation and cross-saturation effects. Experimental results on a surface-mounted motor and an interior magnet motor illustrate the relevance of the approach.

  13. Robot-assisted surgery: an emerging platform for human neuroscience research

    PubMed Central

    Jarc, Anthony M.; Nisky, Ilana

    2015-01-01

    Classic studies in human sensorimotor control use simplified tasks to uncover fundamental control strategies employed by the nervous system. Such simple tasks are critical for isolating specific features of motor, sensory, or cognitive processes, and for inferring causality between these features and observed behavioral changes. However, it remains unclear how these theories translate to complex sensorimotor tasks or to natural behaviors. Part of the difficulty in performing such experiments has been the lack of appropriate tools for measuring complex motor skills in real-world contexts. Robot-assisted surgery (RAS) provides an opportunity to overcome these challenges by enabling unobtrusive measurements of user behavior. In addition, a continuum of tasks with varying complexity—from simple tasks such as those in classic studies to highly complex tasks such as a surgical procedure—can be studied using RAS platforms. Finally, RAS includes a diverse participant population of inexperienced users all the way to expert surgeons. In this perspective, we illustrate how the characteristics of RAS systems make them compelling platforms to extend many theories in human neuroscience, as well as, to develop new theories altogether. PMID:26089785

  14. Behavioral and neurophysiological study of attentional and inhibitory processes in ADHD-combined and control children.

    PubMed

    Baijot, S; Deconinck, N; Slama, H; Massat, I; Colin, C

    2013-12-01

    This study compares behavioral and electrophysiological (P300) responses recorded in a cued continuous performance task (CPT-AX) performed by children with attention deficit hyperactivity disorder-combined subtype (ADHD-com) and age-matched healthy controls. P300 cognitive-evoked potentials and behavioral data were recorded in eight children with ADHD (without comorbidity) and nine control children aged 8-12 years while performing a CPT-AX task. Such task enables to examine several kinds of false alarms and three different kinds of P300 responses: the "Cue P300", the "Go P300" and the "NoGo P300", respectively, associated with preparatory processing/attentional orienting, motor/response execution and motor/response inhibition. Whereas hit rates were about 95% in each group, ADHD children made significantly more false alarm responses (inattention- and inhibition-related) than control children. ADHD children had a marginally smaller Cue P300 than the control children. Behavioral and electrophysiological findings both highlighted inhibition and attention deficits in ADHD-com children in the CPT-AX task. A rarely studied kind of false alarm, the "Other" FA, seems to be a sensitive FA to take into account, even if its interpretation remains unclear.

  15. Experimental Validation of Motor Primitive-Based Control for Leg Exoskeletons during Continuous Multi-Locomotion Tasks

    PubMed Central

    Ruiz Garate, Virginia; Parri, Andrea; Yan, Tingfang; Munih, Marko; Molino Lova, Raffaele; Vitiello, Nicola; Ronsse, Renaud

    2017-01-01

    An emerging approach to design locomotion assistive devices deals with reproducing desirable biological principles of human locomotion. In this paper, we present a bio-inspired controller for locomotion assistive devices based on the concept of motor primitives. The weighted combination of artificial primitives results in a set of virtual muscle stimulations. These stimulations then activate a virtual musculoskeletal model producing reference assistive torque profiles for different locomotion tasks (i.e., walking, ascending stairs, and descending stairs). The paper reports the validation of the controller through a set of experiments conducted with healthy participants. The proposed controller was tested for the first time with a unilateral leg exoskeleton assisting hip, knee, and ankle joints by delivering a fraction of the computed reference torques. Importantly, subjects performed a track involving ground-level walking, ascending stairs, and descending stairs and several transitions between these tasks. These experiments highlighted the capability of the controller to provide relevant assistive torques and to effectively handle transitions between the tasks. Subjects displayed a natural interaction with the device. Moreover, they significantly decreased the time needed to complete the track when the assistance was provided, as compared to wearing the device with no assistance. PMID:28367121

  16. Singing ability is rooted in vocal-motor control of pitch.

    PubMed

    Hutchins, Sean; Larrouy-Maestri, Pauline; Peretz, Isabelle

    2014-11-01

    The inability to vocally match a pitch can be caused by poor pitch perception or by poor vocal-motor control. Although previous studies have tried to examine the relationship between pitch perception and vocal production, they have failed to control for the timbre of the target to be matched. In the present study, we compare pitch-matching accuracy with an unfamiliar instrument (the slider) and with the voice, designed such that the slider plays back recordings of the participant's own voice. We also measured pitch accuracy in singing a familiar melody ("Happy Birthday") to assess the relationship between single-pitch-matching tasks and melodic singing. Our results showed that participants (all nonmusicians) were significantly better at matching recordings of their own voices with the slider than with their voice, indicating that vocal-motor control is an important limiting factor on singing ability. We also found significant correlations between the ability to sing a melody in tune and vocal pitch matching, but not pitch matching on the slider. Better melodic singers also tended to have higher quality voices (as measured by acoustic variables). These results provide important evidence about the role of vocal-motor control in poor singing ability and demonstrate that single-pitch-matching tasks can be useful in measuring general singing abilities.

  17. Processing reafferent and exafferent visual information for action and perception.

    PubMed

    Reichenbach, Alexandra; Diedrichsen, Jörn

    2015-01-01

    A recent study suggests that reafferent hand-related visual information utilizes a privileged, attention-independent processing channel for motor control. This process was termed visuomotor binding to reflect its proposed function: linking visual reafferences to the corresponding motor control centers. Here, we ask whether the advantage of processing reafferent over exafferent visual information is a specific feature of the motor processing stream or whether the improved processing also benefits the perceptual processing stream. Human participants performed a bimanual reaching task in a cluttered visual display, and one of the visual hand cursors could be displaced laterally during the movement. We measured the rapid feedback responses of the motor system as well as matched perceptual judgments of which cursor was displaced. Perceptual judgments were either made by watching the visual scene without moving or made simultaneously to the reaching tasks, such that the perceptual processing stream could also profit from the specialized processing of reafferent information in the latter case. Our results demonstrate that perceptual judgments in the heavily cluttered visual environment were improved when performed based on reafferent information. Even in this case, however, the filtering capability of the perceptual processing stream suffered more from the increasing complexity of the visual scene than the motor processing stream. These findings suggest partly shared and partly segregated processing of reafferent information for vision for motor control versus vision for perception.

  18. Passive Motion Paradigm: An Alternative to Optimal Control

    PubMed Central

    Mohan, Vishwanathan; Morasso, Pietro

    2011-01-01

    In the last years, optimal control theory (OCT) has emerged as the leading approach for investigating neural control of movement and motor cognition for two complementary research lines: behavioral neuroscience and humanoid robotics. In both cases, there are general problems that need to be addressed, such as the “degrees of freedom (DoFs) problem,” the common core of production, observation, reasoning, and learning of “actions.” OCT, directly derived from engineering design techniques of control systems quantifies task goals as “cost functions” and uses the sophisticated formal tools of optimal control to obtain desired behavior (and predictions). We propose an alternative “softer” approach passive motion paradigm (PMP) that we believe is closer to the biomechanics and cybernetics of action. The basic idea is that actions (overt as well as covert) are the consequences of an internal simulation process that “animates” the body schema with the attractor dynamics of force fields induced by the goal and task-specific constraints. This internal simulation offers the brain a way to dynamically link motor redundancy with task-oriented constraints “at runtime,” hence solving the “DoFs problem” without explicit kinematic inversion and cost function computation. We argue that the function of such computational machinery is not only restricted to shaping motor output during action execution but also to provide the self with information on the feasibility, consequence, understanding and meaning of “potential actions.” In this sense, taking into account recent developments in neuroscience (motor imagery, simulation theory of covert actions, mirror neuron system) and in embodied robotics, PMP offers a novel framework for understanding motor cognition that goes beyond the engineering control paradigm provided by OCT. Therefore, the paper is at the same time a review of the PMP rationale, as a computational theory, and a perspective presentation of how to develop it for designing better cognitive architectures. PMID:22207846

  19. [Electroencephalography measures in motor skill learning and effects of bromazepam].

    PubMed

    Bastos, Victor Hugo; Machado, Dionis; Cunha, Marlo; Portella, Claudio Elidio; Cagy, Maurício; Furtado, Vernon; Piedade, Roberto; Ribeiro, Pedro

    2005-06-01

    Neuromodulators change brain's neural circuitry. Bromazepam is often been used in the pharmacological treatment of anxiety disorders. Few papers links this anxiolytic to motor tasks. The purpose of this study was to examine motor and electrophysiological changes produced by administration of bromazepam in differents doses (3 and 6 mg). The sample consisted of 39 healthy individuals, of both sexes, between 20 and 30 years of age. The control (placebo) and experimental (bromazepam 3mg and bromazepam 6 mg) groups were submitted to a typewriting task, in a randomized, double-blind design. The results did not reveal differences on score and time of the attention test. In the comportamental analysis was noticed blocks as main effect to behavioral variables (time and mistakes in the task). Electrophysiological data showed significants interactions to: laterally/condition/moment; laterally/condition; laterally/moment; condition/moment; condition/site.

  20. Voluntary control of corticomuscular coherence through neurofeedback: a proof-of-principle study in healthy subjects.

    PubMed

    von Carlowitz-Ghori, K; Bayraktaroglu, Z; Waterstraat, G; Curio, G; Nikulin, V V

    2015-04-02

    Corticomuscular coherence (CMC) relates to synchronization between activity in the motor cortex and the muscle activity. The strength of CMC can be affected by motor behavior. In a proof-of-principle study, we examined whether independent of motor output parameters, healthy subjects are able to voluntarily modulate CMC in a neurofeedback paradigm. Subjects received visual online feedback of their instantaneous CMC strength, which was calculated between an optimized spatial projection of multichannel electroencephalography (EEG) and electromyography (EMG) in an individually defined target frequency range. The neurofeedback training consisted of either increasing or decreasing CMC strength using a self-chosen mental strategy while performing a simple motor task. Evaluation of instantaneous coherence showed that CMC strength was significantly larger when subjects had to increase than when to decrease CMC; this difference between the two task conditions did not depend on motor performance. The exclusion of confounding factors such as motor performance, attention and task complexity in study design provides evidence that subjects were able to voluntarily modify CMC independent of motor output parameters. Additional analysis further strengthened the assumption that the subjects' response was specifically shaped by the neurofeedback. In perspective, we suggest that CMC-based neurofeedback could provide a therapeutic approach in clinical conditions, such as motor stroke, where CMC is altered. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Training cognitive control in older adults with the space fortress game: the role of training instructions and basic motor ability.

    PubMed

    Blumen, Helena M; Gopher, Daniel; Steinerman, Joshua R; Stern, Yaakov

    2010-01-01

    This study examined if and how cognitively healthy older adults can learn to play a complex computer-based action game called the Space Fortress (SF) as a function of training instructions [Standard vs. Emphasis Change (EC); e.g., Gopher et al., 1989] and basic motor ability. A total of 35 cognitively healthy older adults completed a 3-month SF training program with three SF sessions weekly. Twelve 3-min games were played during each session. Basic motor ability was assessed with an aiming task, which required rapidly rotating a spaceship to shoot targets. Older adults showed improved performance on the SF task over time, but did not perform at the same level as younger adults. Unlike studies of younger adults, overall SF performance in older adults was greater following standard instructions than following EC instructions. However, this advantage was primarily due to collecting more bonus points and not - the primary goal of the game - shooting and destroying the fortress, which in contrast benefited from EC instructions. Basic motor ability was low and influenced many different aspects of SF game learning, often interacted with learning rate, and influenced overall SF performance. These findings show that older adults can be trained to deal with the complexity of the SF task but that overall SF performance, and the ability to capitalize on EC instructions, differs when a basic ability such as motor control is low. Hence, the development of this training program as a cognitive intervention that can potentially compensate for age-related cognitive decline should consider that basic motor ability can interact with the efficiency of training instructions that promote the use of cognitive control (e.g., EC instructions) - and the confluence between such basic abilities and higher-level cognitive control abilities should be further examined.

  2. Training Cognitive Control in Older Adults with the Space Fortress Game: The Role of Training Instructions and Basic Motor Ability

    PubMed Central

    Blumen, Helena M.; Gopher, Daniel; Steinerman, Joshua R.; Stern, Yaakov

    2010-01-01

    This study examined if and how cognitively healthy older adults can learn to play a complex computer-based action game called the Space Fortress (SF) as a function of training instructions [Standard vs. Emphasis Change (EC); e.g., Gopher et al., 1989] and basic motor ability. A total of 35 cognitively healthy older adults completed a 3-month SF training program with three SF sessions weekly. Twelve 3-min games were played during each session. Basic motor ability was assessed with an aiming task, which required rapidly rotating a spaceship to shoot targets. Older adults showed improved performance on the SF task over time, but did not perform at the same level as younger adults. Unlike studies of younger adults, overall SF performance in older adults was greater following standard instructions than following EC instructions. However, this advantage was primarily due to collecting more bonus points and not – the primary goal of the game – shooting and destroying the fortress, which in contrast benefited from EC instructions. Basic motor ability was low and influenced many different aspects of SF game learning, often interacted with learning rate, and influenced overall SF performance. These findings show that older adults can be trained to deal with the complexity of the SF task but that overall SF performance, and the ability to capitalize on EC instructions, differs when a basic ability such as motor control is low. Hence, the development of this training program as a cognitive intervention that can potentially compensate for age-related cognitive decline should consider that basic motor ability can interact with the efficiency of training instructions that promote the use of cognitive control (e.g., EC instructions) – and the confluence between such basic abilities and higher-level cognitive control abilities should be further examined. PMID:21120135

  3. Temporal Expectation in Focal Hand Dystonia

    ERIC Educational Resources Information Center

    Avanzino, Laura; Martino, Davide; Martino, Isadora; Pelosin, Elisa; Vicario, Carmelo M.; Bove, Marco; Defazio, Gianni; Abbruzzese, Giovanni

    2013-01-01

    Patients with writer's cramp present sensory and representational abnormalities relevant to motor control, such as impairment in the temporal discrimination between tactile stimuli and in pure motor imagery tasks, like the mental rotation of corporeal and inanimate objects. However, only limited information is available on the ability of patients…

  4. Interactive visuo-motor therapy system for stroke rehabilitation.

    PubMed

    Eng, Kynan; Siekierka, Ewa; Pyk, Pawel; Chevrier, Edith; Hauser, Yves; Cameirao, Monica; Holper, Lisa; Hägni, Karin; Zimmerli, Lukas; Duff, Armin; Schuster, Corina; Bassetti, Claudio; Verschure, Paul; Kiper, Daniel

    2007-09-01

    We present a virtual reality (VR)-based motor neurorehabilitation system for stroke patients with upper limb paresis. It is based on two hypotheses: (1) observed actions correlated with self-generated or intended actions engage cortical motor observation, planning and execution areas ("mirror neurons"); (2) activation in damaged parts of motor cortex can be enhanced by viewing mirrored movements of non-paretic limbs. We postulate that our approach, applied during the acute post-stroke phase, facilitates motor re-learning and improves functional recovery. The patient controls a first-person view of virtual arms in tasks varying from simple (hitting objects) to complex (grasping and moving objects). The therapist adjusts weighting factors in the non-paretic limb to move the paretic virtual limb, thereby stimulating the mirror neuron system and optimizing patient motivation through graded task success. We present the system's neuroscientific background, technical details and preliminary results.

  5. Action Verbs and the Primary Motor Cortex: A Comparative TMS Study of Silent Reading, Frequency Judgments, and Motor Imagery

    ERIC Educational Resources Information Center

    Tomasino, Barbara; Fink, Gereon R.; Sparing, Roland; Dafotakis, Manuel; Weiss, Peter H.

    2008-01-01

    Single pulse transcranial magnetic stimulation (TMS) was applied to the hand area of the left primary motor cortex or, as a control, to the vertex (STIMULATION: TMS[subscript M1] vs. TMS[subscript vertex]) while right-handed volunteers silently read verbs related to hand actions. We examined three different tasks and time points for stimulation…

  6. Perinatal choline supplementation does not mitigate motor coordination deficits associated with neonatal alcohol exposure in rats.

    PubMed

    Thomas, Jennifer D; O'Neill, Teresa M; Dominguez, Hector D

    2004-01-01

    Prenatal alcohol exposure can disrupt brain development, leading to a variety of behavioral alterations including learning deficits, hyperactivity, and motor dysfunction. We have been investigating the possibility that perinatal choline supplementation may effectively reduce the severity of alcohol's adverse effects on behavioral development. We previously reported that perinatal choline supplementation can ameliorate alcohol-induced learning deficits and hyperactivity in rats exposed to alcohol during development. The present study examined whether perinatal choline supplementation could also reduce the severity of motor deficits induced by alcohol exposure during the third trimester equivalent brain growth spurt. Male neonatal rats were assigned to one of three treatment groups. One group was exposed to alcohol (6.6 g/kg/day) from postnatal days (PD) 4 to 9 via an artificial rearing procedure. Artificially and normally reared control groups were included. One half of subjects from each treatment received daily subcutaneous injections of a choline chloride solution from PD 4 to 30, whereas the other half received saline vehicle injections. On PD 35-37, subjects were tested on a parallel bar motor task, which requires both balance and fine motor coordination. Ethanol-exposed subjects exhibited significant motor impairments compared to both control groups whose performance did not differ significantly from one another. Perinatal choline treatment did not affect motor performance in either ethanol or control subjects. These data indicate that the beneficial effects of perinatal choline supplementation in ethanol-treated subjects are task specific and suggest that choline is more effective in mitigating cognitive deficits compared to motor deficits associated with developmental alcohol exposure.

  7. Effects of Working Memory Demand on Neural Mechanisms of Motor Response Selection and Control

    PubMed Central

    Barber, Anita D.; Caffo, Brian S.; Pekar, James J.; Mostofsky, Stewart H.

    2013-01-01

    Inhibitory control commonly recruits a number of frontal regions: pre-supplementary motor area (pre-SMA), frontal eye fields (FEFs), and right-lateralized posterior inferior frontal gyrus (IFG), dorsal anterior insula (DAI), dorsolateral prefrontal cortex (DLPFC), and inferior frontal junction (IFJ). These regions may directly implement inhibitory motor control or may be more generally involved in executive control functions. Two go/no-go tasks were used to distinguish regions specifically recruited for inhibition from those that additionally show increased activity with working memory demand. The pre-SMA and IFG were recruited for inhibition in both tasks and did not have greater activation for working memory demand on no-go trials, consistent with a role in inhibitory control. Activation in pre-SMA also responded to response selection demand and was increased with working memory on go trials specifically. The bilateral FEF and right DAI were commonly active for no-go trials. The FEF was also recruited to a greater degree with working memory demand on go trials and may bias top–down information when stimulus–response mappings change. The DAI, additionally responded to increased working memory demand on both go and no-go trials and may be involved in accessing sustained task information, alerting, or autonomic changes when cognitive demands increase. DLPFC activation was consistent with a role in working memory retrieval on both go and no-go trials. The inferior frontal junction, on the other hand, had greater activation with working memory specifically for no-go trials and may detect salient stimuli when the task requires frequent updating of working memory representations. PMID:23530923

  8. Excitability of the motor system: A transcranial magnetic stimulation study on singing and speaking.

    PubMed

    Royal, Isabelle; Lidji, Pascale; Théoret, Hugo; Russo, Frank A; Peretz, Isabelle

    2015-08-01

    The perception of movements is associated with increased activity in the human motor cortex, which in turn may underlie our ability to understand actions, as it may be implicated in the recognition, understanding and imitation of actions. Here, we investigated the involvement and lateralization of the primary motor cortex (M1) in the perception of singing and speech. Transcranial magnetic stimulation (TMS) was applied independently for both hemispheres over the mouth representation of the motor cortex in healthy participants while they watched 4-s audiovisual excerpts of singers producing a 2-note ascending interval (singing condition) or 4-s audiovisual excerpts of a person explaining a proverb (speech condition). Subjects were instructed to determine whether a sung interval/written proverb, matched a written interval/proverb. During both tasks, motor evoked potentials (MEPs) were recorded from the contralateral mouth muscle (orbicularis oris) of the stimulated motor cortex compared to a control task. Moreover, to investigate the time course of motor activation, TMS pulses were randomly delivered at 7 different time points (ranging from 500 to 3500 ms after stimulus onset). Results show that stimulation of the right hemisphere had a similar effect on the MEPs for both the singing and speech perception tasks, whereas stimulation of the left hemisphere significantly differed in the speech perception task compared to the singing perception task. Furthermore, analysis of the MEPs in the singing task revealed that they decreased for small musical intervals, but increased for large musical intervals, regardless of which hemisphere was stimulated. Overall, these results suggest a dissociation between the lateralization of M1 activity for speech perception and for singing perception, and that in the latter case its activity can be modulated by musical parameters such as the size of a musical interval. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The Quiet Eye and Motor Expertise: Explaining the “Efficiency Paradox”

    PubMed Central

    Klostermann, André; Hossner, Ernst-Joachim

    2018-01-01

    It has been consistently reported that experts show longer quiet eye (QE) durations when compared to near-experts and novices. However, this finding is rather paradoxical as motor expertise is characterized by an economization of motor-control processes rather than by a prolongation in response programming, a suggested explanatory mechanism of the QE phenomenon. Therefore, an inhibition hypothesis was proposed that suggests an inhibition of non-optimal task solutions over movement parametrization, which is particularly necessary in experts due to the great extent and high density of their experienced task-solution space. In the current study, the effect of the task-solution space’ extension was tested by comparing the QE-duration gains in groups that trained a far-aiming task with a small number (low-extent) vs. a large number (high-extent) of task variants. After an extensive training period of more than 750 trials, both groups showed superior performance in post-test and retention test when compared to pretest and longer QE durations in post-test when compared to pretest. However, the QE durations dropped to baseline values at retention. Finally, the expected additional gain in QE duration for the high-extent group was not found and thus, the assumption of long QE durations due to an extended task-solution space was not confirmed. The findings were (by tendency) more in line with the density explanation of the inhibition hypothesis. This density argument suits research revealing a high specificity of motor skills in experts thus providing worthwhile options for future research on the paradoxical relation between the QE and motor expertise. PMID:29472882

  10. Supervised learning of postural tasks in patients with poststroke hemiparesis, Parkinson's disease or cerebellar ataxia.

    PubMed

    Ioffe, M E; Ustinova, K I; Chernikova, L A; Kulikov, M A

    2006-01-01

    Supervised learning of different postural tasks in patients with lesions of the motor cortex or pyramidal system (poststroke hemiparesis: 20 patients), nigro-striatal system (Parkinson's disease: 33 patients) and cerebellum (spinocerebellar ataxia: 37 patients) was studied. A control group consisted of 13 healthy subjects. The subjects stood on a force platform and were trained to change the position of the center of pressure (CP) presented as a cursor on a monitor screen in front of the patient. Subjects were instructed to align the CP with the target and then move the target by shifting the CP in the indicated direction. Two different tasks were used. In "Balls", the target (a ball) position varied randomly, so the subject learned a general strategy of voluntary CP control. In "Bricks", the subject had to always move the target in a single direction (downward) from the top to the bottom of the screen, so that a precise postural coordination had to be learned. The training consisted of 10 sessions for each task. The number of correctly performed trials for a session (2 min for each task) was scored. The voluntary control of the CP position was initially impaired in all groups of patients in both tasks. In "Balls", there were no differences between the groups of the patients on the first day. The learning course was somewhat better in hemiparetic patients than in the other groups. In "Bricks", the initial deficit was greater in the groups of parkinsonian and cerebellar patients than in hemiparetic patients. However, learning was more efficient in parkinsonian than in hemiparetic and cerebellar patients. After 10 days of training, the hemiparetic and cerebellar patients completed the acquisition at a certain level whereas the parkinsonian patients showed the ability for further improvement. The results suggest that motor cortex, cerebellum, and basal ganglia are involved in voluntary control of posture and learning different postural tasks. However, these structures play different roles in postural control and learning: basal ganglia are mainly involved in learning a general strategy of CP control while the function of the motor cortex chiefly concerns learning a specific CP trajectory. The cerebellum is involved in both kinds of learning.

  11. Partly randomised, controlled study in children aged 6-10 years to investigate motor and cognitive effects of a 9-week coordination training intervention with concurrent mental tasks.

    PubMed

    Santner, Antonia; Kopp, Martin; Federolf, Peter

    2018-05-24

    Physical training may play a prominent role in the development of preadolescent brains, but it is yet to be determined what type of exercise may generate higher cognitive effects, and if concurrent mental engagement provides further efficacy. The aim of this study is to investigate motor and cognitive effects of a 9-week exercise intervention in children aged 6-10 years. Trainings include the automatisation of challenging coordination exercises with concurrent mental tasks (intervention group) and multisport exercises with and without mental tasks (two control groups). It is hypothesised that all groups gain motor and cognitive effects, but highest benefits are expected for the combination of automatised coordination exercises with mental tasks. Two elementary schools (∼500 students) take part in the study. Data are generated by using the German Motor Performance Test 6-18 (Deutscher Motorik-Test 6-18), TDS (Match 4 Point), d2-R test of attention and Kasel-Concentration-Task for Children Aged 3-8 Years; test-duration: 6-7 min. After pretesting in September 2017 and a 9-week training intervention, post-testing takes place in December 2017 and March 2018 (long-term effects). Training interventions consist of coordination exercises with concurrent mental tasks (intervention group) and multimotor exercises with and without concurrent mental tasks (control groups). Shapiro-Wilk test will be used to test for normal distribution and the Levene test for variance homogeneity. The appropriate multivariate statistical methods (multivariate analysis of variance or Kruskal-Wallis test) will be used for analysing differences among the groups and for comparing preintervention with postintervention performances. All procedures have been approved by the board for ethical questions in science of the University of Innsbruck. Findings will be published in 2018 in international journals and presented at conferences. Schools will be informed of key results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Parental monitoring may protect impulsive children from overeating.

    PubMed

    Bennett, C; Blissett, J

    2017-10-01

    Research has highlighted links between impulsivity and weight in children and adults. Nevertheless, little is known about the nature of this link in very young children or about the underlying mechanism by which impulsivity leads to greater adiposity. The present study aimed to explore relationships between impulsivity, weight and eating behaviour in a sample of 95 2 to 4-year-olds. Parent-child dyads visited the laboratory and consumed a meal after which parents completed measures of child impulsivity, eating behaviour and parental feeding, whilst children completed impulsivity tasks measuring the impulsivity facet delay of gratification (Snack Delay task), motor impulsivity (Line Walking task) and inhibitory control (Tower task). Pearson's correlations showed that girls with greater motor impulsivity were heavier. Additionally, monitoring moderated the relationship between impulsivity and food approach behaviour, indicating that monitoring may protect more impulsive children from displaying problematic eating behaviours. The motor impulsivity facet appears particularly relevant to child weight; parents can modulate the impact of impulsivity on child eating behaviour through their feeding style. © 2016 World Obesity Federation.

  13. Atypical speech lateralization in adults with developmental coordination disorder demonstrated using functional transcranial Doppler ultrasound.

    PubMed

    Hodgson, Jessica C; Hudson, John M

    2017-03-01

    Research using clinical populations to explore the relationship between hemispheric speech lateralization and handedness has focused on individuals with speech and language disorders, such as dyslexia or specific language impairment (SLI). Such work reveals atypical patterns of cerebral lateralization and handedness in these groups compared to controls. There are few studies that examine this relationship in people with motor coordination impairments but without speech or reading deficits, which is a surprising omission given the prevalence of theories suggesting a common neural network underlying both functions. We use an emerging imaging technique in cognitive neuroscience; functional transcranial Doppler (fTCD) ultrasound, to assess whether individuals with developmental coordination disorder (DCD) display reduced left-hemisphere lateralization for speech production compared to control participants. Twelve adult control participants and 12 adults with DCD, but no other developmental/cognitive impairments, performed a word-generation task whilst undergoing fTCD imaging to establish a hemispheric lateralization index for speech production. All participants also completed an electronic peg-moving task to determine hand skill. As predicted, the DCD group showed a significantly reduced left lateralization pattern for the speech production task compared to controls. Performance on the motor skill task showed a clear preference for the dominant hand across both groups; however, the DCD group mean movement times were significantly higher for the non-dominant hand. This is the first study of its kind to assess hand skill and speech lateralization in DCD. The results reveal a reduced leftwards asymmetry for speech and a slower motor performance. This fits alongside previous work showing atypical cerebral lateralization in DCD for other cognitive processes (e.g., executive function and short-term memory) and thus speaks to debates on theories of the links between motor control and language production. © 2016 The Authors. Journal of Neuropsychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.

  14. Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients

    PubMed Central

    Chang, Won Hyuk; Kim, Yun-Hee; Lee, Seong-Whan; Kwon, Gyu Hyun

    2015-01-01

    Several researchers have analyzed brain activities by investigating brain networks. However, there is a lack of the research on the temporal characteristics of the brain network during a stroke by EEG and the comparative studies between motor execution and imagery, which became known to have similar motor functions and pathways. In this study, we proposed the possibility of temporal characteristics on the brain networks of a stroke. We analyzed the temporal properties of the brain networks for nine chronic stroke patients by the active and motor imagery tasks by EEG. High beta band has a specific role in the brain network during motor tasks. In the high beta band, for the active task, there were significant characteristics of centrality and small-worldness on bilateral primary motor cortices at the initial motor execution. The degree centrality significantly increased on the contralateral primary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex. These results indicate that the ipsilateral primary motor cortex constructed a powerful subnetwork by influencing the linked channels as compensatory effect, although the contralateral primary motor cortex organized an inefficient network by using the connected channels due to lesions. For the MI task, degree centrality and local efficiency significantly decreased on the somatosensory area at the initial motor imagery. Then, there were significant correlations between the properties of brain networks and motor function on the contralateral primary motor cortex and somatosensory area for each motor execution/imagery task. Our results represented that the active and MI tasks have different mechanisms of motor acts. Based on these results, we indicated the possibility of customized rehabilitation according to different motor tasks. We expect these results to help in the construction of the customized rehabilitation system depending on motor tasks by understanding temporal functional characteristics on brain network for a stroke. PMID:26656269

  15. Peripheral neuropathy reduces asymmetries in inter-limb transfer in a visuo-motor task.

    PubMed

    Pan, Zhujun; Van Gemmert, Arend W A

    2016-01-01

    Asymmetry of inter-limb transfer has been associated with the specialization of the dominant and non-dominant motor system. Reductions of asymmetry have been interpreted as behavioural evidence showing a decline of hemispheric lateralization. A previous study showed that ageing did not qualitatively change the inter-limb transfer asymmetry of a visuo-motor task. The current study elaborates on these findings; it examines whether diminished somatosensory information as a result of peripheral neuropathy (PN) adversely affects inter-limb transfer asymmetry. Twenty individuals affected by PN and 20 older controls were recruited and divided equally across two groups. One group trained a visuo-motor task with the right hand while the other group trained it with the left hand. Performance (initial direction error) of the untrained hand before and after training was collected to determine learning effects from inter-limb transfer. Similar to previous studies, the current study showed asymmetric inter-limb transfer in older controls. In contrast, PN showed inter-limb transfer in both directions indicating that PN reduces inter-limb transfer asymmetry. Increased bilateral hemispheric recruitment is suggested to be responsible for this reduced asymmetry which may compensate for deteriorated tactile and/or proprioceptive inputs in PN. Two possible hypotheses are discussed explaining the relationship between declined somatosensory information and increases in bilateral hemispheric recruitment.

  16. Linear and Logarithmic Speed-Accuracy Trade-Offs in Reciprocal Aiming Result from Task-Specific Parameterization of an Invariant Underlying Dynamics

    ERIC Educational Resources Information Center

    Bongers, Raoul M.; Fernandez, Laure; Bootsma, Reinoud J.

    2009-01-01

    The authors examined the origins of linear and logarithmic speed-accuracy trade-offs from a dynamic systems perspective on motor control. In each experiment, participants performed 2 reciprocal aiming tasks: (a) a velocity-constrained task in which movement time was imposed and accuracy had to be maximized, and (b) a distance-constrained task in…

  17. Impaired visuomotor adaptation in adults with ADHD.

    PubMed

    Kurdziel, Laura B F; Dempsey, Katherine; Zahara, Mackenzie; Valera, Eve; Spencer, Rebecca M C

    2015-04-01

    Attention-deficit hyperactivity disorder (ADHD) is a prevalent psychiatric disorder in children that often continues into adulthood. It has been suggested that motor impairments in ADHD are associated with underlying cerebellar pathology. If such is the case, individuals with ADHD should be impaired on motor tasks requiring healthy cerebellar function. To test this, we compared performance of individuals with ADHD and ADHD-like symptoms with non-ADHD controls on a visuomotor adaptation task known to be impaired following cerebellar lesions. Participants adapted reaching movements to a visual representation that was rotated by 30°. Individuals with ADHD and those with ADHD-like symptoms took longer to correct the angle of movement once the rotation was applied relative to controls. However, post-adaptation residual effect did not differ for individuals with ADHD and ADHD-like symptoms compared to the control group. These results are consistent with the hypothesis that mild cerebellar deficits are evident in the motor performance of adults with ADHD.

  18. Dynamical Motor Control Learned with Deep Deterministic Policy Gradient

    PubMed Central

    2018-01-01

    Conventional models of motor control exploit the spatial representation of the controlled system to generate control commands. Typically, the control command is gained with the feedback state of a specific instant in time, which behaves like an optimal regulator or spatial filter to the feedback state. Yet, recent neuroscience studies found that the motor network may constitute an autonomous dynamical system and the temporal patterns of the control command can be contained in the dynamics of the motor network, that is, the dynamical system hypothesis (DSH). Inspired by these findings, here we propose a computational model that incorporates this neural mechanism, in which the control command could be unfolded from a dynamical controller whose initial state is specified with the task parameters. The model is trained in a trial-and-error manner in the framework of deep deterministic policy gradient (DDPG). The experimental results show that the dynamical controller successfully learns the control policy for arm reaching movements, while the analysis of the internal activities of the dynamical controller provides the computational evidence to the DSH of the neural coding in motor cortices. PMID:29666634

  19. Dynamical Motor Control Learned with Deep Deterministic Policy Gradient.

    PubMed

    Shi, Haibo; Sun, Yaoru; Li, Jie

    2018-01-01

    Conventional models of motor control exploit the spatial representation of the controlled system to generate control commands. Typically, the control command is gained with the feedback state of a specific instant in time, which behaves like an optimal regulator or spatial filter to the feedback state. Yet, recent neuroscience studies found that the motor network may constitute an autonomous dynamical system and the temporal patterns of the control command can be contained in the dynamics of the motor network, that is, the dynamical system hypothesis (DSH). Inspired by these findings, here we propose a computational model that incorporates this neural mechanism, in which the control command could be unfolded from a dynamical controller whose initial state is specified with the task parameters. The model is trained in a trial-and-error manner in the framework of deep deterministic policy gradient (DDPG). The experimental results show that the dynamical controller successfully learns the control policy for arm reaching movements, while the analysis of the internal activities of the dynamical controller provides the computational evidence to the DSH of the neural coding in motor cortices.

  20. Distributed task-specific processing of somatosensory feedback for voluntary motor control

    PubMed Central

    Omrani, Mohsen; Murnaghan, Chantelle D; Pruszynski, J Andrew; Scott, Stephen H

    2016-01-01

    Corrective responses to limb disturbances are surprisingly complex, but the neural basis of these goal-directed responses is poorly understood. Here we show that somatosensory feedback is transmitted to many sensory and motor cortical regions within 25 ms of a mechanical disturbance applied to the monkey’s arm. When limb feedback was salient to an ongoing motor action (task engagement), neurons in parietal area 5 immediately (~25 ms) increased their response to limb disturbances, whereas neurons in other regions did not alter their response until 15 to 40 ms later. In contrast, initiation of a motor action elicited by a limb disturbance (target selection) altered neural responses in primary motor cortex ~65 ms after the limb disturbance, and then in dorsal premotor cortex, with no effect in parietal regions until 150 ms post-perturbation. Our findings highlight broad parietofrontal circuits that provide the neural substrate for goal-directed corrections, an essential aspect of highly skilled motor behaviors. DOI: http://dx.doi.org/10.7554/eLife.13141.001 PMID:27077949

  1. Incidental Learning and Explicit Recall in Upper Extremity Prosthesis Use: Insights Into Functional Rehabilitation Challenges.

    PubMed

    Hughey, Laura; Wheaton, Lewis A

    2016-01-01

    Loss of an upper extremity and the resulting rehabilitation often requires individuals to learn how to use a prosthetic device for activities of daily living. It remains unclear how prostheses affect motor learning outcomes. The authors' aim was to evaluate whether incidental motor learning and explicit recall is affected in intact persons either using prostheses (n = 10) or the sound limb (n = 10), and a chronic amputee on a modified serial reaction time task. Latency and accuracy of task completion were recorded over six blocks, with a distractor task between blocks 5 and 6. Participants were also asked to recall the sequence immediately following the study and at a 24-hr follow-up. Prosthesis users demonstrate patterns consistent with implicit learning, with sustained error patterns with the distal terminal device. More intact individuals were able to explicitly recall the sequence initially, however there was no significant difference 24 hr following the study. Acute incidental motor learning does not appear to diminish task related error patterns or accompany with explicit recall in prosthesis users, which could present limitations for acute training of prosthesis use in amputees. This suggests differing mechanisms of visuospatial sequential learning and motor control with prostheses.

  2. Limb Dominance Results from Asymmetries in Predictive and Impedance Control Mechanisms

    PubMed Central

    Yadav, Vivek; Sainburg, Robert L.

    2014-01-01

    Handedness is a pronounced feature of human motor behavior, yet the underlying neural mechanisms remain unclear. We hypothesize that motor lateralization results from asymmetries in predictive control of task dynamics and in control of limb impedance. To test this hypothesis, we present an experiment with two different force field environments, a field with a predictable magnitude that varies with the square of velocity, and a field with a less predictable magnitude that varies linearly with velocity. These fields were designed to be compatible with controllers that are specialized in predicting limb and task dynamics, and modulating position and velocity dependent impedance, respectively. Because the velocity square field does not change the form of the equations of motion for the reaching arm, we reasoned that a forward dynamic-type controller should perform well in this field, while control of linear damping and stiffness terms should be less effective. In contrast, the unpredictable linear field should be most compatible with impedance control, but incompatible with predictive dynamics control. We measured steady state final position accuracy and 3 trajectory features during exposure to these fields: Mean squared jerk, Straightness, and Movement time. Our results confirmed that each arm made straighter, smoother, and quicker movements in its compatible field. Both arms showed similar final position accuracies, which were achieved using more extensive corrective sub-movements when either arm performed in its incompatible field. Finally, each arm showed limited adaptation to its incompatible field. Analysis of the dependence of trajectory errors on field magnitude suggested that dominant arm adaptation occurred by prediction of the mean field, thus exploiting predictive mechanisms for adaptation to the unpredictable field. Overall, our results support the hypothesis that motor lateralization reflects asymmetries in specific motor control mechanisms associated with predictive control of limb and task dynamics, and modulation of limb impedance. PMID:24695543

  3. Differences in Resting State Functional Connectivity between Young Adult Endurance Athletes and Healthy Controls

    PubMed Central

    Raichlen, David A.; Bharadwaj, Pradyumna K.; Fitzhugh, Megan C.; Haws, Kari A.; Torre, Gabrielle-Ann; Trouard, Theodore P.; Alexander, Gene E.

    2016-01-01

    Expertise and training in fine motor skills has been associated with changes in brain structure, function, and connectivity. Fewer studies have explored the neural effects of athletic activities that do not seem to rely on precise fine motor control (e.g., distance running). Here, we compared resting-state functional connectivity in a sample of adult male collegiate distance runners (n = 11; age = 21.3 ± 2.5) and a group of healthy age-matched non-athlete male controls (n = 11; age = 20.6 ± 1.1), to test the hypothesis that expertise in sustained aerobic motor behaviors affects resting state functional connectivity in young adults. Although generally considered an automated repetitive task, locomotion, especially at an elite level, likely engages multiple cognitive actions including planning, inhibition, monitoring, attentional switching and multi-tasking, and motor control. Here, we examined connectivity in three resting-state networks that link such executive functions with motor control: the default mode network (DMN), the frontoparietal network (FPN), and the motor network (MN). We found two key patterns of significant between-group differences in connectivity that are consistent with the hypothesized cognitive demands of elite endurance running. First, enhanced connectivity between the FPN and brain regions often associated with aspects of working memory and other executive functions (frontal cortex), suggest endurance running may stress executive cognitive functions in ways that increase connectivity in associated networks. Second, we found significant anti-correlations between the DMN and regions associated with motor control (paracentral area), somatosensory functions (post-central region), and visual association abilities (occipital cortex). DMN deactivation with task-positive regions has been shown to be generally beneficial for cognitive performance, suggesting anti-correlated regions observed here are engaged during running. For all between-group differences, there were significant associations between connectivity, self-reported physical activity, and estimates of maximum aerobic capacity, suggesting a dose-response relationship between engagement in endurance running and connectivity strength. Together these results suggest that differences in experience with endurance running are associated with differences in functional brain connectivity. High intensity aerobic activity that requires sustained, repetitive locomotor and navigational skills may stress cognitive domains in ways that lead to altered brain connectivity, which in turn has implications for understanding the beneficial role of exercise for brain and cognitive function over the lifespan. PMID:28018192

  4. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study

    NASA Astrophysics Data System (ADS)

    Jeunet, Camille; Jahanpour, Emilie; Lotte, Fabien

    2016-06-01

    Objective. While promising, electroencephaloraphy based brain-computer interfaces (BCIs) are barely used due to their lack of reliability: 15% to 30% of users are unable to control a BCI. Standard training protocols may be partly responsible as they do not satisfy recommendations from psychology. Our main objective was to determine in practice to what extent standard training protocols impact users’ motor imagery based BCI (MI-BCI) control performance. Approach. We performed two experiments. The first consisted in evaluating the efficiency of a standard BCI training protocol for the acquisition of non-BCI related skills in a BCI-free context, which enabled us to rule out the possible impact of BCIs on the training outcome. Thus, participants (N = 54) were asked to perform simple motor tasks. The second experiment was aimed at measuring the correlations between motor tasks and MI-BCI performance. The ten best and ten worst performers of the first study were recruited for an MI-BCI experiment during which they had to learn to perform two MI tasks. We also assessed users’ spatial ability and pre-training μ rhythm amplitude, as both have been related to MI-BCI performance in the literature. Main results. Around 17% of the participants were unable to learn to perform the motor tasks, which is close to the BCI illiteracy rate. This suggests that standard training protocols are suboptimal for skill teaching. No correlation was found between motor tasks and MI-BCI performance. However, spatial ability played an important role in MI-BCI performance. In addition, once the spatial ability covariable had been controlled for, using an ANCOVA, it appeared that participants who faced difficulty during the first experiment improved during the second while the others did not. Significance. These studies suggest that (1) standard MI-BCI training protocols are suboptimal for skill teaching, (2) spatial ability is confirmed as impacting on MI-BCI performance, and (3) when faced with difficult pre-training, subjects seemed to explore more strategies and therefore learn better.

  5. Prior MDMA (Ecstasy) use is associated with increased basal ganglia–thalamocortical circuit activation during motor task performance in humans: An fMRI study

    PubMed Central

    Karageorgiou, John; Dietrich, Mary S.; Charboneau, Evonne J.; Woodward, Neil D.; Blackford, Jennifer U.; Salomon, Ronald M.; Cowan, Ronald L.

    2009-01-01

    MDMA (3,4-methylenedioxymethamphetamine; Ecstasy) is a popular recreational drug that produces long-lasting serotonin (5-HT) neurotoxicity consisting of reductions in markers for 5-HT axons. 5-HT innervates cortical and subcortical brain regions mediating motor function, predicting that MDMA users will have altered motor system neurophysiology. We used functional magnetic resonance imaging (fMRI) to assay motor task performance-associated brain activation changes in MDMA and non-MDMA users. 24 subjects (14 MDMA users and 10 controls) performed an event-related motor tapping task (1, 2 or 4 taps) during fMRI at 3 T. Motor regions of interest were used to measure percent signal change (PSC) and percent activated voxels (PAV) in bilateral motor cortex, sensory cortex, supplementary motor area (SMA), caudate, putamen, pallidum and thalamus. We used SPM5 to measure brain activation via three methods: T-maps, PSC and PAV. There was no statistically significant difference in reaction time between the two groups. For the Tap 4 condition, MDMA users had more activation than controls in the right SMA for T-score (p = 0.02), PSC (p = 0.04) and PAV (p = 0.03). Lifetime episodes of MDMA use were positively correlated with PSC for the Tap 4 condition on the right for putamen and pallidum; with PAV in the right motor and sensory cortex and bilateral thalamus. In conclusion, we found a group difference in the right SMA and positive dose–response association between lifetime exposure to MDMA and signal magnitude and extent in several brain regions. This evidence is consistent with MDMA-induced alterations in basal ganglia–thalamocortical circuit neurophysiology and is potentially secondary to neurotoxic effects on 5-HT signaling. Further studies examining behavioral correlates and the specific neurophysiological basis of the observed findings are warranted. PMID:19264142

  6. Effects of 10 Hz and 20 Hz Transcranial Alternating Current Stimulation on Automatic Motor Control.

    PubMed

    Cappon, Davide; D'Ostilio, Kevin; Garraux, Gaëtan; Rothwell, John; Bisiacchi, Patrizia

    2016-01-01

    In a masked prime choice reaction task, presentation of a compatible prime increases the reaction time to the following imperative stimulus if the interval between mask and prime is around 80-250 ms. This is thought to be due to automatic suppression of the motor plan evoked by the prime, which delays reaction to the imperative stimulus. Oscillatory activity in motor networks around the beta frequency range of 20 Hz is important in suppression of movement. Transcranial alternating current at 20 Hz may be able to drive oscillations in the beta range. To investigate whether transcranial alternating current stimulation (tACS) at 20 Hz would increase automatic inhibition in a masked prime task. As a control we used 10 Hz tACS. Stimulation was delivered at alpha (10 Hz) and beta (20 Hz) frequency over the supplementary motor area and the primary motor cortex (simultaneous tACS of SMA-M1), which are part of the BG-cortical motor loop, during the execution of the subliminal masked prime left/right choice reaction task. We measured the effects on reaction times. Corticospinal excitability was assessed by measuring the amplitude of motor evoked potentials (MEPs) evoked in the first dorsal interosseous muscle by transcranial magnetic stimulation (TMS) over M1. The 10 and 20-Hz tACS over SMA-M1 had different effects on automatic inhibition. The 20 Hz tACS increased the duration of automatic inhibition whereas it was decreased by 10 Hz tACS. Neurophysiologically, 20 Hz tACS reduced the amplitude of MEPs evoked from M1, whereas there was no change after 10 Hz tACS. Automatic mechanisms of motor inhibition can be modulated by tACS over motor areas of cortex. tACS may be a useful additional tool to investigate the causal links between endogenous brain oscillations and specific cognitive processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. COMMUNICATION: On variability and use of rat primary motor cortex responses in behavioral task discrimination

    NASA Astrophysics Data System (ADS)

    Jensen, Winnie; Rousche, Patrick J.

    2006-03-01

    The success of a cortical motor neuroprosthetic system will rely on the system's ability to effectively execute complex motor tasks in a changing environment. Invasive, intra-cortical electrodes have been successfully used to predict joint movement and grip force of a robotic arm/hand with a non-human primate (Chapin J K, Moxon K A, Markowitz R S and Nicolelis M A L 1999 Real-time control of a robotic arm using simultaneously recorded neurons in the motor cortex Nat. Neurosci. 2 664-70). It is well known that cortical encoding occurs with a high degree of cortical plasticity and depends on both the functional and behavioral context. Questions on the expected robustness of future motor prosthesis systems therefore still remain. The objective of the present work was to study the effect of minor changes in functional movement strategies on the M1 encoding. We compared the M1 encoding in freely moving, non-constrained animals that performed two similar behavioral tasks with the same end-goal, and investigated if these behavioral tasks could be discriminated based on the M1 recordings. The rats depressed a response paddle either with a set of restrictive bars ('WB') or without the bars ('WOB') placed in front of the paddle. The WB task required changes in the motor strategy to complete the paddle press and resulted in highly stereotyped movements, whereas in the WOB task the movement strategy was not restricted. Neural population activity was recorded from 16-channel micro-wire arrays and data up to 200 ms before a paddle hit were analyzed off-line. The analysis showed a significant neural firing difference between the two similar WB and WOB tasks, and using principal component analysis it was possible to distinguish between the two tasks with a best classification at 76.6%. While the results are dependent upon a small, randomly sampled neural population, they indicate that information about similar behavioral tasks may be extracted from M1 based on relatively few channels of neural signal for possible use in a cortical neuroprosthetic system.

  8. Transfer of training between distinct motor tasks after stroke: implications for task-specific approaches to upper-extremity neurorehabilitation.

    PubMed

    Schaefer, Sydney Y; Patterson, Chavelle B; Lang, Catherine E

    2013-09-01

    Although task-specific training is emerging as a viable approach for recovering motor function after stroke, there is little evidence for whether the effects of such training transfer to other functional motor tasks not directly practiced in therapy. The purpose of the current study was to test whether training on one motor task in individuals with chronic hemiparesis poststroke would transfer to untrained tasks that were either spatiotemporally similar or different. In all, 11 participants with chronic mild to moderate hemiparesis following stroke completed 5 days of supervised massed practice of a feeding task with their affected side. Performance on the feeding task, along with 2 other untrained functional upper-extremity motor tasks (sorting, dressing) was assessed before and after training. Performance of all 3 tasks improved significantly after training exclusively on 1 motor task. The amount of improvement in the untrained tasks was comparable and was not dependent on the degree of similarity to the trained task. Because the number and type of tasks that can be practiced are often limited within standard stroke rehabilitation, results from this study will be useful for designing task-specific training plans to maximize therapy benefits.

  9. Walking in School-Aged Children in a Dual-Task Paradigm Is Related to Age But Not to Cognition, Motor Behavior, Injuries, or Psychosocial Functioning

    PubMed Central

    Hagmann-von Arx, Priska; Manicolo, Olivia; Lemola, Sakari; Grob, Alexander

    2016-01-01

    Age-dependent gait characteristics and associations with cognition, motor behavior, injuries, and psychosocial functioning were investigated in 138 typically developing children aged 6.7–13.2 years (M = 10.0 years). Gait velocity, normalized velocity, and variability were measured using the walkway system GAITRite without an additional task (single task) and while performing a motor or cognitive task (dual task). Assessment of children’s cognition included tests for intelligence and executive functions; parents reported on their child’s motor behavior, injuries, and psychosocial functioning. Gait variability (an index of gait regularity) decreased with increasing age in both single- and dual-task walking. Dual-task gait decrements were stronger when children walked in the motor compared to the cognitive dual-task condition and decreased with increasing age in both dual-task conditions. Gait alterations from single- to dual-task conditions were not related to children’s cognition, motor behavior, injuries, or psychosocial functioning. PMID:27014158

  10. One hertz repetitive transcranial magnetic stimulation over dorsal premotor cortex enhances offline motor memory consolidation for sequence-specific implicit learning.

    PubMed

    Meehan, S K; Zabukovec, J R; Dao, E; Cheung, K L; Linsdell, M A; Boyd, L A

    2013-10-01

    Consolidation of motor memories associated with skilled practice can occur both online, concurrent with practice, and offline, after practice has ended. The current study investigated the role of dorsal premotor cortex (PMd) in early offline motor memory consolidation of implicit sequence-specific learning. Thirty-three participants were assigned to one of three groups of repetitive transcranial magnetic stimulation (rTMS) over left PMd (5 Hz, 1 Hz or control) immediately following practice of a novel continuous tracking task. There was no additional practice following rTMS. This procedure was repeated for 4 days. The continuous tracking task contained a repeated sequence that could be learned implicitly and random sequences that could not. On a separate fifth day, a retention test was performed to assess implicit sequence-specific motor learning of the task. Tracking error was decreased for the group who received 1 Hz rTMS over the PMd during the early consolidation period immediately following practice compared with control or 5 Hz rTMS. Enhanced sequence-specific learning with 1 Hz rTMS following practice was due to greater offline consolidation, not differences in online learning between the groups within practice days. A follow-up experiment revealed that stimulation of PMd following practice did not differentially change motor cortical excitability, suggesting that changes in offline consolidation can be largely attributed to stimulation-induced changes in PMd. These findings support a differential role for the PMd in support of online and offline sequence-specific learning of a visuomotor task and offer converging evidence for competing memory systems. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Infant motor and cognitive abilities and subsequent executive function.

    PubMed

    Wu, Meng; Liang, Xi; Lu, Shan; Wang, Zhengyan

    2017-11-01

    Although executive function (EF) is widely considered crucial to several aspects of life, the mechanisms underlying EF development remain largely unexplored, especially for infants. From a behavioral or neurodevelopmental perspective, motor and general cognitive abilities are linked with EF. EF development is a multistage process that starts with sensorimotor interactive behaviors, which become basic cognitive abilities and, in turn, mature EF. This study aims to examine how infant motor and general cognitive abilities are linked with their EF at 3 years of age. This work also aims to explore the potential processes of EF development from early movement. A longitudinal study was conducted with 96 infants (55 girls and 41 boys). The infants' motor and general cognitive abilities were assessed at 1 and 2 years of age with Bayley Scales of Infant and Toddler Development, Second and Third Editions, respectively. Infants' EFs were assessed at 3 years of age with Working Memory Span task, Day-Night task, Wrapped Gift task, and modified Gift-in-Bag task. Children with higher scores for cognitive ability at 2 years of age performed better in working memory, and children with higher scores for gross motor ability at 2 years performed better in cognitive inhibitory control (IC). Motor ability at 1 year and fine/gross motor ability at 2 years indirectly affected cognitive IC via general cognitive ability at 2 years and working memory. EF development is a multistage process that originates from physical movement to simple cognitive function, and then to complex cognitive function. Infants and toddlers can undergo targeted motor training to promote EF development. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Somato-Motor Haptic Processing in Posterior Inner Perisylvian Region (SII/pIC) of the Macaque Monkey

    PubMed Central

    Ishida, Hiroaki; Fornia, Luca; Grandi, Laura Clara; Umiltà, Maria Alessandra; Gallese, Vittorio

    2013-01-01

    The posterior inner perisylvian region including the secondary somatosensory cortex (area SII) and the adjacent region of posterior insular cortex (pIC) has been implicated in haptic processing by integrating somato-motor information during hand-manipulation, both in humans and in non-human primates. However, motor-related properties during hand-manipulation are still largely unknown. To investigate a motor-related activity in the hand region of SII/pIC, two macaque monkeys were trained to perform a hand-manipulation task, requiring 3 different grip types (precision grip, finger exploration, side grip) both in light and in dark conditions. Our results showed that 70% (n = 33/48) of task related neurons within SII/pIC were only activated during monkeys’ active hand-manipulation. Of those 33 neurons, 15 (45%) began to discharge before hand-target contact, while the remaining neurons were tonically active after contact. Thirty-percent (n = 15/48) of studied neurons responded to both passive somatosensory stimulation and to the motor task. A consistent percentage of task-related neurons in SII/pIC was selectively activated during finger exploration (FE) and precision grasping (PG) execution, suggesting they play a pivotal role in control skilled finger movements. Furthermore, hand-manipulation-related neurons also responded when visual feedback was absent in the dark. Altogether, our results suggest that somato-motor neurons in SII/pIC likely contribute to haptic processing from the initial to the final phase of grasping and object manipulation. Such motor-related activity could also provide the somato-motor binding principle enabling the translation of diachronic somatosensory inputs into a coherent image of the explored object. PMID:23936121

  13. Cognitive-motor dual-task ability of athletes with and without intellectual impairment.

    PubMed

    Van Biesen, Debbie; Jacobs, Lore; McCulloch, Katina; Janssens, Luc; Vanlandewijck, Yves C

    2018-03-01

    Cognition is important in many sports, for example, making split-second-decisions under pressure, or memorising complex movement sequences. The dual-task (DT) paradigm is an ecologically valid approach for the assessment of cognitive function in conjunction with motor demands. This study aimed to determine the impact of impaired intelligence on DT performance. The motor task required balancing on one leg on a beam, and the cognitive task was a multiple-object-tracking (MOT) task assessing dynamic visual-search capacity. The sample included 206 well-trained athletes with and without intellectual impairment (II), matched for sport, age and training volume (140 males, 66 females, M age = 23.2 ± 4.1 years, M training experience = 12.3 ± 5.7 years). In the single-task condition, II-athletes showed reduced balance control (F = 55.9, P < .001, η 2  = .23) and reduced MOT (F = 86.3, P < .001, η 2  = .32) compared to the control group. A mixed-model ANCOVA revealed significant differences in DT performance for the balance and the MOT task between both groups. The DT costs were significantly larger for the II-athletes (-8.28% versus -1.34% for MOT and -33.13% versus -12.89% for balance). The assessment of MOT in a DT paradigm provided insight in how impaired intelligence constrains the ability of II-athletes to successfully perform at the highest levels in the complex and dynamical sport-environment.

  14. Symptom-specific amygdala hyperactivity modulates motor control network in conversion disorder.

    PubMed

    Hassa, Thomas; Sebastian, Alexandra; Liepert, Joachim; Weiller, Cornelius; Schmidt, Roger; Tüscher, Oliver

    2017-01-01

    Initial historical accounts as well as recent data suggest that emotion processing is dysfunctional in conversion disorder patients and that this alteration may be the pathomechanistic neurocognitive basis for symptoms in conversion disorder. However, to date evidence of direct interaction of altered negative emotion processing with motor control networks in conversion disorder is still lacking. To specifically study the neural correlates of emotion processing interacting with motor networks we used a task combining emotional and sensorimotor stimuli both separately as well as simultaneously during functional magnetic resonance imaging in a well characterized group of 13 conversion disorder patients with functional hemiparesis and 19 demographically matched healthy controls. We performed voxelwise statistical parametrical mapping for a priori regions of interest within emotion processing and motor control networks. Psychophysiological interaction (PPI) was used to test altered functional connectivity of emotion and motor control networks. Only during simultaneous emotional stimulation and passive movement of the affected hand patients displayed left amygdala hyperactivity. PPI revealed increased functional connectivity in patients between the left amygdala and the (pre-)supplemental motor area and the subthalamic nucleus, key regions within the motor control network. These findings suggest a novel mechanistic direct link between dysregulated emotion processing and motor control circuitry in conversion disorder.

  15. Behaviour planning and problem solving deficiencies in children with symptoms of attention deficit hyperactivity disorder from the Balobedu culture, Limpopo province, South Africa.

    PubMed

    Pila-Nemutandani, Refilwe Gloria; Meyer, Anneke

    2016-07-01

    To compare planning behaviour (frontal lobe functioning) in children with and without symptoms of attention deficit hyperactivity disorder (ADHD). A total of 90 children (45 with symptoms of ADHD and 45 matched controls without ADHD symptoms) of both genders, who were medication naïve, from the Balobedu culture (Limpopo province, South Africa), aged 7-13 years, participated in the study. The performance of the two groups was compared on a test of planning and problem solving, the Tower of London (ToL) task. The results were analysed as a function of gender and ADHD subtype. The Finger Tapping test (testing fine motor skills) was used as a control test to verify that the expected differences were not due to poor motor skills. The children with ADHD symptoms scored significantly lower than the non-ADHD comparison group which indicated deficiency in frontal lobe functioning (p = 0.00). The difference in performance was not due to poor motor control (p = 0.70). Children with ADHD symptoms show deficits in behavioural planning which indicates impairment of functions of the frontal areas supplied by the mesocortical dopamine branch. More so than others, the ADHD Inattentive and Combined subtypes showed poor performance in the Tower of London task, indicating poor organisational and planning skills in these groups. The results also did show that the difference was not due to problems with motor control and that the ToL task is a culture-fair instrument for testing planning behaviour.

  16. What is the evidence of impaired motor skills and motor control among children with attention deficit hyperactivity disorder (ADHD)? Systematic review of the literature.

    PubMed

    Kaiser, M-L; Schoemaker, M M; Albaret, J-M; Geuze, R H

    2014-11-06

    This article presents a review of the studies that have analysed the motor skills of ADHD children without medication and the influence of medication on their motor skills. The following two questions guided the study: What is the evidence of impairment of motor skills and aspects of motor control among children with ADHD aged between 6 and 16 years? What are the effects of ADHD medication on motor skills and motor control? The following keywords were introduced in the main databases: attention disorder and/or ADHD, motor skills and/or handwriting, children, medication. Of the 45 articles retrieved, 30 described motor skills of children with ADHD and 15 articles analysed the influence of ADHD medication on motor skills and motor control. More than half of the children with ADHD have difficulties with gross and fine motor skills. The children with ADHD inattentive subtype seem to present more impairment of fine motor skills, slow reaction time, and online motor control during complex tasks. The proportion of children with ADHD who improved their motor skills to the normal range by using medication varied from 28% to 67% between studies. The children who still show motor deficit while on medication might meet the diagnostic criteria of developmental coordination disorder (DCD). It is important to assess motor skills among children with ADHD because of the risk of reduced participation in activities of daily living that require motor coordination and attention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Specific Interference between a Cognitive Task and Sensory Organization for Stance Balance Control in Healthy Young Adults: Visuospatial Effects

    ERIC Educational Resources Information Center

    Chong, Raymond K. Y.; Mills, Bradley; Dailey, Leanna; Lane, Elizabeth; Smith, Sarah; Lee, Kyoung-Hyun

    2010-01-01

    We tested the hypothesis that a computational overload results when two activities, one motor and the other cognitive that draw on the same neural processing pathways, are performed concurrently. Healthy young adult subjects carried out two seemingly distinct tasks of maintaining standing balance control under conditions of low (eyes closed),…

  18. Perceptual and Motor Inhibition in Adolescents/Young Adults with Childhood-Diagnosed ADHD

    PubMed Central

    Bedard, Anne-Claude V.; Trampush, Joey W.; Newcorn, Jeffrey H.; Halperin, Jeffrey M.

    2010-01-01

    Objective This study examined perceptual and motor inhibition in a longitudinal sample of adolescents/young adults who were diagnosed with ADHD in childhood, and as a function of the relative persistence of ADHD. Method Ninety-eight participants diagnosed with ADHD in childhood were re-evaluated approximately 10 years later. Eighty-five never-ADHD controls similar in age, IQ, sociodemographic background, and gender distribution served as a comparison group. Participants were administered a psychiatric interview and the Stimulus and Response Conflict Tasks (Nassauer & Halperin, 2003). Results Participants with childhood ADHD demonstrated slower and less accurate responses to both control and conflict conditions relative to the comparison group, as well as more variable responses in both conditions of the motor inhibition task; there was no specific effect of childhood ADHD on perceptual or motor inhibition. ADHD persisters and partial remitters did not differ in overall accuracy, speed or variability in responding, but relative to partial remitters, persisters demonstrated greater slowing in response to perceptual conflict. Conclusions These findings are consistent with theories positing state regulation, but not inhibitory control deficits in the etiology of ADHD, and suggest that improved perceptual inhibition may be associated with better outcome for ADHD. PMID:20604617

  19. Relationship between Speech Production and Perception in People Who Stutter

    PubMed Central

    Lu, Chunming; Long, Yuhang; Zheng, Lifen; Shi, Guang; Liu, Li; Ding, Guosheng; Howell, Peter

    2016-01-01

    Speech production difficulties are apparent in people who stutter (PWS). PWS also have difficulties in speech perception compared to controls. It is unclear whether the speech perception difficulties in PWS are independent of, or related to, their speech production difficulties. To investigate this issue, functional MRI data were collected on 13 PWS and 13 controls whilst the participants performed a speech production task and a speech perception task. PWS performed poorer than controls in the perception task and the poorer performance was associated with a functional activity difference in the left anterior insula (part of the speech motor area) compared to controls. PWS also showed a functional activity difference in this and the surrounding area [left inferior frontal cortex (IFC)/anterior insula] in the production task compared to controls. Conjunction analysis showed that the functional activity differences between PWS and controls in the left IFC/anterior insula coincided across the perception and production tasks. Furthermore, Granger Causality Analysis on the resting-state fMRI data of the participants showed that the causal connection from the left IFC/anterior insula to an area in the left primary auditory cortex (Heschl’s gyrus) differed significantly between PWS and controls. The strength of this connection correlated significantly with performance in the perception task. These results suggest that speech perception difficulties in PWS are associated with anomalous functional activity in the speech motor area, and the altered functional connectivity from this area to the auditory area plays a role in the speech perception difficulties of PWS. PMID:27242487

  20. Fine and gross motor skills differ between healthy-weight and obese children.

    PubMed

    Gentier, Ilse; D'Hondt, Eva; Shultz, Sarah; Deforche, Benedicte; Augustijn, Mireille; Hoorne, Sofie; Verlaecke, Katja; De Bourdeaudhuij, Ilse; Lenoir, Matthieu

    2013-11-01

    Within the obesity literature, focus is put on the link between weight status and gross motor skills. However, research on fine motor skills in the obese (OB) childhood population is limited. Therefore, the present study focused on possible weight related differences in gross as well as fine motor skill tasks. Thirty-four OB children (12 ♀ and 22 ♂, aged 7-13 years) were recruited prior to participating in a multidisciplinary treatment program at the Zeepreventorium (De Haan, Belgium). Additionally, a control group of 34 age and gender-matched healthy-weight (HW) children was included in the study. Anthropometric measures were recorded and gross and fine motor skills were assessed using the Bruininks-Oseretsky Test of Motor Proficiency, second edition (BOT-2). Results were analyzed by independent samples t-tests, multivariate analysis of variance, and a chi-squared test. Being OB was detrimental for all subtests evaluating gross motor skill performance (i.e., upper-limb coordination, bilateral coordination, balance, running speed and agility, and strength). Furthermore, OB children performed worse in fine motor precision and a manual dexterity task, when compared to their HW peers. No group differences existed for the fine motor integration task. Our study provides evidence that lower motor competence in OB children is not limited to gross motor skills alone; OB children are also affected by fine motor skill problems. Further investigation is warranted to provide possible explanations for these differences. It is tentatively suggested that OB children experience difficulties with the integration and processing of sensory information. Future research is needed to explore whether this assumption is correct and what the underlying mechanism(s) could be. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Response Inhibition and Interference Control in Obsessive–Compulsive Spectrum Disorders

    PubMed Central

    van Velzen, Laura S.; Vriend, Chris; de Wit, Stella J.; van den Heuvel, Odile A.

    2014-01-01

    Over the past 20 years, motor response inhibition and interference control have received considerable scientific effort and attention, due to their important role in behavior and the development of neuropsychiatric disorders. Results of neuroimaging studies indicate that motor response inhibition and interference control are dependent on cortical–striatal–thalamic–cortical (CSTC) circuits. Structural and functional abnormalities within the CSTC circuits have been reported for many neuropsychiatric disorders, including obsessive–compulsive disorder (OCD) and related disorders, such as attention-deficit hyperactivity disorder, Tourette’s syndrome, and trichotillomania. These disorders also share impairments in motor response inhibition and interference control, which may underlie some of their behavioral and cognitive symptoms. Results of task-related neuroimaging studies on inhibitory functions in these disorders show that impaired task performance is related to altered recruitment of the CSTC circuits. Previous research has shown that inhibitory performance is dependent upon dopamine, noradrenaline, and serotonin signaling, neurotransmitters that have been implicated in the pathophysiology of these disorders. In this narrative review, we discuss the common and disorder-specific pathophysiological mechanisms of inhibition-related dysfunction in OCD and related disorders. PMID:24966828

  2. Motor cortical activity changes during neuroprosthetic-controlled object interaction.

    PubMed

    Downey, John E; Brane, Lucas; Gaunt, Robert A; Tyler-Kabara, Elizabeth C; Boninger, Michael L; Collinger, Jennifer L

    2017-12-05

    Brain-computer interface (BCI) controlled prosthetic arms are being developed to restore function to people with upper-limb paralysis. This work provides an opportunity to analyze human cortical activity during complex tasks. Previously we observed that BCI control became more difficult during interactions with objects, although we did not quantify the neural origins of this phenomena. Here, we investigated how motor cortical activity changed in the presence of an object independently of the kinematics that were being generated using intracortical recordings from two people with tetraplegia. After identifying a population-wide increase in neural firing rates that corresponded with the hand being near an object, we developed an online scaling feature in the BCI system that operated without knowledge of the task. Online scaling increased the ability of two subjects to control the robotic arm when reaching to grasp and transport objects. This work suggests that neural representations of the environment, in this case the presence of an object, are strongly and consistently represented in motor cortex but can be accounted for to improve BCI performance.

  3. Tactile acuity and lumbopelvic motor control in patients with back pain and healthy controls.

    PubMed

    Luomajoki, H; Moseley, G L

    2011-04-01

    Voluntary lumbopelvic control is compromised in patients with back pain. Loss of proprioceptive acuity is one contributor to decreased control. Several reasons for decreased proprioceptive acuity have been proposed, but the integrity of cortical body maps has been overlooked. We investigated whether tactile acuity, a clear clinical signature of primary sensory cortex organisation, relates to lumbopelvic control in people with back pain. Forty-five patients with back pain and 45 age- and sex-matched healthy controls participated in this cross-sectional study. Tactile acuity at the back was assessed using two-point discrimination (TPD) threshold in vertical and horizontal directions. Voluntary motor control was assessed using an established battery of clinical tests. Patients performed worse on the voluntary lumbopelvic tasks than healthy controls did (p<0.001). TPD threshold was larger in patients (mean (SD)=61 (13) mm) than in healthy controls (44 (10) mm). Moreover, larger TPD threshold was positively related to worse performance on the voluntary lumbopelvic tasks (Pearson's r=0.49; p<0.001). Tactile acuity, a clear clinical signature of primary sensory cortex organisation, relates to voluntary lumbopelvic control. This relationship raises the possibility that the former contributes to the latter, in which case training tactile acuity may aid recovery and assist in achieving normal motor performance after back injury.

  4. Task-space separation principle: a force-field approach to motion planning for redundant manipulators.

    PubMed

    Tommasino, Paolo; Campolo, Domenico

    2017-02-03

    In this work, we address human-like motor planning in redundant manipulators. Specifically, we want to capture postural synergies such as Donders' law, experimentally observed in humans during kinematically redundant tasks, and infer a minimal set of parameters to implement similar postural synergies in a kinematic model. For the model itself, although the focus of this paper is to solve redundancy by implementing postural strategies derived from experimental data, we also want to ensure that such postural control strategies do not interfere with other possible forms of motion control (in the task-space), i.e. solving the posture/movement problem. The redundancy problem is framed as a constrained optimization problem, traditionally solved via the method of Lagrange multipliers. The posture/movement problem can be tackled via the separation principle which, derived from experimental evidence, posits that the brain processes static torques (i.e. posture-dependent, such as gravitational torques) separately from dynamic torques (i.e. velocity-dependent). The separation principle has traditionally been applied at a joint torque level. Our main contribution is to apply the separation principle to Lagrange multipliers, which act as task-space force fields, leading to a task-space separation principle. In this way, we can separate postural control (implementing Donders' law) from various types of tasks-space movement planners. As an example, the proposed framework is applied to the (redundant) task of pointing with the human wrist. Nonlinear inverse optimization (NIO) is used to fit the model parameters and to capture motor strategies displayed by six human subjects during pointing tasks. The novelty of our NIO approach is that (i) the fitted motor strategy, rather than raw data, is used to filter and down-sample human behaviours; (ii) our framework is used to efficiently simulate model behaviour iteratively, until it converges towards the experimental human strategies.

  5. Brain-Computer Interface application: auditory serial interface to control a two-class motor-imagery-based wheelchair.

    PubMed

    Ron-Angevin, Ricardo; Velasco-Álvarez, Francisco; Fernández-Rodríguez, Álvaro; Díaz-Estrella, Antonio; Blanca-Mena, María José; Vizcaíno-Martín, Francisco Javier

    2017-05-30

    Certain diseases affect brain areas that control the movements of the patients' body, thereby limiting their autonomy and communication capacity. Research in the field of Brain-Computer Interfaces aims to provide patients with an alternative communication channel not based on muscular activity, but on the processing of brain signals. Through these systems, subjects can control external devices such as spellers to communicate, robotic prostheses to restore limb movements, or domotic systems. The present work focus on the non-muscular control of a robotic wheelchair. A proposal to control a wheelchair through a Brain-Computer Interface based on the discrimination of only two mental tasks is presented in this study. The wheelchair displacement is performed with discrete movements. The control signals used are sensorimotor rhythms modulated through a right-hand motor imagery task or mental idle state. The peculiarity of the control system is that it is based on a serial auditory interface that provides the user with four navigation commands. The use of two mental tasks to select commands may facilitate control and reduce error rates compared to other endogenous control systems for wheelchairs. Seventeen subjects initially participated in the study; nine of them completed the three sessions of the proposed protocol. After the first calibration session, seven subjects were discarded due to a low control of their electroencephalographic signals; nine out of ten subjects controlled a virtual wheelchair during the second session; these same nine subjects achieved a medium accuracy level above 0.83 on the real wheelchair control session. The results suggest that more extensive training with the proposed control system can be an effective and safe option that will allow the displacement of a wheelchair in a controlled environment for potential users suffering from some types of motor neuron diseases.

  6. Neural substrates underlying stimulation-enhanced motor skill learning after stroke

    PubMed Central

    Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques

    2015-01-01

    Motor skill learning is one of the key components of motor function recovery after stroke, especially recovery driven by neurorehabilitation. Transcranial direct current stimulation can enhance neurorehabilitation and motor skill learning in stroke patients. However, the neural mechanisms underlying the retention of stimulation-enhanced motor skill learning involving a paretic upper limb have not been resolved. These neural substrates were explored by means of functional magnetic resonance imaging. Nineteen chronic hemiparetic stroke patients participated in a double-blind, cross-over randomized, sham-controlled experiment with two series. Each series consisted of two sessions: (i) an intervention session during which dual transcranial direct current stimulation or sham was applied during motor skill learning with the paretic upper limb; and (ii) an imaging session 1 week later, during which the patients performed the learned motor skill. The motor skill learning task, called the ‘circuit game’, involves a speed/accuracy trade-off and consists of moving a pointer controlled by a computer mouse along a complex circuit as quickly and accurately as possible. Relative to the sham series, dual transcranial direct current stimulation applied bilaterally over the primary motor cortex during motor skill learning with the paretic upper limb resulted in (i) enhanced online motor skill learning; (ii) enhanced 1-week retention; and (iii) superior transfer of performance improvement to an untrained task. The 1-week retention’s enhancement driven by the intervention was associated with a trend towards normalization of the brain activation pattern during performance of the learned motor skill relative to the sham series. A similar trend towards normalization relative to sham was observed during performance of a simple, untrained task without a speed/accuracy constraint, despite a lack of behavioural difference between the dual transcranial direct current stimulation and sham series. Finally, dual transcranial direct current stimulation applied during the first session enhanced continued learning with the paretic limb 1 week later, relative to the sham series. This lasting behavioural enhancement was associated with more efficient recruitment of the motor skill learning network, that is, focused activation on the motor-premotor areas in the damaged hemisphere, especially on the dorsal premotor cortex. Dual transcranial direct current stimulation applied during motor skill learning with a paretic upper limb resulted in prolonged shaping of brain activation, which supported behavioural enhancements in stroke patients. PMID:25488186

  7. Enhancing Motor Network Activity Using Real-Time Functional MRI Neurofeedback of Left Premotor Cortex

    PubMed Central

    Marins, Theo F.; Rodrigues, Erika C.; Engel, Annerose; Hoefle, Sebastian; Basílio, Rodrigo; Lent, Roberto; Moll, Jorge; Tovar-Moll, Fernanda

    2015-01-01

    Neurofeedback by functional magnetic resonance imaging (fMRI) is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC), important for motor recovery after brain injury. We investigated (i) whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI) task while receiving continuous fMRI-neurofeedback, and (ii) whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB) received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL) group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and MI, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke. PMID:26733832

  8. Transfer and interference of motor skills in people with intellectual disability.

    PubMed

    Mohan, A; Singh, A P; Mandal, M K

    2001-08-01

    Atypical laterality (i.e. the lack of a clear pattern of lateralization) has been found to be a characteristic feature of individuals with intellectual disability (ID). The evidence for this has been based on 'handedness' studies which have contained little information about the ability of people with ID to carry out interhemispheric tasks reflecting bilateral transfer or interference. The present study examined this capacity in individuals with ID by utilizing bilateral transfer and interference paradigms. Right-handed subjects with ID (IQ = 55-76) and controls matched for age and sex were tested for bilateral transfer of motor skill in contralateral hands with a mirror-drawing task. The subjects were also tested for their ability to perform a finger-tapping task while processing verbal and non-verbal stimuli. The findings indicated that people with ID are significantly deficient relative to matched controls in bilateral transfer of motor skills from their non-preferred (left) hand to their preferred (right) one. The effect of interference during performance of the dual task was significantly greater in individuals with ID. Subjects with ID were found to perform better with their non-preferred than with their preferred hand. A within-group comparison revealed that right-handed performance was more affected by interference than left in these subjects.

  9. Cathodal transcranial direct current stimulation in children with dystonia: a pilot open-label trial.

    PubMed

    Young, Scott J; Bertucco, Matteo; Sheehan-Stross, Rebecca; Sanger, Terence D

    2013-10-01

    Studies suggest that dystonia is associated with increased motor cortex excitability. Cathodal transcranial direct current stimulation can temporarily reduce motor cortex excitability. To test whether stimulation of the motor cortex can reduce dystonic symptoms in children, we measured tracking performance and muscle overflow using an electromyogram tracking task before and after stimulation. Of 10 participants, 3 showed a significant reduction in overflow, and a fourth showed a significant reduction in tracking error. Overflow decreased more when the hand contralateral to the cathode performed the task than when the hand ipsilateral to the cathode performed the task. Averaged over all participants, the results did not reach statistical significance. These results suggest that cathodal stimulation may allow a subset of children to control muscles or reduce involuntary overflow activity. Further testing is needed to confirm these results in a blinded trial and identify the subset of children who are likely to respond.

  10. Influence of facial feedback during a cooperative human-robot task in schizophrenia.

    PubMed

    Cohen, Laura; Khoramshahi, Mahdi; Salesse, Robin N; Bortolon, Catherine; Słowiński, Piotr; Zhai, Chao; Tsaneva-Atanasova, Krasimira; Di Bernardo, Mario; Capdevielle, Delphine; Marin, Ludovic; Schmidt, Richard C; Bardy, Benoit G; Billard, Aude; Raffard, Stéphane

    2017-11-03

    Rapid progress in the area of humanoid robots offers tremendous possibilities for investigating and improving social competences in people with social deficits, but remains yet unexplored in schizophrenia. In this study, we examined the influence of social feedbacks elicited by a humanoid robot on motor coordination during a human-robot interaction. Twenty-two schizophrenia patients and twenty-two matched healthy controls underwent a collaborative motor synchrony task with the iCub humanoid robot. Results revealed that positive social feedback had a facilitatory effect on motor coordination in the control participants compared to non-social positive feedback. This facilitatory effect was not present in schizophrenia patients, whose social-motor coordination was similarly impaired in social and non-social feedback conditions. Furthermore, patients' cognitive flexibility impairment and antipsychotic dosing were negatively correlated with patients' ability to synchronize hand movements with iCub. Overall, our findings reveal that patients have marked difficulties to exploit facial social cues elicited by a humanoid robot to modulate their motor coordination during human-robot interaction, partly accounted for by cognitive deficits and medication. This study opens new perspectives for comprehension of social deficits in this mental disorder.

  11. Information Processing by Schizophrenics When Task Complexity Increases

    ERIC Educational Resources Information Center

    Hirt, Michael; And Others

    1977-01-01

    The performance of hospitalized paranoid schizophrenics, nonparanoids, and hospitalized controls was compared on motor, perceptual, and cognitive tasks of increasing complexity. The data were examined within the context of comparing differential predictions made by input and central processing theories of information-processing deficit. (Editor)

  12. Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task

    PubMed Central

    Marchal-Crespo, Laura; Michels, Lars; Jaeger, Lukas; López-Olóriz, Jorge; Riener, Robert

    2017-01-01

    Up to date, the functional gains obtained after robot-aided gait rehabilitation training are limited. Error augmenting strategies have a great potential to enhance motor learning of simple motor tasks. However, little is known about the effect of these error modulating strategies on complex tasks, such as relearning to walk after a neurologic accident. Additionally, neuroimaging evaluation of brain regions involved in learning processes could provide valuable information on behavioral outcomes. We investigated the effect of robotic training strategies that augment errors—error amplification and random force disturbance—and training without perturbations on brain activation and motor learning of a complex locomotor task. Thirty-four healthy subjects performed the experiment with a robotic stepper (MARCOS) in a 1.5 T MR scanner. The task consisted in tracking a Lissajous figure presented on a display by coordinating the legs in a gait-like movement pattern. Behavioral results showed that training without perturbations enhanced motor learning in initially less skilled subjects, while error amplification benefited better-skilled subjects. Training with error amplification, however, hampered transfer of learning. Randomly disturbing forces induced learning and promoted transfer in all subjects, probably because the unexpected forces increased subjects' attention. Functional MRI revealed main effects of training strategy and skill level during training. A main effect of training strategy was seen in brain regions typically associated with motor control and learning, such as, the basal ganglia, cerebellum, intraparietal sulcus, and angular gyrus. Especially, random disturbance and no perturbation lead to stronger brain activation in similar brain regions than error amplification. Skill-level related effects were observed in the IPS, in parts of the superior parietal lobe (SPL), i.e., precuneus, and temporal cortex. These neuroimaging findings indicate that gait-like motor learning depends on interplay between subcortical, cerebellar, and fronto-parietal brain regions. An interesting observation was the low activation observed in the brain's reward system after training with error amplification compared to training without perturbations. Our results suggest that to enhance learning of a locomotor task, errors should be augmented based on subjects' skill level. The impacts of these strategies on motor learning, brain activation, and motivation in neurological patients need further investigation. PMID:29021739

  13. Learning of Temporal and Spatial Movement Aspects: A Comparison of Four Types of Haptic Control and Concurrent Visual Feedback.

    PubMed

    Rauter, Georg; Sigrist, Roland; Riener, Robert; Wolf, Peter

    2015-01-01

    In literature, the effectiveness of haptics for motor learning is controversially discussed. Haptics is believed to be effective for motor learning in general; however, different types of haptic control enhance different movement aspects. Thus, in dependence on the movement aspects of interest, one type of haptic control may be effective whereas another one is not. Therefore, in the current work, it was investigated if and how different types of haptic controllers affect learning of spatial and temporal movement aspects. In particular, haptic controllers that enforce active participation of the participants were expected to improve spatial aspects. Only haptic controllers that provide feedback about the task's velocity profile were expected to improve temporal aspects. In a study on learning a complex trunk-arm rowing task, the effect of training with four different types of haptic control was investigated: position control, path control, adaptive path control, and reactive path control. A fifth group (control) trained with visual concurrent augmented feedback. As hypothesized, the position controller was most effective for learning of temporal movement aspects, while the path controller was most effective in teaching spatial movement aspects of the rowing task. Visual feedback was also effective for learning temporal and spatial movement aspects.

  14. Individualized tracking of self-directed motor learning in group-housed mice performing a skilled lever positioning task in the home cage.

    PubMed

    Silasi, Gergely; Boyd, Jamie D; Bolanos, Federico; LeDue, Jeff M; Scott, Stephen H; Murphy, Timothy H

    2018-01-01

    Skilled forelimb function in mice is traditionally studied through behavioral paradigms that require extensive training by investigators and are limited by the number of trials individual animals are able to perform within a supervised session. We developed a skilled lever positioning task that mice can perform within their home cage. The task requires mice to use their forelimb to precisely hold a lever mounted on a rotary encoder within a rewarded position to dispense a water reward. A Raspberry Pi microcomputer is used to record lever position during trials and to control task parameters, thus making this low-footprint apparatus ideal for use within animal housing facilities. Custom Python software automatically increments task difficulty by requiring a longer hold duration, or a more accurate hold position, to dispense a reward. The performance of individual animals within group-housed mice is tracked through radio-frequency identification implants, and data stored on the microcomputer may be accessed remotely through an active internet connection. Mice continuously engage in the task for over 2.5 mo and perform ~500 trials/24 h. Mice required ~15,000 trials to learn to hold the lever within a 10° range for 1.5 s and were able to further refine movement accuracy by limiting their error to a 5° range within each trial. These results demonstrate the feasibility of autonomously training group-housed mice on a forelimb motor task. This paradigm may be used in the future to assess functional recovery after injury or cortical reorganization induced by self-directed motor learning. NEW & NOTEWORTHY We developed a low-cost system for fully autonomous training of group-housed mice on a forelimb motor task. We demonstrate the feasibility of tracking both end-point, as well as kinematic performance of individual mice, with each performing thousands of trials over 2.5 mo. The task is run and controlled by a Raspberry Pi microcomputer, which allows for cages to be monitored remotely through an active internet connection.

  15. Specific interpretation of augmented feedback changes motor performance and cortical processing.

    PubMed

    Lauber, Benedikt; Keller, Martin; Leukel, Christian; Gollhofer, Albert; Taube, Wolfgang

    2013-05-01

    It is well established that the presence of external feedback, also termed augmented feedback, can be used to improve performance of a motor task. The present study aimed to elucidate whether differential interpretation of the external feedback signal influences the time to task failure of a sustained submaximal contraction and modulates motor cortical activity. In Experiment 1, subjects had to maintain a submaximal contraction (30% of maximum force) performed with their thumb and index finger. Half of the tested subjects were always provided with feedback about joint position (pF-group), whereas the other half of the subjects were always provided with feedback about force (fF-group). Subjects in the pF-group were led to belief in half of their trials that they would receive feedback about the applied force, and subjects in the fF-group to receive feedback about the position. In both groups (fF and pF), the time to task failure was increased when subjects thought to receive feedback about the force. In Experiment 2, subthreshold transcranial magnetic stimulation was applied over the right motor cortex and revealed an increased motor cortical activity when subjects thought to receive feedback about the joint position. The results showed that the interpretation of feedback influences motor behavior and alters motor cortical activity. The current results support previous studies suggesting a distinct neural control of force and position.

  16. Training Attentional Control Improves Cognitive and Motor Task Performance.

    PubMed

    Ducrocq, Emmanuel; Wilson, Mark; Vine, Sam; Derakshan, Nazanin

    2016-10-01

    Attentional control is a necessary function for the regulation of goal-directed behavior. In three experiments we investigated whether training inhibitory control using a visual search task could improve task-specific measures of attentional control and performance. In Experiment 1 results revealed that training elicited a near-transfer effect, improving performance on a cognitive (antisaccade) task assessing inhibitory control. In Experiment 2 an initial far-transfer effect of training was observed on an index of attentional control validated for tennis. The principal aim of Experiment 3 was to expand on these findings by assessing objective gaze measures of inhibitory control during the performance of a tennis task. Training improved inhibitory control and performance when pressure was elevated, confirming the mechanisms by which cognitive anxiety impacts performance. These results suggest that attentional control training can improve inhibition and reduce taskspecific distractibility with promise of transfer to more efficient sporting performance in competitive contexts.

  17. Extrapyramidal signs in normal pressure hydrocephalus: an objective assessment

    PubMed Central

    Mandir, Allen S; Hilfiker, Jennifer; Thomas, George; Minahan, Robert E; Crawford, Thomas O; Williams, Michael A; Rigamonti, Daniele

    2007-01-01

    Background Beyond the classic Normal Pressure Hydrocephalus (NPH) triad of gait disturbance, incontinence, and dementia are characteristic signs of motor dysfunction in NPH patients. We used highly sensitive and objective methods to characterize upper limb extrapyramidal signs in a series of NPH subjects compared with controls. Concentrated evaluation of these profound, yet underappreciated movement disorders of NPH before and after techniques of therapeutic intervention may lead to improved diagnosis, insight into pathophysiology, and targeted treatment. Methods Twenty-two (22) consecutive NPH patients and 17 controls performed an upper limb motor task battery where highly sensitive and objective measures of akinesia/bradykinesia, tone, and tremor were conducted. NPH subjects performed this test battery before and more than 36 h after continuous CSF drainage via a spinal catheter over 72 h and, in those subjects undergoing permanent ventriculo-peritoneal shunt placement, at least 12 weeks later. Control subjects performed the task battery at the same dates as the NPH subjects. Statistical analyses were applied to group populations of NPH and control subjects and repeated measures for within subject performance. Results Twenty (20) NPH subjects remained in the study following CSF drainage as did 14 controls. NPH subjects demonstrated akinesia/bradykinesia (prolonged reaction and movement times) and increased resting tone compared with controls. Furthermore, the NPH group demonstrated increased difficulty with self-initiated tasks compared with stimulus-initiated tasks. Following CSF drainage, some NPH subjects demonstrated reduced movement times with greater improvement in self- versus stimulus-initiated tasks. Group reaction time was unchanged. Resting tremor present in one NPH subject resolved following shunt placement. Tone measures were consistent for all subjects throughout the study. Conclusion Clinical motor signs of NPH subjects extend beyond gait deficits and include extrapyramidal manifestations of bradykinesia, akinesia, rigidity, and propensity to perform more poorly when external cues to move are absent. Objective improvement of some but not all of these features was seen following temporary or permanent CSF diversion. PMID:17697324

  18. Interaction without intent: the shape of the social world in Huntington’s disease

    PubMed Central

    Rickards, Hugh E.

    2015-01-01

    Huntington’s disease (HD) is an inherited neurodegenerative condition. Patients with this movement disorder can exhibit deficits on tasks involving Theory of Mind (ToM): the ability to understand mental states such as beliefs and emotions. We investigated mental state inference in HD in response to ambiguous animations involving geometric shapes, while exploring the impact of symptoms within cognitive, emotional and motor domains. Forty patients with HD and twenty healthy controls described the events in videos showing random movements of two triangles (i.e. floating), simple interactions (e.g. following) and more complex interactions prompting the inference of mental states (e.g. one triangle encouraging the other). Relationships were explored between animation interpretation and measures of executive functioning, alexithymia and motor symptoms. Individuals with HD exhibited alexithymia and a reduced tendency to spontaneously attribute intentions to interacting triangles on the animations task. Attribution of intentions on the animations task correlated with motor symptoms and burden of pathology. Importantly, patients without motor symptoms showed similar ToM deficits despite intact executive functions. Subtle changes in ToM that are unrelated to executive dysfunction could therefore feature in basal ganglia disorders prior to motor onset. PMID:25680992

  19. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study

    PubMed Central

    Stoodley, Catherine J.; Valera, Eve M.; Schmahmann, Jeremy D.

    2011-01-01

    Anatomical, clinical and imaging findings suggest that the cerebellum is engaged in cognitive and affective functions as well as motor control. Evidence from converging modalities also indicates that there is a functional topography in the human cerebellum for overt control of movement vs. higher functions, such that the cerebellum can be divided into zones depending on connectivity with sensorimotor vs. multimodal association cortices. Using functional MRI, we show that regions active during overt movement differ from those involved in higher-level language, spatial processing and working memory tasks. Nine healthy participants each completed five tasks in order to determine the relative activation patterns for the different paradigms. Right-handed finger-tapping activated right cerebellar lobules IV-V and VIII, consistent with descriptions of the cerebellar homunculi. Verb generation engaged right cerebellar lobules VI-Crus I and a second cluster in lobules VIIB-VIIIA. Mental rotation activation peaks were localized to medial left cerebellar lobule VII (Crus II). A 2-back working memory task activated bilateral regions of lobules VI-VII. Viewing arousing vs. neutral images did not reliably activate the cerebellum or cerebral limbic areas in this study. The cerebellar functional topography identified in this study reflects the involvement of different cerebro-cerebellar circuits depending on the demands of the task being performed: overt movement activated sensorimotor cortices along with contralateral cerebellar lobules IV-VI and VIII, whereas more cognitively demanding tasks engaged prefrontal and parietal cortices along with cerebellar lobules VI and VII. These findings provide further support for a cerebellar role in both motor and cognitive tasks, and better establish the existence of functional subregions in the cerebellum. Future studies are needed to determine the exact contribution of the cerebellum – and different cerebro-cerebellar circuits – to task performance. PMID:21907811

  20. Trait impulsivity components correlate differently with proactive and reactive control

    PubMed Central

    Huang, Shihua; Zhu, Zude; Zhang, Wei; Chen, Yu; Zhen, Shuangju

    2017-01-01

    The relationship between impulsivity and cognitive control is still unknown. We hypothesized that trait impulsivity would differentially correlate with specific cognitive control processes. Trait impulsivity was measured by the Barratt Impulsiveness Scale, which assesses motor, attention, and non-planning impulsiveness components. Cognitive control was measured by a hybrid-designed Stroop task, which distinguishes proactive and reactive control. Thirty-three participants performed the Stroop task while they were scanned by functional magnetic resonance imaging. Proactive and reactive control involved increased activity in the fronto-parietal network, and brain activity was associated with impulsivity scores. Specifically, higher motor impulsiveness was associated with a larger proactive control effect in the inferior parietal lobule and a smaller reactive control effect in the right dorsolateral prefrontal cortex (DLPFC) and anterior cingulate contex. Higher attention impulsivity was associated with a smaller proactive control effect in the right DLPFC. Such a correlation pattern suggests that impulsivity trait components are attributable to different cognitive control subsystems. PMID:28423021

  1. Trait impulsivity components correlate differently with proactive and reactive control.

    PubMed

    Huang, Shihua; Zhu, Zude; Zhang, Wei; Chen, Yu; Zhen, Shuangju

    2017-01-01

    The relationship between impulsivity and cognitive control is still unknown. We hypothesized that trait impulsivity would differentially correlate with specific cognitive control processes. Trait impulsivity was measured by the Barratt Impulsiveness Scale, which assesses motor, attention, and non-planning impulsiveness components. Cognitive control was measured by a hybrid-designed Stroop task, which distinguishes proactive and reactive control. Thirty-three participants performed the Stroop task while they were scanned by functional magnetic resonance imaging. Proactive and reactive control involved increased activity in the fronto-parietal network, and brain activity was associated with impulsivity scores. Specifically, higher motor impulsiveness was associated with a larger proactive control effect in the inferior parietal lobule and a smaller reactive control effect in the right dorsolateral prefrontal cortex (DLPFC) and anterior cingulate contex. Higher attention impulsivity was associated with a smaller proactive control effect in the right DLPFC. Such a correlation pattern suggests that impulsivity trait components are attributable to different cognitive control subsystems.

  2. Effects of practice schedule and task specificity on the adaptive process of motor learning.

    PubMed

    Barros, João Augusto de Camargo; Tani, Go; Corrêa, Umberto Cesar

    2017-10-01

    This study investigated the effects of practice schedule and task specificity based on the perspective of adaptive process of motor learning. For this purpose, tasks with temporal and force control learning requirements were manipulated in experiments 1 and 2, respectively. Specifically, the task consisted of touching with the dominant hand the three sequential targets with specific movement time or force for each touch. Participants were children (N=120), both boys and girls, with an average age of 11.2years (SD=1.0). The design in both experiments involved four practice groups (constant, random, constant-random, and random-constant) and two phases (stabilisation and adaptation). The dependent variables included measures related to the task goal (accuracy and variability of error of the overall movement and force patterns) and movement pattern (macro- and microstructures). Results revealed a similar error of the overall patterns for all groups in both experiments and that they adapted themselves differently in terms of the macro- and microstructures of movement patterns. The study concludes that the effects of practice schedules on the adaptive process of motor learning were both general and specific to the task. That is, they were general to the task goal performance and specific regarding the movement pattern. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Two-phase strategy of controlling motor coordination determined by task performance optimality.

    PubMed

    Shimansky, Yury P; Rand, Miya K

    2013-02-01

    A quantitative model of optimal coordination between hand transport and grip aperture has been derived in our previous studies of reach-to-grasp movements without utilizing explicit knowledge of the optimality criterion or motor plant dynamics. The model's utility for experimental data analysis has been demonstrated. Here we show how to generalize this model for a broad class of reaching-type, goal-directed movements. The model allows for measuring the variability of motor coordination and studying its dependence on movement phase. The experimentally found characteristics of that dependence imply that execution noise is low and does not affect motor coordination significantly. From those characteristics it is inferred that the cost of neural computations required for information acquisition and processing is included in the criterion of task performance optimality as a function of precision demand for state estimation and decision making. The precision demand is an additional optimized control variable that regulates the amount of neurocomputational resources activated dynamically. It is shown that an optimal control strategy in this case comprises two different phases. During the initial phase, the cost of neural computations is significantly reduced at the expense of reducing the demand for their precision, which results in speed-accuracy tradeoff violation and significant inter-trial variability of motor coordination. During the final phase, neural computations and thus motor coordination are considerably more precise to reduce the cost of errors in making a contact with the target object. The generality of the optimal coordination model and the two-phase control strategy is illustrated on several diverse examples.

  4. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance

    PubMed Central

    Vadas, Dor; Kalichman, Leonid; Hadanny, Amir; Efrati, Shai

    2017-01-01

    Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, <10% of the brain is active at any given time, it utilizes almost all the oxygen delivered. In order to perform complex tasks or more than one task (multitasking), the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO) environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities. Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking). Participants were randomized to perform the tasks in two environments: (a) normobaric air (1 ATA 21% oxygen) (b) HBO (2 ATA 100% oxygen). Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance. Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment (p < 0.001 for both). Multitasking performance was also significantly enhanced in HBO environment (p = 0.006 for the cognitive part and p = 0.02 for the motor part). Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance. PMID:29021747

  5. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance.

    PubMed

    Vadas, Dor; Kalichman, Leonid; Hadanny, Amir; Efrati, Shai

    2017-01-01

    Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, <10% of the brain is active at any given time, it utilizes almost all the oxygen delivered. In order to perform complex tasks or more than one task (multitasking), the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO) environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities. Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking). Participants were randomized to perform the tasks in two environments: (a) normobaric air (1 ATA 21% oxygen) (b) HBO (2 ATA 100% oxygen). Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance. Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment ( p < 0.001 for both). Multitasking performance was also significantly enhanced in HBO environment ( p = 0.006 for the cognitive part and p = 0.02 for the motor part). Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance.

  6. Motor Decline in Clinically Presymptomatic Spinocerebellar Ataxia Type 2 Gene Carriers

    PubMed Central

    Velázquez-Perez, Luis; Díaz, Rosalinda; Pérez-González, Ruth; Canales, Nalia; Rodríguez-Labrada, Roberto; Medrano, Jacquelín; Sánchez, Gilberto; Almaguer-Mederos, Luis; Torres, Cira; Fernandez-Ruiz, Juan

    2009-01-01

    Background Motor deficits are a critical component of the clinical characteristics of patients with spinocerebellar ataxia type 2. However, there is no current information on the preclinical manifestation of those motor deficits in presymptomatic gene carriers. To further understand and characterize the onset of the clinical manifestation in this disease, we tested presymptomatic spinocerebellar ataxia type 2 gene carriers, and volunteers, in a task that evaluates their motor performance and their motor learning capabilities. Methods and Findings 28 presymptomatic spinocerebellar ataxia type 2 gene carriers and an equal number of control volunteers matched for age and gender participated in the study. Both groups were tested in a prism adaptation task known to be sensible to both motor performance and visuomotor learning deficits. Our results clearly show that although motor learning capabilities are intact, motor performance deficits are present even years before the clinical manifestation of the disease start. Conclusions The results show a clear deficit in motor performance that can be detected years before the clinical onset of the disease. This motor performance deficit appears before any motor learning or clinical manifestations of the disease. These observations identify the performance coefficient as an objective and quantitative physiological biomarker that could be useful to assess the efficiency of different therapeutic agents. PMID:19401771

  7. Motor-Skill Learning in an Insect Inspired Neuro-Computational Control System

    PubMed Central

    Arena, Eleonora; Arena, Paolo; Strauss, Roland; Patané, Luca

    2017-01-01

    In nature, insects show impressive adaptation and learning capabilities. The proposed computational model takes inspiration from specific structures of the insect brain: after proposing key hypotheses on the direct involvement of the mushroom bodies (MBs) and on their neural organization, we developed a new architecture for motor learning to be applied in insect-like walking robots. The proposed model is a nonlinear control system based on spiking neurons. MBs are modeled as a nonlinear recurrent spiking neural network (SNN) with novel characteristics, able to memorize time evolutions of key parameters of the neural motor controller, so that existing motor primitives can be improved. The adopted control scheme enables the structure to efficiently cope with goal-oriented behavioral motor tasks. Here, a six-legged structure, showing a steady-state exponentially stable locomotion pattern, is exposed to the need of learning new motor skills: moving through the environment, the structure is able to modulate motor commands and implements an obstacle climbing procedure. Experimental results on a simulated hexapod robot are reported; they are obtained in a dynamic simulation environment and the robot mimicks the structures of Drosophila melanogaster. PMID:28337138

  8. Sleep Consolidates Motor Learning of Complex Movement Sequences in Mice.

    PubMed

    Nagai, Hirotaka; de Vivo, Luisa; Bellesi, Michele; Ghilardi, Maria Felice; Tononi, Giulio; Cirelli, Chiara

    2017-02-01

    Sleep-dependent consolidation of motor learning has been extensively studied in humans, but it remains unclear why some, but not all, learned skills benefit from sleep. Here, we compared 2 different motor tasks, both requiring the mice to run on an accelerating device. In the rotarod task, mice learn to maintain balance while running on a small rod, while in the complex wheel task, mice run on an accelerating wheel with an irregular rung pattern. In the rotarod task, performance improved to the same extent after sleep or after sleep deprivation (SD). Overall, using 7 different experimental protocols (41 sleep deprived mice, 26 sleeping controls), we found large interindividual differences in the learning and consolidation of the rotarod task, but sleep before/after training did not account for this variability. By contrast, using the complex wheel, we found that sleep after training, relative to SD, led to better performance from the beginning of the retest session, and longer sleep was correlated with greater subsequent performance. As in humans, the effects of sleep showed large interindividual variability and varied between fast and slow learners, with sleep favoring the preservation of learned skills in fast learners and leading to a net offline gain in the performance in slow learners. Using Fos expression as a proxy for neuronal activation, we also found that complex wheel training engaged motor cortex and hippocampus more than the rotarod training. Sleep specifically consolidates a motor skill that requires complex movement sequences and strongly engages both motor cortex and hippocampus. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  9. Economic decision-making compared with an equivalent motor task.

    PubMed

    Wu, Shih-Wei; Delgado, Mauricio R; Maloney, Laurence T

    2009-04-14

    There is considerable evidence that human economic decision-making deviates from the predictions of expected utility theory (EUT) and that human performance conforms to EUT in many perceptual and motor decision tasks. It is possible that these results reflect a real difference in decision-making in the 2 domains but it is also possible that the observed discrepancy simply reflects typical differences in experimental design. We developed a motor task that is mathematically equivalent to choosing between lotteries and used it to compare how the same subject chose between classical economic lotteries and the same lotteries presented in equivalent motor form. In experiment 1, we found that subjects are more risk seeking in deciding between motor lotteries. In experiment 2, we used cumulative prospect theory to model choice and separately estimated the probability weighting functions and the value functions for each subject carrying out each task. We found no patterned differences in how subjects represented outcome value in the motor and the classical tasks. However, the probability weighting functions for motor and classical tasks were markedly and significantly different. Those for the classical task showed a typical tendency to overweight small probabilities and underweight large probabilities, and those for the motor task showed the opposite pattern of probability distortion. This outcome also accounts for the increased risk-seeking observed in the motor tasks of experiment 1. We conclude that the same subject distorts probability, but not value, differently in making identical decisions in motor and classical form.

  10. Sensory trick phenomenon improves motor control in pianists with dystonia: prognostic value of glove-effect

    PubMed Central

    Paulig, Jakobine; Jabusch, Hans-Christian; Großbach, Michael; Boullet, Laurent; Altenmüller, Eckart

    2014-01-01

    Musician’s dystonia (MD) is a task-specific movement disorder that causes loss of voluntary motor control while playing the instrument. A subgroup of patients displays the so-called sensory trick: alteration of somatosensory input, e.g., by wearing a latex glove, may result in short-term improvement of motor control. In this study, the glove-effect in pianists with MD was quantified and its potential association with MD-severity and outcome after treatment was investigated. Thirty affected pianists were included in the study. Music instrument digital interface-based scale analysis was used for assessment of fine motor control. Therapeutic options included botulinum toxin, pedagogical retraining and anticholinergic medication (trihexyphenidyl). 19% of patients showed significant improvement of fine motor control through wearing a glove. After treatment, outcome was significantly better in patients with a significant pre-treatment sensory trick. We conclude that the sensory trick may have a prognostic value for the outcome after treatment in pianists with MD. PMID:25295014

  11. Kinematic and neurophysiological consequences of an assisted-force-feedback brain-machine interface training: a case study.

    PubMed

    Silvoni, Stefano; Cavinato, Marianna; Volpato, Chiara; Cisotto, Giulia; Genna, Clara; Agostini, Michela; Turolla, Andrea; Ramos-Murguialday, Ander; Piccione, Francesco

    2013-01-01

    In a proof-of-principle prototypical demonstration we describe a new type of brain-machine interface (BMI) paradigm for upper limb motor-training. The proposed technique allows a fast contingent and proportionally modulated stimulation of afferent proprioceptive and motor output neural pathways using operant learning. Continuous and immediate assisted-feedback of force proportional to rolandic rhythm oscillations during actual movements was employed and illustrated with a single case experiment. One hemiplegic patient was trained for 2 weeks coupling somatosensory brain oscillations with force-field control during a robot-mediated center-out motor-task whose execution approaches movements of everyday life. The robot facilitated actual movements adding a modulated force directed to the target, thus providing a non-delayed proprioceptive feedback. Neuro-electric, kinematic, and motor-behavioral measures were recorded in pre- and post-assessments without force assistance. Patient's healthy arm was used as control since neither a placebo control was possible nor other control conditions. We observed a generalized and significant kinematic improvement in the affected arm and a spatial accuracy improvement in both arms, together with an increase and focalization of the somatosensory rhythm changes used to provide assisted-force-feedback. The interpretation of the neurophysiological and kinematic evidences reported here is strictly related to the repetition of the motor-task and the presence of the assisted-force-feedback. Results are described as systematic observations only, without firm conclusions about the effectiveness of the methodology. In this prototypical view, the design of appropriate control conditions is discussed. This study presents a novel operant-learning-based BMI-application for motor-training coupling brain oscillations and force feedback during an actual movement.

  12. Relationship between binocular vision, visual acuity, and fine motor skills.

    PubMed

    O'Connor, Anna R; Birch, Eileen E; Anderson, Susan; Draper, Hayley

    2010-12-01

    The aims of this study were to analyze the relationship between the performance on fine motor skills tasks and peripheral and bifoveal sensory fusion, phasic and tonic motor fusion, the level of visual acuity (VA) in the poorer seeing eye, and the interocular VA difference. Subjects aged 12 to 28 years with a range of levels of binocular vision and VA performed three tasks: Purdue pegboard (number of pegs placed in 30 s), bead threading task (with two sizes of bead to increase the difficulty, time taken to thread a fixed number of beads), and a water pouring task (accuracy and time to pour a fixed quantity into five glass cylinders). Ophthalmic measures included peripheral (Worth 4 dot) and bifoveal (4 prism diopter) sensory fusion, phasic (prism bar) and tonic (Risley rotary prism) motor fusion ranges, and monocular VA. One hundred twenty-one subjects with a mean age of 18.8 years were tested; 18.2% had a manifest strabismus. Performance on fine motor skills tasks was significantly better in subjects with sensory and motor fusion compared with those without for most tasks, with significant differences between those with and without all measures of fusion on the pegboard and bead task. Both the acuity in the poorer seeing eye (highest r value of all motor tasks = 0.43) and the interocular acuity difference were statistically significantly related to performance on the motor skill tasks. Both sensory and motor fusion and good VA in both eyes are of benefit in the performance of fine motor skills tasks, with the presence of some binocular vision being beneficial compared with no fusion on certain sensorimotor tasks. This evidence supports the need to maximize fusion and VA outcomes.

  13. Application of neural models as controllers in mobile robot velocity control loop

    NASA Astrophysics Data System (ADS)

    Cerkala, Jakub; Jadlovska, Anna

    2017-01-01

    This paper presents the application of an inverse neural models used as controllers in comparison to classical PI controllers for velocity tracking control task used in two-wheel, differentially driven mobile robot. The PI controller synthesis is based on linear approximation of actuators with equivalent load. In order to obtain relevant datasets for training of feed-forward multi-layer perceptron based neural network used as neural model, the mathematical model of mobile robot, that combines its kinematic and dynamic properties such as chassis dimensions, center of gravity offset, friction and actuator parameters is used. Neural models are trained off-line to act as an inverse dynamics of DC motors with particular load using data collected in simulation experiment for motor input voltage step changes within bounded operating area. The performances of PI controllers versus inverse neural models in mobile robot internal velocity control loops are demonstrated and compared in simulation experiment of navigation control task for line segment motion in plane.

  14. Transfer of training between distinct motor tasks after stroke: Implications for task- specific approaches to upper extremity neurorehabilitation

    PubMed Central

    Schaefer, Sydney Y.; Patterson, Chavelle B.; Lang, Catherine E.

    2013-01-01

    Background Although task-specific training is emerging as a viable approach for recovering motor function after stroke, there is little evidence for whether the effects of such training transfer to other functional motor tasks not directly practiced in therapy. Objective The purpose of the current study was to test whether training on one motor task would transfer to untrained tasks that were either spatiotemporally similar or different in individuals with chronic hemiparesis post-stroke. Methods Eleven participants with chronic mild-to-moderate hemiparesis following stroke completed five days of supervised massed practice of a feeding task with their affected side. Performance on the feeding task, along with two other untrained functional upper extremity motor tasks (sorting, dressing) was assessed before and after training. Results Performance of all three tasks improved significantly after training exclusively on one motor task. The amount of improvement in the untrained tasks was comparable, and was not dependent on the degree of similarity to the trained task. Conclusions Because the number and type of tasks that can be practiced are often limited within standard stroke rehabilitation, results from this study will be useful for designing task-specific training plans to maximize therapy benefits. PMID:23549521

  15. A neural mechanism of cognitive control for resolving conflict between abstract task rules.

    PubMed

    Sheu, Yi-Shin; Courtney, Susan M

    2016-12-01

    Conflict between multiple sensory stimuli or potential motor responses is thought to be resolved via bias signals from prefrontal cortex (PFC). However, population codes in the PFC also represent abstract information, such as task rules. How is conflict between active abstract representations resolved? We used functional neuroimaging to investigate the mechanism responsible for resolving conflict between abstract representations of task rules. Participants performed two different tasks based on a cue. We manipulated the degree of conflict at the task-rule level by training participants to associate the color and shape dimensions of the cue with either the same task rule (congruent cues) or different ones (incongruent cues). Phonological and semantic tasks were used in which performance depended on learned, abstract representations of information, rather than sensory features of the target stimulus or on any habituated stimulus-response associations. In addition, these tasks activate distinct regions that allowed us to measure magnitude of conflict between tasks. We found that incongruent cues were associated with increased activity in several cognitive control areas, including the inferior frontal gyrus, inferior parietal lobule, insula, and subcortical regions. Conflict between abstract representations appears to be resolved by rule-specific activity in the inferior frontal gyrus that is correlated with enhanced activity related to the relevant information. Furthermore, multi-voxel pattern analysis of the activity in the inferior frontal gyrus was shown to carry information about both the currently relevant rule (semantic/phonological) and the currently relevant cue context (color/shape). Similar to models of attentional selection of conflicting sensory or motor representations, the current findings indicate part of the frontal cortex provides a bias signal, representing task rules, that enhances task-relevant information. However, the frontal cortex can also be the target of these bias signals in order to enhance abstract representations that are independent of particular stimuli or motor responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A neural mechanism of cognitive control for resolving conflict between abstract task rules

    PubMed Central

    Sheu, Yi-Shin; Courtney, Susan M.

    2016-01-01

    Conflict between multiple sensory stimuli or potential motor responses is thought to be resolved via bias signals from prefrontal cortex. However, population codes in the prefrontal cortex also represent abstract information, such as task rules. How is conflict between active abstract representations resolved? We used functional neuroimaging to investigate the mechanism responsible for resolving conflict between abstract representations of task rules. Participants performed two different tasks based on a cue. We manipulated the degree of conflict at the task-rule level by training participants to associate the color and shape dimensions of the cue with either the same task rule (congruent cues) or different ones (incongruent cues). Phonological and semantic tasks were used in which performance depended on learned, abstract representations of information, rather than sensory features of the target stimulus or on any habituated stimulus-response associations. In addition, these tasks activate distinct regions that allowed us to measure magnitude of conflict between tasks. We found that incongruent cues were associated with increased activity in several cognitive control areas, including the inferior frontal gyrus, inferior parietal lobule, insula, and subcortical regions. Conflict between abstract representations appears to be resolved by rule-specific activity in the inferior frontal gyrus that is correlated with enhanced activity related to the relevant information. Furthermore, multivoxel pattern analysis of the activity in the inferior frontal gyrus was shown to carry information about both the currently relevant rule (semantic/phonological) and the currently relevant cue context (color/shape). Similar to models of attentional selection of conflicting sensory or motor representations, the current findings indicate part of the frontal cortex provides a bias signal, representing task rules, that enhances task-relevant information. However, the frontal cortex can also be the target of these bias signals in order to enhance abstract representations that are independent of particular stimuli or motor responses. PMID:27771559

  17. Musically cued gait-training improves both perceptual and motor timing in Parkinson's disease.

    PubMed

    Benoit, Charles-Etienne; Dalla Bella, Simone; Farrugia, Nicolas; Obrig, Hellmuth; Mainka, Stefan; Kotz, Sonja A

    2014-01-01

    It is well established that auditory cueing improves gait in patients with idiopathic Parkinson's disease (IPD). Disease-related reductions in speed and step length can be improved by providing rhythmical auditory cues via a metronome or music. However, effects on cognitive aspects of motor control have yet to be thoroughly investigated. If synchronization of movement to an auditory cue relies on a supramodal timing system involved in perceptual, motor, and sensorimotor integration, auditory cueing can be expected to affect both motor and perceptual timing. Here, we tested this hypothesis by assessing perceptual and motor timing in 15 IPD patients before and after a 4-week music training program with rhythmic auditory cueing. Long-term effects were assessed 1 month after the end of the training. Perceptual and motor timing was evaluated with a battery for the assessment of auditory sensorimotor and timing abilities and compared to that of age-, gender-, and education-matched healthy controls. Prior to training, IPD patients exhibited impaired perceptual and motor timing. Training improved patients' performance in tasks requiring synchronization with isochronous sequences, and enhanced their ability to adapt to durational changes in a sequence in hand tapping tasks. Benefits of cueing extended to time perception (duration discrimination and detection of misaligned beats in musical excerpts). The current results demonstrate that auditory cueing leads to benefits beyond gait and support the idea that coupling gait to rhythmic auditory cues in IPD patients relies on a neuronal network engaged in both perceptual and motor timing.

  18. Transfer from Audiovisual Pretraining to a Continuous Perceptual Motor Task. Final Report for Period June 1972 - August 1973.

    ERIC Educational Resources Information Center

    Wood, Milton E.; Gerlach, Vernon S.

    A technique was developed for providing transfer-of-training from a form of audiovisual pretraining to an instrument flight task. The continuous flight task was broken into discrete categories of flight; each category combined an instrument configuration with a return-to-criterion aircraft control response. Three methods of sequencing categories…

  19. Effect of motor dynamics on nonlinear feedback robot arm control

    NASA Technical Reports Server (NTRS)

    Tarn, Tzyh-Jong; Li, Zuofeng; Bejczy, Antal K.; Yun, Xiaoping

    1991-01-01

    A nonlinear feedback robot controller that incorporates the robot manipulator dynamics and the robot joint motor dynamics is proposed. The manipulator dynamics and the motor dynamics are coupled to obtain a third-order-dynamic model, and differential geometric control theory is applied to produce a linearized and decoupled robot controller. The derived robot controller operates in the robot task space, thus eliminating the need for decomposition of motion commands into robot joint space commands. Computer simulations are performed to verify the feasibility of the proposed robot controller. The controller is further experimentally evaluated on the PUMA 560 robot arm. The experiments show that the proposed controller produces good trajectory tracking performances and is robust in the presence of model inaccuracies. Compared with a nonlinear feedback robot controller based on the manipulator dynamics only, the proposed robot controller yields conspicuously improved performance.

  20. Integrating the behavioral and neural dynamics of response selection in a dual-task paradigm: a dynamic neural field model of Dux et al. (2009).

    PubMed

    Buss, Aaron T; Wifall, Tim; Hazeltine, Eliot; Spencer, John P

    2014-02-01

    People are typically slower when executing two tasks than when only performing a single task. These dual-task costs are initially robust but are reduced with practice. Dux et al. (2009) explored the neural basis of dual-task costs and learning using fMRI. Inferior frontal junction (IFJ) showed a larger hemodynamic response on dual-task trials compared with single-task trial early in learning. As dual-task costs were eliminated, dual-task hemodynamics in IFJ reduced to single-task levels. Dux and colleagues concluded that the reduction of dual-task costs is accomplished through increased efficiency of information processing in IFJ. We present a dynamic field theory of response selection that addresses two questions regarding these results. First, what mechanism leads to the reduction of dual-task costs and associated changes in hemodynamics? We show that a simple Hebbian learning mechanism is able to capture the quantitative details of learning at both the behavioral and neural levels. Second, is efficiency isolated to cognitive control areas such as IFJ, or is it also evident in sensory motor areas? To investigate this, we restrict Hebbian learning to different parts of the neural model. None of the restricted learning models showed the same reductions in dual-task costs as the unrestricted learning model, suggesting that efficiency is distributed across cognitive control and sensory motor processing systems.

  1. Motor Learning: An Analysis of 100 Trials of a Ski Slalom Game in Children with and without Developmental Coordination Disorder

    PubMed Central

    Smits-Engelsman, Bouwien C. M.; Jelsma, Lemke Dorothee; Ferguson, Gillian D.; Geuze, Reint H.

    2015-01-01

    Objective Although Developmental Coordination Disorder (DCD) is often characterized as a skill acquisition deficit disorder, few studies have addressed the process of motor learning. This study examined learning of a novel motor task; the Wii Fit ski slalom game. The main objectives were to determine: 1) whether learning occurs over 100 trial runs of the game, 2) if the learning curve is different between children with and without DCD, 3) if learning is different in an easier or harder version of the task, 4) if learning transfers to other balance tasks. Method 17 children with DCD (6–10 years) and a matched control group of 17 typically developing (TD) children engaged in 20 minutes of gaming, twice a week for five weeks. Each training session comprised of alternating trial runs, with five runs at an easy level and five runs at a difficult level. Wii scores, which combine speed and accuracy per run, were recorded. Standardized balance tasks were used to measure transfer. Results Significant differences in initial performance were found between groups on the Wii score and balance tasks. Both groups improved their Wii score over the five weeks. Improvement in the easy and in the hard task did not differ between groups. Retention in the time between training sessions was not different between TD and DCD groups either. The DCD group improved significantly on all balance tasks. Conclusions The findings in this study give a fairly coherent picture of the learning process over a medium time scale (5 weeks) in children novice to active computer games; they learn, retain and there is evidence of transfer to other balance tasks. The rate of motor learning is similar for those with and without DCD. Our results raise a number of questions about motor learning that need to be addressed in future research. PMID:26466324

  2. Perceptual and Motor Performance of Combat-Sport Athletes Differs According to Specific Demands of the Discipline.

    PubMed

    Chen, Wei-Ying; Wu, Sheng K; Song, Tai-Fen; Chou, Kuei-Ming; Wang, Kuei-Yuan; Chang, Yao-Ching; Goodbourn, Patrick T

    2016-12-07

    The specific demands of a combat-sport discipline may be reflected in the perceptual-motor performance of its athletes. Taekwondo, which emphasizes kicking, might require faster perceptual processing to compensate for longer latencies to initiate lower-limb movements and to give rapid visual feedback for dynamic postural control, while Karate, which emphasizes both striking with the hands and kicking, might require exceptional eye-hand coordination and fast perceptual processing. In samples of 38 Taekwondo athletes (16 females, 22 males; mean age = 19.9 years, SD = 1.2), 24 Karate athletes (9 females, 15 males; mean age = 18.9 years, SD = 0.9), and 35 Nonathletes (20 females, 15 males; mean age = 20.6 years, SD = 1.5), we measured eye-hand coordination with the Finger-Nose-Finger task, and both perceptual-processing speed and attentional control with the Covert Orienting of Visual Attention (COVAT) task. Eye-hand coordination was significantly better for Karate athletes than for Taekwondo athletes and Nonathletes, but reaction times for the upper extremities in the COVAT task-indicative of perceptual-processing speed-were faster for Taekwondo athletes than for Karate athletes and Nonathletes. In addition, we found no significant difference among groups in attentional control, as indexed by the reaction-time cost of an invalid cue in the COVAT task. The results suggest that athletes in different combat sports exhibit distinct profiles of perceptual-motor performance. © The Author(s) 2016.

  3. Decoding of Ankle Flexion and Extension from Cortical Current Sources Estimated from Non-invasive Brain Activity Recording Methods.

    PubMed

    Mejia Tobar, Alejandra; Hyoudou, Rikiya; Kita, Kahori; Nakamura, Tatsuhiro; Kambara, Hiroyuki; Ogata, Yousuke; Hanakawa, Takashi; Koike, Yasuharu; Yoshimura, Natsue

    2017-01-01

    The classification of ankle movements from non-invasive brain recordings can be applied to a brain-computer interface (BCI) to control exoskeletons, prosthesis, and functional electrical stimulators for the benefit of patients with walking impairments. In this research, ankle flexion and extension tasks at two force levels in both legs, were classified from cortical current sources estimated by a hierarchical variational Bayesian method, using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) recordings. The hierarchical prior for the current source estimation from EEG was obtained from activated brain areas and their intensities from an fMRI group (second-level) analysis. The fMRI group analysis was performed on regions of interest defined over the primary motor cortex, the supplementary motor area, and the somatosensory area, which are well-known to contribute to movement control. A sparse logistic regression method was applied for a nine-class classification (eight active tasks and a resting control task) obtaining a mean accuracy of 65.64% for time series of current sources, estimated from the EEG and the fMRI signals using a variational Bayesian method, and a mean accuracy of 22.19% for the classification of the pre-processed of EEG sensor signals, with a chance level of 11.11%. The higher classification accuracy of current sources, when compared to EEG classification accuracy, was attributed to the high number of sources and the different signal patterns obtained in the same vertex for different motor tasks. Since the inverse filter estimation for current sources can be done offline with the present method, the present method is applicable to real-time BCIs. Finally, due to the highly enhanced spatial distribution of current sources over the brain cortex, this method has the potential to identify activation patterns to design BCIs for the control of an affected limb in patients with stroke, or BCIs from motor imagery in patients with spinal cord injury.

  4. Obesity-related differences in neural correlates of force control.

    PubMed

    Mehta, Ranjana K; Shortz, Ashley E

    2014-01-01

    Greater body segment mass due to obesity has shown to impair gross and fine motor functions and reduce balance control. While recent studies suggest that obesity may be linked with altered brain functions involved in fine motor tasks, this association is not well investigated. The purpose of this study was to examine the neural correlates of motor performance in non-obese and obese adults during force control of two upper extremity muscles. Nine non-obese and eight obese young adults performed intermittent handgrip and elbow flexion exertions at 30% of their respective muscle strengths for 4 min. Functional near infrared spectroscopy was employed to measure neural activity in the prefrontal cortex bilaterally, joint steadiness was computed using force fluctuations, and ratings of perceived exertions (RPEs) were obtained to assess perceived effort. Obesity was associated with higher force fluctuations and lower prefrontal cortex activation during handgrip exertions, while RPE scores remained similar across both groups. No obesity-related differences in neural activity, force fluctuation, or RPE scores were observed during elbow flexion exertions. The study is one of the first to examine obesity-related differences on prefrontal cortex activation during force control of the upper extremity musculature. The study findings indicate that the neural correlates of motor activity in the obese may be muscle-specific. Future work is warranted to extend the investigation to monitoring multiple motor-function related cortical regions and examining obesity differences with different task parameters (e.g., longer duration, increased precision demands, larger muscles, etc.).

  5. Motor deficits correlate with resting state motor network connectivity in patients with brain tumours

    PubMed Central

    Mikell, Charles B.; Youngerman, Brett E.; Liston, Conor; Sisti, Michael B.; Bruce, Jeffrey N.; Small, Scott A.; McKhann, Guy M.

    2012-01-01

    While a tumour in or abutting primary motor cortex leads to motor weakness, how tumours elsewhere in the frontal or parietal lobes affect functional connectivity in a weak patient is less clear. We hypothesized that diminished functional connectivity in a distributed network of motor centres would correlate with motor weakness in subjects with brain masses. Furthermore, we hypothesized that interhemispheric connections would be most vulnerable to subtle disruptions in functional connectivity. We used task-free functional magnetic resonance imaging connectivity to probe motor networks in control subjects and patients with brain tumours (n = 22). Using a control dataset, we developed a method for automated detection of key nodes in the motor network, including the primary motor cortex, supplementary motor area, premotor area and superior parietal lobule, based on the anatomic location of the hand-motor knob in the primary motor cortex. We then calculated functional connectivity between motor network nodes in control subjects, as well as patients with and without brain masses. We used this information to construct weighted, undirected graphs, which were then compared to variables of interest, including performance on a motor task, the grooved pegboard. Strong connectivity was observed within the identified motor networks between all nodes bilaterally, and especially between the primary motor cortex and supplementary motor area. Reduced connectivity was observed in subjects with motor weakness versus subjects with normal strength (P < 0.001). This difference was driven mostly by decreases in interhemispheric connectivity between the primary motor cortices (P < 0.05) and between the left primary motor cortex and the right premotor area (P < 0.05), as well as other premotor area connections. In the subjects without motor weakness, however, performance on the grooved pegboard did not relate to interhemispheric connectivity, but rather was inversely correlated with connectivity between the left premotor area and left supplementary motor area, for both the left and the right hands (P < 0.01). Finally, two subjects who experienced severe weakness following surgery for their brain tumours were followed longitudinally, and the subject who recovered showed reconstitution of her motor network at follow-up. The subject who was persistently weak did not reconstitute his motor network. Motor weakness in subjects with brain tumours that do not involve primary motor structures is associated with decreased connectivity within motor functional networks, particularly interhemispheric connections. Motor networks become weaker as the subjects become weaker, and may become strong again during motor recovery. PMID:22408270

  6. The posterior parietal cortex (PPC) mediates anticipatory motor control.

    PubMed

    Krause, Vanessa; Weber, Juliane; Pollok, Bettina

    2014-01-01

    Flexible and precisely timed motor control is based on functional interaction within a cortico-subcortical network. The left posterior parietal cortex (PPC) is supposed to be crucial for anticipatory motor control by sensorimotor feedback matching. Intention of the present study was to disentangle the specific relevance of the left PPC for anticipatory motor control using transcranial direct current stimulation (tDCS) since a causal link remains to be established. Anodal vs. cathodal tDCS was applied for 10 min over the left PPC in 16 right-handed subjects in separate sessions. Left primary motor cortex (M1) tDCS served as control condition and was applied in additional 15 subjects. Prior to and immediately after tDCS, subjects performed three tasks demanding temporal motor precision with respect to an auditory stimulus: sensorimotor synchronization as measure of anticipatory motor control, interval reproduction and simple reaction. Left PPC tDCS affected right hand synchronization but not simple reaction times. Motor anticipation was deteriorated by anodal tDCS, while cathodal tDCS yielded the reverse effect. The variability of interval reproduction was increased by anodal left M1 tDCS, whereas it was reduced by cathodal tDCS. No significant effects on simple reaction times were found. The present data support the hypothesis that left PPC is causally involved in right hand anticipatory motor control exceeding pure motor implementation as processed by M1 and possibly indicating subjective timing. Since M1 tDCS particularly affects motor implementation, the observed PPC effects are not likely to be explained by alterations of motor-cortical excitability. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Theta Neurofeedback Effects on Motor Memory Consolidation and Performance Accuracy: An Apparent Paradox?

    PubMed

    Reiner, Miriam; Lev, Dror D; Rosen, Amit

    2018-05-15

    Previous studies have shown that theta neurofeedback enhances motor memory consolidation on an easy-to-learn finger-tapping task. However, the simplicity of the finger-tapping task precludes evaluating the putative effects of elevated theta on performance accuracy. Mastering a motor sequence is classically assumed to entail faster performance with fewer errors. The speed-accuracy tradeoff (SAT) principle states that as action speed increases, motor performance accuracy decreases. The current study investigated whether theta neurofeedback could improve both performance speed and performance accuracy, or would only enhance performance speed at the cost of reduced accuracy. A more complex task was used to study the effects of parietal elevated theta on 45 healthy volunteers The findings confirmed previous results on the effects of theta neurofeedback on memory consolidation. In contrast to the two control groups, in the theta-neurofeedback group the speed-accuracy tradeoff was reversed. The speed-accuracy tradeoff patterns only stabilized after a night's sleep implying enhancement in terms of both speed and accuracy. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Training of support afferentation in postmenopausal women.

    PubMed

    Bazanova, O M; Kholodina, N V; Nikolenko, E D; Payet, J

    2017-12-01

    We have recently shown a diminishing of the Menopause Index in old-aged women who underwent special training directed at the enhancement of support afferentation by increasing the plantar forefoot sensitivity (Bazanova et al., 2015). Based on these results we hypothesized, that purposeful training of support afferentation through stimulation of plantar graviceptors by Aikido practice will decrease excessive postural and psychoemotional tension not only in rest condition, but during cognitive and manual task performance too. Fluency of cognitive and motor task performance, EEG alpha power as an index of neuronal efficiency of cognitive control, amount of alpha power suppression as a visual activation measure and EMG power of forehead muscles as a sign of psychoemotional tension were compared in three groups of post-menopausal women: i) 8years training with forefeet support afferentation with Aikido practice (A), ii) 8years fitness training (F) and iii) no dedicated fitness training for past 8years (N). Simultaneous stabilometry, EEG, and frontal EMG recording were performed in sitting and standing up position in eyes closed and eyes open condition. Recording done at rest and while performing cognitive and finger motor tasks. We compared studied parameters between groups with one- and two-way analyses of variance (ANOVAs) with Bonferroni correction for multiple comparisons, followed by post hoc two-tailed unpaired t-tests. The fluency of tasks performance, EMG and alpha-EEG-activity displayed similar values in all groups in a sitting position. Center of pressure (CoP) sway length, velocity and energy demands for saving balance increased when standing up, more in group N than in groups F and A (all contrasts p values<0.002, η 2 >0.89). Post hoc t-tests showed increased fluency in standing in both Aikido (p<0.01) and Fitness (p<0.05) subjects in relation to untrained subjects. Increasing fluency in motor task performance was in parallel with enhancing the EEG alpha-2-power and decreasing EMG power only in A group (η 2 >0.77). Fluency in motor task and alpha EEG power decreased, but frontal EMG power increased in response to standing in untrained women (group N) and did not change in F group. Post hoc t-tests showed that EEG amount of alpha-2 power suppression in response to visual activation and frontal EMG power was lower in A than F and N groups (p<0.004) during motor task performance in the standing position. These results were interpreted as showing that training of forefoot plantar surface sensitivity in postmenopausal women decreases levels of psychoemotional tension and increases cognitive control caused by the psychomotor and postural challenges. Thus, Aikido training aimed at learning coordination between manual task performance and balance control by increasing the plantar support zones sensation decreases the cost of maintained vertical position and dependence of motor coordination on visual contribution. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Independent control of joint stiffness in the framework of the equilibrium-point hypothesis.

    PubMed

    Latash, M L

    1992-01-01

    In the framework of the equilibrium-point hypothesis, virtual trajectories and joint stiffness patterns have been reconstructed during two motor tasks practiced against a constant bias torque. One task required a voluntary increase in joint stiffness while preserving the original joint position. The other task involved fast elbow flexions over 36 degrees. Joint stiffness gradually subsided after the termination of fast movements. In both tasks, the external torque could slowly and unexpectedly change. The subjects were required not to change their motor commands if the torque changed, i.e. "to do the same no matter what the motor did". In both tasks, changes in joint stiffness were accompanied by unchanged virtual trajectories that were also independent of the absolute value of the bias torque. By contrast, the intercept of the joint compliant characteristic with the angle axis, r(t)-function, has demonstrated a clear dependence upon both the level of coactivation and external load. We assume that a template virtual trajectory is generated at a certain level of the motor hierarchy and is later scaled taking into account some commonly changing dynamic factors of the movement execution, for example, external load. The scaling leads to the generation of commands to the segmental structures that can be expressed, according to the equilibrium-point hypothesis, as changes in the thresholds of the tonic stretch reflex for corresponding muscles.

  10. Function Lateralization via Measuring Coherence Laterality

    PubMed Central

    Wang, Ze; Mechanic-Hamilton, Dawn; Pluta, John; Glynn, Simon; Detre, John A.

    2009-01-01

    A data-driven approach for lateralization of brain function based on the spatial coherence difference of functional MRI (fMRI) data in homologous regions-of-interest (ROI) in each hemisphere is proposed. The utility of using coherence laterality (CL) to determine function laterality was assessed first by examining motor laterality using normal subjects’ data acquired both at rest and with a simple unilateral motor task and subsequently by examining mesial temporal lobe memory laterality in normal subjects and patients with temporal lobe epilepsy. The motor task was used to demonstrate that CL within motor ROI correctly lateralized functional stimulation. In patients with unilateral epilepsy studied during a scene-encoding task, CL in a hippocampus-parahippocampus-fusiform (HPF) ROI was concordant with lateralization based on task activation, and the CL index (CLI) significantly differentiated the right side group to the left side group. By contrast, normal controls showed a symmetric HPF CLI distribution. Additionally, similar memory laterality prediction results were still observed using CL in epilepsy patients with unilateral seizures after the memory encoding effect was removed from the data, suggesting the potential for lateralization of pathological brain function based on resting fMRI data. A better lateralization was further achieved via a combination of the proposed approach and the standard activation based approach, demonstrating that assessment of spatial coherence changes provides a complementary approach to quantifying task-correlated activity for lateralizing brain function. PMID:19345736

  11. Bimanual Motor Coordination in Older Adults Is Associated with Increased Functional Brain Connectivity – A Graph-Theoretical Analysis

    PubMed Central

    Heitger, Marcus H.; Goble, Daniel J.; Dhollander, Thijs; Dupont, Patrick; Caeyenberghs, Karen; Leemans, Alexander; Sunaert, Stefan; Swinnen, Stephan P.

    2013-01-01

    In bimanual coordination, older and younger adults activate a common cerebral network but the elderly also have additional activation in a secondary network of brain areas to master task performance. It remains unclear whether the functional connectivity within these primary and secondary motor networks differs between the old and the young and whether task difficulty modulates connectivity. We applied graph-theoretical network analysis (GTNA) to task-driven fMRI data in 16 elderly and 16 young participants using a bimanual coordination task including in-phase and anti-phase flexion/extension wrist movements. Network nodes for the GTNA comprised task-relevant brain areas as defined by fMRI activation foci. The elderly matched the motor performance of the young but showed an increased functional connectivity in both networks across a wide range of connectivity metrics, i.e., higher mean connectivity degree, connection strength, network density and efficiency, together with shorter mean communication path length between the network nodes and also a lower betweenness centrality. More difficult movements showed an increased connectivity in both groups. The network connectivity of both groups had “small world” character. The present findings indicate (a) that bimanual coordination in the aging brain is associated with a higher functional connectivity even between areas also activated in young adults, independently from task difficulty, and (b) that adequate motor coordination in the context of task-driven bimanual control in older adults may not be solely due to additional neural recruitment but also to aging-related changes of functional relationships between brain regions. PMID:23637982

  12. Motor performance of individuals with cerebral palsy in a virtual game using a mobile phone.

    PubMed

    de Paula, Juliana Nobre; de Mello Monteiro, Carlos Bandeira; da Silva, Talita Dias; Capelini, Camila Miliani; de Menezes, Lilian Del Cielo; Massetti, Thais; Tonks, James; Watson, Suzanna; Nicolai Ré, Alessandro Hervaldo

    2017-11-01

    Cerebral palsy (CP) is a permanent disorder of movement, muscle tone or posture that is caused by damage to the immature and developing brain. Research has shown that Virtual Reality (VR) technology can be used in rehabilitation to support the acquisition of motor skills and the achievement of functional tasks. The aim of this study was to explore for improvements in the performance of individuals with CP with practice in the use of a virtual game on a mobile phone and to compare their performance with that of the control group. Twenty-five individuals with CP were matched for age and sex with twenty-five, typically developing individuals. Participants were asked to complete a VR maze task as fast as possible on a mobile phone. All participants performed 20 repetitions in the acquisition phase, five repetitions for retention and five more repetitions for transfer tests, in order to evaluate motor learning from the task. The CP group improved their performance in the acquisition phase and maintained the performance, which was shown by the retention test; in addition, they were able to transfer the performance acquired in an opposite maze path. The CP group had longer task-execution compared to the control group for all phases of the study. Individuals with cerebral palsy were able to learn a virtual reality game (maze task) using a mobile phone, and despite their differences from the control group, this kind of device offers new possibilities for use to improve function. Implications for rehabilitation A virtual game on a mobile phone can enable individuals with Cerebral Palsy (CP) to improve performance. This illustrates the potential for use of mobile phone games to improve function. Individuals with CP had poorer performance than individuals without CP, but they demonstrated immediate improvements from using a mobile phone device. Individuals with CP were able to transfer their skills to a similar task indicating that they were able to learn these motor skills by using a mobile phone game.

  13. EEG signatures of arm isometric exertions in preparation, planning and execution.

    PubMed

    Nasseroleslami, Bahman; Lakany, Heba; Conway, Bernard A

    2014-04-15

    The electroencephalographic (EEG) activity patterns in humans during motor behaviour provide insight into normal motor control processes and for diagnostic and rehabilitation applications. While the patterns preceding brisk voluntary movements, and especially movement execution, are well described, there are few EEG studies that address the cortical activation patterns seen in isometric exertions and their planning. In this paper, we report on time and time-frequency EEG signatures in experiments in normal subjects (n=8), using multichannel EEG during motor preparation, planning and execution of directional centre-out arm isometric exertions performed at the wrist in the horizontal plane, in response to instruction-delay visual cues. Our observations suggest that isometric force exertions are accompanied by transient and sustained event-related potentials (ERP) and event-related (de-)synchronisations (ERD/ERS), comparable to those of a movement task. Furthermore, the ERPs and ERD/ERS are also observed during preparation and planning of the isometric task. Comparison of ear-lobe-referenced and surface Laplacian ERPs indicates the contribution of superficial sources in supplementary and pre-motor (FC(z)), parietal (CP(z)) and primary motor cortical areas (C₁ and FC₁) to ERPs (primarily negative peaks in frontal and positive peaks in parietal areas), but contribution of deep sources to sustained time-domain potentials (negativity in planning and positivity in execution). Transient and sustained ERD patterns in μ and β frequency bands of ear-lobe-referenced and surface Laplacian EEG indicate the contribution of both superficial and deep sources to ERD/ERS. As no physical displacement happens during the task, we can infer that the underlying mechanisms of motor-related ERPs and ERD/ERS patterns do not only depend on change in limb coordinate or muscle-length-dependent ascending sensory information and are primary generated by motor preparation, direction-dependent planning and execution of isometric motor tasks. The results contribute to our understanding of the functions of different brain regions during voluntary motor tasks and their activity signatures in EEG can shed light on the relationships between large-scale recordings such as EEG and other recordings such as single unit activity and fMRI in this context. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Neuromodelling based on evolutionary robotics: on the importance of motor control for spatial attention.

    PubMed

    Gigliotta, Onofrio; Bartolomeo, Paolo; Miglino, Orazio

    2015-09-01

    Mainstream approaches to modelling cognitive processes have typically focused on (1) reproducing their neural underpinning, without regard to sensory-motor systems and (2) producing a single, ideal computational model. Evolutionary robotics is an alternative possibility to bridge the gap between neural substrate and behavior by means of a sensory-motor apparatus, and a powerful tool to build a population of individuals rather than a single model. We trained 4 populations of neurorobots, equipped with a pan/tilt/zoom camera, and provided with different types of motor control in order to perform a cancellation task, often used to tap spatial cognition. Neurorobots' eye movements were controlled by (a) position, (b) velocity, (c) simulated muscles and (d) simulated muscles with fixed level of zoom. Neurorobots provided with muscle and velocity control showed better performances than those controlled in position. This is an interesting result since muscle control can be considered a particular type of position control. Finally, neurorobots provided with muscle control and zoom outperformed those without zooming ability.

  15. Using noise to shape motor learning

    PubMed Central

    Kording, Konrad P.; Mussa-Ivaldi, Ferdinando A.

    2016-01-01

    Each of our movements is selected from any number of alternative movements. Some studies have shown evidence that the central nervous system (CNS) chooses to make the specific movements that are least affected by motor noise. Previous results showing that the CNS has a natural tendency to minimize the effects of noise make the direct prediction that if the relationship between movements and noise were to change, the specific movements people learn to make would also change in a predictable manner. Indeed, this has been shown for well-practiced movements such as reaching. Here, we artificially manipulated the relationship between movements and visuomotor noise by adding noise to a motor task in a novel redundant geometry such that there arose a single control policy that minimized the noise. This allowed us to see whether, for a novel motor task, people could learn the specific control policy that minimized noise or would need to employ other compensation strategies to overcome the added noise. As predicted, subjects were able to learn movements that were biased toward the specific ones that minimized the noise, suggesting not only that the CNS can learn to minimize the effects of noise in a novel motor task but also that artificial visuomotor noise can be a useful tool for teaching people to make specific movements. Using noise as a teaching signal promises to be useful for rehabilitative therapies and movement training with human-machine interfaces. NEW & NOTEWORTHY Many theories argue that we choose to make the specific movements that minimize motor noise. Here, by changing the relationship between movements and noise, we show that people actively learn to make movements that minimize noise. This not only provides direct evidence for the theories of noise minimization but presents a way to use noise to teach specific movements to improve rehabilitative therapies and human-machine interface control. PMID:27881721

  16. Using noise to shape motor learning.

    PubMed

    Thorp, Elias B; Kording, Konrad P; Mussa-Ivaldi, Ferdinando A

    2017-02-01

    Each of our movements is selected from any number of alternative movements. Some studies have shown evidence that the central nervous system (CNS) chooses to make the specific movements that are least affected by motor noise. Previous results showing that the CNS has a natural tendency to minimize the effects of noise make the direct prediction that if the relationship between movements and noise were to change, the specific movements people learn to make would also change in a predictable manner. Indeed, this has been shown for well-practiced movements such as reaching. Here, we artificially manipulated the relationship between movements and visuomotor noise by adding noise to a motor task in a novel redundant geometry such that there arose a single control policy that minimized the noise. This allowed us to see whether, for a novel motor task, people could learn the specific control policy that minimized noise or would need to employ other compensation strategies to overcome the added noise. As predicted, subjects were able to learn movements that were biased toward the specific ones that minimized the noise, suggesting not only that the CNS can learn to minimize the effects of noise in a novel motor task but also that artificial visuomotor noise can be a useful tool for teaching people to make specific movements. Using noise as a teaching signal promises to be useful for rehabilitative therapies and movement training with human-machine interfaces. Many theories argue that we choose to make the specific movements that minimize motor noise. Here, by changing the relationship between movements and noise, we show that people actively learn to make movements that minimize noise. This not only provides direct evidence for the theories of noise minimization but presents a way to use noise to teach specific movements to improve rehabilitative therapies and human-machine interface control. Copyright © 2017 the American Physiological Society.

  17. A novel channel selection method for optimal classification in different motor imagery BCI paradigms.

    PubMed

    Shan, Haijun; Xu, Haojie; Zhu, Shanan; He, Bin

    2015-10-21

    For sensorimotor rhythms based brain-computer interface (BCI) systems, classification of different motor imageries (MIs) remains a crucial problem. An important aspect is how many scalp electrodes (channels) should be used in order to reach optimal performance classifying motor imaginations. While the previous researches on channel selection mainly focus on MI tasks paradigms without feedback, the present work aims to investigate the optimal channel selection in MI tasks paradigms with real-time feedback (two-class control and four-class control paradigms). In the present study, three datasets respectively recorded from MI tasks experiment, two-class control and four-class control experiments were analyzed offline. Multiple frequency-spatial synthesized features were comprehensively extracted from every channel, and a new enhanced method IterRelCen was proposed to perform channel selection. IterRelCen was constructed based on Relief algorithm, but was enhanced from two aspects: change of target sample selection strategy and adoption of the idea of iterative computation, and thus performed more robust in feature selection. Finally, a multiclass support vector machine was applied as the classifier. The least number of channels that yield the best classification accuracy were considered as the optimal channels. One-way ANOVA was employed to test the significance of performance improvement among using optimal channels, all the channels and three typical MI channels (C3, C4, Cz). The results show that the proposed method outperformed other channel selection methods by achieving average classification accuracies of 85.2, 94.1, and 83.2 % for the three datasets, respectively. Moreover, the channel selection results reveal that the average numbers of optimal channels were significantly different among the three MI paradigms. It is demonstrated that IterRelCen has a strong ability for feature selection. In addition, the results have shown that the numbers of optimal channels in the three different motor imagery BCI paradigms are distinct. From a MI task paradigm, to a two-class control paradigm, and to a four-class control paradigm, the number of required channels for optimizing the classification accuracy increased. These findings may provide useful information to optimize EEG based BCI systems, and further improve the performance of noninvasive BCI.

  18. Learning redundant motor tasks with and without overlapping dimensions: facilitation and interference effects.

    PubMed

    Ranganathan, Rajiv; Wieser, Jon; Mosier, Kristine M; Mussa-Ivaldi, Ferdinando A; Scheidt, Robert A

    2014-06-11

    Prior learning of a motor skill creates motor memories that can facilitate or interfere with learning of new, but related, motor skills. One hypothesis of motor learning posits that for a sensorimotor task with redundant degrees of freedom, the nervous system learns the geometric structure of the task and improves performance by selectively operating within that task space. We tested this hypothesis by examining if transfer of learning between two tasks depends on shared dimensionality between their respective task spaces. Human participants wore a data glove and learned to manipulate a computer cursor by moving their fingers. Separate groups of participants learned two tasks: a prior task that was unique to each group and a criterion task that was common to all groups. We manipulated the mapping between finger motions and cursor positions in the prior task to define task spaces that either shared or did not share the task space dimensions (x-y axes) of the criterion task. We found that if the prior task shared task dimensions with the criterion task, there was an initial facilitation in criterion task performance. However, if the prior task did not share task dimensions with the criterion task, there was prolonged interference in learning the criterion task due to participants finding inefficient task solutions. These results show that the nervous system learns the task space through practice, and that the degree of shared task space dimensionality influences the extent to which prior experience transfers to subsequent learning of related motor skills. Copyright © 2014 the authors 0270-6474/14/348289-11$15.00/0.

  19. Recent developments in biofeedback for neuromotor rehabilitation

    PubMed Central

    Huang, He; Wolf, Steven L; He, Jiping

    2006-01-01

    The original use of biofeedback to train single muscle activity in static positions or movement unrelated to function did not correlate well to motor function improvements in patients with central nervous system injuries. The concept of task-oriented repetitive training suggests that biofeedback therapy should be delivered during functionally related dynamic movement to optimize motor function improvement. Current, advanced technologies facilitate the design of novel biofeedback systems that possess diverse parameters, advanced cue display, and sophisticated control systems for use in task-oriented biofeedback. In light of these advancements, this article: (1) reviews early biofeedback studies and their conclusions; (2) presents recent developments in biofeedback technologies and their applications to task-oriented biofeedback interventions; and (3) discusses considerations regarding the therapeutic system design and the clinical application of task-oriented biofeedback therapy. This review should provide a framework to further broaden the application of task-oriented biofeedback therapy in neuromotor rehabilitation. PMID:16790060

  20. The remapping of space in motor learning and human-machine interfaces

    PubMed Central

    Mussa-Ivaldi, F.A.; Danziger, Z.

    2009-01-01

    Studies of motor adaptation to patterns of deterministic forces have revealed the ability of the motor control system to form and use predictive representations of the environment. One of the most fundamental elements of our environment is space itself. This article focuses on the notion of Euclidean space as it applies to common sensory motor experiences. Starting from the assumption that we interact with the world through a system of neural signals, we observe that these signals are not inherently endowed with metric properties of the ordinary Euclidean space. The ability of the nervous system to represent these properties depends on adaptive mechanisms that reconstruct the Euclidean metric from signals that are not Euclidean. Gaining access to these mechanisms will reveal the process by which the nervous system handles novel sophisticated coordinate transformation tasks, thus highlighting possible avenues to create functional human-machine interfaces that can make that task much easier. A set of experiments is presented that demonstrate the ability of the sensory-motor system to reorganize coordination in novel geometrical environments. In these environments multiple degrees of freedom of body motions are used to control the coordinates of a point in a two-dimensional Euclidean space. We discuss how practice leads to the acquisition of the metric properties of the controlled space. Methods of machine learning based on the reduction of reaching errors are tested as a means to facilitate learning by adaptively changing he map from body motions to controlled device. We discuss the relevance of the results to the development of adaptive human machine interfaces and optimal control. PMID:19665553

Top