Science.gov

Sample records for motor degradation prediction

  1. Motor degradation prediction methods

    SciTech Connect

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  2. Watching novice action degrades expert motor performance: causation between action production and outcome prediction of observed actions by humans.

    PubMed

    Ikegami, Tsuyoshi; Ganesh, Gowrishankar

    2014-01-01

    Our social skills are critically determined by our ability to understand and appropriately respond to actions performed by others. However despite its obvious importance, the mechanisms enabling action understanding in humans have remained largely unclear. A popular but controversial belief is that parts of the motor system contribute to our ability to understand observed actions. Here, using a novel behavioral paradigm, we investigated this belief by examining a causal relation between action production, and a component of action understanding--outcome prediction, the ability of a person to predict the outcome of observed actions. We asked dart experts to watch novice dart throwers and predict the outcome of their throws. We modulated the feedbacks provided to them, caused a specific improvement in the expert's ability to predict watched actions while controlling the other experimental factors, and exhibited that a change (improvement) in their outcome prediction ability results in a progressive and proportional deterioration in the expert's own darts performance. This causal relationship supports involvement of the motor system in outcome prediction by humans of actions observed in others. PMID:25384755

  3. Watching novice action degrades expert motor performance: Causation between action production and outcome prediction of observed actions by humans

    PubMed Central

    Ikegami, Tsuyoshi; Ganesh, Gowrishankar

    2014-01-01

    Our social skills are critically determined by our ability to understand and appropriately respond to actions performed by others. However despite its obvious importance, the mechanisms enabling action understanding in humans have remained largely unclear. A popular but controversial belief is that parts of the motor system contribute to our ability to understand observed actions. Here, using a novel behavioral paradigm, we investigated this belief by examining a causal relation between action production, and a component of action understanding - outcome prediction, the ability of a person to predict the outcome of observed actions. We asked dart experts to watch novice dart throwers and predict the outcome of their throws. We modulated the feedbacks provided to them, caused a specific improvement in the expert's ability to predict watched actions while controlling the other experimental factors, and exhibited that a change (improvement) in their outcome prediction ability results in a progressive and proportional deterioration in the expert's own darts performance. This causal relationship supports involvement of the motor system in outcome prediction by humans of actions observed in others. PMID:25384755

  4. Motor Execution Affects Action Prediction

    ERIC Educational Resources Information Center

    Springer, Anne; Brandstadter, Simone; Liepelt, Roman; Birngruber, Teresa; Giese, Martin; Mechsner, Franz; Prinz, Wolfgang

    2011-01-01

    Previous studies provided evidence of the claim that the prediction of occluded action involves real-time simulation. We report two experiments that aimed to study how real-time simulation is affected by simultaneous action execution under conditions of full, partial or no overlap between observed and executed actions. This overlap was analysed by…

  5. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability

    PubMed Central

    Wu, Howard G; Miyamoto, Yohsuke R; Castro, Luis Nicolas Gonzalez; Ölveczky, Bence P; Smith, Maurice A

    2015-01-01

    Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning. PMID:24413700

  6. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability.

    PubMed

    Wu, Howard G; Miyamoto, Yohsuke R; Gonzalez Castro, Luis Nicolas; Ölveczky, Bence P; Smith, Maurice A

    2014-02-01

    Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning.

  7. The interaction between attention and motor prediction. An ERP study.

    PubMed

    Jones, Alexander; Hughes, Gethin; Waszak, Florian

    2013-12-01

    Performing a voluntary action involves the anticipation of the intended effect of that action. Interaction with the environment also requires the allocation of attention. However, the effects of attention upon motor predictive processes remain unclear. Here we use a novel paradigm to investigate attention and motor prediction orthogonally. In an acquisition phase, high and low tones were associated with left and right key presses. In the following test phase, tones were presented at random and participants attended to only one ear whilst ignoring tones presented in the unattended ear. In the test phase a tone could therefore be presented at the attended or unattended ear, as well as being congruent or incongruent with prior action-effect learning. We demonstrated early and late effects of attention as well as a later independent motor prediction effect with a larger P3a for incongruent tones. Interestingly, we demonstrated an intermediate interaction, showing an action-effect negativity (NAE) for tones which were unattended, whilst no motor prediction effect was found for attended tones. This interaction pattern suggests that attention and motor prediction are not opposing processes but can both operate to modulate prediction, providing valuable new insight into the relationship between attention and the effects of motor prediction.

  8. Motor cortex activity predicts response alternation during sensorimotor decisions

    PubMed Central

    Pape, Anna-Antonia; Siegel, Markus

    2016-01-01

    Our actions are constantly guided by decisions based on sensory information. The motor cortex is traditionally viewed as the final output stage in this process, merely executing motor responses based on these decisions. However, it is not clear if, beyond this role, the motor cortex itself impacts response selection. Here, we report activity fluctuations over motor cortex measured using MEG, which are unrelated to choice content and predict responses to a visuomotor task seconds before decisions are made. These fluctuations are strongly influenced by the previous trial's response and predict a tendency to switch between response alternatives for consecutive decisions. This alternation behaviour depends on the size of neural signals still present from the previous response. Our results uncover a response-alternation bias in sensorimotor decision making. Furthermore, they suggest that motor cortex is more than an output stage and instead shapes response selection during sensorimotor decision making. PMID:27713396

  9. Motor cortex guides selection of predictable movement targets.

    PubMed

    Woodgate, Philip J W; Strauss, Soeren; Sami, Saber A; Heinke, Dietmar

    2015-01-01

    The present paper asks whether the motor cortex contributes to prediction-based guidance of target selection. This question was inspired by recent evidence that suggests (i) recurrent connections from the motor system into the attentional system may extract movement-relevant perceptual information and (ii) that the motor cortex cannot only generate predictions of the sensory consequences of movements but may also operate as predictor of perceptual events in general. To test this idea we employed a choice reaching task requiring participants to rapidly reach and touch a predictable or unpredictable colour target. Motor cortex activity was modulated via transcranial direct current stimulation (tDCS). In Experiment 1 target colour repetitions were predictable. Under such conditions anodal tDCS facilitated selection versus sham and cathodal tDCS. This improvement was apparent for trajectory curvature but not movement initiation. Conversely, where no predictability of colour was embedded reach performance was unaffected by tDCS. Finally, the results of a key-press experiment suggested that motor cortex involvement is restricted to tasks where the predictable target colour is movement-relevant. The outcomes are interpreted as evidence that the motor system contributes to the top-down guidance of selective attention to movement targets.

  10. Somatotopic Semantic Priming and Prediction in the Motor System

    PubMed Central

    Grisoni, Luigi; Dreyer, Felix R.; Pulvermüller, Friedemann

    2016-01-01

    The recognition of action-related sounds and words activates motor regions, reflecting the semantic grounding of these symbols in action information; in addition, motor cortex exerts causal influences on sound perception and language comprehension. However, proponents of classic symbolic theories still dispute the role of modality-preferential systems such as the motor cortex in the semantic processing of meaningful stimuli. To clarify whether the motor system carries semantic processes, we investigated neurophysiological indexes of semantic relationships between action-related sounds and words. Event-related potentials revealed that action-related words produced significantly larger stimulus-evoked (Mismatch Negativity-like) and predictive brain responses (Readiness Potentials) when presented in body-part-incongruent sound contexts (e.g., “kiss” in footstep sound context; “kick” in whistle context) than in body-part-congruent contexts, a pattern reminiscent of neurophysiological correlates of semantic priming. Cortical generators of the semantic relatedness effect were localized in areas traditionally associated with semantic memory, including left inferior frontal cortex and temporal pole, and, crucially, in motor areas, where body-part congruency of action sound–word relationships was indexed by a somatotopic pattern of activation. As our results show neurophysiological manifestations of action-semantic priming in the motor cortex, they prove semantic processing in the motor system and thus in a modality-preferential system of the human brain. PMID:26908635

  11. Learning new gait patterns: Exploratory muscle activity during motor learning is not predicted by motor modules.

    PubMed

    Ranganathan, Rajiv; Krishnan, Chandramouli; Dhaher, Yasin Y; Rymer, William Z

    2016-03-21

    The motor module hypothesis in motor control proposes that the nervous system can simplify the problem of controlling a large number of muscles in human movement by grouping muscles into a smaller number of modules. Here, we tested one prediction of the modular organization hypothesis by examining whether there is preferential exploration along these motor modules during the learning of a new gait pattern. Healthy college-aged participants learned a new gait pattern which required increased hip and knee flexion during the swing phase while walking in a lower-extremity robot (Lokomat). The new gait pattern was displayed as a foot trajectory in the sagittal plane and participants attempted to match their foot trajectory to this template. We recorded EMG from 8 lower-extremity muscles and we extracted motor modules during both baseline walking and target-tracking using non-negative matrix factorization (NMF). Results showed increased trajectory variability in the first block of learning, indicating that participants were engaged in exploratory behavior. Critically, when we examined the muscle activity during this exploratory phase, we found that the composition of motor modules changed significantly within the first few strides of attempting the new gait pattern. The lack of persistence of the motor modules under even short time scales suggests that motor modules extracted during locomotion may be more indicative of correlated muscle activity induced by the task constraints of walking, rather than reflecting a modular control strategy.

  12. In silico prediction of pharmaceutical degradation pathways: a benchmarking study.

    PubMed

    Kleinman, Mark H; Baertschi, Steven W; Alsante, Karen M; Reid, Darren L; Mowery, Mark D; Shimanovich, Roman; Foti, Chris; Smith, William K; Reynolds, Dan W; Nefliu, Marcela; Ott, Martin A

    2014-11-01

    Zeneth is a new software application capable of predicting degradation products derived from small molecule active pharmaceutical ingredients. This study was aimed at understanding the current status of Zeneth's predictive capabilities and assessing gaps in predictivity. Using data from 27 small molecule drug substances from five pharmaceutical companies, the evolution of Zeneth predictions through knowledge base development since 2009 was evaluated. The experimentally observed degradation products from forced degradation, accelerated, and long-term stability studies were compared to Zeneth predictions. Steady progress in predictive performance was observed as the knowledge bases grew and were refined. Over the course of the development covered within this evaluation, the ability of Zeneth to predict experimentally observed degradants increased from 31% to 54%. In particular, gaps in predictivity were noted in the areas of epimerizations, N-dealkylation of N-alkylheteroaromatic compounds, photochemical decarboxylations, and electrocyclic reactions. The results of this study show that knowledge base development efforts have increased the ability of Zeneth to predict relevant degradation products and aid pharmaceutical research. This study has also provided valuable information to help guide further improvements to Zeneth and its knowledge base.

  13. Analytical predictions of RTG power degradation. [Radioisotope Thermoelectric Generator

    NASA Technical Reports Server (NTRS)

    Noon, E. L.; Raag, V.

    1979-01-01

    The DEGRA computer code that is based on a mathematical model which predicts performance and time-temperature dependent degradation of a radioisotope thermoelectric generator is discussed. The computer code has been used to predict performance and generator degradation for the selenide Ground Demonstration Unit (GDS-1) and the generator used in the Galileo Project. Results of parametric studies of load voltage vs generator output are examined as well as the I-V curve and the resulting predicted power vs voltage. The paper also discusses the increased capability features contained in DEGRA2 and future plans for expanding the computer code performance.

  14. Separating Predicted and Perceived Sensory Consequences of Motor Learning

    PubMed Central

    ‘t Hart, Bernard Marius; Henriques, Denise Y. P.

    2016-01-01

    During motor adaptation the discrepancy between predicted and actually perceived sensory feedback is thought to be minimized, but it can be difficult to measure predictions of the sensory consequences of actions. Studies attempting to do so have found that self-directed, unseen hand position is mislocalized in the direction of altered visual feedback. However, our lab has shown that motor adaptation also leads to changes in perceptual estimates of hand position, even when the target hand is passively displaced. We attribute these changes to a recalibration of hand proprioception, since in the absence of a volitional movement, efferent or predictive signals are likely not involved. The goal here is to quantify the extent to which changes in hand localization reflect a change in the predicted sensory (visual) consequences or a change in the perceived (proprioceptive) consequences. We did this by comparing changes in localization produced when the hand movement was self-generated (‘active localization’) versus robot-generated (‘passive localization’) to the same locations following visuomotor adaptation to a rotated cursor. In this passive version, there should be no predicted consequences of these robot-generated hand movements. We found that although changes in localization were somewhat larger in active localization, the passive localization task also elicited substantial changes. Our results suggest that the change in hand localization following visuomotor adaptation may not be based entirely on updating predicted sensory consequences, but may largely reflect changes in our proprioceptive state estimate. PMID:27658214

  15. The multiform motor cortical output: Kinematic, predictive and response coding.

    PubMed

    Sartori, Luisa; Betti, Sonia; Chinellato, Eris; Castiello, Umberto

    2015-09-01

    Observing actions performed by others entails a subliminal activation of primary motor cortex reflecting the components encoded in the observed action. One of the most debated issues concerns the role of this output: Is it a mere replica of the incoming flow of information (kinematic coding), is it oriented to anticipate the forthcoming events (predictive coding) or is it aimed at responding in a suitable fashion to the actions of others (response coding)? The aim of the present study was to disentangle the relative contribution of these three levels and unify them into an integrated view of cortical motor coding. We combined transcranial magnetic stimulation (TMS) and electromyography recordings at different timings to probe the excitability of corticospinal projections to upper and lower limb muscles of participants observing a soccer player performing: (i) a penalty kick straight in their direction and then coming to a full stop, (ii) a penalty kick straight in their direction and then continuing to run, (iii) a penalty kick to the side and then continuing to run. The results show a modulation of the observer's corticospinal excitability in different effectors at different times reflecting a multiplicity of motor coding. The internal replica of the observed action, the predictive activation, and the adaptive integration of congruent and non-congruent responses to the actions of others can coexist in a not mutually exclusive way. Such a view offers reconciliation among different (and apparently divergent) frameworks in action observation literature, and will promote a more complete and integrated understanding of recent findings on motor simulation, motor resonance and automatic imitation. PMID:25727547

  16. Predictive motor activation during action observation in human infants.

    PubMed

    Southgate, Victoria; Johnson, Mark H; Osborne, Tamsin; Csibra, Gergely

    2009-12-23

    Certain regions of the human brain are activated both during action execution and action observation. This so-called 'mirror neuron system' has been proposed to enable an observer to understand an action through a process of internal motor simulation. Although there has been much speculation about the existence of such a system from early in life, to date there is little direct evidence that young infants recruit brain areas involved in action production during action observation. To address this question, we identified the individual frequency range in which sensorimotor alpha-band activity was attenuated in nine-month-old infants' electroencephalographs (EEGs) during elicited reaching for objects, and measured whether activity in this frequency range was also modulated by observing others' actions. We found that observing a grasping action resulted in motor activation in the infant brain, but that this activity began prior to observation of the action, once it could be anticipated. These results demonstrate not only that infants, like adults, display overlapping neural activity during execution and observation of actions, but that this activation, rather than being directly induced by the visual input, is driven by infants' understanding of a forthcoming action. These results provide support for theories implicating the motor system in action prediction. PMID:19675001

  17. Neural Underpinnings of Impaired Predictive Motor Timing in Children with Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Debrabant, Julie; Gheysen, Freja; Caeyenberghs, Karen; Van Waelvelde, Hilde; Vingerhoets, Guy

    2013-01-01

    A dysfunction in predictive motor timing is put forward to underlie DCD-related motor problems. Predictive timing allows for the pre-selection of motor programmes (except "program" in computers) in order to decrease processing load and facilitate reactions. Using functional magnetic resonance imaging (fMRI), this study investigated the neural…

  18. ASRM radiation and flowfield prediction status. [Advanced Solid Rocket Motor plume radiation prediction

    NASA Technical Reports Server (NTRS)

    Reardon, J. E.; Everson, J.; Smith, S. D.; Sulyma, P. R.

    1991-01-01

    Existing and proposed methods for the prediction of plume radiation are discussed in terms of their application to the NASA Advanced Solid Rocket Motor (ASRM) and Space Shuttle Main Engine (SSME) projects. Extrapolations of the Solid Rocket Motor (SRM) are discussed with respect to preliminary predictions of the primary and secondary radiation environments. The methodology for radiation and initial plume property predictions are set forth, including a new code for scattering media and independent secondary source models based on flight data. The Monte Carlo code employs a reverse-evaluation approach which traces rays back to their point of absorption in the plume. The SRM sea-level plume model is modified to account for the increased radiation in the ASRM plume due to the ASRM's propellant chemistry. The ASRM cycle-1 environment predictions are shown to identify a potential reason for the shutdown spike identified with pre-SRM staging.

  19. Why Do Fine Motor Skills Predict Mathematics? Construct Validity of the Design Copying Task

    ERIC Educational Resources Information Center

    Murrah, William M.; Chen, Wei-Bing; Cameron, Claire E.

    2013-01-01

    Recent educational studies have found evidence that measures of fine motor skills are predictive of educational outcomes. However, the precise nature of fine motor skills has received little attention in these studies. With evidence mounting that fine motor skills are an important indicator of school readiness, investigating the nature of this…

  20. A method to reversibly degrade proprioceptive feedback in research on human motor control.

    PubMed

    Bock, Otmar; Pipereit, Katja; Mierau, Andreas

    2007-03-15

    In research on human motor skills, it is often desirable to manipulate proprioceptive feedback in order to determine its contribution towards subjects' performance. Here we evaluate an easy-to-use, non-invasive method to temporarily reduce proprioceptive responsiveness. Two physiotherapy vibrators contacted the distal end of the subjects' forearm on the flexor and extensor side; they were either turned off, or they vibrated at 80 Hz with an amplitude of 1mm. We found that vibration substantially impaired subjects' ability to use their hand in an angle matching, a force production and a haptic shape perception task. We also found that vibration strongly attenuated the H-reflex of the ipsilateral M. flexor carpi radialis. These results suggest that agonist-antagonist vibration is a useful method to degrade proprioceptive responsiveness for research on higher motor functions.

  1. Motor Proficiency Predicts Cognitive Ability in Four-Year-Olds

    ERIC Educational Resources Information Center

    Hernandez, Amanda Martinez; Caçola, Priscila

    2015-01-01

    Research has shown links between motor proficiency and cognition in school-age children, however, few have explored earlier ages. We aimed to determine the association between motor proficiency and cognitive ability in four-year-olds. Motor and cognitive skills were examined in 32 (15 males, 17 females) four-year-olds (±5.59 months) using the…

  2. How Kinesthetic Motor Imagery works: a predictive-processing theory of visualization in sports and motor expertise.

    PubMed

    Ridderinkhof, K Richard; Brass, Marcel

    2015-01-01

    Kinesthetic Motor Imagery (KMI) is an important technique to acquire and refine motor skills. KMI is widely used by professional athletes as an effective way to improve motor performance without overt motor output. Despite this obvious relevance, the functional mechanisms and neural circuits involved in KMI in sports are still poorly understood. In the present article, which aims at bridging the sport sciences and cognitive neurophysiology literatures, we give a brief overview of relevant research in the field of KMI. Furthermore, we develop a theoretical account that relates KMI to predictive motor control theories assuming that it is based on internal activation of anticipatory images of action effects. This mechanism allows improving motor performance solely based on internal emulation of action. In accordance with previous literature, we propose that this emulation mechanism is implemented in brain regions that partially overlap with brain areas involved in overt motor performance including the posterior parietal cortex, the cerebellum, the basal ganglia and the premotor cortex. Finally, we outline one way to test the heuristic value of our theoretical framework for KMI; we suggest that experience with motor performance improves the ability to correctly infer the goals of others, in particular in penalty blocking in soccer.

  3. Differences in Motor Imagery Time when Predicting Task Duration in Alpine Skiers and Equestrian Riders

    ERIC Educational Resources Information Center

    Louis, Magali; Collet, Christian; Champely, Stephane; Guillot, Aymeric

    2012-01-01

    Athletes' ability to use motor imagery (MI) to predict the speed at which they could perform a motor sequence has received little attention. In this study, 21 alpine skiers and 16 equestrian riders performed MI based on a prediction of actual performance time (a) after the course inspection, (b) before the start, and (c) after the actual…

  4. Infant and Toddler Oral- and Manual-Motor Skills Predict Later Speech Fluency in Autism

    ERIC Educational Resources Information Center

    Gernsbacher, Morton Ann; Sauer, Eve A.; Geye, Heather M.; Schweigert, Emily K.; Goldsmith, H. Hill

    2008-01-01

    Background: Spoken and gestural communication proficiency varies greatly among autistic individuals. Three studies examined the role of oral- and manual-motor skill in predicting autistic children's speech development. Methods: Study 1 investigated whether infant and toddler oral- and manual-motor skills predict middle childhood and teenage speech…

  5. Fuzzy regression modeling for tool performance prediction and degradation detection.

    PubMed

    Li, X; Er, M J; Lim, B S; Zhou, J H; Gan, O P; Rutkowski, L

    2010-10-01

    In this paper, the viability of using Fuzzy-Rule-Based Regression Modeling (FRM) algorithm for tool performance and degradation detection is investigated. The FRM is developed based on a multi-layered fuzzy-rule-based hybrid system with Multiple Regression Models (MRM) embedded into a fuzzy logic inference engine that employs Self Organizing Maps (SOM) for clustering. The FRM converts a complex nonlinear problem to a simplified linear format in order to further increase the accuracy in prediction and rate of convergence. The efficacy of the proposed FRM is tested through a case study - namely to predict the remaining useful life of a ball nose milling cutter during a dry machining process of hardened tool steel with a hardness of 52-54 HRc. A comparative study is further made between four predictive models using the same set of experimental data. It is shown that the FRM is superior as compared with conventional MRM, Back Propagation Neural Networks (BPNN) and Radial Basis Function Networks (RBFN) in terms of prediction accuracy and learning speed.

  6. Connectivity-Based Predictions of Hand Motor Outcome for Patients at the Subacute Stage After Stroke

    PubMed Central

    Lindow, Julia; Domin, Martin; Grothe, Matthias; Horn, Ulrike; Eickhoff, Simon B.; Lotze, Martin

    2016-01-01

    Background: Connectivity-based predictions of hand motor outcome have been proposed to be useful in stroke patients. We intended to assess the prognostic value of different imaging methods on short-term (3 months) and long-term (6 months) motor outcome after stroke. Methods: We measured resting state functional connectivity (rsFC), diffusion weighted imaging (DWI) and grip strength in 19 stroke patients within the first days (5–9 days) after stroke. Outcome measurements for short-term (3 months) and long-term (6 months) motor function was assessed by the Motricity Index (MI) of the upper limb and the box and block test (BB). Patients were predominantly mildly affected since signed consent was necessary at inclusion. We performed a multiple stepwise regression analysis to compare the predictive value of rsFC, DWI and clinical measurements. Results: Patients showed relevant improvement in both motor outcome tests. As expected grip strength at inclusion was a predictor for short- and long-term motor outcome as assessed by MI. Diffusion-based tract volume (DTV) of the tracts between ipsilesional primary motor cortex and contralesional anterior cerebellar hemisphere showed a strong trend (p = 0.05) for a predictive power for long-term motor outcome as measured by MI. DTV of the interhemispheric tracts between both primary motor cortices was predictive for both short- and long-term motor outcome in BB. rsFC was not associated with motor outcome. Conclusions: Grip strength is a good predictor of hand motor outcome concerning strength-related measurements (MI) for mildly affected subacute patients. Therefore additional connectivity measurements seem to be redundant in this group. Using more complex movement recruiting bilateral motor areas as an outcome parameter, DTV and in particular interhemispheric pathways might enhance predictive value of hand motor outcome. PMID:27014032

  7. Predicting School Adjustment from Motor Abilities in Kindergarten

    ERIC Educational Resources Information Center

    Bart, Orit; Hajami, Dov; Bar-Haim, Yair

    2007-01-01

    The present study assessed the relations between basic motor abilities in kindergarten and scholastic, social, and emotional adaptation in the transition to formal schooling. Seventy-one five-year-old kindergarten children were administered a battery of standard assessments of basic motor functions. A year later, children's adjustment to school…

  8. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study.

    PubMed

    Kim, Soyoung; Stephenson, Mary C; Morris, Peter G; Jackson, Stephen R

    2014-10-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability in a polarity specific manner and has been shown to influence learning and memory. tDCS may have both on-line and after-effects on learning and memory, and the latter are thought to be based upon tDCS-induced alterations in neurochemistry and synaptic function. We used ultra-high-field (7 T) magnetic resonance spectroscopy (MRS), together with a robotic force adaptation and de-adaptation task, to investigate whether tDCS-induced alterations in GABA and Glutamate within motor cortex predict motor learning and memory. Note that adaptation to a robot-induced force field has long been considered to be a form of model-based learning that is closely associated with the computation and 'supervised' learning of internal 'forward' models within the cerebellum. Importantly, previous studies have shown that on-line tDCS to the cerebellum, but not to motor cortex, enhances model-based motor learning. Here we demonstrate that anodal tDCS delivered to the hand area of the left primary motor cortex induces a significant reduction in GABA concentration. This effect was specific to GABA, localised to the left motor cortex, and was polarity specific insofar as it was not observed following either cathodal or sham stimulation. Importantly, we show that the magnitude of tDCS-induced alterations in GABA concentration within motor cortex predicts individual differences in both motor learning and motor memory on the robotic force adaptation and de-adaptation task.

  9. Perceptual learning of degraded speech by minimizing prediction error.

    PubMed

    Sohoglu, Ediz; Davis, Matthew H

    2016-03-22

    Human perception is shaped by past experience on multiple timescales. Sudden and dramatic changes in perception occur when prior knowledge or expectations match stimulus content. These immediate effects contrast with the longer-term, more gradual improvements that are characteristic of perceptual learning. Despite extensive investigation of these two experience-dependent phenomena, there is considerable debate about whether they result from common or dissociable neural mechanisms. Here we test single- and dual-mechanism accounts of experience-dependent changes in perception using concurrent magnetoencephalographic and EEG recordings of neural responses evoked by degraded speech. When speech clarity was enhanced by prior knowledge obtained from matching text, we observed reduced neural activity in a peri-auditory region of the superior temporal gyrus (STG). Critically, longer-term improvements in the accuracy of speech recognition following perceptual learning resulted in reduced activity in a nearly identical STG region. Moreover, short-term neural changes caused by prior knowledge and longer-term neural changes arising from perceptual learning were correlated across subjects with the magnitude of learning-induced changes in recognition accuracy. These experience-dependent effects on neural processing could be dissociated from the neural effect of hearing physically clearer speech, which similarly enhanced perception but increased rather than decreased STG responses. Hence, the observed neural effects of prior knowledge and perceptual learning cannot be attributed to epiphenomenal changes in listening effort that accompany enhanced perception. Instead, our results support a predictive coding account of speech perception; computational simulations show how a single mechanism, minimization of prediction error, can drive immediate perceptual effects of prior knowledge and longer-term perceptual learning of degraded speech. PMID:26957596

  10. Perceptual learning of degraded speech by minimizing prediction error

    PubMed Central

    Sohoglu, Ediz

    2016-01-01

    Human perception is shaped by past experience on multiple timescales. Sudden and dramatic changes in perception occur when prior knowledge or expectations match stimulus content. These immediate effects contrast with the longer-term, more gradual improvements that are characteristic of perceptual learning. Despite extensive investigation of these two experience-dependent phenomena, there is considerable debate about whether they result from common or dissociable neural mechanisms. Here we test single- and dual-mechanism accounts of experience-dependent changes in perception using concurrent magnetoencephalographic and EEG recordings of neural responses evoked by degraded speech. When speech clarity was enhanced by prior knowledge obtained from matching text, we observed reduced neural activity in a peri-auditory region of the superior temporal gyrus (STG). Critically, longer-term improvements in the accuracy of speech recognition following perceptual learning resulted in reduced activity in a nearly identical STG region. Moreover, short-term neural changes caused by prior knowledge and longer-term neural changes arising from perceptual learning were correlated across subjects with the magnitude of learning-induced changes in recognition accuracy. These experience-dependent effects on neural processing could be dissociated from the neural effect of hearing physically clearer speech, which similarly enhanced perception but increased rather than decreased STG responses. Hence, the observed neural effects of prior knowledge and perceptual learning cannot be attributed to epiphenomenal changes in listening effort that accompany enhanced perception. Instead, our results support a predictive coding account of speech perception; computational simulations show how a single mechanism, minimization of prediction error, can drive immediate perceptual effects of prior knowledge and longer-term perceptual learning of degraded speech. PMID:26957596

  11. Perceptual learning of degraded speech by minimizing prediction error.

    PubMed

    Sohoglu, Ediz; Davis, Matthew H

    2016-03-22

    Human perception is shaped by past experience on multiple timescales. Sudden and dramatic changes in perception occur when prior knowledge or expectations match stimulus content. These immediate effects contrast with the longer-term, more gradual improvements that are characteristic of perceptual learning. Despite extensive investigation of these two experience-dependent phenomena, there is considerable debate about whether they result from common or dissociable neural mechanisms. Here we test single- and dual-mechanism accounts of experience-dependent changes in perception using concurrent magnetoencephalographic and EEG recordings of neural responses evoked by degraded speech. When speech clarity was enhanced by prior knowledge obtained from matching text, we observed reduced neural activity in a peri-auditory region of the superior temporal gyrus (STG). Critically, longer-term improvements in the accuracy of speech recognition following perceptual learning resulted in reduced activity in a nearly identical STG region. Moreover, short-term neural changes caused by prior knowledge and longer-term neural changes arising from perceptual learning were correlated across subjects with the magnitude of learning-induced changes in recognition accuracy. These experience-dependent effects on neural processing could be dissociated from the neural effect of hearing physically clearer speech, which similarly enhanced perception but increased rather than decreased STG responses. Hence, the observed neural effects of prior knowledge and perceptual learning cannot be attributed to epiphenomenal changes in listening effort that accompany enhanced perception. Instead, our results support a predictive coding account of speech perception; computational simulations show how a single mechanism, minimization of prediction error, can drive immediate perceptual effects of prior knowledge and longer-term perceptual learning of degraded speech.

  12. Impaired Spatio-Temporal Predictive Motor Timing Associated with Spinocerebellar Ataxia Type 6

    PubMed Central

    Onuki, Yoshiyuki; Abdelgabar, Abdel R.; Owens, Cullen B.; Picard, Samuel; Willems, Jessica; Boele, Henk-Jan; Gazzola, Valeria; Van der Werf, Ysbrand D.; De Zeeuw, Chris I.

    2016-01-01

    Many daily life activities demand precise integration of spatial and temporal information of sensory inputs followed by appropriate motor actions. This type of integration is carried out in part by the cerebellum, which has been postulated to play a central role in learning and timing of movements. Cerebellar damage due to atrophy or lesions may compromise forward-model processing, in which both spatial and temporal cues are used to achieve prediction for future motor states. In the present study we sought to further investigate the cerebellar contribution to predictive and reactive motor timing, as well as to learning of sequential order and temporal intervals in these tasks. We tested patients with spinocerebellar ataxia type 6 (SCA6) and healthy controls for two related motor tasks; one requiring spatio-temporal prediction of dynamic visual stimuli and another one requiring reactive timing only. We found that healthy controls established spatio-temporal prediction in their responses with high temporal precision, which was absent in the cerebellar patients. SCA6 patients showed lower predictive motor timing, coinciding with a reduced number of correct responses during the ‘anticipatory’ period on the task. Moreover, on the task utilizing reactive motor timing functions, control participants showed both sequence order and temporal interval learning, whereas patients only showed sequence order learning. These results suggest that SCA6 affects predictive motor timing and temporal interval learning. Our results support and highlight cerebellar contribution to timing and argue for cerebellar engagement during spatio-temporal prediction of upcoming events. PMID:27571363

  13. Impaired Spatio-Temporal Predictive Motor Timing Associated with Spinocerebellar Ataxia Type 6.

    PubMed

    Broersen, Robin; Onuki, Yoshiyuki; Abdelgabar, Abdel R; Owens, Cullen B; Picard, Samuel; Willems, Jessica; Boele, Henk-Jan; Gazzola, Valeria; Van der Werf, Ysbrand D; De Zeeuw, Chris I

    2016-01-01

    Many daily life activities demand precise integration of spatial and temporal information of sensory inputs followed by appropriate motor actions. This type of integration is carried out in part by the cerebellum, which has been postulated to play a central role in learning and timing of movements. Cerebellar damage due to atrophy or lesions may compromise forward-model processing, in which both spatial and temporal cues are used to achieve prediction for future motor states. In the present study we sought to further investigate the cerebellar contribution to predictive and reactive motor timing, as well as to learning of sequential order and temporal intervals in these tasks. We tested patients with spinocerebellar ataxia type 6 (SCA6) and healthy controls for two related motor tasks; one requiring spatio-temporal prediction of dynamic visual stimuli and another one requiring reactive timing only. We found that healthy controls established spatio-temporal prediction in their responses with high temporal precision, which was absent in the cerebellar patients. SCA6 patients showed lower predictive motor timing, coinciding with a reduced number of correct responses during the 'anticipatory' period on the task. Moreover, on the task utilizing reactive motor timing functions, control participants showed both sequence order and temporal interval learning, whereas patients only showed sequence order learning. These results suggest that SCA6 affects predictive motor timing and temporal interval learning. Our results support and highlight cerebellar contribution to timing and argue for cerebellar engagement during spatio-temporal prediction of upcoming events. PMID:27571363

  14. CRHBP polymorphisms predict chronic pain development following motor vehicle collision.

    PubMed

    Linnstaedt, Sarah D; Bortsov, Andrey V; Soward, April C; Swor, Robert; Peak, David A; Jones, Jeffrey; Rathlev, Niels; Lee, David C; Domeier, Robert; Hendry, Phyllis L; McLean, Samuel A

    2016-01-01

    Musculoskeletal pain (MSP) is a common sequela of traumatic stress exposure. While biological factors contributing to chronic MSP after motor vehicle collision (MVC) have traditionally focused on tissue injury, increasing evidence suggests that neuro/stress/immune processes mediated by stress system activation may play a more dominant role. In a previous study, we found that genetic variants in the hypothalamic-pituitary-adrenal (HPA) axis-related gene FKBP5 influence vulnerability to persistent MSP 6 weeks after MVC. In the present cohort study (n = 855), we evaluated whether genetic variants in several other important HPA axis-related genes, including the glucocorticoid receptor (NR3C1), corticotropin-releasing hormone receptor R1 (CRHR1), and corticotropin-releasing hormone-binding protein (CRHBP), influence risk of chronic MSP over time after MVC. Genetic polymorphism rs7718461 in the CRHBP gene showed significant association (P = 0.0012) with overall pain severity during the year after MVC in regression models controlling for multiple comparisons. Two additional CRHBP alleles in high linkage disequilibrium with rs7718461 also showed trend-level significance. In secondary analyses, a significant interaction between this CRHBP locus (minor allele frequency = 0.33) and time was observed (P = 0.015), with increasing effect observed over time following trauma. A significant CRHBP × FKBP5 interaction was also observed, with substantially increased MSP after MVC in those with a risk allele in both genes compared with either gene alone. The results of this study indicate that genetic variants in 2 different HPA axis genes predict chronic MSP severity following MVC and support the hypothesis that the HPA axis is involved in chronic post-MVC MSP pathogenesis.

  15. DTI measures track and predict motor function outcomes in stroke rehabilitation utilizing BCI technology.

    PubMed

    Song, Jie; Nair, Veena A; Young, Brittany M; Walton, Leo M; Nigogosyan, Zack; Remsik, Alexander; Tyler, Mitchell E; Farrar-Edwards, Dorothy; Caldera, Kristin E; Sattin, Justin A; Williams, Justin C; Prabhakaran, Vivek

    2015-01-01

    Tracking and predicting motor outcomes is important in determining effective stroke rehabilitation strategies. Diffusion tensor imaging (DTI) allows for evaluation of the underlying structural integrity of brain white matter tracts and may serve as a potential biomarker for tracking and predicting motor recovery. In this study, we examined the longitudinal relationship between DTI measures of the posterior limb of the internal capsule (PLIC) and upper-limb motor outcomes in 13 stroke patients (median 20-month post-stroke) who completed up to 15 sessions of intervention using brain-computer interface (BCI) technology. Patients' upper-limb motor outcomes and PLIC DTI measures including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) were assessed longitudinally at four time points: pre-, mid-, immediately post- and 1-month-post intervention. DTI measures and ratios of each DTI measure comparing the ipsilesional and contralesional PLIC were correlated with patients' motor outcomes to examine the relationship between structural integrity of the PLIC and patients' motor recovery. We found that lower diffusivity and higher FA values of the ipsilesional PLIC were significantly correlated with better upper-limb motor function. Baseline DTI ratios were significantly correlated with motor outcomes measured immediately post and 1-month-post BCI interventions. A few patients achieved improvements in motor recovery meeting the minimum clinically important difference (MCID). These findings suggest that upper-limb motor recovery in stroke patients receiving BCI interventions relates to the microstructural status of the PLIC. Lower diffusivity and higher FA measures of the ipsilesional PLIC contribute toward better motor recovery in the stroke-affected upper-limb. DTI-derived measures may be a clinically useful biomarker in tracking and predicting motor recovery in stroke patients receiving BCI interventions.

  16. Fine Motor Skills Predict Maths Ability Better than They Predict Reading Ability in the Early Primary School Years.

    PubMed

    Pitchford, Nicola J; Papini, Chiara; Outhwaite, Laura A; Gulliford, Anthea

    2016-01-01

    Fine motor skills have long been recognized as an important foundation for development in other domains. However, more precise insights into the role of fine motor skills, and their relationships to other skills in mediating early educational achievements, are needed to support the development of optimal educational interventions. We explored concurrent relationships between two components of fine motor skills, Fine Motor Precision and Fine Motor Integration, and early reading and maths development in two studies with primary school children of low-to-mid socio-economic status in the UK. Two key findings were revealed. First, despite being in the first 2 years of primary school education, significantly better performance was found in reading compared to maths across both studies. This may reflect the protective effects of recent national-level interventions to promote early literacy skills in young children in the UK that have not been similarly promoted for maths. Second, fine motor skills were a better predictor of early maths ability than they were of early reading ability. Hierarchical multiple regression revealed that fine motor skills did not significantly predict reading ability when verbal short-term memory was taken into account. In contrast, Fine Motor Integration remained a significant predictor of maths ability, even after the influence of non-verbal IQ had been accounted for. These results suggest that fine motor skills should have a pivotal role in educational interventions designed to support the development of early mathematical skills. PMID:27303342

  17. Fine Motor Skills Predict Maths Ability Better than They Predict Reading Ability in the Early Primary School Years.

    PubMed

    Pitchford, Nicola J; Papini, Chiara; Outhwaite, Laura A; Gulliford, Anthea

    2016-01-01

    Fine motor skills have long been recognized as an important foundation for development in other domains. However, more precise insights into the role of fine motor skills, and their relationships to other skills in mediating early educational achievements, are needed to support the development of optimal educational interventions. We explored concurrent relationships between two components of fine motor skills, Fine Motor Precision and Fine Motor Integration, and early reading and maths development in two studies with primary school children of low-to-mid socio-economic status in the UK. Two key findings were revealed. First, despite being in the first 2 years of primary school education, significantly better performance was found in reading compared to maths across both studies. This may reflect the protective effects of recent national-level interventions to promote early literacy skills in young children in the UK that have not been similarly promoted for maths. Second, fine motor skills were a better predictor of early maths ability than they were of early reading ability. Hierarchical multiple regression revealed that fine motor skills did not significantly predict reading ability when verbal short-term memory was taken into account. In contrast, Fine Motor Integration remained a significant predictor of maths ability, even after the influence of non-verbal IQ had been accounted for. These results suggest that fine motor skills should have a pivotal role in educational interventions designed to support the development of early mathematical skills.

  18. Fine Motor Skills Predict Maths Ability Better than They Predict Reading Ability in the Early Primary School Years

    PubMed Central

    Pitchford, Nicola J.; Papini, Chiara; Outhwaite, Laura A.; Gulliford, Anthea

    2016-01-01

    Fine motor skills have long been recognized as an important foundation for development in other domains. However, more precise insights into the role of fine motor skills, and their relationships to other skills in mediating early educational achievements, are needed to support the development of optimal educational interventions. We explored concurrent relationships between two components of fine motor skills, Fine Motor Precision and Fine Motor Integration, and early reading and maths development in two studies with primary school children of low-to-mid socio-economic status in the UK. Two key findings were revealed. First, despite being in the first 2 years of primary school education, significantly better performance was found in reading compared to maths across both studies. This may reflect the protective effects of recent national-level interventions to promote early literacy skills in young children in the UK that have not been similarly promoted for maths. Second, fine motor skills were a better predictor of early maths ability than they were of early reading ability. Hierarchical multiple regression revealed that fine motor skills did not significantly predict reading ability when verbal short-term memory was taken into account. In contrast, Fine Motor Integration remained a significant predictor of maths ability, even after the influence of non-verbal IQ had been accounted for. These results suggest that fine motor skills should have a pivotal role in educational interventions designed to support the development of early mathematical skills. PMID:27303342

  19. Motor Testing at 1 Year Improves the Prediction of Motor and Mental Outcome at 2 Years after Perinatal Hypoxic-Ischaemic Encephalopathy

    ERIC Educational Resources Information Center

    van Schie, Petra Em; Becher, Jules G.; Dallmeijer, Annet J.; Barkhof, Frederik; van Weissenbruch, Mirjam M.; Vermeulen, R. Jeroen

    2010-01-01

    Aim: To investigate the predictive value of motor testing at 1 year for motor and mental outcome at 2 years after perinatal hypoxic-ischaemic encephalopathy (HIE) in term neonates. Method: Motor and mental outcome at 2 years was assessed with the Bayley Scales of Infant Development, 2nd edition (BSID-II) in 32 surviving children (20 males, 12…

  20. Motor Abnormalities in Premanifest Persons with Huntington’s Disease: The PREDICT-HD Study

    PubMed Central

    Biglan, Kevin M.; Ross, Christopher A.; Langbehn, Douglas R.; Aylward, Elizabeth H.; Stout, Julie C.; Queller, Sarah; Carlozzi, Noelle E.; Duff, Kevin; Beglinger, Leigh J.; Paulsen, Jane S.

    2011-01-01

    Background The PREDICT-HD study seeks to identify clinical and biological markers of Huntington’s disease in premanifest individuals who have undergone predictive genetic testing. Methods We compared baseline motor data between gene-expansion carriers (cases) and non gene-expansion carriers (controls) using T-tests and Chi-Square. Cases were categorized as near, mid or far from diagnosis using a CAG-based formula. Striatal volumes were calculated using volumetric MRI measurements. Multiple linear regression associated total motor score, motor domains and individual motor items with estimated diagnosis and striatal volumes. Results Elevated total motor scores at baseline were associated with higher genetic probability of disease diagnosis in the near future (partial R2 0.14, p<0.0001) and smaller striatal volumes (partial R2 0.15, p<0.0001). Nearly all motor domain scores showed greater abnormality with increasing proximity to diagnosis, although bradykinesia and chorea were most highly associated with diagnostic immediacy. Among individual motor items, worse scores on finger tapping, tandem gait, Luria, saccade initiation, and chorea show unique association with diagnosis probability. Conclusions Even in this premanifest population subtle motor abnormalities were associated with a higher probability of disease diagnosis and smaller striatal volumes. Longitudinal assessment will help inform whether motor items will be useful measures in preventive clinical trials. PMID:19562761

  1. The multiple roles of Purkinje cells in sensori-motor calibration: to predict, teach and command

    PubMed Central

    Medina, Javier F

    2014-01-01

    Neurophysiological recordings in the cerebellar cortex of awake-behaving animals are revolutionizing the way we think about the role of Purkinje cells in sensori-motor calibration. Early theorists suggested that if a movement became miscalibrated, Purkinje cell output would be changed to adjust the motor command and restore good performance. The finding that Purkinje cell activity changed in many sensori-motor calibration tasks was taken as strong support for this hypothesis. Based on more recent data, however, it has been suggested that changes in Purkinje cell activity do not contribute to the motor command directly; instead, they are used either as a teaching signal, or to predict the altered kinematics of the movement after calibration has taken place. I will argue that these roles are not mutually exclusive, and that Purkinje cells may contribute to command generation, teaching, and prediction at different times during sensori-motor calibration. PMID:21684147

  2. Predicting Chandra CCD Degradation with the Chandra Radiation Model

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Blackwell, William C.; DePasquale, Joseph M.; Grant, Catherine E.; O'Dell, Stephen L.; Plucinsky, Paul P.; Schwartz, Daniel A.; Spitzbart, Bradley D.; Wolk, Scott J.

    2008-01-01

    Not long after launch of the Chandra X-Ray Observatory, it was discovered that the Advanced CCD Imaging Spectrometer (ACIS) detector was rapidly degrading due to radiation. Analysis by Chandra personnel showed that this degradation was due to 10w energy protons (100 - 200 keV) that scattered down the optical path onto the focal plane. In response to this unexpected problem, the Chandra Team developed a radiation-protection program that has been used to manage the radiation damage to the CCDs. This program consists of multiple approaches - scheduled sating of the ACIS detector from the radiation environment during passage through radiation belts, real-time monitoring of space weather conditions, on-board monitoring of radiation environment levels, and the creation of a radiation environment model for use in computing proton flux and fluence at energies that damage the ACIS detector. This radiation mitigation program has been very successful. The initial precipitous increase in the CCDs' charge transfer inefficiency (CTI) resulting from proton damage has been slowed dramatically, with the front-illuminated CCDS having an increase in CTI of only 2.3% per year, allowing the ASIS detector's expected lifetime to exceed requirements. This paper concentrates on one aspect of the Chandra radiation mitigation program, the creation of the Chandra Radiation Model (CRM). Because of Chandra's highly elliptical orbit, the spacecraft spends most of its time outside of the trapped radiation belts that present the severest risks to the ACIS detector. However, there is still a proton flux environment that must be accounted for in all parts of Chandra's orbit. At the time of Chandra's launch there was no engineering model of the radiation environment that could be used in the outer regions of the spacecraft's orbit, so the CRM was developed to provide the flux environment of 100 - 200 keV protons in the outer magnetosphere, magnetosheath, and solar wind regions of geospace. This

  3. Predicting parameters of degradation succession processes of Tibetan Kobresia grasslands

    NASA Astrophysics Data System (ADS)

    Lin, L.; Li, Y. K.; Xu, X. L.; Zhang, F. W.; Du, Y. G.; Liu, S. L.; Guo, X. W.; Cao, G. M.

    2015-08-01

    In the past two decades, increasing human activity (i.e., overgrazing) in the Tibetan Plateau has strongly influenced plant succession processes, resulting in the degradation of alpine grasslands. Therefore, it is necessary to diagnose the degree of degradation to enable implementation of appropriate management for sustainable exploitation and protection of alpine grasslands. Here, we investigated environmental factors and plant functional group quantity factors (PFGs) during the alpine grassland succession processes. Principal component analysis (PCA) was used to identify the parameters indicative of degradation. We divided the entire degradation process into six stages. PFG types shifted from rhizome bunch grasses to rhizome plexus and dense plexus grasses during the degradation process. Leguminosae and Gramineae plants were replaced by Sedges during the advanced stages of degradation. The PFGs were classified into two reaction groups: the grazing-sensitive group, containing Kobresia humilis Mey, and Gramineae and Leguminosae plants, and the grazing-insensitive group, containing Kobresia pygmaea Clarke. The first group was correlated with live root biomass in the surface soil (0-10 cm), whereas the second group was strongly correlated with mattic epipedon thickness and K. pygmaea characteristics. The degree of degradation of alpine meadows may be delineated by development of mattic epipedon and PFG composition. Thus, meadows could be easily graded and their use adjusted based on our scaling system, which would help prevent irreversible degradation of important grasslands. Because relatively few environmental factors are investigated, this approach can save time and labor to formulate a conservation management plan for degraded alpine meadows.

  4. Predicting parameters of degradation succession processes of Tibetan Kobresia grasslands

    NASA Astrophysics Data System (ADS)

    Lin, L.; Li, Y. K.; Xu, X. L.; Zhang, F. W.; Du, Y. G.; Liu, S. L.; Guo, X. W.; Cao, G. M.

    2015-11-01

    In the past two decades, increasing human activity (i.e., overgrazing) in the Tibetan Plateau has strongly influenced plant succession processes, resulting in the degradation of alpine grasslands. Therefore, it is necessary to diagnose the degree of degradation to enable implementation of appropriate management for sustainable exploitation and protection of alpine grasslands. Here, we investigated environmental factors and plant functional group (PFG) quantity factors during the alpine grassland succession processes. Principal component analysis (PCA) was used to identify the parameters indicative of degradation. We divided the entire degradation process into six stages. PFG types shifted from rhizome bunchgrasses to rhizome plexus and dense-plexus grasses during the degradation process. Leguminosae and Gramineae plants were replaced by sedges during the advanced stages of degradation. The PFGs were classified into two reaction groups: the grazing-sensitive group, containing Kobresia humilis Mey, and Gramineae and Leguminosae plants, and the grazing-insensitive group, containing Kobresia pygmaea Clarke. The first group was correlated with live root biomass in the surface soil (0-10 cm), whereas the second group was strongly correlated with mattic epipedon thickness and K. pygmaea characteristics. The degree of degradation of alpine meadows may be delineated by development of mattic epipedon and PFG composition. Thus, meadows could be easily graded and their use adjusted based on our scaling system, which would help prevent irreversible degradation of important grasslands. Because relatively few environmental factors are investigated, this approach can save time and labor to formulate a conservation management plan for degraded alpine meadows.

  5. Multivariate prediction of motor diagnosis in Huntington's disease: 12 years of PREDICT‐HD

    PubMed Central

    Long, Jeffrey D.

    2015-01-01

    Abstract Background It is well known in Huntington's disease that cytosine‐adenine‐guanine expansion and age at study entry are predictive of the timing of motor diagnosis. The goal of this study was to assess whether additional motor, imaging, cognitive, functional, psychiatric, and demographic variables measured at study entry increased the ability to predict the risk of motor diagnosis over 12 years. Methods One thousand seventy‐eight Huntington's disease gene–expanded carriers (64% female) from the Neurobiological Predictors of Huntington's Disease study were followed up for up to 12 y (mean = 5, standard deviation = 3.3) covering 2002 to 2014. No one had a motor diagnosis at study entry, but 225 (21%) carriers prospectively received a motor diagnosis. Analysis was performed with random survival forests, which is a machine learning method for right‐censored data. Results Adding 34 variables along with cytosine‐adenine‐guanine and age substantially increased predictive accuracy relative to cytosine‐adenine‐guanine and age alone. Adding six of the common motor and cognitive variables (total motor score, diagnostic confidence level, Symbol Digit Modalities Test, three Stroop tests) resulted in lower predictive accuracy than the full set, but still had twice the 5‐y predictive accuracy than when using cytosine‐adenine‐guanine and age alone. Additional analysis suggested interactions and nonlinear effects that were characterized in a post hoc Cox regression model. Conclusions Measurement of clinical variables can substantially increase the accuracy of predicting motor diagnosis over and above cytosine‐adenine‐guanine and age (and their interaction). Estimated probabilities can be used to characterize progression level and aid in future studies' sample selection. © 2015 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society PMID:26340420

  6. The Cerebellum Generates Motor-to-Auditory Predictions: ERP Lesion Evidence

    ERIC Educational Resources Information Center

    Knolle, Franziska; Schroger, Erich; Baess, Pamela; Kotz, Sonja A.

    2012-01-01

    Forward predictions are crucial in motor action (e.g., catching a ball, or being tickled) but may also apply to sensory or cognitive processes (e.g., listening to distorted speech or to a foreign accent). According to the "internal forward model," the cerebellum generates predictions about somatosensory consequences of movements. These predictions…

  7. Strength of forelimb lateralization predicts motor errors in an insect

    PubMed Central

    Bell, Adrian T. A.

    2016-01-01

    Lateralized behaviours are widespread in both vertebrates and invertebrates, suggesting that lateralization is advantageous. Yet evidence demonstrating proximate or ultimate advantages remains scarce, particularly in invertebrates or in species with individual-level lateralization. Desert locusts (Schistocerca gregaria) are biased in the forelimb they use to perform targeted reaching across a gap. The forelimb and strength of this bias differed among individuals, indicative of individual-level lateralization. Here we show that strongly biased locusts perform better during gap-crossing, making fewer errors with their preferred forelimb. The number of targeting errors locusts make negatively correlates with the strength of forelimb lateralization. This provides evidence that stronger lateralization confers an advantage in terms of improved motor control in an invertebrate with individual-level lateralization. PMID:27651534

  8. Strength of forelimb lateralization predicts motor errors in an insect.

    PubMed

    Bell, Adrian T A; Niven, Jeremy E

    2016-09-01

    Lateralized behaviours are widespread in both vertebrates and invertebrates, suggesting that lateralization is advantageous. Yet evidence demonstrating proximate or ultimate advantages remains scarce, particularly in invertebrates or in species with individual-level lateralization. Desert locusts (Schistocerca gregaria) are biased in the forelimb they use to perform targeted reaching across a gap. The forelimb and strength of this bias differed among individuals, indicative of individual-level lateralization. Here we show that strongly biased locusts perform better during gap-crossing, making fewer errors with their preferred forelimb. The number of targeting errors locusts make negatively correlates with the strength of forelimb lateralization. This provides evidence that stronger lateralization confers an advantage in terms of improved motor control in an invertebrate with individual-level lateralization. PMID:27651534

  9. Prediction of Acoustic Noise in Switched Reluctance Motor Drives

    SciTech Connect

    Lin, CJ; Fahimi, B

    2014-03-01

    Prediction of acoustic noise distribution generated by electric machines has become an integral part of design and control in noise sensitive applications. This paper presents a fast and precise acoustic noise imaging technique for switched reluctance machines (SRMs). This method is based on distribution of radial vibration in the stator frame of the SRM. Radial vibration of the stator frame, at a network of probing points, is computed using input phase current and phase voltage waveforms. Sequentially, the acceleration of the probing network will be expanded to predict full acceleration on the stator frame surface, using which acoustic noise emission caused by the stator can be calculated using the boundary element method.

  10. Fine motor skill predicts expressive language in infant siblings of children with autism.

    PubMed

    LeBarton, Eve Sauer; Iverson, Jana M

    2013-11-01

    We investigated whether fine motor and expressive language skills are related in the later-born siblings of children with autism (heightened-risk, HR infants) who are at increased risk for language delays. We observed 34 HR infants longitudinally from 12 to 36 months. We used parent report and standardized observation measures to assess fine motor skill from 12 to 24 months in HR infants (Study 1) and its relation to later expressive vocabulary at 36 months in HR infants (Study 2). In Study 1, we also included 25 infants without a family history of autism to serve as a normative comparison group for a parent-report fine motor measure. We found that HR infants exhibited fine motor delays between 12 and 24 months and expressive vocabulary delays at 36 months. Further, fine motor skill significantly predicted expressive language at 36 months. Fine motor and expressive language skills are related early in development in HR infants, who, as a group, exhibit risk for delays in both. Our findings highlight the importance of considering fine motor skill in children at risk for language impairments and may have implications for early identification of expressive language difficulties.

  11. Neural correlates of error prediction in a complex motor task

    PubMed Central

    Maurer, Lisa Katharina; Maurer, Heiko; Müller, Hermann

    2015-01-01

    The goal of the study was to quantify error prediction processes via neural correlates in the Electroencephalogram (EEG). Access to such a neural signal will allow to gain insights into functional and temporal aspects of error perception in the course of learning. We focused on the error negativity (Ne) or error-related negativity (ERN) as a candidate index for the prediction processes. We have used a virtual goal-oriented throwing task where participants used a lever to throw a virtual ball displayed on a computer monitor with the goal of hitting a virtual target as often as possible. After one day of practice with 400 trials, participants performed another 400 trials on a second day with EEG measurement. After error trials (i.e., when the ball missed the target), we found a sharp negative deflection in the EEG peaking 250 ms after ball release (mean amplitude: t = −2.5, df = 20, p = 0.02) and another broader negative deflection following the first, reaching from about 300 ms after release until unambiguous visual knowledge of results (KR; hitting or passing by the target; mean amplitude: t = −7.5, df = 20, p < 0.001). According to shape and timing of the two deflections, we assume that the first deflection represents a predictive Ne/ERN (prediction based on efferent commands and proprioceptive feedback) while the second deflection might have arisen from action monitoring. PMID:26300754

  12. Early gross motor skills predict the subsequent development of language in children with autism spectrum disorder

    PubMed Central

    Pickles, Andrew; Lord, Catherine

    2015-01-01

    Background: Motor milestones such as the onset of walking are important developmental markers, not only for later motor skills but also for more widespread social‐cognitive development. The aim of the current study was to test whether gross motor abilities, specifically the onset of walking, predicted the subsequent rate of language development in a large cohort of children with autism spectrum disorder (ASD). Methods: We ran growth curve models for expressive and receptive language measured at 2, 3, 5 and 9 years in 209 autistic children. Measures of gross motor, visual reception and autism symptoms were collected at the 2 year visit. In Model 1, walking onset was included as a predictor of the slope of language development. Model 2 included a measure of non‐verbal IQ and autism symptom severity as covariates. The final model, Model 3, additionally covaried for gross motor ability. Results: In the first model, parent‐reported age of walking onset significantly predicted the subsequent rate of language development although the relationship became non‐significant when gross motor skill, non‐verbal ability and autism severity scores were included (Models 2 & 3). Gross motor score, however, did remain a significant predictor of both expressive and receptive language development. Conclusions: Taken together, the model results provide some evidence that early motor abilities in young children with ASD can have longitudinal cross‐domain influences, potentially contributing, in part, to the linguistic difficulties that characterise ASD. Autism Res 2016, 9: 993–1001. © 2015 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research PMID:26692550

  13. The role of the motor system in discriminating normal and degraded speech sounds.

    PubMed

    D'Ausilio, Alessandro; Bufalari, Ilaria; Salmas, Paola; Fadiga, Luciano

    2012-07-01

    Listening to speech recruits a network of fronto-temporo-parietal cortical areas. Classical models consider anterior, motor, sites involved in speech production whereas posterior sites involved in comprehension. This functional segregation is more and more challenged by action-perception theories suggesting that brain circuits for speech articulation and speech perception are functionally interdependent. Recent studies report that speech listening elicits motor activities analogous to production. However, the motor system could be crucially recruited only under certain conditions that make speech discrimination hard. Here, by using event-related double-pulse transcranial magnetic stimulation (TMS) on lips and tongue motor areas, we show data suggesting that the motor system may play a role in noisy, but crucially not in noise-free environments, for the discrimination of speech signals.

  14. Degradation of polycyclic aromatic hydrocarbons (PAHs) present in used motor oil and implications for urban runoff quality

    NASA Astrophysics Data System (ADS)

    Ferreira, M.; Stenstrom, M. K.; Lau, S.

    2013-12-01

    Polycyclic aromatic hydrocarbons (PAHs) are common organic pollutants of urban stormwater runoff due to atmospheric deposition, vehicle-related discharges, and coal tar pavement sealants. The US EPA lists sixteen PAHs as priority pollutants and seven of those are potential carcinogenic compounds. Due to their molecular structure, PAHs tend to attach to particles that will subsequently be deposited as sediments in waterways. This study focuses on the degradation of PAHs present in used motor oil. Four experimental setups were used to simulate volatilization and photooxidation in the degradation of sixteen PAHs as observed for up to 54 days. The volatilization-only experiment showed substantial reduction only in the concentration of Napthalene (Nap). However, photooxidation-only was more efficient in degrading PAHs. In this process, substantial reduction in the concentrations of Nap, Acenapthene (Anthe), Anthracene (ANT), Fluoranthene (FLT), Pyrene (PYR), Benz[a]anthracene (BaA), Benzo[a]pyrene (BaP), Indeno[1,2,3,cd]pyrene (INP), and Benz[g,h,i]perylene (BghiP) were observed as early as five days. The two volatilization-photooxidation experiments exhibited substantial reduction in the concentrations of Fluorene (FLU), Chrysene (CHR) and Benzo[b]fluoranthene (BbF), in addition to the PAHs reduced by photooxidation-only. Phenanthrene (PHE), Fluoranthene (FLT), and Benzo[b]fluoranthene (BbF) only exhibited substantial decreased concentrations after 20 days in the volatilization-photooxidation experiment. One PAH, acenapthylene (Anthy), was not detected in the original sample of used motor oil. The highest degradations were observed in the combined volatilization-photooxidation experiment. In regions with infrequent rainfall, such as Southern California, molecules of PAHs attached to highway particles will have time to undergo degradation prior to transport. Therefore, PAHs may be present in lower concentrations in highway runoff in dry climates than in rainy climates

  15. Mechanism-based Representative Volume Elements (RVEs) for Predicting Property Degradations in Multiphase Materials

    SciTech Connect

    Xu, Wei; Sun, Xin; Li, Dongsheng; Ryu, Seun; Khaleel, Mohammad A.

    2013-02-01

    Quantitative understanding of the evolving thermal-mechanical properties of a multi-phase material hinges upon the availability of quantitative statistically representative microstructure descriptions. Questions then arise as to whether a two-dimensional (2D) or a three-dimensional (3D) representative volume element (RVE) should be considered as the statistically representative microstructure. Although 3D models are more representative than 2D models in general, they are usually computationally expensive and difficult to be reconstructed. In this paper, we evaluate the accuracy of a 2D RVE in predicting the property degradations induced by different degradation mechanisms with the multiphase solid oxide fuel cell (SOFC) anode material as an example. Both 2D and 3D microstructure RVEs of the anodes are adopted to quantify the effects of two different degradation mechanisms: humidity-induced electrochemical degradation and phosphorus poisoning induced structural degradation. The predictions of the 2D model are then compared with the available experimental measurements and the results from the 3D model. It is found that the 2D model, limited by its inability of reproducing the realistic electrical percolation, is unable to accurately predict the degradation of thermo-electrical properties. On the other hand, for the phosphorus poisoning induced structural degradation, both 2D and 3D microstructures yield similar results, indicating that the 2D model is capable of providing computationally efficient yet accurate results for studying the structural degradation within the anodes.

  16. Degradation of Leakage Currents and Reliability Prediction for Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2016-01-01

    Two types of failures in solid tantalum capacitors, catastrophic and parametric, and their mechanisms are described. Analysis of voltage and temperature reliability acceleration factors reported in literature shows a wide spread of results and requires more investigation. In this work, leakage currents in two types of chip tantalum capacitors were monitored during highly accelerated life testing (HALT) at different temperatures and voltages. Distributions of degradation rates were approximated using a general log-linear Weibull model and yielded voltage acceleration constants B = 9.8 +/- 0.5 and 5.5. The activation energies were Ea = 1.65 eV and 1.42 eV. The model allows for conservative estimations of times to failure and was validated by long-term life test data. Parametric degradation and failures are reversible and can be annealed at high temperatures. The process is attributed to migration of charged oxygen vacancies that reduce the barrier height at the MnO2/Ta2O5 interface and increase injection of electrons from the MnO2 cathode. Analysis showed that the activation energy of the vacancies' migration is 1.1 eV.

  17. Prediction of functional outcome by motor capability after spinal cord injury.

    PubMed

    Lazar, R B; Yarkony, G M; Ortolano, D; Heinemann, A W; Perlow, E; Lovell, L; Meyer, P R

    1989-11-01

    The relationship between early motor status and functional outcome after spinal cord injury (SCI) was evaluated prospectively in 52 quadriplegic and 26 paraplegic patients. Motor status was measured within 72 hours of injury and quantified with the Motor Index Score (MIS). Functional status was evaluated with the Modified Barthel Index (MBI). A senior physical therapist completed the MIS and the MBI when each patient was admitted to the spinal cord intensive care unit and every 30 days during rehabilitation. Early motor function was correlated with average daily improvement in functional status including self-care and mobility (p = .001). The initial MIS strongly correlated with functional status of quadriplegics at admission (p = .001), at 60 days, and at rehabilitation discharge (p = .001). In paraplegics, the overall MBI at admission, after 60 days of rehabilitation, and at discharge was not correlated with early motor function. However, the MIS correlated significantly with the MBI self-care subscore at 60 days and at discharge (p = .01), but not with the mobility subscore. The initial MIS was also significantly correlated to functional status at discharge in patients with complete lesions (p = .001), but was not related to functional status at discharge in patients with incomplete lesions. The MIS appears to be a useful tool in predicting function during rehabilitation, although individual differences in ambulation, particularly for patients with paraplegia, limit the predictive utility of this index. PMID:2818153

  18. Motor Prediction at the Edge of Instability: Alteration of Grip Force Control during Changes in Bimanual Coordination

    ERIC Educational Resources Information Center

    Danion, Frederic; Jirsa, Viktor K.

    2010-01-01

    Predicting the consequences of actions is fundamental for skilled motor behavior. We investigated whether motor prediction is influenced by the fact that some movements are easier to perform and stabilize than others. Twelve subjects performed a bimanual rhythmical task either symmetrically or asymmetrically (the latter being more difficult and…

  19. Degradation Prediction Model Based on a Neural Network with Dynamic Windows

    PubMed Central

    Zhang, Xinghui; Xiao, Lei; Kang, Jianshe

    2015-01-01

    Tracking degradation of mechanical components is very critical for effective maintenance decision making. Remaining useful life (RUL) estimation is a widely used form of degradation prediction. RUL prediction methods when enough run-to-failure condition monitoring data can be used have been fully researched, but for some high reliability components, it is very difficult to collect run-to-failure condition monitoring data, i.e., from normal to failure. Only a certain number of condition indicators in certain period can be used to estimate RUL. In addition, some existing prediction methods have problems which block RUL estimation due to poor extrapolability. The predicted value converges to a certain constant or fluctuates in certain range. Moreover, the fluctuant condition features also have bad effects on prediction. In order to solve these dilemmas, this paper proposes a RUL prediction model based on neural network with dynamic windows. This model mainly consists of three steps: window size determination by increasing rate, change point detection and rolling prediction. The proposed method has two dominant strengths. One is that the proposed approach does not need to assume the degradation trajectory is subject to a certain distribution. The other is it can adapt to variation of degradation indicators which greatly benefits RUL prediction. Finally, the performance of the proposed RUL prediction model is validated by real field data and simulation data. PMID:25806873

  20. Nonlinear rocket motor stability prediction: Limit amplitude, triggering, and mean pressure shifta)

    NASA Astrophysics Data System (ADS)

    Flandro, Gary A.; Fischbach, Sean R.; Majdalani, Joseph

    2007-09-01

    High-amplitude pressure oscillations in solid propellant rocket motor combustion chambers display nonlinear effects including: (1) limit cycle behavior in which the fluctuations may dwell for a considerable period of time near their peak amplitude, (2) elevated mean chamber pressure (DC shift), and (3) a triggering amplitude above which pulsing will cause an apparently stable system to transition to violent oscillations. Along with the obvious undesirable vibrations, these features constitute the most damaging impact of combustion instability on system reliability and structural integrity. The physical mechanisms behind these phenomena and their relationship to motor geometry and physical parameters must, therefore, be fully understood if instability is to be avoided in the design process, or if effective corrective measures must be devised during system development. Predictive algorithms now in use have limited ability to characterize the actual time evolution of the oscillations, and they do not supply the motor designer with information regarding peak amplitudes or the associated critical triggering amplitudes. A pivotal missing element is the ability to predict the mean pressure shift; clearly, the designer requires information regarding the maximum chamber pressure that might be experienced during motor operation. In this paper, a comprehensive nonlinear combustion instability model is described that supplies vital information. The central role played by steep-fronted waves is emphasized. The resulting algorithm provides both detailed physical models of nonlinear instability phenomena and the critically needed predictive capability. In particular, the origin of the DC shift is revealed.

  1. Comparisons Between Stability Prediction and Measurements for the Reusable Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean R.; Kenny, R. Jeremy

    2010-01-01

    The Space Transportation System has used the solid rocket boosters for lift-off and ascent propulsion over the history of the program. Part of the structural loads assessment of the assembled vehicle is the contribution due to solid rocket booster thrust oscillations. These thrust oscillations are a consequence of internal motor pressure oscillations active during operation. Understanding of these pressure oscillations is key to predicting the subsequent thrust oscillations and vehicle loading. The pressure oscillation characteristics of the Reusable Solid Rocket Motor (RSRM) design are reviewed in this work. Dynamic pressure data from the static test and flight history are shown, with emphasis on amplitude, frequency, and timing of the oscillations. Physical mechanisms that cause these oscillations are described by comparing data observations to predictions made by the Solid Stability Prediction (SSP) code.

  2. Predictive model for toluene degradation and microbial phenotypic profiles in flat plate vapor phase bioreactor

    SciTech Connect

    Mirpuri, R.; Sharp, W.; Villaverde, S.; Jones, W.; Lewandowski, Z.; Cunningham, A.

    1997-06-01

    A predictive model has been developed to describe degradation of toluene in a flat-plate vapor phase bioreactor (VPBR). The VPBR model incorporates kinetic, stoichiometric, injury, and irreversible loss coefficients from suspended culture studies for toluene degradation by P. putida 54G and measured values of Henry`s law constant and boundary layer thickness at the gas-liquid and liquid-biofilm interface. The model is used to estimate the performance of the reactor with respect to toluene degradation and to predict profiles of toluene concentration and bacterial physiological state within the biofilm. These results have been compared with experimentally determined values from a flat plate VPBR under electron acceptor and electron donor limiting conditions. The model accurately predicts toluene concentrations in the vapor phase and toluene degradation rate by adjusting only three parameters: biomass density and rates of death and endogenous decay. Qualitatively, the model also predicts gradients in the physiological state cells in the biofilm. This model provides a rational design for predicting an upper limit of toluene degradation capability in a VPBR and is currently being tested to assess applications for predicting performance of bench and pilot-scale column reactors.

  3. Accelerated test methods for life prediction of hermetic motor insulation systems exposed to alternative refrigerant/lubricant mixtures. Final report

    SciTech Connect

    Ellis, P.F. II; Ferguson, A.F.

    1995-04-19

    In 1992, the Air-Conditioning and Refrigeration Technology Institute, Inc. (ARTI) contracted Radian Corporation to ascertain whether an improved accelerated test method or procedure could be developed that would allow prediction of the life of motor insulation materials used in hermetic motors for air-conditioning and refrigeration equipment operated with alternative refrigerant/lubricant mixtures. Phase 1 of the project, Conceptual Design of an accelerated test method and apparatus, was successfully completed in June 1993. The culmination of that effort was the concept of the Simulated Stator Unit (SSU) test. The objective of the Phase 2 limited proof-of-concept demonstration was to: answer specific engineering/design questions; design and construct an analog control sequencer and supporting apparatus; and conduct limited tests to determine the viability of the SSU test concept. This report reviews the SSU test concept, and describes the results through the conclusion of the proof-of-concept prototype tests in March 1995. The technical design issues inherent in transforming any conceptual design to working equipment have been resolved, and two test systems and controllers have been constructed. Pilot tests and three prototype tests have been completed, concluding the current phase of work. One prototype unit was tested without thermal stress loads. Twice daily insulation property measurements (IPMs) on this unit demonstrated that the insulation property measurements themselves did not degrade the SSU.

  4. Accelerated test methods for life prediction of hermetic motor insulation systems exposed to alternative refrigerant/lubricant mixtures

    NASA Astrophysics Data System (ADS)

    Ellis, P. F., II; Ferguson, A. F.

    1995-04-01

    In 1992, the Air-Conditioning and Refrigeration Technology Institute, Inc. (ARTI) contracted Radian Corporation to ascertain whether an improved accelerated test method or procedure could be developed that would allow prediction of the life of motor insulation materials used in hermetic motors for air-conditioning and refrigeration equipment operated with alternative refrigerant/lubricant mixtures. Phase 1 of the project, Conceptual Design of an accelerated test method and apparatus, was successfully completed in June 1993. The culmination of that effort was the concept of the Simulated Stator Unit (SSU) test. The objective of the Phase 2 limited proof-of-concept demonstration was to: answer specific engineering/design questions; design and construct an analog control sequencer and supporting apparatus; and conduct limited tests to determine the viability of the SSU test concept. This report reviews the SSU test concept, and describes the results through the conclusion of the proof-of-concept prototype tests in March 1995. The technical design issues inherent in transforming any conceptual design to working equipment have been resolved, and two test systems and controllers have been constructed. Pilot tests and three prototype tests have been completed, concluding the current phase of work. One prototype unit was tested without thermal stress loads. Twice daily insulation property measurements (IPM's) on this unit demonstrated that the insulation property measurements themselves did not degrade the SSU.

  5. Predictions of airfoil aerodynamic performance degradation due to icing

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.; Potapezuk, Mark G.; Bidwell, Colin S.

    1988-01-01

    An overview of NASA's ongoing efforts to develop an airfoil icing analysis capability is developed. An indication is given to the approaches being followed to calculate the water droplet trajectories past the airfoil, the buildup of ice on the airfoil, and the resultant changes in aerodynamic performance due to the leading edge ice accretion. Examples are given of current code capabilities/limitations through comparisons of predictions with experimental data gathered in various calibration/validation experiments. A brief discussion of future efforts to extend the analysis to handle three dimensional components is included.

  6. MRI Biomarkers for Hand-Motor Outcome Prediction and Therapy Monitoring following Stroke

    PubMed Central

    Horn, U.; Grothe, M.

    2016-01-01

    Several biomarkers have been identified which enable a considerable prediction of hand-motor outcome after cerebral damage already in the subacute stage after stroke. We here review the value of MRI biomarkers in the evaluation of corticospinal integrity and functional recruitment of motor resources. Many of the functional imaging parameters are not feasible early after stroke or for patients with high impairment and low compliance. Whereas functional connectivity parameters have demonstrated varying results on their predictive value for hand-motor outcome, corticospinal integrity evaluation using structural imaging showed robust and high predictive power for patients with different levels of impairment. Although this is indicative of an overall higher value of structural imaging for prediction, we suggest that this variation be explained by structure and function relationships. To gain more insight into the recovering brain, not only one biomarker is needed. We rather argue for a combination of different measures in an algorithm to classify fine-graded subgroups of patients. Approaches to determining biomarkers have to take into account the established markers to provide further information on certain subgroups. Assessing the best therapy approaches for individual patients will become more feasible as these subgroups become specified in more detail. This procedure will help to considerably save resources and optimize neurorehabilitative therapy. PMID:27747108

  7. Preschool motor development predicting high school health-related physical fitness: a prospective study.

    PubMed

    Vlahov, Eric; Baghurst, Timothy M; Mwavita, Mwarumba

    2014-08-01

    To address the obesity epidemic there is an increasing effort to emphasize physical activity and fitness in adolescence as opposed to fundamental motor skills. However, what effect this might have on health-related fitness is unclear. This study sought to determine the degree to which motor development competencies in preschool could predict high school fitness. In the initial study, participants were 143 male and 139 female preschoolers (M age = 4.8 yr., SD = 0.7) from four preschool programs in suburban area of a Southern state who completed the Test of Gross Motor Development. Eleven years later, 75 boys and 65 girls (M age = 15.8 yr., SD = 0.7) from the original sample were located and completed the AAHPERD Health Related Fitness Test (1.5 mile run, sit-up, sit-and-reach, body fat percentage). Test of Gross Motor Development scores were found to be strong predictors for all measures of fitness, but object control skills were more predictive of overall physical fitness than locomotor skills. Therefore, educators should consider teaching sport skill development in early childhood over general activity to improve long-term fitness.

  8. Remembering forward: Neural correlates of memory and prediction in human motor adaptation

    PubMed Central

    Scheidt, Robert A; Zimbelman, Janice L; Salowitz, Nicole M G; Suminski, Aaron J; Mosier, Kristine M; Houk, James; Simo, Lucia

    2011-01-01

    We used functional MR imaging (FMRI), a robotic manipulandum and systems identification techniques to examine neural correlates of predictive compensation for spring-like loads during goal-directed wrist movements in neurologically-intact humans. Although load changed unpredictably from one trial to the next, subjects nevertheless used sensorimotor memories from recent movements to predict and compensate upcoming loads. Prediction enabled subjects to adapt performance so that the task was accomplished with minimum effort. Population analyses of functional images revealed a distributed, bilateral network of cortical and subcortical activity supporting predictive load compensation during visual target capture. Cortical regions - including prefrontal, parietal and hippocampal cortices - exhibited trial-by-trial fluctuations in BOLD signal consistent with the storage and recall of sensorimotor memories or “states” important for spatial working memory. Bilateral activations in associative regions of the striatum demonstrated temporal correlation with the magnitude of kinematic performance error (a signal that could drive reward-optimizing reinforcement learning and the prospective scaling of previously learned motor programs). BOLD signal correlations with load prediction were observed in the cerebellar cortex and red nuclei (consistent with the idea that these structures generate adaptive fusimotor signals facilitating cancellation of expected proprioceptive feedback, as required for conditional feedback adjustments to ongoing motor commands and feedback error learning). Analysis of single subject images revealed that predictive activity was at least as likely to be observed in more than one of these neural systems as in just one. We conclude therefore that motor adaptation is mediated by predictive compensations supported by multiple, distributed, cortical and subcortical structures. PMID:21840405

  9. Brainstem White Matter Predicts Individual Differences in Manual Motor Difficulties and Symptom Severity in Autism

    PubMed Central

    Travers, Brittany G.; Bigler, Erin D.; Tromp, Do P. M.; Adluru, Nagesh; Destiche, Dan; Samsin, Danica; Froehlich, Alyson; Prigge, Molly D. B.; Duffield, Tyler; Lange, Nicholas; Alexander, Andrew L.; Lainhart, Janet E.

    2015-01-01

    Mounting evidence suggests that poorer motor skills may be related to more severe autism symptoms. This study investigated if atypical white matter microstructure in the brain mediated the relationship between motor skills and ASD symptom severity. Sixty-seven males with ASD and 42 males with typical development (5-33 years old) completed a diffusion tensor imaging scan and measures of grip strength, finger tapping, and autism symptom severity. Within the ASD group, weaker grip strength predicted more severe autism symptoms. Fractional anisotropy of the brainstem's corticospinal tract predicted both grip strength and autism symptom severity and mediated the relationship between the two. These findings suggest that brainstem white matter may contribute to autism symptoms and grip strength in ASD. PMID:26001365

  10. Brainstem White Matter Predicts Individual Differences in Manual Motor Difficulties and Symptom Severity in Autism.

    PubMed

    Travers, Brittany G; Bigler, Erin D; Tromp, Do P M; Adluru, Nagesh; Destiche, Dan; Samsin, Danica; Froehlich, Alyson; Prigge, Molly D B; Duffield, Tyler C; Lange, Nicholas; Alexander, Andrew L; Lainhart, Janet E

    2015-09-01

    Mounting evidence suggests that poorer motor skills may be related to more severe autism symptoms. This study investigated if atypical white matter microstructure in the brain mediated the relationship between motor skills and ASD symptom severity. Sixty-seven males with ASD and 42 males with typical development (5-33 years old) completed a diffusion tensor imaging scan and measures of grip strength, finger tapping, and autism symptom severity. Within the ASD group, weaker grip strength predicted more severe autism symptoms. Fractional anisotropy of the brainstem's corticospinal tract predicted both grip strength and autism symptom severity and mediated the relationship between the two. These findings suggest that brainstem white matter may contribute to autism symptoms and grip strength in ASD.

  11. Predicting brain activation patterns associated with individual lexical concepts based on five sensory-motor attributes

    PubMed Central

    Fernandino, Leonardo; Humphries, Colin J.; Seidenberg, Mark S.; Gross, William L.; Conant, Lisa L.; Binder, Jeffrey R.

    2015-01-01

    While major advances have been made in uncovering the neural processes underlying perceptual representations, our grasp of how the brain gives rise to conceptual knowledge remains relatively poor. Recent work has provided strong evidence that concepts rely, at least in part, on the same sensory and motor neural systems through which they were acquired, but it is still unclear whether the neural code for concept representation uses information about sensory-motor features to discriminate between concepts. In the present study, we investigate this question by asking whether an encoding model based on five semantic attributes directly related to sensory-motor experience – sound, color, visual motion, shape, and manipulation – can successfully predict patterns of brain activation elicited by individual lexical concepts. We collected ratings on the relevance of these five attributes to the meaning of 820 words, and used these ratings as predictors in a multiple regression model of the fMRI signal associated with the words in a separate group of participants. The five resulting activation maps were then combined by linear summation to predict the distributed activation pattern elicited by a novel set of 80 test words. The encoding model predicted the activation patterns elicited by the test words significantly better than chance. As expected, prediction was successful for concrete but not for abstract concepts. Comparisons between encoding models based on different combinations of attributes indicate that all five attributes contribute to the representation of concrete concepts. Consistent with embodied theories of semantics, these results show, for the first time, that the distributed activation pattern associated with a concept combines information about different sensory-motor attributes according to their respective relevance. Future research should investigate how additional features of phenomenal experience contribute to the neural representation of conceptual

  12. Predicting brain activation patterns associated with individual lexical concepts based on five sensory-motor attributes.

    PubMed

    Fernandino, Leonardo; Humphries, Colin J; Seidenberg, Mark S; Gross, William L; Conant, Lisa L; Binder, Jeffrey R

    2015-09-01

    While major advances have been made in uncovering the neural processes underlying perceptual representations, our grasp of how the brain gives rise to conceptual knowledge remains relatively poor. Recent work has provided strong evidence that concepts rely, at least in part, on the same sensory and motor neural systems through which they were acquired, but it is still unclear whether the neural code for concept representation uses information about sensory-motor features to discriminate between concepts. In the present study, we investigate this question by asking whether an encoding model based on five semantic attributes directly related to sensory-motor experience - sound, color, visual motion, shape, and manipulation - can successfully predict patterns of brain activation elicited by individual lexical concepts. We collected ratings on the relevance of these five attributes to the meaning of 820 words, and used these ratings as predictors in a multiple regression model of the fMRI signal associated with the words in a separate group of participants. The five resulting activation maps were then combined by linear summation to predict the distributed activation pattern elicited by a novel set of 80 test words. The encoding model predicted the activation patterns elicited by the test words significantly better than chance. As expected, prediction was successful for concrete but not for abstract concepts. Comparisons between encoding models based on different combinations of attributes indicate that all five attributes contribute to the representation of concrete concepts. Consistent with embodied theories of semantics, these results show, for the first time, that the distributed activation pattern associated with a concept combines information about different sensory-motor attributes according to their respective relevance. Future research should investigate how additional features of phenomenal experience contribute to the neural representation of conceptual

  13. Parallel processing streams for motor output and sensory prediction during action preparation

    PubMed Central

    Bauer, Markus; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J.

    2014-01-01

    Sensory consequences of one's own actions are perceived as less intense than identical, externally generated stimuli. This is generally taken as evidence for sensory prediction of action consequences. Accordingly, recent theoretical models explain this attenuation by an anticipatory modulation of sensory processing prior to stimulus onset (Roussel et al. 2013) or even action execution (Brown et al. 2013). Experimentally, prestimulus changes that occur in anticipation of self-generated sensations are difficult to disentangle from more general effects of stimulus expectation, attention and task load (performing an action). Here, we show that an established manipulation of subjective agency over a stimulus leads to a predictive modulation in sensory cortex that is independent of these factors. We recorded magnetoencephalography while subjects performed a simple action with either hand and judged the loudness of a tone caused by the action. Effector selection was manipulated by subliminal motor priming. Compatible priming is known to enhance a subjective experience of agency over a consequent stimulus (Chambon and Haggard 2012). In line with this effect on subjective agency, we found stronger sensory attenuation when the action that caused the tone was compatibly primed. This perceptual effect was reflected in a transient phase-locked signal in auditory cortex before stimulus onset and motor execution. Interestingly, this sensory signal emerged at a time when the hemispheric lateralization of motor signals in M1 indicated ongoing effector selection. Our findings confirm theoretical predictions of a sensory modulation prior to self-generated sensations and support the idea that a sensory prediction is generated in parallel to motor output (Walsh and Haggard 2010), before an efference copy becomes available. PMID:25540223

  14. Parallel processing streams for motor output and sensory prediction during action preparation.

    PubMed

    Stenner, Max-Philipp; Bauer, Markus; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J

    2015-03-15

    Sensory consequences of one's own actions are perceived as less intense than identical, externally generated stimuli. This is generally taken as evidence for sensory prediction of action consequences. Accordingly, recent theoretical models explain this attenuation by an anticipatory modulation of sensory processing prior to stimulus onset (Roussel et al. 2013) or even action execution (Brown et al. 2013). Experimentally, prestimulus changes that occur in anticipation of self-generated sensations are difficult to disentangle from more general effects of stimulus expectation, attention and task load (performing an action). Here, we show that an established manipulation of subjective agency over a stimulus leads to a predictive modulation in sensory cortex that is independent of these factors. We recorded magnetoencephalography while subjects performed a simple action with either hand and judged the loudness of a tone caused by the action. Effector selection was manipulated by subliminal motor priming. Compatible priming is known to enhance a subjective experience of agency over a consequent stimulus (Chambon and Haggard 2012). In line with this effect on subjective agency, we found stronger sensory attenuation when the action that caused the tone was compatibly primed. This perceptual effect was reflected in a transient phase-locked signal in auditory cortex before stimulus onset and motor execution. Interestingly, this sensory signal emerged at a time when the hemispheric lateralization of motor signals in M1 indicated ongoing effector selection. Our findings confirm theoretical predictions of a sensory modulation prior to self-generated sensations and support the idea that a sensory prediction is generated in parallel to motor output (Walsh and Haggard 2010), before an efference copy becomes available.

  15. Predicting brain activation patterns associated with individual lexical concepts based on five sensory-motor attributes.

    PubMed

    Fernandino, Leonardo; Humphries, Colin J; Seidenberg, Mark S; Gross, William L; Conant, Lisa L; Binder, Jeffrey R

    2015-09-01

    While major advances have been made in uncovering the neural processes underlying perceptual representations, our grasp of how the brain gives rise to conceptual knowledge remains relatively poor. Recent work has provided strong evidence that concepts rely, at least in part, on the same sensory and motor neural systems through which they were acquired, but it is still unclear whether the neural code for concept representation uses information about sensory-motor features to discriminate between concepts. In the present study, we investigate this question by asking whether an encoding model based on five semantic attributes directly related to sensory-motor experience - sound, color, visual motion, shape, and manipulation - can successfully predict patterns of brain activation elicited by individual lexical concepts. We collected ratings on the relevance of these five attributes to the meaning of 820 words, and used these ratings as predictors in a multiple regression model of the fMRI signal associated with the words in a separate group of participants. The five resulting activation maps were then combined by linear summation to predict the distributed activation pattern elicited by a novel set of 80 test words. The encoding model predicted the activation patterns elicited by the test words significantly better than chance. As expected, prediction was successful for concrete but not for abstract concepts. Comparisons between encoding models based on different combinations of attributes indicate that all five attributes contribute to the representation of concrete concepts. Consistent with embodied theories of semantics, these results show, for the first time, that the distributed activation pattern associated with a concept combines information about different sensory-motor attributes according to their respective relevance. Future research should investigate how additional features of phenomenal experience contribute to the neural representation of conceptual

  16. Forced Degradation Studies of Ivabradine and In Silico Toxicology Predictions for Its New Designated Impurities.

    PubMed

    Pikul, Piotr; Jamrógiewicz, Marzena; Nowakowska, Joanna; Hewelt-Belka, Weronika; Ciura, Krzesimir

    2016-01-01

    All activities should aim to eliminate genotoxic impurities and/or protect the API against degradation. There is a necessity to monitor impurities from all classification groups, hence ivabradine forced degradation studies were performed. Ivabradine was proved to be quite durable active substance, but still new and with insufficient stability data. Increased temperature, acid, base, oxidation reagents and light were found to cause its degradation. Degradation products were determined with the usage of HPLC equipped with Q-TOF-MS detector. Calculations of pharmacological and toxicological properties were performed for six identified degradation products. Target prediction algorithm was applied on the basis of Hyperpolarization-activated cyclic nucleotide-gated cation channels, as well as more general parameters like logP and aqueous solubility. Ames test and five cytochromes activities were calculated for toxicity assessment for selected degradation products. Pharmacological activity of photodegradation product (UV4), which is known as active metabolite, was qualified and identified. Two other degradation compounds (Ox1 and N1), which were formed during degradation process, were found to be pharmacologically active. PMID:27199759

  17. Forced Degradation Studies of Ivabradine and In Silico Toxicology Predictions for Its New Designated Impurities

    PubMed Central

    Pikul, Piotr; Jamrógiewicz, Marzena; Nowakowska, Joanna; Hewelt-Belka, Weronika; Ciura, Krzesimir

    2016-01-01

    All activities should aim to eliminate genotoxic impurities and/or protect the API against degradation. There is a necessity to monitor impurities from all classification groups, hence ivabradine forced degradation studies were performed. Ivabradine was proved to be quite durable active substance, but still new and with insufficient stability data. Increased temperature, acid, base, oxidation reagents and light were found to cause its degradation. Degradation products were determined with the usage of HPLC equipped with Q-TOF-MS detector. Calculations of pharmacological and toxicological properties were performed for six identified degradation products. Target prediction algorithm was applied on the basis of Hyperpolarization-activated cyclic nucleotide-gated cation channels, as well as more general parameters like logP and aqueous solubility. Ames test and five cytochromes activities were calculated for toxicity assessment for selected degradation products. Pharmacological activity of photodegradation product (UV4), which is known as active metabolite, was qualified and identified. Two other degradation compounds (Ox1 and N1), which were formed during degradation process, were found to be pharmacologically active. PMID:27199759

  18. Predictive based monitoring of nuclear plant component degradation using support vector regression

    SciTech Connect

    Agarwal, Vivek; Alamaniotis, Miltiadis; Tsoukalas, Lefteri H.

    2015-02-01

    Nuclear power plants (NPPs) are large installations comprised of many active and passive assets. Degradation monitoring of all these assets is expensive (labor cost) and highly demanding task. In this paper a framework based on Support Vector Regression (SVR) for online surveillance of critical parameter degradation of NPP components is proposed. In this case, on time replacement or maintenance of components will prevent potential plant malfunctions, and reduce the overall operational cost. In the current work, we apply SVR equipped with a Gaussian kernel function to monitor components. Monitoring includes the one-step-ahead prediction of the component’s respective operational quantity using the SVR model, while the SVR model is trained using a set of previous recorded degradation histories of similar components. Predictive capability of the model is evaluated upon arrival of a sensor measurement, which is compared to the component failure threshold. A maintenance decision is based on a fuzzy inference system that utilizes three parameters: (i) prediction evaluation in the previous steps, (ii) predicted value of the current step, (iii) and difference of current predicted value with components failure thresholds. The proposed framework will be tested on turbine blade degradation data.

  19. Prediction of motor imagery based brain computer interface performance using a reaction time test.

    PubMed

    Darvishi, Sam; Abbott, Derek; Baumert, Mathias

    2015-08-01

    Brain computer interfaces (BCIs) enable human brains to interact directly with machines. Motor imagery based BCI (MI-BCI) encodes the motor intentions of human agents and provides feedback accordingly. However, 15-30% of people are not able to perform vivid motor imagery. To save time and monetary resources, a number of predictors have been proposed to screen for users with low BCI aptitude. While the proposed predictors provide some level of correlation with MI-BCI performance, simple, objective and accurate predictors are currently not available. Thus, in this study we have examined the utility of a simple reaction time (SRT) test for predicting MI-BCI performance. We enrolled 10 subjects and measured their motor imagery performance with either visual or proprioceptive feedback. Their reaction time was also measured using a SRT test. The results show a significant negative correlation (r ≈ -0.67) between SRT and MI-BCI performance. Therefore SRT may be used as a simple and reliable predictor of MI-BCI performance. PMID:26736893

  20. Multiple measures of visual attention predict novice motor skill performance when attention is focused externally.

    PubMed

    Kasper, Ryan W; Elliott, James C; Giesbrecht, Barry

    2012-10-01

    Multiple lines of evidence indicate that the control of attention and motor skill performance are related. Athletes of various skill levels differ in terms of their control over the focus of attention and directing athletes to adopt an internal or external focus of attention modulates performance. However, it is unclear (a) whether the relationship between skill level and attentional control arises from preexisting individual differences in attention or from practice of the motor skill and (b) whether the effect of adopting an internal or external focus of attention on motor performance is influenced by individual differences in attention. To address these issues, individuals were measured on three distinct attention functions - orienting, alerting, and executive - prior to engaging in a novel golf-putting task performed with either external or internal focus instructions. The results indicated that, on average, attentional functioning and putting performance were related but that the strong relationships with orienting and executive attention were only present in the group given external focus instructions. These findings suggest that individual differences in attentional abilities are predictive of novel skill performance under an external focus of attention and they shed light on the mechanisms underlying the effects of focus instructions during motor performance. PMID:22516836

  1. Predicting hand orientation in reach-to-grasp tasks using neural activities from primary motor cortex.

    PubMed

    Zhang, Peng; Ma, Xuan; Huang, Hailong; He, Jiping

    2014-01-01

    Hand orientation is an important control parameter during reach-to-grasp task. In this paper, we presented a study for predicting hand orientation of non-human primate by decoding neural activities from primary motor cortex (M1). A non-human primate subject was guided to do reaching and grasping tasks meanwhile neural activities were acquired by chronically implanted microelectrode arrays. A Support Vector Machines (SVMs) classifier has been trained for predicting three different hand orientations using these M1 neural activities. Different number of neurons were selected and analyzed; the classifying accuracy was 94.1% with 2 neurons and was 100% with 8 neurons. Data from highly event related neuron units contribute a lot to the accuracy of hand orientation prediction. These results indicate that three different hand orientations can be predicted accurately and effectively before the actual movements occurring with a small number of related neurons in M1.

  2. Differential degradation of motor deficits during gradual dopamine depletion with 6-hydroxydopamine in mice.

    PubMed

    Willard, A M; Bouchard, R S; Gittis, A H

    2015-08-20

    Parkinson's disease (PD) is a movement disorder whose cardinal motor symptoms arise due to the progressive loss of dopamine. Although this dopamine loss typically progresses slowly over time, currently there are very few animal models that enable incremental dopamine depletion over time within the same animal. This type of gradual dopamine depletion model would be useful in studies aimed at the prodromal phase of PD, when dopamine levels are pathologically low but motor symptoms have not yet presented. Utilizing the highly characterized neurotoxin 6-hydroxydopamine (6-OHDA), we have developed a paradigm to gradually deplete dopamine levels in the striatum over a user-defined time course - spanning weeks to months - in C57BL/6 mice. Dopamine depletions were achieved by administration of five low-dose injections (0.75μg) of 6-OHDA through an implanted intracranial bilateral cannula targeting the medial forebrain bundle. Levels of dopamine within the striatum declined linearly with successive injections, quantified using tyrosine hydroxylase immunostaining and high-performance liquid chromatography. Behavioral testing was carried out at each time point to study the onset and progression of motor impairments as a function of dopamine loss over time. We found that spontaneous locomotion, measured in an open field, was robust until ∼70% of striatal dopamine was lost. Beyond this point, additional dopamine loss caused a sharp decline in motor performance, reaching a final level comparable to that of acutely depleted mice. Similarly, although rearing behavior was more sensitive to dopamine loss and declined linearly as a function of dopamine levels, it eventually declined to levels similar to those seen in acutely depleted mice. In contrast, motor coordination, measured on a vertical pole task, was only moderately impaired in gradually depleted mice, despite severe impairments observed in acutely depleted mice. These results demonstrate the importance of the temporal

  3. Sleep spindles predict neural and behavioral changes in motor sequence consolidation.

    PubMed

    Barakat, Marc; Carrier, Julie; Debas, Karen; Lungu, Ovidiu; Fogel, Stuart; Vandewalle, Gilles; Hoge, Richard D; Bellec, Pierre; Karni, Avi; Ungerleider, Leslie G; Benali, Habib; Doyon, Julien

    2013-11-01

    The purpose of this study was to investigate the predictive function of sleep spindles in motor sequence consolidation. BOLD responses were acquired in 10 young healthy subjects who were trained on an explicitly known 5-item sequence using their left nondominant hand, scanned at 9:00 pm while performing that same task and then were retested and scanned 12 h later after a night of sleep during which polysomnographic measures were recorded. An automatic algorithm was used to detect sleep spindles and to quantify their characteristics (i.e., density, amplitude, and duration). Analyses revealed significant positive correlations between gains in performance and the amplitude of spindles. Moreover, significant increases in BOLD signal were observed in several motor-related areas, most of which were localized in the right hemisphere, particularly in the right cortico-striatal system. Such increases in BOLD signal also correlated positively with the amplitude of spindles at several derivations. Taken together, our results show that sleep spindles predict neural and behavioral changes in overnight motor sequence consolidation.

  4. Prediction of motor outcome by shoulder subluxation at early stage of stroke

    PubMed Central

    Jang, Sung Ho; Yi, Ji Hyun; Chang, Chul Hoon; Jung, Young Jin; Kim, Seong Ho; Lee, Jun; Seo, Jeong Pyo

    2016-01-01

    Abstract We attempted to determine whether shoulder subluxation at the early stage of stroke can predict motor outcome in relation to the corticospinal tract (CST) state on diffusion tensor tractography. Fifty-nine stroke patients with severe hemiparesis were recruited. The patients were classified according to the distance of shoulder subluxation (group A: ≥2 cm, group B: <2 cm) and the affected CST on diffusion tensor tractography at the first evaluation (CST type A—the CST was discontinued at the stroke lesion; CST type B—the integrity of the CST was preserved). Motor function of the patients was evaluated twice (first: beginning of rehabilitation—24.1 ± 16.6 days; second: discharge after first rehabilitation—58.5 ± 24.1 days) using the Medical Research Council score, Motricity Index, and Modified Brunnstrom Classification. Regarding the improvement of the Medical Research Council for the finger extensor and upper Motricity Index, the order in terms of better recovery was as follows: group B–type B, group A–type B, group B–type A, and group A–type A (P < 0.05). The distance of shoulder subluxation showed significant correlation with improvement of the finger extensor (moderate negative correlation, r = −0.37) and improvement of the Modified Brunnstrom Classification (weak negative correlation, r = −0.29) (P < 0.05). The presence of shoulder subluxation at the early stage of stroke can be a predictor of motor outcome of the affected upper extremity and the degree of shoulder subluxation can be a predictor of the motor function of the affected hand. Therefore, our results suggest that shoulder subluxation in relation to the affected CST state at the early stage of stroke can be a prognostic factor for motor outcome. PMID:27512873

  5. Outcome Prediction of Consciousness Disorders in the Acute Stage Based on a Complementary Motor Behavioural Tool

    PubMed Central

    Jöhr, Jane; Gilart de Keranflec'h, Charlotte; Van De Ville, Dimitri; Preti, Maria Giulia; Meskaldji, Djalel E.; Hömberg, Volker; Laureys, Steven; Draganski, Bogdan; Frackowiak, Richard; Diserens, Karin

    2016-01-01

    Introduction Attaining an accurate diagnosis in the acute phase for severely brain-damaged patients presenting Disorders of Consciousness (DOC) is crucial for prognostic validity; such a diagnosis determines further medical management, in terms of therapeutic choices and end-of-life decisions. However, DOC evaluation based on validated scales, such as the Revised Coma Recovery Scale (CRS-R), can lead to an underestimation of consciousness and to frequent misdiagnoses particularly in cases of cognitive motor dissociation due to other aetiologies. The purpose of this study is to determine the clinical signs that lead to a more accurate consciousness assessment allowing more reliable outcome prediction. Methods From the Unit of Acute Neurorehabilitation (University Hospital, Lausanne, Switzerland) between 2011 and 2014, we enrolled 33 DOC patients with a DOC diagnosis according to the CRS-R that had been established within 28 days of brain damage. The first CRS-R assessment established the initial diagnosis of Unresponsive Wakefulness Syndrome (UWS) in 20 patients and a Minimally Consciousness State (MCS) in the remaining13 patients. We clinically evaluated the patients over time using the CRS-R scale and concurrently from the beginning with complementary clinical items of a new observational Motor Behaviour Tool (MBT). Primary endpoint was outcome at unit discharge distinguishing two main classes of patients (DOC patients having emerged from DOC and those remaining in DOC) and 6 subclasses detailing the outcome of UWS and MCS patients, respectively. Based on CRS-R and MBT scores assessed separately and jointly, statistical testing was performed in the acute phase using a non-parametric Mann-Whitney U test; longitudinal CRS-R data were modelled with a Generalized Linear Model. Results Fifty-five per cent of the UWS patients and 77% of the MCS patients had emerged from DOC. First, statistical prediction of the first CRS-R scores did not permit outcome differentiation

  6. Model predictions of toxaphene degradation in the atmosphere over North America.

    PubMed

    Li, R; Jin, J

    2013-12-01

    Technical toxaphene, a broad-spectrum pesticide mixture, degrades in the environment, resulting in potential changes in toxicity. The present study uses a multimedia model that the authors developed to estimate toxaphene degradation in the atmosphere over North America. The predicted degradation has strong spatial and temporal variability determined by processes such as emission and transport of technical toxaphene, as well as the complex interactions among many species (e.g., toxaphene, hydroxyl [OH] radicals, and ozone). More toxaphene is degraded in warmer months due to higher concentrations of technical toxaphene (primarily due to higher technical toxaphene emissions in the southeastern United States and transport to other regions) and OH radicals. In the model, OH radicals are created primarily through the reactions of water vapor with the excited oxygen atom, O(¹D), generated by the photolysis of ozone, which is produced primarily by reactions of volatile organic compounds and nitrogen oxides (NOx) in the presence of sunlight. The higher OH concentrations in warmer months are primarily the result of higher solar radiation and ozone concentrations. The spatial distribution of degradation depends on the distribution of technical toxaphene soil residues as well as atmospheric transport and chemistry; significant chemical degradation occurs in the southeastern United States where soils are most heavily contaminated by past applications of toxaphene.

  7. Logistic Regression Analyses for Predicting Clinically Important Differences in Motor Capacity, Motor Performance, and Functional Independence after Constraint-Induced Therapy in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Wang, Tien-ni; Wu, Ching-yi; Chen, Chia-ling; Shieh, Jeng-yi; Lu, Lu; Lin, Keh-chung

    2013-01-01

    Given the growing evidence for the effects of constraint-induced therapy (CIT) in children with cerebral palsy (CP), there is a need for investigating the characteristics of potential participants who may benefit most from this intervention. This study aimed to establish predictive models for the effects of pediatric CIT on motor and functional…

  8. Measurement requirements and techniques for degradation studies and lifetime prediction testing of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Noel, G. T.; Sliemers, F. A.; Derringer, G. C.; Wood, V. E.; Wilkes, K. E.; Gaines, G. B.; Carmichael, D. C.

    1978-01-01

    Tests of weathering and aging behavior are being developed to characterize the degradation and predict the lifetimes of low-cost photovoltaic arrays. Environmental factors which affect array performance include UV radiation, thermal energy, water, oxygen (generally involved in synergistic effects with UV radiation or high temperatures), physical stress, pollutants (oxides of nitrogen, sulfur dioxide and ozone), abrasives and dirt. A survey of photovoltaic array testing has shown the need to establish quantitative correlations between certain measurable properties (carbonyl formation, glass transition temperature, and molecular weight change) and modes of degradation and failure.

  9. Predictive validity of the Sødring Motor Evaluation of Stroke Patients (SMES).

    PubMed

    Wyller, T B; Sødring, K M; Sveen, U; Ljunggren, A E; Bautz-Holter, E

    1996-12-01

    The Sødring Motor Evaluation of Stroke Patients (SMES) has been developed as an instrument for the evaluation by physiotherapists of motor function and activities in stroke patients. The predictive validity of the instrument was studied in a consecutive sample of 93 acute stroke patients, assessed in the acute phase and after one year. The outcome measures were: survival, residence at home or in institution, the Barthel ADL index (dichotomized at 19/20), and the Frenchay Activities Index (FAI) (dichotomized at 9/10). The SMES, scored in the acute phase, demonstrated a marginally significant predictive power regarding survival, but was a highly significant predictor regarding the other outcomes. The adjusted odds ratio for a good versus a poor outcome for patients in the upper versus the lower tertile of the SMES arm subscore was 5.4 (95% confidence interval 0.9-59) for survival, 11.5 (2.1-88) for living at home, 86.3 (11-infinity) for a high Barthel score, and 31.4 (5.2-288) for a high FAI score. We conclude that SMES has high predictive validity.

  10. Temperature prediction in high speed bone grinding using motor PWM signal.

    PubMed

    Tai, Bruce L; Zhang, Lihui; Wang, Anthony C; Sullivan, Stephen; Wang, Guangjun; Shih, Albert J

    2013-10-01

    This research explores the feasibility of using motor electrical feedback to estimate temperature rise during a surgical bone grinding procedure. High-speed bone grinding is often used during skull base neurosurgery to remove cranial bone and approach skull base tumors through the nasal corridor. Grinding-induced heat could propagate and potentially injure surrounding nerves and arteries, and therefore, predicting the temperature in the grinding region would benefit neurosurgeons during the operation. High-speed electric motors are controlled by pulse-width-modulation (PWM) to alter the current input and thus maintain the rotational speed. Assuming full mechanical to thermal power conversion in the grinding process, PWM can be used as feedback for heat generation and temperature prediction. In this study, the conversion model was established from experiments under a variety of grinding conditions and an inverse heat transfer method to determine heat flux. Given a constant rotational speed, the heat conversion was represented by a linear function, and could predict temperature from the experimental data with less than 20% errors. Such results support the advance of this technology for practical application.

  11. Alteration in forward model prediction of sensory outcome of motor action in focal hand dystonia

    PubMed Central

    Lee, André; Furuya, Shinichi; Karst, Matthias; Altenmüller, Eckart

    2013-01-01

    Focal hand dystonia in musicians is a movement disorder affecting highly trained movements. Rather than being a pure motor disorder related to movement execution only, movement planning, error prediction, and sensorimotor integration are also impaired. Internal models (IMs), of which two types, forward and inverse models have been described and most likely processed in the cerebellum, are known to be involved in these tasks. Recent results indicate that the cerebellum may be involved in the pathophysiology of focal dystonia (FD). Thus, the aim of our study was to investigate whether an IM deficit plays a role in FD. We focused on the forward model (FM), which predicts sensory consequences of motor commands and allows the discrimination between external sensory input and input deriving from motor action. We investigated 19 patients, aged 19–59 and 19 healthy musicians aged 19–36 as controls. Tactile stimuli were applied to fingers II–V of both hands by the experimenter or the patient. After each stimulus the participant rated the stimulus intensity on a scale between 0 (no sensation) and 1 (maximal intensity). The difference of perceived intensity between self- and externally applied (EA) stimuli was then calculated for each finger. For assessing differences between patients and controls we performed a cluster analysis of the affected hand and the corresponding hand of the controls using the fingers II–V as variables in a 4-dimensional hyperspace (chance level = 0.5). Using a cluster analysis, we found a correct classification of the affected finger in 78.9–94.7%. There was no difference between patients and healthy controls of the absolute value of the perceived stimulus intensity. Our results suggest an altered FM function in focal hand dystonia. It has the potential of suggesting a neural correlate within the cerebellum and of helping integrate findings with regard to altered sensorimotor processing and altered prediction in FD in a single framework

  12. Predicting Motor Skills from Strengths and Difficulties Questionnaire Scores, Language Ability, and Other Features of New Zealand Children Entering Primary School

    ERIC Educational Resources Information Center

    Sargisson, Rebecca J.; Powell, Cheniel; Stanley, Peter; de Candole, Rosalind

    2014-01-01

    The motor and language skills, emotional and behavioural problems of 245 children were measured at school entry. Fine motor scores were significantly predicted by hyperactivity, phonetic awareness, prosocial behaviour, and the presence of medical problems. Gross motor scores were significantly predicted by the presence of medical problems. The…

  13. Changes in predictive motor control in drop-jumps based on uncertainties in task execution.

    PubMed

    Leukel, Christian; Taube, Wolfgang; Lorch, Michael; Gollhofer, Albert

    2012-02-01

    Drop-jumps are controlled by predictive and reactive motor strategies which differ with respect to the utilization of sensory feedback. With reaction, sensory feedback is integrated while performing the task. With prediction, sensory information may be used prior to movement onset. Certainty about upcoming events is important for prediction. The present study aimed at investigating how uncertainties in the task execution affect predictive motor control in drop-jumps. Ten healthy subjects (22±1 years, M±SD) participated. The subjects performed either (i) drop-jumps by knowing that they might had to switch to a landing movement upon an auditory cue, which was sometimes elicited prior to touch-down (uncertainty). In (ii), subjects performed drop-jumps by knowing that there would be no auditory cue and consequently no switch of the movement (certainty). The m. soleus EMG prior to touch-down was higher when subjects knew there would be no auditory cue compared to when subjects performed the same task but switching from drop-jump to landing was possible (uncertainty). The EMG was reversed in the late concentric phase, meaning that it was higher in the high uncertainty task. The results of the present study showed that the muscular activity was predictively adjusted according to uncertainties in task execution. It is argued that tendomuscular stiffness was the variable responsible for the adjustment of muscular activity. The required tendomuscular stiffness was higher in drop-jumps than in landings. Consequently, when it was not certain whether to jump or to land, muscular activity and therefore tendomuscular stiffness was reduced. PMID:21757248

  14. Prediction of the degradability of sugarcane cellulosic residues by indirect methods

    SciTech Connect

    Cabello, A.; Conde, J.; Otero, M.A.

    1981-12-01

    The effect of mild NaOH treatments on sugarcane cellulosic wastes (bagasse, pith, and straw) to increase their biological degradability has been studied. At a level of 8% NaOH (on a dry matter basis) 60% digestibility measured by the in vitro technique was achieved for all materials tested. Indirect methods to predict the digestibility of treated materials such as the bacterial degradability, enzymatic degradability, hot-water solubility, and chemical oxygen demand were tried as alternative methods to the rumen fluid technique. High correlation coefficients for all materials were obtained with all alternative techniques. The minimal r value was 0.96 while the highest was 0.99. An important reduction of time and reagents is achieved by the utilization of the solubility and chemical oxygen demand tests. (Refs. 8).

  15. Degradation Mechanisms and Lifetime Prediction for Lithium-Ion Batteries -- A Control Perspective: Preprint

    SciTech Connect

    Smith, Kandler; Shi, Ying; Santhanagopalan, Shriram

    2015-07-29

    Predictive models of Li-ion battery lifetime must consider a multiplicity of electrochemical, thermal, and mechanical degradation modes experienced by batteries in application environments. To complicate matters, Li-ion batteries can experience different degradation trajectories that depend on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. We present a generalized battery life prognostic model framework for battery systems design and control. The model framework consists of trial functions that are statistically regressed to Li-ion cell life datasets wherein the cells have been aged under different levels of stress. Degradation mechanisms and rate laws dependent on temperature, storage, and cycling condition are regressed to the data, with multiple model hypotheses evaluated and the best model down-selected based on statistics. The resulting life prognostic model, implemented in state variable form, is extensible to arbitrary real-world scenarios. The model is applicable in real-time control algorithms to maximize battery life and performance. We discuss efforts to reduce lifetime prediction error and accommodate its inevitable impact in controller design.

  16. Motor facilitation during action observation: The role of M1 and PMv in grasp predictions.

    PubMed

    de Beukelaar, Toon T; Alaerts, Kaat; Swinnen, Stephan P; Wenderoth, Nicole

    2016-02-01

    Recent theories propose that movement observation is not a "passive mirror" of ongoing actions but might induce anticipatory activity when predictable movements are observed, e.g., because the action goal is known. Here we investigate this mechanism in a series of 3 experiments, by applying transcranial magnetic stimulation (TMS) to primary motor cortex (M1) while subjects observed either whole hand or precision grasping performed by an actor. We show that corticomotor excitability changes in a grip-specific manner but only once the grip can be decoded based on the observed kinematic cues (Exp. 1). By contrast, presenting informative contextual precues evokes anticipatory modulations in M1 already during the reach phase, i.e., well before the grip type could be observed, a finding in line with a predictive coding account (Exp. 2). Finally, we used paired-pulse (PP) TMS to show that ventral premotor cortex (PMv) facilitates grip-specific representations in M1 but only while grip formation is observed. These findings suggest that PMv and M1 interact temporarily and mainly when motor aspects of hand-object interactions are extracted from visual information. By contrast, no sustained input from PMv to M1 seems to be required to maintain action representations that are anticipated based on contextual information or once the grip is formed (Exp. 3). PMID:26800203

  17. Limitations of predicting in vivo biostability of multiphase polyurethane elastomers using temperature-accelerated degradation testing.

    PubMed

    Padsalgikar, Ajay; Cosgriff-Hernandez, Elizabeth; Gallagher, Genevieve; Touchet, Tyler; Iacob, Ciprian; Mellin, Lisa; Norlin-Weissenrieder, Anna; Runt, James

    2015-01-01

    Polyurethane biostability has been the subject of intense research since the failure of polyether polyurethane pacemaker leads in the 1980s. Accelerated in vitro testing has been used to isolate degradation mechanisms and predict clinical performance of biomaterials. However, validation that in vitro methods reproduce in vivo degradation is critical to the selection of appropriate tests. High temperature has been proposed as a method to accelerate degradation. However, correlation of such data to in vivo performance is poor for polyurethanes due to the impact of temperature on microstructure. In this study, we characterize the lack of correlation between hydrolytic degradation predicted using a high temperature aging model of a polydimethylsiloxane-based polyurethane and its in vivo performance. Most notably, the predicted molecular weight and tensile property changes from the accelerated aging study did not correlate with clinical explants subjected to human biological stresses in real time through 5 years. Further, DMTA, ATR-FTIR, and SAXS experiments on samples aged for 2 weeks in PBS indicated greater phase separation in samples aged at 85°C compared to those aged at 37°C and unaged controls. These results confirm that microstructural changes occur at high temperatures that do not occur at in vivo temperatures. In addition, water absorption studies demonstrated that water saturation levels increased significantly with temperature. This study highlights that the multiphase morphology of polyurethane precludes the use of temperature accelerated biodegradation for the prediction of clinical performance and provides critical information in designing appropriate in vitro tests for this class of materials.

  18. Mechanisms of Intentional Binding and Sensory Attenuation: The Role of Temporal Prediction, Temporal Control, Identity Prediction, and Motor Prediction

    ERIC Educational Resources Information Center

    Hughes, Gethin; Desantis, Andrea; Waszak, Florian

    2013-01-01

    Sensory processing of action effects has been shown to differ from that of externally triggered stimuli, with respect both to the perceived timing of their occurrence (intentional binding) and to their intensity (sensory attenuation). These phenomena are normally attributed to forward action models, such that when action prediction is consistent…

  19. De novo prediction of the genomic components and capabilities for microbial plant biomass degradation from (meta-)genomes

    PubMed Central

    2013-01-01

    Background Understanding the biological mechanisms used by microorganisms for plant biomass degradation is of considerable biotechnological interest. Despite of the growing number of sequenced (meta)genomes of plant biomass-degrading microbes, there is currently no technique for the systematic determination of the genomic components of this process from these data. Results We describe a computational method for the discovery of the protein domains and CAZy families involved in microbial plant biomass degradation. Our method furthermore accurately predicts the capability to degrade plant biomass for microbial species from their genome sequences. Application to a large, manually curated data set of microbial degraders and non-degraders identified gene families of enzymes known by physiological and biochemical tests to be implicated in cellulose degradation, such as GH5 and GH6. Additionally, genes of enzymes that degrade other plant polysaccharides, such as hemicellulose, pectins and oligosaccharides, were found, as well as gene families which have not previously been related to the process. For draft genomes reconstructed from a cow rumen metagenome our method predicted Bacteroidetes-affiliated species and a relative to a known plant biomass degrader to be plant biomass degraders. This was supported by the presence of genes encoding enzymatically active glycoside hydrolases in these genomes. Conclusions Our results show the potential of the method for generating novel insights into microbial plant biomass degradation from (meta-)genome data, where there is an increasing production of genome assemblages for uncultured microbes. PMID:23414703

  20. Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional Motor Control.

    PubMed

    Rueckert, Elmar; Čamernik, Jernej; Peters, Jan; Babič, Jan

    2016-01-01

    Human motor skill learning is driven by the necessity to adapt to new situations. While supportive contacts are essential for many tasks, little is known about their impact on motor learning. To study the effect of contacts an innovative full-body experimental paradigm was established. The task of the subjects was to reach for a distant target while postural stability could only be maintained by establishing an additional supportive hand contact. To examine adaptation, non-trivial postural perturbations of the subjects' support base were systematically introduced. A novel probabilistic trajectory model approach was employed to analyze the correlation between the motions of both arms and the trunk. We found that subjects adapted to the perturbations by establishing target dependent hand contacts. Moreover, we found that the trunk motion adapted significantly faster than the motion of the arms. However, the most striking finding was that observations of the initial phase of the left arm or trunk motion (100-400 ms) were sufficient to faithfully predict the complete movement of the right arm. Overall, our results suggest that the goal-directed arm movements determine the supportive arm motions and that the motion of heavy body parts adapts faster than the light arms. PMID:27328750

  1. Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional Motor Control

    PubMed Central

    Rueckert, Elmar; Čamernik, Jernej; Peters, Jan; Babič, Jan

    2016-01-01

    Human motor skill learning is driven by the necessity to adapt to new situations. While supportive contacts are essential for many tasks, little is known about their impact on motor learning. To study the effect of contacts an innovative full-body experimental paradigm was established. The task of the subjects was to reach for a distant target while postural stability could only be maintained by establishing an additional supportive hand contact. To examine adaptation, non-trivial postural perturbations of the subjects’ support base were systematically introduced. A novel probabilistic trajectory model approach was employed to analyze the correlation between the motions of both arms and the trunk. We found that subjects adapted to the perturbations by establishing target dependent hand contacts. Moreover, we found that the trunk motion adapted significantly faster than the motion of the arms. However, the most striking finding was that observations of the initial phase of the left arm or trunk motion (100–400 ms) were sufficient to faithfully predict the complete movement of the right arm. Overall, our results suggest that the goal-directed arm movements determine the supportive arm motions and that the motion of heavy body parts adapts faster than the light arms. PMID:27328750

  2. Fast and Slow Oscillations in Human Primary Motor Cortex Predict Oncoming Behaviorally Relevant Cues

    PubMed Central

    Saleh, Maryam; Reimer, Jacob; Penn, Richard; Ojakangas, Catherine L.; Hatsopoulos, Nicholas G.

    2011-01-01

    SUMMARY Beta oscillations (12-30Hz) in local field potentials are prevalent in the motor system, yet their functional role within the context of planning a movement is still debated. In this study, a human participant implanted with a multi-electrode array in the hand area of primary motor cortex (MI) was instructed to plan a movement using either the second or fourth of five sequentially presented instruction cues. The beta amplitude increased from the start of the trial until the informative (second or fourth) cue, and was diminished afterwards. Moreover, the beta amplitude peaked just prior to each instruction cue and the delta frequency (0.5-1.5Hz) entrained to the interval between the cues - but only until the informative cue. This result suggests that the beta amplitude and delta phase in MI reflect the subject’s engagement with the rhythmically-presented cues and work together to enhance sensitivity to predictable and task-relevant visual cues. PMID:20188651

  3. Degradation and mineralization of phenol compounds with goethite catalyst and mineralization prediction using artificial intelligence.

    PubMed

    Tisa, Farhana; Davoody, Meysam; Abdul Raman, Abdul Aziz; Daud, Wan Mohd Ashri Wan

    2015-01-01

    The efficiency of phenol degradation via Fenton reaction using mixture of heterogeneous goethite catalyst with homogeneous ferrous ion was analyzed as a function of three independent variables, initial concentration of phenol (60 to 100 mg /L), weight ratio of initial concentration of phenol to that of H2O2 (1: 6 to 1: 14) and, weight ratio of initial concentration of goethite catalyst to that of H2O2 (1: 0.3 to 1: 0.7). More than 90 % of phenol removal and more than 40% of TOC removal were achieved within 60 minutes of reaction. Two separate models were developed using artificial neural networks to predict degradation percentage by a combination of Fe3+ and Fe2+ catalyst. Five operational parameters were employed as inputs while phenol degradation and TOC removal were considered as outputs of the developed models. Satisfactory agreement was observed between testing data and the predicted values (R2Phenol = 0.9214 and R2TOC= 0.9082).

  4. Degradation and Mineralization of Phenol Compounds with Goethite Catalyst and Mineralization Prediction Using Artificial Intelligence

    PubMed Central

    Tisa, Farhana; Davoody, Meysam; Abdul Raman, Abdul Aziz; Daud, Wan Mohd Ashri Wan

    2015-01-01

    The efficiency of phenol degradation via Fenton reaction using mixture of heterogeneous goethite catalyst with homogeneous ferrous ion was analyzed as a function of three independent variables, initial concentration of phenol (60 to 100 mg /L), weight ratio of initial concentration of phenol to that of H2O2 (1: 6 to 1: 14) and, weight ratio of initial concentration of goethite catalyst to that of H2O2 (1: 0.3 to 1: 0.7). More than 90 % of phenol removal and more than 40% of TOC removal were achieved within 60 minutes of reaction. Two separate models were developed using artificial neural networks to predict degradation percentage by a combination of Fe3+ and Fe2+ catalyst. Five operational parameters were employed as inputs while phenol degradation and TOC removal were considered as outputs of the developed models. Satisfactory agreement was observed between testing data and the predicted values (R2Phenol = 0.9214 and R2TOC= 0.9082). PMID:25849556

  5. Prediction of hand trajectory from electrocorticography signals in primary motor cortex.

    PubMed

    Chen, Chao; Shin, Duk; Watanabe, Hidenori; Nakanishi, Yasuhiko; Kambara, Hiroyuki; Yoshimura, Natsue; Nambu, Atsushi; Isa, Tadashi; Nishimura, Yukio; Koike, Yasuharu

    2013-01-01

    Due to their potential as a control modality in brain-machine interfaces, electrocorticography (ECoG) has received much focus in recent years. Studies using ECoG have come out with success in such endeavors as classification of arm movements and natural grasp types, regression of arm trajectories in two and three dimensions, estimation of muscle activity time series and so on. However, there still remains considerable work to be done before a high performance ECoG-based neural prosthetic can be realized. In this study, we proposed an algorithm to decode hand trajectory from 15 and 32 channel ECoG signals recorded from primary motor cortex (M1) in two primates. To determine the most effective areas for prediction, we applied two electrode selection methods, one based on position relative to the central sulcus (CS) and another based on the electrodes' individual prediction performance. The best coefficients of determination for decoding hand trajectory in the two monkeys were 0.4815 ± 0.0167 and 0.7780 ± 0.0164. Performance results from individual ECoG electrodes showed that those with higher performance were concentrated at the lateral areas and areas close to the CS. The results of prediction according with different numbers of electrodes based on proposed methods were also shown and discussed. These results also suggest that superior decoding performance can be achieved from a group of effective ECoG signals rather than an entire ECoG array.

  6. Prediction of Hand Trajectory from Electrocorticography Signals in Primary Motor Cortex

    PubMed Central

    Nakanishi, Yasuhiko; Kambara, Hiroyuki; Yoshimura, Natsue; Nambu, Atsushi; Isa, Tadashi; Nishimura, Yukio; Koike, Yasuharu

    2013-01-01

    Due to their potential as a control modality in brain-machine interfaces, electrocorticography (ECoG) has received much focus in recent years. Studies using ECoG have come out with success in such endeavors as classification of arm movements and natural grasp types, regression of arm trajectories in two and three dimensions, estimation of muscle activity time series and so on. However, there still remains considerable work to be done before a high performance ECoG-based neural prosthetic can be realized. In this study, we proposed an algorithm to decode hand trajectory from 15 and 32 channel ECoG signals recorded from primary motor cortex (M1) in two primates. To determine the most effective areas for prediction, we applied two electrode selection methods, one based on position relative to the central sulcus (CS) and another based on the electrodes' individual prediction performance. The best coefficients of determination for decoding hand trajectory in the two monkeys were 0.4815±0.0167 and 0.7780±0.0164. Performance results from individual ECoG electrodes showed that those with higher performance were concentrated at the lateral areas and areas close to the CS. The results of prediction according with different numbers of electrodes based on proposed methods were also shown and discussed. These results also suggest that superior decoding performance can be achieved from a group of effective ECoG signals rather than an entire ECoG array. PMID:24386223

  7. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance

    PubMed Central

    Bell, Terrence H; Yergeau, Etienne; Maynard, Christine; Juck, David; Whyte, Lyle G; Greer, Charles W

    2013-01-01

    Increased exploration and exploitation of resources in the Arctic is leading to a higher risk of petroleum contamination. A number of Arctic microorganisms can use petroleum for growth-supporting carbon and energy, but traditional approaches for stimulating these microorganisms (for example, nutrient addition) have varied in effectiveness between sites. Consistent environmental controls on microbial community response to disturbance from petroleum contaminants and nutrient amendments across Arctic soils have not been identified, nor is it known whether specific taxa are universally associated with efficient bioremediation. In this study, we contaminated 18 Arctic soils with diesel and treated subsamples of each with monoammonium phosphate (MAP), which has successfully stimulated degradation in some contaminated Arctic soils. Bacterial community composition of uncontaminated, diesel-contaminated and diesel+MAP soils was assessed through multiplexed 16S (ribosomal RNA) rRNA gene sequencing on an Ion Torrent Personal Genome Machine, while hydrocarbon degradation was measured by gas chromatography analysis. Diversity of 16S rRNA gene sequences was reduced by diesel, and more so by the combination of diesel and MAP. Actinobacteria dominated uncontaminated soils with <10% organic matter, while Proteobacteria dominated higher-organic matter soils, and this pattern was exaggerated following disturbance. Degradation with and without MAP was predictable by initial bacterial diversity and the abundance of specific assemblages of Betaproteobacteria, respectively. High Betaproteobacteria abundance was positively correlated with high diesel degradation in MAP-treated soils, suggesting this may be an important group to stimulate. The predictability with which bacterial communities respond to these disturbances suggests that costly and time-consuming contaminated site assessments may not be necessary in the future. PMID:23389106

  8. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance.

    PubMed

    Bell, Terrence H; Yergeau, Etienne; Maynard, Christine; Juck, David; Whyte, Lyle G; Greer, Charles W

    2013-06-01

    Increased exploration and exploitation of resources in the Arctic is leading to a higher risk of petroleum contamination. A number of Arctic microorganisms can use petroleum for growth-supporting carbon and energy, but traditional approaches for stimulating these microorganisms (for example, nutrient addition) have varied in effectiveness between sites. Consistent environmental controls on microbial community response to disturbance from petroleum contaminants and nutrient amendments across Arctic soils have not been identified, nor is it known whether specific taxa are universally associated with efficient bioremediation. In this study, we contaminated 18 Arctic soils with diesel and treated subsamples of each with monoammonium phosphate (MAP), which has successfully stimulated degradation in some contaminated Arctic soils. Bacterial community composition of uncontaminated, diesel-contaminated and diesel+MAP soils was assessed through multiplexed 16S (ribosomal RNA) rRNA gene sequencing on an Ion Torrent Personal Genome Machine, while hydrocarbon degradation was measured by gas chromatography analysis. Diversity of 16S rRNA gene sequences was reduced by diesel, and more so by the combination of diesel and MAP. Actinobacteria dominated uncontaminated soils with <10% organic matter, while Proteobacteria dominated higher-organic matter soils, and this pattern was exaggerated following disturbance. Degradation with and without MAP was predictable by initial bacterial diversity and the abundance of specific assemblages of Betaproteobacteria, respectively. High Betaproteobacteria abundance was positively correlated with high diesel degradation in MAP-treated soils, suggesting this may be an important group to stimulate. The predictability with which bacterial communities respond to these disturbances suggests that costly and time-consuming contaminated site assessments may not be necessary in the future.

  9. Lifetime Prediction for Degradation of Solar Mirrors using Step-Stress Accelerated Testing (Presentation)

    SciTech Connect

    Lee, J.; Elmore, R.; Kennedy, C.; Gray, M.; Jones, W.

    2011-09-01

    This research is to illustrate the use of statistical inference techniques in order to quantify the uncertainty surrounding reliability estimates in a step-stress accelerated degradation testing (SSADT) scenario. SSADT can be used when a researcher is faced with a resource-constrained environment, e.g., limits on chamber time or on the number of units to test. We apply the SSADT methodology to a degradation experiment involving concentrated solar power (CSP) mirrors and compare the results to a more traditional multiple accelerated testing paradigm. Specifically, our work includes: (1) designing a durability testing plan for solar mirrors (3M's new improved silvered acrylic "Solar Reflector Film (SFM) 1100") through the ultra-accelerated weathering system (UAWS), (2) defining degradation paths of optical performance based on the SSADT model which is accelerated by high UV-radiant exposure, and (3) developing service lifetime prediction models for solar mirrors using advanced statistical inference. We use the method of least squares to estimate the model parameters and this serves as the basis for the statistical inference in SSADT. Several quantities of interest can be estimated from this procedure, e.g., mean-time-to-failure (MTTF) and warranty time. The methods allow for the estimation of quantities that may be of interest to the domain scientists.

  10. A prediction model of signal degradation in LMSS for urban areas

    NASA Technical Reports Server (NTRS)

    Matsudo, Takashi; Minamisono, Kenichi; Karasawa, Yoshio; Shiokawa, Takayasu

    1993-01-01

    A prediction model of signal degradation in a Land Mobile Satellite Service (LMSS) for urban areas is proposed. This model treats shadowing effects caused by buildings statistically and can predict a Cumulative Distribution Function (CDF) of signal diffraction losses in urban areas as a function of system parameters such as frequency and elevation angle and environmental parameters such as number of building stories and so on. In order to examine the validity of the model, we compared the percentage of locations where diffraction losses were smaller than 6 dB obtained by the CDF with satellite visibility measured by a radiometer. As a result, it was found that this proposed model is useful for estimating the feasibility of providing LMSS in urban areas.

  11. A predictive model for space-based X-ray CCD degradation

    NASA Technical Reports Server (NTRS)

    Antunes, Alex; Burrows, David N.; Garmire, Gordon P.; Lumb, David H.; Nousek, John A.

    1993-01-01

    The first generation of X-ray telescopes to use Charge-Coupled Devices (CCDs) is being launched this decade. With a read noise of a few electrons, CCDs provide Fano-limited spectral resolution across the soft X-ray band (0.1 - 10 keV). However, degradation of resolution due to charge transfer losses becomes noticeable as Charge Transfer Inefficiency (CTI) increases to 10(exp -5). In this paper, we present a model which calculates the effects of radiation damage in low Earth orbit in order to predict CCD lifetimes over which good charge transfer is maintained. The model presented here considers damage mechanisms within the CCD, environmental conditions in which the CCD operates, and experiment shielding. We find that the predicted CTI approaches 10(exp -5) after a one to two year mission for the flight instruments considered here.

  12. Strength degradation and lifetime prediction of dental zirconia ceramics under cyclic normal loading.

    PubMed

    Li, Wanzhong; Xu, Yingqiang; He, Huiming; Zhao, Haidan; Sun, Jian; Hou, Yue

    2015-01-01

    Clinical cases show that zirconia restoration could happen fracture by accident under overloading after using a period of time. The purpose of this study is to research mechanical behavior and predict lifetime of dental zirconia ceramics under cyclic normal contact loading with experiments. Cyclic normal contact loading test and three point bending test are carried on specimens made of two brands of dental zirconia ceramic to obtain flexure strength and damage degree after different number of loading cycles. By means of damage mechanics model, damage degree under different number of contact loading cycles are calculated according to flexure strength, and verified by SEM photographs of cross section morphology of zirconia ceramics specimen phenomenologically. Relation curve of damage degree and number of cycles is fitted by polynomial fitting, then the number of loading cycles can be concluded when the specimen is complete damage. Strength degradation of two brands dental zirconia ceramics are researched in vitro, and prediction method of contact fatigue lifetime is established.

  13. Development and Validation of a Computational Model for Predicting the Behavior of Plumes from Large Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Wells, Jason E.; Black, David L.; Taylor, Casey L.

    2013-01-01

    Exhaust plumes from large solid rocket motors fired at ATK's Promontory test site carry particulates to high altitudes and typically produce deposits that fall on regions downwind of the test area. As populations and communities near the test facility grow, ATK has become increasingly concerned about the impact of motor testing on those surrounding communities. To assess the potential impact of motor testing on the community and to identify feasible mitigation strategies, it is essential to have a tool capable of predicting plume behavior downrange of the test stand. A software package, called PlumeTracker, has been developed and validated at ATK for this purpose. The code is a point model that offers a time-dependent, physics-based description of plume transport and precipitation. The code can utilize either measured or forecasted weather data to generate plume predictions. Next-Generation Radar (NEXRAD) data and field observations from twenty-three historical motor test fires at Promontory were collected to test the predictive capability of PlumeTracker. Model predictions for plume trajectories and deposition fields were found to correlate well with the collected dataset.

  14. Fine-Motor Skill Deficits in Childhood Predict Adulthood Tic Severity and Global Psychosocial Functioning in Tourette's Syndrome

    ERIC Educational Resources Information Center

    Bloch, Michael H.; Sukhodolsky, Denis G.; Leckman, James F.; Schultz, Robert T.

    2006-01-01

    Background: Most children with Tourette's syndrome (TS) experience a significant decline in tic symptoms during adolescence. Currently no clinical measures have been identified that can predict whose tic symptoms will persist into adulthood. Patients with TS have deficits on neuropsychological tests involving fine-motor coordination and…

  15. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity

    NASA Astrophysics Data System (ADS)

    Whitehead, Kathryn A.; Dorkin, J. Robert; Vegas, Arturo J.; Chang, Philip H.; Veiseh, Omid; Matthews, Jonathan; Fenton, Owen S.; Zhang, Yunlong; Olejnik, Karsten T.; Yesilyurt, Volkan; Chen, Delai; Barros, Scott; Klebanov, Boris; Novobrantseva, Tatiana; Langer, Robert; Anderson, Daniel G.

    2014-06-01

    One of the most significant challenges in the development of clinically viable delivery systems for RNA interference therapeutics is to understand how molecular structures influence delivery efficacy. Here, we have synthesized 1,400 degradable lipidoids and evaluate their transfection ability and structure-function activity. We show that lipidoid nanoparticles mediate potent gene knockdown in hepatocytes and immune cell populations on IV administration to mice (siRNA EC50 values as low as 0.01 mg kg-1). We identify four necessary and sufficient structural and pKa criteria that robustly predict the ability of nanoparticles to mediate greater than 95% protein silencing in vivo. Because these efficacy criteria can be dictated through chemical design, this discovery could eliminate our dependence on time-consuming and expensive cell culture assays and animal testing. Herein, we identify promising degradable lipidoids and describe new design criteria that reliably predict in vivo siRNA delivery efficacy without any prior biological testing.

  16. Exploring the Fundamental Dynamics of Error-Based Motor Learning Using a Stationary Predictive-Saccade Task

    PubMed Central

    Wong, Aaron L.; Shelhamer, Mark

    2011-01-01

    The maintenance of movement accuracy uses prior performance errors to correct future motor plans; this motor-learning process ensures that movements remain quick and accurate. The control of predictive saccades, in which anticipatory movements are made to future targets before visual stimulus information becomes available, serves as an ideal paradigm to analyze how the motor system utilizes prior errors to drive movements to a desired goal. Predictive saccades constitute a stationary process (the mean and to a rough approximation the variability of the data do not vary over time, unlike a typical motor adaptation paradigm). This enables us to study inter-trial correlations, both on a trial-by-trial basis and across long blocks of trials. Saccade errors are found to be corrected on a trial-by-trial basis in a direction-specific manner (the next saccade made in the same direction will reflect a correction for errors made on the current saccade). Additionally, there is evidence for a second, modulating process that exhibits long memory. That is, performance information, as measured via inter-trial correlations, is strongly retained across a large number of saccades (about 100 trials). Together, this evidence indicates that the dynamics of motor learning exhibit complexities that must be carefully considered, as they cannot be fully described with current state-space (ARMA) modeling efforts. PMID:21966462

  17. Lack of motor prediction, rather than perceptual conflict, evokes an odd sensation upon stepping onto a stopped escalator.

    PubMed

    Gomi, Hiroaki; Sakurada, Takeshi; Fukui, Takao

    2014-01-01

    When stepping onto a stopped escalator, we often perceive an "odd sensation" that is never felt when stepping onto stairs. The sight of an escalator provides a strong contextual cue that, in expectation of the backward acceleration when stepping on, triggers an anticipatory forward postural adjustment driven by a habitual and implicit motor process. Here we contrast two theories about why this postural change leads to an odd sensation. The first theory links the odd sensation to a lack of sensorimotor prediction from all low-level implicit motor processes. The second theory links the odd sensation to the high-level conflict between the conscious awareness that the escalator is stopped and the implicit perception that evokes an endogenous motor program specific to a moving escalator. We show very similar postural changes can also arise from reflexive responses to visual stimuli, such as contracting/expanding optic flow fields, and that these reflexive responses produce similar odd sensations to the stopped escalator. We conclude that the high-level conflict is not necessary for such sensations. In contrast, the implicitly driven behavioral change itself essentially leads to the odd sensation in motor perception since the unintentional change may be less attributable to self-generated action because of a lack of motor predictions. PMID:24688460

  18. Does implicit motor imagery ability predict reaching correction efficiency? A test of recent models of human motor control.

    PubMed

    Hyde, Christian; Wilmut, Kate; Fuelscher, Ian; Williams, Jacqueline

    2013-01-01

    Neurocomputational models of reaching indicate that efficient purposive correction of movement midflight (e.g., online control) depends on one's ability to generate and monitor an accurate internal (neural) movement representation. In the first study to test this empirically, the authors investigated the relationship between healthy young adults' implicit motor imagery performance and their capacity to correct their reaching trajectory. As expected, after controlling for general reaching speed, hierarchical regression demonstrated that imagery ability was a significant predictor of hand correction speed; that is, faster and more accurate imagery performance associated with faster corrections to reaching following target displacement at movement onset. They argue that these findings provide preliminary support for the view that a link exists between an individual's ability to represent movement mentally and correct movement online efficiently.

  19. Prediction of troponin-T degradation using color image texture features in 10d aged beef longissimus steaks.

    PubMed

    Sun, X; Chen, K J; Berg, E P; Newman, D J; Schwartz, C A; Keller, W L; Maddock Carlin, K R

    2014-02-01

    The objective was to use digital color image texture features to predict troponin-T degradation in beef. Image texture features, including 88 gray level co-occurrence texture features, 81 two-dimension fast Fourier transformation texture features, and 48 Gabor wavelet filter texture features, were extracted from color images of beef strip steaks (longissimus dorsi, n = 102) aged for 10d obtained using a digital camera and additional lighting. Steaks were designated degraded or not-degraded based on troponin-T degradation determined on d 3 and d 10 postmortem by immunoblotting. Statistical analysis (STEPWISE regression model) and artificial neural network (support vector machine model, SVM) methods were designed to classify protein degradation. The d 3 and d 10 STEPWISE models were 94% and 86% accurate, respectively, while the d 3 and d 10 SVM models were 63% and 71%, respectively, in predicting protein degradation in aged meat. STEPWISE and SVM models based on image texture features show potential to predict troponin-T degradation in meat. PMID:24200578

  20. Magnetic Circuit Model of PM Motor-Generator to Predict Radial Forces

    NASA Technical Reports Server (NTRS)

    McLallin, Kerry (Technical Monitor); Kascak, Peter E.; Dever, Timothy P.; Jansen, Ralph H.

    2004-01-01

    A magnetic circuit model is developed for a PM motor for flywheel applications. A sample motor is designed and modeled. Motor configuration and selection of materials is discussed, and the choice of winding configuration is described. A magnetic circuit model is described, which includes the stator back iron, rotor yoke, permanent magnets, air gaps and the stator teeth. Iterative solution of this model yields flux linkages, back EMF, torque, power, and radial force at the rotor caused by eccentricity. Calculated radial forces are then used to determine motor negative stiffness.

  1. Presence of Motor-Intentional Aiming Deficit Predicts Functional Improvement of Spatial Neglect with Prism Adaptation

    PubMed Central

    Goedert, Kelly M.; Chen, Peii; Boston, Raymond C.; Foundas, Anne L.; Barrett, A. M.

    2013-01-01

    Spatial neglect is a debilitating disorder for which there is no agreed upon course of rehabilitation. The lack of consensus on treatment may result from systematic differences in the syndromes’ characteristics, with spatial cognitive deficits potentially affecting perceptual-attentional Where or motor-intentional Aiming spatial processing. Heterogeneity of response to treatment might be explained by different treatment impact on these dissociated deficits: prism adaptation, for example, might reduce Aiming deficits without affecting Where spatial deficits. Here, we tested the hypothesis that classifying patients by their profile of Where-vs-Aiming spatial deficit would predict response to prism adaptation, and specifically that patients with Aiming bias would have better recovery than those with isolated Where bias. We classified the spatial errors of 24 sub-acute right-stroke survivors with left spatial neglect as: 1) isolated Where bias, 2) isolated Aiming bias or 3) both. Participants then completed two weeks of prism adaptation treatment. They also completed the Behavioral Inattention Test (BIT) and Catherine Bergego Scale (CBS) tests of neglect recovery weekly for six weeks. As hypothesized, participants with only Aiming deficits improved on the CBS, whereas, those with only Where deficits did not improve. Participants with both deficits demonstrated intermediate improvement. These results support behavioral classification of spatial neglect patients as a potential valuable tool for assigning targeted, effective early rehabilitation. PMID:24376064

  2. Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia

    PubMed Central

    2014-01-01

    degradation, was indicated by predictive bacterial metagenome reconstruction. Reassuringly, tests for specific (hemi)cellulolytic enzymatic activities, performed on the consortial secretomes, confirmed the presence of such gene functions. Conclusion In an in-depth characterization of two wheat straw degrading microbial consortia, we revealed the enrichment and selection of specific bacterial and fungal taxa that were presumably involved in (hemi) cellulose degradation. Interestingly, the microbial community composition was strongly influenced by the wheat straw pretreatment. Finally, the functional bacterial-metagenome prediction and the evaluation of enzymatic activities (at the consortial secretomes) revealed the presence and enrichment of proteins involved in the deconstruction of plant biomass. PMID:24955113

  3. Toxic chemicals in environment and models for predicting their degradation and fate

    SciTech Connect

    Sabljic, A.

    1996-12-31

    During the last 50 years many man-made chemicals have reached every corner of the global environment despite the limitations on their use in some regions and the fact that many of them were not deliberately released into the environment. Both the mobility and persistence of commercial chemicals are the key factors for evaluating their ultimate fate and possible adverse effects on mankind and environment. The notorious global adverse effects are climate changes such as global warming, acid rain, forest decline, as well as permanent degradation of the environment and quality of life. Global and regional models have been developed for predicting transport of chemicals in atmosphere, hydrosphere, and biosphere and hence their ultimate fate or their environmental sinks. Performance of these models will be demonstrated on several classes of persistent organic chemicals. However, in order to work reliably, global and regional models for environmental fate of chemicals require, as input parameters, their physico-chemical properties and reactivity data. Unfortunately, these data are unavailable for the majority of commercial chemicals and necessary data must be calculated or estimated. The present state of the art on the calculation and estimation of several critical environmental parameters, i.e. soil sorption coefficients, tropospheric and microbiological degradation rates will be presented and evaluated including the most recent results from our laboratory.

  4. Functional lateralization in cingulate cortex predicts motor recovery after basal ganglia stroke.

    PubMed

    Li, Yao; Chen, Zengai; Su, Xin; Zhang, Xiaoliu; Wang, Ping; Zhu, Yajing; Xu, Qun; Xu, Jianrong; Tong, Shanbao

    2016-02-01

    The basal ganglia (BG) is involved in higher order motor control such as movement planning and execution of complex motor synergies. Neuroimaging study on stroke patients specifically with BG lesions would help to clarify the consequence of BG damage on motor control. In this paper, we performed a longitudinal study in the stroke patients with lesions in BG regions across three motor recovery stages, i.e., less than 2week (Session 1), 1-3m (Session 2) and more than 3m (Session 3). The patients showed an activation shift from bilateral hemispheres during early sessions (<3m) to the ipsilesional cortex in late session (>3m), suggesting a compensation effect from the contralesional hemisphere during motor recovery. We found that the lateralization of cerebellum(CB) for affected hand task correlated with patients' concurrent Fugl-Meyer index (FMI) in Session 2. Moreover, the cingulate cortex lateralization index in Session 2 was shown to significantly correlate with subsequent FMI change between Session 3 and Session 2, which serves as a prognostic marker for motor recovery. Our findings consolidated the close interactions between BG and CB during the motor recovery after stroke. The dominance of activation in contralateral cingulate cortex was associated with a better motor recovery, suggesting the important role of ipsilesional attention modulation in the early stage after BG stroke. PMID:26742641

  5. Brainstem White Matter Predicts Individual Differences in Manual Motor Difficulties and Symptom Severity in Autism

    ERIC Educational Resources Information Center

    Travers, Brittany G.; Bigler, Erin D.; Tromp, Do P. M.; Adluru, Nagesh; Destiche, Dan; Samsin, Danica; Froehlich, Alyson; Prigge, Molly D. B.; Duffield, Tyler C.; Lange, Nicholas; Alexander, Andrew L.; Lainhart, Janet E.

    2015-01-01

    Mounting evidence suggests that poorer motor skills may be related to more severe autism symptoms. This study investigated if atypical white matter microstructure in the brain mediated the relationship between motor skills and ASD symptom severity. Sixty-seven males with ASD and 42 males with typical development (5-33 years old) completed a…

  6. Usefulness of voxel-based lesion mapping for predicting motor recovery in subjects with basal ganglia hemorrhage

    PubMed Central

    Kim, Dae Hyun; Kyeong, Sunghyon; Cho, Yoona; Jung, Tae-min; Ahn, Sung Jun; Park, Yoon Ghil

    2016-01-01

    Abstract It is important to estimate motor recovery in the early phase after stroke. Many studies have demonstrated that both diffusion tensor tractography (DTT) and motor-evoked potentials (MEP) are valuable predictors of motor recovery, but these modalities do not directly reflect the status of the injured gray matter. We report on 2 subjects with basal ganglia hemorrhage who showed similar DTT and MEP findings, but had markedly different clinical outcomes. Specifically, Subject 1 showed no improvement in motor function, whereas Subject 2 exhibited substantial improvement 7 weeks after onset. To determine if differences in gray matter might lend insight into these different outcomes, we analyzed gray matter lesions of the 2 subjects using a novel voxel-based lesion mapping method. The lesion of Subject 1 mainly included the putamen, thalamus, and Heschl's gyri, indicating extension of the hemorrhage in the posterior direction. In contrast, the lesion of Subject 2 mainly included the putamen, insula, and pallidum, indicating that the hemorrhage extended anterior laterally. These differential findings suggest that voxel-based gray matter lesion mapping may help to predict differential motor recovery in subjects with basal ganglia hemorrhage with similar DTT and MEP findings. PMID:27281090

  7. Rapid Responsiveness to Practice Predicts Longer-Term Retention of Upper Extremity Motor Skill in Non-Demented Older Adults

    PubMed Central

    Schaefer, Sydney Y.; Duff, Kevin

    2015-01-01

    Skill acquisition is a form of motor learning that may provide key insights into the aging brain. Although previous work suggests that older adults learn novel motor tasks slower and to a lesser extent than younger adults, we have recently demonstrated no significant effect of chronological age on the rates and amounts of skill acquisition, nor on its long-term retention, in adults over the age of 65. To better understand predictors of skill acquisition in non-demented older adults, we now explore the relationship between early improvements in motor performance due to practice (i.e., rapid responsiveness) and longer-term retention of an upper extremity motor skill, and whether the extent of rapid responsiveness was associated with global cognitive status. Results showed significant improvements in motor performance within the first five (of 150) trials, and that this “rapid responsiveness” was predictive of skill retention 1 month later. Notably, the extent of rapid responsiveness was not dependent on global cognitive status, as measured by the Montreal Cognitive Assessment (MoCA). Thus, rapid responsiveness appears to be an important variable in longer-term neurorehabilitative efforts with older adults, regardless of their cognitive status. PMID:26635601

  8. Myxococcus xanthus Gliding Motors Are Elastically Coupled to the Substrate as Predicted by the Focal Adhesion Model of Gliding Motility

    PubMed Central

    Balagam, Rajesh; Litwin, Douglas B.; Czerwinski, Fabian; Sun, Mingzhai; Kaplan, Heidi B.; Shaevitz, Joshua W.; Igoshin, Oleg A.

    2014-01-01

    Myxococcus xanthus is a model organism for studying bacterial social behaviors due to its ability to form complex multi-cellular structures. Knowledge of M. xanthus surface gliding motility and the mechanisms that coordinated it are critically important to our understanding of collective cell behaviors. Although the mechanism of gliding motility is still under investigation, recent experiments suggest that there are two possible mechanisms underlying force production for cell motility: the focal adhesion mechanism and the helical rotor mechanism, which differ in the biophysics of the cell–substrate interactions. Whereas the focal adhesion model predicts an elastic coupling, the helical rotor model predicts a viscous coupling. Using a combination of computational modeling, imaging, and force microscopy, we find evidence for elastic coupling in support of the focal adhesion model. Using a biophysical model of the M. xanthus cell, we investigated how the mechanical interactions between cells are affected by interactions with the substrate. Comparison of modeling results with experimental data for cell-cell collision events pointed to a strong, elastic attachment between the cell and substrate. These results are robust to variations in the mechanical and geometrical parameters of the model. We then directly measured the motor-substrate coupling by monitoring the motion of optically trapped beads and find that motor velocity decreases exponentially with opposing load. At high loads, motor velocity approaches zero velocity asymptotically and motors remain bound to beads indicating a strong, elastic attachment. PMID:24810164

  9. Strength degradation and lifetime prediction of dental zirconia ceramics under cyclic normal loading.

    PubMed

    Li, Wanzhong; Xu, Yingqiang; He, Huiming; Zhao, Haidan; Sun, Jian; Hou, Yue

    2015-01-01

    Clinical cases show that zirconia restoration could happen fracture by accident under overloading after using a period of time. The purpose of this study is to research mechanical behavior and predict lifetime of dental zirconia ceramics under cyclic normal contact loading with experiments. Cyclic normal contact loading test and three point bending test are carried on specimens made of two brands of dental zirconia ceramic to obtain flexure strength and damage degree after different number of loading cycles. By means of damage mechanics model, damage degree under different number of contact loading cycles are calculated according to flexure strength, and verified by SEM photographs of cross section morphology of zirconia ceramics specimen phenomenologically. Relation curve of damage degree and number of cycles is fitted by polynomial fitting, then the number of loading cycles can be concluded when the specimen is complete damage. Strength degradation of two brands dental zirconia ceramics are researched in vitro, and prediction method of contact fatigue lifetime is established. PMID:26405889

  10. Visuo-motor coordination ability predicts performance with brain-computer interfaces controlled by modulation of sensorimotor rhythms (SMR).

    PubMed

    Hammer, Eva M; Kaufmann, Tobias; Kleih, Sonja C; Blankertz, Benjamin; Kübler, Andrea

    2014-01-01

    Modulation of sensorimotor rhythms (SMR) was suggested as a control signal for brain-computer interfaces (BCI). Yet, there is a population of users estimated between 10 to 50% not able to achieve reliable control and only about 20% of users achieve high (80-100%) performance. Predicting performance prior to BCI use would facilitate selection of the most feasible system for an individual, thus constitute a practical benefit for the user, and increase our knowledge about the correlates of BCI control. In a recent study, we predicted SMR-BCI performance from psychological variables that were assessed prior to the BCI sessions and BCI control was supported with machine-learning techniques. We described two significant psychological predictors, namely the visuo-motor coordination ability and the ability to concentrate on the task. The purpose of the current study was to replicate these results thereby validating these predictors within a neurofeedback based SMR-BCI that involved no machine learning.Thirty-three healthy BCI novices participated in a calibration session and three further neurofeedback training sessions. Two variables were related with mean SMR-BCI performance: (1) a measure for the accuracy of fine motor skills, i.e., a trade for a person's visuo-motor control ability; and (2) subject's "attentional impulsivity". In a linear regression they accounted for almost 20% in variance of SMR-BCI performance, but predictor (1) failed significance. Nevertheless, on the basis of our prior regression model for sensorimotor control ability we could predict current SMR-BCI performance with an average prediction error of M = 12.07%. In more than 50% of the participants, the prediction error was smaller than 10%. Hence, psychological variables played a moderate role in predicting SMR-BCI performance in a neurofeedback approach that involved no machine learning. Future studies are needed to further consolidate (or reject) the present predictors.

  11. Visuo-motor coordination ability predicts performance with brain-computer interfaces controlled by modulation of sensorimotor rhythms (SMR)

    PubMed Central

    Hammer, Eva M.; Kaufmann, Tobias; Kleih, Sonja C.; Blankertz, Benjamin; Kübler, Andrea

    2014-01-01

    Modulation of sensorimotor rhythms (SMR) was suggested as a control signal for brain-computer interfaces (BCI). Yet, there is a population of users estimated between 10 to 50% not able to achieve reliable control and only about 20% of users achieve high (80–100%) performance. Predicting performance prior to BCI use would facilitate selection of the most feasible system for an individual, thus constitute a practical benefit for the user, and increase our knowledge about the correlates of BCI control. In a recent study, we predicted SMR-BCI performance from psychological variables that were assessed prior to the BCI sessions and BCI control was supported with machine-learning techniques. We described two significant psychological predictors, namely the visuo-motor coordination ability and the ability to concentrate on the task. The purpose of the current study was to replicate these results thereby validating these predictors within a neurofeedback based SMR-BCI that involved no machine learning.Thirty-three healthy BCI novices participated in a calibration session and three further neurofeedback training sessions. Two variables were related with mean SMR-BCI performance: (1) a measure for the accuracy of fine motor skills, i.e., a trade for a person’s visuo-motor control ability; and (2) subject’s “attentional impulsivity”. In a linear regression they accounted for almost 20% in variance of SMR-BCI performance, but predictor (1) failed significance. Nevertheless, on the basis of our prior regression model for sensorimotor control ability we could predict current SMR-BCI performance with an average prediction error of M = 12.07%. In more than 50% of the participants, the prediction error was smaller than 10%. Hence, psychological variables played a moderate role in predicting SMR-BCI performance in a neurofeedback approach that involved no machine learning. Future studies are needed to further consolidate (or reject) the present predictors. PMID:25147518

  12. Degradation Rate of 5-Fluorouracil in Metastatic Colorectal Cancer: A New Predictive Outcome Biomarker?

    PubMed Central

    Botticelli, Andrea; Borro, Marina; Onesti, Concetta Elisa; Strigari, Lidia; Gentile, Giovanna; Cerbelli, Bruna; Romiti, Adriana; Occhipinti, Mario; Sebastiani, Claudia; Lionetto, Luana; Marchetti, Luca; Simmaco, Maurizio; Marchetti, Paolo; Mazzuca, Federica

    2016-01-01

    Background 5-FU based chemotherapy is the most common first line regimen used for metastatic colorectal cancer (mCRC). Identification of predictive markers of response to chemotherapy is a challenging approach for drug selection. The present study analyzes the predictive role of 5-FU degradation rate (5-FUDR) and genetic polymorphisms (MTHFR, TSER, DPYD) on survival. Materials and Methods Genetic polymorphisms of MTHFR, TSER and DPYD, and the 5-FUDR of homogenous patients with mCRC were retrospectively studied. Genetic markers and the 5-FUDR were correlated with clinical outcome. Results 133 patients affected by mCRC, treated with fluoropyrimidine-based chemotherapy from 2009 to 2014, were evaluated. Patients were classified into three metabolic classes, according to normal distribution of 5-FUDR in more than 1000 patients, as previously published: poor-metabolizer (PM) with 5-FU-DR ≤ 0,85 ng/ml/106 cells/min (8 pts); normal metabolizer with 0,85 < 5-FU-DR < 2,2 ng/ml/106 cells/min (119 pts); ultra-rapid metabolizer (UM) with 5-FU-DR ≥ 2,2 ng/ml/106 cells/min (6 pts). PM and UM groups showed a longer PFS respect to normal metabolizer group (14.5 and 11 months respectively vs 8 months; p = 0.029). A higher G3-4 toxicity rate was observed in PM and UM, respect to normal metabolizer (50% in both PM and UM vs 18%; p = 0.019). No significant associations between genes polymorphisms and outcomes or toxicities were observed. Conclusion 5-FUDR seems to be significantly involved in predicting survival of patients who underwent 5-FU based CHT for mCRC. Although our findings require confirmation in large prospective studies, they reinforce the concept that individual genetic variation may allow personalized selection of chemotherapy to optimize clinical outcomes. PMID:27656891

  13. Coherent neural oscillations predict future motor and language improvement after stroke.

    PubMed

    Nicolo, Pierre; Rizk, Sviatlana; Magnin, Cécile; Pietro, Marie Di; Schnider, Armin; Guggisberg, Adrian G

    2015-10-01

    Recent findings have demonstrated that stroke lesions affect neural communication in the entire brain. However, it is less clear whether network interactions are also relevant for plasticity and repair. This study investigated whether the coherence of neural oscillations at language or motor nodes is associated with future clinical improvement. Twenty-four stroke patients underwent high-density EEG recordings and standardized motor and language tests at 2-3 weeks (T0) and 3 months (T1) after stroke onset. In addition, EEG and motor assessments were obtained from a second population of 18 stroke patients. The graph theoretical measure of weighted node degree at language and motor areas was computed as the sum of absolute imaginary coherence with all other brain regions and compared to the amount of clinical improvement from T0 to T1. At T0, beta-band weighted node degree at the ipsilesional motor cortex was linearly correlated with better subsequent motor improvement, while beta-band weighted node degree at Broca's area was correlated with better language improvement. Clinical recovery was further associated with contralesional theta-band weighted node degree. These correlations were each specific to the corresponding brain area and independent of initial clinical severity, age, and lesion size. Findings were reproduced in the second stroke group. Conversely, later coherence increases occurring between T0 and T1 were associated with less clinical improvement. Improvement of language and motor functions after stroke is therefore associated with inter-regional synchronization of neural oscillations in the first weeks after stroke. A better understanding of network mechanisms of plasticity may lead to new prognostic biomarkers and therapeutic targets.See Ward (doi:10.1093/brain/awv265) for a scientific commentary on this article. PMID:26163304

  14. Higher Levels of Psychopathy Predict Poorer Motor Control: Implications for Understanding the Psychopathy Construct

    PubMed Central

    Robinson, Michael D.; Bresin, Konrad

    2014-01-01

    A review of the literature suggests that higher levels of psychopathy may be linked to less effective behavioral control. However, several commentators have urged caution in making statements of this type in the absence of direct evidence. In two studies (total N = 142), moment-to-moment accuracy in a motor control task was examined as a function of dimensional variations in psychopathy in an undergraduate population. As hypothesized, motor control was distinctively worse at higher levels of psychopathy relative to lower levels, both as a function of primary and secondary psychopathy and particularly their shared variance. These novel findings provide support for the idea that motor control systematically varies by psychopathy, in a basic manner, consistent with views of psychopathy emphasizing lesser control. PMID:25419045

  15. Induction of Neuron-Specific Degradation of Coenzyme A Models Pantothenate Kinase-Associated Neurodegeneration by Reducing Motor Coordination in Mice

    PubMed Central

    Shumar, Stephanie A.; Fagone, Paolo; Alfonso-Pecchio, Adolfo; Gray, John T.; Rehg, Jerold E.; Jackowski, Suzanne; Leonardi, Roberta

    2015-01-01

    Background Pantothenate kinase-associated neurodegeneration, PKAN, is an inherited disorder characterized by progressive impairment in motor coordination and caused by mutations in PANK2, a human gene that encodes one of four pantothenate kinase (PanK) isoforms. PanK initiates the synthesis of coenzyme A (CoA), an essential cofactor that plays a key role in energy metabolism and lipid synthesis. Most of the mutations in PANK2 reduce or abolish the activity of the enzyme. This evidence has led to the hypothesis that lower CoA might be the underlying cause of the neurodegeneration in PKAN patients; however, no mouse model of the disease is currently available to investigate the connection between neuronal CoA levels and neurodegeneration. Indeed, genetic and/or dietary manipulations aimed at reducing whole-body CoA synthesis have not produced a desirable PKAN model, and this has greatly hindered the discovery of a treatment for the disease. Objective, Methods, Results and Conclusions Cellular CoA levels are tightly regulated by a balance between synthesis and degradation. CoA degradation is catalyzed by two peroxisomal nudix hydrolases, Nudt7 and Nudt19. In this study we sought to reduce neuronal CoA in mice through the alternative approach of increasing Nudt7-mediated CoA degradation. This was achieved by combining the use of an adeno-associated virus-based expression system with the synapsin (Syn) promoter. We show that mice with neuronal overexpression of a cytosolic version of Nudt7 (scAAV9-Syn-Nudt7cyt) exhibit a significant decrease in brain CoA levels in conjunction with a reduction in motor coordination. These results strongly support the existence of a link between CoA levels and neuronal function and show that scAAV9-Syn-Nudt7cyt mice can be used to model PKAN. PMID:26052948

  16. Pre-Trial EEG-Based Single-Trial Motor Performance Prediction to Enhance Neuroergonomics for a Hand Force Task.

    PubMed

    Meinel, Andreas; Castaño-Candamil, Sebastián; Reis, Janine; Tangermann, Michael

    2016-01-01

    We propose a framework for building electrophysiological predictors of single-trial motor performance variations, exemplified for SVIPT, a sequential isometric force control task suitable for hand motor rehabilitation after stroke. Electroencephalogram (EEG) data of 20 subjects with mean age of 53 years was recorded prior to and during 400 trials of SVIPT. They were executed within a single session with the non-dominant left hand, while receiving continuous visual feedback of the produced force trajectories. The behavioral data showed strong trial-by-trial performance variations for five clinically relevant metrics, which accounted for reaction time as well as for the smoothness and precision of the produced force trajectory. 18 out of 20 tested subjects remained after preprocessing and entered offline analysis. Source Power Comodulation (SPoC) was applied on EEG data of a short time interval prior to the start of each SVIPT trial. For 11 subjects, SPoC revealed robust oscillatory EEG subspace components, whose bandpower activity are predictive for the performance of the upcoming trial. Since SPoC may overfit to non-informative subspaces, we propose to apply three selection criteria accounting for the meaningfulness of the features. Across all subjects, the obtained components were spread along the frequency spectrum and showed a variety of spatial activity patterns. Those containing the highest level of predictive information resided in and close to the alpha band. Their spatial patterns resemble topologies reported for visual attention processes as well as those of imagined or executed hand motor tasks. In summary, we identified subject-specific single predictors that explain up to 36% of the performance fluctuations and may serve for enhancing neuroergonomics of motor rehabilitation scenarios. PMID:27199701

  17. Pre-Trial EEG-Based Single-Trial Motor Performance Prediction to Enhance Neuroergonomics for a Hand Force Task

    PubMed Central

    Meinel, Andreas; Castaño-Candamil, Sebastián; Reis, Janine; Tangermann, Michael

    2016-01-01

    We propose a framework for building electrophysiological predictors of single-trial motor performance variations, exemplified for SVIPT, a sequential isometric force control task suitable for hand motor rehabilitation after stroke. Electroencephalogram (EEG) data of 20 subjects with mean age of 53 years was recorded prior to and during 400 trials of SVIPT. They were executed within a single session with the non-dominant left hand, while receiving continuous visual feedback of the produced force trajectories. The behavioral data showed strong trial-by-trial performance variations for five clinically relevant metrics, which accounted for reaction time as well as for the smoothness and precision of the produced force trajectory. 18 out of 20 tested subjects remained after preprocessing and entered offline analysis. Source Power Comodulation (SPoC) was applied on EEG data of a short time interval prior to the start of each SVIPT trial. For 11 subjects, SPoC revealed robust oscillatory EEG subspace components, whose bandpower activity are predictive for the performance of the upcoming trial. Since SPoC may overfit to non-informative subspaces, we propose to apply three selection criteria accounting for the meaningfulness of the features. Across all subjects, the obtained components were spread along the frequency spectrum and showed a variety of spatial activity patterns. Those containing the highest level of predictive information resided in and close to the alpha band. Their spatial patterns resemble topologies reported for visual attention processes as well as those of imagined or executed hand motor tasks. In summary, we identified subject-specific single predictors that explain up to 36% of the performance fluctuations and may serve for enhancing neuroergonomics of motor rehabilitation scenarios. PMID:27199701

  18. Pre-Trial EEG-Based Single-Trial Motor Performance Prediction to Enhance Neuroergonomics for a Hand Force Task.

    PubMed

    Meinel, Andreas; Castaño-Candamil, Sebastián; Reis, Janine; Tangermann, Michael

    2016-01-01

    We propose a framework for building electrophysiological predictors of single-trial motor performance variations, exemplified for SVIPT, a sequential isometric force control task suitable for hand motor rehabilitation after stroke. Electroencephalogram (EEG) data of 20 subjects with mean age of 53 years was recorded prior to and during 400 trials of SVIPT. They were executed within a single session with the non-dominant left hand, while receiving continuous visual feedback of the produced force trajectories. The behavioral data showed strong trial-by-trial performance variations for five clinically relevant metrics, which accounted for reaction time as well as for the smoothness and precision of the produced force trajectory. 18 out of 20 tested subjects remained after preprocessing and entered offline analysis. Source Power Comodulation (SPoC) was applied on EEG data of a short time interval prior to the start of each SVIPT trial. For 11 subjects, SPoC revealed robust oscillatory EEG subspace components, whose bandpower activity are predictive for the performance of the upcoming trial. Since SPoC may overfit to non-informative subspaces, we propose to apply three selection criteria accounting for the meaningfulness of the features. Across all subjects, the obtained components were spread along the frequency spectrum and showed a variety of spatial activity patterns. Those containing the highest level of predictive information resided in and close to the alpha band. Their spatial patterns resemble topologies reported for visual attention processes as well as those of imagined or executed hand motor tasks. In summary, we identified subject-specific single predictors that explain up to 36% of the performance fluctuations and may serve for enhancing neuroergonomics of motor rehabilitation scenarios.

  19. Glycan Degradation (GlyDeR) Analysis Predicts Mammalian Gut Microbiota Abundance and Host Diet-Specific Adaptations

    PubMed Central

    Zarecki, Raphy; Oberhardt, Matthew; Ursell, Luke K.; Kupiec, Martin; Knight, Rob; Gophna, Uri; Ruppin, Eytan

    2014-01-01

    ABSTRACT Glycans form the primary nutritional source for microbes in the human gut, and understanding their metabolism is a critical yet understudied aspect of microbiome research. Here, we present a novel computational pipeline for modeling glycan degradation (GlyDeR) which predicts the glycan degradation potency of 10,000 reference glycans based on either genomic or metagenomic data. We first validated GlyDeR by comparing degradation profiles for genomes in the Human Microbiome Project against KEGG reaction annotations. Next, we applied GlyDeR to the analysis of human and mammalian gut microbial communities, which revealed that the glycan degradation potential of a community is strongly linked to host diet and can be used to predict diet with higher accuracy than sequence data alone. Finally, we show that a microbe’s glycan degradation potential is significantly correlated (R = 0.46) with its abundance, with even higher correlations for potential pathogens such as the class Clostridia (R = 0.76). GlyDeR therefore represents an important tool for advancing our understanding of bacterial metabolism in the gut and for the future development of more effective prebiotics for microbial community manipulation. PMID:25118239

  20. Aberrant synchrony in the somatosensory cortices predicts motor performance errors in children with cerebral palsy.

    PubMed

    Kurz, Max J; Heinrichs-Graham, Elizabeth; Arpin, David J; Becker, Katherine M; Wilson, Tony W

    2014-02-01

    Cerebral palsy (CP) results from a perinatal brain injury that often results in sensory impairments and greater errors in motor performance. Although these impairments have been well catalogued, the relationship between sensory processing networks and errors in motor performance has not been well explored. Children with CP and typically developing age-matched controls participated in this investigation. We used high-density magnetoencephalography to measure event-related oscillatory changes in the somatosensory cortices following tactile stimulation to the bottom of the foot. In addition, we quantified the amount of variability or errors in the isometric ankle joint torques as these children attempted to match a target. Our results showed that neural populations in the somatosensory cortices of children with CP were desynchronized by the tactile stimulus, whereas those of typically developing children were clearly synchronized. Such desynchronization suggests that children with CP were unable to fully integrate the external stimulus into ongoing sensorimotor computations. Our results also indicated that children with CP had a greater amount of errors in their motor output when they attempted to match the target force, and this amount of error was negatively correlated with the degree of synchronization present in the somatosensory cortices. These results are the first to show that the motor performance errors of children with CP are linked with neural synchronization within the somatosensory cortices.

  1. The Bender Visual Motor Gestalt Test: Implications for the Diagnosis and Prediction of Reading Achievement.

    ERIC Educational Resources Information Center

    Lesiak, Judi

    1984-01-01

    Reviews 32 studies about the utility of the Bender Visual-Motor Gestalt Test (BG) as a predictor of reading, its relationship to reading achievement, and ability to differentiate between good and poor readers. Results question the use of the BG (scored using discrete error systems) in a diagnostic reading battery. (BH)

  2. Basal Ganglia Shapes Predict Social, Communication, and Motor Dysfunctions in Boys with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Qiu, Anqi; Adler, Marcy; Crocetti, Deana; Miller, Michael I.; Mostofsky, Stewart H.

    2010-01-01

    Objective: Basal ganglia abnormalities have been suggested as contributing to motor, social, and communicative impairments in autism spectrum disorder (ASD). Volumetric analyses offer limited ability to detect localized differences in basal ganglia structure. Our objective was to investigate basal ganglia shape abnormalities and their association…

  3. Neonatal White Matter Abnormality Predicts Childhood Motor Impairment in Very Preterm Children

    ERIC Educational Resources Information Center

    Spittle, Alicia J.; Cheong, Jeanie; Doyle, Lex W.; Roberts, Gehan; Lee, Katherine J.; Lim, Jeremy; Hunt, Rod W.; Inder, Terrie E.; Anderson, Peter J.

    2011-01-01

    Aim: Children born very preterm are at risk for impaired motor performance ranging from cerebral palsy (CP) to milder abnormalities, such as developmental coordination disorder. White matter abnormalities (WMA) at term have been associated with CP in very preterm children; however, little is known about the impact of WMA on the range of motor…

  4. Do Nimble Hands Make for Nimble Lexicons? Fine Motor Skills Predict Knowledge of Embodied Vocabulary Items

    ERIC Educational Resources Information Center

    Suggate, Sebastian P.; Stoeger, Heidrun

    2014-01-01

    Theories and research in embodied cognition postulate that cognition grounded in action enjoys a processing advantage. Extending this theory to the study of how fine motor skills (FMS) link to vocabulary development in preschool children, the authors investigated FMS and vocabulary in 76 preschoolers. Building on previous research, they…

  5. Fine Motor Skill Predicts Expressive Language in Infant Siblings of Children with Autism

    ERIC Educational Resources Information Center

    LeBarton, Eve Sauer; Iverson, Jana M.

    2013-01-01

    We investigated whether fine motor and expressive language skills are related in the later-born siblings of children with autism (heightened-risk, HR infants) who are at increased risk for language delays. We observed 34 HR infants longitudinally from 12 to 36 months. We used parent report and standardized observation measures to assess fine motor…

  6. Ruminal Degradability and Summative Models Evaluation for Total Digestible Nutrients Prediction of Some Forages and Byproducts in Goats

    PubMed Central

    López, Rafael

    2013-01-01

    In in vitro true dry matter degradability (IVTDMD), in situ dry matter degradability, and neutral detergent fiber degradability, both in vitro (IVNDFD) and in situ (ISNDFD) techniques were used with crossbred goats to determine dry matter and neutral detergent fiber (NDF) ruminal degradability in eight forages and four industrial byproducts. Total digestible nutrients (TDN) content obtained with five different summative models (summative equations) were studied to compare the precision of estimates. All these models included digestible fractions of crude protein, ether extract, and nonfiber carbohydrates that were calculated from chemical composition, but digestible NDF (dNDF) was obtained from IVNDFD (IVdNDF), ISNDFD (ISdNDF), or by using the Surface Law approach. On the basis of the coefficient of determination (R2) of the simple lineal regression of predicted TDN (y-axes) and observed IVTDMD (x-axes), the precision of models was tested. The predicted TDN by the National Research Council model exclusively based on chemical composition only explains up to 41% of observed IVTDMD values, whereas the model based on IVdNDF had a high precision (96%) to predict TDN from forage and byproducts fiber when used in goats. PMID:23762592

  7. Prediction of ionizing radiation effects induced performance degradation in homodyne BPSK based inter-satellite optical communication systems

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Zhao, Shanghong; Gong, Zizheng; Zhao, Jing; Li, Xuan; Dong, Chen

    2016-03-01

    Ionizing radiation effects induced on-orbit performance degradation in homodyne binary phase shift keying (BPSK) based inter-satellite optical communication system is predicted in this paper. Essential optoelectronic devices involved in optical communication system were irradiated by Co60 gamma ray and ionizing radiation environment of three general orbits was analyzed. On this basis, variations of terminal performance loss and system BER degradation along with on-orbit working time were simulated. Influences of terminal location and orbit environment were further discussed. Radiation protection on laser transmitters requires more strengthening, especially for those located in MEO and GEO satellites.

  8. Maximum tension predicts relative endurance of fast-twitch motor units in the cat.

    PubMed

    Botterman, B R; Cope, T C

    1988-10-01

    1. The relationships between maximum tetanic tension (P0), endurance time, and axonal conduction velocity (CV) were investigated in fast-twitch motor units of the cat flexor carpi radialis (FCR) and medial gastrocnemius (MG) muscles, and in one flexor digitorum longus (FDL) muscle. Endurance time was the length of time that a unit could maintain 25% of its maximum tetanic tension during a sustained contraction. Motor-unit tension was "clamped" at 25% of maximum by altering the stimulation rate of a unit's motor axon through computer feedback control. 2. In individual experiments, including the one investigated FDL muscle, an inverse relation was consistently found between maximum tension and endurance time. Pooled data from the FCR and MG muscles also resulted in significant correlations between maximum tetanic tension and endurance time. 3. Following the force-clamp contraction, some motor units were subjected to the standard fatigue test of Burke and colleagues (6). Motor units were classified as type FR (fast twitch, fatigue resistant) or type FF* (fast twitch, fast fatiguing after the force-clamp contraction). For both type FR and FF* units, maximum tetanic tension and endurance time were found to be inversely related. However, no correlation was found between maximum tetanic tension and fatigue index for type FR units. Only when all type F (FR + FF*) units were considered as a population was there a significant correlation between these two properties. 4. Other investigators have shown that maximum tetanic tension and axonal conduction velocity are highly correlated with the recruitment order of motoneurons (e.g., Refs. 2, 26). Endurance time was found to be more tightly coupled with contraction strength than with conduction velocity. In 12 of 14 experiments, significant Spearman rank correlation coefficients were found between endurance time and tension, whereas significant correlations were found in only 3 of 14 experiments for endurance time and conduction

  9. Sensory prediction or motor control? Application of marr-albus type models of cerebellar function to classical conditioning.

    PubMed

    Lepora, Nathan F; Porrill, John; Yeo, Christopher H; Dean, Paul

    2010-01-01

    Marr-Albus adaptive filter models of the cerebellum have been applied successfully to a range of sensory and motor control problems. Here we analyze their properties when applied to classical conditioning of the nictitating membrane response in rabbits. We consider a system-level model of eyeblink conditioning based on the anatomy of the eyeblink circuitry, comprising an adaptive filter model of the cerebellum, a comparator model of the inferior olive and a linear dynamic model of the nictitating membrane plant. To our knowledge, this is the first model that explicitly includes all these principal components, in particular the motor plant that is vital for shaping and timing the behavioral response. Model assumptions and parameters were systematically investigated to disambiguate basic computational capacities of the model from features requiring tuning of properties and parameter values. Without such tuning, the model robustly reproduced a range of behaviors related to sensory prediction, by displaying appropriate trial-level associative learning effects for both single and multiple stimuli, including blocking and conditioned inhibition. In contrast, successful reproduction of the real-time motor behavior depended on appropriate specification of the plant, cerebellum and comparator models. Although some of these properties appear consistent with the system biology, fundamental questions remain about how the biological parameters are chosen if the cerebellar microcircuit applies a common computation to many distinct behavioral tasks. It is possible that the response profiles in classical conditioning of the eyeblink depend upon operant contingencies that have previously prevailed, for example in naturally occurring avoidance movements.

  10. Computer model predictions of the local effects of large, solid-fuel rocket motors on stratospheric ozone. Technical report

    SciTech Connect

    Zittel, P.F.

    1994-09-10

    The solid-fuel rocket motors of large space launch vehicles release gases and particles that may significantly affect stratospheric ozone densities along the vehicle's path. In this study, standard rocket nozzle and flowfield computer codes have been used to characterize the exhaust gases and particles through the afterburning region of the solid-fuel motors of the Titan IV launch vehicle. The models predict that a large fraction of the HCl gas exhausted by the motors is converted to Cl and Cl2 in the plume afterburning region. Estimates of the subsequent chemistry suggest that on expansion into the ambient daytime stratosphere, the highly reactive chlorine may significantly deplete ozone in a cylinder around the vehicle track that ranges from 1 to 5 km in diameter over the altitude range of 15 to 40 km. The initial ozone depletion is estimated to occur on a time scale of less than 1 hour. After the initial effects, the dominant chemistry of the problem changes, and new models are needed to follow the further expansion, or closure, of the ozone hole on a longer time scale.

  11. Can Perceptuo-Motor Skills Assessment Outcomes in Young Table Tennis Players (7-11 years) Predict Future Competition Participation and Performance? An Observational Prospective Study.

    PubMed

    Faber, Irene R; Elferink-Gemser, Marije T; Faber, Niels R; Oosterveld, Frits G J; Nijhuis-Van der Sanden, Maria W G

    2016-01-01

    Forecasting future performance in youth table tennis players based on current performance is complex due to, among other things, differences between youth players in growth, development, maturity, context and table tennis experience. Talent development programmes might benefit from an assessment of underlying perceptuo-motor skills for table tennis, which is hypothesized to determine the players' potential concerning the perceptuo-motor domain. The Dutch perceptuo-motor skills assessment intends to measure the perceptuo-motor potential for table tennis in youth players by assessing the underlying skills crucial for developing technical and tactical qualities. Untrained perceptuo-motor tasks are used as these are suggested to represent a player's future potential better than specific sport skills themselves as the latter depend on exposure to the sport itself. This study evaluated the value of the perceptuo-motor skills assessment for a talent developmental programme by evaluating its predictive validity for competition participation and performance in 48 young table tennis players (7-11 years). Players were tested on their perceptuo-motor skills once during a regional talent day, and the subsequent competition results were recorded half-yearly over a period of 2.5 years. Logistic regression analysis showed that test scores did not predict future competition participation (p >0.05). Yet, the Generalized Estimating Equations analysis, including the test items 'aiming at target', 'throwing a ball', and 'eye-hand coordination' in the best fitting model, revealed that the outcomes of the perceptuo-motor skills assessment were significant predictors for future competition results (R2 = 51%). Since the test age influences the perceptuo-motor skills assessment's outcome, another multivariable model was proposed including test age as a covariate (R2 = 53%). This evaluation demonstrates promising prospects for the perceptuo-motor skills assessment to be included in a talent

  12. Can Perceptuo-Motor Skills Assessment Outcomes in Young Table Tennis Players (7-11 years) Predict Future Competition Participation and Performance? An Observational Prospective Study.

    PubMed

    Faber, Irene R; Elferink-Gemser, Marije T; Faber, Niels R; Oosterveld, Frits G J; Nijhuis-Van der Sanden, Maria W G

    2016-01-01

    Forecasting future performance in youth table tennis players based on current performance is complex due to, among other things, differences between youth players in growth, development, maturity, context and table tennis experience. Talent development programmes might benefit from an assessment of underlying perceptuo-motor skills for table tennis, which is hypothesized to determine the players' potential concerning the perceptuo-motor domain. The Dutch perceptuo-motor skills assessment intends to measure the perceptuo-motor potential for table tennis in youth players by assessing the underlying skills crucial for developing technical and tactical qualities. Untrained perceptuo-motor tasks are used as these are suggested to represent a player's future potential better than specific sport skills themselves as the latter depend on exposure to the sport itself. This study evaluated the value of the perceptuo-motor skills assessment for a talent developmental programme by evaluating its predictive validity for competition participation and performance in 48 young table tennis players (7-11 years). Players were tested on their perceptuo-motor skills once during a regional talent day, and the subsequent competition results were recorded half-yearly over a period of 2.5 years. Logistic regression analysis showed that test scores did not predict future competition participation (p >0.05). Yet, the Generalized Estimating Equations analysis, including the test items 'aiming at target', 'throwing a ball', and 'eye-hand coordination' in the best fitting model, revealed that the outcomes of the perceptuo-motor skills assessment were significant predictors for future competition results (R2 = 51%). Since the test age influences the perceptuo-motor skills assessment's outcome, another multivariable model was proposed including test age as a covariate (R2 = 53%). This evaluation demonstrates promising prospects for the perceptuo-motor skills assessment to be included in a talent

  13. Auditory-induced neural dynamics in sensory-motor circuitry predict learned temporal and sequential statistics of birdsong

    PubMed Central

    Bouchard, Kristofer E.; Brainard, Michael S.

    2016-01-01

    Predicting future events is a critical computation for both perception and behavior. Despite the essential nature of this computation, there are few studies demonstrating neural activity that predicts specific events in learned, probabilistic sequences. Here, we test the hypotheses that the dynamics of internally generated neural activity are predictive of future events and are structured by the learned temporal–sequential statistics of those events. We recorded neural activity in Bengalese finch sensory-motor area HVC in response to playback of sequences from individuals’ songs, and examined the neural activity that continued after stimulus offset. We found that the strength of response to a syllable in the sequence depended on the delay at which that syllable was played, with a maximal response when the delay matched the intersyllable gap normally present for that specific syllable during song production. Furthermore, poststimulus neural activity induced by sequence playback resembled the neural response to the next syllable in the sequence when that syllable was predictable, but not when the next syllable was uncertain. Our results demonstrate that the dynamics of internally generated HVC neural activity are predictive of the learned temporal–sequential structure of produced song and that the strength of this prediction is modulated by uncertainty. PMID:27506786

  14. A Prediction Model for Determining Over Ground Walking Speed After Locomotor Training in Persons With Motor Incomplete Spinal Cord Injury

    PubMed Central

    Winchester, Patricia; Smith, Patricia; Foreman, Nathan; Mosby, James M; Pacheco, Fides; Querry, Ross; Tansey, Keith

    2009-01-01

    Background/Objective: To develop and test a clinically relevant model for predicting the recovery of over ground walking speed after 36 sessions of progressive body weight–supported treadmill training (BWSTT) in individuals with motor incomplete spinal cord injury (SCI). Design: A retrospective review and stepwise regression analysis of a SCI clinical outcomes data set. Setting: Outpatient SCI laboratory. Subjects: Thirty individuals with a motor incomplete SCI who had participated in locomotor training with BWSTT. Eight individuals with similar diagnoses were used to prospectively test the prediction model. Main Outcome Measures: Over ground walking speed was assessed using the 10-m walking test. Methods: The locomotor training program consisted of 36 sessions of sequential comprehensive training comprised of robotic assisted BWSTT, followed by manual assisted BWSTT, and over ground walking. The dose of locomotor training was standardized throughout the protocol. Results: Clinical characteristics with predictive value for walking speed were time from injury onset, the presence or absence of voluntary bowel and bladder voiding, a functional spasticity assessment, and over ground walking speed before locomotor training. The model identified that these characteristics accounted for 78.3% of the variability in the actual final over ground walking speed after 36 sessions of locomotor training. The model was successful in prospectively predicting over ground walking speed in the 8 test participants within 4.15 ± 2.22 cm/s in their recovered walking speed. Conclusions: This prediction model can identify individuals who are most likely to experience success using locomotor training by determining an expected magnitude of training effect, thereby allowing individualized decisions regarding the use of this intensive approach to rehabilitation. PMID:19264051

  15. Development of Erosive Burning Models for CFD Predictions of Solid Rocket Motor Internal Environments

    NASA Technical Reports Server (NTRS)

    Wang, Qun-Zhen

    2003-01-01

    Four erosive burning models, equations (11) to (14). are developed in this work by using a power law relationship to correlate (1) the erosive burning ratio and the local velocity gradient at propellant surfaces; (2) the erosive burning ratio and the velocity gradient divided by centerline velocity; (3) the erosive burning difference and the local velocity gradient at propellant surfaces; and (4) the erosive burning difference and the velocity gradient divided by centerline velocity. These models depend on the local velocity gradient at the propellant surface (or the velocity gradient divided by centerline velocity) only and, unlike other empirical models, are independent of the motor size. It was argued that, since the erosive burning is a local phenomenon occurring near the surface of the solid propellant, the erosive burning ratio should be independent of the bore diameter if it is correlated with some local flow parameters such as the velocity gradient at the propellant surface. This seems to be true considering the good results obtained by applying these models, which are developed from the small size 5 inch CP tandem motor testing, to CFD simulations of much bigger motors.

  16. Prediction of propellant behavior in spinning flow of a space motor

    NASA Technical Reports Server (NTRS)

    Gany, A.; Levy, Y.; Timnat, Y. M.

    1992-01-01

    A model for 2-phase flow dynamics in a spinning spherical rocket motor, developed for the Ofeq satellite program, is based on the sectional approach to solution of the flow equations. An experimental model was built, to enable the motion of the aluminum/aluminum-oxide particles resulting from combustion within a solid-fuel motor to be simulated by injected paraffin droplets. The injected droplets included under-5 micrometer droplets which move with the gas stream and larger droplets, averaging 20 micrometer diameter, which simulate the motion of aluminum particles. The test chamber comprised a pair of cylindrical pyrex tubes with a sharp contraction in diameter, rotated at various speeds by a frequency-controllable motor. An optical system, based on a 5 W argon ion laser with a beam splitter and frequency shifter, mounted on a movable table, facilitated sectional measurements of the three velocity components and determination of size-velocity relationships. Preliminary results indicate that the effect of rotation on axial velocity is negligible, while its effect on tangential velocity approximates to solid-body rotation.

  17. EEG alpha band synchrony predicts cognitive and motor performance in patients with ischemic stroke.

    PubMed

    Dubovik, Sviatlana; Ptak, Radek; Aboulafia, Tatiana; Magnin, Cécile; Gillabert, Nicole; Allet, Lara; Pignat, Jean-Michel; Schnider, Armin; Guggisberg, Adrian G

    2013-01-01

    Functional brain networks are known to be affected by focal brain lesions. However, the clinical relevance of these changes remains unclear. This study assesses resting-state functional connectivity (FC) with electroencephalography (EEG) and relates observed topography of FC to cognitive and motor deficits in patients three months after ischemic stroke. Twenty patients (mean age 61.3 years, range 37-80, 9 females) and nineteen age-matched healthy participants (mean age 66.7 years, range 36-88, 13 females) underwent a ten-minute EEG-resting state examination. The neural oscillations at each grey matter voxel were reconstructed using an adaptive spatial filter and imaginary component of coherence (IC) was calculated as an index of FC. Maps representing mean connectivity value at each voxel were correlated with the clinical data. Compared to healthy controls, alpha band IC of stroke patients was locally reduced in brain regions critical to observed behavioral deficits. A voxel-wise Pearson correlation of clinical performances with FC yielded maps of the neural structures implicated in motor, language, and executive function. This correlation was again specific to alpha band coherence. Ischemic lesions decrease the synchrony of alpha band oscillations between affected brain regions and the rest of the brain. This decrease is linearly related to cognitive and motor deficits observed in the patients.

  18. Testing and Analysis for Lifetime Prediction of Crystalline Silicon PV Modules Undergoing Degradation by System Voltage Stress: Preprint

    SciTech Connect

    Hacke, P.; Smith, R.; Terwiliger, K.; Glick, S.; Jordan, D.; Johnston, S.; Kempe, M.; Kurtz, S.

    2012-07-01

    Acceleration factors are calculated for crystalline silicon PV modules under system voltage stress by comparing the module power during degradation outdoors to that in accelerated testing at three temperatures and 85% relative humidity. A lognormal analysis is applied to the accelerated lifetime test data considering failure at 80% of the initial module power. Activation energy of 0.73 eV for the rate of failure is determined, and the probability of module failure at an arbitrary temperature is predicted. To obtain statistical data for multiple modules over the course of degradation in-situ of the test chamber, dark I-V measurements are obtained and transformed using superposition, which is found well suited for rapid and quantitative evaluation of potential-induced degradation. It is determined that shunt resistance measurements alone do not represent the extent of power degradation. This is explained with a two-diode model analysis that shows an increasing second diode recombination current and ideality factor as the degradation in module power progresses. Failure modes of the modules stressed outdoors are examined and compared to those stressed in accelerated tests.

  19. A new comparator account of auditory verbal hallucinations: how motor prediction can plausibly contribute to the sense of agency for inner speech.

    PubMed

    Swiney, Lauren; Sousa, Paulo

    2014-01-01

    The comparator account holds that processes of motor prediction contribute to the sense of agency by attenuating incoming sensory information and that disruptions to this process contribute to misattributions of agency in schizophrenia. Over the last 25 years this simple and powerful model has gained widespread support not only as it relates to bodily actions but also as an account of misattributions of agency for inner speech, potentially explaining the etiology of auditory verbal hallucination (AVH). In this paper we provide a detailed analysis of the traditional comparator account for inner speech, pointing out serious problems with the specification of inner speech on which it is based and highlighting inconsistencies in the interpretation of the electrophysiological evidence commonly cited in its favor. In light of these analyses we propose a new comparator account of misattributed inner speech. The new account follows leading models of motor imagery in proposing that inner speech is not attenuated by motor prediction, but rather derived directly from it. We describe how failures of motor prediction would therefore directly affect the phenomenology of inner speech and trigger a mismatch in the comparison between motor prediction and motor intention, contributing to abnormal feelings of agency. We argue that the new account fits with the emerging phenomenological evidence that AVHs are both distinct from ordinary inner speech and heterogeneous. Finally, we explore the possibility that the new comparator account may extend to explain disruptions across a range of imagistic modalities, and outline avenues for future research. PMID:25221502

  20. A new comparator account of auditory verbal hallucinations: how motor prediction can plausibly contribute to the sense of agency for inner speech.

    PubMed

    Swiney, Lauren; Sousa, Paulo

    2014-01-01

    The comparator account holds that processes of motor prediction contribute to the sense of agency by attenuating incoming sensory information and that disruptions to this process contribute to misattributions of agency in schizophrenia. Over the last 25 years this simple and powerful model has gained widespread support not only as it relates to bodily actions but also as an account of misattributions of agency for inner speech, potentially explaining the etiology of auditory verbal hallucination (AVH). In this paper we provide a detailed analysis of the traditional comparator account for inner speech, pointing out serious problems with the specification of inner speech on which it is based and highlighting inconsistencies in the interpretation of the electrophysiological evidence commonly cited in its favor. In light of these analyses we propose a new comparator account of misattributed inner speech. The new account follows leading models of motor imagery in proposing that inner speech is not attenuated by motor prediction, but rather derived directly from it. We describe how failures of motor prediction would therefore directly affect the phenomenology of inner speech and trigger a mismatch in the comparison between motor prediction and motor intention, contributing to abnormal feelings of agency. We argue that the new account fits with the emerging phenomenological evidence that AVHs are both distinct from ordinary inner speech and heterogeneous. Finally, we explore the possibility that the new comparator account may extend to explain disruptions across a range of imagistic modalities, and outline avenues for future research.

  1. A new comparator account of auditory verbal hallucinations: how motor prediction can plausibly contribute to the sense of agency for inner speech

    PubMed Central

    Swiney, Lauren; Sousa, Paulo

    2014-01-01

    The comparator account holds that processes of motor prediction contribute to the sense of agency by attenuating incoming sensory information and that disruptions to this process contribute to misattributions of agency in schizophrenia. Over the last 25 years this simple and powerful model has gained widespread support not only as it relates to bodily actions but also as an account of misattributions of agency for inner speech, potentially explaining the etiology of auditory verbal hallucination (AVH). In this paper we provide a detailed analysis of the traditional comparator account for inner speech, pointing out serious problems with the specification of inner speech on which it is based and highlighting inconsistencies in the interpretation of the electrophysiological evidence commonly cited in its favor. In light of these analyses we propose a new comparator account of misattributed inner speech. The new account follows leading models of motor imagery in proposing that inner speech is not attenuated by motor prediction, but rather derived directly from it. We describe how failures of motor prediction would therefore directly affect the phenomenology of inner speech and trigger a mismatch in the comparison between motor prediction and motor intention, contributing to abnormal feelings of agency. We argue that the new account fits with the emerging phenomenological evidence that AVHs are both distinct from ordinary inner speech and heterogeneous. Finally, we explore the possibility that the new comparator account may extend to explain disruptions across a range of imagistic modalities, and outline avenues for future research. PMID:25221502

  2. Validated QSAR prediction of OH tropospheric degradation of VOCs: splitting into training-test sets and consensus modeling.

    PubMed

    Gramatica, Paola; Pilutti, Pamela; Papa, Ester

    2004-01-01

    The rate constant for hydroxyl radical tropospheric degradation of 460 heterogeneous organic compounds is predicted by QSAR modeling. The applied Multiple Linear Regression is based on a variety of theoretical molecular descriptors, selected by the Genetic Algorithms-Variable Subset Selection (GA-VSS) procedure. The models were validated for predictivity by both internal and external validation. For the external validation two splitting approaches, D-optimal Experimental Design and Kohonen Artificial Neural Networks (K-ANN), were applied to the original data set to compare the two methodologies. We emphasize that external validation is the only way to establish a reliable QSAR model for predictive purposes. Predicted data by consensus modeling from different models are also proposed.

  3. REVIEW: Widespread access to predictive models in the motor system: a short review

    NASA Astrophysics Data System (ADS)

    Davidson, Paul R.; Wolpert, Daniel M.

    2005-09-01

    Recent behavioural and computational studies suggest that access to internal predictive models of arm and object dynamics is widespread in the sensorimotor system. Several systems, including those responsible for oculomotor and skeletomotor control, perceptual processing, postural control and mental imagery, are able to access predictions of the motion of the arm. A capacity to make and use predictions of object dynamics is similarly widespread. Here, we review recent studies looking at the predictive capacity of the central nervous system which reveal pervasive access to forward models of the environment.

  4. Auditory-motor integration of subliminal phase shifts in tapping: better than auditory discrimination would predict.

    PubMed

    Kagerer, Florian A; Viswanathan, Priya; Contreras-Vidal, Jose L; Whitall, Jill

    2014-04-01

    Unilateral tapping studies have shown that adults adjust to both perceptible and subliminal changes in phase or frequency. This study focuses on the phase responses to abrupt/perceptible and gradual/subliminal changes in auditory-motor relations during alternating bilateral tapping. We investigated these responses in participants with and without good perceptual acuity as determined by an auditory threshold test. Non-musician adults (nine per group) alternately tapped their index fingers in synchrony with auditory cues set at a frequency of 1.4 Hz. Both groups modulated their responses (with no after-effects) to perceptible and to subliminal changes as low as a 5° change in phase. The high-threshold participants were more variable than the adults with low threshold in their responses in the gradual condition set. Both groups demonstrated a synchronization asymmetry between dominant and non-dominant hands associated with the abrupt condition and the later blocks of the gradual condition. Our findings extend previous work in unilateral tapping and suggest (1) no relationship between a discrimination threshold and perceptible auditory-motor integration and (2) a noisier sub-cortical circuitry in those with higher thresholds. PMID:24449013

  5. Accelerated test methods for life prediction of hermetic motor insulation systems exposed to alternative refrigerant/lubricant mixtures. Phase 3: Reproducibility and discrimination testing. Final report

    SciTech Connect

    Ellis, P.F. II; Ferguson, A.F.; Fuentes, K.T.

    1996-05-06

    In 1992, the Air-Conditioning and Refrigeration Technology Institute, Inc. (ARTI) contracted Radian Corporation to ascertain whether an improved accelerated test method or procedure could be developed that would allow prediction of the life of motor insulation materials used in hermetic motors for air-conditioning and refrigeration equipment operated with alternative refrigerant/lubricant mixtures. This report presents the results of phase three concerning the reproducibility and discrimination testing.

  6. Characterization of forced degradation products and in silico toxicity prediction of Sofosbuvir: A novel HCV NS5B polymerase inhibitor.

    PubMed

    Swain, Debasish; Samanthula, Gananadhamu; Bhagat, Shweta; Bharatam, P V; Akula, Venkatakrishna; Sinha, Barij N

    2016-02-20

    Sofosbuvir is a direct acting antiviral medication used to treat Hepatitis C viral infection. The present study focuses on the degradation behavior of the drug under various stress conditions (hydrolysis, oxidative, thermal and photolytic) as per International Conference on Harmonization (ICH Q1A (R2)) guidelines. A high performance liquid chromatographic system (HPLC) was used to develop a selective, precise and accurate method for separating all the degradation products. The separation was achieved on a Sunfire™ C18 (150mm×4.6mm×5μm) stationary phase with a mobile phase of 10mM ammonium acetate (pH 5.0) buffer and acetonitrile in gradient elution mode. A quadrupole-time of flight mass analyzer equipped with an electrospray ionization technique was used to propose the structural information based on the MS/MS and accurate mass measurements. Seven degradation products were identified and characterised by LC-ESI-QTOF-MS/MS. In silico toxicity of the drug and its degradation products was determined using TOPKAT and DEREK toxicity prediction softwares. The proposed method was validated as per the ICH Q2 guidelines. PMID:26771133

  7. Cortico-subthalamic white matter tract strength predicts interindividual efficacy in stopping a motor response.

    PubMed

    Forstmann, Birte U; Keuken, Max C; Jahfari, Sara; Bazin, Pierre-Louis; Neumann, Jane; Schäfer, Andreas; Anwander, Alfred; Turner, Robert

    2012-03-01

    The subthalamic nucleus (STN) is a small but vitally important structure in the basal ganglia. Because of its small volume, and its localization in the basal ganglia, the STN can best be visualized using ultra-high resolution 7 Tesla (T) magnetic resonance imaging (MRI). In the present study, first we individually segmented 7 T MRI STN masks to generate atlas probability maps. Secondly, the individually segmented STN masks and the probability maps were used to derive cortico-subthalamic white matter tract strength. Tract strength measures were then taken to test two functional STN hypotheses which account for the efficiency in stopping a motor response: the right inferior fronto-subthalamic (rIFC-STN) hypothesis and the posterior medial frontal cortex-subthalamic (pMFC-STN) hypothesis. Results of two independent experiments show that increased white matter tract strength between the pMFC and STN results in better stopping behaviour.

  8. PRE-SYMPTOMATIC DETECTION OF CHRONIC MOTOR DEFICITS AND GENOTYPE PREDICTION IN CONGENIC B6.SOD1G93A ALS MOUSE MODEL

    PubMed Central

    Hayworth, C. R.; Gonzalez-Lima, F.

    2009-01-01

    Amyotrophic lateral sclerosis (ALS) is an incurable progressive paralytic motor neuron disease with limited therapeutic options. Since their creation by Gurney et al. (1994), transgenic SOD1G93A mice have become the benchmark pre-clinical model for screening ALS therapies. Surprisingly, despite physiological, anatomical, ultrastructural and biochemical evidence of early motor system dysfunction it has proven difficult to detect motor performance deficits in pre-symptomatic SOD1G93A mice. As an alternative to conventional forced motor tests, we investigated the progression of motor performance deficits in freely behaving pre-symptomatic congenic B6.SOD1G93A mice. We found that motor performance deficits began several weeks prior to the onset of overt clinical symptoms (postnatal day 45). More importantly, once motor performance deficits manifested, they persisted in parallel with disease progression. In addition, two physical measures of muscle girth revealed progressive hindlimb muscle atrophy that predicted genotype in individual pre-symptomatic mice with 80% accuracy. Together, these data suggest that muscle girth is a reliable and indirect measure of hindlimb muscle denervation and an early, objective marker for disease onset in congenic B6.SOD1G93A ALS mice. Moreover, we present regression equations based on hindlimb muscle girth for predicting genotype in future studies using B6.SOD1G93A mice. These findings support new objective criteria for clinical disease onset and provide objective measures that require little expertise. These studies demonstrate a cost-effective approach for more thorough evaluation of neuroprotective strategies that seek to disrupt disease mechanisms early in the disease process. To our knowledge, these findings are the first to report early chronic motor performance and physical deficits that are coincident with the earliest known motor dysfunction in any ALS mouse model. PMID:19699279

  9. Assessment and prediction of urban air pollution caused by motor transport exhaust gases using computer simulation methods

    NASA Astrophysics Data System (ADS)

    Boyarshinov, Michael G.; Vaismana, Yakov I.

    2016-10-01

    The following methods were used in order to identify the pollution fields of urban air caused by the motor transport exhaust gases: the mathematical model, which enables to consider the influence of the main factors that determine pollution fields formation in the complex spatial domain; the authoring software designed for computational modeling of the gas flow, generated by numerous mobile point sources; the results of computing experiments on pollutant spread analysis and evolution of their concentration fields. The computational model of exhaust gas distribution and dispersion in a spatial domain, which includes urban buildings, structures and main traffic arteries, takes into account a stochastic character of cars apparition on the borders of the examined territory and uses a Poisson process. The model also considers the traffic lights switching and permits to define the fields of velocity, pressure and temperature of the discharge gases in urban air. The verification of mathematical model and software used confirmed their satisfactory fit to the in-situ measurements data and the possibility to use the obtained computing results for assessment and prediction of urban air pollution caused by motor transport exhaust gases.

  10. The application of electrochemistry to pharmaceutical stability testing--comparison with in silico prediction and chemical forced degradation approaches.

    PubMed

    Torres, Susana; Brown, Roland; Szucs, Roman; Hawkins, Joel M; Zelesky, Todd; Scrivens, Garry; Pettman, Alan; Taylor, Mark R

    2015-11-10

    The aim of this study was to evaluate the use of electrochemistry to generate oxidative degradation products of a model pharmaceutical compound. The compound was oxidized at different potentials using an electrochemical flow-cell fitted with a glassy carbon working electrode, a Pd/H2 reference electrode and a titanium auxiliary electrode. The oxidative products formed were identified and structurally characterized by LC-ESI-MS/MS using a high resolution Q-TOF mass spectrometer. Results from electrochemical oxidation using electrolytes of different pH were compared to those from chemical oxidation and from accelerated stability studies. Additionally, oxidative degradation products predicted using an in silico commercially available software were compared to those obtained from the various experimental methods. The electrochemical approach proved to be useful as an oxidative stress test as all of the final oxidation products observed under accelerated stability studies could be generated; previously reported reactive intermediate species were not observed most likely because the electrochemical mechanism differs from the oxidative pathway followed under accelerated stability conditions. In comparison to chemical degradation tests electrochemical degradation has the advantage of being much faster and does not require the use of strong oxidizing agents. Moreover, it enables the study of different operating parameters in short periods of time and optimisation of the reaction conditions (pH and applied potential) to achieve different oxidative products mixtures. This technique may prove useful as a stress test condition for the generation of oxidative degradation products and may help accelerate structure elucidation and development of stability indicating analytical methods.

  11. The application of electrochemistry to pharmaceutical stability testing--comparison with in silico prediction and chemical forced degradation approaches.

    PubMed

    Torres, Susana; Brown, Roland; Szucs, Roman; Hawkins, Joel M; Zelesky, Todd; Scrivens, Garry; Pettman, Alan; Taylor, Mark R

    2015-11-10

    The aim of this study was to evaluate the use of electrochemistry to generate oxidative degradation products of a model pharmaceutical compound. The compound was oxidized at different potentials using an electrochemical flow-cell fitted with a glassy carbon working electrode, a Pd/H2 reference electrode and a titanium auxiliary electrode. The oxidative products formed were identified and structurally characterized by LC-ESI-MS/MS using a high resolution Q-TOF mass spectrometer. Results from electrochemical oxidation using electrolytes of different pH were compared to those from chemical oxidation and from accelerated stability studies. Additionally, oxidative degradation products predicted using an in silico commercially available software were compared to those obtained from the various experimental methods. The electrochemical approach proved to be useful as an oxidative stress test as all of the final oxidation products observed under accelerated stability studies could be generated; previously reported reactive intermediate species were not observed most likely because the electrochemical mechanism differs from the oxidative pathway followed under accelerated stability conditions. In comparison to chemical degradation tests electrochemical degradation has the advantage of being much faster and does not require the use of strong oxidizing agents. Moreover, it enables the study of different operating parameters in short periods of time and optimisation of the reaction conditions (pH and applied potential) to achieve different oxidative products mixtures. This technique may prove useful as a stress test condition for the generation of oxidative degradation products and may help accelerate structure elucidation and development of stability indicating analytical methods. PMID:26299525

  12. Neural Network of Predictive Motor Timing in the Context of Gender Differences

    PubMed Central

    Lošák, Jan; Kašpárek, Tomáš; Vaníček, Jiří; Bareš, Martin

    2016-01-01

    Time perception is an essential part of our everyday lives, in both the prospective and the retrospective domains. However, our knowledge of temporal processing is mainly limited to the networks responsible for comparing or maintaining specific intervals or frequencies. In the presented fMRI study, we sought to characterize the neural nodes engaged specifically in predictive temporal analysis, the estimation of the future position of an object with varying movement parameters, and the contingent neuroanatomical signature of differences in behavioral performance between genders. The established dominant cerebellar engagement offers novel evidence in favor of a pivotal role of this structure in predictive short-term timing, overshadowing the basal ganglia reported together with the frontal cortex as dominant in retrospective temporal processing in the subsecond spectrum. Furthermore, we discovered lower performance in this task and massively increased cerebellar activity in women compared to men, indicative of strategy differences between the genders. This promotes the view that predictive temporal computing utilizes comparable structures in the retrospective timing processes, but with a definite dominance of the cerebellum. PMID:27019753

  13. Artificial neural network to predict degradation of non-metallic lining materials from laboratory tests

    SciTech Connect

    Silverman, D.C.

    1994-12-31

    Artificial neural networks are computer simulations that have the potential of ``finding`` the same patterns that corrosion practitioners recognize to relate experimental test results to lifetime predictions. This potential ability was utilized to construct an artificial neural network to recognize the pattern between results from a sequential immersion test for organic non-metallic lining materials and their ability to function as linings in actual applications. The network so constructed has been shown to predict field performance from this test. The network was incorporated within an Expert System to simplify data input and output, allow for simple consistency checks, and to make the final prediction.

  14. Merging Field Measurements and High Resolution Modeling to Predict Possible Societal Impacts of Permafrost Degradation

    NASA Astrophysics Data System (ADS)

    Romanovsky, V. E.; Nicolsky, D.; Marchenko, S. S.; Cable, W.; Panda, S. K.

    2015-12-01

    A general warming trend in permafrost temperatures has triggered permafrost degradation in Alaska, especially at locations influenced by human activities. Various phenomena related to permafrost degradation are already commonly observed, including increased rates of coastal and riverbank erosion, increased occurrences of retrogressive thaw slumps and active layer detachment slides, and the disappearance of tundra lakes. The combination of thawing permafrost and erosion is damaging local community infrastructure such as buildings, roads, airports, pipelines, water and sanitation facilities, and communication systems. The potential scale of direct ecological and economical damage due to degrading permafrost has just begun to be recognized. While the projected changes in permafrost are generally available on global and regional scales, these projections cannot be effectively employed to estimate the societal impacts because of their coarse resolution. Intrinsic problems with the classical "spatial grid" approach in spatially distributed modeling applications preclude the use of this modeling approach to solve the above stated problem. Two types of models can be used to study permafrost dynamics in this case. One approach is a site-specific application of the GIPL2.0 permafrost model and another is a very high (tens to hundred meter) resolution spatially distributed version of the same model. The results of properly organized field measurements are also needed to calibrate and validate these models for specific locations and areas of interest. We are currently developing a "landscape unit" approach that allows practically unlimited spatial resolution of the modeling products. Classification of the study area into particular "landscape units" should be performed in accordance with the main factors controlling the expression of climate on permafrost in the study area, typically things such as vegetation, hydrology, soil properties, topography, etc. In areas with little

  15. Characterization of forced degradation products of pazopanib hydrochloride by UHPLC-Q-TOF/MS and in silico toxicity prediction.

    PubMed

    Patel, Prinesh N; Kalariya, Pradipbhai D; Sharma, Mahesh; Garg, Prabha; Talluri, M V N Kumar; Gananadhamu, S; Srinivas, R

    2015-07-01

    Pazopanib (PZ), an anti-cancer drug, was subjected to forced degradation under hydrolytic (acid, base and neutral), oxidative, photolytic and thermal stress conditions as per International Conference on Harmonization guidelines. A selective stability indicating validated method was developed using a Waters Acquity UPLC HSS T3 (100 × 2.1 mm, 1.7 µm) column in gradient mode with ammonium acetate buffer (10 mM, pH 5.0) and acetonitrile. PZ was found to degrade only in photolytic conditions to produce six transformation products (TPs). All the TPs were identified and characterized by liquid chromatography/atmospheric pressure chemical ionization-quadrupole-time of flight mass spectrometry experiments in combination with accurate mass measurements. Plausible mechanisms have been proposed for the formation of TPs. In silico toxicity was predicted using TOPKAT and DEREK softwares for all the TPs. The TP, N4-(2,3-dimethyl-2H-indazol-6-yl)-N4-methylpyrimidine-2,4-diamine, was found to be genotoxic, whereas all other TPs with sulfonamide moiety were hepatotoxic. The data reported here are expected to be of significance as this study foresees the formation of one potential genotoxic and five hepatotoxic degradation/transformation products.

  16. Artificial neural network predictions of degradation of nonmetallic lining materials from laboratory tests

    SciTech Connect

    Silverman, D.C. )

    1994-06-01

    Such organic materials of construction as plastics (thermoplastics and thermosets) and elastomers play an increasingly important role in the containment of corrosive fluids. One major impediment to their routine use is the inability to predict their performance from laboratory tests rapidly and reliably. Artificial neural networks are computer simulations that have the potential to find the same patterns that corrosion practitioners recognize to relate experimental test results to lifetime predictions. This potential was used to construct an artificial neural network to recognize the pattern between results from a sequential immersion test for organic nonmetallic lining materials and their ability to function as linings in actual applications. The network was shown to predict field performance. The network was incorporated within an expert system to simplify data input and output, to allow for simple consistency checks between sample appearance and network output, and to make the final prediction.

  17. Can Perceptuo-Motor Skills Assessment Outcomes in Young Table Tennis Players (7–11 years) Predict Future Competition Participation and Performance? An Observational Prospective Study

    PubMed Central

    2016-01-01

    Forecasting future performance in youth table tennis players based on current performance is complex due to, among other things, differences between youth players in growth, development, maturity, context and table tennis experience. Talent development programmes might benefit from an assessment of underlying perceptuo-motor skills for table tennis, which is hypothesized to determine the players’ potential concerning the perceptuo-motor domain. The Dutch perceptuo-motor skills assessment intends to measure the perceptuo-motor potential for table tennis in youth players by assessing the underlying skills crucial for developing technical and tactical qualities. Untrained perceptuo-motor tasks are used as these are suggested to represent a player’s future potential better than specific sport skills themselves as the latter depend on exposure to the sport itself. This study evaluated the value of the perceptuo-motor skills assessment for a talent developmental programme by evaluating its predictive validity for competition participation and performance in 48 young table tennis players (7–11 years). Players were tested on their perceptuo-motor skills once during a regional talent day, and the subsequent competition results were recorded half-yearly over a period of 2.5 years. Logistic regression analysis showed that test scores did not predict future competition participation (p >0.05). Yet, the Generalized Estimating Equations analysis, including the test items ‘aiming at target’, ‘throwing a ball’, and ‘eye-hand coordination’ in the best fitting model, revealed that the outcomes of the perceptuo-motor skills assessment were significant predictors for future competition results (R2 = 51%). Since the test age influences the perceptuo-motor skills assessment’s outcome, another multivariable model was proposed including test age as a covariate (R2 = 53%). This evaluation demonstrates promising prospects for the perceptuo-motor skills assessment to be

  18. Assessment of Various Flow Solvers Used to Predict the Thermal Environment inside Space Shuttle Solid Rocket Motor Joints

    NASA Technical Reports Server (NTRS)

    Wang, Qun-Zhen; Cash, Steve (Technical Monitor)

    2002-01-01

    It is very important to accurately predict the gas pressure, gas and solid temperature, as well as the amount of O-ring erosion inside the space shuttle Reusable Solid Rocket Motor (RSRM) joints in the event of a leak path. The scenarios considered are typically hot combustion gas rapid pressurization events of small volumes through narrow and restricted flow paths. The ideal method for this prediction is a transient three-dimensional computational fluid dynamics (CFD) simulation with a computational domain including both combustion gas and surrounding solid regions. However, this has not yet been demonstrated to be economical for this application due to the enormous amount of CPU time and memory resulting from the relatively long fill time as well as the large pressure and temperature rising rate. Consequently, all CFD applications in RSRM joints so far are steady-state simulations with solid regions being excluded from the computational domain by assuming either a constant wall temperature or no heat transfer between the hot combustion gas and cool solid walls.

  19. Ectomycorrhizal Fungal Protein Degradation Ability Predicted by Soil Organic Nitrogen Availability

    PubMed Central

    Stas, Jelle; Nguyen, Nhu H.; Kuyper, Thomas W.; Carleer, Robert; Vangronsveld, Jaco; Colpaert, Jan V.; Kennedy, Peter G.

    2015-01-01

    In temperate and boreal forest ecosystems, nitrogen (N) limitation of tree metabolism is alleviated by ectomycorrhizal (ECM) fungi. As forest soils age, the primary source of N in soil switches from inorganic (NH4+ and NO3−) to organic (mostly proteins). It has been hypothesized that ECM fungi adapt to the most common N source in their environment, which implies that fungi growing in older forests would have greater protein degradation abilities. Moreover, recent results for a model ECM fungal species suggest that organic N uptake requires a glucose supply. To test the generality of these hypotheses, we screened 55 strains of 13 Suillus species with different ecological preferences for their in vitro protein degradation abilities. Suillus species preferentially occurring in mature forests, where soil contains more organic matter, had significantly higher protease activity than those from young forests with low-organic-matter soils or species indifferent to forest age. Within species, the protease activities of ecotypes from soils with high or low soil organic N content did not differ significantly, suggesting resource partitioning between mineral and organic soil layers. The secreted protease mixtures were strongly dominated by aspartic peptidases. Glucose addition had variable effects on secreted protease activity; in some species, it triggered activity, but in others, activity was repressed at high concentrations. Collectively, our results indicate that protease activity, a key ectomycorrhizal functional trait, is positively related to environmental N source availability but is also influenced by additional factors, such as carbon availability. PMID:26682855

  20. Behavior of pollutant-degrading microorganisms in aquifers: Predictions for genetically engineered organisms

    USGS Publications Warehouse

    Krumme, M.L.; Smith, R.L.; Egestorff, J.; Thiem, S.M.; Tiedje, J.M.; Timmis, K.N.; Dwyer, D.F.

    1994-01-01

    Bioremediation via environmental introductions of degradative microorganisms requires that the microbes survive in substantial numbers and effect an increase in the rate and extent of pollutant removal. Combined field and microcosm studies were used to assess these abilities for laboratory-grown bacteria. Following introduction into a contaminated aquifer, viable cells of Pseudomonas sp. B13 were present in the contaminant plume for 447 days; die-off was rapid in pristine areas. In aquifer microcosms, survival of B13 and FR120, a genetically engineered derivative of B13 having enhanced catabolic capabilities for substituted aromatics, was comparable to B13 field results; both bacteria degraded target pollutants in microcosms made with aquifer samples from the aerobic zone of the pollutant plume. Results suggest that field studies with nonrecombinant microorganisms may be coupled to laboratory studies with derivative strains to estimate their bioremediative efficacy. Furthermore, laboratory strains of bacteria can survive for extended periods of time in nature and thus may have important bioremediative applications. ?? 1994 American Chemical Society.

  1. Do Cognitive Models Help in Predicting the Severity of Posttraumatic Stress Disorder, Phobia, and Depression after Motor Vehicle Accidents? A Prospective Longitudinal Study

    ERIC Educational Resources Information Center

    Ehring, Thomas; Ehlers, Anke; Glucksman, Edward

    2008-01-01

    The study investigated the power of theoretically derived cognitive variables to predict posttraumatic stress disorder (PTSD), travel phobia, and depression following injury in a motor vehicle accident (MVA). MVA survivors (N = 147) were assessed at the emergency department on the day of their accident and 2 weeks, 1 month, 3 months, and 6 months…

  2. Fault diagnosis and fault-tolerant finite control set-model predictive control of a multiphase voltage-source inverter supplying BLDC motor.

    PubMed

    Salehifar, Mehdi; Moreno-Equilaz, Manuel

    2016-01-01

    Due to its fault tolerance, a multiphase brushless direct current (BLDC) motor can meet high reliability demand for application in electric vehicles. The voltage-source inverter (VSI) supplying the motor is subjected to open circuit faults. Therefore, it is necessary to design a fault-tolerant (FT) control algorithm with an embedded fault diagnosis (FD) block. In this paper, finite control set-model predictive control (FCS-MPC) is developed to implement the fault-tolerant control algorithm of a five-phase BLDC motor. The developed control method is fast, simple, and flexible. A FD method based on available information from the control block is proposed; this method is simple, robust to common transients in motor and able to localize multiple open circuit faults. The proposed FD and FT control algorithm are embedded in a five-phase BLDC motor drive. In order to validate the theory presented, simulation and experimental results are conducted on a five-phase two-level VSI supplying a five-phase BLDC motor. PMID:26549566

  3. Fault diagnosis and fault-tolerant finite control set-model predictive control of a multiphase voltage-source inverter supplying BLDC motor.

    PubMed

    Salehifar, Mehdi; Moreno-Equilaz, Manuel

    2016-01-01

    Due to its fault tolerance, a multiphase brushless direct current (BLDC) motor can meet high reliability demand for application in electric vehicles. The voltage-source inverter (VSI) supplying the motor is subjected to open circuit faults. Therefore, it is necessary to design a fault-tolerant (FT) control algorithm with an embedded fault diagnosis (FD) block. In this paper, finite control set-model predictive control (FCS-MPC) is developed to implement the fault-tolerant control algorithm of a five-phase BLDC motor. The developed control method is fast, simple, and flexible. A FD method based on available information from the control block is proposed; this method is simple, robust to common transients in motor and able to localize multiple open circuit faults. The proposed FD and FT control algorithm are embedded in a five-phase BLDC motor drive. In order to validate the theory presented, simulation and experimental results are conducted on a five-phase two-level VSI supplying a five-phase BLDC motor.

  4. Improve Motor Operation at Off-Design Voltages - Motor Tip Sheet #9

    SciTech Connect

    2008-07-01

    Motors are designed to operate within +/- 10% of their nameplate rated voltages. When motors operate at conditions of over- or under-voltage, motor efficiency and other performance parameters are degraded.

  5. Comparing the predictive value of multiple cognitive, affective, and motor tasks after rodent traumatic brain injury.

    PubMed

    Zhao, Zaorui; Loane, David J; Murray, Michael G; Stoica, Bogdan A; Faden, Alan I

    2012-10-10

    Controlled cortical impact injury (CCI) is a widely-used, clinically-relevant model of traumatic brain injury (TBI). Although functional outcomes have been used for years in this model, little work has been done to compare the predictive value of various cognitive and sensorimotor assessment tests, singly or in combination. Such information would be particularly useful for assessing mechanisms of injury or therapeutic interventions. Following isoflurane anesthesia, C57BL/6 mice were subjected to sham, mild (5.0 m/sec), moderate (6.0 m/sec), or severe (7.5 m/sec) CCI. A battery of behavioral tests were evaluated and compared, including the standard Morris water maze (sMWM), reversal Morris water maze (rMWM), novel object recognition (NOR), passive avoidance (PA), tail-suspension (TS), beam walk (BW), and open-field locomotor activity. The BW task, performed at post-injury days (PID) 0, 1, 3, 7, 14, 21, and 28, showed good discrimination as a function of injury severity. The sMWM and rMWM tests (PID 14-23), as well as NOR (PID 24 and 25), effectively discriminated spatial and novel object learning and memory across injury severity levels. Notably, the rMWM showed the greatest separation between mild and moderate/severe injury. PA (PID 27 and 28) and TS (PID 24) also reflected differences across injury levels, but to a lesser degree. We also compared individual functional measures with histological outcomes such as lesion volume and neuronal cell loss across anatomical regions. In addition, we created a novel composite behavioral score index from individual complementary behavioral scores, and it provided superior discrimination across injury severities compared to individual tests. In summary, this study demonstrates the feasibility of using a larger number of complementary functional outcome behavioral tests than those traditionally employed to follow post-traumatic recovery after TBI, and suggests that the composite score may be a helpful tool for screening

  6. Comparing the predictive value of multiple cognitive, affective, and motor tasks after rodent traumatic brain injury.

    PubMed

    Zhao, Zaorui; Loane, David J; Murray, Michael G; Stoica, Bogdan A; Faden, Alan I

    2012-10-10

    Controlled cortical impact injury (CCI) is a widely-used, clinically-relevant model of traumatic brain injury (TBI). Although functional outcomes have been used for years in this model, little work has been done to compare the predictive value of various cognitive and sensorimotor assessment tests, singly or in combination. Such information would be particularly useful for assessing mechanisms of injury or therapeutic interventions. Following isoflurane anesthesia, C57BL/6 mice were subjected to sham, mild (5.0 m/sec), moderate (6.0 m/sec), or severe (7.5 m/sec) CCI. A battery of behavioral tests were evaluated and compared, including the standard Morris water maze (sMWM), reversal Morris water maze (rMWM), novel object recognition (NOR), passive avoidance (PA), tail-suspension (TS), beam walk (BW), and open-field locomotor activity. The BW task, performed at post-injury days (PID) 0, 1, 3, 7, 14, 21, and 28, showed good discrimination as a function of injury severity. The sMWM and rMWM tests (PID 14-23), as well as NOR (PID 24 and 25), effectively discriminated spatial and novel object learning and memory across injury severity levels. Notably, the rMWM showed the greatest separation between mild and moderate/severe injury. PA (PID 27 and 28) and TS (PID 24) also reflected differences across injury levels, but to a lesser degree. We also compared individual functional measures with histological outcomes such as lesion volume and neuronal cell loss across anatomical regions. In addition, we created a novel composite behavioral score index from individual complementary behavioral scores, and it provided superior discrimination across injury severities compared to individual tests. In summary, this study demonstrates the feasibility of using a larger number of complementary functional outcome behavioral tests than those traditionally employed to follow post-traumatic recovery after TBI, and suggests that the composite score may be a helpful tool for screening

  7. Oxidative Stress Measurement and Prediction of Epileptic Seizure in Children and Adults With Severe Motor and Intellectual Disabilities

    PubMed Central

    Morimoto, Masahito; Satomura, Shigeko; Hashimoto, Toshiaki; Ito, Etsuro; Kyotani, Shojiro

    2016-01-01

    Background The medical care of severe motor and intellectual disabilities (SMID) depends on the empirical medical care. Epileptic seizure specific to SMID is difficult to suppress using anti-epileptic drugs, and its tendency to persist for long periods poses an issue. The present study was undertaken to evaluate the relationship between epileptic seizure in cases with SMID and oxidative stress in the living body by examining endogenous antioxidants, the degree of oxidation (reactive oxygen metabolites (d-ROMs)), and the biological antioxidant potential (BAP) as indicators. Methods Target patients were 43 SMID epilepsy patients. Blood was sampled before breakfast and medication. As for the specimen, d-ROMs and BAP were measured using the free radical analyzer. Results The present study did not reveal any correlation between endogenous antioxidants (albumin) and the frequency of epileptic seizures. On the other hand, d-ROMs were correlated with the frequency of epileptic seizure. In particular, strong correlations between the frequency of epileptic seizures and the d-ROMs/BAP ratio as well as the BAP/d-ROMs ratio were noted. Conclusions These results indicate that the use of d-ROMs and BAP as biomarkers can provide a tool for predicting the prognosis of epileptic seizures in patients with SMID. PMID:27222671

  8. Emotions predictably modify response times in the initiation of human motor actions: A meta-analytic review.

    PubMed

    Beatty, Garrett F; Cranley, Nicole M; Carnaby, Giselle; Janelle, Christopher M

    2016-03-01

    Emotions motivate individuals to attain appetitive goals and avoid aversive consequences. Empirical investigations have detailed how broad approach and avoidance orientations are reflected in fundamental movement attributes such as the speed, accuracy, and variability of motor actions. Several theoretical perspectives propose explanations for how emotional states influence the speed with which goal directed movements are initiated. These perspectives include biological predisposition, muscle activation, distance regulation, cognitive evaluation, and evaluative response coding accounts. A comprehensive review of literature and meta-analysis were undertaken to quantify empirical support for these theoretical perspectives. The systematic review yielded 34 studies that contained 53 independent experiments producing 128 effect sizes used to evaluate the predictions of existing theories. The central tenets of the biological predisposition (Hedges' g = -0.356), distance regulation (g = -0.293; g = 0.243), and cognitive evaluation (g = -0.249; g = -0.405; g = -0.174) accounts were supported. Partial support was also identified for the evaluative response coding (g = -0.255) framework. Our findings provide quantitative evidence that substantiate existing theoretical perspectives, and provide potential direction for conceptual integration of these independent perspectives. Recommendations for future empirical work in this area are discussed.

  9. Emotions predictably modify response times in the initiation of human motor actions: A meta-analytic review.

    PubMed

    Beatty, Garrett F; Cranley, Nicole M; Carnaby, Giselle; Janelle, Christopher M

    2016-03-01

    Emotions motivate individuals to attain appetitive goals and avoid aversive consequences. Empirical investigations have detailed how broad approach and avoidance orientations are reflected in fundamental movement attributes such as the speed, accuracy, and variability of motor actions. Several theoretical perspectives propose explanations for how emotional states influence the speed with which goal directed movements are initiated. These perspectives include biological predisposition, muscle activation, distance regulation, cognitive evaluation, and evaluative response coding accounts. A comprehensive review of literature and meta-analysis were undertaken to quantify empirical support for these theoretical perspectives. The systematic review yielded 34 studies that contained 53 independent experiments producing 128 effect sizes used to evaluate the predictions of existing theories. The central tenets of the biological predisposition (Hedges' g = -0.356), distance regulation (g = -0.293; g = 0.243), and cognitive evaluation (g = -0.249; g = -0.405; g = -0.174) accounts were supported. Partial support was also identified for the evaluative response coding (g = -0.255) framework. Our findings provide quantitative evidence that substantiate existing theoretical perspectives, and provide potential direction for conceptual integration of these independent perspectives. Recommendations for future empirical work in this area are discussed. PMID:26461243

  10. Complex multilocus effects of catechol-O-methyltransferase haplotypes predict pain and pain interference 6 weeks after motor vehicle collision

    PubMed Central

    Bortsov, Andrey V.; Diatchenko, Luda; McLean, Samuel A.

    2013-01-01

    Catechol-O-methyltransferase, encoded by COMT gene, is the primary enzyme that metabolizes catecholamines. COMT haplotypes have been associated with vulnerability to persistent non-traumatic pain. In this prospective observational study, we investigated the influence of COMT on persistent pain and pain interference with life functions after motor vehicle collision (MVC) in 859 European American adults for whom overall pain (0–10 numeric rating scale) and pain interference (Brief Pain Inventory) were assessed at week 6 after MVC. Ten single nucleotide polymorphisms (SNPs) spanning the COMT gene were successfully genotyped, nine were present in three haploblocks: block 1 (rs2020917, rs737865, rs1544325), block 2 (rs4633, rs4818, rs4680, rs165774) and block 3 (rs174697, rs165599). After adjustment for multiple comparisons, haplotype TCG from block 1 predicted decreased pain interference (p =.004). The pain-protective effect of the low pain sensitivity (LPS, CGGG) haplotype from block 2 was only observed if at least one TCG haplotype was present in block 1 (haplotype × haplotype interaction p=.002 and <.0001 for pain and pain interference, respectively). Haplotype AG from block 3 was associated with pain and interference in males only (sex × haplotype interaction p=.005 and .0005, respectively). These results suggest that genetic variants in the distal promoter are important contributors to the development of persistent pain after MVC, directly and via the interaction with haplotypes in the coding region of the gene. PMID:23963787

  11. A General Mathematical Algorithm for Predicting the Course of Unfused Tetanic Contractions of Motor Units in Rat Muscle.

    PubMed

    Raikova, Rositsa; Krutki, Piotr; Celichowski, Jan

    2016-01-01

    An unfused tetanus of a motor unit (MU) evoked by a train of pulses at variable interpulse intervals is the sum of non-equal twitch-like responses to these stimuli. A tool for a precise prediction of these successive contractions for MUs of different physiological types with different contractile properties is crucial for modeling the whole muscle behavior during various types of activity. The aim of this paper is to develop such a general mathematical algorithm for the MUs of the medial gastrocnemius muscle of rats. For this purpose, tetanic curves recorded for 30 MUs (10 slow, 10 fast fatigue-resistant and 10 fast fatigable) were mathematically decomposed into twitch-like contractions. Each contraction was modeled by the previously proposed 6-parameter analytical function, and the analysis of these six parameters allowed us to develop a prediction algorithm based on the following input data: parameters of the initial twitch, the maximum force of a MU and the series of pulses. Linear relationship was found between the normalized amplitudes of the successive contractions and the remainder between the actual force levels at which the contraction started and the maximum tetanic force. The normalization was made according to the amplitude of the first decomposed twitch. However, the respective approximation lines had different specific angles with respect to the ordinate. These angles had different and non-overlapping ranges for slow and fast MUs. A sensitivity analysis concerning this slope was performed and the dependence between the angles and the maximal fused tetanic force normalized to the amplitude of the first contraction was approximated by a power function. The normalized MU contraction and half-relaxation times were approximated by linear functions depending on the normalized actual force levels at which each contraction starts. The normalization was made according to the contraction time of the first contraction. The actual force levels were calculated

  12. Prediction of protein degradation during vibrating mesh nebulization via a high throughput screening method.

    PubMed

    Hertel, Sebastian; Pohl, Thomas; Friess, Wolfgang; Winter, Gerhard

    2014-07-01

    Maintaining the integrity of biopharmaceuticals is a major requirement for successful pulmonary delivery by nebulization. Sparing laborious nebulization tests, this study aimed to demonstrate the feasibility of a high throughput, material saving surrogate method to predict protein stability after nebulization. Detrimental conditions during nebulization with a PARI eFlow® vibrating mesh nebulizer were mimicked by vigorous agitation at elevated temperatures. Comparing the effect of several different excipients on the stability of the protein SM101 after nebulization and after the surrogate method revealed an excellent correlation regarding SM101 aggregation (R(2)=0.97). Design of experiment was used to develop an inhalable formulation of SM101 based entirely on the new surrogate method. Two lead formulation candidates were selected based on their predicted stability profile. The conservation of full SM101 stability and activity after nebulization was confirmed for an AKITA(2) vibrating mesh nebulizer. This study demonstrated that biopharmaceutical formulation development for nebulization is feasible by means of imitating nebulizer related detrimental factors, allowing an accelerated and more economic formulation development.

  13. The use of artificial neural network (ANN) for the prediction and simulation of oil degradation in wastewater by AOP.

    PubMed

    Mustafa, Yasmen A; Jaid, Ghydaa M; Alwared, Abeer I; Ebrahim, Mothana

    2014-06-01

    The application of advanced oxidation process (AOP) in the treatment of wastewater contaminated with oil was investigated in this study. The AOP investigated is the homogeneous photo-Fenton (UV/H2O2/Fe(+2)) process. The reaction is influenced by the input concentration of hydrogen peroxide H2O2, amount of the iron catalyst Fe(+2), pH, temperature, irradiation time, and concentration of oil in the wastewater. The removal efficiency for the used system at the optimal operational parameters (H2O2 = 400 mg/L, Fe(+2) = 40 mg/L, pH = 3, irradiation time = 150 min, and temperature = 30 °C) for 1,000 mg/L oil load was found to be 72%. The study examined the implementation of artificial neural network (ANN) for the prediction and simulation of oil degradation in aqueous solution by photo-Fenton process. The multilayered feed-forward networks were trained by using a backpropagation algorithm; a three-layer network with 22 neurons in the hidden layer gave optimal results. The results show that the ANN model can predict the experimental results with high correlation coefficient (R (2) = 0.9949). The sensitivity analysis showed that all studied variables (H2O2, Fe(+2), pH, irradiation time, temperature, and oil concentration) have strong effect on the oil degradation. The pH was found to be the most influential parameter with relative importance of 20.6%. PMID:24595749

  14. The prediction of novel multiple lipid-binding regions in protein translocation motor proteins: a possible general feature.

    PubMed

    Keller, Rob C A

    2011-03-01

    Protein translocation is an important cellular process. SecA is an essential protein component in the Sec system, as it contains the molecular motor that facilitates protein translocation. In this study, a bioinformatics approach was applied in the search for possible lipid-binding helix regions in protein translocation motor proteins. Novel lipid-binding regions in Escherichia coli SecA were identified. Remarkably, multiple lipid-binding sites were also identified in other motor proteins such as BiP, which is involved in ER protein translocation. The prokaryotic signal recognition particle receptor FtsY, though not a motor protein, is in many ways related to SecA, and was therefore included in this study. The results demonstrate a possible general feature for motor proteins involved in protein translocation. PMID:20957445

  15. A General Mathematical Algorithm for Predicting the Course of Unfused Tetanic Contractions of Motor Units in Rat Muscle

    PubMed Central

    Raikova, Rositsa; Krutki, Piotr; Celichowski, Jan

    2016-01-01

    An unfused tetanus of a motor unit (MU) evoked by a train of pulses at variable interpulse intervals is the sum of non-equal twitch-like responses to these stimuli. A tool for a precise prediction of these successive contractions for MUs of different physiological types with different contractile properties is crucial for modeling the whole muscle behavior during various types of activity. The aim of this paper is to develop such a general mathematical algorithm for the MUs of the medial gastrocnemius muscle of rats. For this purpose, tetanic curves recorded for 30 MUs (10 slow, 10 fast fatigue-resistant and 10 fast fatigable) were mathematically decomposed into twitch-like contractions. Each contraction was modeled by the previously proposed 6-parameter analytical function, and the analysis of these six parameters allowed us to develop a prediction algorithm based on the following input data: parameters of the initial twitch, the maximum force of a MU and the series of pulses. Linear relationship was found between the normalized amplitudes of the successive contractions and the remainder between the actual force levels at which the contraction started and the maximum tetanic force. The normalization was made according to the amplitude of the first decomposed twitch. However, the respective approximation lines had different specific angles with respect to the ordinate. These angles had different and non-overlapping ranges for slow and fast MUs. A sensitivity analysis concerning this slope was performed and the dependence between the angles and the maximal fused tetanic force normalized to the amplitude of the first contraction was approximated by a power function. The normalized MU contraction and half-relaxation times were approximated by linear functions depending on the normalized actual force levels at which each contraction starts. The normalization was made according to the contraction time of the first contraction. The actual force levels were calculated

  16. Gamma synchrony predicts neuron-neuron correlations and correlations with motor behavior in extrastriate visual area MT.

    PubMed

    Lee, Joonyeol; Lisberger, Stephen G

    2013-12-11

    Correlated variability of neuronal responses is an important factor in estimating sensory parameters from a population response. Large correlations among neurons reduce the effective size of a neural population and increase the variation of the estimates. They also allow the activity of one neuron to be informative about impending perceptual decisions or motor actions on single trials. In extrastriate visual area MT of the rhesus macaque, for example, some but not all neurons show nonzero "choice probabilities" for perceptual decisions or non-zero "MT-pursuit" correlations between the trial-by-trial variations in neural activity and smooth pursuit eye movements. To understand the functional implications of zero versus nonzero correlations between neural responses and impending perceptions or actions, we took advantage of prior observations that specific frequencies of local field potentials reflect the correlated activity of neurons. We found that the strength of the spike-field coherence of a neuron in the gamma-band frequency range is related to the size of its MT-pursuit correlations for eye direction, as well as to the size of the neuron-neuron correlations. Spike-field coherence predicts MT-pursuit correlations better for direction than for speed, perhaps because the topographic organization of direction preference in MT is more amenable to creating meaningful local field potentials. We suggest that the relationship between spiking and local-field potentials is stronger for neurons that have larger correlations with their neighbors; larger neuron-neuron correlations create stronger MT-pursuit correlations. Neurons that lack strong correlations with their neighbors also have weaker correlations with pursuit behavior, but still could drive pursuit strongly.

  17. Study of the forced degradation behavior of prasugrel hydrochloride by liquid chromatography with mass spectrometry and liquid chromatography with NMR detection and prediction of the toxicity of the characterized degradation products.

    PubMed

    Singh, Dilip Kumar; Sahu, Archana; Handa, Tarun; Narayanam, Mallikarjun; Singh, Saranjit

    2015-09-01

    Prasugrel was subjected to forced degradation studies under conditions of hydrolysis (acid, base, and neutral), photolysis, oxidation, and thermal stress. The drug showed liability in hydrolytic as well as oxidative conditions, resulting in a total of four degradation products. In order to characterize the latter, initially mass fragmentation pathway of the drug was established with the help of mass spectrometry/time-of-flight, multiple stage mass spectrometry and hydrogen/deuterium exchange data. The degradation products were then separated on a C18 column using a stability-indicating volatile buffer method, which was later extended to liquid chromatography-mass spectrometry studies. The latter highlighted that three degradation products had the same molecular mass, while one was different. To characterize all, their mass fragmentation pathways were established in the same manner as the drug. Subsequently, liquid chromatography-nuclear magnetic resonance (NMR) spectroscopy data were collected. Proton and correlation liquid chromatography with NMR spectroscopy studies highlighted existence of diastereomeric behavior in one pair of degradation products. Lastly, toxicity prediction by computer-assisted technology (TOPKAT) and deductive estimation of risk from existing knowledge (DEREK) software were employed to assess in silico toxicity of the characterized degradation products.

  18. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR PARTICULATE MATTER (MICROFACPM) FOR PREDICTING REAL-TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    The United States Environmental Protection Agency's National Exposure Research Laboratory has initiated a project to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project goal is to develop improved methods for modeling the source t...

  19. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR PARTICULATE MATTER (MICROFACPM) FOR PREDICTING REAL TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    Health risk evaluation needs precise measurement and modeling of human exposures in microenvironments to support review of current air quality standards. The particulate matter emissions from motor vehicles are a major component of human exposures in urban microenvironments. Cu...

  20. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR PARTICULATE MATTER (MICROFACPM) FOR PREDICTING REAL-TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    The United States Environmental Protection Agency's National Exposure Research Laboratory is pursuing a project to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project is to develop improved methods for modeling the source through...

  1. Predicting where enhanced atrazine degradation will occur based on soil pH and herbicide use history

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil bacteria on all continents except Antartica have developed the ability to rapidly degrade the herbicide atrazine, a phenomenon referred to as enhanced degradation. The agronomic significance of enhanced degradation is the potential for reduced residual weed control with atrazine in Corn, Sorgh...

  2. Maternal Education Level Predicts Cognitive, Language, and Motor Outcome in Preterm Infants in the Second Year of Life.

    PubMed

    Patra, Kousiki; Greene, Michelle M; Patel, Aloka L; Meier, Paula

    2016-07-01

    Objective To evaluate the relative impact of maternal education level (MEL) on cognitive, language, and motor outcomes at 20 months' corrected age (CA) in preterm infants. Study Design A total of 177 preterm infants born between 2008 and 2010 were tested at 20 months' CA using the Bayley Scales of Infant and Toddler Development-III. Multiple regression analyses were done to determine the relative impact of MEL on cognitive, language, and motor scores. Results Infants born to mothers with high school MEL were 3.74 times more likely to have a subnormal motor index, while those born to mothers with some college and graduate school MEL had reduced odds (0.36 and 0.12, respectively) of having subnormal language index at 20 months. In linear regression, MEL was the strongest predictor of cognitive, language, and motor scores, and graduate school MEL was associated with increases in cognitive, motor, and language scores of 8.49, 8.23, and 15.74 points, respectively. Conclusions MEL is the most significant predictor of cognitive, language, and motor outcome at 20 months' CA in preterm infants. Further research is needed to evaluate if targeted interventions that focus on early childhood learning and parenting practices can ameliorate the impact of low MEL.

  3. Maternal Education Level Predicts Cognitive, Language, and Motor Outcome in Preterm Infants in the Second Year of Life.

    PubMed

    Patra, Kousiki; Greene, Michelle M; Patel, Aloka L; Meier, Paula

    2016-07-01

    Objective To evaluate the relative impact of maternal education level (MEL) on cognitive, language, and motor outcomes at 20 months' corrected age (CA) in preterm infants. Study Design A total of 177 preterm infants born between 2008 and 2010 were tested at 20 months' CA using the Bayley Scales of Infant and Toddler Development-III. Multiple regression analyses were done to determine the relative impact of MEL on cognitive, language, and motor scores. Results Infants born to mothers with high school MEL were 3.74 times more likely to have a subnormal motor index, while those born to mothers with some college and graduate school MEL had reduced odds (0.36 and 0.12, respectively) of having subnormal language index at 20 months. In linear regression, MEL was the strongest predictor of cognitive, language, and motor scores, and graduate school MEL was associated with increases in cognitive, motor, and language scores of 8.49, 8.23, and 15.74 points, respectively. Conclusions MEL is the most significant predictor of cognitive, language, and motor outcome at 20 months' CA in preterm infants. Further research is needed to evaluate if targeted interventions that focus on early childhood learning and parenting practices can ameliorate the impact of low MEL. PMID:26890439

  4. Maternal Education Level Predicts Cognitive, Language, and Motor Outcome in Preterm Infants in the Second Year of Life

    PubMed Central

    Patra, Kousiki; Greene, Michelle M.; Patel, Aloka L.; Meier, Paula

    2016-01-01

    Objective To evaluate the relative impact of maternal education level (MEL) on cognitive, language, and motor outcomes at 20 months’ corrected age (CA) in preterm infants. Study Design A total of 177 preterm infants born between 2008 and 2010 were tested at 20 months’ CA using the Bayley Scales of Infant and Toddler Development-III. Multiple regression analyses were done to determine the relative impact of MEL on cognitive, language, and motor scores. Results Infants born to mothers with high school MEL were 3.74 times more likely to have a subnormal motor index, while those born to mothers with some college and graduate school MEL had reduced odds (0.36 and 0.12, respectively) of having subnormal language index at 20 months. In linear regression, MEL was the strongest predictor of cognitive, language, and motor scores, and graduate school MEL was associated with increases in cognitive, motor, and language scores of 8.49, 8.23, and 15.74 points, respectively. Conclusions MEL is the most significant predictor of cognitive, language, and motor outcome at 20 months’ CA in preterm infants. Further research is needed to evaluate if targeted interventions that focus on early childhood learning and parenting practices can ameliorate the impact of low MEL. PMID:26890439

  5. Advanced Motors

    SciTech Connect

    Knoth, Edward A; Chelluri, Bhanumathi; Schumaker, Edward J

    2012-12-14

    vProject Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, Motors and Generators for the 21st Century. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can

  6. KAP, the accessory subunit of kinesin-2, binds the predicted coiled-coil stalk of the motor subunits.

    PubMed

    Doodhi, Harinath; Ghosal, Debnath; Krishnamurthy, Mahalakshmi; Jana, Swadhin C; Shamala, Divya; Bhaduri, Anirban; Sowdhamini, R; Ray, Krishanu

    2009-03-17

    Kinesin-2 is an anterograde motor involved in intraflagellar transport and certain other intracellular transport processes. It consists of two different motor subunits and an accessory protein KAP (kinesin accessory protein). The motor subunits were shown to bind each other through the coiled-coil stalk domains, while KAP was proposed to bind the tail domains of the motor subunits. Although several genetic studies established that KAP plays an important role in kinesin-2 functions, its exact role remains unclear. Here, we report the results of a systematic analysis of the KAP binding sites by using recombinant Drosophila kinesin-2 subunits as well as the endogenous proteins. These show that at least one of the coiled-coil stalks is sufficient to bind the N-terminal region of DmKAP. The soluble complex involving the recombinant kinesin-2 fragments is reconstituted in vitro at high salt concentrations, suggesting that the interaction is primarily nonionic. Furthermore, independent distant homology modeling indicated that DmKAP may bind along the coiled-coil stalks through a combination of predominantly hydrophobic interactions and hydrogen bonds. These observations led us to propose that KAP would stabilize the motor subunit heterodimer and help assemble a greater kinesin-2 complex in vivo. PMID:19161286

  7. Motor learning.

    PubMed

    Wolpert, Daniel M; Flanagan, J Randall

    2010-06-01

    Although learning a motor skill, such as a tennis stroke, feels like a unitary experience, researchers who study motor control and learning break the processes involved into a number of interacting components. These components can be organized into four main groups. First, skilled performance requires the effective and efficient gathering of sensory information, such as deciding where and when to direct one's gaze around the court, and thus an important component of skill acquisition involves learning how best to extract task-relevant information. Second, the performer must learn key features of the task such as the geometry and mechanics of the tennis racket and ball, the properties of the court surface, and how the wind affects the ball's flight. Third, the player needs to set up different classes of control that include predictive and reactive control mechanisms that generate appropriate motor commands to achieve the task goals, as well as compliance control that specifies, for example, the stiffness with which the arm holds the racket. Finally, the successful performer can learn higher-level skills such as anticipating and countering the opponent's strategy and making effective decisions about shot selection. In this Primer we shall consider these components of motor learning using as an example how we learn to play tennis. PMID:20541489

  8. Motor learning.

    PubMed

    Wolpert, Daniel M; Flanagan, J Randall

    2010-06-01

    Although learning a motor skill, such as a tennis stroke, feels like a unitary experience, researchers who study motor control and learning break the processes involved into a number of interacting components. These components can be organized into four main groups. First, skilled performance requires the effective and efficient gathering of sensory information, such as deciding where and when to direct one's gaze around the court, and thus an important component of skill acquisition involves learning how best to extract task-relevant information. Second, the performer must learn key features of the task such as the geometry and mechanics of the tennis racket and ball, the properties of the court surface, and how the wind affects the ball's flight. Third, the player needs to set up different classes of control that include predictive and reactive control mechanisms that generate appropriate motor commands to achieve the task goals, as well as compliance control that specifies, for example, the stiffness with which the arm holds the racket. Finally, the successful performer can learn higher-level skills such as anticipating and countering the opponent's strategy and making effective decisions about shot selection. In this Primer we shall consider these components of motor learning using as an example how we learn to play tennis.

  9. Determination of efficiencies, loss mechanisms, and performance degradation factors in chopper controlled dc vehical motors. Section 1: Test program results and recommendations

    NASA Technical Reports Server (NTRS)

    Hamilton, H. B.; Strangas, E.

    1980-01-01

    The conventional series motor model is discussed as well as procedures for obtaining, by test, the parameters necessary for calculating performance and losses. The calculated results for operation from ripple free DC are compared with observed test results, indicating approximately 5% or less error. Experimental data indicating the influence of brush shift and chopper frequency are also presented. Both factors have a significant effect on the speed and torque relationships. The losses and loss mechanisms present in a DC series motor are examined and an attempt is made to evaluate the added losses due to harmonic currents and fluxes. Findings with respect to these losses is summarized.

  10. Determination of efficiencies, loss mechanisms, and performance degradation factors in chopper controlled DC vehicle motors. Section 1: Test program results and recommendations

    NASA Astrophysics Data System (ADS)

    Hamilton, H. B.; Strangas, E.

    1980-12-01

    The conventional series motor model is discussed as well as procedures for obtaining, by test, the parameters necessary for calculating performance and losses. The calculated results for operation from ripple free DC are compared with observed test results, indicating approximately 5% or less error. Experimental data indicating the influence of brush shift and chopper frequency are also presented. Both factors have a significant effect on the speed and torque relationships. The losses and loss mechanisms present in a DC series motor are examined and an attempt is made to evaluate the added losses due to harmonic currents and fluxes. Findings with respect to these losses is summarized.

  11. Prediction of fire smoke exposure and air quality degradation: toward a high resolution coupled fire-atmosphere model

    NASA Astrophysics Data System (ADS)

    Mari, Céline; Strada, Susanna; Filippi, Jean-Baptiste; Bosseur, Frederic; Pialat, Xavier; Humberto Amorin, Jorge; Borrego, Carlos; Freitas, Saulo; Longo, Karla; Martins, Vera; Miranda, Ana Isabel; Monteiro, Alexandra; Paugam, Ronan

    2013-04-01

    Wildfires release significant amounts of trace gas and aerosols into the atmosphere. Firefighters are exposed to wildland fire smoke with adverse health effects. At larger scale, depending on meteorological conditions and fire characteristics, fire emissions can efficiently reduce air quality and visibility, even far away from emission sources. Uncertainties in fire emissions and fire plume dynamics are two important factors which substantially limit the capability of current models to predict smoke exposure and air quality degradation. A collaborative effort recently started in France to develop a coupled fire-atmosphere model based on the fire propagation model ForeFire, developed at the University of Corsica, and the mesoscale non-hydrostatic meteorological model Meso-NH, developed by the University of Toulouse and Meteo-France. ForeFire is a semi-physical model based on an analytical estimation of the rate of spread and an integration with a front tracking method. The fire model is used to provide gridded heating, water vapor and chemical fluxes at high temporal and spatial resolutions to Meso-NH. The coupled model was used in two configurations depending on the spatial resolution: with or without the feedback of the atmosphere on the fire propagation. At kilometric resolution, the model is used off-line to simulate two Mediterranean fires: an arson wildfire that burned in 2005 near Lancon-de-Provence, south-eastern France, and a well documented episode of the Lisbon 2003 fires (in collaboration with the University of Aveiro, Portugal). The question of the injection height is treated with an adaptation of the eddy-diffusivity/mass flux approach for convective boundary layer and compared to the 1D Plume Rise Model (developed at INPE) in contrasted meteorological scenarios. At higher resolution, the two-way coupled model is tested on idealized and real fire cases including ozone chemistry. Future required developments on surface emissions and combustion chemistry

  12. Predicting athletic performance with self-confidence and somatic and cognitive anxiety as a function of motor and physiological requirements in six sports.

    PubMed

    Taylor, J

    1987-03-01

    The purpose of the present study is to examine the ability of certain psychological attributes to predict performance in six National Collegiate Athletic Association Division I collegiate sports. Eighty-four athletes from the varsity sports teams of cross country running, alpine and nordic skiing, tennis, basketball, and track and field at the University of Colorado completed a questionnaire adapted from Martens (1977; Martens et al., 1983) that measured their trait levels of self-confidence (Bandura, 1977), somatic anxiety, and cognitive anxiety (Martens, 1977; Martens et al., 1983). In addition, at three to six competitions during the season, the members of the cross country running and tennis teams filled out a state measure (Martens et al., 1983) of the three attributes from one to two hours prior to the competition. Following each competition, subjective and objective ratings of performance were obtained, and, for all sports, coaches' ratings of performance and an overall seasonal team ranking were determined as seasonal performance measures. The sports were dichotomized along motor and physiological dimensions. Results indicate that all three psychological attributes were significant predictors of performance in both fine motor, anaerobic sports and gross motor, aerobic sports. Further, clear differences in these relationships emerged as a function of the dichotomization. In addition, unexpected sex differences emerged. The findings are discussed relative to prior research and their implications for future research.

  13. How the credit assignment problems in motor control could be solved after the cerebellum predicts increases in error

    PubMed Central

    Verduzco-Flores, Sergio O.; O'Reilly, Randall C.

    2015-01-01

    We present a cerebellar architecture with two main characteristics. The first one is that complex spikes respond to increases in sensory errors. The second one is that cerebellar modules associate particular contexts where errors have increased in the past with corrective commands that stop the increase in error. We analyze our architecture formally and computationally for the case of reaching in a 3D environment. In the case of motor control, we show that there are synergies of this architecture with the Equilibrium-Point hypothesis, leading to novel ways to solve the motor error and distal learning problems. In particular, the presence of desired equilibrium lengths for muscles provides a way to know when the error is increasing, and which corrections to apply. In the context of Threshold Control Theory and Perceptual Control Theory we show how to extend our model so it implements anticipative corrections in cascade control systems that span from muscle contractions to cognitive operations. PMID:25852535

  14. A New Type of Motor: Pneumatic Step Motor

    PubMed Central

    Stoianovici, Dan; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Kavoussi, Louis

    2011-01-01

    This paper presents a new type of pneumatic motor, a pneumatic step motor (PneuStep). Directional rotary motion of discrete displacement is achieved by sequentially pressurizing the three ports of the motor. Pulsed pressure waves are generated by a remote pneumatic distributor. The motor assembly includes a motor, gearhead, and incremental position encoder in a compact, central bore construction. A special electronic driver is used to control the new motor with electric stepper indexers and standard motion control cards. The motor accepts open-loop step operation as well as closed-loop control with position feedback from the enclosed sensor. A special control feature is implemented to adapt classic control algorithms to the new motor, and is experimentally validated. The speed performance of the motor degrades with the length of the pneumatic hoses between the distributor and motor. Experimental results are presented to reveal this behavior and set the expectation level. Nevertheless, the stepper achieves easily controllable precise motion unlike other pneumatic motors. The motor was designed to be compatible with magnetic resonance medical imaging equipment, for actuating an image-guided intervention robot, for medical applications. For this reason, the motors were entirely made of nonmagnetic and dielectric materials such as plastics, ceramics, and rubbers. Encoding was performed with fiber optics, so that the motors are electricity free, exclusively using pressure and light. PneuStep is readily applicable to other pneumatic or hydraulic precision-motion applications. PMID:21528106

  15. A New Type of Motor: Pneumatic Step Motor.

    PubMed

    Stoianovici, Dan; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Kavoussi, Louis

    2007-02-01

    This paper presents a new type of pneumatic motor, a pneumatic step motor (PneuStep). Directional rotary motion of discrete displacement is achieved by sequentially pressurizing the three ports of the motor. Pulsed pressure waves are generated by a remote pneumatic distributor. The motor assembly includes a motor, gearhead, and incremental position encoder in a compact, central bore construction. A special electronic driver is used to control the new motor with electric stepper indexers and standard motion control cards. The motor accepts open-loop step operation as well as closed-loop control with position feedback from the enclosed sensor. A special control feature is implemented to adapt classic control algorithms to the new motor, and is experimentally validated. The speed performance of the motor degrades with the length of the pneumatic hoses between the distributor and motor. Experimental results are presented to reveal this behavior and set the expectation level. Nevertheless, the stepper achieves easily controllable precise motion unlike other pneumatic motors. The motor was designed to be compatible with magnetic resonance medical imaging equipment, for actuating an image-guided intervention robot, for medical applications. For this reason, the motors were entirely made of nonmagnetic and dielectric materials such as plastics, ceramics, and rubbers. Encoding was performed with fiber optics, so that the motors are electricity free, exclusively using pressure and light. PneuStep is readily applicable to other pneumatic or hydraulic precision-motion applications. PMID:21528106

  16. Motor current signature analysis method for diagnosing motor operated devices

    DOEpatents

    Haynes, Howard D.; Eissenberg, David M.

    1990-01-01

    A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.

  17. Determination of efficiencies, loss mechanisms, and performance degradation factors in chopper controlled dc vehical motors. Section 2: The time dependent finite element modeling of the electromagnetic field in electrical machines: Methods and applications. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hamilton, H. B.; Strangas, E.

    1980-01-01

    The time dependent solution of the magnetic field is introduced as a method for accounting for the variation, in time, of the machine parameters in predicting and analyzing the performance of the electrical machines. The method of time dependent finite element was used in combination with an also time dependent construction of a grid for the air gap region. The Maxwell stress tensor was used to calculate the airgap torque from the magnetic vector potential distribution. Incremental inductances were defined and calculated as functions of time, depending on eddy currents and saturation. The currents in all the machine circuits were calculated in the time domain based on these inductances, which were continuously updated. The method was applied to a chopper controlled DC series motor used for electric vehicle drive, and to a salient pole sychronous motor with damper bars. Simulation results were compared to experimentally obtained ones.

  18. Role of nutrients and illuminance in predicting the fate of fungal mediated petroleum hydrocarbon degradation and biomass production.

    PubMed

    Ali Khan, Aqib Hassan; Tanveer, Sundus; Anees, Mariam; Muhammad, Yousaf Shad; Iqbal, Mazhar; Yousaf, Sohail

    2016-07-01

    Biodegradation and biomass production are affected by numerous environmental factors including pH, oxygen availability and presence of pollutants. The present study, for the first time, elucidated the effects of nutrients and light on mycodegradation of petroleum hydrocarbons in diesel oil. Seven fungal strains (Aspergillus terreus FA3, Aspergillus niger FA5, Aspergillus terreus FA6, Penicillium chrysogenum FP4, Aspergillus terreus FP6, Aspergillus flavus FP10, and Candida sp. FG1) were used for hydrocarbon degradation under static conditions, in four combinations of nutrient media and illuminance for 45 days. Highest degradation was achieved by Aspergillus terreus FA6 and Candida sp. FG1 under both conditions of light and dark, with nutrient deprived HAF (Hydrocarbon adopted fungi) broth. Under HAF/Dark diesel oil degradation by FA6 and FG1 was 87.3% and 84.3% respectively, while under HAF/Light both FA6 and FG1 performed 84.3% biodegradation. The highest biomass was produced by Aspergillus flavus FP10 in PDB (Potato dextrose broth)/Dark (109.3 mg). Fungal degradation of petroleum hydrocarbons was negatively affected by the presence of other simpler-to-degrade carbon sources in the medium. The biomass production was enhanced by improved nutrient availability and diminished by illuminance. PMID:27039364

  19. Role of nutrients and illuminance in predicting the fate of fungal mediated petroleum hydrocarbon degradation and biomass production.

    PubMed

    Ali Khan, Aqib Hassan; Tanveer, Sundus; Anees, Mariam; Muhammad, Yousaf Shad; Iqbal, Mazhar; Yousaf, Sohail

    2016-07-01

    Biodegradation and biomass production are affected by numerous environmental factors including pH, oxygen availability and presence of pollutants. The present study, for the first time, elucidated the effects of nutrients and light on mycodegradation of petroleum hydrocarbons in diesel oil. Seven fungal strains (Aspergillus terreus FA3, Aspergillus niger FA5, Aspergillus terreus FA6, Penicillium chrysogenum FP4, Aspergillus terreus FP6, Aspergillus flavus FP10, and Candida sp. FG1) were used for hydrocarbon degradation under static conditions, in four combinations of nutrient media and illuminance for 45 days. Highest degradation was achieved by Aspergillus terreus FA6 and Candida sp. FG1 under both conditions of light and dark, with nutrient deprived HAF (Hydrocarbon adopted fungi) broth. Under HAF/Dark diesel oil degradation by FA6 and FG1 was 87.3% and 84.3% respectively, while under HAF/Light both FA6 and FG1 performed 84.3% biodegradation. The highest biomass was produced by Aspergillus flavus FP10 in PDB (Potato dextrose broth)/Dark (109.3 mg). Fungal degradation of petroleum hydrocarbons was negatively affected by the presence of other simpler-to-degrade carbon sources in the medium. The biomass production was enhanced by improved nutrient availability and diminished by illuminance.

  20. Prospective errors determine motor learning

    PubMed Central

    Takiyama, Ken; Hirashima, Masaya; Nozaki, Daichi

    2015-01-01

    Diverse features of motor learning have been reported by numerous studies, but no single theoretical framework concurrently accounts for these features. Here, we propose a model for motor learning to explain these features in a unified way by extending a motor primitive framework. The model assumes that the recruitment pattern of motor primitives is determined by the predicted movement error of an upcoming movement (prospective error). To validate this idea, we perform a behavioural experiment to examine the model’s novel prediction: after experiencing an environment in which the movement error is more easily predictable, subsequent motor learning should become faster. The experimental results support our prediction, suggesting that the prospective error might be encoded in the motor primitives. Furthermore, we demonstrate that this model has a strong explanatory power to reproduce a wide variety of motor-learning-related phenomena that have been separately explained by different computational models. PMID:25635628

  1. Cyclin-like accumulation and loss of the putative kinetochore motor CENP-E results from coupling continuous synthesis with specific degradation at the end of mitosis

    PubMed Central

    1994-01-01

    CENP-E is a kinesin-like protein that binds to kinetochores through the early stages of mitosis, but after initiation of anaphase, it relocalizes to the overlapping microtubules in the midzone, ultimately concentration in the developing midbody. By immunoblotting of cells separated at various positions in the cell cycle using centrifugal elutriation, we show that CENP-E levels increase progressively across the cycle peaking at approximately 22,000 molecules/cell early in mitosis, followed by an abrupt (> 10 fold) loss at the end of mitosis. Pulse-labeling with [35S]methionine reveals that beyond a twofold increase in synthesis between G1 and G2, interphase accumulation results primarily from stabilization of CENP-E during S and G2. Despite localizing in the midbody during normal cell division, CENP-E loss at the end of mitosis is independent of cytokinesis, since complete blockage of division with cytochalasin has no affect on CENP-E loss at the M/G1 transition. Thus, like mitotic cyclins, CENP-E accumulation peaks before cell division, and it is specifically degraded at the end of mitosis. However, CENP-E degradation kinetically follows proteolysis of cyclin B in anaphase. Combined with cyclin A destruction before the end of metaphase, degradation of as yet unidentified components at the metaphase/anaphase transition, and cyclin B degradation at or after the anaphase transition, CENP-E destruction defines a fourth point in a mitotic cascade of timed proteolysis. PMID:8207059

  2. Electric motor analysis at Dofasco

    SciTech Connect

    Brooks, D.; Morgan, V.A.; Nicholas, J.R. Jr.

    1997-03-01

    Initiatives adopted by Dofasco to enhance electric motor reliability and availability include: Enhancement of the electrical repair shop testing and repair capabilities; More stringent standards for motor repair service vendors; Application of predictive technologies to motors in service within manufacturing units; Training of personnel in electrical predictive condition monitoring and analysis methods; and Periodic audit and comparison of central support and operating unit predictive technology application and integration. The basis for the initiative is discussed together with illustrative case histories.

  3. Detection of pump degradation

    SciTech Connect

    Greene, R.H.; Casada, D.A.; Ayers, C.W.

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  4. Non-linear stimulus-response behavior of the human stance control system is predicted by optimization of a system with sensory and motor noise.

    PubMed

    van der Kooij, Herman; Peterka, Robert J

    2011-06-01

    We developed a theory of human stance control that predicted (1) how subjects re-weight their utilization of proprioceptive and graviceptive orientation information in experiments where eyes closed stance was perturbed by surface-tilt stimuli with different amplitudes, (2) the experimentally observed increase in body sway variability (i.e. the "remnant" body sway that could not be attributed to the stimulus) with increasing surface-tilt amplitude, (3) neural controller feedback gains that determine the amount of corrective torque generated in relation to sensory cues signaling body orientation, and (4) the magnitude and structure of spontaneous body sway. Responses to surface-tilt perturbations with different amplitudes were interpreted using a feedback control model to determine control parameters and changes in these parameters with stimulus amplitude. Different combinations of internal sensory and/or motor noise sources were added to the model to identify the properties of noise sources that were able to account for the experimental remnant sway characteristics. Various behavioral criteria were investigated to determine if optimization of these criteria could predict the identified model parameters and amplitude-dependent parameter changes. Robust findings were that remnant sway characteristics were best predicted by models that included both sensory and motor noise, the graviceptive noise magnitude was about ten times larger than the proprioceptive noise, and noise sources with signal-dependent properties provided better explanations of remnant sway. Overall results indicate that humans dynamically weight sensory system contributions to stance control and tune their corrective responses to minimize the energetic effects of sensory noise and external stimuli.

  5. EEG Theta Dynamics within Frontal and Parietal Cortices for Error Processing during Reaching Movements in a Prism Adaptation Study Altering Visuo-Motor Predictive Planning.

    PubMed

    Arrighi, Pieranna; Bonfiglio, Luca; Minichilli, Fabrizio; Cantore, Nicoletta; Carboncini, Maria Chiara; Piccotti, Emily; Rossi, Bruno; Andre, Paolo

    2016-01-01

    Modulation of frontal midline theta (fmθ) is observed during error commission, but little is known about the role of theta oscillations in correcting motor behaviours. We investigate EEG activity of healthy partipants executing a reaching task under variable degrees of prism-induced visuo-motor distortion and visual occlusion of the initial arm trajectory. This task introduces directional errors of different magnitudes. The discrepancy between predicted and actual movement directions (i.e. the error), at the time when visual feedback (hand appearance) became available, elicits a signal that triggers on-line movement correction. Analysis were performed on 25 EEG channels. For each participant, the median value of the angular error of all reaching trials was used to partition the EEG epochs into high- and low-error conditions. We computed event-related spectral perturbations (ERSP) time-locked either to visual feedback or to the onset of movement correction. ERSP time-locked to the onset of visual feedback showed that fmθ increased in the high- but not in the low-error condition with an approximate time lag of 200 ms. Moreover, when single epochs were sorted by the degree of motor error, fmθ started to increase when a certain level of error was exceeded and, then, scaled with error magnitude. When ERSP were time-locked to the onset of movement correction, the fmθ increase anticipated this event with an approximate time lead of 50 ms. During successive trials, an error reduction was observed which was associated with indices of adaptations (i.e., aftereffects) suggesting the need to explore if theta oscillations may facilitate learning. To our knowledge this is the first study where the EEG signal recorded during reaching movements was time-locked to the onset of the error visual feedback. This allowed us to conclude that theta oscillations putatively generated by anterior cingulate cortex activation are implicated in error processing in semi-naturalistic motor

  6. EEG Theta Dynamics within Frontal and Parietal Cortices for Error Processing during Reaching Movements in a Prism Adaptation Study Altering Visuo-Motor Predictive Planning

    PubMed Central

    Bonfiglio, Luca; Minichilli, Fabrizio; Cantore, Nicoletta; Carboncini, Maria Chiara; Piccotti, Emily; Rossi, Bruno

    2016-01-01

    Modulation of frontal midline theta (fmθ) is observed during error commission, but little is known about the role of theta oscillations in correcting motor behaviours. We investigate EEG activity of healthy partipants executing a reaching task under variable degrees of prism-induced visuo-motor distortion and visual occlusion of the initial arm trajectory. This task introduces directional errors of different magnitudes. The discrepancy between predicted and actual movement directions (i.e. the error), at the time when visual feedback (hand appearance) became available, elicits a signal that triggers on-line movement correction. Analysis were performed on 25 EEG channels. For each participant, the median value of the angular error of all reaching trials was used to partition the EEG epochs into high- and low-error conditions. We computed event-related spectral perturbations (ERSP) time-locked either to visual feedback or to the onset of movement correction. ERSP time-locked to the onset of visual feedback showed that fmθ increased in the high- but not in the low-error condition with an approximate time lag of 200 ms. Moreover, when single epochs were sorted by the degree of motor error, fmθ started to increase when a certain level of error was exceeded and, then, scaled with error magnitude. When ERSP were time-locked to the onset of movement correction, the fmθ increase anticipated this event with an approximate time lead of 50 ms. During successive trials, an error reduction was observed which was associated with indices of adaptations (i.e., aftereffects) suggesting the need to explore if theta oscillations may facilitate learning. To our knowledge this is the first study where the EEG signal recorded during reaching movements was time-locked to the onset of the error visual feedback. This allowed us to conclude that theta oscillations putatively generated by anterior cingulate cortex activation are implicated in error processing in semi-naturalistic motor

  7. Prediction of HPLC retention times of tebipenem pivoxyl and its degradation products in solid state by applying adaptive artificial neural network with recursive features elimination.

    PubMed

    Mizera, Mikołaj; Talaczyńska, Alicja; Zalewski, Przemysław; Skibiński, Robert; Cielecka-Piontek, Judyta

    2015-05-01

    A sensitive and fast HPLC method using ultraviolet diode-array detector (DAD)/electrospray ionization tandem mass spectrometry (Q-TOF-MS/MS) was developed for the determination of tebipenem pivoxyl and in the presence of degradation products formed during thermolysis. The chromatographic separations were performed on stationary phases produced in core-shell technology with particle diameter of 5.0 µm. The mobile phases consisted of formic acid (0.1%) and acetonitrile at different ratios. The flow rate was 0.8 mL/min while the wavelength was set at 331 nm. The stability characteristics of tebipenem pivoxyl were studied by performing stress tests in the solid state in dry air (RH=0%) and at an increased relative air humidity (RH=90%). The validation parameters such as selectivity, accuracy, precision and sensitivity were found to be satisfying. The satisfied selectivity and precision of determination were obtained for the separation of tebipenem pivoxyl from its degradation products using a stationary phase with 5.0 µm particles. The evaluation of the chemical structure of the 9 degradation products of tebipenem pivoxyl was conducted following separation based on the stationary phase with a 5.0 µm particle size by applying a Q-TOF-MS/MS detector. The main degradation products of tebipenem pivoxyl were identified: a product resulting from the condensation of the substituents of 1-(4,5-dihydro-1,3-thiazol-2-yl)-3-azetidinyl]sulfanyl and acid and ester forms of tebipenem with an open β-lactam ring in dry air at an increased temperature (RH=0%, T=393 K) as well as acid and ester forms of tebipenem with an open β-lactam ring at an increased relative air humidity and an elevated temperature (RH=90%, T=333 K). Retention times of tebipenem pivoxyl and its degradation products were used as training data set for predictive model of quantitative structure-retention relationship. An artificial neural network with adaptation protocol and extensive feature selection process

  8. The influence of MgH2 on the assessment of electrochemical data to predict the degradation rate of Mg and Mg alloys.

    PubMed

    Mueller, Wolf-Dieter; Hornberger, Helga

    2014-06-26

    Mg and Mg alloys are becoming more and more of interest for several applications. In the case of biomaterial applications, a special interest exists due to the fact that a predictable degradation should be given. Various investigations were made to characterize and predict the corrosion behavior in vitro and in vivo. Mostly, the simple oxidation of Mg to Mg2+ ions connected with adequate hydrogen development is assumed, and the negative difference effect (NDE) is attributed to various mechanisms and electrochemical results. The aim of this paper is to compare the different views on the corrosion pathway of Mg or Mg alloys and to present a neglected pathway based on thermodynamic data as a guideline for possible reactions combined with experimental observations of a delay of visible hydrogen evolution during cyclic voltammetry. Various reaction pathways are considered and discussed to explain these results, like the stability of the Mg+ intermediate state, the stability of MgH2 and the role of hydrogen overpotential. Finally, the impact of MgH2 formation is shown as an appropriate base for the prediction of the degradation behavior and calculation of the corrosion rate of Mg and Mg alloys.

  9. The Influence of MgH2 on the Assessment of Electrochemical Data to Predict the Degradation Rate of Mg and Mg Alloys

    PubMed Central

    Mueller, Wolf-Dieter; Hornberger, Helga

    2014-01-01

    Mg and Mg alloys are becoming more and more of interest for several applications. In the case of biomaterial applications, a special interest exists due to the fact that a predictable degradation should be given. Various investigations were made to characterize and predict the corrosion behavior in vitro and in vivo. Mostly, the simple oxidation of Mg to Mg2+ ions connected with adequate hydrogen development is assumed, and the negative difference effect (NDE) is attributed to various mechanisms and electrochemical results. The aim of this paper is to compare the different views on the corrosion pathway of Mg or Mg alloys and to present a neglected pathway based on thermodynamic data as a guideline for possible reactions combined with experimental observations of a delay of visible hydrogen evolution during cyclic voltammetry. Various reaction pathways are considered and discussed to explain these results, like the stability of the Mg+ intermediate state, the stability of MgH2 and the role of hydrogen overpotential. Finally, the impact of MgH2 formation is shown as an appropriate base for the prediction of the degradation behavior and calculation of the corrosion rate of Mg and Mg alloys. PMID:24972140

  10. Prediction of CL-20 chemical degradation pathways, theoretical and experimental evidence for dependence on competing modes of reaction

    SciTech Connect

    Qasim, Mohammad M.; Fredrickson, Herbert L.; Honea, P.; Furey, John; Leszczynski, Jerzy; Okovytyy, S.; Szecsody, Jim E.; Kholod, Y.

    2005-10-01

    Highest occupied and lowest unoccupied molecular orbital energies, formation energies, bond lengths and FTIR spectra all suggest competing CL-20 degradation mechanisms. This second of two studies investigates recalcitrant, toxic, aromatic CL-20 intermediates that absorb from 370 to 430 nm. Our earlier study (Struct. Chem., 15, 2004) revealed that these intermediates were formed at high OH- concentrations via the chemically preferred pathway of breaking the C-C bond between the two cyclopentanes, thereby eliminating nitro groups, forming conjugated π bonds, and resulting in a pyrazine three-ring aromatic intermediate. In attempting to find and make dominant a more benign CL-20 transformation pathway, this current research validates hydroxylation results from both studies and examines CL-20 transformations via photo-induced free radical reactions. This article discusses CL-20 competing modes of degradation revealed through: computational calculation; UV/VIS and SF spectroscopy following alkaline hydrolysis; and photochemical irradiation to degrade CL-20 and its byproducts at their respective wavelengths of maximum absorption.

  11. Prediction of CL-20 chemical degradation pathways, theoretical and experimental evidence for dependence on competing modes of reaction.

    PubMed

    Qasim, M; Fredrickson, H; Honea, P; Furey, J; Leszczynski, J; Okovytyy, S; Szecsody, J; Kholod, Y

    2005-10-01

    Highest occupied and lowest unoccupied molecular orbital energies, formation energies, bond lengths and FTIR spectra all suggest competing CL-20 degradation mechanisms. This second of two studies investigates recalcitrant, toxic, aromatic CL-20 intermediates that absorb from 370 to 430 nm. Our earlier study (Struct. Chem., 15, 2004) revealed that these intermediates were formed at high OH(-) concentrations via the chemically preferred pathway of breaking the C-C bond between the two cyclopentanes, thereby eliminating nitro groups, forming conjugated pi bonds, and resulting in a pyrazine three-ring aromatic intermediate. In attempting to find and make dominant a more benign CL-20 transformation pathway, this current research validates hydroxylation results from both studies and examines CL-20 transformations via photo-induced free radical reactions. This article discusses CL-20 competing modes of degradation revealed through: computational calculation; UV/VIS and SF spectroscopy following alkaline hydrolysis; and photochemical irradiation to degrade CL-20 and its byproducts at their respective wavelengths of maximum absorption. PMID:16272046

  12. The predictability of frequency-altered auditory feedback changes the weighting of feedback and feedforward input for speech motor control.

    PubMed

    Scheerer, Nichole E; Jones, Jeffery A

    2014-12-01

    Speech production requires the combined effort of a feedback control system driven by sensory feedback, and a feedforward control system driven by internal models. However, the factors that dictate the relative weighting of these feedback and feedforward control systems are unclear. In this event-related potential (ERP) study, participants produced vocalisations while being exposed to blocks of frequency-altered feedback (FAF) perturbations that were either predictable in magnitude (consistently either 50 or 100 cents) or unpredictable in magnitude (50- and 100-cent perturbations varying randomly within each vocalisation). Vocal and P1-N1-P2 ERP responses revealed decreases in the magnitude and trial-to-trial variability of vocal responses, smaller N1 amplitudes, and shorter vocal, P1 and N1 response latencies following predictable FAF perturbation magnitudes. In addition, vocal response magnitudes correlated with N1 amplitudes, vocal response latencies, and P2 latencies. This pattern of results suggests that after repeated exposure to predictable FAF perturbations, the contribution of the feedforward control system increases. Examination of the presentation order of the FAF perturbations revealed smaller compensatory responses, smaller P1 and P2 amplitudes, and shorter N1 latencies when the block of predictable 100-cent perturbations occurred prior to the block of predictable 50-cent perturbations. These results suggest that exposure to large perturbations modulates responses to subsequent perturbations of equal or smaller size. Similarly, exposure to a 100-cent perturbation prior to a 50-cent perturbation within a vocalisation decreased the magnitude of vocal and N1 responses, but increased P1 and P2 latencies. Thus, exposure to a single perturbation can affect responses to subsequent perturbations.

  13. Polymer damage mitigation---predictive lifetime models of polymer insulation degradation and biorenewable thermosets through cationic polymerization for self-healing applications

    NASA Astrophysics Data System (ADS)

    Hondred, Peter Raymond

    Over the past 50 years, the industrial development and applications for polymers and polymer composites has become expansive. However, as with any young technology, the techniques for predicting material damage and resolving material failure are in need of continued development and refinement. This thesis work takes two approaches to polymer damage mitigation---material lifetime prediction and spontaneous damage repair through self-healing while incorporating bio-renewable feedstock. First, material lifetime prediction offers the benefit of identifying and isolating material failures before the effects of damage results in catastrophic failure. Second, self-healing provides a systematic approach to repairing damaged polymer composites, specifically in applications where a hands-on approach or removing the part from service are not feasible. With regard to lifetime prediction, we investigated three specific polymeric materials---polytetrafluoroethylene (PTFE), poly(ethylene-alt-tetrafluoroethylene) (ETFE), and Kapton. All three have been utilized extensively in the aerospace field as a wire insulation coating. Because of the vast amount of electrical wiring used in aerospace constructions and the potential for electrical and thermal failure, this work develops mathematical models for both the thermal degradation kinetics as well as a lifetime prediction model for electrothermal breakdown. Isoconversional kinetic methods, which plot activation energy as a function of the extent of degradation, present insight into the development each kinetic model. The models for PTFE, ETFE, and Kapton are one step, consecutive three-step, and competitive and consecutive five-step respectively. Statistical analysis shows that an nth order autocatalytic reaction best defined the reaction kinetics for each polymer's degradation. Self-healing polymers arrest crack propagation through the use of an imbedded adhesive that reacts when cracks form. This form of damage mitigation focuses on

  14. Prediction of naphthenic acid species degradation by kinetic and surrogate models during the ozonation of oil sands process-affected water.

    PubMed

    Islam, Md Shahinoor; Moreira, Jesús; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2014-09-15

    Oil sands process-affected water (OSPW) is a complex mixture of organic and inorganic contaminants, and suspended solids, generated by the oil sands industry during the bitumen extraction process. OSPW contains a large number of structurally diverse organic compounds, and due to variability of the water quality of different OSPW matrices, there is a need to select a group of easily measured surrogate parameters for monitoring and treatment process control. In this study, kinetic and surrogate correlation models were developed to predict the degradation of naphthenic acids (NAs) species during the ozonation of OSPW. Additionally, the speciation and distribution of classical and oxidized NA species in raw and ozonated OSPW were also examined. The structure-reactivity of NA species indicated that the reactivity of individual NA species increased as the carbon and hydrogen deficiency numbers increased. The kinetic parameters obtained in this study allowed calculating the evolution of the concentrations of the acid-extractable fraction (AEF), chemical oxygen demand (COD), and NA distributions for a given ozonation process. High correlations between the AEF and COD and NA species were found, suggesting that AEF and COD can be used as surrogate parameters to predict the degradation of NAs during the ozonation of OSPW.

  15. Accelerated test methods for predicting the life of motor materials exposed to refrigerant/lubricant mixtures. Phase 1, Conceptual design: Final report

    SciTech Connect

    Ellis, P.F. II; Ferguson, A.

    1993-08-18

    The federally mandated phase-out of chlorofluorocarbon refrigerants requires screening tests for motor materials compatibility with alternative refrigerant/lubricant mixtures. In the current phase of the program, ARTI is supporting tests of promising candidate refrigeration/lubricant systems in key refrigeration component systems such as bearings and hermetic motor insulation systems to screen for more subtle detrimental effects and allow estimates of motor-compressor life. This report covers: mechanisms of failure of hermetic motor insulation, current methods for estimation of life of hermetic motors, and conceptual design of improved stator simulator device for testing of alternative refrigerant/lubricant mixtures.

  16. Including Thermal Fluctuations in Actomyosin Stable States Increases the Predicted Force per Motor and Macroscopic Efficiency in Muscle Modelling

    PubMed Central

    2016-01-01

    Muscle contractions are generated by cyclical interactions of myosin heads with actin filaments to form the actomyosin complex. To simulate actomyosin complex stable states, mathematical models usually define an energy landscape with a corresponding number of wells. The jumps between these wells are defined through rate constants. Almost all previous models assign these wells an infinite sharpness by imposing a relatively simple expression for the detailed balance, i.e., the ratio of the rate constants depends exponentially on the sole myosin elastic energy. Physically, this assumption corresponds to neglecting thermal fluctuations in the actomyosin complex stable states. By comparing three mathematical models, we examine the extent to which this hypothesis affects muscle model predictions at the single cross-bridge, single fiber, and organ levels in a ceteris paribus analysis. We show that including fluctuations in stable states allows the lever arm of the myosin to easily and dynamically explore all possible minima in the energy landscape, generating several backward and forward jumps between states during the lifetime of the actomyosin complex, whereas the infinitely sharp minima case is characterized by fewer jumps between states. Moreover, the analysis predicts that thermal fluctuations enable a more efficient contraction mechanism, in which a higher force is sustained by fewer attached cross-bridges. PMID:27626630

  17. Including Thermal Fluctuations in Actomyosin Stable States Increases the Predicted Force per Motor and Macroscopic Efficiency in Muscle Modelling.

    PubMed

    Marcucci, Lorenzo; Washio, Takumi; Yanagida, Toshio

    2016-09-01

    Muscle contractions are generated by cyclical interactions of myosin heads with actin filaments to form the actomyosin complex. To simulate actomyosin complex stable states, mathematical models usually define an energy landscape with a corresponding number of wells. The jumps between these wells are defined through rate constants. Almost all previous models assign these wells an infinite sharpness by imposing a relatively simple expression for the detailed balance, i.e., the ratio of the rate constants depends exponentially on the sole myosin elastic energy. Physically, this assumption corresponds to neglecting thermal fluctuations in the actomyosin complex stable states. By comparing three mathematical models, we examine the extent to which this hypothesis affects muscle model predictions at the single cross-bridge, single fiber, and organ levels in a ceteris paribus analysis. We show that including fluctuations in stable states allows the lever arm of the myosin to easily and dynamically explore all possible minima in the energy landscape, generating several backward and forward jumps between states during the lifetime of the actomyosin complex, whereas the infinitely sharp minima case is characterized by fewer jumps between states. Moreover, the analysis predicts that thermal fluctuations enable a more efficient contraction mechanism, in which a higher force is sustained by fewer attached cross-bridges. PMID:27626630

  18. Theoretical prediction and experimental measurement of the bile-pigment isomer pattern obtained from degradation of catalase haem.

    PubMed Central

    Brindle, N J; North, A C; Brown, S B

    1986-01-01

    Degradation in vitro of the haem in catalase by a 'coupled oxidation' reaction yields products in which approx. 45% of the haem groups have been cleaved at the alpha-methene bridge, 55% at the beta-bridge and a trace at the delta-bridge. Molecular-mechanics calculations with the three-dimensional structural co-ordinates of catalase shows that these proportions of products can be accounted for by the relative accessibility of the four methene bridges to a haem-linked oxygen molecule, thus further confirming Brown's [(1976) Biochem. J. 159, 23-27] hypothesis that the first stage of haem catabolism in vivo is selective attack by haem-bound oxygen, with selectivity conferred by the surrounding protein moiety. PMID:3790079

  19. Identification and validation of a logistic regression model for predicting serious injuries associated with motor vehicle crashes.

    PubMed

    Kononen, Douglas W; Flannagan, Carol A C; Wang, Stewart C

    2011-01-01

    A multivariate logistic regression model, based upon National Automotive Sampling System Crashworthiness Data System (NASS-CDS) data for calendar years 1999-2008, was developed to predict the probability that a crash-involved vehicle will contain one or more occupants with serious or incapacitating injuries. These vehicles were defined as containing at least one occupant coded with an Injury Severity Score (ISS) of greater than or equal to 15, in planar, non-rollover crash events involving Model Year 2000 and newer cars, light trucks, and vans. The target injury outcome measure was developed by the Centers for Disease Control and Prevention (CDC)-led National Expert Panel on Field Triage in their recent revision of the Field Triage Decision Scheme (American College of Surgeons, 2006). The parameters to be used for crash injury prediction were subsequently specified by the National Expert Panel. Model input parameters included: crash direction (front, left, right, and rear), change in velocity (delta-V), multiple vs. single impacts, belt use, presence of at least one older occupant (≥ 55 years old), presence of at least one female in the vehicle, and vehicle type (car, pickup truck, van, and sport utility). The model was developed using predictor variables that may be readily available, post-crash, from OnStar-like telematics systems. Model sensitivity and specificity were 40% and 98%, respectively, using a probability cutpoint of 0.20. The area under the receiver operator characteristic (ROC) curve for the final model was 0.84. Delta-V (mph), seat belt use and crash direction were the most important predictors of serious injury. Due to the complexity of factors associated with rollover-related injuries, a separate screening algorithm is needed to model injuries associated with this crash mode. PMID:21094304

  20. Early predictive factors for lower-extremity motor or sensory deficits and surgical results of patients with spinal tuberculosis: A retrospective study of 329 patients.

    PubMed

    Wang, Hongwei; Yang, Xiao; Shi, Ying; Zhou, Yue; Li, Changqing; Chen, Yu; Yu, Hailong; Wang, Qi; Liu, Jun; Cheng, Jiwei; Zhao, Yiwen; Han, Jianda; Xiang, Liangbi

    2016-08-01

    Many studies about the characteristics of spinal tuberculosis (STB) have been published, but none has investigated the predictive factors for lower-extremity motor or sensory deficits (LMSD) in patients with STB.The objective of this study was to find early predictive factors for LMSD and evaluate surgical results of patients with STB.From 2001 through 2010, 329 patients with STB were treated in our department and surgical treatment was performed in 274 patients. The factors assessed included age, sex, duration of symptoms, worsening of illness, clinical symptoms, clinical signs, imaging characteristics, kyphotic angle, Oswestry disability index (ODI), and visual analogue scale (VAS) scores.Of the 329 patients studied, 164 presented with LMSD (the LMSD group), of which 93 patients (28.3%) had motor deficits and 177 patients (53.8%) had sensory disturbance. The other 165 patients were included in the control group (the No LMSD group). Using univariate logistic regression analysis, we found that the sex (P = 0.042), age (P = 0.001), worsening of sickness (P = 0.013), location (P = 0.009), and spinal compression (P = 0.035) were the risk factors of LMSD. Furthermore, the multivariate logistic regression analysis indicated that age (OR = 1.761, 95% CI: 1.227-2.526, P = 0.002), worsening of sickness (yes vs no: OR = 1.910, 95% CI: 1.161-3.141, P = 0.011), location (T vs C: OR = 0.204, 95% CI: 0.063-0.662, P = 0.008), and spinal compression (yes vs no: OR = 1.672, 95% CI: 1.020-2.741, P = 0.042) were independent risk factors of LMSD. Surgical treatment was performed in 274 patients. The kyphotic angle improved from 25.8 ± 9.1° preoperatively to 14.0 ± 7.6°, with a mean correction of 11.8 ± 4.0°, and a mean correction loss of 1.5 ± 1.8° at final visit. There were significant differences between the preoperative and the final ODI and VAS scores in both groups (P < 0.001 and P < 0

  1. Species-specific diversity of novel bacterial lineages and differential abundance of predicted pathways for toxic compound degradation in scorpion gut microbiota.

    PubMed

    Bolaños, Luis M; Rosenblueth, Mónica; Castillo-Ramírez, Santiago; Figuier-Huttin, Gilles; Martínez-Romero, Esperanza

    2016-05-01

    Scorpions are considered 'living fossils' that have conserved ancestral anatomical features and have adapted to numerous habitats. However, their gut microbiota diversity has not been studied. Here, we characterized the gut microbiota of two scorpion species, Vaejovis smithi and Centruroides limpidus. Our results indicate that scorpion gut microbiota is species-specific and that food deprivation reduces bacterial diversity. 16S rRNA gene phylogenetic analysis revealed novel bacterial lineages showing a low level of sequence identity to any known bacteria. Furthermore, these novel bacterial lineages were each restricted to a different scorpion species. Additionally, our results of the predicted metagenomic profiles revealed a core set of pathways that were highly abundant in both species, and mostly related to amino acid, carbohydrate, vitamin and cofactor metabolism. Notably, the food-deprived V. smithi shotgun metagenome matched almost completely the metabolic features of the prediction. Finally, comparisons among predicted metagenomic profiles showed that toxic compound degradation pathways were more abundant in recently captured C. limpidus scorpions. This study gives a first insight into the scorpion gut microbiota and provides a reference for future studies on the gut microbiota from other arachnid species. PMID:26058415

  2. Motor Starters

    NASA Astrophysics Data System (ADS)

    1986-01-01

    The power factor controller (PFC) was invented by a NASA engineer. It matches voltage with a motor's actual need by sensing shifts in the relationship between voltage and current flow. With the device, power can be trimmed as much as 65%. Intellinet adopted this technology and designed "soft start" and "load-responsive" control modes to start engines gradually and recycle voltage without reducing motor speed. Other features are lower motor heat and faster fault identification.

  3. Alternative Motor Fuel Use Model

    1992-11-16

    AMFU is a tool for the analysis and prediction of motor fuel use by highway vehicles. The model advances the art of vehicle stock modeling by including a representation of the choice of motor fuel for flexible and dual fuel vehicles.

  4. Biomechanical modeling as a practical tool for predicting injury risk related to repetitive muscle lengthening during learning and training of human complex motor skills.

    PubMed

    Wan, Bingjun; Shan, Gongbing

    2016-01-01

    Previous studies have shown that muscle repetitive stress injuries (RSIs) are often related to sport trainings among young participants. As such, understanding the mechanism of RSIs is essential for injury prevention. One potential means would be to identify muscles in risk by applying biomechanical modeling. By capturing 3D movements of four typical youth sports and building the biomechanical models, the current study has identified several risk factors related to the development of RSIs. The causal factors for RSIs are the muscle over-lengthening, the impact-like (speedy increase) eccentric tension in muscles, imbalance between agonists and antagonists, muscle loading frequency and muscle strength. In general, a large range of motion of joints would lead to over-lengthening of certain small muscles; Limb's acceleration during power generation could cause imbalance between agonists and antagonists; a quick deceleration of limbs during follow-throughs would induce an impact-like eccentric tension to muscles; and even at low speed, frequent muscle over-lengthening would cause a micro-trauma accumulation which could result in RSIs in long term. Based on the results, the following measures can be applied to reduce the risk of RSIs during learning/training in youth participants: (1) stretching training of muscles at risk in order to increase lengthening ability; (2) dynamic warming-up for minimizing possible imbalance between agonists and antagonists; (3) limiting practice times of the frequency and duration of movements requiring strength and/or large range of motion to reducing micro-trauma accumulation; and (4) allowing enough repair time for recovery from micro-traumas induced by training (individual training time). Collectively, the results show that biomechanical modeling is a practical tool for predicting injury risk and provides an effective way to establish an optimization strategy to counteract the factors leading to muscle repetitive stress injuries during

  5. Integrating focal adhesion dynamics, cytoskeleton remodeling, and actin motor activity for predicting cell migration on 3D curved surfaces of the extracellular matrix.

    PubMed

    Kim, Min-Cheol; Kim, Choong; Wood, Levi; Neal, Devin; Kamm, Roger D; Asada, H Harry

    2012-11-01

    An integrative cell migration model incorporating focal adhesion (FA) dynamics, cytoskeleton and nucleus remodeling and actin motor activity is developed for predicting cell migration behaviors on 3-dimensional curved surfaces, such as cylindrical lumens in the 3-D extracellular matrix (ECM). The work is motivated by 3-D microfluidic migration experiments suggesting that the migration speed and direction may vary depending on the cross sectional shape of the lumen along which the cell migrates. In this paper, the mechanical structure of the cell is modeled as double elastic membranes of cell and nucleus. The two elastic membranes are connected by stress fibers, which are extended from focal adhesions on the cell surface to the nuclear membrane. The cell deforms and gains traction as transmembrane integrins distributed over the outer cell membrane bind to ligands on the ECM, form focal adhesions, and activate stress fibers. Probabilities at which integrin ligand-receptor bonds are formed as well as ruptures are affected by the surface geometry, resulting in diverse migration behaviors that depend on the curvature of the surface. Monte Carlo simulations of the integrative model reveal that (a) the cell migration speed is dependent on the cross sectional area of the lumen with a maximum speed at a particular diameter or width, (b) as the lumen diameter increases, the cell tends to spread and migrate around the circumference of the lumen, while it moves in the longitudinal direction as the lumen diameter narrows, (c) once the cell moves in one direction, it tends to stay migrating in the same direction despite the stochastic nature of migration. The relationship between the cell migration speed and the lumen width agrees with microfluidic experimental data for cancer cell migration.

  6. Molecular motors

    NASA Astrophysics Data System (ADS)

    Allemand, Jean François Desbiolles, Pierre

    2015-10-01

    How do we move? More precisely, what are the molecular mechanisms that can explain that our muscles, made of very small components can move at a osopic scale? To answer these questions we must introduce molecular motors. Those motors are proteins, or small protein assemblies that, in our cells, transform chemical energy into mechanical work. Then, like we could do for a oscopic motor, used in a car or in a fan, we are going to study the basic behavior of these molecular machines, present what are their energy sources, calculate their power, their yield. If molecular motors are crucial for our oscopic movements, we are going to see that they are also essential to cellular transport and that considering the activity of some enzymes as molecular motors bring some interesting new insights on their activity.

  7. Multimotor Driven Cargos: From Single Motor under Load to the Role of Motor-Motor Coupling.

    PubMed

    Peker, Itay; Granek, Rony

    2016-07-01

    Motor proteins constitute an essential part of the cellular machinery. They have been the subject of intensive studies in the past two decades. Yet, when several motors simultaneously carry a single cargo, the effect of motor-motor coupling, such as mutual stalling and jamming, remains unclear. We commence by constructing a general model for single motor motion, which is a product of a derived load-dependent expression and a phenomenological motor specific function. Forming the latter according to recent single molecule measurements for a given load, the model correctly predicts the motor full step-size distribution for all other measured loads. We then use our proposed model to predict transport properties of multimotor complexes, with particular attention to 1-dimensional constructs with variable flexibility, motor density, and number of motors: (i) a chain of motors connected by springs, a recently studied construction of a pair, and (ii) an array of motors all connected by identical springs to a stiff rod, which is essentially a mirror image of standard gliding motility assays. In both systems, and for any number of carrying motors, we find that, while low flexibility results in a strongly damped velocity, increased flexibility renders an almost single motor velocity. Comparing our model based simulations to recent gliding assays we find remarkable qualitative agreement. We also demonstrate consistency with other multimotor motility assays. In all cases, the characteristic spring constant, that controls the crossover behavior between high and low velocity regimes, is found to be the stalling force divided by the mean step size. We conjecture that this characteristic spring constant can serve as a tool for engineering multimotor complexes. PMID:27044876

  8. Conical Bearingless Motor/Generators

    NASA Technical Reports Server (NTRS)

    Kascak, P.; Jansen, R.; Dever, T.

    2008-01-01

    Motor/generators based on conical magnetic bearings have been invented as an improved alternative to prior such machines based, variously, on radial and/or axial magnetic bearings. Both the present and prior machines are members of the class of so-called bearingless or self bearing (in the sense of not containing mechanical bearings) rotary machines. Each motor/generator provides both a torque and force allowing it to either function as a motor and magnetic bearing or a generator and magnetic bearing concurrently. Because they are not subject to mechanical bearing wear, these machines have potentially long operational lives and can function without lubrication and over wide ranges of speed and temperature that include conditions under which lubricants would become depleted, degraded, or ineffective and mechanical bearings would fail. The figure shows three typical configurations of conical bearingless motor/generators. The main elements of each motor/generator are concentric rotor and stator portions having conically tapered surfaces facing each other across a gap. Because a conical motor/generator imposes both radial and axial magnetic forces, it acts, in effect, as a combination of an axial and a radial magnetic bearing. Therefore, only two conical motor/generators - one at each end of a rotor - are needed to effect complete magnetic leviation of the rotor, whereas previously, it was necessary to use a combination of an axial and a radial magnetic bearing at each end of the rotor to achieve complete magnetic levitation and a separate motor to provide torque.

  9. Stepper motor

    NASA Technical Reports Server (NTRS)

    Dekramer, Cornelis

    1994-01-01

    The purpose of this document is to describe the more commonly used permanent magnet stepper motors for spaceflight. It will discuss the mechanical and electrical aspects of the devices, their torque behavior, those parameters which need to be controlled and measured, and test methods to be employed. It will also discuss torque margins, compare these to the existing margin requirements, and determine the applicability of these requirements. Finally it will attempt to generate a set of requirements which will be used in any stepper motor procurement and will fully characterize the stepper motor behavior in a consistent and repeatable fashion.

  10. The Power of Selected Cognitive, Social/Emotional, Physical Motor, and Language Tests in Predicting Development Levels of Mentally Handicapped Preschool Children.

    ERIC Educational Resources Information Center

    LaBay, Michael J.; Anderson, Nels M.

    Results of the research reported in this paper suggest that the development of mentally handicapped preschool children may not be measurable in distinct cognitive, social/emotional, physical motor, and language areas. This research further indicates that a testing instrument designed to measure the generalized factors of intelligence and social…

  11. Molecular Motors: A Theorist's Perspective

    NASA Astrophysics Data System (ADS)

    Kolomeisky, Anatoly B.; Fisher, Michael E.

    2007-05-01

    Individual molecular motors, or motor proteins, are enzymatic molecules that convert chemical energy, typically obtained from the hydrolysis of ATP (adenosine triphosphate), into mechanical work and motion. Processive motor proteins, such as kinesin, dynein, and certain myosins, step unidirectionally along linear tracks, specifically microtubules and actin filaments, and play a crucial role in cellular transport processes, organization, and function. In this review some theoretical aspects of motor-protein dynamics are presented in the light of current experimental methods that enable the measurement of the biochemical and biomechanical properties on a single-molecule basis. After a brief discussion of continuum ratchet concepts, we focus on discrete kinetic and stochastic models that yield predictions for the mean velocity, V(F, [ATP], …), and other observables as a function of an imposed load force F, the ATP concentration, and other variables. The combination of appropriate theory with single-molecule observations should help uncover the mechanisms underlying motor-protein function.

  12. Motor neglect.

    PubMed Central

    Laplane, D; Degos, J D

    1983-01-01

    Motor neglect is characterised by an underutilisation of one side, without defects of strength, reflexes or sensibility. Twenty cases of frontal, parietal and thalamic lesions causing motor neglect, but all without sensory neglect, are reported. It is proposed that the cerebral structures involved in motor neglect are the same as those for sensory neglect and for the preparation of movement. As in sensory neglect, the multiplicity of the structures concerned suggests that this interconnection is necessary to maintain a sufficient level of activity. Predominance of left sided neglect by right sided lesions suggests that the left hemisphere is dominant for deliberate activity; hemispheric dominance could be applied to sensory neglect where conscious awareness would play the role of deliberate activity. PMID:6842219

  13. Sex differences in motor and cognitive abilities predicted from human evolutionary history with some implications for models of the visual system.

    PubMed

    Sanders, Geoff

    2013-01-01

    This article expands the knowledge base available to sex researchers by reviewing recent evidence for sex differences in coincidence-anticipation timing (CAT), motor control with the hand and arm, and visual processing of stimuli in near and far space. In CAT, the differences are between sex and, therefore, typical of other widely reported sex differences. Men perform CAT tasks with greater accuracy and precision than women, who tend to underestimate time to arrival. Null findings arise because significant sex differences are found with easy but not with difficult tasks. The differences in motor control and visual processing are within sex, and they underlie reciprocal patterns of performance in women and men. Motor control is exerted better by women with the hand than the arm. In contrast, men showed the reverse pattern. Visual processing is performed better by women with stimuli within hand reach (near space) as opposed to beyond hand reach (far space); men showed the reverse pattern. The sex differences seen in each of these three abilities are consistent with the evolutionary selection of men for hunting-related skills and women for gathering-related skills. The implications of the sex differences in visual processing for two visual system models of human vision are discussed.

  14. Characterization of forced degradation products of ketorolac tromethamine using LC/ESI/Q/TOF/MS/MS and in silico toxicity prediction.

    PubMed

    Kalariya, Pradipbhai D; Raju, B; Borkar, Roshan M; Namdev, Deepak; Gananadhamu, S; Nandekar, Prajwal P; Sangamwar, Abhay T; Srinivas, R

    2014-05-01

    Ketorolac, a nonsteroidal anti-inflammatory drug, was subjected to forced degradation studies as per International Conference on Harmonization guidelines. A simple, rapid, precise, and accurate high-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (LC/ESI/Q/TOF/MS/MS) method has been developed for the identification and structural characterization of stressed degradation products of ketorolac. The drug was found to degrade in hydrolytic (acidic, basic, and neutral), photolytic (acidic, basic, and neutral solution), and thermal conditions, whereas the solid form of the drug was found to be stable under photolytic conditions. The method has shown adequate separation of ketorolac tromethamine and its degradation products on a Grace Smart C-18 (250 mm × 4.6 mm i.d., 5 µm) column using 20 mM ammonium formate (pH = 3.2): acetonitrile as a mobile phase in gradient elution mode at a flow rate of 1.0 ml/min. A total of nine degradation products were identified and characterized by LC/ESI/MS/MS. The most probable mechanisms for the formation of degradation products have been proposed on the basis of a comparison of the fragmentation of the [M + H](+) ions of ketorolac and its degradation products. In silico toxicity of the drug and degradation products was investigated by using topkat and derek softwares. The method was validated in terms of specificity, linearity, accuracy, precision, and robustness as per International Conference on Harmonization guidelines.

  15. Photovoltaic Degradation Risk: Preprint

    SciTech Connect

    Jordan, D. C.; Kurtz, S. R.

    2012-04-01

    The ability to accurately predict power delivery over the course of time is of vital importance to the growth of the photovoltaic (PV) industry. Important cost drivers include the efficiency with which sunlight is converted into power, how this relationship changes over time, and the uncertainty in this prediction. An accurate quantification of power decline over time, also known as degradation rate, is essential to all stakeholders - utility companies, integrators, investors, and researchers alike. In this paper we use a statistical approach based on historical data to quantify degradation rates, discern trends and quantify risks related to measurement uncertainties, number of measurements and methodologies.

  16. Motor Controllers

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Kollmorgen Corporation's Mermaid II two person submersible is propeller-driven by a system of five DC brushless motors with new electronic controllers that originated in work performed in a NASA/DOE project managed by Lewis Research Center. A key feature of the system is electric commutation rather than mechanical commutation for converting AC current to DC.

  17. Therma motor

    DOEpatents

    Kandarian, R.

    The disclosure is directed to a thermal motor utilizing two tapered prestressed parallel adjacent cylinders lengthwise disposed about one third in a coolant. Heat is applied to contacting portions of the cylinders outside the coolant to cause them to deform and turn. Heat sources such as industrial waste heat, geothermal hot water, solar radiation, etc. can be used.

  18. Motor Neuron Diseases

    MedlinePlus

    ... called upper motor neurons ) are transmitted to nerve cells in the brain stem and spinal cord (called lower motor neurons ) and from them to particular muscles. Upper motor neurons direct the lower motor neurons ...

  19. Motor Neuron Diseases

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Motor Neuron Diseases Information Page Condensed from Motor Neuron Diseases ... and Information Publicaciones en Español What are Motor Neuron Diseases? The motor neuron diseases (MNDs) are a ...

  20. Stepper motor instabilities in an aerospace application

    NASA Technical Reports Server (NTRS)

    Kackley, Russell; Mccully, Sean

    1992-01-01

    Stepper motors are frequently used in positioning mechanisms because they have several advantages over ordinary DC motors. However, there is frequently no feedback loop and the motor may exhibit instabilities under some conditions. A stepper motor in an aerospace positioning mechanism was investigated. During testing, the motor exhibited unstable behavior, such as backrunning and forward running. The instability was dependent on voltage pulse characteristics, temperature, positioning angle, step rate, and interaction between the two motors in the system. Both testing and analysis results verified the instability. A special purpose FORTRAN code was written to simulate the system. This code was combined with another simpler code to show the performance of the system in the phase plane so that instability boundaries could be displayed along with the motor performance. The analysis was performed to verify that proposed modifications would produce stable performance before implementation in the hardware. Subsequent testing verified the analytic stability predictions.

  1. Collective dynamics of processive cytoskeletal motors.

    PubMed

    McLaughlin, R Tyler; Diehl, Michael R; Kolomeisky, Anatoly B

    2016-01-01

    Major cellular processes are supported by various biomolecular motors that usually operate together as teams. We present an overview of the collective dynamics of processive cytokeletal motor proteins based on recent experimental and theoretical investigations. Experimental studies show that multiple motors function with different degrees of cooperativity, ranging from negative to positive. This effect depends on the mechanical properties of individual motors, the geometry of their connections, and the surrounding cellular environment. Theoretical models based on stochastic approaches underline the importance of intermolecular interactions, the properties of single motors, and couplings with cellular medium in predicting the collective dynamics. We discuss several features that specify the cooperativity in motor proteins. Based on this approach a general picture of collective dynamics of motor proteins is formulated, and the future directions and challenges are discussed.

  2. Collective Dynamics of Processive Cytoskeletal Motors

    PubMed Central

    McLaughlin, R. Tyler; Diehl, Michael R.; Kolomeisky, Anatoly B.

    2015-01-01

    Major cellular processes are supported by various biomolecular motors that usually operate together as teams. We present an overview of the collective dynamics of processive cytokeletal motor proteins based on recent experimental and theoretical investigations. Experimental studies show that multiple motors function with different degrees of cooperativity, ranging from negative to positive. This effect depends on the mechanical properties of individual motors, the geometry of their connections, and the surrounding cellular environment. Theoretical models based on stochastic approaches underline the importance of intermolecular interactions, the properties of single motors, and couplings with cellular medium in predicting the collective dynamics. We discuss several features that specify the cooperativity in motor proteins. Based on this approach a general picture of collective dynamics of motor proteins is formulated, and the future directions and challenges are discussed. PMID:26444155

  3. The effect of motoric fluency on metamemory.

    PubMed

    Susser, Jonathan A; Mulligan, Neil W

    2015-08-01

    Prior research has demonstrated that certain types of fluency can influence memory predictions, with more fluent processing being associated with greater memory confidence. However, no study has systematically examined whether this pattern extends to the fluency of motoric output. The current study investigated the effect of a motoric-fluency manipulation of hand dominance on judgments of learning (JOLs) and memory performance. Participants predicted better memory for fluently written than nonfluently written stimuli despite no differences in actual recall. A questionnaire-based study suggested that the effect of motoric fluency on predictions was not due to peoples' a priori beliefs about memory. These findings are consistent with other fluency effects on JOLs.

  4. Early identification of motor delay

    PubMed Central

    Harris, Susan R.

    2016-01-01

    Objective To describe the Harris Infant Neuromotor Test (HINT), an infant neuromotor test using Canadian norms published in 2010 that could be used to screen for motor delay during the first year of life. Quality of evidence Extensive research has been published on the intrarater, interrater, and test-retest reliability and the content, concurrent, predictive, and known-groups validity of the HINT, as well as on the sensitivity, specificity, and positive and negative predictive values of parental concerns, as assessed by the HINT. Most evidence is level II. Main message Diagnosing motor delays during the first year of life is important because these often indicate more generalized developmental delays or specific disabilities, such as cerebral palsy. Parental concerns about their children’s motor development are strongly predictive of subsequent diagnoses involving motor delay. Conclusion Only through early identification of developmental motor delays, initially with screening tools such as the HINT, is it possible to provide referrals for early intervention that could benefit both the infant and the family. PMID:27521388

  5. Siphon motor

    SciTech Connect

    Bunn, C.H.

    1980-01-01

    A siphon motor comprises the combination of siphon means and generating means for generating electrical energy from a water source located below the generating means and a water discharge at a lower level than the water source. Water rises by siphonic action upward from the water source to a sealed working region maintained under partial vacuum, and descends to the water discharge. The working region contains the generating means. The system has particular utility as a source of power generation in remote locations having a water table within about 30 feet of the ground.

  6. Using microorganisms to aid in hydrocarbon degradation

    SciTech Connect

    Black, W.; Zamora, J. )

    1993-04-01

    Aliphatic hydrocarbons are threatening the potable water supply and the aquatic ecosystem. Given the right microbial inhabitant(s), a large portion of these aliphatic hydrocarbons could be biodegraded before reaching the water supply. The authors' purpose is to isolate possible oil-degrading organisms. Soil samples were taken from hydrocarbon-laden soils at petroleum terminals, a petroleum refinery waste-treatment facility, a sewage-treatment plant grease collector, a site of previous bioremediation, and various other places. Some isolates known to be good degraders were obtained from culture collection services. These samples were plated on a 10w-30 multigrade motor oil solid medium to screen for aliphatic hydrocarbon degraders. The degrading organisms were isolated, identified, and tested (CO[sub 2] evolution, BOD, and COD) to determine the most efficient degrader(s). Thirty-seven organisms were tested, and the most efficient degraders were Serratia marcescens, Escherichia coli, and Enterobacter agglomerans.

  7. Distribution of the SELMA translocon in secondary plastids of red algal origin and predicted uncoupling of ubiquitin-dependent translocation from degradation.

    PubMed

    Stork, Simone; Moog, Daniel; Przyborski, Jude M; Wilhelmi, Ilka; Zauner, Stefan; Maier, Uwe G

    2012-12-01

    Protein import into complex plastids of red algal origin is a multistep process including translocons of different evolutionary origins. The symbiont-derived ERAD-like machinery (SELMA), shown to be of red algal origin, is proposed to be the transport system for preprotein import across the periplastidal membrane of heterokontophytes, haptophytes, cryptophytes, and apicomplexans. In contrast to the canonical endoplasmic reticulum-associated degradation (ERAD) system, SELMA translocation is suggested to be uncoupled from proteasomal degradation. We investigated the distribution of known and newly identified SELMA components in organisms with complex plastids of red algal origin by intensive data mining, thereby defining a set of core components present in all examined organisms. These include putative pore-forming components, a ubiquitylation machinery, as well as a Cdc48 complex. Furthermore, the set of known 20S proteasomal components in the periplastidal compartment (PPC) of diatoms was expanded. These newly identified putative SELMA components, as well as proteasomal subunits, were in vivo localized as PPC proteins in the diatom Phaeodactylum tricornutum. The presented data allow us to speculate about the specific features of SELMA translocation in contrast to the canonical ERAD system, especially the uncoupling of translocation from degradation.

  8. Detection of pump degradation

    SciTech Connect

    Casada, D.

    1995-04-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  9. Detection of pump degradation

    SciTech Connect

    Casada, D.

    1994-12-31

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  10. Which lower limb frontal plane sensory and motor functions predict gait speed and efficiency on uneven surfaces in older persons with diabetic neuropathy?

    PubMed Central

    Allet, L.; Kim, H.; Ashton-Miller, J.A.; Richardson, J.K.

    2012-01-01

    Objective To identify which frontal plane lower limb sensorimotor functions predict gait speed and efficiency (step-width-to-step-length ratio) on an uneven surface. Design Cross sectional, observational study. Setting Biomechanics research laboratory. Participants Thirty-three subjects (14; 42.4% female and 21; 63.6% with diabetic distal symmetric peripheral neuropathy), with a spectrum of lower limb sensorimotor function ranging from normal to marked diabetic neuropathy. Methods Independent variables included ankle inversion/eversion proprioceptive thresholds, and normalized measures of maximum voluntary strength and maximum rate of torque development (RTD) of hip abduction/adduction and ankle inversion/eversion. Kinematic data were obtained using an optoelectronic system as subjects walked over an uneven 10m surface. Main Outcome Measures Dependent variables included gait speed and efficiency (determined by step-width-to-step-length ratio) on an uneven surface. Results Hip adduction RTD, ankle inversion RTD, and hip abduction maximal strength predicted XY% of gait speed, with the first predicting the majority (45%). Ankle inversion RTD was the only significant predictor of gait efficiency, accounting for 46% of its variability. Age predicted neither gait speed nor efficiency. Conclusions The rapid generation of strength in the frontal plane at the hip and ankle is responsible for the successful negotiation of irregular surfaces in older persons. Age demonstrated no independent influence. Training regimens in older persons should include maneuvers that develop strength rapidly in hip adductors and ankle invertors if navigation of uneven surfaces is a functional goal. PMID:22796383

  11. A miniature solid propellant rocket motor

    SciTech Connect

    Grubelich, M.C.; Hagan, M.; Mulligan, E.

    1997-08-01

    A miniature solid-propellant rocket motor has been developed to impart a specific motion to an object deployed in space. This rocket motor effectively eliminated the need for a cold-gas thruster system or mechanical spin-up system. A low-energy igniter, an XMC4397, employing a semiconductor bridge was used to ignite the rocket motor. The rocket motor was ground-tested in a vacuum tank to verify predicted space performance and successfully flown in a Sandia National Laboratories flight vehicle program.

  12. Multifocal Motor Neuropathy

    MedlinePlus

    ... Diversity Find People About NINDS NINDS Multifocal Motor Neuropathy Information Page Table of Contents (click to jump ... done? Clinical Trials Organizations What is Multifocal Motor Neuropathy? Multifocal motor neuropathy is a progressive muscle disorder ...

  13. The predictive start of hunting archer fish: a flexible and precise motor pattern performed with the kinematics of an escape C-start.

    PubMed

    Wöhl, Saskia; Schuster, Stefan

    2007-01-01

    Once their shots have successfully dislodged aerial prey, hunting archer fish monitor the initial values of their prey's ballistic motion and elicit an adapted rapid turning maneuver. This allows these fish to head straight towards the later point of catch with a speed matched to the distance to be covered. To make the catch despite severe competition the fish must quickly and yet precisely match their turn and take-off speed to the initial values of prey motion. However, the initial variables vary over broad ranges and can be determined only after prey is dislodged. Therefore, the underlying neuronal circuitry must be able to drive a maneuver that combines a high degree of precision and flexibility at top speed. To narrow down which neuronal substrate underlies the performance we characterized the kinematics of archer fish predictive starts using digital high-speed video. Strikingly, the predictive starts show all hallmarks of Mauthner-driven teleost C-type fast-starts, which have previously not been noted in feeding strikes and were not expected to provide the high angular accuracy required. The high demands on flexibility and precision of the predictive starts do not compromise their performance. On the contrary, archer fish predictive starts are among the fastest C-starts known so far among teleost fish, with peak linear speed beyond 20 body lengths s(-1), angular speed over 4500 deg. s(-1), maximum linear acceleration of up to 12 times gravitational acceleration and peak angular acceleration of more than 450 000 deg. s(-2). Moreover, they were not slower than archer fish escape C-starts, elicited in the same individuals. Rather, both escapes and predictive starts follow an identical temporal pattern and all kinematic variables of the two patterns overlap. This kinematic equivalence strongly suggests that archer fish recruit their C-start escape network of identified reticulospinal neurons, or elements of it, to drive their predictive starts. How the network

  14. Aging assessment of large electric motors in nuclear power plants

    SciTech Connect

    Villaran, M.; Subudhi, M.

    1996-03-01

    Large electric motors serve as the prime movers to drive high capacity pumps, fans, compressors, and generators in a variety of nuclear plant systems. This study examined the stressors that cause degradation and aging in large electric motors operating in various plant locations and environments. The operating history of these machines in nuclear plant service was studied by review and analysis of failure reports in the NPRDS and LER databases. This was supplemented by a review of motor designs, and their nuclear and balance of plant applications, in order to characterize the failure mechanisms that cause degradation, aging, and failure in large electric motors. A generic failure modes and effects analysis for large squirrel cage induction motors was performed to identify the degradation and aging mechanisms affecting various components of these large motors, the failure modes that result, and their effects upon the function of the motor. The effects of large motor failures upon the systems in which they are operating, and on the plant as a whole, were analyzed from failure reports in the databases. The effectiveness of the industry`s large motor maintenance programs was assessed based upon the failure reports in the databases and reviews of plant maintenance procedures and programs.

  15. Motor control for a brushless DC motor

    NASA Technical Reports Server (NTRS)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  16. Photovoltaic Degradation Rates -- An Analytical Review

    SciTech Connect

    Jordan, D. C.; Kurtz, S. R.

    2012-06-01

    As photovoltaic penetration of the power grid increases, accurate predictions of return on investment require accurate prediction of decreased power output over time. Degradation rates must be known in order to predict power delivery. This article reviews degradation rates of flat-plate terrestrial modules and systems reported in published literature from field testing throughout the last 40 years. Nearly 2000 degradation rates, measured on individual modules or entire systems, have been assembled from the literature, showing a median value of 0.5%/year. The review consists of three parts: a brief historical outline, an analytical summary of degradation rates, and a detailed bibliography partitioned by technology.

  17. Photocarrier radiometry for predicting the degradation of electrical parameters of monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams

    NASA Astrophysics Data System (ADS)

    Song, P.; Liu, J. Y.; Yuan, H. M.; Oliullah, Md.; Wang, F.; Wang, Y.

    2016-09-01

    In this study, the monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams at various fluences is investigated. A one-dimensional two-layer carrier density wave model has been developed to estimate the minority carrier lifetime of n-region and p-region of the non-irradiated c-Si solar cell by best fitting with the experimental photocarrier radiometry (PCR) signal (the amplitude and the phase). Furthermore, the lifetime is used to determine the initial defect density of the quasi-neutral region (QNR) of the solar cell to predict its I-V characteristics. The theoretically predicted short-circuit current density (Jsc), and open-circuit voltage (Voc) of the non-irradiated samples are in good agreement with experiment. Then a three-region defect distribution model for the c-Si solar cell irradiated by proton beams is carried out to describe the defect density distribution according to Monte Carlo simulation results and the initial defect density of the non-irradiated sample. Finally, we find that the electrical measurements of Jsc and Voc of the solar cells irradiated at different fluences using 100 KeV proton beams are consistent with the PCR predicting results.

  18. Minimum Principles in Motor Control.

    PubMed

    Engelbrecht, Sascha E.

    2001-06-01

    Minimum (or minimal) principles are mathematical laws that were first used in physics: Hamilton's principle and Fermat's principle of least time are two famous example. In the past decade, a number of motor control theories have been proposed that are formally of the same kind as the minimum principles of physics, and some of these have been quite successful at predicting motor performance in a variety of tasks. The present paper provides a comprehensive review of this work. Particular attention is given to the relation between minimum theories in motor control and those used in other disciplines. Other issues around which the review is organized include: (1) the relation between minimum principles and structural models of motor planning and motor control, (2) the empirically-driven development of minimum principles and the danger of circular theorizing, and (3) the design of critical tests for minimum theories. Some perspectives for future research are discussed in the concluding section of the paper. Copyright 2001 Academic Press. PMID:11401453

  19. Improved Bearingless Switched-Reluctance Motor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.

    2003-01-01

    The Morrison rotor, named after its inventor, is a hybrid rotor for use in a bearingless switched-reluctance electric motor. The motor is characterized as bearingless in the sense that it does not rely on conventional mechanical bearings: instead, it functions as both a magnetic bearing and a motor. Bearingless switched-reluctance motors are attractive for use in situations in which large variations in temperatures and/or other extreme conditions preclude the use of conventional electric motors and mechanical bearings. In the Morrison motor, as in a prior bearingless switched-reluctance motor, a multipole rotor is simultaneously levitated and rotated. In the prior motor, simultaneous levitation and rotation are achieved by means of two kinds of stator windings: (1) main motor windings and (2) windings that exert levitating forces on a multipole rotor. The multipole geometry is suboptimum for levitation in that it presents a discontinuous surface to the stator pole faces, thereby degrading the vibration-suppression capability of the magnetic bearing. The Morrison rotor simplifies the stator design in that the stator contains only one type of winding. The rotor is a hybrid that includes both (1) a circular lamination stack for levitation and (2) a multipole lamination stack for rotation. A prototype includes six rotor poles and eight stator poles (see figure). During normal operation, two of the four pairs of opposing stator poles (each pair at right angles to the other pair) levitate the rotor. The remaining two pairs of stator poles exert torque on the six-pole rotor lamination stack to produce rotation. The relative lengths of the circular and multipole lamination stacks on the rotor can be chosen to tailor the performance of the motor for a specific application. For a given overall length, increasing the length of the multipole stack relative to the circular stack results in an increase in torque relative to levitation load capacity and stiffness, and vice versa.

  20. Bearingless Switched-Reluctance Motor Improved

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.

    2004-01-01

    The Morrison rotor, named after its inventor, is a hybrid rotor for use in a switched reluctance electric motor. The motor is characterized as bearingless in the sense that it does not rely on conventional mechanical bearings: instead, it functions as both a magnetic bearing and a motor. Bearingless switched-reluctance motors are attractive for use in situations in which large variations in temperatures and/or other extreme conditions preclude the use of conventional electric motors and mechanical bearings. In the Morrison motor, as in prior bearingless switched-reluctance motors, a multipole rotor is simultaneously levitated and rotated. In the prior motors, simultaneous levitation and rotation are achieved by means of two kinds of stator windings: (1) main motor windings and (2) windings that exert levitating forces on a multipole rotor. The multipole geometry is suboptimum for levitation because it presents a discontinuous surface to the stator pole faces, thereby degrading the vibration suppression capability of the magnetic bearing. The Morrison rotor simplifies the stator design in that it contains only one type of winding. The rotor is a hybrid that includes both (1) a circular lamination stack for levitation and (2) a multipole lamination stack for rotation. Simultaneous levitation and rotation at 6000 rpm were achieved with a prototype that included six rotor poles and eight stator poles. During normal operation, two of the four pairs of opposing stator poles (each pair at right angles to the other pair) levitate the rotor. The remaining two pairs of stator poles exert torque on the six-pole rotor lamination stack to produce rotation. The relative length of the circular and multipole lamination stacks on the rotor can be chosen to tailor the performance of the motor for a specific application. For a given overall length, increasing the length of the multipole stack relative to the circular stack results in an increase in torque relative to the levitation

  1. Prediction of isometric motor tasks and effort levels based on high-density EMG in patients with incomplete spinal cord injury

    NASA Astrophysics Data System (ADS)

    Jordanić, Mislav; Rojas-Martínez, Mónica; Mañanas, Miguel Angel; Francesc Alonso, Joan

    2016-08-01

    Objective. The development of modern assistive and rehabilitation devices requires reliable and easy-to-use methods to extract neural information for control of devices. Group-specific pattern recognition identifiers are influenced by inter-subject variability. Based on high-density EMG (HD-EMG) maps, our research group has already shown that inter-subject muscle activation patterns exist in a population of healthy subjects. The aim of this paper is to analyze muscle activation patterns associated with four tasks (flexion/extension of the elbow, and supination/pronation of the forearm) at three different effort levels in a group of patients with incomplete Spinal Cord Injury (iSCI). Approach. Muscle activation patterns were evaluated by the automatic identification of these four isometric tasks along with the identification of levels of voluntary contractions. Two types of classifiers were considered in the identification: linear discriminant analysis and support vector machine. Main results. Results show that performance of classification increases when combining features extracted from intensity and spatial information of HD-EMG maps (accuracy = 97.5%). Moreover, when compared to a population with injuries at different levels, a lower variability between activation maps was obtained within a group of patients with similar injury suggesting stronger task-specific and effort-level-specific co-activation patterns, which enable better prediction results. Significance. Despite the challenge of identifying both the four tasks and the three effort levels in patients with iSCI, promising results were obtained which support the use of HD-EMG features for providing useful information regarding motion and force intention.

  2. Application of portable online LED UV fluorescence sensor to predict the degradation of dissolved organic matter and trace organic contaminants during ozonation.

    PubMed

    Li, Wen-Tao; Majewsky, Marius; Abbt-Braun, Gudrun; Horn, Harald; Jin, Jing; Li, Qiang; Zhou, Qing; Li, Ai-Min

    2016-09-15

    This work aims to correlate signals of LED UV/fluorescence sensor with the degradation of dissolved organic matter (DOM) and trace-level organic contaminants (TOrCs) during ozonation process. Six sets of bench-scale ozonation kinetic experiments incorporated with three different water matrices and 14 TOrCs of different reactivity (group I ∼ V) were conducted. Calibrated by tryptophan and humic substances standards and verified by the lab benchtop spectroscopy, the newly developed portable/online LED sensor, which measures the UV280 absorbance, protein-like and humic-like fluorescence simultaneously, was feasible to monitor chromophores and fluorophores with good sensitivity and accuracy. The liquid chromatography with organic carbon detector combined with 2D synchronous correlation analysis further demonstrated how the DOM components of large molecular weight were transformed into small moieties as a function of the decrease of humic-like fluorescence. For TOrCs, their removal rates were well correlated with the decrease of the LED UV/fluorescence signals, and their elimination patterns were mainly determined by their reactivity with O3 and hydroxyl radicals. At approximately 50% reduction of humic-like fluorescence almost complete oxidation of TOrCs of group I and II was reached, a similar removal percentage (25-75%) of TOrCs of group III and IV, and a poor removal percentage (<25%) of group V. This study might contribute to the smart control of advanced oxidation processes for the water and wastewater treatment in the future. PMID:27267474

  3. Crew Launch Vehicle Mobile Launcher Solid Rocket Motor Plume Induced Environment

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Sulyma, Peter

    2008-01-01

    The plume-induced environment created by the Ares 1 first stage, five-segment reusable solid rocket motor (RSRMV) will impose high heating rates and impact pressures on Launch Complex 39. The extremes of these environments pose a potential threat to weaken or even cause structural components to fail if insufficiently designed. Therefore the ability to accurately predict these environments is critical to assist in specifying structural design requirements to insure overall structural integrity and flight safety. This paper presents the predicted thermal and pressure environments induced by the launch of the Crew Launch Vehicle (CLV) from Launch Complex (LC) 39. Once the environments are predicted, a follow-on thermal analysis is required to determine the surface temperature response and the degradation rate of the materials. An example of structures responding to the plume-induced environment will be provided.

  4. Acquisition of Internal Models of Motor Tasks in Children with Autism

    ERIC Educational Resources Information Center

    Gidley Larson, Jennifer C.; Bastian, Amy J.; Donchin, Opher; Shadmehr, Reza; Mostofsky, Stewart H.

    2008-01-01

    Children with autism exhibit a host of motor disorders including poor coordination, poor tool use and delayed learning of complex motor skills like riding a tricycle. Theory suggests that one of the crucial steps in motor learning is the ability to form internal models: to predict the sensory consequences of motor commands and learn from errors to…

  5. Perceptual-Motor Deficits in Children with Down Syndrome: Implications for Intervention

    ERIC Educational Resources Information Center

    Virji-Babul, Naznin; Kerns, Kimberly; Zhou, Eric; Kapur, Asha; Shiffrar, Maggie

    2006-01-01

    Early intervention approaches for facilitating motor development in infants and children with Down syndrome have traditionally emphasised the acquisition of motor milestones. As increasing evidence suggests that motor milestones have limited predictive power for long-term motor outcomes, researchers have shifted their focus to understanding the…

  6. The Early Motor Questionnaire (EMQ): A Parental Report Measure of Early Motor Development

    PubMed Central

    Libertus, Klaus; Landa, Rebecca J.

    2013-01-01

    Children's early motor skills are critical for development across language, social, and cognitive domains, and warrant close examination. However, examiner-administered motor assessments are time consuming and expensive. Parent-report questionnaires offer an efficient alternative, but validity of parent report is unclear and only few motor questionnaires exist. In this report, we use cross-sectional and longitudinal data to investigate the validity of parent report in comparison to two examiner-administered measures (Mullen Scales of Early Learning, MSEL; Peabody Developmental Motor Scales, PDMS-2), and introduce a new parent-report measure called the Early Motor Questionnaire (EMQ). Results indicate strong correlations between parent report on the EMQ and a child's age, robust concurrent and predictive validity of parent report with both the MSEL and PDMS-2, and good test-re-test reliability of parent report on the EMQ. Together, our findings support the conclusion that parents provide dependable accounts of early motor and cognitive development. PMID:24140841

  7. Acoustic Measurements for Small Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Kenny, R. Jeremy

    2010-01-01

    Models have been developed to predict large solid rocket motor acoustic loads based on the scaling of small solid rocket motors. MSFC has measured several small solid rocket motors in horizontal and launch configurations to anchor these models. Solid Rocket Test Motor (SRTM) has ballistics similar to the Reusable Solid Rocket Motor (RSRM) therefore a good choice for acoustic scaling. Acoustic measurements were collected during the test firing of the Insulation Configuration Extended Length (ICXL) 7,6, and 8 (in firing order) in order to compare to RSRM horizontal firing data. The scope of this presentation includes: Acoustic test procedures and instrumentation implemented during the three SRTM firings and Data analysis method and general trends observed in the data.

  8. Somatosensory responses in a human motor cortex.

    PubMed

    Shaikhouni, Ammar; Donoghue, John P; Hochberg, Leigh R

    2013-04-01

    Somatic sensory signals provide a major source of feedback to motor cortex. Changes in somatosensory systems after stroke or injury could profoundly influence brain computer interfaces (BCI) being developed to create new output signals from motor cortex activity patterns. We had the unique opportunity to study the responses of hand/arm area neurons in primary motor cortex to passive joint manipulation in a person with a long-standing brain stem stroke but intact sensory pathways. Neurons responded to passive manipulation of the contralateral shoulder, elbow, or wrist as predicted from prior studies of intact primates. Thus fundamental properties and organization were preserved despite arm/hand paralysis and damage to cortical outputs. The same neurons were engaged by attempted arm actions. These results indicate that intact sensory pathways retain the potential to influence primary motor cortex firing rates years after cortical outputs are interrupted and may contribute to online decoding of motor intentions for BCI applications.

  9. Somatosensory responses in a human motor cortex

    PubMed Central

    Donoghue, John P.; Hochberg, Leigh R.

    2013-01-01

    Somatic sensory signals provide a major source of feedback to motor cortex. Changes in somatosensory systems after stroke or injury could profoundly influence brain computer interfaces (BCI) being developed to create new output signals from motor cortex activity patterns. We had the unique opportunity to study the responses of hand/arm area neurons in primary motor cortex to passive joint manipulation in a person with a long-standing brain stem stroke but intact sensory pathways. Neurons responded to passive manipulation of the contralateral shoulder, elbow, or wrist as predicted from prior studies of intact primates. Thus fundamental properties and organization were preserved despite arm/hand paralysis and damage to cortical outputs. The same neurons were engaged by attempted arm actions. These results indicate that intact sensory pathways retain the potential to influence primary motor cortex firing rates years after cortical outputs are interrupted and may contribute to online decoding of motor intentions for BCI applications. PMID:23343902

  10. Polysaccharide Degradation

    NASA Astrophysics Data System (ADS)

    Stone, Bruce A.; Svensson, Birte; Collins, Michelle E.; Rastall, Robert A.

    An overview of current and potential enzymes used to degrade polysaccharides is presented. Such depolymerases are comprised of glycoside hydrolases, glycosyl transferases, phosphorylases and lyases, and their classification, active sites and action patterns are discussed. Additionally, the mechanisms that these enzymes use to cleave glycosidic linkages is reviewed as are inhibitors of depolymerase activity; reagents which react with amino acid residues, glycoside derivatives, transition state inhibitors and proteinaceous inhibitors. The characterization of various enzymes of microbial, animal or plant origin has led to their widespread use in the production of important oligosaccharides which can be incorporated into food stuffs. Sources of polysaccharides of particular interest in this chapter are those from plants and include inulin, dextran, xylan and pectin, as their hydrolysis products are purported to be functional foods in the context of gastrointestinal health. An alternative use of degraded polysaccharides is in the treatment of disease. The possibility exists to treat bacterial exopolysaccharide with lyases from bacteriophage to produce oligosaccharides exhibiting bioactive sequences. Although this area is currently in its infancy the knowledge is available to investigate further.

  11. Final Report of a CRADA Between Pacific Northwest National Laboratory and the General Motors Company (CRADA No. PNNL/271): “Degradation Mechanisms of Urea Selective Catalytic Reduction Technology”

    SciTech Connect

    Kim, Do Heui; Lee, Jong H.; Peden, Charles HF; Howden, Ken; Kim, Chang H.; Oh, Se H.; Schmieg, Steven J.; Wiebenga, Michelle H.

    2011-12-13

    Diesel engines can offer substantially higher fuel efficiency, good driving performance characteristics, and reduced carbon dioxide (CO2) emission compared to stoichiometric gasoline engines. Despite the increasing public demand for higher fuel economy and reduced dependency on imported oil, however, meeting the stringent emission standards with affordable methods has been a major challenge for the wide application of these fuel-efficient engines in the US market. The selective catalytic reduction of NOx by urea (urea-SCR) is one of the most promising technologies for NOx emission control for diesel engine exhausts. To ensure successful NOx emission control in the urea-SCR technology, both a diesel oxidation catalyst (DOC) and a urea-SCR catalyst with high activity and durability are critical for the emission control system. Because the use of this technology for light-duty diesel vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy the durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions, which is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations. In addition, it is imperative to develop a good understanding of deactivation mechanisms to help develop improved catalyst materials. In this CRADA program, General Motors Company and PNNL have investigated fresh, laboratory- and vehicle-aged DOC and SCR catalysts. The studies have led to a better understanding of various aging factors that impact the long-term performance of catalysts used in the urea-SCR technology, and have improved the correlation between laboratory and vehicle aging for reduced development time and cost. This Final Report briefly highlights many of the technical accomplishments and documents the productivity of the program in terms of peer-reviewed scientific publications

  12. Non-linear feeding functional responses in the Greater Flamingo (Phoenicopterus roseus) predict immediate negative impact of wetland degradation on this flagship species

    PubMed Central

    Deville, Anne-Sophie; Grémillet, David; Gauthier-Clerc, Michel; Guillemain, Matthieu; Von Houwald, Friederike; Gardelli, Bruno; Béchet, Arnaud

    2013-01-01

    Accurate knowledge of the functional response of predators to prey density is essential for understanding food web dynamics, to parameterize mechanistic models of animal responses to environmental change, and for designing appropriate conservation measures. Greater flamingos (Phoenicopterus roseus), a flagship species of Mediterranean wetlands, primarily feed on Artemias (Artemia spp.) in commercial salt pans, an industry which may collapse for economic reasons. Flamingos also feed on alternative prey such as Chironomid larvae (e.g., Chironomid spp.) and rice seeds (Oryza sativa). However, the profitability of these food items for flamingos remains unknown. We determined the functional responses of flamingos feeding on Artemias, Chironomids, or rice. Experiments were conducted on 11 captive flamingos. For each food item, we offered different ranges of food densities, up to 13 times natural abundance. Video footage allowed estimating intake rates. Contrary to theoretical predictions for filter feeders, intake rates did not increase linearly with increasing food density (type I). Intake rates rather increased asymptotically with increasing food density (type II) or followed a sigmoid shape (type III). Hence, flamingos were not able to ingest food in direct proportion to their abundance, possibly because of unique bill structure resulting in limited filtering capabilities. Overall, flamingos foraged more efficiently on Artemias. When feeding on Chironomids, birds had lower instantaneous rates of food discovery and required more time to extract food from the sediment and ingest it, than when filtering Artemias from the water column. However, feeding on rice was energetically more profitable for flamingos than feeding on Artemias or Chironomids, explaining their attraction for rice fields. Crucially, we found that food densities required for flamingos to reach asymptotic intake rates are rarely met under natural conditions. This allows us to predict an immediate

  13. Non-linear feeding functional responses in the Greater Flamingo (Phoenicopterus roseus) predict immediate negative impact of wetland degradation on this flagship species.

    PubMed

    Deville, Anne-Sophie; Grémillet, David; Gauthier-Clerc, Michel; Guillemain, Matthieu; Von Houwald, Friederike; Gardelli, Bruno; Béchet, Arnaud

    2013-05-01

    Accurate knowledge of the functional response of predators to prey density is essential for understanding food web dynamics, to parameterize mechanistic models of animal responses to environmental change, and for designing appropriate conservation measures. Greater flamingos (Phoenicopterus roseus), a flagship species of Mediterranean wetlands, primarily feed on Artemias (Artemia spp.) in commercial salt pans, an industry which may collapse for economic reasons. Flamingos also feed on alternative prey such as Chironomid larvae (e.g., Chironomid spp.) and rice seeds (Oryza sativa). However, the profitability of these food items for flamingos remains unknown. We determined the functional responses of flamingos feeding on Artemias, Chironomids, or rice. Experiments were conducted on 11 captive flamingos. For each food item, we offered different ranges of food densities, up to 13 times natural abundance. Video footage allowed estimating intake rates. Contrary to theoretical predictions for filter feeders, intake rates did not increase linearly with increasing food density (type I). Intake rates rather increased asymptotically with increasing food density (type II) or followed a sigmoid shape (type III). Hence, flamingos were not able to ingest food in direct proportion to their abundance, possibly because of unique bill structure resulting in limited filtering capabilities. Overall, flamingos foraged more efficiently on Artemias. When feeding on Chironomids, birds had lower instantaneous rates of food discovery and required more time to extract food from the sediment and ingest it, than when filtering Artemias from the water column. However, feeding on rice was energetically more profitable for flamingos than feeding on Artemias or Chironomids, explaining their attraction for rice fields. Crucially, we found that food densities required for flamingos to reach asymptotic intake rates are rarely met under natural conditions. This allows us to predict an immediate

  14. Directed flux motor

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  15. Equivalent Circuit Modeling of Hysteresis Motors

    SciTech Connect

    Nitao, J J; Scharlemann, E T; Kirkendall, B A

    2009-08-31

    We performed a literature review and found that many equivalent circuit models of hysteresis motors in use today are incorrect. The model by Miyairi and Kataoka (1965) is the correct one. We extended the model by transforming it to quadrature coordinates, amenable to circuit or digital simulation. 'Hunting' is an oscillatory phenomenon often observed in hysteresis motors. While several works have attempted to model the phenomenon with some partial success, we present a new complete model that predicts hunting from first principles.

  16. James Webb Space Telescope Deployment Brushless DC Motor Characteristics Analysis

    NASA Technical Reports Server (NTRS)

    Tran, Ahn N.

    2016-01-01

    A DC motor's performance is usually characterized by a series of tests, which are conducted by pass/fail criteria. In most cases, these tests are adequate to address the performance characteristics under environmental and loading effects with some uncertainties and decent power/torque margins. However, if the motor performance requirement is very stringent, a better understanding of the motor characteristics is required. The purpose of this paper is to establish a standard way to extract the torque components of the brushless motor and gear box characteristics of a high gear ratio geared motor from the composite geared motor testing and motor parameter measurement. These torque components include motor magnetic detent torque, Coulomb torque, viscous torque, windage torque, and gear tooth sliding torque. The Aerospace Corp bearing torque model and MPB torque models are used to predict the Coulomb torque of the motor rotor bearings and to model the viscous components. Gear tooth sliding friction torque is derived from the dynamo geared motor test data. With these torque data, the geared motor mechanical efficiency can be estimated and provide the overall performance of the geared motor versus several motor operating parameters such as speed, temperature, applied current, and transmitted power.

  17. Chronic motor tic disorder

    MedlinePlus

    Chronic vocal tic disorder; Tic - chronic motor tic disorder ... Chronic motor tic disorder is more common than Tourette syndrome . Chronic tics may be forms of Tourette syndrome. Tics usually start ...

  18. Introduction to ultrasonic motors

    SciTech Connect

    Sashida, Toshiiku; Kenjo, Takashi.

    1993-01-01

    The ultrasonic motor, invented in 1980, utilizes the piezoelectric effect in the ultrasonic frequency range to provide the motive force. (In conventional electric motors the motive force is electromagnetic.) The result is a motor with unusually good low-speed high-torque and power-to-weight characteristics. It has already found applications in camera autofocus mechanisms, medical equipment subject to high magnetic fields, and motorized car accessories. Its applications will increase as designers become more familiar with its unique characteristics. This book is the result of a collaboration between the inventor and an expert in conventional electric motors: the result is an introduction to the general theory presented in a way that links it to conventional motor theory. It will be invaluable both to motor designers and to those who design with and use electric motors as an introduction to this important new invention.

  19. Fine motor control

    MedlinePlus

    ... out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To have fine motor control, children need: Awareness and planning Coordination Muscle ...

  20. Distinct Transport Regimes for Two Elastically Coupled Molecular Motors

    NASA Astrophysics Data System (ADS)

    Berger, Florian; Keller, Corina; Klumpp, Stefan; Lipowsky, Reinhard

    2012-05-01

    Cooperative cargo transport by two molecular motors involves an elastic motor-motor coupling, which can reduce the motors’ velocity and/or enhance their unbinding from the filament. We show theoretically that these interference effects lead, in general, to four distinct transport regimes. In addition to a weak coupling regime, kinesin and dynein motors are found to exhibit a strong coupling and an enhanced unbinding regime, whereas myosin motors are predicted to attain a reduced velocity regime. All of these regimes, which we derive by explicit calculations and general time scale arguments, can be explored experimentally by varying the elastic coupling strength.

  1. Molecular motors: nature's nanomachines.

    PubMed

    Tyreman, M J A; Molloy, J E

    2003-12-01

    Molecular motors are protein-based machines that convert chemical potential energy into mechanical work. This paper aims to introduce the non-specialist reader to molecular motors, in particular, acto-myosin, the prototype system for motor protein studies. These motors produce their driving force from changes in chemical potential arising directly from chemical reactions and are responsible for muscle contraction and a variety of other cell motilities.

  2. Smart motor technology

    NASA Technical Reports Server (NTRS)

    Packard, D.; Schmitt, D.

    1984-01-01

    Current spacecraft design relies upon microprocessor control; however, motors usually require extensive additional electronic circuitry to interface with these microprocessor controls. An improved control technique that allows a smart brushless motor to connect directly to a microprocessor control system is described. An actuator with smart motors receives a spacecraft command directly and responds in a closed loop control mode. In fact, two or more smart motors can be controlled for synchronous operation.

  3. Outdoor PV Degradation Comparison

    SciTech Connect

    Jordan, D. C.; Smith, R. M.; Osterwald, C. R.; Gelak, E.; Kurtz, S. R.

    2011-02-01

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output; may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined; accurately. At the Performance and Energy Rating Testbed (PERT) at the Outdoor Test Facility (OTF) at the; National Renewable Energy Laboratory (NREL) more than 40 modules from more than 10 different manufacturers; were compared for their long-term outdoor stability. Because it can accommodate a large variety of modules in a; limited footprint the PERT system is ideally suited to compare modules side-by-side under the same conditions.

  4. Structural equation modeling of motor impairment, gross motor function, and the functional outcome in children with cerebral palsy.

    PubMed

    Park, Eun-Young; Kim, Won-Ho

    2013-05-01

    Physical therapy intervention for children with cerebral palsy (CP) is focused on reducing neurological impairments, improving strength, and preventing the development of secondary impairments in order to improve functional outcomes. However, relationship between motor impairments and functional outcome has not been proved definitely. This study confirmed the construct of motor impairment and performed structural equation modeling (SEM) between motor impairment, gross motor function, and functional outcomes of regarding activities of daily living in children with CP. 98 children (59 boys, 39 girls) with CP participated in this cross-sectional study. Mean age was 11 y 5 mo (SD 1 y 9 mo). The Manual Muscle Test (MMT), the Modified Ashworth Scale (MAS), range of motion (ROM) measurement, and the selective motor control (SMC) scale were used to assess motor impairments. Gross motor function and functional outcomes were measured using the Gross Motor Function Measure (GMFM) and the Functional Skills domain of the Pediatric Evaluation of Disability Inventory (PEDI) respectively. Measurement of motor impairment was consisted of strength, spasticity, ROM, and SMC. The construct of motor impairment was confirmed though an examination of a measurement model. The proposed SEM model showed good fit indices. Motor impairment effected gross motor function (β=-.0869). Gross motor function and motor impairment affected functional outcomes directly (β=0.890) and indirectly (β=-0.773) respectively. We confirmed that the construct of motor impairment consist of strength, spasticity, ROM, and SMC and it was identified through measurement model analysis. Functional outcomes are best predicted by gross motor function and motor impairments have indirect effects on functional outcomes. PMID:23500167

  5. Solid propellant motor

    NASA Technical Reports Server (NTRS)

    Shafer, J. I.; Marsh, H. E., Jr. (Inventor)

    1978-01-01

    A case bonded end burning solid propellant rocket motor is described. A propellant with sufficiently low modulus to avoid chamber buckling on cooling from cure and sufficiently high elongation to sustain the stresses induced without cracking is used. The propellant is zone cured within the motor case at high pressures equal to or approaching the pressure at which the motor will operate during combustion. A solid propellant motor with a burning time long enough that its spacecraft would be limited to a maximum acceleration of less than 1 g is provided by one version of the case bonded end burning solid propellant motor of the invention.

  6. Motor/generator

    DOEpatents

    Hickam, Christopher Dale

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  7. Piezoceramic Ultrasonic Motor Technology

    SciTech Connect

    Burden, J.S.

    1999-02-24

    The objective of this project was to team Aerotech and AlliedSignal FM and T (AS) to develop a cost-efficient process for small-batch, high performance PZT motor production. Aerotech would acquire the basic process expertise in motor fabrication, assembly, and testing from AS. Together, Aerotech and AS were to identify appropriate process improvements, focusing on raw material quality, manufacturing processes, and durability assessment. Aerotech would then design and build a motor in consultation with AS. Aerotech engineering observed motor manufacturing in the AS piezo lab and worked side by side with AS personnel to build and test a prototype motor to facilitate learning the technology. Using information from AS and hands-on experience with the AS motor drive system enabled Aerotech to design and build its own laboratory drive system to operate motors. The team compiled information to establish a potential piezo motor users' list, and an intellectual property search was conducted to understand current patent and IP (intellectual property) status of motor design. Work was initiated to identify and develop an American source for piezo motor elements; however, due to manpower restraints created by the resignation of the AS Ph.D. ceramist responsible for these tasks, the project schedule slipped. The project was subsequently terminated before significant activities were accomplished. AS did, however, provide Aerotech with contacts in Japanese industry that are willing and capable of supplying them with special design motor elements.

  8. Motorized support jack

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe

    2001-01-01

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  9. Motorized support jack

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe

    2003-05-13

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  10. Cyclic motor activity; migrating motor complex: 1985.

    PubMed

    Sarna, S K

    1985-10-01

    Most of the gastrointestinal tract and the biliary tract have a cyclic motor activity. The electric counterpart of this motor activity is called cyclic myoelectric activity. A typical motor cycle in the LES, stomach, and small intestine is composed of a quiescent state, followed by progressively increasing amplitude and frequency of contractions culminating in a state of maximal contractile activity. The colonic motor cycle has only the quiescent and the contractile states. In the small intestine, these motor complexes migrate in an aborad direction, and in the colon in both orad and aborad directions. The mechanisms of initiation and migration of these complexes are best understood in the small intestine. Both the initiation and migration of these complexes seem to be controlled by enteric neural mechanisms. The functions of the enteric mechanisms may be modulated by the central nervous system and by circulating endogenous substances. The mechanisms of initiation of these complexes are not completely understood in the rest of the gastrointestinal tract and in the biliary tract. The physiologic function of these motor complexes that occur only after several hours of fast in the upper gastrointestinal tract of nonruminants may be to clean the digestive tract of residual food, secretions, and cellular debris. This function is aided by a coordinated secretion of enzymes, acid, and bicarbonate. In ruminants, phase III activity is associated with the distal propulsion of ingested food. The function of colonic motor complexes that are not coordinated with the cyclic motor activities of the rest of the gastrointestinal tract may be only to move contents back and forth for optimal absorption. PMID:3896912

  11. Pressure Oscillations and Structural Vibrations in Space Shuttle RSRM and ETM-3 Motors

    NASA Technical Reports Server (NTRS)

    Mason, D. R.; Morstadt, R. A.; Cannon, S. M.; Gross, E. G.; Nielsen, D. B.

    2004-01-01

    The complex interactions between internal motor pressure oscillations resulting from vortex shedding, the motor's internal acoustic modes, and the motor's structural vibration modes were assessed for the Space Shuttle four-segment booster Reusable Solid Rocket Motor and for the five-segment engineering test motor ETM-3. Two approaches were applied 1) a predictive procedure based on numerically solving modal representations of a solid rocket motor s acoustic equations of motion and 2) a computational fluid dynamics two-dimensional axi-symmetric large eddy simulation at discrete motor burn times.

  12. Dissociating motor cortex from the motor

    PubMed Central

    Schieber, Marc H

    2011-01-01

    Abstract During closed-loop control of a brain–computer interface, neurons in the primary motor cortex can be intensely active even though the subject may be making no detectable movement or muscle contraction. How can neural activity in the primary motor cortex become dissociated from the movements and muscles of the native limb that it normally controls? Here we examine circumstances in which motor cortex activity is known to dissociate from movement – including mental imagery, visuo-motor dissociation and instructed delay. Many such motor cortex neurons may be related to muscle activity only indirectly. Furthermore, the integration of thousands of synaptic inputs by individual α-motoneurons means that under certain circumstances even cortico-motoneuronal cells, which make monosynaptic connections to α-motoneurons, can become dissociated from muscle activity. The natural ability of motor cortex neurons under voluntarily control to become dissociated from bodily movement may underlie the utility of this cortical area for controlling brain–computer interfaces. PMID:22005673

  13. Aging of electric motors in nuclear power plants

    SciTech Connect

    R; Subudhi, M.; Taylor, J.H.

    1987-06-01

    Motor degradation due to aging and service wear decreases reliability and increases the potential for failure during nuclear plant accident and post accident conditions. The impact of motor failures on plant safety is an important concern among the nuclear utilities and the government agency regulating this industry. Economic impacts, relating to plant availability and safety, as well as corrective maintenance, have prompted utilities to improve their maintenance programs to mitigate such aging effects. 2 refs., 3 figs.

  14. Molecular motors: a traffic cop within?

    PubMed Central

    Welte, M. A.; Gross, S. P.

    2008-01-01

    Intracellular transport along microtubules is often bidirectional, employing multiple plus- and minus-end directed motors. How cells regulate such transport in time and space is a fundamental but unsolved question in cell biology. A recent paper presents a new modeling approach to predict how much of transport can be understood just from our knowledge of the motors involved. The model can generate strikingly complex patterns of motion, mimicking key aspects of cargo transport in vivo. Previous studies had inferred that plus-end motors on bidirectional cargoes are usually turned off when the minus-end motors are engaged (and vice versa). In the model, such motor coordination can arise from motors competing in a tug-of-war, without help from additional regulators. This new theoretical framework should stimulate much research that will help unravel whether regulation of intracellular transport is dominated by higher-order control mechanisms or is achieved simply by tuning basic properties of the motors themselves. PMID:19404428

  15. Motor Neurons that Multitask

    PubMed Central

    Goulding, Martyn

    2013-01-01

    Animals use a form of sensory feedback termed proprioception to monitor their body position and modify the motor programs that control movement. In this issue of Neuron, Wen et al. (2012) provide evidence that a subset of motor neurons function as proprioceptors in C. elegans, where B-type motor neurons sense body curvature to control the bending movements that drive forward locomotion. PMID:23177952

  16. Development method of the motor winding's ultrasonic cleaning equipment

    NASA Astrophysics Data System (ADS)

    Jiang, Yingzhan; Wang, Caiyuan; Ao, Chenyang; Zhang, Haipeng

    2013-03-01

    The complicate question's solution of motor winding cleaning need new technologies such as ultrasonic cleaning. The mechanism of problems that the insulation level of the motor winding would be degraded with time and the motor winding would resumed tide soon after processing were analyzed. The ultrasonic cleaning method was studies and one ultrasonic cleaning device was designed. Its safety was verified by the destructive experiment. The test show that this device can clear away the depositional dirt in the winding thoroughly, which provides a new idea and method to ensure its insulation level and realize its safe and reliable operation.

  17. Condition monitoring of machinery using motor current signature analysis

    NASA Astrophysics Data System (ADS)

    Kryter, R. C.; Haynes, H. D.

    Motor current signature analysis (MCSA) is a powerful monitoring tool for motor-driven equipment that provides a nonintrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment, including altered conditions in the process downstream of the motor-driven equipment. It was developed at the Oak Ridge National Laboratory as a means for determining the effects of aging and service wear systems, but it is applicable to a broad range of machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. These motor current variations are carried by the electrical cables processes as desired. Motor current signatures, obtained in both time and over time to provide early indication of degradation. Successful applications of MCSA technology (patent applied for) include not only motor-operated valves but also pumps of various designs, blowers, and air conditioning systems. Examples are presented briefly, and speculation regarding the applicability of MCSA to a broader range of equipment monitoring and production line testing is also given.

  18. Condition monitoring of machinery using motor current signature analysis

    SciTech Connect

    Kryter, R.C.; Haynes, H.D.

    1989-01-01

    Motor current signature analysis (MCSA) is a powerful monitoring tool for motor-driven equipment that provides a nonintrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment, including altered conditions in the process ''downstream'' of the motor-driven equipment. It was developed at the Oak Ridge National Laboratory as a means for determining the effects of aging and service wear systems, but it is applicable to a broad range of machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. These motor current variations are carried by the electrical cables processes as desired. Motor current signatures, obtained in both time and over time to provide early indication of degradation. Successful applications of MCSA technology (patent applied for) include not only motor-operated valves but also pumps of various designs, blowers, and air conditioning systems. Examples are presented briefly, and speculation regarding the applicability of MCSA to a broader range of equipment monitoring and production line testing is also given. 1 ref., 13 figs.

  19. Cryogenic Electric Motor Tested

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  20. Hybrid vehicle motor alignment

    DOEpatents

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  1. Relations among motor, social, and cognitive skills in pre-kindergarten children with developmental disabilities.

    PubMed

    Kim, Helyn; Carlson, Abby G; Curby, Timothy W; Winsler, Adam

    2016-01-01

    Despite the comorbidity between motor difficulties and certain disabilities, limited research has examined links between early motor, cognitive, and social skills in preschool-aged children with developmental disabilities. The present study examined the relative contributions of gross motor and fine motor skills to the prediction of improvements in children's cognitive and social skills among 2,027 pre-kindergarten children with developmental disabilities, including specific learning disorder, speech/language impairment, intellectual disability, and autism spectrum disorder. Results indicated that for pre-kindergarten children with developmental disabilities, fine motor skills, but not gross motor skills, were predictive of improvements in cognitive and social skills, even after controlling for demographic information and initial skill levels. Moreover, depending on the type of developmental disability, the pattern of prediction of gross motor and fine motor skills to improvements in children's cognitive and social skills differed. Implications are discussed.

  2. Relations among motor, social, and cognitive skills in pre-kindergarten children with developmental disabilities.

    PubMed

    Kim, Helyn; Carlson, Abby G; Curby, Timothy W; Winsler, Adam

    2016-01-01

    Despite the comorbidity between motor difficulties and certain disabilities, limited research has examined links between early motor, cognitive, and social skills in preschool-aged children with developmental disabilities. The present study examined the relative contributions of gross motor and fine motor skills to the prediction of improvements in children's cognitive and social skills among 2,027 pre-kindergarten children with developmental disabilities, including specific learning disorder, speech/language impairment, intellectual disability, and autism spectrum disorder. Results indicated that for pre-kindergarten children with developmental disabilities, fine motor skills, but not gross motor skills, were predictive of improvements in cognitive and social skills, even after controlling for demographic information and initial skill levels. Moreover, depending on the type of developmental disability, the pattern of prediction of gross motor and fine motor skills to improvements in children's cognitive and social skills differed. Implications are discussed. PMID:26852279

  3. Motor Qualification for Long-Duration Mars Missions

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Johnson, Michael R.; Cooper, Darren T.; Lau, Warren S.; Boykins, Kobie T.; Perret, Jonathan D.; Rainen, Richard A.; Greb, Andrea

    2013-01-01

    Qualification of motors for deep space under extreme thermal environments to be encountered during the Mars Science Laboratory (MSL) mission is required to verify the reliability and validate mission assurance requirements. The motor assembly must survive all ground operations, plus the nominal 670 Martian-day (or sol) mission that includes summer and winter seasons of the Mars environment. The motor assembly was tested and characterized under extreme temperature conditions with reference to hardware requirements. The motor assembly has been proved to be remarkably robust and displayed no sign of degradation due to the 3 X (three times per JPL design principles) thermal environmental exposure to the punishing Mars surface operations cycles. The motor characteristics obtained before, during, and post-test comparisons for the surface operations cycles are within measurement error of one another. The motors withstood/survived 2,010 extreme temperature cycles with a Delta T of 190 C deep temperature cycles, representing three times the expected thermal cycling exposure during the MSL surface operations. The qualification test hardware elements (A200 motor assembly, encoders, and resolver) have not shown any signs of degradation due to the PQV (Package Qualification and Verification) testing. The test hardware has demonstrated sufficient life to survive the deep thermal cycles associated with MSL mission surface operations for three lives.

  4. Brain Connectivity Plasticity in the Motor Network after Ischemic Stroke

    PubMed Central

    Jiang, Lin; Xu, Huijuan

    2013-01-01

    The motor function is controlled by the motor system that comprises a series of cortical and subcortical areas interacting via anatomical connections. The motor function will be disturbed when the stroke lesion impairs either any of these areas or their connections. More and more evidence indicates that the reorganization of the motor network including both areas and their anatomical and functional connectivity might contribute to the motor recovery after stroke. Here, we review recent studies employing models of anatomical, functional, and effective connectivity on neuroimaging data to investigate how ischemic stroke influences the connectivity of motor areas and how changes in connectivity relate to impaired function and functional recovery. We suggest that connectivity changes constitute an important pathophysiological aspect of motor impairment after stroke and important mechanisms of motor recovery. We also demonstrate that therapeutic interventions may facilitate motor recovery after stroke by modulating the connectivity among the motor areas. In conclusion, connectivity analyses improved our understanding of the mechanisms of motor recovery after stroke and may help to design hypothesis-driven treatment strategies and sensitive measures for outcome prediction in stroke patients. PMID:23738150

  5. Thermodynamics and kinetics of a molecular motor ensemble.

    PubMed

    Baker, J E; Thomas, D D

    2000-10-01

    If, contrary to conventional models of muscle, it is assumed that molecular forces equilibrate among rather than within molecular motors, an equation of state and an expression for energy output can be obtained for a near-equilibrium, coworking ensemble of molecular motors. These equations predict clear, testable relationships between motor structure, motor biochemistry, and ensemble motor function, and we discuss these relationships in the context of various experimental studies. In this model, net work by molecular motors is performed with the relaxation of a near-equilibrium intermediate step in a motor-catalyzed reaction. The free energy available for work is localized to this step, and the rate at which this free energy is transferred to work is accelerated by the free energy of a motor-catalyzed reaction. This thermodynamic model implicitly deals with a motile cell system as a dynamic network (not a rigid lattice) of molecular motors within which the mechanochemistry of one motor influences and is influenced by the mechanochemistry of other motors in the ensemble. PMID:11023881

  6. Thermodynamics and kinetics of a molecular motor ensemble.

    PubMed Central

    Baker, J E; Thomas, D D

    2000-01-01

    If, contrary to conventional models of muscle, it is assumed that molecular forces equilibrate among rather than within molecular motors, an equation of state and an expression for energy output can be obtained for a near-equilibrium, coworking ensemble of molecular motors. These equations predict clear, testable relationships between motor structure, motor biochemistry, and ensemble motor function, and we discuss these relationships in the context of various experimental studies. In this model, net work by molecular motors is performed with the relaxation of a near-equilibrium intermediate step in a motor-catalyzed reaction. The free energy available for work is localized to this step, and the rate at which this free energy is transferred to work is accelerated by the free energy of a motor-catalyzed reaction. This thermodynamic model implicitly deals with a motile cell system as a dynamic network (not a rigid lattice) of molecular motors within which the mechanochemistry of one motor influences and is influenced by the mechanochemistry of other motors in the ensemble. PMID:11023881

  7. Language and Motor Speech Skills in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Pirila, Silja; van der Meere, Jaap; Pentikainen, Taina; Ruusu-Niemi, Pirjo; Korpela, Raija; Kilpinen, Jenni; Nieminen, Pirkko

    2007-01-01

    The aim of the study was to investigate associations between the severity of motor limitations, cognitive difficulties, language and motor speech problems in children with cerebral palsy. Also, the predictive power of neonatal cranial ultrasound findings on later outcome was investigated. For this purpose, 36 children (age range 1 year 10 months…

  8. Motoric cognitive risk syndrome

    PubMed Central

    Annweiler, Cedric; Ayers, Emmeline; Barzilai, Nir; Beauchet, Olivier; Bennett, David A.; Bridenbaugh, Stephanie A.; Buchman, Aron S.; Callisaya, Michele L.; Camicioli, Richard; Capistrant, Benjamin; Chatterji, Somnath; De Cock, Anne-Marie; Ferrucci, Luigi; Giladi, Nir; Guralnik, Jack M.; Hausdorff, Jeffrey M.; Holtzer, Roee; Kim, Ki Woong; Kowal, Paul; Kressig, Reto W.; Lim, Jae-Young; Lord, Susan; Meguro, Kenichi; Montero-Odasso, Manuel; Muir-Hunter, Susan W.; Noone, Mohan L.; Rochester, Lynn; Srikanth, Velandai; Wang, Cuiling

    2014-01-01

    Objectives: Our objective is to report prevalence of motoric cognitive risk syndrome (MCR), a newly described predementia syndrome characterized by slow gait and cognitive complaints, in multiple countries, and its association with dementia risk. Methods: Pooled MCR prevalence analysis of individual data from 26,802 adults without dementia and disability aged 60 years and older from 22 cohorts from 17 countries. We also examined risk of incident cognitive impairment (Mini-Mental State Examination decline ≥4 points) and dementia associated with MCR in 4,812 individuals without dementia with baseline Mini-Mental State Examination scores ≥25 from 4 prospective cohort studies using Cox models adjusted for potential confounders. Results: At baseline, 2,808 of the 26,802 participants met MCR criteria. Pooled MCR prevalence was 9.7% (95% confidence interval [CI] 8.2%–11.2%). MCR prevalence was higher with older age but there were no sex differences. MCR predicted risk of developing incident cognitive impairment in the pooled sample (adjusted hazard ratio [aHR] 2.0, 95% CI 1.7–2.4); aHRs were 1.5 to 2.7 in the individual cohorts. MCR also predicted dementia in the pooled sample (aHR 1.9, 95% CI 1.5–2.3). The results persisted even after excluding participants with possible cognitive impairment, accounting for early dementia, and diagnostic overlap with other predementia syndromes. Conclusion: MCR is common in older adults, and is a strong and early risk factor for cognitive decline. This clinical approach can be easily applied to identify high-risk seniors in a wide variety of settings. PMID:25031288

  9. High-Throughput Analytical Techniques for Determination of Residues of 653 Multiclass Pesticides and Chemical Pollutants in Tea, Part VI: Study of the Degradation of 271 Pesticide Residues in Aged Oolong Tea by Gas Chromatography-Tandem Mass Spectrometry and Its Application in Predicting the Residue Concentrations of Target Pesticides.

    PubMed

    Chang, Qiao-Ying; Pang, Guo-Fang; Fan, Chun-Lin; Chen, Hui; Wang, Zhi-Bin

    2016-07-01

    The degradation rate of 271 pesticide residues in aged Oolong tea at two spray concentrations, named a and b (a < b), were monitored for 120 days using GC-tandem MS (GC-MS/MS). To research the degradation trends and establish regression equations, determination days were plotted as horizontal ordinates and the residue concentrations of pesticide were plotted as vertical ordinates. Here, we consider the degradation equations of 271 pesticides over 40 and 120 days, summarize the degradation rates in six aspects (A-F), and discuss the degradation trends of the 271 pesticides in aged Oolong tea in detail. The results indicate that >70% of the determined pesticides coincide with the degradation regularity of trends A, B, and E, i.e., the concentration of pesticide will decrease within 4 months. Next, 20 representative pesticides were selected for further study at higher spray concentrations, named c and d (d > c > b > a), in aged Oolong tea over another 90 days. The determination days were plotted on the x-axis, and the differences between each determined result and first-time-determined value of target pesticides were plotted on the y-axis. The logarithmic function was obtained by fitting the 90-day determination results, allowing the degradation value of a target pesticide on a specific day to be calculated. These logarithmic functions at d concentration were applied to predict the residue concentrations of pesticides at c concentration. Results revealed that 70% of the 20 pesticides had the lower deviation ratios of predicted and measured results. PMID:27151741

  10. High-Throughput Analytical Techniques for Determination of Residues of 653 Multiclass Pesticides and Chemical Pollutants in Tea, Part VI: Study of the Degradation of 271 Pesticide Residues in Aged Oolong Tea by Gas Chromatography-Tandem Mass Spectrometry and Its Application in Predicting the Residue Concentrations of Target Pesticides.

    PubMed

    Chang, Qiao-Ying; Pang, Guo-Fang; Fan, Chun-Lin; Chen, Hui; Wang, Zhi-Bin

    2016-07-01

    The degradation rate of 271 pesticide residues in aged Oolong tea at two spray concentrations, named a and b (a < b), were monitored for 120 days using GC-tandem MS (GC-MS/MS). To research the degradation trends and establish regression equations, determination days were plotted as horizontal ordinates and the residue concentrations of pesticide were plotted as vertical ordinates. Here, we consider the degradation equations of 271 pesticides over 40 and 120 days, summarize the degradation rates in six aspects (A-F), and discuss the degradation trends of the 271 pesticides in aged Oolong tea in detail. The results indicate that >70% of the determined pesticides coincide with the degradation regularity of trends A, B, and E, i.e., the concentration of pesticide will decrease within 4 months. Next, 20 representative pesticides were selected for further study at higher spray concentrations, named c and d (d > c > b > a), in aged Oolong tea over another 90 days. The determination days were plotted on the x-axis, and the differences between each determined result and first-time-determined value of target pesticides were plotted on the y-axis. The logarithmic function was obtained by fitting the 90-day determination results, allowing the degradation value of a target pesticide on a specific day to be calculated. These logarithmic functions at d concentration were applied to predict the residue concentrations of pesticides at c concentration. Results revealed that 70% of the 20 pesticides had the lower deviation ratios of predicted and measured results.

  11. The influence of motor expertise on the brain activity of motor task performance: A meta-analysis of functional magnetic resonance imaging studies.

    PubMed

    Yang, Jie

    2015-06-01

    Previous research has investigated the influence of long-term motor training on the brain activity of motor processes, but the findings are inconsistent. To clarify how acquiring motor expertise induces cortical reorganization during motor task performance, the current study conducted a quantitative meta-analysis on 26 functional magnetic resonance imaging (fMRI) studies that investigate motor task performance in people with long-term motor training experience (e.g., athletes, musicians, and dancers) and control participants. Meta-analysis of the brain activation in motor experts and novices showed similar effects in the bilateral frontal and parietal regions. The meta-analysis on the contrast between motor experts and novices indicated that experts showed stronger effects in the left inferior parietal lobule (BA 40) than did novices in motor execution and prediction tasks. In motor observation tasks, experts showed stronger effects in the left inferior frontal gyrus (BA 9) and left precentral gyrus (BA 6) than novices. On the contrary, novices had stronger effects in the right motor areas and basal ganglia as compared with motor experts. These results indicate that motor experts have effect increases in brain areas involved in action planning and action comprehension, and suggest that intensive motor training might elaborate the motor representation related to the task performance.

  12. Motor efficiency management

    SciTech Connect

    Lobodovsky, K.K. , Penn Valley, CA )

    1994-01-01

    During the 102nd Congress, the Markey Bill, H.R. 2451, was introduced. The bill mandated component efficiency standards for such products as lighting, distribution transformers, and electric A.C. motors. This plan was met with opposition by NEMA and other interested groups. They called for a system approach that would recognize the complex nature of the product involved under the plan. The bill passed by the Energy Power Subcommittee on the theory that the elimination of the least efficient component from the market would ensure that consumers would purchase and use the most efficient products possible. Experience indicates that despite heightened awareness and concern with energy efficiency, the electric motor is either completely neglected or decisions are made on the basis of incomplete information. An on-going analysis of motor performance prevents major breakdown. Performance evaluation of a motor should be done as routinely as it is done on an employee. Both the motor and the employee are equally important. Applied motor maintenance will keep the building or plant running smoothly with minimal stress on the system or downtime because of failure. The Motor Performance Management Process (MPMP) is designed to be the Motor Manager's primary tool to evaluate, measure, and most importantly manage electric motors. MPMP focuses on building a stronger relationship between the Motor Manager and the electric motor employed to perform a task. Specifically, it is a logical, systematic, and structured approach to reduce energy waste. Energy waste reduction is fundamental in becoming more efficient in an increasingly competitive market. The implementation of MPMP is more than a good business practice it is an intelligent management resource.

  13. Heritability of motor control and motor learning

    PubMed Central

    Missitzi, Julia; Gentner, Reinhard; Misitzi, Angelica; Geladas, Nickos; Politis, Panagiotis; Klissouras, Vassilis; Classen, Joseph

    2013-01-01

    Abstract The aim of this study was to elucidate the relative contribution of genes and environment on individual differences in motor control and acquisition of a force control task, in view of recent association studies showing that several candidate polymorphisms may have an effect on them. Forty‐four healthy female twins performed brisk isometric abductions with their right thumb. Force was recorded by a transducer and fed back to the subject on a computer screen. The task was to place the tracing of the peak force in a force window defined between 30% and 40% of the subject's maximum force, as determined beforehand. The initial level of proficiency was defined as the number of attempts reaching the force window criterion within the first 100 trials. The difference between the number of successful trials within the last and the first 100 trials was taken as a measure of motor learning. For motor control, defined by the initial level of proficiency, the intrapair differences in monozygotic (MZ) and dizygotic (DZ) twins were 6.8 ± 7.8 and 13.8 ± 8.4, and the intrapair correlations 0.77 and 0.39, respectively. Heritability was estimated at 0.68. Likewise for motor learning intrapair differences in the increment of the number of successful trials in MZ and DZ twins were 5.4 ± 5.2 and 12.8 ± 7, and the intrapair correlations 0.58 and 0.19. Heritability reached 0.70. The present findings suggest that heredity accounts for a major part of existing differences in motor control and motor learning, but uncertainty remains which gene polymorphisms may be responsible. PMID:24744865

  14. Stepping motor controller

    DOEpatents

    Bourret, S.C.; Swansen, J.E.

    1982-07-02

    A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  15. Stepping motor controller

    DOEpatents

    Bourret, Steven C.; Swansen, James E.

    1984-01-01

    A stepping motor is microprocessingly controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  16. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly utilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilizes induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  17. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  18. Motor Learning as Young Gymnast's Talent Indicator.

    PubMed

    di Cagno, Alessandra; Battaglia, Claudia; Fiorilli, Giovanni; Piazza, Marina; Giombini, Arrigo; Fagnani, Federica; Borrione, Paolo; Calcagno, Giuseppe; Pigozzi, Fabio

    2014-12-01

    Talent identification plans are designed to select young athletes with the ability to achieve future success in sports. The aim of the study was to verify the predictive value of coordination and precision in skill acquisition during motor learning, as indicators of talent. One hundred gymnasts, both cadets (aged 11.5 ± 0.5 yr.) and juniors (aged 13.3 ± 0.5 years), competing at the national level, were enrolled in the study. The assessment of motor coordination involved three tests of the validated Hirtz's battery (1985), and motor skill learning involved four technical tests, specific of rhythmic gymnastics. All the tests were correlated with ranking and performance scores reached by each gymnast in the 2011, 2012, and 2013 National Championships. Coordination tests were significantly correlated to 2013 Championships scores (p < 0.01) and ranking (p < 0.05) of elite cadet athletes. Precision, in skill acquisition test results, was positively and significantly associated with scores in 2013 (adj. R(2) = 0.26, p < 0.01). Gymnasts with the best results in coordination and motor learning tests went on to achieve better competition results in three- year time. Key pointsIn talent identification and selection procedures it is better to include the evaluation of coordination and motor learning ability.Motor learning assessment concerns performance improvement and the ability to develop it, rather than evaluating the athlete's current performance.In this manner talent identification processes should be focused on the future performance capabilities of athletes.

  19. Motor Demands Constrain Cognitive Rule Structures.

    PubMed

    Collins, Anne Gabrielle Eva; Frank, Michael Joshua

    2016-03-01

    Study of human executive function focuses on our ability to represent cognitive rules independently of stimulus or response modality. However, recent findings suggest that executive functions cannot be modularized separately from perceptual and motor systems, and that they instead scaffold on top of motor action selection. Here we investigate whether patterns of motor demands influence how participants choose to implement abstract rule structures. In a learning task that requires integrating two stimulus dimensions for determining appropriate responses, subjects typically structure the problem hierarchically, using one dimension to cue the task-set and the other to cue the response given the task-set. However, the choice of which dimension to use at each level can be arbitrary. We hypothesized that the specific structure subjects adopt would be constrained by the motor patterns afforded within each rule. Across four independent data-sets, we show that subjects create rule structures that afford motor clustering, preferring structures in which adjacent motor actions are valid within each task-set. In a fifth data-set using instructed rules, this bias was strong enough to counteract the well-known task switch-cost when instructions were incongruent with motor clustering. Computational simulations confirm that observed biases can be explained by leveraging overlap in cortical motor representations to improve outcome prediction and hence infer the structure to be learned. These results highlight the importance of sensorimotor constraints in abstract rule formation and shed light on why humans have strong biases to invent structure even when it does not exist.

  20. Motor Demands Constrain Cognitive Rule Structures

    PubMed Central

    Collins, Anne Gabrielle Eva; Frank, Michael Joshua

    2016-01-01

    Study of human executive function focuses on our ability to represent cognitive rules independently of stimulus or response modality. However, recent findings suggest that executive functions cannot be modularized separately from perceptual and motor systems, and that they instead scaffold on top of motor action selection. Here we investigate whether patterns of motor demands influence how participants choose to implement abstract rule structures. In a learning task that requires integrating two stimulus dimensions for determining appropriate responses, subjects typically structure the problem hierarchically, using one dimension to cue the task-set and the other to cue the response given the task-set. However, the choice of which dimension to use at each level can be arbitrary. We hypothesized that the specific structure subjects adopt would be constrained by the motor patterns afforded within each rule. Across four independent data-sets, we show that subjects create rule structures that afford motor clustering, preferring structures in which adjacent motor actions are valid within each task-set. In a fifth data-set using instructed rules, this bias was strong enough to counteract the well-known task switch-cost when instructions were incongruent with motor clustering. Computational simulations confirm that observed biases can be explained by leveraging overlap in cortical motor representations to improve outcome prediction and hence infer the structure to be learned. These results highlight the importance of sensorimotor constraints in abstract rule formation and shed light on why humans have strong biases to invent structure even when it does not exist. PMID:26966909

  1. Motor Demands Constrain Cognitive Rule Structures.

    PubMed

    Collins, Anne Gabrielle Eva; Frank, Michael Joshua

    2016-03-01

    Study of human executive function focuses on our ability to represent cognitive rules independently of stimulus or response modality. However, recent findings suggest that executive functions cannot be modularized separately from perceptual and motor systems, and that they instead scaffold on top of motor action selection. Here we investigate whether patterns of motor demands influence how participants choose to implement abstract rule structures. In a learning task that requires integrating two stimulus dimensions for determining appropriate responses, subjects typically structure the problem hierarchically, using one dimension to cue the task-set and the other to cue the response given the task-set. However, the choice of which dimension to use at each level can be arbitrary. We hypothesized that the specific structure subjects adopt would be constrained by the motor patterns afforded within each rule. Across four independent data-sets, we show that subjects create rule structures that afford motor clustering, preferring structures in which adjacent motor actions are valid within each task-set. In a fifth data-set using instructed rules, this bias was strong enough to counteract the well-known task switch-cost when instructions were incongruent with motor clustering. Computational simulations confirm that observed biases can be explained by leveraging overlap in cortical motor representations to improve outcome prediction and hence infer the structure to be learned. These results highlight the importance of sensorimotor constraints in abstract rule formation and shed light on why humans have strong biases to invent structure even when it does not exist. PMID:26966909

  2. Report on Toyota Prius Motor Thermal Management

    SciTech Connect

    Hsu, J.S.

    2005-02-11

    peak-torque (400-Nm) region, the efficiency goes down to the 40-50% range, and the power factor is nearly 100%. The efficiency is not a major concern at the high-torque region. The water-ethylene-glycol heat exchanger attached to the motor is small. During continuous operation, it dissipates about 76% of the total motor heat loss with 35 C coolant. The heat exchanger is less effective when the coolant temperature increases. With 75 C coolant, the heat exchanger dissipates about 38% of the motor heat. When the coolant temperature is 105 C, the heat exchanger not only stops cooling the motor but also adds heat to the large motor housing that acts as an air-cooled heat sink. From start to the base speed, 400 Nms of torque can be produced by the Prius motor with a reasonably low stator current. However, the permissible running time of the motor depends on the load drawn from the motor and the coolant temperature. In the Toyota Prius hybrid configuration, if the motor gets too hot and cannot keep running, the load can be shifted back to the engine. The motor acts to improve the system efficiency without being overly designed. A detailed thermal model was developed to help predict the temperature levels in key motor components. The model was calibrated and compared with the experimentally measured temperatures. Very good agreement was obtained between model and experiment. This model can now be used to predict the temperature of key motor components at a variety of operating conditions and to evaluate the thermal characteristics of new motor designs. It should be pointed out that a fuel-cell motor does not have an engine to fall back on to provide the needed wheel power. Therefore, the design philosophy of a fuel-cell motor is very different from that of a hybrid Prius motor. Further thermal management studies in the high-speed region of the Prius motor, fed by its inverter, are planned.

  3. A microscopic model for chemically-powered Janus motors.

    PubMed

    Huang, Mu-Jie; Schofield, Jeremy; Kapral, Raymond

    2016-07-01

    Very small synthetic motors that make use of chemical reactions to propel themselves in solution hold promise for new applications in the development of new materials, science and medicine. The prospect of such potential applications, along with the fact that systems with many motors or active elements display interesting cooperative phenomena of fundamental interest, has made the study of synthetic motors an active research area. Janus motors, comprising catalytic and noncatalytic hemispheres, figure prominently in experimental and theoretical studies of these systems. While continuum models of Janus motor systems are often used to describe motor dynamics, microscopic models that are able to account for intermolecular interactions, many-body concentration gradients, fluid flows and thermal fluctuations provide a way to explore the dynamical behavior of these complex out-of-equilibrium systems that does not rely on approximations that are often made in continuum theories. The analysis of microscopic models from first principles provides a foundation from which the range of validity and limitations of approximate theories of the dynamics may be assessed. In this paper, a microscopic model for the diffusiophoretic propulsion of Janus motors, where motor interactions with the environment occur only through hard collisions, is constructed, analyzed and compared to theoretical predictions. Microscopic simulations of both single-motor and many-motor systems are carried out to illustrate the results. PMID:27241052

  4. ISRO's solid rocket motors

    NASA Astrophysics Data System (ADS)

    Nagappa, R.; Kurup, M. R.; Muthunayagam, A. E.

    1989-08-01

    Solid rocket motors have been the mainstay of ISRO's sounding rockets and the first generation satellite launch vehicles. For the new launch vehicle under development also, the solid rocket motors contribute significantly to the vehicle's total propulsive power. The rocket motors in use and under development have been developed for a variety of applications and range in size from 30 mm dia employing 450 g of solid propellant—employed for providing a spin to the apogee motors—to the giant 2.8 m dia motor employing nearly 130 tonnes of solid propellant. The initial development, undertaken in 1967 was of small calibre motor of 75 mm dia using a double base charge. The development was essentially to understand the technological elements. Extruded aluminium tubes were used as a rocket motor casing. The fore and aft closures were machined from aluminium rods. The grain was a seven-pointed star with an enlargement of the port at the aft end and was charged into the chamber using a polyester resin system. The nozzle was a metallic heat sink type with graphite throat insert. The motor was ignited with a black powder charge and fired for 2.0 s. Subsequent to this, further developmental activities were undertaken using PVC plastisol based propellants. A class of sounding rockets ranging from 125 to 560 mm calibre were realized. These rocket motors employed improved designs and had delivered lsp ranging from 2060 to 2256 Ns/kg. Case bonding could not be adopted due to the higher cure temperatures of the plastisol propellants but improvements were made in the grain charging techniques and in the design of the igniters and the nozzle. Ablative nozzles based on asbestos phenolic and silica phenolic with graphite inserts were used. For the larger calibre rocket motors, the lsp could be improved by metallic additives. In the early 1970s designs were evolved for larger and more efficient motors. A series of 4 motors for the country's first satellite launch vehicle SLV-3 were

  5. Motor Priming in Neurorehabilitation

    PubMed Central

    Stoykov, Mary Ellen; Madhavan, Sangeetha

    2014-01-01

    Priming is a type of implicit learning wherein a stimulus prompts a change in behavior. Priming has been long studied in the field of psychology. More recently, rehabilitation researchers have studied motor priming as a possible way to facilitate motor learning. For example, priming of the motor cortex is associated with changes in neuroplasticity that are associated with improvements in motor performance. Of the numerous motor priming paradigms under investigation, only a few are practical for the current clinical environment, and the optimal priming modalities for specific clinical presentations are not known. Accordingly, developing an understanding of the various types of motor priming paradigms and their underlying neural mechanisms is an important step for therapists in neurorehabilitation. Most importantly, an understanding of the methods and their underlying mechanisms is essential for optimizing rehabilitation outcomes. The future of neurorehabilitation is likely to include these priming methods, which are delivered prior to or in conjunction with primary neurorehabilitation therapies. In this Special Interest article we discuss those priming paradigms that are supported by the greatest amount of evidence including: (i) stimulation-based priming, (ii) motor imagery and action observation, (iii) sensory priming, (iv) movement-based priming, and (v) pharmacological priming. PMID:25415551

  6. Association between fatigue and other motor and non-motor symptoms in Parkinson's disease patients.

    PubMed

    Solla, Paolo; Cannas, Antonino; Mulas, Cesare Salvatore; Perra, Silvia; Corona, Andrea; Bassareo, Pier Paolo; Marrosu, Francesco

    2014-02-01

    Although fatigue is a common non-motor symptom in patients affected by Parkinson's disease (PD), its association with motor and other non-motor symptoms is still largely unclear. We assessed fatigue in PD patients studying the possible association with motor and non-motor symptoms. Eighty-one PD patients were included in the study. The PD Fatigue Scale (PFS) and the Fatigue Severity Scale (FSS) scale were used to measure fatigue. Non-motor symptoms were assessed with the Non-Motor Symptoms Scale (NMSS). Motor impairment was assessed using the modified Hoehn and Yahr (HY) staging and the Unified PD Rating Scale (UPDRS) part-III and IV. Bivariate tests comparing all independent variables between patients with our without fatigue were used. Significant predictors of presence and severity of fatigue were determined with different models of logistic regression analyses. Fatigue severity was significantly higher in female patients. Bivariate test showed significant higher NMSS score in fatigued patients according to PFS (p < 0.00001) and FFS (p < 0.001), while HY was higher only in fatigued patients according to FSS (p < 0.022). Significant correlations between severity of fatigue and HY stage (p < 0.002) and UPDRS-III score (p < 0.001) were found, while, among specific non-motor symptoms, anhedonia presented with the most significant correlation (p < 0.003). Binary logistic regression confirmed NMSS as the main variable predicting presence of fatigue, while HY was significant as predicting variable only in the FSS model. Strongest non-motor symptoms predictors of severity were those included in Domain 3 (mood/anxiety) and Domain 2 (sleep disorders) of the NMSS. A significant increase in severity of fatigue related to the burden of non-motor symptoms (mainly affective and sleep disorders) was observed. Our findings indicate a moderate discrepancy in the ratings of the two fatigue scales, with PFS principally directed towards the burden of non-motor symptoms

  7. The induction motor

    NASA Astrophysics Data System (ADS)

    Redinz, José Arnaldo

    2015-09-01

    We obtain analytical expressions for the torques and angular speed of an induction motor with a simple geometry, resembling the geometry of the first induction motor investigated by Arago in 1824. The rotor is a conducting disc rotating between the magnetic poles of two off-axis solenoids, displaced in space by 90^\\circ from each other. We apply our results to discuss a theory for the ubiquitous electromechanical watt-hour meter. For comparison of the theoretical result for the angular speed with measurements, we propose a simple experiment in which an induction motor with an aluminum disc rotor is constructed.

  8. Application of signal detection theory to perceptual-motor skills.

    PubMed

    Jagacinski, R J; Isaac, P D; Burke, M W

    1977-09-01

    A signal-detection paradigm was utilized to examine subjects' sensitivity to situational and sensory-motor stimuli in predicting motor skill performance. College-level and professional basketball players attempted uncontested shots from assigned positions on the basketball court. Before each shot was released, both the shooter and a passive observer were required to predict whether it would be successful. Signal-detection analysis revealed no evidence for greater sensitivity of the shooter over the passive observer or an idealized statistical predictor using only floor position as a prediction cue. Both shooters and passive observers were too optimistic when strong penalties were imposed for incorrect predictions of success. PMID:23952878

  9. Application of signal detection theory to perceptual-motor skills.

    PubMed

    Jagacinski, R J; Isaac, P D; Burke, M W

    1977-09-01

    A signal-detection paradigm was utilized to examine subjects' sensitivity to situational and sensory-motor stimuli in predicting motor skill performance. College-level and professional basketball players attempted uncontested shots from assigned positions on the basketball court. Before each shot was released, both the shooter and a passive observer were required to predict whether it would be successful. Signal-detection analysis revealed no evidence for greater sensitivity of the shooter over the passive observer or an idealized statistical predictor using only floor position as a prediction cue. Both shooters and passive observers were too optimistic when strong penalties were imposed for incorrect predictions of success.

  10. Advanced motor and motor control development

    NASA Astrophysics Data System (ADS)

    Wuertz, Kenneth L.; Beauchamp, Edward D.

    1988-08-01

    The capability of operating a high speed permanent magnet brushless dc motor with electronic controller over a wide load and speed range was demonstrated. A centrifugal pump was used as the loading mechanism and hydraulic fluid was pumped in simulation of an aircraft engine fuel pump requirement. A motor speed of 45,000 rpm was reached and a maximum output of 68.5 hp was demonstrated. The response of the system to step commands for speed change was established. Reduction of size and weight of electronic control was established as a primary future goal. The program system concept with minor rotating machine improvements is viable for high speed drive applications up to 100-hp level.

  11. Auditory feedback in error-based learning of motor regularity.

    PubMed

    van Vugt, Floris T; Tillmann, Barbara

    2015-05-01

    Music and speech are skills that require high temporal precision of motor output. A key question is how humans achieve this timing precision given the poor temporal resolution of somatosensory feedback, which is classically considered to drive motor learning. We hypothesise that auditory feedback critically contributes to learn timing, and that, similarly to visuo-spatial learning models, learning proceeds by correcting a proportion of perceived timing errors. Thirty-six participants learned to tap a sequence regularly in time. For participants in the synchronous-sound group, a tone was presented simultaneously with every keystroke. For the jittered-sound group, the tone was presented after a random delay of 10-190 ms following the keystroke, thus degrading the temporal information that the sound provided about the movement. For the mute group, no keystroke-triggered sound was presented. In line with the model predictions, participants in the synchronous-sound group were able to improve tapping regularity, whereas the jittered-sound and mute group were not. The improved tapping regularity of the synchronous-sound group also transferred to a novel sequence and was maintained when sound was subsequently removed. The present findings provide evidence that humans engage in auditory feedback error-based learning to improve movement quality (here reduce variability in sequence tapping). We thus elucidate the mechanism by which high temporal precision of movement can be achieved through sound in a way that may not be possible with less temporally precise somatosensory modalities. Furthermore, the finding that sound-supported learning generalises to novel sequences suggests potential rehabilitation applications.

  12. System and method for motor parameter estimation

    SciTech Connect

    Luhrs, Bin; Yan, Ting

    2014-03-18

    A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values for motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.

  13. Current insights in the development of children’s motor imagery ability

    PubMed Central

    Spruijt, Steffie; van der Kamp, John; Steenbergen, Bert

    2015-01-01

    Over the last two decades, the number of studies on motor imagery in children has witnessed a large expansion. Most studies used the hand laterality judgment paradigm or the mental chronometry paradigm to examine motor imagery ability. The main objective of the current review is to collate these studies to provide a more comprehensive insight in children’s motor imagery development and its age of onset. Motor imagery is a form of motor cognition and aligns with forward (or predictive) models of motor control. Studying age-related differences in motor imagery ability in children therefore provides insight in underlying processes of motor development during childhood. Another motivation for studying age-related differences in motor imagery is that in order to effectively apply motor imagery training in children (with motor impairments), it is pertinent to first establish the age at which children are actually able to perform motor imagery. Overall, performance in the imagery tasks develops between 5 and 12 years of age. The age of motor imagery onset, however, remains equivocal, as some studies indicate that children of 5 to 7 years old can already enlist motor imagery in an implicit motor imagery task, whereas other studies using explicit instructions revealed that children do not use motor imagery before the age of 10. From the findings of the current study, we can conclude that motor imagery training is potentially a feasible method for pediatric rehabilitation in children from 5 years on. We suggest that younger children are most likely to benefit from motor imagery training that is presented in an implicit way. Action observation training might be a beneficial adjunct to implicit motor imagery training. From 10 years of age, more explicit forms of motor imagery training can be effectively used. PMID:26113832

  14. Molecular motors: Dynein's gearbox.

    PubMed

    Cross, R A

    2004-05-01

    A new optical trapping study shows that the stepsize of cytoplasmic dynein varies according to the applied force, suggesting that this motor can change gear. Complementary biochemical kinetic work on yeast dynein mutants hints at the allosteric mechanisms involved.

  15. MotorWeek

    ScienceCinema

    None

    2016-07-12

    In 2008, PBS's MotorWeek, television's original automotive magazine, visited Argonne's Transportation Technology R&D Center "to learn what it really takes to make clean power sources a viable reality."

  16. MotorWeek

    SciTech Connect

    2009-01-01

    In 2008, PBS's MotorWeek, television's original automotive magazine, visited Argonne's Transportation Technology R&D Center "to learn what it really takes to make clean power sources a viable reality."

  17. Piezoelectric Rotary Tube Motor

    NASA Technical Reports Server (NTRS)

    Fisher, Charles D.; Badescu, Mircea; Braun, David F.; Culhane, Robert

    2011-01-01

    A custom rotary SQUIGGLE(Registered TradeMark) motor has been developed that sets new benchmarks for small motor size, high position resolution, and high torque without gear reduction. Its capabilities cannot be achieved with conventional electromagnetic motors. It consists of piezoelectric plates mounted on a square flexible tube. The plates are actuated via voltage waveforms 90 out of phase at the resonant frequency of the device to create rotary motion. The motors were incorporated into a two-axis postioner that was designed for fiber-fed spectroscopy for ground-based and space-based projects. The positioner enables large-scale celestial object surveys to take place in a practical amount of time.

  18. High Power Density Motors

    NASA Technical Reports Server (NTRS)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  19. Rocket Motor Microphone Investigation

    NASA Technical Reports Server (NTRS)

    Pilkey, Debbie; Herrera, Eric; Gee, Kent L.; Giraud, Jerom H.; Young, Devin J.

    2010-01-01

    At ATK's facility in Utah, large full-scale solid rocket motors are tested. The largest is a five-segment version of the reusable solid rocket motor, which is for use on the Ares I launch vehicle. As a continuous improvement project, ATK and BYU investigated the use of microphones on these static tests, the vibration and temperature to which the instruments are subjected, and in particular the use of vent tubes and the effects these vents have at low frequencies.

  20. Motor Energy Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple motor inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: High Efficiency Motor retrofit and Cogged V-belts retrofit. This tool calculates energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  1. Myosin V motor proteins

    PubMed Central

    Vale, Ronald D.

    2003-01-01

    Mammalian myosin V motors transport cargo processively along actin filaments. Recent biophysical and structural studies have led to a detailed understanding of the mechanism of myosin V, making it perhaps the best understood cytoskeletal motor. In addition to describing the mechanism, this review will illustrate how “dynamic” single molecule measurements can synergize with “static” protein structural studies to produce amazingly clear information on the workings of a nanometer-scale machine. PMID:14610051

  2. Premotor and Motor Cortices Encode Reward.

    PubMed

    Ramkumar, Pavan; Dekleva, Brian; Cooler, Sam; Miller, Lee; Kording, Konrad

    2016-01-01

    Rewards associated with actions are critical for motivation and learning about the consequences of one's actions on the world. The motor cortices are involved in planning and executing movements, but it is unclear whether they encode reward over and above limb kinematics and dynamics. Here, we report a categorical reward signal in dorsal premotor (PMd) and primary motor (M1) neurons that corresponds to an increase in firing rates when a trial was not rewarded regardless of whether or not a reward was expected. We show that this signal is unrelated to error magnitude, reward prediction error, or other task confounds such as reward consumption, return reach plan, or kinematic differences across rewarded and unrewarded trials. The availability of reward information in motor cortex is crucial for theories of reward-based learning and motivational influences on actions. PMID:27564707

  3. Premotor and Motor Cortices Encode Reward

    PubMed Central

    Ramkumar, Pavan; Dekleva, Brian; Cooler, Sam; Miller, Lee; Kording, Konrad

    2016-01-01

    Rewards associated with actions are critical for motivation and learning about the consequences of one’s actions on the world. The motor cortices are involved in planning and executing movements, but it is unclear whether they encode reward over and above limb kinematics and dynamics. Here, we report a categorical reward signal in dorsal premotor (PMd) and primary motor (M1) neurons that corresponds to an increase in firing rates when a trial was not rewarded regardless of whether or not a reward was expected. We show that this signal is unrelated to error magnitude, reward prediction error, or other task confounds such as reward consumption, return reach plan, or kinematic differences across rewarded and unrewarded trials. The availability of reward information in motor cortex is crucial for theories of reward-based learning and motivational influences on actions. PMID:27564707

  4. Changes in motor unit populations in motor neurone disease.

    PubMed Central

    Carleton, S A; Brown, W F

    1979-01-01

    In motor neurone disease changes in the functional properties of motor units, including the surface voltage, latency, conduction velocity, and response to repetitive stimulation, were investigated. Progression was marked by motor unit loss, increase in the proportion of larger motor unit potentials, and inclusion of motor unit potentials larger than normal in the remaining motor unit population. Even late in the disease, motor unit potentials with a low surface voltage persisted. The relationship between motor unit potentials, surface voltage, and latency, present in control subjects, broke down in motor neurone disease, large motor unit potentials having abnormally long latencies and small motor unit potentials unexpectedly short latencies. Amplitude decrements were more frequent and severe in motor unit potentials at later stages in the disease, particularly in those units with lower surface voltages. In one surviving motor unit potential there was evidence suggestive of functional recovery. The observations point to complex changes in the functional properties of motor units in motor neurone disease. PMID:216781

  5. Electric vehicle motors and controllers

    NASA Astrophysics Data System (ADS)

    Secunde, R. R.

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  6. Electric vehicle motors and controllers

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1981-01-01

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  7. Robust transport by multiple motors with nonlinear force-velocity relations and stochastic load sharing

    NASA Astrophysics Data System (ADS)

    Kunwar, Ambarish; Mogilner, Alexander

    2010-03-01

    Transport by processive molecular motors plays an important role in many cell biological phenomena. In many cases, motors work together to transport cargos in the cell, so it is important to understand the mechanics of the multiple motors. Based on earlier modeling efforts, here we study effects of nonlinear force-velocity relations and stochastic load sharing on multiple motor transport. We find that when two or three motors transport the cargo, then the nonlinear and stochastic effects compensate so that the mechanical properties of the transport are robust. Similarly, the transport is insensitive to compliance of the cargo-motor links. Furthermore, the rate of movement against moderate loads is not improved by increasing the small number of motors. When the motor number is greater than 4, correlations between the motors become negligible, and the earlier analytical mean-field theory of the multiple motor transport holds. We predict that the effective diffusion of the cargo driven by the multiple motors under load increases by an order of magnitude compared to that for the single motor. Finally, our simulations predict that the stochastic effects are responsible for a significant dispersion of velocities generated by the 'tug-of-war' of the multiple opposing motors.

  8. Robust transport by multiple motors with nonlinear force–velocity relations and stochastic load sharing

    PubMed Central

    Kunwar, Ambarish; Mogilner, Alexander

    2010-01-01

    Transport by processive molecular motors plays an important role in many cell biological phenomena. In many cases, motors work together to transport cargos in the cell, so it is important to understand the mechanics of the multiple motors. Based on earlier modeling efforts, here we study effects of nonlinear force–velocity relations and stochastic load sharing on multiple motor transport. We find that when two or three motors transport the cargo, then the nonlinear and stochastic effects compensate so that the mechanical properties of the transport are robust. Similarly, the transport is insensitive to compliance of the cargo-motor links. Furthermore, the rate of movement against moderate loads is not improved by increasing the small number of motors. When the motor number is greater than 4, correlations between the motors become negligible, and the earlier analytical mean-field theory of the multiple motor transport holds. We predict that the effective diffusion of the cargo driven by the multiple motors under load increases by an order of magnitude compared to that for the single motor. Finally, our simulations predict that the stochastic effects are responsible for a significant dispersion of velocities generated by the ‘tug-of-war’ of the multiple opposing motors. PMID:20147778

  9. Cryogenic testing of stepper motors

    NASA Astrophysics Data System (ADS)

    Pompea, S. M.; Bartko, F.; Houck, J. R.

    1982-10-01

    Stepper motors may be used in several subsystems of the planned Shuttle Infrared Telescope Facility. Very high reliability is required in all considered applications. An investigation was, therefore, conducted to study the operational reliability of stepper motors, taking into account tests with a type of stepper motor which had previously performed well in uncooled spectrographic instruments. Two stepper motors were tested, in vacuum, at liquid nitrogen temperature. One motor was lubricated with a vacuum stable grease, while the other used unlubricated bearings. Both motors failed after less than 18,000 revolutions. The failure of the unlubricated motor indicated that motor modifications would have to be made to achieve operation at liquid helium temperature. The motor was modified to compensate for the magnitude of different thermal contractions. It was then found that modified stepper motors can perform reliably at LHe temperature for extended periods.

  10. Rotary ultrasonic motors actuated by traveling flexural waves

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Bao, Xiaoqi; Grandia, Willem

    1999-06-01

    Efficient miniature actuators that are compact and consume low power are needed to drive space and planetary mechanisms in future NASA missions. Ultrasonic rotary motors have the potential to meet this NASA need and they are developed as actuators for miniature telerobotic applications. These motors have emerged in commercial products but they need to be adapted for operation at the harsh space environments that include cryogenic temperatures and vacuum and also require effective analytical tools for the design of efficient motors. A finite element analytical model was developed to examine the excitation of flexural plate wave traveling in a piezoelectrically actuated rotary motor. The model uses 3D finite element and equivalent circuit models that are applied to predict the excitation frequency and modal response of the stator. This model incorporates the details of the stator including the teeth, piezoelectric ceramic, geometry, bonding layer, etc. The theoretical predictions were corroborated experimentally for the stator. In parallel, efforts have been made to determine the thermal and vacuum performance of these motors. Experiments have shown that the motor can sustain at least 230 temperature cycles from 0 degree(s)C to -90 degree(s)C at 7 Torr pressure significant performance change. Also, in an earlier study the motor lasted over 334 hours at -150 degree(s)C and vacuum. To explore telerobotic applications for USMs a robotic arm was constructed with such motors.

  11. Rotary Motors Actuated by Traveling Ultrasonic Flexural Waves

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Bao, Xiaoqi; Grandia, Willem

    1999-01-01

    Efficient miniature actuators that are compact and consume low power are needed to drive space and planetary mechanisms in future NASA missions. Ultrasonic rotary motors have the potential to meet this NASA need and they are developed as actuators for miniature telerobotic applications. These motors have emerged in commercial products but they need to be adapted for operation at the harsh space environments that include cryogenic temperatures and vacuum and also require effective analytical tools for the design of efficient motors. A finite element analytical model was developed to examine the excitation of flexural plate wave traveling in a piezoelectrically actuated rotary motor. The model uses 3D finite element and equivalent circuit models that are applied to predict the excitation frequency and modal response of the stator. This model incorporates the details of the stator including the teeth, piezoelectric ceramic, geometry, bonding layer, etc. The theoretical predictions were corroborated experimentally for the stator. In parallel, efforts have been made to determine the thermal and vacuum performance of these motors. Experiments have shown that the motor can sustain at least 230 temperature cycles from 0 C to -90 C at 7 Torr pressure significant performance change. Also, in an earlier study the motor lasted over 334 hours at -150 C and vacuum. To explore telerobotic applications for USMs a robotic arm was constructed with such motors.

  12. Degraded Imagery/Art Technique for the Handicapped.

    ERIC Educational Resources Information Center

    Agard, Richard

    Developed for handicapped artists, Degraded Imagery is a technique whereby images can be extracted and refined from a photograph or a collage of photographs. The advantage of this process is that it requires a lower degree of fine motor skills to produce a quality image from a photograph than it does to create a quality image on a blank piece of…

  13. Balanced-Bridge Feedback Control Of Motor

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J.

    1990-01-01

    Sensitivity to variations in electrical and mechanical characteristics reduced. Proposed control system for motor-driven rotary actuator includes three nested feedback loops which, when properly designed, decoupled from each other. Intended to increase accuracy of control by mitigating such degrading effects as vibrations and variations in electrical and mechanical characteristics of structure rotated. Lends itself to optimization of performance via independent optimization of each of three loops. Includes outer, actuator, and driver feedback loops, configured so that actuator is subsystem, and driver is subsystem of actuator.

  14. Limiting Speed of the Bacterial Flagellar Motor

    NASA Astrophysics Data System (ADS)

    Nirody, Jasmine; Berry, Richard; Oster, George

    The bacterial flagellar motor (BFM) drives swimming in a wide variety of bacterial species, making it crucial for several fundamental biological processes including chemotaxis and community formation. Recent experiments have shown that the structure of this nanomachine is more dynamic than previously believed. Specifically, the number of active torque-generating units (stators) was shown to vary across applied loads. This finding invalidates the experimental evidence reporting that limiting (zero-torque) speed is independent of the number of active stators. Here, we put forward a model for the torque generation mechanism of this motor and propose that the maximum speed of the motor increases as additional torque-generators are recruited. This is contrary to the current widely-held belief that there is a universal upper limit to the speed of the BFM. Our result arises from the assumption that stators disengage from the motor for a significant portion of their mechanochemical cycles at low loads. We show that this assumption is consistent with current experimental evidence and consolidate our predictions with arguments that a processive motor must have a high duty ratio at high loads.

  15. Targeted polypeptide degradation

    DOEpatents

    Church, George M.; Janse, Daniel M.

    2008-05-13

    This invention pertains to compositions, methods, cells and organisms useful for selectively localizing polypeptides to the proteasome for degradation. Therapeutic methods and pharmaceutical compositions for treating disorders associated with the expression and/or activity of a polypeptide by targeting these polypeptides for degradation, as well as methods for targeting therapeutic polypeptides for degradation and/or activating therapeutic polypeptides by degradation are provided. The invention provides methods for identifying compounds that mediate proteasome localization and/or polypeptide degradation. The invention also provides research tools for the study of protein function.

  16. The Errors of Our Ways: Understanding Error Representations in Cerebellar-Dependent Motor Learning

    PubMed Central

    Popa, Laurentiu S.; Streng, Martha L.; Hewitt, Angela L.; Ebner, Timothy J.

    2015-01-01

    The cerebellum is essential for error-driven motor learning and is strongly implicated in detecting and correcting for motor errors. Therefore, elucidating how motor errors are represented in the cerebellum is essential in understanding cerebellar function, in general, and its role in motor learning, in particular. This review examines how motor errors are encoded in the cerebellar cortex in the context of a forward internal model that generates predictions about the upcoming movement and drives learning and adaptation. In this framework, sensory prediction errors, defined as the discrepancy between the predicted consequences of motor commands and the sensory feedback, are crucial for both on-line movement control and motor learning. While many studies support the dominant view that motor errors are encoded in the complex spike discharge of Purkinje cells, others have failed to relate complex spike activity with errors. Given these limitations, we review recent findings in the monkey showing that complex spike modulation is not necessarily required for motor learning or for simple spike adaptation. Also, new results demonstrate that the simple spike discharge provides continuous error signals that both lead and lag the actual movements in time, suggesting errors are encoded as both an internal prediction of motor commands and the actual sensory feedback. These dual error representations have opposing effects on simple spike discharge, consistent with the signals needed to generate sensory prediction errors used to update a forward internal model. PMID:26112422

  17. The Science of Battery Degradation

    SciTech Connect

    Sullivan, John P.; El Gabaly Marquez, Farid; McCarty, Kevin; Sugar, Joshua Daniel; Talin, Alec A.; Fenton, Kyle R.; Nagasubramanian, Ganesan; Harris, Charles Thomas; Kliewer, Christopher Jesse; Hudak, Nicholas S.; Leung, Kevin; McDaniel, Anthony H.; Tenney, Craig M.; Zavadil, Kevin R.

    2015-01-01

    changes little with degradation but the origin of degradation in cathodes is kinetic in nature, i.e. lower rate cycling recovers lost capacity. Finally, our modeling of electrode-electrolyte interfaces revealed that electrolyte degradation may occur by either a single or double electron transfer process depending on thickness of the solid-electrolyte-interphase layer, and this cross-over can be modeled and predicted.

  18. Auditory and motor imagery modulate learning in music performance.

    PubMed

    Brown, Rachel M; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  19. A versatile stepping motor controller for systems with many motors

    SciTech Connect

    Feng, S.K.; Siddons, D.P.

    1989-01-01

    A versatile system for controlling beamlines or complex experimental setups is described. The system as currently configured can control up to 32 motors, with all motors capable of full speed operation concurrently. There are 2 limit switch inputs for each motor, and a further input to accept a reference position marker. The motors can be controlled via a front panel keyboard with display, or by a host computer over an IEEE-488 interface. Both methods can be used together if required. There is an emergency stop'' key on the front panel keyboard to stop the motion of all motors without losing track of the motors' position. 3 refs., 4 figs., 1 tab.

  20. Magnetostrictive direct drive motor

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1991-01-01

    Highly magnetostrictive materials such as Tb.3Dy.7Fe2, commercially known as TERFENOL-D, have been used to date in a variety of devices such as high power actuators and linear motors. The larger magnetostriction available in twinned single crystal TERFENOL-D, approx. 2000 ppm at moderate magnetic field strengths, makes possible a new generation of magnetomechanical devices. NASA researchers are studying the potential of this material as the basis for a direct microstepping rotary motor with torque densities on the order of industrial hydraulics and five times greater than that of the most efficient, high power electric motors. Such a motor would be a micro-radian stepper, capable of precision movements and self-braking in the power-off state. Innovative mechanical engineering techniques are juxtaposed on proper magnetic circuit design to reduce losses in structural flexures, inertias, thermal expansions, eddy currents, and magneto-mechanical coupling, thus optimizing motor performance and efficiency. Mathematical models are presented, including magnetic, structural, and both linear and nonlinear dynamic calculations and simulations. In addition, test results on prototypes are presented.

  1. Degradation Model of Bioabsorbable Cardiovascular Stents

    PubMed Central

    Luo, Qiyi; Liu, Xiangkun; Li, Zhonghua; Huang, Chubo; Zhang, Wen; Meng, Juan; Chang, Zhaohua; Hua, Zezhao

    2014-01-01

    This study established a numerical model to investigate the degradation mechanism and behavior of bioabsorbable cardiovascular stents. In order to generate the constitutive degradation material model, the degradation characteristics were characterized with user-defined field variables. The radial strength bench test and analysis were used to verify the material model. In order to validate the numerical degradation model, in vitro bench test and in vivo implantation studies were conducted under physiological and normal conditions. The results showed that six months of degradation had not influenced the thermodynamic properties and mechanical integrity of the stent while the molecular weight of the stents implanted in the in vivo and in vitro models had decreased to 61.8% and 68.5% respectively after six month's implantation. It was also found that the degradation rate, critical locations and changes in diameter of the stents in the numerical model were in good consistency in both in vivo and in vitro studies. It implies that the numerical degradation model could provide useful physical insights and prediction of the stent degradation behavior and evaluate, to some extent, the in-vivo performance of the stent. This model could eventually be used for design and optimization of bioabsorbable stent. PMID:25365310

  2. Motor contributions to the temporal precision of auditory attention.

    PubMed

    Morillon, Benjamin; Schroeder, Charles E; Wyart, Valentin

    2014-10-15

    In temporal-or dynamic-attending theory, it is proposed that motor activity helps to synchronize temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection. Here we develop a mechanistic behavioural account for this theory by asking human participants to track a slow reference beat, by noiseless finger pressing, while extracting auditory target tones delivered on-beat and interleaved with distractors. We find that overt rhythmic motor activity improves the segmentation of auditory information by enhancing sensitivity to target tones while actively suppressing distractor tones. This effect is triggered by cyclic fluctuations in sensory gain locked to individual motor acts, scales parametrically with the temporal predictability of sensory events and depends on the temporal alignment between motor and attention fluctuations. Together, these findings reveal how top-down influences associated with a rhythmic motor routine sharpen sensory representations, enacting auditory 'active sensing'.

  3. Motor contributions to the temporal precision of auditory attention

    PubMed Central

    Morillon, Benjamin; Schroeder, Charles E.; Wyart, Valentin

    2014-01-01

    In temporal—or dynamic—attending theory, it is proposed that motor activity helps to synchronize temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection. Here we develop a mechanistic behavioural account for this theory by asking human participants to track a slow reference beat, by noiseless finger pressing, while extracting auditory target tones delivered on-beat and interleaved with distractors. We find that overt rhythmic motor activity improves the segmentation of auditory information by enhancing sensitivity to target tones while actively suppressing distractor tones. This effect is triggered by cyclic fluctuations in sensory gain locked to individual motor acts, scales parametrically with the temporal predictability of sensory events and depends on the temporal alignment between motor and attention fluctuations. Together, these findings reveal how top-down influences associated with a rhythmic motor routine sharpen sensory representations, enacting auditory ‘active sensing’. PMID:25314898

  4. Micromachine Wedge Stepping Motor

    SciTech Connect

    Allen, J.J.; Schriner, H.K.

    1998-11-04

    A wedge stepping motor, which will index a mechanism, has been designed and fabricated in the surface rnicromachine SUMMiT process. This device has demonstrated the ability to index one gear tooth at a time with speeds up to 205 teeth/see. The wedge stepper motor has the following features, whi:h will be useful in a number of applications. o The ability to precisely position mechanical components. . Simple pulse signals can be used for operation. o Only 2 drive signals are requixed for operation. o Torque and precision capabilities increase with device size . The device to be indexed is restrained at all times by the wedge shaped tooth that is used for actuation. This paper will discuss the theory of operation and desi=m of the wedge stepping motor. The fabrication and testing of I he device will also be presented.

  5. Bent shaft motor

    DOEpatents

    Benavides, Gilbert L.

    1998-01-01

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor.

  6. Bent shaft motor

    DOEpatents

    Benavides, G.L.

    1998-05-05

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotatable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor. 11 figs.

  7. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  8. The functional alterations associated with motor imagery training: a comparison between motor execution and motor imagery of sequential finger tapping

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Yao, Li; Long, Zhiying

    2011-03-01

    Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.

  9. Multiple neuropeptides in cholinergic motor neurons of Aplysia: evidence for modulation intrinsic to the motor circuit

    SciTech Connect

    Cropper, E.C.; Lloyd, P.E.; Reed, W.; Tenenbaum, R.; Kupfermann, I.; Weiss, K.R.

    1987-05-01

    Changes in Aplysia biting responses during food arousal are partially mediated by the serotonergic metacerebral cells (MCCs). The MCCs potentiate contractions of a muscle utilized in biting, the accessory radula closer (ARCM), when contractions are elicited by stimulation of either of the two cholinergic motor neurons B15 or B16 that innervate the muscle. The authors have now shown that ARCM contractions may also be potentiated by peptide cotransmitters in the ARCM motor neurons. They found that motor neuron B15 contains small cardioactive peptides A and B (SCP/sub A/ and SCP/sub B/) i.e., whole B15 neurons were bioactive on the SCP-sensitive Helix heart, as were reverse-phase HPLC fractions of B15 neurons that eluted like synthetic SCP/sub A/ and SCP/sub B/. Furthermore, (/sup 35/S)methionine-labeled B15 peptides precisely coeluted with synthetic SCP/sub A/ and SCP/sub B/. SCP/sub B/-like immunoreactivity was associated with dense-core vesicles in the soma of B15 and in neuritic varicosities and terminals in the ARCM. B16 motor neurons did not contain SCP/sub A/ or SCP/sub B/ but contained an unidentified bioactive peptide. RP-HPLC of (/sup 35/S)methionine-labeled B16s resulted in one major peak of radioactivity that did not coelute with either SCP and which, when subject to Edman degradation, yielded (/sup 35/S)methionine in positions where there is no methionine in the SCPs. Exogenously applied B16 peptide potentiated ARCM contractions elicited by stimulation of B15 or B16 neurons. Thus, in this system there appear to be two types of modulation; one type arises from the MCCs and is extrinsic to the motor system, whereas the second type arises from the motor neurons themselves and hence is intrinsic.

  10. Tuning Multiple Motor Travel Via Single Motor Velocity

    PubMed Central

    Xu, Jing; Shu, Zhanyong; King, Stephen J.; Gross, Steven P.

    2012-01-01

    Microtubule-based molecular motors often work in small groups to transport cargos in cells. A key question in understanding transport (and its regulation in vivo) is to identify the sensitivity of multiple-motor-based motion to various single molecule properties. Whereas both single-motor travel distance and microtubule binding rate have been demonstrated to contribute to cargo travel, the role of single-motor velocity is yet to be explored. Here, we recast a previous theoretical study, and make explicit a potential contribution of velocity to cargo travel. We test this possibility experimentally, and demonstrate a strong negative correlation between single-motor velocity and cargo travel for transport driven by two motors. Our study thus discovers a previously unappreciated role of single-motor velocity in regulating multiple-motor transport. PMID:22672518

  11. Characterization of a small moving-magnet electrodynamic linear motor

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Garrett, Steven

    2005-10-01

    The mechanical and electrodynamic parameters of a small, potentially inexpensive, moving-magnet electrodynamic linear motor are determined experimentally. Employing the formalism introduced by Wakeland, these parameters are used to predict the electromechanical efficiency of the motor. The transduction coefficient, Bl, was observed to be a function of position. But as shown in the paper, the variation in Bl with position has a smaller effect on the driver's output power because Bl is largest around the equilibrium position, where the piston velocity is also largest. By mechanical colinear joining of the armatures of two such motors, an electrodynamic load (dynamometer) is created to measure the efficiency as a function of energy dissipated in the dynamometer. The measured efficiencies are shown to be in good agreement with the predictions if a position-averaged effective transduction coefficient is introduced. Based on these results, this linear motor is judged to be an attractive power source in small electrically driven thermoacoustic refrigerator applications.

  12. Optimal Schedules in Multitask Motor Learning.

    PubMed

    Lee, Jeong Yoon; Oh, Youngmin; Kim, Sung Shin; Scheidt, Robert A; Schweighofer, Nicolas

    2016-04-01

    Although scheduling multiple tasks in motor learning to maximize long-term retention of performance is of great practical importance in sports training and motor rehabilitation after brain injury, it is unclear how to do so. We propose here a novel theoretical approach that uses optimal control theory and computational models of motor adaptation to determine schedules that maximize long-term retention predictively. Using Pontryagin's maximum principle, we derived a control law that determines the trial-by-trial task choice that maximizes overall delayed retention for all tasks, as predicted by the state-space model. Simulations of a single session of adaptation with two tasks show that when task interference is high, there exists a threshold in relative task difficulty below which the alternating schedule is optimal. Only for large differences in task difficulties do optimal schedules assign more trials to the harder task. However, over the parameter range tested, alternating schedules yield long-term retention performance that is only slightly inferior to performance given by the true optimal schedules. Our results thus predict that in a large number of learning situations wherein tasks interfere, intermixing tasks with an equal number of trials is an effective strategy in enhancing long-term retention. PMID:26890347

  13. A thermal network model for induction motors of hermetic reciprocating compressors

    NASA Astrophysics Data System (ADS)

    Dutra, T.; Deschamps, C. J.

    2015-08-01

    This paper describes a simulation model for small reciprocating compressors with emphasis on the electrical motor modelling. Heat transfer is solved through algebraic equations derived from lumped thermal energy balances applied to the compressor components. Thermal conductances between the motor components are characterized via a thermal network model. The single-phase induction motor is modelled via an equivalent circuit, allowing predictions for the motor performance and distributed losses. The predicted temperature distribution is used to evaluate the stator and rotor windings resistances. The thermal and electric models are solved in a coupled manner with a model for the compression cycle. Predictions of temperature distribution, motor efficiency, as well as isentropic and volumetric efficiencies, are compared with experimental data at different operating conditions. The model is then applied to analyse the motor temperature as a function of input voltage and stator wire diameter.

  14. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b)...

  15. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b)...

  16. A simplified scheme for induction motor condition monitoring

    NASA Astrophysics Data System (ADS)

    Rodríguez, Pedro Vicente Jover; Negrea, Marian; Arkkio, Antero

    2008-07-01

    This work proposes a general scheme to detect induction motor fault by monitoring the motor current. The scheme is based on signal processing (predictive filters) and soft computing technique (fuzzy logic). The predictive filter is used in order to separate the fundamental component from the harmonic components. Fuzzy logic is used to identify the motor state. Finite element method (FEM) is utilised to generate virtual data that allows to test the proposed technique and foresee the change in the current under different motor conditions. A simple and reliable method for the detection of stator winding failures based on the phase current amplitudes is implemented and tested. The layout has been proved in MATLAB/SIMULINK, with both data from FEM motor simulation program and real measurements. The proposed method has the ability to work with variable speed drives and avoids the detailed spectral analysis of the motor current. This work shows the feasibility of spotting broken rotor bars, eccentricities and inter-turn short-circuit by monitoring the motor currents.

  17. Deficient motor timing in children with neurofibromatosis type 1.

    PubMed

    Debrabant, Julie; Plasschaert, Ellen; Caeyenberghs, Karen; Vingerhoets, Guy; Legius, Eric; Janssens, Sandra; Van Waelvelde, Hilde

    2014-11-01

    Neurofibromatosis type 1 (NF1) is one of the most common single-gene disorders affecting fine and visual-motor skills. This case-control study investigated motor timing as a possible related performance deficit in children with NF1. A visual-motor reaction time (VRT) test was administered in 20 NF1 children (mean age 9 years 7 months) and 20 age- and gender-matched typically developing (TD) children. Copying and tracing performance were evaluated using the Beery-Buktenica Developmental Test of Visual-Motor Integration (Beery VMI). Children with NF1 responded with an increased reaction time (RT) to temporally predictive stimuli compared to TD children, whereas RT at unpredictive stimuli did not differ between groups. Motor timing indexed by the RT decrease at predictive stimuli significantly associated with the Beery VMI copy and tracing outcomes. Deficient motor timing as an actual symptom may add to further research on the pathogenesis of NF1-associated motor impairment and the development of more effective treatment. PMID:25145806

  18. Magnetically Coupled Adjustable Speed Motor Drives - Motor Tip Sheet #13

    SciTech Connect

    2008-07-01

    Alternating current electric motors rotate at a nearly constant speed that is determined by motor design and line frequency. Energy savings of 50% or more may be available when fixed speed systems are modified to allow the motor speed to match variable load requirements of a centrifugal fan or pump.

  19. Method for assessing motor insulation on operating motors

    DOEpatents

    Kueck, John D.; Otaduy, Pedro J.

    1997-01-01

    A method for monitoring the condition of electrical-motor-driven devices. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques.

  20. Method for assessing motor insulation on operating motors

    DOEpatents

    Kueck, J.D.; Otaduy, P.J.

    1997-03-18

    A method for monitoring the condition of electrical-motor-driven devices is disclosed. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques. 15 figs.

  1. External forces influence the elastic coupling effects during cargo transport by molecular motors.

    PubMed

    Berger, Florian; Keller, Corina; Klumpp, Stefan; Lipowsky, Reinhard

    2015-02-01

    Cellular transport is achieved by the cooperative action of molecular motors which are elastically linked to a common cargo. When the motors pull on the cargo at the same time, they experience fluctuating elastic strain forces induced by the stepping of the other motors. These elastic coupling forces can influence the motors' stepping and unbinding behavior and thereby the ability to transport cargos. Based on a generic single motor description, we introduce a framework that explains the response of two identical molecular motors to a constant external force. In particular, we relate the single motor parameters, the coupling strength and the external load force to the dynamics of the motor pair. We derive four distinct transport regimes and determine how the crossover lines between the regimes depend on the load force. Our description of the overall cargo dynamics takes into account relaxational displacements of the cargo caused by the unbinding of one motor. For large forces and weak elastic coupling these back-shifts dominate the displacements. To develop an intuitive understanding about motor cooperativity during cargo transport, we introduce a time scale for load sharing. This time scale allows us to predict how the regulation of single motor parameters influences the cooperativity. As an example, we show that up-regulating the single motor processivity enhances load sharing of the motor pair.

  2. Application of diagnostics to determine motor-operated valve operational readiness

    SciTech Connect

    Eissenberg, D.M.

    1986-01-01

    ORNL has been carrying out an aging assessment of motor-operated valves (MOVs) with the primary objective of recommending diagnostic methods for detecting and trending aging. As a result of experimental investigations at ORNL, it was discovered that the motor current during a valve stroke was a very useful diagnostic parameter for detecting and trending many MOV drive train load variations. The motor curent signatures were analyzed at four levels: mean value for a stroke, gross trends during a stroke, transients, and noise frequency spectra. Examples illustrating the use of this technique are presented. The use of motor current signature analysis was also shown to apply to other electric motor driven equipment. Future work includes developing a data base of MOV diagnostics, including criteria for determining the extent of degradation and application of the technique to other LWR motor driven safety equipment.

  3. Reciprocating Linear Electric Motor

    NASA Technical Reports Server (NTRS)

    Goldowsky, M. P.

    1984-01-01

    Features include structural simplicity and good force/displacement characteristics. Reciprocating motor has simple, rugged construction, relatively low reciprocating weight, improved power delivery, and improved force control. Wear reduced by use of magnetic bearings. Intended to provide drivers for long-lived Stirling-cycle cryogenic refrigerators, concept has less exotic applications, such as fuel pumps.

  4. Perceptual-Motor Dysfunction.

    ERIC Educational Resources Information Center

    Pyfer, Jean L.

    Discussed are theoretical and treatment aspects of perceptual motor dysfunction and rehabilitation in 4- to 12-year-old academically failing children involved in a 3-year investigation at the University of Kansas. The program is said to stress increasing the amount of stimulation received by sensory receptors of the vestibular, reflex, and haptic…

  5. Solid rocket motors

    NASA Technical Reports Server (NTRS)

    Carpenter, Ronn L.

    1993-01-01

    Structural requirements, materials and, especially, processing are critical issues that will pace the introduction of new types of solid rocket motors. Designers must recognize and understand the drivers associated with each of the following considerations: (1) cost; (2) energy density; (3) long term storage with use on demand; (4) reliability; (5) safety of processing and handling; (6) operability; and (7) environmental acceptance.

  6. Thiokol Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Graves, S. R.

    2000-01-01

    This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.

  7. Solid rocket motors

    NASA Astrophysics Data System (ADS)

    Carpenter, Ronn L.

    1993-02-01

    Structural requirements, materials and, especially, processing are critical issues that will pace the introduction of new types of solid rocket motors. Designers must recognize and understand the drivers associated with each of the following considerations: (1) cost; (2) energy density; (3) long term storage with use on demand; (4) reliability; (5) safety of processing and handling; (6) operability; and (7) environmental acceptance.

  8. The St. Louis Motor

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2011-01-01

    The St. Louis Motor, invented in 1909, is unique among physics apparatus for being named for a geographical place rather than a physicist. The sturdy little device (Fig. 1) has never been out of production. Any older school or physics department that has not done a catastrophic housecleaning in the last 20 years will certainly have a small flock…

  9. Mechanical solar motor: A concept

    NASA Technical Reports Server (NTRS)

    Hein, L. A.; Myers, W. N.

    1975-01-01

    Motor is proposed to convert radiation from sun directly into mechanical energy. Motor utilizes thermal expansion of liquid, heated by sun, as driving force. Unlike most thermally powered systems, it does not require that liquid be converted into vapor.

  10. Thermal motor positions magnetometer sensors

    NASA Technical Reports Server (NTRS)

    Kerwin, W. J.; Scott, S. G.

    1966-01-01

    Reversing, thermal, motor-driven device positions magnetometer sensors for checking zero offset. The device alternately positions two sensors at fixed positions 90 degrees apart. The thermal motor is fabricated completely of nonmagnetic materials.

  11. Electric motor model repair specifications

    SciTech Connect

    1995-08-01

    These model repair specifications list the minimum requirements for repair and overhaul of polyphase AC squireel cage induction motors. All power ranges, voltages, and speeds of squirrel cage motors are covered.

  12. Model Studies of the Dynamics of Bacterial Flagellar Motors

    SciTech Connect

    Bai, F; Lo, C; Berry, R; Xing, J

    2009-03-19

    The Bacterial Flagellar Motor is a rotary molecular machine that rotates the helical filaments which propel swimming bacteria. Extensive experimental and theoretical studies exist on the structure, assembly, energy input, power generation and switching mechanism of the motor. In our previous paper, we explained the general physics underneath the observed torque-speed curves with a simple two-state Fokker-Planck model. Here we further analyze this model. In this paper we show (1) the model predicts that the two components of the ion motive force can affect the motor dynamics differently, in agreement with the latest experiment by Lo et al.; (2) with explicit consideration of the stator spring, the model also explains the lack of dependence of the zero-load speed on stator number in the proton motor, recently observed by Yuan and Berg; (3) the model reproduces the stepping behavior of the motor even with the existence of the stator springs and predicts the dwelling time distribution. Predicted stepping behavior of motors with two stators is discussed, and we suggest future experimental verification.

  13. Multiple stage miniature stepping motor

    DOEpatents

    Niven, William A.; Shikany, S. David; Shira, Michael L.

    1981-01-01

    A stepping motor comprising a plurality of stages which may be selectively activated to effect stepping movement of the motor, and which are mounted along a common rotor shaft to achieve considerable reduction in motor size and minimum diameter, whereby sequential activation of the stages results in successive rotor steps with direction being determined by the particular activating sequence followed.

  14. Experiments with a DC Motor

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2010-01-01

    Experiments with an electric motor provide good opportunity to demonstrate some basic laws of electricity and magnetism. The aim of the experiments with a low-power dc motor is to show how the motor approaches its steady rotation and how its torque, mechanical power and efficiency depend on the rotation velocity. The tight relationship between the…

  15. Motor Education: Educational Development Programs.

    ERIC Educational Resources Information Center

    Tansley, A. E.

    This booklet presents educational programs and activities focusing on motor skills for 5- to 9-year-old children and older children with learning problems. The premise of the activities is that the acquisition of motor skills is essential to basic learning. The role of language as a mediator and controller of motor development is emphasized. The…

  16. Motor Vehicle Theft. Special Report.

    ERIC Educational Resources Information Center

    Harlow, Caroline Wolf

    Thirteen years of data from the National Crime Survey were analyzed to examine the characteristics of motor vehicle theft, to identify trends during the past 13 years, and to determine who are most likely to be victims of motor vehicle theft. All motor vehicle thefts reported to the National Crime Survey from 1973 through 1985 were examined.…

  17. Speed control for synchronous motors

    NASA Technical Reports Server (NTRS)

    Packard, H.; Schott, J.

    1981-01-01

    Feedback circuit controls fluctuations in speed of synchronous ac motor. Voltage proportional to phase angle is developed by phase detector, rectified, amplified, compared to threshold, and reapplied positively or negatively to motor excitation circuit. Speed control reduces wow and flutter of audio turntables and tape recorders, and enhances hunting in gyroscope motors.

  18. Direct interaction of microtubule- and actin-based transport motors

    NASA Technical Reports Server (NTRS)

    Huang, J. D.; Brady, S. T.; Richards, B. W.; Stenolen, D.; Resau, J. H.; Copeland, N. G.; Jenkins, N. A.

    1999-01-01

    The microtubule network is thought to be used for long-range transport of cellular components in animal cells whereas the actin network is proposed to be used for short-range transport, although the mechanism(s) by which this transport is coordinated is poorly understood. For example, in sea urchins long-range Ca2+-regulated transport of exocytotic vesicles requires a microtubule-based motor, whereas an actin-based motor is used for short-range transport. In neurons, microtubule-based kinesin motor proteins are used for long-range vesicular transport but microtubules do not extend into the neuronal termini, where actin filaments form the cytoskeletal framework, and kinesins are rapidly degraded upon their arrival in neuronal termini, indicating that vesicles may have to be transferred from microtubules to actin tracks to reach their final destination. Here we show that an actin-based vesicle-transport motor, MyoVA, can interact directly with a microtubule-based transport motor, KhcU. As would be expected if these complexes were functional, they also contain kinesin light chains and the localization of MyoVA and KhcU overlaps in the cell. These results indicate that cellular transport is, in part, coordinated through the direct interaction of different motor molecules.

  19. Optimal sequential Bayesian analysis for degradation tests.

    PubMed

    Rodríguez-Narciso, Silvia; Christen, J Andrés

    2016-07-01

    Degradation tests are especially difficult to conduct for items with high reliability. Test costs, caused mainly by prolonged item duration and item destruction costs, establish the necessity of sequential degradation test designs. We propose a methodology that sequentially selects the optimal observation times to measure the degradation, using a convenient rule that maximizes the inference precision and minimizes test costs. In particular our objective is to estimate a quantile of the time to failure distribution, where the degradation process is modelled as a linear model using Bayesian inference. The proposed sequential analysis is based on an index that measures the expected discrepancy between the estimated quantile and its corresponding prediction, using Monte Carlo methods. The procedure was successfully implemented for simulated and real data.

  20. Uncertainty Analysis for Photovoltaic Degradation Rates (Poster)

    SciTech Connect

    Jordan, D.; Kurtz, S.; Hansen, C.

    2014-04-01

    Dependable and predictable energy production is the key to the long-term success of the PV industry. PV systems show over the lifetime of their exposure a gradual decline that depends on many different factors such as module technology, module type, mounting configuration, climate etc. When degradation rates are determined from continuous data the statistical uncertainty is easily calculated from the regression coefficients. However, total uncertainty that includes measurement uncertainty and instrumentation drift is far more difficult to determine. A Monte Carlo simulation approach was chosen to investigate a comprehensive uncertainty analysis. The most important effect for degradation rates is to avoid instrumentation that changes over time in the field. For instance, a drifting irradiance sensor, which can be achieved through regular calibration, can lead to a substantially erroneous degradation rates. However, the accuracy of the irradiance sensor has negligible impact on degradation rate uncertainty emphasizing that precision (relative accuracy) is more important than absolute accuracy.

  1. Motor Imagery in Unipolar Major Depression

    PubMed Central

    Bennabi, Djamila; Monnin, Julie; Haffen, Emmanuel; Carvalho, Nicolas; Vandel, Pierre; Pozzo, Thierry; Papaxanthis, Charalambos

    2014-01-01

    Background: Motor imagery is a potential tool to investigate action representation, as it can provide insights into the processes of action planning and preparation. Recent studies suggest that depressed patients present specific impairment in mental rotation. The present study was designed to investigate the influence of unipolar depression on motor imagery ability. Methods: Fourteen right-handed patients meeting DSM-IV criteria for unipolar depression were compared to 14 matched healthy controls. Imagery ability was accessed by the timing correspondence between executed and imagined movements during a pointing task, involving strong spatiotemporal constraints (speed/accuracy trade-off paradigm). Results: Compared to controls, depressed patients showed marked motor slowing on both actual and imagined movements. Furthermore, we observed greater temporal discrepancies between actual and mental movements in depressed patients than in healthy controls. Lastly, depressed patients modulated, to some extent, mental movement durations according to the difficulty of the task, but this modulation was not as strong as that of healthy subjects. Conclusion: These results suggest that unipolar depression significantly affects the higher stages of action planning and point out a selective decline of motor prediction. PMID:25538580

  2. Motor sequence learning and motor adaptation in primary cervical dystonia.

    PubMed

    Katschnig-Winter, Petra; Schwingenschuh, Petra; Davare, Marco; Sadnicka, Anna; Schmidt, Reinhold; Rothwell, John C; Bhatia, Kailash P; Edwards, Mark J

    2014-06-01

    Motor sequence learning and motor adaptation rely on overlapping circuits predominantly involving the basal ganglia and cerebellum. Given the importance of these brain regions to the pathophysiology of primary dystonia, and the previous finding of abnormal motor sequence learning in DYT1 gene carriers, we explored motor sequence learning and motor adaptation in patients with primary cervical dystonia. We recruited 12 patients with cervical dystonia and 11 healthy controls matched for age. Subjects used a joystick to move a cursor from a central starting point to radial targets as fast and accurately as possible. Using this device, we recorded baseline motor performance, motor sequence learning and a visuomotor adaptation task. Patients with cervical dystonia had a significantly higher peak velocity than controls. Baseline performance with random target presentation was otherwise normal. Patients and controls had similar levels of motor sequence learning and motor adaptation. Our patients had significantly higher peak velocity compared to controls, with similar movement times, implying a different performance strategy. The preservation of motor sequence learning in cervical dystonia patients contrasts with the previously observed deficit seen in patients with DYT1 gene mutations, supporting the hypothesis of differing pathophysiology in different forms of primary dystonia. Normal motor adaptation is an interesting finding. With our paradigm we did not find evidence that the previously documented cerebellar abnormalities in cervical dystonia have a behavioral correlate, and thus could be compensatory or reflect "contamination" rather than being directly pathological.

  3. MotorMaster database of three-phase electric motors

    SciTech Connect

    Stickney, B.L.

    1993-12-31

    Selecting the right motor for a new or replacement application used to be a daunting task. Making an intelligent choice involved a search through a stack of motor catalogs for information on efficiency, voltage, speed, horsepower, torque, service factor, power factor, frame type, and cost. The MotorMaster software package, available from the Washington State Energy Office, takes the drudgery out of motor selection by enabling rapid analysis of the most efficient and cost-effective single-speed three-phase induction motors. It has a built-in motor database, easy to use comparison and analysis features, and can calculate utility rebates and simple paybacks. By speeding the selection process and providing comprehensive economic justification for the final equipment choice, software tools like MotorMaster can become an important component of utility DSM programs. And as a bonus, wide use of such software may lead to more systematic and consistent use of energy efficient equipment.

  4. DEA degradation mechanism

    SciTech Connect

    Meisen, A.; Kennard, M.L.

    1982-10-01

    Examines factors that increase diethanolamine (DEA) degradation, which reportedly depends on temperature, pressure, gas composition, amine concentration, pH of the amine solution and the presence of metal ions. Plant operators have tried to solve the problem by changing operating conditions and/or installing activated carbon filters. DEA degradation is frequently experienced in gas plants used for removing acidic gases such as carbon dioxide and hydrogen sulfide from light hydrocarbons. Experimental results reveal that degradation is governed by: solubility of CO/sub 2/ in the DEA solution; degree of dissociation of the DEA molecules in solution; interaction of DEA and CO/sub 2/ molecules and/or ionic complexes. Most, or all, these phenomena are affected by temperature, pressure, DEA concentration and pH. A series of tests to determine whether activated carbon is capable of removing impurities from partially degraded DEA solutions showed that this treatment did not remove any major degradation compounds from the solutions.

  5. Step-Stress Accelerated Degradation Testing (SSADT) for Photovoltaic (PV) Devices and Cells (Presentation)

    SciTech Connect

    Lee, J.; Elmore, R.; Suh, C.; Jones, W.

    2010-10-01

    Presentation on step-stress accelerated degradation testing (SSADT) for photovoltaics (PV). Developed are a step-stress degradation test (SSADT) for PV reliability tests and a lifetime prediction model for PV products.

  6. Degradation Kinetics of VX

    SciTech Connect

    Gary S. Groenewold

    2010-12-01

    O-ethyl S-(2-diisopropylaminoethyl)phosphonothiolate (VX) is the most toxic of the conventional chemical warfare agents. It is a persistent compound, an attribute derived from its relative involatility and slow rates of hydrolysis. These properties suggest that VX can linger in an exposed environment for extended periods of time long after the air has cleared. Concern over prolonged risk from VX exposure is exacerbated by the fact that it poses a dermal contact hazard. Hence a detailed understanding of volatilization rates, and degradation pathways and rates occurring in various environments is needed. Historically, volatilization has not been considered to be an important mechanism for VX depletion, but recent studies have shown that a significant fraction of VX may volatilize, depending on the matrix. A significant body of research has been conducted over the years to unravel VX degradation reaction pathways and to quantify the rates at which they proceed. Rigorous measurement of degradation rates is frequently difficult, and thus in many cases the degradation of VX has been described in terms of half lives, while in fewer instances rate constants have been measured. This variable approach to describing degradation kinetics reflects uncertainty regarding the exact nature of the degradation mechanisms. In this review, rates of VX degradation are compared on the basis of pseudo-first order rate constants, in order to provide a basis for assessing likelihood of VX persistence in a given environment. An issue of specific concern is that one VX degradation pathway produces S-2-(diisopropylaminoethyl) methylphosphonothioic acid (known as EA2192), which is a degradation product that retains much of the original toxicity of VX. Consequently degradation pathways and rates for EA2192 are also discussed.

  7. The Efficacy of Intraoperative Neurophysiological Monitoring Using Transcranial Electrically Stimulated Muscle-evoked Potentials (TcE-MsEPs) for Predicting Postoperative Segmental Upper Extremity Motor Paresis After Cervical Laminoplasty

    PubMed Central

    Manabe, Hideki; Izumi, Bunichiro; Tanaka, Hiroyuki; Kawai, Kazumi; Tanaka, Nobuhiro

    2016-01-01

    Study Design: Prospective study. Objective: To investigate the efficacy of transcranial electrically stimulated muscle-evoked potentials (TcE-MsEPs) for predicting postoperative segmental upper extremity palsy following cervical laminoplasty. Summary of Background Data: Postoperative segmental upper extremity palsy, especially in the deltoid and biceps (so-called C5 palsy), is the most common complication following cervical laminoplasty. Some papers have reported that postoperative C5 palsy cannot be predicted by TcE-MsEPs, although others have reported that it can be predicted. Methods: This study included 160 consecutive cases that underwent open-door laminoplasty, and TcE-MsEP monitoring was performed in the biceps brachii, triceps brachii, abductor digiti minimi, tibialis anterior, and abductor hallucis. A >50% decrease in the wave amplitude was defined as an alarm point. According to the monitoring alarm, interventions were performed, which include steroid administration, foraminotomies, etc. Results: Postoperative deltoid and biceps palsy occurred in 5 cases. Among the 155 cases without segmental upper extremity palsy, there were no monitoring alarms. Among the 5 deltoid and biceps palsy cases, 3 had significant wave amplitude decreases in the biceps during surgery, and palsy occurred when the patients awoke from anesthesia (acute type). In the other 2 cases in which the palsy occurred 2 days after the operation (delayed type), there were no significant wave decreases. In all of the cases, the palsy was completely resolved within 6 months. Discussion: The majority of C5 palsies have been reported to occur several days after surgery, but some of them have been reported to occur immediately after surgery. Our results demonstrated that TcE-MsEPs can predict the acute type, whereas the delayed type cannot be predicted. Conclusions: A >50% wave amplitude decrease in the biceps is useful to predict acute-type segmental upper extremity palsy. Further examination

  8. Balanced motor primitive can explain generalization of motor learning effects between unimanual and bimanual movements

    PubMed Central

    Takiyama, Ken; Sakai, Yutaka

    2016-01-01

    Motor learning in unimanual and bimanual planar reaching movements has been intensively investigated. Although distinct theoretical frameworks have been proposed for each of these reaching movements, the relationship between these movements remains unclear. In particular, the generalization of motor learning effects (transfer of learning effects) between unimanual and bimanual movements has yet to be successfully explained. Here, by extending a motor primitive framework, we analytically proved that the motor primitive framework can reproduce the generalization of learning effects between unimanual and bimanual movements if the mean activity of each primitive for unimanual movements is balanced to the mean for bimanual movements. In this balanced condition, the activity of each primitive is consistent with previously reported neuronal activity. The unimanual-bimanual balance leads to the testable prediction that generalization between unimanual and bimanual movements is more widespread to different reaching directions than generalization within respective movements. Furthermore, the balanced motor primitive can reproduce another previously reported phenomenon: the learning of different force fields for unimanual and bimanual movements. PMID:27025168

  9. Analysis of thermally-degrading, confined HMX

    SciTech Connect

    Hobbs, M.L.; Schmitt, R.G.; Renlund, A.M.

    1996-12-01

    The response of a thermally-degrading, confined HMX pellet is analyzed using a Reactive Elastic-Plastic (REP) constitutive model which is founded on the collapse and growth of internal inclusions resulting from physical and chemical processes such as forced displacement, thermal expansion, and/or decomposition. Axial stress predictions compare adequately to data. Deficiencies in the model and future directions are discussed.

  10. Motor technology for mining applications advances

    SciTech Connect

    Fiscor, S.

    2009-08-15

    AC motors are steadily replacing DC motors in mining and mineral processing equipment, requiring less maintenance. The permanent magnet rotor, or the synchronous motor, has enabled Blador to introduce a line of cooling tower motors. Synchronous motors are soon likely to take over from the induction motor. 1 photo.

  11. Big Savings from Smart Motors

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Chesebrough-Pond's operates 32 plants across the nation and in those plants are more than 10,000 electric motors. In an effort to cut down on waste of electrical power used by these motors, Chesebrough organized a Corporate Advanced Technology Group to devise ways of improving productivity and cut manufacturing costs. Chesebrough used NASA's Marshall Space Flight Center's Power Factor Controller technology as a departure point for development of their own computerized motor controller that enables motors to operate at maximum efficiency regardless of the motor's applications or operating condition.

  12. The Motor System Contributes to Comprehension of Abstract Language

    PubMed Central

    Guan, Connie Qun; Meng, Wanjin; Yao, Ru; Glenberg, Arthur M.

    2013-01-01

    If language comprehension requires a sensorimotor simulation, how can abstract language be comprehended? We show that preparation to respond in an upward or downward direction affects comprehension of the abstract quantifiers “more and more” and “less and less” as indexed by an N400-like component. Conversely, the semantic content of the sentence affects the motor potential measured immediately before the upward or downward action is initiated. We propose that this bidirectional link between motor system and language arises because the motor system implements forward models that predict the sensory consequences of actions. Because the same movement (e.g., raising the arm) can have multiple forward models for different contexts, the models can make different predictions depending on whether the arm is raised, for example, to place an object or raised as a threat. Thus, different linguistic contexts invoke different forward models, and the predictions constitute different understandings of the language. PMID:24086463

  13. Action anticipation and motor resonance in elite basketball players.

    PubMed

    Aglioti, Salvatore M; Cesari, Paola; Romani, Michela; Urgesi, Cosimo

    2008-09-01

    We combined psychophysical and transcranial magnetic stimulation studies to investigate the dynamics of action anticipation and its underlying neural correlates in professional basketball players. Athletes predicted the success of free shots at a basket earlier and more accurately than did individuals with comparable visual experience (coaches or sports journalists) and novices. Moreover, performance between athletes and the other groups differed before the ball was seen to leave the model's hands, suggesting that athletes predicted the basket shot's fate by reading the body kinematics. Both visuo-motor and visual experts showed a selective increase of motor-evoked potentials during observation of basket shots. However, only athletes showed a time-specific motor activation during observation of erroneous basket throws. Results suggest that achieving excellence in sports may be related to the fine-tuning of specific anticipatory 'resonance' mechanisms that endow elite athletes' brains with the ability to predict others' actions ahead of their realization.

  14. Modeling of nonlinear longitudinal instability in solid rocket motors

    NASA Astrophysics Data System (ADS)

    Baum, Joseph D.; Levine, Jay N.

    A comprehensive model of nonlinear longitudinal combustion instability in solid rocket motors has been developed. The two primary elements of this stability analysis are a finite difference solution of the two phase flow in the combustion chamber and a coupled solution of the nonlinear transient propellant burning rate. A new combination finite difference scheme gives the analysis the ability to treat the type of multiple travelling shock wave instabilities that are frequently observed in reduced smoke tactical solid rocket motors. Models for predicting the behavior of both gas ejection and solid ejecta pulses were developed and incorporated into the analysis. Extensive comparisons between model predictions and experimental data from pulsed solid rocket motor firings have been carried out. The nonlinear instability analysis was found to be capable of predicting the complete range of nonlinear behavior observed in actual motor firing data. Good agreement between measured and predicted initial pulse amplitude, pulse evolution, limit cycle amplitude and mean pressure shift was obtained. This investigation has also provided new insight into the nature of nonlinear pulse triggered instability and the factors which influence its occurrence and severity. This new instability analysis should significantly enhance our capability to design tactical solid rocket motors that are free from troublesome and expensive nonlinear combusion instability problems.

  15. On Nonlinear Combustion Instability in Liquid Propellant Rocket Motors

    NASA Technical Reports Server (NTRS)

    Sims, J. D. (Technical Monitor); Flandro, Gary A.; Majdalani, Joseph; Sims, Joseph D.

    2004-01-01

    All liquid propellant rocket instability calculations in current use have limited value in the predictive sense and serve mainly as a correlating framework for the available data sets. The well-known n-t model first introduced by Crocco and Cheng in 1956 is still used as the primary analytical tool of this type. A multitude of attempts to establish practical analytical methods have achieved only limited success. These methods usually produce only stability boundary maps that are of little use in making critical design decisions in new motor development programs. Recent progress in understanding the mechanisms of combustion instability in solid propellant rockets"' provides a firm foundation for a new approach to prediction, diagnosis, and correction of the closely related problems in liquid motor instability. For predictive tools to be useful in the motor design process, they must have the capability to accurately determine: 1) time evolution of the pressure oscillations and limit amplitude, 2) critical triggering pulse amplitude, and 3) unsteady heat transfer rates at injector surfaces and chamber walls. The method described in this paper relates these critical motor characteristics directly to system design parameters. Inclusion of mechanisms such as wave steepening, vorticity production and transport, and unsteady detonation wave phenomena greatly enhance the representation of key features of motor chamber oscillatory behavior. The basic theoretical model is described and preliminary computations are compared to experimental data. A plan to develop the new predictive method into a comprehensive analysis tool is also described.

  16. Performance degradation of a large production reactor recirculation pump during off-design conditions

    SciTech Connect

    Whitehouse, J.C.

    1993-11-01

    In order to accurately predict reactor hydraulic behavior during a hypothetical Loss-of-Coolant-Accident (LOCA) the performance of reactor coolant pumps under off-design conditions must be understood. The LOCA of primary interest for the Savannah River Site (SRS) production reactors involves the aspiration of air into the recirculated heavy water flow as reactor tank inventory is lost, (system temperatures are too low to result in significant flashing of water coolant into steam). Entrained air causes degradation in the performance of the large recirculation pumps. The amount of degradation is a parameter used in computer codes which predict the course of the accident. This paper describes the analysis of data obtained during in-reactor simulated LOCA tests, and presents the head degradation curve for the SRS reactor recirculation pumps. The greatest challenge of the analysis was to determine a reasonable estimate of mixture density at the pump suction. Specially designed three-beam densitometers were used to determine mixture density. Since it was not feasible to place them in the most advantageous location, measured pump motor power along with other techniques, were used to calculate the average mixture density at the pump impeller. This technique provides a good estimate of pump suction mixture density. Measurements from more conventional instruments were used to arrive at the value of pump two-component head over a wide range of flows. The results were significantly different from previous work with commercial reactor recirculation pumps. Further experimental work using a 1/4 scale model of the SRS pump should provide an opportunity to confirm these results, and is currently in progress.

  17. Chemiluminescent prediction of service life

    NASA Technical Reports Server (NTRS)

    Hassell, J. A.; Mendenhall, G. D.; Nathan, R. A.

    1976-01-01

    Technique can be used to predict polymer degradation under actual expected-use conditions, without imposing artificial conditions. Smooth or linear correlations are obtained between chemiluminescence and physical properties of purified polymer gums.

  18. Ironless armature torque motor

    NASA Technical Reports Server (NTRS)

    Fisher, R. L.

    1972-01-01

    Four iron-less armature torque motors, four Hall device position sensor assemblies, and two test fixtures were fabricated. The design approach utilized samarium cobalt permanent magnets, a large airgap, and a three-phase winding in a stationary ironless armature. Hall devices were employed to sense rotor position. An ironless armature torque motor having an outer diameter of 4.25 inches was developed to produce a torque constant of 65 ounce-inches per ampere with a resistance of 20.5 ohms. The total weight, including structural elements, was 1.58 pounds. Test results indicated that all specifications were met except for generated voltage waveform. It is recommended that investigations be made concerning the generated voltage waveform to determine if it may be improved.

  19. Advanced Motor Drives Studies

    NASA Technical Reports Server (NTRS)

    Ehsani, M.; Tchamdjou, A.

    1997-01-01

    This report presents an evaluation of advanced motor drive systems as a replacement for the hydrazine fueled APU units. The replacement technology must meet several requirements which are particular to the space applications and the Orbiter in general. Some of these requirements are high efficiency, small size, high power density. In the first part of the study several motors are compared, based on their characteristics and in light of the Orbiter requirements. The best candidate, the brushless DC is chosen because of its particularly good performance with regards to efficiency. Several power electronics drive technologies including the conventional three-phase hard switched and several soft-switched inverters are then presented. In the last part of the study, a soft-switched inverter is analyzed and compared to its conventional hard-switched counterpart. Optimal efficiency is a basic requirement for space applications and the soft-switched technology represents an unavoidable trend for the future.

  20. Magnetostrictive direct drive motors

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1992-01-01

    A new rare earth alloy, Terfenol-D, combines low frequency operation and extremely high energy density with high magnetostriction. Its material properties make it suitable as a drive element for actuators requiring high output torque. The high strains, the high forces and the high controllability of Terfenol alloys provide a powerful and challenging basis for new ways to generate motion in actuators. Two prototypes of motors using Terfenol-D rods were developed at NASA Goddard. The basic principles of operation are provided of the motor along with other relevant details. A conceptual design of a torque limiting safety clutch/brake under development is illustrated. Also, preliminary design drawings of a linear actuator using Terfenol-D is shown.

  1. Understanding social motor coordination.

    PubMed

    Schmidt, R C; Fitzpatrick, Paula; Caron, Robert; Mergeche, Joanna

    2011-10-01

    Recently there has been much interest in social coordination of motor movements, or as it is referred to by some researchers, joint action. This paper reviews the cognitive perspective's common coding/mirror neuron theory of joint action, describes some of its limitations and then presents the behavioral dynamics perspective as an alternative way of understanding social motor coordination. In particular, behavioral dynamics' ability to explain the temporal coordination of interacting individuals is detailed. Two experiments are then described that demonstrate how dynamical processes of synchronization are apparent in the coordination underlying everyday joint actions such as martial art exercises, hand-clapping games, and conversations. The import of this evidence is that emergent dynamic patterns such as synchronization are the behavioral order that any neural substrate supporting joint action (e.g., mirror systems) would have to sustain.

  2. Motor learning by observing.

    PubMed

    Mattar, Andrew A G; Gribble, Paul L

    2005-04-01

    Learning complex motor behaviors like riding a bicycle or swinging a golf club is based on acquiring neural representations of the mechanical requirements of movement (e.g., coordinating muscle forces to control the club). Here we provide evidence that mechanisms matching observation and action facilitate motor learning. Subjects who observed a video depicting another person learning to reach in a novel mechanical environment (imposed by a robot arm) performed better when later tested in the same environment than subjects who observed similar movements but no learning; moreover, subjects who observed learning of a different environment performed worse. We show that this effect is not based on conscious strategies but instead depends on the implicit engagement of neural systems for movement planning and control. PMID:15820701

  3. Motor adaptation and generalization of reaching movements using motor primitives based on spatial coordinates.

    PubMed

    Tanaka, Hirokazu; Sejnowski, Terrence J

    2015-02-15

    The brain processes sensory and motor information in a wide range of coordinate systems, ranging from retinal coordinates in vision to body-centered coordinates in areas that control musculature. Here we focus on the coordinate system used in the motor cortex to guide actions and examine physiological and psychophysical evidence for an allocentric reference frame based on spatial coordinates. When the equations of motion governing reaching dynamics are expressed as spatial vectors, each term is a vector cross product between a limb-segment position and a velocity or acceleration. We extend this computational framework to motor adaptation, in which the cross-product terms form adaptive bases for canceling imposed perturbations. Coefficients of the velocity- and acceleration-dependent cross products are assumed to undergo plastic changes to compensate the force-field or visuomotor perturbations. Consistent with experimental findings, each of the cross products had a distinct reference frame, which predicted how an acquired remapping generalized to untrained location in the workspace. In response to force field or visual rotation, mainly the coefficients of the velocity- or acceleration-dependent cross products adapted, leading to transfer in an intrinsic or extrinsic reference frame, respectively. The model further predicted that remapping of visuomotor rotation should under- or overgeneralize in a distal or proximal workspace. The cross-product bases can explain the distinct patterns of generalization in visuomotor and force-field adaptation in a unified way, showing that kinematic and dynamic motor adaptation need not arise through separate neural substrates.

  4. Bacterial Flagellar Motor Switch in Response to CheY-P Regulation and Motor Structural Alterations.

    PubMed

    Ma, Qi; Sowa, Yoshiyuki; Baker, Matthew A B; Bai, Fan

    2016-03-29

    The bacterial flagellar motor (BFM) is a molecular machine that rotates the helical filaments and propels the bacteria swimming toward favorable conditions. In our previous works, we built a stochastic conformational spread model to explain the dynamic and cooperative behavior of BFM switching. Here, we extended this model to test whether it can explain the latest experimental observations regarding CheY-P regulation and motor structural adaptivity. We show that our model predicts a strong correlation between rotational direction and the number of CheY-Ps bound to the switch complex, in agreement with the latest finding from Fukuoka et al. It also predicts that the switching sensitivity of the BFM can be fine-tuned by incorporating additional units into the switch complex, as recently demonstrated by Yuan et al., who showed that stoichiometry of FliM undergoes dynamic change to maintain ultrasensitivity in the motor switching response. In addition, by locking some rotor switching units on the switch complex into the stable clockwise-only conformation, our model has accurately simulated recent experiments expressing clockwise-locked FliG(ΔPAA) into the switch complex and reproduced the increased switching rate of the motor.

  5. Motor Sensory Performance - Skylab Student Experiment ED-41

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This chart describes the Skylab student experiment Motor Sensory Performance, proposed by Kathy L. Jackson of Houston, Texas. Her proposal was a very simple but effective test to measure the potential degradation of man's motor-sensory skills while weightless. Without knowing whether or not man can retain a high level of competency in the performance of various tasks after long exposure to weightlessness, this capability could not be fully known. Skylab, with its long-duration missions, provided an ideal testing situation. The experiment Kathy Jackson proposed was similar in application to the tasks involved in docking one spacecraft to another using manual control. It required one of the greatest tests of the motor-sensory capabilities of man. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.

  6. An Electrostatic Stepper Motor

    NASA Astrophysics Data System (ADS)

    Partington, E. C.; Wong, Edward Chun Kay; Bullough, W. A.

    This paper describes a new concept in pulse controlled motor and precision linear actuator techniques. Piezo translators [PZT] employed to provide reciprocating primary motion are connected to a load via a controllable electrorheological fluid [ERF] clutch to form a programmable speed and step-width drive. Ideal considerations are used to quantify the limiting potential of the drive and details are given of its development and progress.

  7. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2003-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components and with appropriate adjustment of curing and other additives functionally-required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g. powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf life characteristics.

  8. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2004-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components, and, with appropriate adjustment of curing and other additives, functionally required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g., powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf-life characteristics.

  9. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2008-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components, and, with appropriate adjustment of curing and other additives, functionally required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g., powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf-life characteristics.

  10. Hydraulic motor for cars

    SciTech Connect

    Gagnon, D.C.

    1986-09-02

    A hydraulic motor for a car is described comprising, in combination, an automotive vehicle engine for travel self-propulsion, including a block, a plurality of cylinders in the block, a piston slidable in each cylinder, a crankshaft in the block, a piston rod connected between the crankshaft and each of the pistons, a power take-off gear on the crankshaft for the travel self-propulsion, and the engine including a hydraulic means for driving the pistons in the cylinders.

  11. The St. Louis Motor

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2011-10-01

    The St. Louis Motor, invented in 1909, is unique among physics apparatus for being named for a geographical place rather than a physicist. The sturdy little device (Fig. 1) has never been out of production. Any older school or physics department that has not done a catastrophic housecleaning in the last 20 years will certainly have a small flock of them in the back room.

  12. Libert-E Motor

    ERIC Educational Resources Information Center

    Sieloff, Susan F.; Kinnunen, Raymond; Chevarley, Joseph

    2011-01-01

    Kei Yun Wong has big dreams. She has been entrusted with the United States launch of Libert-E Motor, a new line of Chinese-manufactured electric scooters. With only $750,000 of her original budget of $3 million left, she needs to make sure that the launch succeeds, as it represents the initial step in her desire to create the first Chinese global…

  13. Steps in the Bacterial Flagellar Motor

    PubMed Central

    Mora, Thierry; Yu, Howard; Sowa, Yoshiyuki; Wingreen, Ned S.

    2009-01-01

    The bacterial flagellar motor is a highly efficient rotary machine used by many bacteria to propel themselves. It has recently been shown that at low speeds its rotation proceeds in steps. Here we propose a simple physical model, based on the storage of energy in protein springs, that accounts for this stepping behavior as a random walk in a tilted corrugated potential that combines torque and contact forces. We argue that the absolute angular position of the rotor is crucial for understanding step properties and show this hypothesis to be consistent with the available data, in particular the observation that backward steps are smaller on average than forward steps. We also predict a sublinear speed versus torque relationship for fixed load at low torque, and a peak in rotor diffusion as a function of torque. Our model provides a comprehensive framework for understanding and analyzing stepping behavior in the bacterial flagellar motor and proposes novel, testable predictions. More broadly, the storage of energy in protein springs by the flagellar motor may provide useful general insights into the design of highly efficient molecular machines. PMID:19851449

  14. Silk structure and degradation.

    PubMed

    Liu, Bin; Song, Yu-wei; Jin, Li; Wang, Zhi-jian; Pu, De-yong; Lin, Shao-qiang; Zhou, Chan; You, Hua-jian; Ma, Yan; Li, Jin-min; Yang, Li; Sung, K L Paul; Zhang, Yao-guang

    2015-07-01

    To investigate the structure of silk and its degradation properties, we have monitored the structure of silk using scanning electron microscopy and frozen sections. Raw silk and degummed raw silk were immersed in four types of degradation solutions for 156 d to observe their degradation properties. The subcutaneous implants in rats were removed after 7, 14, 56, 84, 129, and 145 d for frozen sectioning and subsequent staining with hematoxylin and eosin (H.E.), DAPI, Beta-actin and Collagen I immunofluorescence staining. The in vitro weight loss ratio of raw silk and degummed raw silk in water, PBS, DMEM and DMEM containing 10% FBS (F-DMEM) were, respectively, 14%/11%, 12.5%/12.9%, 11.1%/14.3%, 8.8%/11.6%. Silk began to degrade after 7 d subcutaneous implantation and after 145 d non-degraded silk was still observed. These findings suggest the immunogenicity of fibroin and sericin had no essential difference. In the process of in vitro degradation of silk, the role of the enzyme is not significant. The in vivo degradation of silk is related to phagocytotic activity and fibroblasts may be involved in this process to secrete collagen. This study also shows the developing process of cocoons and raw silk. PMID:25982316

  15. Motor Fuel Excise Taxes

    SciTech Connect

    2015-09-01

    A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues creating substantial funding shortfalls that have required supplemental funding sources. While rising infrastructure costs and the decreasing purchasing power of the gas tax are significant factors contributing to the shortfall, the increased use of alternative fuels and more stringent fuel economy standards are also exacerbating revenue shortfalls. The current dynamic places vehicle efficiency and petroleum use reduction polices at direct odds with policies promoting robust transportation infrastructure. Understanding the energy, transportation, and environmental tradeoffs of motor fuel tax policies can be complicated, but recent experiences at the state level are helping policymakers align their energy and environmental priorities with highway funding requirements.

  16. Mechanics of molecular motors

    NASA Astrophysics Data System (ADS)

    Visscher, Koen

    2001-03-01

    Molecular motors convert chemical energy into work by mechanisms that researchers are just starting to uncover. We have studied the coupling of chemistry to mechanics for kinesin, a motor protein that moves in a stepwise fashion along microtubules and is energized by the hydrolysis of ATP. Velocities of individual kinesin molecules at varying ATP concentrations and loads were recorded using a molecular force cl& a feedback-driven optical trap, which maintains constant loads on individual moving motor molecules. These measurements showed that kinesin requires only a single ATP molecule per mechanical step, and revealed the load-dependant biochemical transitions in the kinesin cycle where conformational changes are likely to occur. Modeling of the velocity data showed that kinesin mechanochemistry can be characterized by a mechanism that involves a thermally-activated and load-dependent isomerization directly following ATP binding. The model quantitatively accounts for velocity data over a wide range of loads and ATP concentrations, and indicates that movement may be accomplished through two sequential, non-identical, 4-nm sized substeps.

  17. Dyspraxia, Motor Function and Visual-Motor Integration in Autism

    PubMed Central

    Miller, M.; Chukoskie, L.; Zinni, M.; Townsend, J.; Trauner, D.

    2014-01-01

    This project assessed dyspraxia in high-functioning school aged children with autism with a focus on Ideational Praxis. We examined the association of specific underlying motor function including eye movement with ideational dyspraxia (sequences of skilled movements) as well as the possible role of visual-motor integration in dyspraxia. We found that compared to IQ-, sex- and age-matched typically developing children, the children with autism performed significantly worse on: Ideational and Buccofacial praxis; a broad range of motor tests, including measures of simple motor skill, timing and accuracy of saccadic eye movements and motor coordination; and tests of visual-motor integration. Impairments in individual children with autism were heterogeneous in nature, although when we examined the praxis data as a function of a qualitative measure representing motor timing, we found that children with poor motor timing performed worse on all praxis categories and had slower and less accurate eye movements while those with regular timing performed as well as typical children on those same tasks. Our data provide evidence that both motor function and visual-motor integration contribute to dyspraxia. We suggest that dyspraxia in autism involves cerebellar mechanisms of movement control and the integration of these mechanisms with cortical networks implicated in praxis. PMID:24742861

  18. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties

    PubMed Central

    Zustiak, Silviya P.

    2011-01-01

    The objective of this work was to create three-dimensional (3D) hydrogel matrices with defined mechanical properties, as well as tunable degradability for use in applications involving protein delivery and cell encapsulation. Thus, we report the synthesis and characterization of a novel hydrolytically degradable poly(ethylene glycol) (PEG) hydrogel composed of PEG vinyl sulfone (PEG-VS) cross-linked with PEG-diester-dithiol. Unlike previously reported degradable PEG-based hydrogels, these materials are homogeneous in structure, fully hydrophilic and have highly specific cross-linking chemistry. We characterized hydrogel degradation and associated trends in mechanical properties, i.e., storage modulus (G′), swelling ratio (QM), and mesh size (ξ). Degradation time and the monitored mechanical properties of the hydrogel correlated with cross-linker molecular weight, cross-linker functionality, and total polymer density; these properties changed predictably as degradation proceeded (G′ decreased, whereas QM and ξ increased) until the gels reached complete degradation. Balb/3T3 fibroblast adhesion and proliferation within the 3D hydrogel matrices were also verified. In sum, these unique properties indicate that the reported degradable PEG hydrogels are well poised for specific applications in protein and cell delivery to repair soft tissue. PMID:20355705

  19. Reconsolidation of Motor Memories Is a Time-Dependent Process.

    PubMed

    de Beukelaar, Toon T; Woolley, Daniel G; Alaerts, Kaat; Swinnen, Stephan P; Wenderoth, Nicole

    2016-01-01

    Reconsolidation is observed when a consolidated stable memory is recalled, which renders it transiently labile and requires re-stabilization. Motor memory reconsolidation has previously been demonstrated using a three-day design: on day 1 the memory is encoded, on day 2 it is reactivated and experimentally manipulated, and on day 3 memory strength is tested. The aim of the current study is to determine specific boundary conditions in order to consistently degrade motor memory through reconsolidation paradigms. We investigated a sequence tapping task (n = 48) with the typical three-day design and confirmed that reactivating the motor sequence briefly (10 times tapping the learned motor sequence) destabilizes the memory trace and makes it susceptible to behavioral interference. By systematically varying the time delay between memory reactivation and interference while keeping all other aspect constant we found that a short delay (i.e., 20 s) significantly decreased performance on day 3, whereas performance was maintained or small (but not significant) improvements were observed for longer delays (i.e., 60 s). We also tested a statistical model that assumed a linear effect of the different time delays (0 s, 20 s, 40 s, 60 s) on the performance changes from day 2 to day 3. This linear model revealed a significant effect consistent with the interpretation that increasing time delays caused a gradual change from performance degradation to performance conservation across groups. These findings indicate that re-stabilizing motor sequence memories during reconsolidation does not solely rely on additional motor practice but occurs with the passage of time. This study provides further support for the hypothesis that reconsolidation is a time-dependent process with a transition phase from destabilization to re-stabilization. PMID:27582698

  20. Reconsolidation of Motor Memories Is a Time-Dependent Process

    PubMed Central

    de Beukelaar, Toon T.; Woolley, Daniel G.; Alaerts, Kaat; Swinnen, Stephan P.; Wenderoth, Nicole

    2016-01-01

    Reconsolidation is observed when a consolidated stable memory is recalled, which renders it transiently labile and requires re-stabilization. Motor memory reconsolidation has previously been demonstrated using a three-day design: on day 1 the memory is encoded, on day 2 it is reactivated and experimentally manipulated, and on day 3 memory strength is tested. The aim of the current study is to determine specific boundary conditions in order to consistently degrade motor memory through reconsolidation paradigms. We investigated a sequence tapping task (n = 48) with the typical three-day design and confirmed that reactivating the motor sequence briefly (10 times tapping the learned motor sequence) destabilizes the memory trace and makes it susceptible to behavioral interference. By systematically varying the time delay between memory reactivation and interference while keeping all other aspect constant we found that a short delay (i.e., 20 s) significantly decreased performance on day 3, whereas performance was maintained or small (but not significant) improvements were observed for longer delays (i.e., 60 s). We also tested a statistical model that assumed a linear effect of the different time delays (0 s, 20 s, 40 s, 60 s) on the performance changes from day 2 to day 3. This linear model revealed a significant effect consistent with the interpretation that increasing time delays caused a gradual change from performance degradation to performance conservation across groups. These findings indicate that re-stabilizing motor sequence memories during reconsolidation does not solely rely on additional motor practice but occurs with the passage of time. This study provides further support for the hypothesis that reconsolidation is a time-dependent process with a transition phase from destabilization to re-stabilization. PMID:27582698

  1. Motor skills and calibrated autism severity in young children with autism spectrum disorder.

    PubMed

    MacDonald, Megan; Lord, Catherine; Ulrich, Dale A

    2014-04-01

    In addition to the core characteristics of autism spectrum disorder (ASD), motor skill deficits are present, persistent, and pervasive across age. Although motor skill deficits have been indicated in young children with autism, they have not been included in the primary discussion of early intervention content. One hundred fifty-nine young children with a confirmed diagnosis of ASD (n = 110), PDD-NOS (n = 26), and non-ASD (n = 23) between the ages of 14-33 months participated in this study.1 The univariate general linear model tested the relationship of fine and gross motor skills and social communicative skills (using calibrated autism severity scores). Fine motor and gross motor skills significantly predicted calibrated autism severity (p < .05). Children with weaker motor skills have greater social communicative skill deficits. Future directions and the role of motor skills in early intervention are discussed.

  2. An examination of the generalizability of motor costs.

    PubMed

    Berniker, Max; O'Brien, Megan K; Kording, Konrad P; Ahmed, Alaa A

    2013-01-01

    Most approaches to understanding human motor control assume that people maximize their rewards while minimizing their motor efforts. This tradeoff between potential rewards and a sense of effort is quantified with a cost function. While the rewards can change across tasks, our sense of effort is assumed to remain constant and characterize how the nervous system organizes motor control. As such, when a proposed cost function compares well with data it is argued to be the underlying cause of a motor behavior, and not simply a fit to the data. Implicit in this proposition is the assumption that this cost function can then predict new motor behaviors. Here we examined this idea and asked whether an inferred cost function in one setting could explain subject's behavior in settings that differed dynamically but had identical rewards. We found that the pattern of behavior observed across settings was similar to our predictions of optimal behavior. However, we could not conclude that this behavior was consistent with a conserved sense of effort. These results suggest that the standard forms for quantifying cost may not be sufficient to accurately examine whether or not human motor behavior abides by optimality principles.

  3. The sensory side of post-stroke motor rehabilitation.

    PubMed

    Bolognini, Nadia; Russo, Cristina; Edwards, Dylan J

    2016-04-11

    Contemporary strategies to promote motor recovery following stroke focus on repetitive voluntary movements. Although successful movement relies on efficient sensorimotor integration, functional outcomes often bias motor therapy toward motor-related impairments such as weakness, spasticity and synergies; sensory therapy and reintegration is implied, but seldom targeted. However, the planning and execution of voluntary movement requires that the brain extracts sensory information regarding body position and predicts future positions, by integrating a variety of sensory inputs with ongoing and planned motor activity. Neurological patients who have lost one or more of their senses may show profoundly affected motor functions, even if muscle strength remains unaffected. Following stroke, motor recovery can be dictated by the degree of sensory disruption. Consequently, a thorough account of sensory function might be both prognostic and prescriptive in neurorehabilitation. This review outlines the key sensory components of human voluntary movement, describes how sensory disruption can influence prognosis and expected outcomes in stroke patients, reports on current sensory-based approaches in post-stroke motor rehabilitation, and makes recommendations for optimizing rehabilitation programs based on sensory stimulation.

  4. The sensory side of post-stroke motor rehabilitation.

    PubMed

    Bolognini, Nadia; Russo, Cristina; Edwards, Dylan J

    2016-04-11

    Contemporary strategies to promote motor recovery following stroke focus on repetitive voluntary movements. Although successful movement relies on efficient sensorimotor integration, functional outcomes often bias motor therapy toward motor-related impairments such as weakness, spasticity and synergies; sensory therapy and reintegration is implied, but seldom targeted. However, the planning and execution of voluntary movement requires that the brain extracts sensory information regarding body position and predicts future positions, by integrating a variety of sensory inputs with ongoing and planned motor activity. Neurological patients who have lost one or more of their senses may show profoundly affected motor functions, even if muscle strength remains unaffected. Following stroke, motor recovery can be dictated by the degree of sensory disruption. Consequently, a thorough account of sensory function might be both prognostic and prescriptive in neurorehabilitation. This review outlines the key sensory components of human voluntary movement, describes how sensory disruption can influence prognosis and expected outcomes in stroke patients, reports on current sensory-based approaches in post-stroke motor rehabilitation, and makes recommendations for optimizing rehabilitation programs based on sensory stimulation. PMID:27080070

  5. Exposure to motor vehicle emissions: An intake fraction approach

    SciTech Connect

    Marshall, Julian D.

    2002-05-01

    Motor vehicles are a significant source of population exposure to air pollution. Focusing on California's South Coast Air Basin as a case study, the author combines ambient monitoring station data with hourly time-activity patterns to determine the population intake of motor vehicle emissions during 1996-1999. Three microenvironments are considered wherein the exposure to motor vehicle emissions is higher than in ambient air: in and near vehicles, inside a building that is near a freeway, and inside a residence with an attached garage. Total motor vehicle emissions are taken from the EMFAC model. The 15 million people in the South Coast inhale 0.0048% of primary, nonreactive compounds emitted into the basin by motor vehicles. Intake of motor vehicle emissions is 46% higher than the average ambient concentration times the average breathing rate, because of microenvironments and because of temporal and spatial correlation among breathing rates, concentrations, and population densities. Intake fraction (iF) summarizes the emissions-to-intake relationship as the ratio of population intake to total emissions. iF is a population level exposure metric that incorporates spatial, temporal, and interindividual variability in exposures. iFs can facilitate the calculation of population exposures by distilling complex emissions-transport-receptor relationships. The author demonstrates this point by predicting the population intake of various primary gaseous emissions from motor vehicles, based on the intake fraction for benzene and carbon monoxide.

  6. Purex diluent degradation

    SciTech Connect

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-02-01

    The chemical degradation of normal paraffin hydrocarbon (NPH) diluents both in the pure state and mixed with 30% tributyl phosphate (TBP) was investigated in a series of experiments. The results show that degradation of NPH in the TBP-NPH-HNO/sub 3/ system is consistent with the active chemical agent being a radical-like nitrogen dioxide (NO/sub 2/) molecule, not HNO/sub 3/ as such. Spectrophotometric, gas chromatographic, mass spectrographic, and titrimetric methods were used to identify the degradation products, which included alkane nitro and nitrate compounds, alcohols, unsaturated alcohols, nitro alcohols, nitro alkenes, ketones, and carboxylic acids. The degradation rate was found to increase with increases in the HNO/sub 3/ concentration and the temperature. The rate was decreased by argon sparging to remove NO/sub 2/ and by the addition of butanol, which probably acts as a NO/sub 2/ scavenger. 13 references, 11 figures.

  7. Conceptualizing Forest Degradation.

    PubMed

    Ghazoul, Jaboury; Burivalova, Zuzana; Garcia-Ulloa, John; King, Lisa A

    2015-10-01

    Forest degradation is a global environmental issue, but its definition is problematic. Difficulties include choosing appropriate reference states, timescales, thresholds, and forest values. We dispense with many such ambiguities by interpreting forest degradation through the frame of ecological resilience, and with reference to forest dynamics. Specifically, we define forest degradation as a state of anthropogenically induced arrested succession, where ecological processes that underlie forest dynamics are diminished or severely constrained. Metrics of degradation might include those that reflect ecological processes shaping community dynamics, notably the regeneration of plant species. Arrested succession implies that management intervention is necessary to recover successional trajectories. Such a definition can be applied to any forest ecosystem, and can also be extended to other ecosystems. PMID:26411619

  8. How do polymers degrade?

    NASA Astrophysics Data System (ADS)

    Lyu, Suping

    2011-03-01

    Materials derived from agricultural products such as cellulose, starch, polylactide, etc. are more sustainable and environmentally benign than those derived from petroleum. However, applications of these polymers are limited by their processing properties, chemical and thermal stabilities. For example, polyethylene terephthalate fabrics last for many years under normal use conditions, but polylactide fabrics cannot due to chemical degradation. There are two primary mechanisms through which these polymers degrade: via hydrolysis and via oxidation. Both of these two mechanisms are related to combined factors such as monomer chemistry, chain configuration, chain mobility, crystallinity, and permeation to water and oxygen, and product geometry. In this talk, we will discuss how these materials degrade and how the degradation depends on these factors under application conditions. Both experimental studies and mathematical modeling will be presented.

  9. Wind motor applications for transportation

    SciTech Connect

    Lysenko, G.P.; Grigoriev, B.V.; Karpin, K.B.

    1996-12-31

    Motion equation for a vehicle equipped with a wind motor allows, taking into account the drag coefficients, to determine the optimal wind drag velocity in the wind motor`s plane, and hence, obtain all the necessary data for the wind wheel blades geometrical parameters definition. This optimal drag velocity significantly differs from the flow drag velocity which determines the maximum wind motor power. Solution of the motion equation with low drag coefficients indicates that the vehicle speed against the wind may be twice as the wind speed. One of possible transportation wind motor applications is its use on various ships. A ship with such a wind motor may be substantially easier to steer, and if certain devices are available, may proceed in autonomous control mode. Besides, it is capable of moving within narrow fairways. The cruise speed of a sailing boat and wind-motored ship were compared provided that the wind velocity direction changes along a harmonic law with regard to the motion direction. Mean dimensionless speed of the wind-motored ship appears to be by 20--25% higher than that of a sailing boat. There was analyzed a possibility of using the wind motors on planet rovers in Mars or Venus atmospheric conditions. A Mars rover power and motor system has been assessed for the power level of 3 kW.

  10. Causal Role of Motor Simulation in Turn-Taking Behavior

    PubMed Central

    Novembre, Giacomo; Keller, Peter E.; Pickering, Martin J.

    2015-01-01

    Overlap between sensory and motor representations has been documented for a range of human actions, from grasping (Rizzolatti et al., 1996b) to playing a musical instrument (Novembre and Keller, 2014). Such overlap suggests that individuals use motor simulation to predict the outcome of observed actions (Wolpert, 1997). Here we investigate motor simulation as a basis of human communication. Using a musical turn-taking task, we show that pianists call on motor representations of their partner's part to predict when to come in for their own turn. Pianists played alternating solos with a videoed partner, and double-pulse transcranial magnetic stimulation was applied around the turn-switch to temporarily disrupt processing in two cortical regions implicated previously in different forms of motor simulation: (1) the dorsal premotor cortex (dPMC), associated with automatic motor resonance during passive observation of hand actions, especially when the actions are familiar (Lahav et al., 2007); and (2) the supplementary motor area (SMA), involved in active motor imagery, especially when the actions are familiar (Baumann et al., 2007). Stimulation of the right dPMC decreased the temporal accuracy of pianists' (right-hand) entries relative to sham when the partner's (left-hand) part had been rehearsed previously. This effect did not occur for dPMC stimulation without rehearsal or for SMA stimulation. These findings support the role of the dPMC in predicting the time course of observed actions via resonance-based motor simulation during turn-taking. Because turn-taking spans multiple modes of human interaction, we suggest that simulation is a foundational mechanism underlying the temporal dynamics of joint action. SIGNIFICANCE STATEMENT Even during passive observation, seeing or hearing somebody execute an action from within our repertoire activates motor cortices of our brain. But what is the functional relevance of such “motor simulation”? By combining a musical duet

  11. Biofilm-degrading enzymes from Lysobacter gummosus

    PubMed Central

    Gökçen, Anke; Vilcinskas, Andreas; Wiesner, Jochen

    2014-01-01

    Biofilm-degrading enzymes could be used for the gentle cleaning of industrial and medical devices and the manufacture of biofilm-resistant materials. We therefore investigated 20 species and strains of the bacterial genus Lysobacter for their ability to degrade experimental biofilms formed by Staphylococcus epidermidis, a common nosocomial pathogen typically associated with device-related infections. The highest biofilm-degradation activity was achieved by L. gummosus. The corresponding enzymes were identified by sequencing the L. gummosus genome. Partial purification of the biofilm-degrading activity from an extract of extracellular material followed by peptide mass fingerprinting resulted in the identification of two peptidases (α-lytic protease and β-lytic metalloendopeptidase) that were predicted to degrade bacterial cell walls. In addition, we identified two isoforms of a lysyl endopeptidase and an enzyme similar to metalloproteases from Vibrio spp. Potential peptidoglycan-binding C-terminal fragments of two OmpA-like proteins also co-purified with the biofilm-degrading activity. The L. gummosus genome was found to encode five isoenzymes of α-lytic protease and three isoenzymes of lysyl endopeptidase. These results indicated that the extracellular digestion of biofilms by L. gummosus depends on multiple bacteriolytic and proteolytic enzymes, which could now be exploited for biofilm control. PMID:24518560

  12. Degradation mechanisms and accelerated aging test design

    SciTech Connect

    Clough, R L; Gillen, K T

    1985-01-01

    The fundamental mechanisms underlying the chemical degradation of polymers can change as a function of environmental stress level. When this occurs, it greatly complicates any attempt to use accelerated tests for predicting long-term material degradation behaviors. Understanding how degradation mechanisms can change at different stress levels facilitates both the design and the interpretation of aging tests. Oxidative degradation is a predominant mechanism for many polymers exposed to a variety of different environments in the presence of air, and there are two mechanistic considerations which are widely applicable to material oxidation. One involves a physical process, oxygen diffusion, as a rate-limiting step. This mechanism can predominate at high stress levels. The second is a chemical process, the time-dependent decomposition of peroxide species. This leads to chain branching and can become a rate-controlling factor at lower stress levels involving time-scales applicable to use environments. The authors describe methods for identifying the operation of these mechanisms and illustrate the dramatic influence they can have on the degradation behaviors of a number of polymer types. Several commonly used approaches to accelerated aging tests are discussed in light of the behaviors which result from changes in degradation mechanisms. 9 references, 4 figures.

  13. A smoke producing rocket motor for atmospheric wind profiling

    SciTech Connect

    Grubelich, M.C. ); Rowland, J. . Applied Physics Lab.)

    1991-01-01

    A composite propellant was developed to produce a dense plume from a rocket motor. The development of this propellant combined the smoke producing capabilities of a smoke generator with a rocket motor, thereby integrating the separate systems into one unit. A rocket motor was designed for use with this propellant to produce a high density particulate plume. This plume could then be used to determine the wind profile in the atmosphere by using a light detection and ranging system. Additionally, this smoke producing propellant could be used for rapid screening or identification. The burn rate characteristics of the propellant were measured and static firings of rocket motors were conducted to determine the performance of the propellant. The results of these tests will be presented as well as theoretical performance predictions of a flight vehicle.

  14. A smoke producing rocket motor for atmospheric wind profiling

    SciTech Connect

    Grubelich, M.C.; Rowland, J.

    1991-12-31

    A composite propellant was developed to produce a dense plume from a rocket motor. The development of this propellant combined the smoke producing capabilities of a smoke generator with a rocket motor, thereby integrating the separate systems into one unit. A rocket motor was designed for use with this propellant to produce a high density particulate plume. This plume could then be used to determine the wind profile in the atmosphere by using a light detection and ranging system. Additionally, this smoke producing propellant could be used for rapid screening or identification. The burn rate characteristics of the propellant were measured and static firings of rocket motors were conducted to determine the performance of the propellant. The results of these tests will be presented as well as theoretical performance predictions of a flight vehicle.

  15. Understanding the efficiency of autonomous nano- and microscale motors.

    PubMed

    Wang, Wei; Chiang, Tso-Yi; Velegol, Darrell; Mallouk, Thomas E

    2013-07-17

    We analyze the power conversion efficiency of different classes of autonomous nano- and micromotors. For bimetallic catalytic motors that operate by a self-electrophoretic mechanism, there are four stages of energy loss, and together they result in a power conversion efficiency on the order of 10(-9). The results of finite element modeling agree well with experimental measurements of the efficiency of catalytic Pt-Au nanorod motors. Modifications of the composition and shape of bimetallic catalytic motors were predicted computationally and found experimentally to lead to higher efficiency. The efficiencies of bubble-propelled catalytic micromotors, magnetically driven flagellar motors, Janus micromotors driven by self-generated thermal gradients, and ultrasonically driven metallic micromotors are also analyzed and discussed.

  16. The Limiting Speed of the Bacterial Flagellar Motor

    NASA Astrophysics Data System (ADS)

    Nirody, Jasmine A.; Berry, Richard M.; Oster, George

    2016-08-01

    Recent experiments on the bacterial flagellar motor have shown that the structure of this nanomachine, which drives locomotion in a wide range of bacterial species, is more dynamic than previously believed. Specifically, the number of active torque-generating units (stators) was shown to vary across applied loads. This finding invalidates the experimental evidence reporting that limiting (zero-torque) speed is independent of the number of active stators. Here, we propose that, contrary to previous assumptions, the maximum speed of the motor is not universal, but rather increases as additional torque-generators are recruited. This result arises from our assumption that stators disengage from the motor for a significant portion of their mechanochemical cycles at low loads. We show that this assumption is consistent with current experimental evidence and consolidate our predictions with arguments that a processive motor must have a high duty ratio at high loads.

  17. A comparison of motor submodels in the optimal control model

    NASA Technical Reports Server (NTRS)

    Lancraft, R. E.; Kleinman, D. L.

    1978-01-01

    Properties of several structural variations in the neuromotor interface portion of the optimal control model (OCM) are investigated. For example, it is known that commanding control-rate introduces an open-loop pole at S=O and will generate low frequency phase and magnitude characteristics similar to experimental data. However, this gives rise to unusually high sensitivities with respect to motor and sensor noise-ratios, thereby reducing the models' predictive capabilities. Relationships for different motor submodels are discussed to show sources of these sensitivities. The models investigated include both pseudo motor-noise and actual (system driving) motor-noise characterizations. The effects of explicit proprioceptive feedback in the OCM is also examined. To show graphically the effects of each submodel on system outputs, sensitivity studies are included, and compared to data obtained from other tests.

  18. Process Extension from Embryonic Stem Cell-Derived Motor Neurons through Synthetic Extracellular Matrix Mimics

    NASA Astrophysics Data System (ADS)

    McKinnon, Daniel Devaud

    This thesis focuses on studying the extension of motor axons through synthetic poly(ethylene glycol) PEG hydrogels that have been modified with biochemical functionalities to render them more biologically relevant. Specifically, the research strategy is to encapsulate embryonic stem cell-derived motor neurons (ESMNs) in synthetic PEG hydrogels crosslinked through three different chemistries providing three mechanisms for dynamically tuning material properties. First, a covalently crosslinked, enzymatically degradable hydrogel is developed and exploited to study the biophysical dynamics of axon extension and matrix remodeling. It is demonstrated that dispersed motor neurons require a battery of adhesive peptides and growth factors to maintain viability and extend axons while those in contact with supportive neuroglial cells do not. Additionally, cell-degradable crosslinker peptides and a soft modulus mimicking that of the spinal cord are requirements for axon extension. However, because local degradation of the hydrogel results in a cellular environment significantly different than that of the bulk, enzymatically degradable peptide crosslinkers were replaced with reversible covalent hydrazone bonds to study the effect of hydrogel modulus on axon extension. This material is characterized in detail and used to measure forces involved in axon extension. Finally, a hydrogel with photocleavable linkers incorporated into the network structure is exploited to explore motor axon response to physical channels. This system is used to direct the growth of motor axons towards co-cultured myotubes, resulting in the formation of an in vitro neural circuit.

  19. DDE remediation and degradation.

    PubMed

    Thomas, John E; Ou, Li-Tse; All-Agely, Abid

    2008-01-01

    DDT and its metabolites, DDD and DDE, have been shown to be recalcitrant to degradation. The parent compound, DDT, was used extensively worldwide starting in 1939 and was banned in the United States in 1973. The daughter compound, DDE, may result from aerobic degradation, abiotic dehydrochlorination, or photochemical decomposition. DDE has also occurred as a contaminant in commercial-grade DDT. The p,p'-DDE isomer is more biologically active than the o,p-DDE, with a reported half-life of -5.7 years. However, when DDT was repeatedly applied to the soil, the DDE concentration may remain unchanged for more than 20 yr. Remediation of DDE-contaminated soil and water may be done by several techniques. Phytoremediation involves translocating DDT, DDD, and DDE from the soil into the plant, although some aquatic species (duckweed > elodea > parrot feather) can transform DDT into predominantly DDD with some DDE being formed. Of all the plants that can uptake DDE, Cucurbita pepo has been the most extensively studied, with translocation values approaching "hyperaccumulation" levels. Soil moisture, temperature, and plant density have all been documented as important factors in the uptake of DDE by Cucurbita pepo. Uptake may also be influenced positively by amendments such as biosurfactants, mycorrhizal inoculants, and low molecular weight organic acids (e.g., citric and oxalic acids). DDE microbial degradation by dehalogenases, dioxygenases, and hydrolases occurs under the proper conditions. Although several aerobic degradation pathways have been proposed, none has been fully verified. Very few aerobic pure cultures are capable of fully degrading DDE to CO2. Cometabolism of DDE by Pseudomonas sp., Alicaligens sp., and Terrabacter sp. grown on biphenyl has been reported; however, not all bacterial species that produce biphenyl dioxygenase degraded DDE. Arsenic and copper inhibit DDE degradation by aerobic microorganisms. Similarly, metal chelates such as EDTA inhibit the

  20. Microbial degradation of the pharmaceutical ibuprofen and the herbicide 2,4-D in water and soil - use and limits of data obtained from aqueous systems for predicting their fate in soil.

    PubMed

    Girardi, Cristobal; Nowak, Karolina M; Carranza-Diaz, Otoniel; Lewkow, Benjamín; Miltner, Anja; Gehre, Matthias; Schäffer, Andreas; Kästner, Matthias

    2013-02-01

    The persistence of chemicals is a key parameter for their environmental risk assessment. Extrapolating their biodegradability potential in aqueous systems to soil systems would improve the environmental impact assessment. This study compares the fate of (14/13)C-labelled 2,4-D (2,4-dichlorophenoxyacetic acid) and ibuprofen in OECD tests 301 (ready biodegradability in aqueous systems) and 307 (soil). 85% of 2,4-D and 68% of ibuprofen were mineralised in aqueous systems, indicating ready biodegradability, but only 57% and 45% in soil. Parent compounds and metabolites decreased to <2% of the spiked amounts in both systems. In soil, 36% of 2,4-D and 30% of ibuprofen were bound in non-extractable residues (NER). NER formation in the abiotic controls was half as high as in the biotic treatments. However, mineralisation, biodegradation and abiotic residue formation are competing processes. Assuming the same extent of abiotic NER formation in abiotic and biotic systems may therefore overestimate the abiotic contribution in the biotic systems. Mineralisation was described by a logistic model for the aquatic systems and by a two-pool first order degradation model for the soil systems. This agrees with the different abundance of microorganisms in the two systems, but precludes direct comparison of the fitted parameters. Nevertheless, the maximum mineralisable amounts determined by the models were similar in both systems, although the maximum mineralisation rate was about 3.5 times higher in the aqueous systems than in the soil system for both compounds; these parameters may thus be extrapolated from aqueous to soil systems. However, the maximum mineralisable amount is calculated by extrapolation to infinite times and includes intermediately formed biomass derived from the labelled carbon. The amount of labelled carbon within microbial biomass residues is higher in the soil system, resulting in lower degradation rates. Further evaluation of these relationships requires

  1. Temperature evaluation of traveling-wave ultrasonic motor considering interaction between temperature rise and motor parameters.

    PubMed

    Li, Shiyang; Ou, Wenchu; Yang, Ming; Guo, Chao; Lu, Cunyue; Hu, Junhui

    2015-03-01

    In this paper, a novel model for evaluating the temperature of traveling-wave ultrasonic motor (TWUSM) is developed. The proposed model, where the interaction between the temperature rise and motor parameters is considered, differs from the previous reported models with constant parameters. In this model, losses and temperature rises of the motor were evaluated based on the temperature-related varying parameters: the feedback voltage Vaux of the stator, dielectric permittivity ɛ and dielectric loss factor tanδ. At each new temperature, Vaux, ɛ and tanδ were updated. The feasibility and effectiveness of this proposed model was verified by comparing the predicted temperatures with the measured one. The effects of driving voltage, driving frequency and ambient temperature on the predicted temperature were also analyzed. The results show that the proposed model has more accurate predicted temperature than that with constant parameters. This will be very useful for the optimal design, reducing the heat loss, improvement of control and reliability life of TWUSM.

  2. Thermal degradation of deoxynivalenol during maize bread baking.

    PubMed

    Numanoglu, E; Gökmen, V; Uygun, U; Koksel, H

    2012-01-01

    The thermal degradation of deoxynivalenol (DON) was determined at isothermal baking conditions within the temperature range of 100-250°C, using a crust-like model, which was prepared with naturally contaminated maize flour. No degradation was observed at 100°C. For the temperatures of 150, 200 and 250°C, thermal degradation rate constants (k) were calculated and temperature dependence of DON degradation was observed by using Arrhenius equation. The degradation of DON obeyed Arrhenius law with a regression coefficient of 0.95. A classical bread baking operation was also performed at 250°C for 70 min and the rate of DON degradation in the bread was estimated by using the kinetic data derived from the model study. The crust and crumb temperatures recorded during bread baking were used to calculate the thermal degradation rate constants (k) and partial DON degradations at certain time intervals. Using these data, total degradation at the end of the entire baking process was predicted for both crust and crumb. This DON degradation was consistent with the experimental degradation data, confirming the accuracy of kinetic constants determined by means of the crust-like model.

  3. Wind motor machine

    SciTech Connect

    Goedecke, A.

    1984-12-25

    An improved wind motor machine having a wind rotor rotatable about a vertical axis. The rotor core body of the machine is provided with convexly curved wind application surfaces and coacting outer wing bodies having load supporting airplane wing-shaped cross-sections. The efficiency of the machine is improved by means of stream guiding bodies disposed in the intermediate space between the rotor core body and the wing bodies. These stream guiding bodies extend in a desired streaming direction, that is normal to the rotational axis of the wind body, which insures substantially laminar air streaming within the intermediate space.

  4. Adaptations of motor neural structures' activity to lapses in attention.

    PubMed

    Derosière, Gérard; Billot, Maxime; Ward, E Tomas; Perrey, Stéphane

    2015-01-01

    Sustained attention is fundamental for cognition and when impaired, impacts negatively on important contemporary living skills. Degradation in sustained attention is characterized by the time-on-task (TOT) effect, which manifests as a gradual increase in reaction time (RT). The TOT effect is accompanied by changes in relative brain activity patterns in attention-related areas, most noticeably in the prefrontal cortex (PFC) and the right parietal areas. However, activity changes in task-relevant motor structures have not been confirmed to date. This article describes an investigation of such motor-related activity changes as measured with 1) the time course of corticospinal excitability (CSE) through single-pulse transcranial magnetic stimulation; and 2) the changes in activity of premotor (PMC), primary motor (M1), PFC, and right parietal areas by means of near-infrared spectroscopy, during a sustained attention RT task exhibiting the TOT effect. Our results corroborate established findings such as a significant increase (P < 0.05) in lateral prefrontal and right parietal areas activity after the emergence of the TOT effect but also reveal adaptations in the form of motor activity changes--in particular, a significant increase in CSE (P < 0.01) and in primary motor area (M1) activity (P < 0.05).

  5. Transspinal direct current stimulation immediately modifies motor cortex sensorimotor maps

    PubMed Central

    Song, Weiguo; Truong, Dennis Q.; Bikson, Marom

    2015-01-01

    Motor cortex (MCX) motor representation reorganization occurs after injury, learning, and different long-term stimulation paradigms. The neuromodulatory approach of transspinal direct current stimulation (tsDCS) has been used to promote evoked cortical motor responses. In the present study, we used cathodal tsDCS (c-tsDCS) of the rat cervical cord to determine if spinal cord activation can modify the MCX forelimb motor map. We used a finite-element method model based on coregistered high-resolution rat MRI and microcomputed tomography imaging data to predict spinal current density to target stimulation to the caudal cervical enlargement. We examined the effects of cathodal and anodal tsDCS on the H-reflex and c-tsDCS on responses evoked by intracortical microstimulation (ICMS). To determine if cervical c-tsDCS also modified MCX somatic sensory processing, we examined sensory evoked potentials (SEPs) produced by wrist electrical stimulation and induced changes in ongoing activity. Cervical c-tsDCS enhanced the H-reflex, and anodal depressed the H-reflex. Using cathodal stimulation to examine cortical effects, we found that cervical c-tsDCS immediately modified the forelimb MCX motor map, with decreased thresholds and an expanded area. c-tsDCS also increased SEP amplitude in the MCX. The magnitude of changes produced by c-tsDCS were greater on the motor than sensory response. Cervical c-tsDCS more strongly enhanced forelimb than hindlimb motor representation and had no effect on vibrissal representation. The finite-element model indicated current density localized to caudal cervical segments, informing forelimb motor selectivity. Our results suggest that c-tsDCS augments spinal excitability in a spatially selective manner and may improve voluntary motor function through MCX representational plasticity. PMID:25673738

  6. Artificial Intelligent Controller for a DC Motor

    NASA Astrophysics Data System (ADS)

    Delavari, Hadi; Ranjbar Noiey, Abolzafl; Minagar, Sara

    The Speed and position control of DC motors is addressed in this paper. An optimal intelligent control scheme is proposed for the system. Preliminary a PID controller is designed using Genetic Algorithms (GA). The proposed controller is implemented by using optimal integral state feedback control with GA and Kalman filter. In the proposed scheme, performance depends on choosing weighting matrices Q and R in the cost function, and accordingly GA is used to find these proper weighting matrices. In order to reduce the control performance degradation due to system parameters variation, a Kalman filter is gained. The performance of the proposed technique (ISF) is compared with PID controller. Computer simulation validates the effectiveness of the proposed scheme even in presence of uncertainties.

  7. Apogee motor rocketry reliability improvements

    NASA Technical Reports Server (NTRS)

    Behm, J.; Dowler, W.; Gin, W.

    1974-01-01

    Since 1963, solid propellant apogee motors have been placing satellites into geosynchronous orbits. Major technological breakthroughs are not required to satisfy future mission requirements; however, there is a need to improve reliability to enhance cost effectiveness. Several management test options are discussed. A summary of results and conclusions derived from review of missions, where failure of a solid motor was inferred, and correlation of system factors with failures are reported. Highlights of a solid motor diagnostic instrumentation study are presented. Finally, recommendations are provided for areas of future apogee motor upgrade, which will increase project cost effectiveness by reducing the potential for future flight failures.

  8. Focal dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE)

    PubMed Central

    Perruchoud, David; Murray, Micah M.; Lefebvre, Jeremie; Ionta, Silvio

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized by sensory and motor deficits in the absence of basic motor impairments. Despite the fundamental impact of sensory-motor integration mechanisms on daily life, the general principles of healthy and pathological anatomic–functional organization of sensory-motor integration remain to be clarified. Based on the available data from experimental psychology, neurophysiology, and neuroimaging, we propose a bio-computational model of sensory-motor integration: the Sensory-Motor Integrative Loop for Enacting (SMILE). Aiming at direct therapeutic implementations and with the final target of implementing novel intervention protocols for motor rehabilitation, our main goal is to provide the information necessary for further validating the SMILE model. By translating neuroscientific hypotheses into empirical investigations and clinically relevant questions, the prediction based on the SMILE model can be further extended to other pathological conditions characterized by impaired sensory-motor integration. PMID:24999327

  9. Rate-based degradation modeling of lithium-ion cells

    SciTech Connect

    E.V. Thomas; I. Bloom; J.P. Christophersen; V.S. Battaglia

    2012-05-01

    Accelerated degradation testing is commonly used as the basis to characterize battery cell performance over a range of stress conditions (e.g., temperatures). Performance is measured by some response that is assumed to be related to the state of health of the cell (e.g., discharge resistance). Often, the ultimate goal of such testing is to predict cell life at some reference stress condition, where cell life is defined to be the point in time where performance has degraded to some critical level. These predictions are based on a degradation model that expresses the expected performance level versus the time and conditions under which a cell has been aged. Usually, the degradation model relates the accumulated degradation to the time at a constant stress level. The purpose of this article is to present an alternative framework for constructing a degradation model that focuses on the degradation rate rather than the accumulated degradation. One benefit of this alternative approach is that prediction of cell life is greatly facilitated in situations where the temperature exposure is not isothermal. This alternative modeling framework is illustrated via a family of rate-based models and experimental data acquired during calendar-life testing of high-power lithium-ion cells.

  10. An Examination of the Relationship between Motor Coordination and Executive Functions in Adolescents

    ERIC Educational Resources Information Center

    Rigoli, Daniela; Piek, Jan P.; Kane, Robert; Oosterlaan, Jaap

    2012-01-01

    Aim: Research suggests important links between motor coordination and executive functions. The current study examined whether motor coordination predicts working memory, inhibition, and switching performance, extending previous research by accounting for attention-deficit-hyperactivity disorder (ADHD) symptomatology and other confounding factors,…

  11. Evidence for Specificity of Motor Impairments in Catching and Balance in Children with Autism

    ERIC Educational Resources Information Center

    Ament, Katarina; Mejia, Amanda; Buhlman, Rebecca; Erklin, Shannon; Caffo, Brian; Mostofsky, Stewart; Wodka, Ericka

    2015-01-01

    To evaluate evidence for motor impairment specificity in autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). Children completed performance-based assessment of motor functioning (Movement Assessment Battery for Children: MABC-2). Logistic regression models were used to predict group membership. In the models…

  12. Drift Degradation Analysis

    SciTech Connect

    D. Kicker

    2004-09-16

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal stress. (3) The DRKBA

  13. 27. View, looking north, of motor house; the electric motor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. View, looking north, of motor house; the electric motor and electric-powered winch are housed in section of building to the left. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  14. Motor power control circuit for ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A motor power control of the type which functions by controlling the power factor wherein one of the parameters of power factor current on time is determined by the on time of a triac through which current is supplied to the motor. By means of a positive feedback circuit, a wider range of control is effected.

  15. Simplified procedures for correlation of experimentally measured and predicted thrust chamber performance

    NASA Technical Reports Server (NTRS)

    Powell, W. B.

    1973-01-01

    Thrust chamber performance is evaluated in terms of an analytical model incorporating all the loss processes that occur in a real rocket motor. The important loss processes in the real thrust chamber were identified, and a methodology and recommended procedure for predicting real thrust chamber vacuum specific impulse were developed. Simplified equations for the calculation of vacuum specific impulse are developed to relate the delivered performance (both vacuum specific impulse and characteristic velocity) to the ideal performance as degraded by the losses corresponding to a specified list of loss processes. These simplified equations enable the various performance loss components, and the corresponding efficiencies, to be quantified separately (except that interaction effects are arbitrarily assigned in the process). The loss and efficiency expressions presented can be used to evaluate experimentally measured thrust chamber performance, to direct development effort into the areas most likely to yield improvements in performance, and as a basis to predict performance of related thrust chamber configurations.

  16. 76 FR 12792 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... TRANSPORTATION National Highway Traffic Safety Administration Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General Motors Corporation AGENCY: National Highway Traffic.... SUMMARY: This document grants in full the petition of General Motors Corporation's (GM) petition for...

  17. Hydrolytic Degradation of Estane 5703

    SciTech Connect

    Wrobleski, D.A.; Smith, M.E.; Orler, E.B.

    1999-04-27

    Relative to the unaged Estane{reg_sign} 5703, heating decreases the modulus and ultimate stress for both the dry and humid samples. The sample aged in dry air, quickly recovered to its original mechanical properties. The reversibility of the mechanical properties is a result of the reorganization of the hard segments into domains. For the Estane 5703 samples aged in humid air, the mechanical properties only partially recovered with time. Molecular weight data confirm that differences in the extent of the recovery for the samples aged under humid environments are likely due to the hydrolytic scission of the polyester soft segments. Since the tensile moduli are similar for the samples aged in both the dry and humid environments, it is believed that the phase behavior of the hard domains dictate the mechanical properties at low extensions. However, at higher elongations, the mechanical properties are dominated by the soft segments. Both the influences of morphological changes and chemical changes induced by heating must be considered in multiphase polymers when accelerated aging is utilized to predict long term polymer properties. After accelerated aging experiments, the morphology must be allowed to recover to equilibrium conditions in order to assess the extent of degradation and aging. Also, the effect of different humidities on the rate of hydrolytic degradation are presented.

  18. Motor field sensitivity for preoperative localization of motor cortex

    PubMed Central

    Lin, Peter T.; Berger, Mitchel S.; Nagarajan, Srikantan S.

    2014-01-01

    Object In this study the role of magnetic source imaging for preoperative motor mapping was evaluated by using a single-dipole localization method to analyze motor field data in 41 patients. Methods Data from affected and unaffected hemispheres were collected in patients performing voluntary finger flexion movements. Somatosensory evoked field (SSEF) data were also obtained using tactile stimulation. Dipole localization using motor field (MF) data was successful in only 49% of patients, whereas localization with movement evoked field (MEF) data was successful in 66% of patients. When the spatial distribution of MF and MEF dipoles in relation to SSEF dipoles was analyzed, the motor dipoles were not spatially distinct from somatosensory dipoles. Conclusions The findings in this study suggest that single-dipole localization for the analysis of motor data is not sufficiently sensitive and is nonspecific, and thus not clinically useful. PMID:17044563

  19. Analytical Improvements in PV Degradation Rate Determination

    SciTech Connect

    Jordan, D. C.; Kurtz, S. R.

    2011-02-01

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

  20. Steam generator performance degradation

    SciTech Connect

    Lovett, J.T.; Dow, B.L. )

    1991-09-01

    A survey was conducted to determine the range and severity of steam generator performance degradation effects experienced by PWRs in the United States. The survey results were tabulated and correlated with steam generator age and design. Operating experience at several PWRs was examined in detail. The operating experience at US PWRs was compared to that of PWRs in Japan and Germany. Possible causes for the performance degradation were postulated and evaluated. The sensitivity of steam generator output pressure to changes in various parameters (such as fouling factor, average reactor coolant temperature, and percentage of steam generator tubes plugged) was calculated. These calculations were used in the evaluation of possible causes of steam generator performance degradation. Several deposit exfoliation scenarios were evaluated in terms of the calculated effect on fouling factor trends and associated steam generator output pressure trends. 15 refs., 32 figs., 7 tabs.