Sample records for motor development predicts

  1. Position of pelvis in the 3rd month of life predicts further motor development.

    PubMed

    Gajewska, Ewa; Sobieska, Magdalena; Moczko, Jerzy

    2018-06-01

    The aim of the study is to select elements of motor skills assessed at 3 months that provide the best predictive properties for motor development at 9 months. In all children a physiotherapeutic assessment of the quantitative and qualitative development at the age of 3 months was performed in the prone and supine positions, which was presented in previous papers as the quantitative and qualitative assessment sheet of motor development. The neurological examination at the age of 9 months was based on the Denver Development Screening Test II and the evaluation of reflexes, muscle tone (hypotony and hypertony), and symmetry. The particular elements of motor performance assessment were shown to have distinct predictive value for further motor development (as assessed at 9 months), and the pelvis position was the strongest predictive element. Irrespective of the symptomatic and anamnestic factors the inappropriate motor performance may already be detected in the 3rd month of life and is predictive for further motor development. The assessment of the motor performance should be performed in both supine and prone positions. The proper position of pelvis summarizes the proper positioning of the whole spine and ensures proper further motor development. To our knowledge, the presented motor development assessment sheet allows the earliest prediction of motor disturbances. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Predicting motor development in very preterm infants at 12 months' corrected age: the role of qualitative magnetic resonance imaging and general movements assessments.

    PubMed

    Spittle, Alicia J; Boyd, Roslyn N; Inder, Terrie E; Doyle, Lex W

    2009-02-01

    The objective of this study was to compare the predictive value of qualitative MRI of brain structure at term and general movements assessments at 1 and 3 months' corrected age for motor outcome at 1 year's corrected age in very preterm infants. Eighty-six very preterm infants (<30 weeks' gestation) underwent MRI at term-equivalent age, were evaluated for white matter abnormality, and had general movements assessed at 1 and 3 months' corrected age. Motor outcome at 1 year's corrected age was evaluated with the Alberta Infant Motor Scale, the Neuro-Sensory Motor Development Assessment, and the diagnosis of cerebral palsy by the child's pediatrician. At 1 year of age, the Alberta Infant Motor Scale categorized 30 (35%) infants as suspicious/abnormal; the Neuro-Sensory Motor Development Assessment categorized 16 (18%) infants with mild-to-severe motor dysfunction, and 5 (6%) infants were classified with cerebral palsy. White matter abnormality at term and general movements at 1 and 3 months significantly correlated with Alberta Infant Motor Scale and Neuro-Sensory Motor Development Assessment scores at 1 year. White matter abnormality and general movements at 3 months were the only assessments that correlated with cerebral palsy. All assessments had 100% sensitivity in predicting cerebral palsy. White matter abnormality demonstrated the greatest accuracy in predicting combined motor outcomes, with excellent levels of specificity (>90%); however, the sensitivity was low. On the other hand, general movements assessments at 1 month had the highest sensitivity (>80%); however, the overall accuracy was relatively low. Neuroimaging (MRI) and functional (general movements) examinations have important complementary roles in predicting motor development of very preterm infants.

  3. Motor system contribution to action prediction: Temporal accuracy depends on motor experience.

    PubMed

    Stapel, Janny C; Hunnius, Sabine; Meyer, Marlene; Bekkering, Harold

    2016-03-01

    Predicting others' actions is essential for well-coordinated social interactions. In two experiments including an infant population, this study addresses to what extent motor experience of an observer determines prediction accuracy for others' actions. Results show that infants who were proficient crawlers but inexperienced walkers predicted crawling more accurately than walking, whereas age groups mastering both skills (i.e. toddlers and adults) were equally accurate in predicting walking and crawling. Regardless of experience, human movements were predicted more accurately by all age groups than non-human movement control stimuli. This suggests that for predictions to be accurate, the observed act needs to be established in the motor repertoire of the observer. Through the acquisition of new motor skills, we also become better at predicting others' actions. The findings thus stress the relevance of motor experience for social-cognitive development. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Infant and Toddler Oral- and Manual-Motor Skills Predict Later Speech Fluency in Autism

    ERIC Educational Resources Information Center

    Gernsbacher, Morton Ann; Sauer, Eve A.; Geye, Heather M.; Schweigert, Emily K.; Goldsmith, H. Hill

    2008-01-01

    Background: Spoken and gestural communication proficiency varies greatly among autistic individuals. Three studies examined the role of oral- and manual-motor skill in predicting autistic children's speech development. Methods: Study 1 investigated whether infant and toddler oral- and manual-motor skills predict middle childhood and teenage speech…

  5. Assessment of gross motor skills of at-risk infants: predictive validity of the Alberta Infant Motor Scale.

    PubMed

    Darrah, J; Piper, M; Watt, M J

    1998-07-01

    The Alberta Infant Motor Scale (AIMS) is a norm-referenced measure of infant gross motor development. The objectives of this study were: (1) to establish the best cut-off scores on the AIMS for predictive purposes, and (2) to compare the predictive abilities of the AIMS with those of the Movement Assessment of Infants (MAI) and the Peabody Developmental Gross Motor Scale (PDGMS). One hundred and sixty-four infants were assessed at 4 and 8 months adjusted ages on the three measures. A pediatrician assessed each infant's gross motor development at 18 months as normal, suspicious, or abnormal. For the AIMS, two different cut-off points were identified: the 10th centile at 4 months and the 5th centile at 8 months. The MAI provided the best specificity rates at 4 months while the AIMS was superior in specificity at 8 months. Sensitivity rates were comparable between the two tests. The PDGMS in general demonstrated poor predictive abilities.

  6. Motor Testing at 1 Year Improves the Prediction of Motor and Mental Outcome at 2 Years after Perinatal Hypoxic-Ischaemic Encephalopathy

    ERIC Educational Resources Information Center

    van Schie, Petra Em; Becher, Jules G.; Dallmeijer, Annet J.; Barkhof, Frederik; van Weissenbruch, Mirjam M.; Vermeulen, R. Jeroen

    2010-01-01

    Aim: To investigate the predictive value of motor testing at 1 year for motor and mental outcome at 2 years after perinatal hypoxic-ischaemic encephalopathy (HIE) in term neonates. Method: Motor and mental outcome at 2 years was assessed with the Bayley Scales of Infant Development, 2nd edition (BSID-II) in 32 surviving children (20 males, 12…

  7. Bayley-III motor scale and neurological examination at 2 years do not predict motor skills at 4.5 years.

    PubMed

    Burakevych, Nataliia; Mckinlay, Christopher Joel Dorman; Alsweiler, Jane Marie; Wouldes, Trecia Ann; Harding, Jane Elizabeth

    2017-02-01

    To determine whether Bayley Scales of Infant and Toddler Development (3rd edition) (Bayley-III) motor scores and neurological examination at 2 years corrected age predict motor difficulties at 4.5 years corrected age. A prospective cohort study of children born at risk of neonatal hypoglycaemia in Waikato Hospital, Hamilton, New Zealand. Assessment at 2 years was performed using the Bayley-III motor scale and neurological examination, and at 4.5 years using the Movement Assessment Battery for Children (2nd edition) (MABC-2). Of 333 children, 8 (2%) had Bayley-III motor scores below 85, and 50 (15%) had minor deficits on neurological assessment at 2 years; 89 (27%) scored less than or equal to the 15th centile, and 54 (16%) less than or equal to the 5th centile on MABC-2 at 4.5 years. Motor score, fine and gross motor subtest scores, and neurological assessments at 2 years were poorly predictive of motor difficulties at 4.5 years, explaining 0 to 7% of variance in MABC-2 scores. A Bayley-III motor score below 85 predicted MABC-2 scores less than or equal to the 15th centile with a positive predictive value of 30% and a negative predictive value of 74% (7% sensitivity and 94% specificity). Bayley-III motor scale and neurological examination at 2 years were poorly predictive of motor difficulties at 4.5 years. © 2016 Mac Keith Press.

  8. Bayley-III motor scale and neurological examination at 2 years do not predict motor skills at 4.5 years

    PubMed Central

    Burakevych, Nataliia; Mckinlay, Christopher Joel Dorman; Alsweiler, Jane Marie; Wouldes, Trecia An; Harding, Jane Elizabeth

    2016-01-01

    Aim To determine whether Bayley Scales of Infant and Toddler Development (3rd edition) (Bayley-III) motor scores and neurological examination at 2 years' corrected age predict motor difficulties at 4.5 years' corrected age. Method A prospective cohort study of children born at risk of neonatal hypoglycaemia in Waikato Hospital, Hamilton, New Zealand. Assessment at 2 years was performed using the Bayley-III motor scale and neurological examination, and at 4.5 years using the Movement Assessment Battery for Children (2nd edition) (MABC-2). Results Of 333 children, 8 (2%) had Bayley-III motor scores below 85, and 50 (15%) had minor deficits on neurological assessment at 2 years; 89 (27%) scored less than or equal to the 15th centile, and 54 (16%) less than or equal to the 5th centile on MABC-2 at 4.5 years. Motor score, fine and gross motor subtest scores, and neurological assessments at 2 years were poorly predictive of motor difficulties at 4.5 years, explaining 0 to 7% of variance in MABC-2 scores. A Bayley-III motor score below 85 predicted MABC-2 scores less than or equal to the 15th centile with a positive predictive value of 30% and a negative predictive value of 74% (7% sensitivity and 94% specificity). Interpretation Bayley-III motor scale and neurological examination at 2 years were poorly predictive of motor difficulties at 4.5 years. PMID:27543144

  9. Motor Skill Competence and Perceived Motor Competence: Which Best Predicts Physical Activity among Girls?

    PubMed

    Khodaverdi, Zeinab; Bahram, Abbas; Khalaji, Hassan; Kazemnejad, Anoshirvan

    2013-10-01

    The main purpose of this study was to determine which correlate, perceived motor competence or motor skill competence, best predicts girls' physical activity behavior. A sample of 352 girls (mean age=8.7, SD=0.3 yr) participated in this study. To assess motor skill competence and perceived motor competence, each child completed the Test of Gross Motor Development-2 and Physical Ability sub-scale of Marsh's Self-Description Questionnaire. Children's physical activity was assessed by the Physical Activity Questionnaire for Older Children. Multiple linear regression model was used to determine whether perceived motor competence or motor skill competence best predicts moderate-to-vigorous self-report physical activity. Multiple regression analysis indicated that motor skill competence and perceived motor competence predicted 21% variance in physical activity (R(2)=0.21, F=48.9, P=0.001), and motor skill competence (R(2)=0.15, ᵝ=0.33, P= 0.001) resulted in more variance than perceived motor competence (R(2)=0.06, ᵝ=0.25, P=0.001) in physical activity. Results revealed motor skill competence had more influence in comparison with perceived motor competence on physical activity level. We suggest interventional programs based on motor skill competence and perceived motor competence should be administered or implemented to promote physical activity in young girls.

  10. Fine Motor Skills Predict Maths Ability Better than They Predict Reading Ability in the Early Primary School Years

    PubMed Central

    Pitchford, Nicola J.; Papini, Chiara; Outhwaite, Laura A.; Gulliford, Anthea

    2016-01-01

    Fine motor skills have long been recognized as an important foundation for development in other domains. However, more precise insights into the role of fine motor skills, and their relationships to other skills in mediating early educational achievements, are needed to support the development of optimal educational interventions. We explored concurrent relationships between two components of fine motor skills, Fine Motor Precision and Fine Motor Integration, and early reading and maths development in two studies with primary school children of low-to-mid socio-economic status in the UK. Two key findings were revealed. First, despite being in the first 2 years of primary school education, significantly better performance was found in reading compared to maths across both studies. This may reflect the protective effects of recent national-level interventions to promote early literacy skills in young children in the UK that have not been similarly promoted for maths. Second, fine motor skills were a better predictor of early maths ability than they were of early reading ability. Hierarchical multiple regression revealed that fine motor skills did not significantly predict reading ability when verbal short-term memory was taken into account. In contrast, Fine Motor Integration remained a significant predictor of maths ability, even after the influence of non-verbal IQ had been accounted for. These results suggest that fine motor skills should have a pivotal role in educational interventions designed to support the development of early mathematical skills. PMID:27303342

  11. Fine Motor Skills Predict Maths Ability Better than They Predict Reading Ability in the Early Primary School Years.

    PubMed

    Pitchford, Nicola J; Papini, Chiara; Outhwaite, Laura A; Gulliford, Anthea

    2016-01-01

    Fine motor skills have long been recognized as an important foundation for development in other domains. However, more precise insights into the role of fine motor skills, and their relationships to other skills in mediating early educational achievements, are needed to support the development of optimal educational interventions. We explored concurrent relationships between two components of fine motor skills, Fine Motor Precision and Fine Motor Integration, and early reading and maths development in two studies with primary school children of low-to-mid socio-economic status in the UK. Two key findings were revealed. First, despite being in the first 2 years of primary school education, significantly better performance was found in reading compared to maths across both studies. This may reflect the protective effects of recent national-level interventions to promote early literacy skills in young children in the UK that have not been similarly promoted for maths. Second, fine motor skills were a better predictor of early maths ability than they were of early reading ability. Hierarchical multiple regression revealed that fine motor skills did not significantly predict reading ability when verbal short-term memory was taken into account. In contrast, Fine Motor Integration remained a significant predictor of maths ability, even after the influence of non-verbal IQ had been accounted for. These results suggest that fine motor skills should have a pivotal role in educational interventions designed to support the development of early mathematical skills.

  12. Prediction of movement intention using connectivity within motor-related network: An electrocorticography study.

    PubMed

    Kang, Byeong Keun; Kim, June Sic; Ryun, Seokyun; Chung, Chun Kee

    2018-01-01

    Most brain-machine interface (BMI) studies have focused only on the active state of which a BMI user performs specific movement tasks. Therefore, models developed for predicting movements were optimized only for the active state. The models may not be suitable in the idle state during resting. This potential maladaptation could lead to a sudden accident or unintended movement resulting from prediction error. Prediction of movement intention is important to develop a more efficient and reasonable BMI system which could be selectively operated depending on the user's intention. Physical movement is performed through the serial change of brain states: idle, planning, execution, and recovery. The motor networks in the primary motor cortex and the dorsolateral prefrontal cortex are involved in these movement states. Neuronal communication differs between the states. Therefore, connectivity may change depending on the states. In this study, we investigated the temporal dynamics of connectivity in dorsolateral prefrontal cortex and primary motor cortex to predict movement intention. Movement intention was successfully predicted by connectivity dynamics which may reflect changes in movement states. Furthermore, dorsolateral prefrontal cortex is crucial in predicting movement intention to which primary motor cortex contributes. These results suggest that brain connectivity is an excellent approach in predicting movement intention.

  13. Can Perceptuo-Motor Skills Assessment Outcomes in Young Table Tennis Players (7-11 years) Predict Future Competition Participation and Performance? An Observational Prospective Study.

    PubMed

    Faber, Irene R; Elferink-Gemser, Marije T; Faber, Niels R; Oosterveld, Frits G J; Nijhuis-Van der Sanden, Maria W G

    2016-01-01

    Forecasting future performance in youth table tennis players based on current performance is complex due to, among other things, differences between youth players in growth, development, maturity, context and table tennis experience. Talent development programmes might benefit from an assessment of underlying perceptuo-motor skills for table tennis, which is hypothesized to determine the players' potential concerning the perceptuo-motor domain. The Dutch perceptuo-motor skills assessment intends to measure the perceptuo-motor potential for table tennis in youth players by assessing the underlying skills crucial for developing technical and tactical qualities. Untrained perceptuo-motor tasks are used as these are suggested to represent a player's future potential better than specific sport skills themselves as the latter depend on exposure to the sport itself. This study evaluated the value of the perceptuo-motor skills assessment for a talent developmental programme by evaluating its predictive validity for competition participation and performance in 48 young table tennis players (7-11 years). Players were tested on their perceptuo-motor skills once during a regional talent day, and the subsequent competition results were recorded half-yearly over a period of 2.5 years. Logistic regression analysis showed that test scores did not predict future competition participation (p >0.05). Yet, the Generalized Estimating Equations analysis, including the test items 'aiming at target', 'throwing a ball', and 'eye-hand coordination' in the best fitting model, revealed that the outcomes of the perceptuo-motor skills assessment were significant predictors for future competition results (R2 = 51%). Since the test age influences the perceptuo-motor skills assessment's outcome, another multivariable model was proposed including test age as a covariate (R2 = 53%). This evaluation demonstrates promising prospects for the perceptuo-motor skills assessment to be included in a talent development programme. Future studies are needed to clarify the predictive value in a larger sample of youth competition players over a longer period in time.

  14. Motor Skill Competence and Perceived Motor Competence: Which Best Predicts Physical Activity among Girls?

    PubMed Central

    Khodaverdi, Zeinab; Bahram, Abbas; Khalaji, Hassan; Kazemnejad, Anoshirvan

    2013-01-01

    Abstract Background The main purpose of this study was to determine which correlate, perceived motor competence or motor skill competence, best predicts girls’ physical activity behavior. Methods A sample of 352 girls (mean age=8.7, SD=0.3 yr) participated in this study. To assess motor skill competence and perceived motor competence, each child completed the Test of Gross Motor Development-2 and Physical Ability sub-scale of Marsh’s Self-Description Questionnaire. Children’s physical activity was assessed by the Physical Activity Questionnaire for Older Children. Multiple linear regression model was used to determine whether perceived motor competence or motor skill competence best predicts moderate-to-vigorous self-report physical activity. Results Multiple regression analysis indicated that motor skill competence and perceived motor competence predicted 21% variance in physical activity (R2=0.21, F=48.9, P=0.001), and motor skill competence (R2=0.15, ᵝ=0.33, P= 0.001) resulted in more variance than perceived motor competence (R2=0.06, ᵝ=0.25, P=0.001) in physical activity. Conclusion Results revealed motor skill competence had more influence in comparison with perceived motor competence on physical activity level. We suggest interventional programs based on motor skill competence and perceived motor competence should be administered or implemented to promote physical activity in young girls. PMID:26060623

  15. Prediction of gross motor development and independent walking in infants born very preterm using the Test of Infant Motor Performance and the Alberta Infant Motor Scale.

    PubMed

    Nuysink, Jacqueline; van Haastert, Ingrid C; Eijsermans, Maria J C; Koopman-Esseboom, Corine; Helders, Paul J M; de Vries, Linda S; van der Net, Janjaap

    2013-09-01

    One objective of a neonatal follow-up program is to examine and predict gross motor outcome of infants born preterm. To assess the concurrent validity of the Test of Infant Motor Performance (TIMP) and the Alberta Infant Motor Scale (AIMS), the ability to predict gross motor outcome around 15 months corrected age (CA), and to explore factors associated with the age of independent walking. 95 infants, born at a gestational age <30 weeks, were assessed around 3, 6 and 15 months CA. At 3 months CA, correlations of raw-scores, Z-scores, and diagnostic agreement between TIMP and AIMS were determined. AIMS-score at 15 months CA and parental-reported walking age were outcome measures for regression analyses. The correlation between TIMP and AIMS raw-scores was 0.82, and between Z-scores 0.71. A cut-off Z-score of -1.0 on the TIMP had 92% diagnostic agreement (κ = 0.67) with an AIMS-score < P10. Neither TIMP- nor AIMS-scores at 3 months CA were associated with the gross motor outcome at 15 months CA. The AIMS-scores at 6 months CA predicted the AIMS-scores at 15 months CA with an explained variance of 19%. Median walking age was 15.7 months CA, with which only the hazard ratio of the AIMS at 6 months CA and ethnicity were significantly associated. Prediction of gross motor development at 15 months CA and independent walking was not possible prior to 6 months CA using the AIMS, with restricted predictive value. Cultural and infant factors seem to influence the onset of independent walking. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Motor Development and Physical Activity: A Longitudinal Discordant Twin-Pair Study.

    PubMed

    Aaltonen, Sari; Latvala, Antti; Rose, Richard J; Pulkkinen, Lea; Kujala, Urho M; Kaprio, Jaakko; Silventoinen, Karri

    2015-10-01

    Previous longitudinal research suggests that motor proficiency in early life predicts physical activity in adulthood. Familial effects including genetic and environmental factors could explain the association, but no long-term follow-up studies have taken into account potential confounding by genetic and social family background. The present twin study investigated whether childhood motor skill development is associated with leisure-time physical activity levels in adulthood independent of family background. Altogether, 1550 twin pairs from the FinnTwin12 study and 1752 twin pairs from the FinnTwin16 study were included in the analysis. Childhood motor development was assessed by the parents' report of whether one of the co-twins had been ahead of the other in different indicators of motor skill development in childhood. Leisure-time physical activity (MET·h·d) was self-reported by the twins in young adulthood and adulthood. Statistical analyses included conditional and ordinary linear regression models within twin pairs. Using all activity-discordant twin pairs, the within-pair difference in a sum score of motor development in childhood predicted the within-pair difference in the leisure-time physical activity level in young adulthood (P < 0.001). Within specific motor development indicators, learning to stand unaided earlier in infancy predicted higher leisure-time MET values in young adulthood statistically significantly in both samples (FinnTwin12, P = 0.02; and FinnTwin16, P = 0.001) and also in the pooled data set of the FinnTwin12 and FinnTwin16 studies (P < 0.001). Having been more agile than the co-twin as a child predicted higher leisure-time MET values up to adulthood (P = 0.03). More advanced childhood motor development is associated with higher leisure-time MET values in young adulthood at least partly independent of family background in both men and women.

  17. MOTOR DEVELOPMENT AND PHYSICAL ACTIVITY: A LONGITUDINAL DISCORDANT TWIN-PAIR STUDY

    PubMed Central

    Aaltonen, Sari; Latvala, Antti; Rose, Richard J.; Pulkkinen, Lea; Kujala, Urho M.; Kaprio, Jaakko; Silventoinen, Karri

    2015-01-01

    Introduction Previous longitudinal research suggests that motor proficiency in early life predicts physical activity in adulthood. Familial effects including genetic and environmental factors could explain the association, but no long-term follow-up studies have taken into account potential confounding by genetic and social family background. The present twin study investigated whether childhood motor skill development is associated with leisure-time physical activity levels in adulthood independent of family background. Methods Altogether, 1 550 twin pairs from the FinnTwin12 study and 1 752 twin pairs from the FinnTwin16 study were included in the analysis. Childhood motor development was assessed by the parents’ report of whether one of the co-twins had been ahead of the other in different indicators of motor skill development in childhood. Leisure-time physical activity (MET hours/day) was self-reported by the twins in young adulthood and adulthood. Statistical analyses included conditional and ordinary linear regression models within twin pairs. Results Using all activity-discordant twin pairs, the within-pair difference in a sum score of motor development in childhood predicted the within-pair difference in the leisure-time physical activity level in young adulthood (p<0.001). Within specific motor development indicators, learning to stand unaided earlier in infancy predicted higher leisure-time MET values in young adulthood statistically significantly in both samples (FinnTwin12 p=0.02, FinnTwin16 p=0.001) and also in the pooled dataset of the FinnTwin12 and FinnTwin16 studies (p<0.001). Having been more agile than the co-twin as a child predicted higher leisure-time MET values up to adulthood (p=0.03). Conclusions More advanced childhood motor development is associated with higher leisure-time MET values in young adulthood at least partly independent of family background, in both men and women. PMID:26378945

  18. Early gross motor skills predict the subsequent development of language in children with autism spectrum disorder

    PubMed Central

    Pickles, Andrew; Lord, Catherine

    2015-01-01

    Background: Motor milestones such as the onset of walking are important developmental markers, not only for later motor skills but also for more widespread social‐cognitive development. The aim of the current study was to test whether gross motor abilities, specifically the onset of walking, predicted the subsequent rate of language development in a large cohort of children with autism spectrum disorder (ASD). Methods: We ran growth curve models for expressive and receptive language measured at 2, 3, 5 and 9 years in 209 autistic children. Measures of gross motor, visual reception and autism symptoms were collected at the 2 year visit. In Model 1, walking onset was included as a predictor of the slope of language development. Model 2 included a measure of non‐verbal IQ and autism symptom severity as covariates. The final model, Model 3, additionally covaried for gross motor ability. Results: In the first model, parent‐reported age of walking onset significantly predicted the subsequent rate of language development although the relationship became non‐significant when gross motor skill, non‐verbal ability and autism severity scores were included (Models 2 & 3). Gross motor score, however, did remain a significant predictor of both expressive and receptive language development. Conclusions: Taken together, the model results provide some evidence that early motor abilities in young children with ASD can have longitudinal cross‐domain influences, potentially contributing, in part, to the linguistic difficulties that characterise ASD. Autism Res 2016, 9: 993–1001. © 2015 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research PMID:26692550

  19. Early gross motor skills predict the subsequent development of language in children with autism spectrum disorder.

    PubMed

    Bedford, Rachael; Pickles, Andrew; Lord, Catherine

    2016-09-01

    Motor milestones such as the onset of walking are important developmental markers, not only for later motor skills but also for more widespread social-cognitive development. The aim of the current study was to test whether gross motor abilities, specifically the onset of walking, predicted the subsequent rate of language development in a large cohort of children with autism spectrum disorder (ASD). We ran growth curve models for expressive and receptive language measured at 2, 3, 5 and 9 years in 209 autistic children. Measures of gross motor, visual reception and autism symptoms were collected at the 2 year visit. In Model 1, walking onset was included as a predictor of the slope of language development. Model 2 included a measure of non-verbal IQ and autism symptom severity as covariates. The final model, Model 3, additionally covaried for gross motor ability. In the first model, parent-reported age of walking onset significantly predicted the subsequent rate of language development although the relationship became non-significant when gross motor skill, non-verbal ability and autism severity scores were included (Models 2 & 3). Gross motor score, however, did remain a significant predictor of both expressive and receptive language development. Taken together, the model results provide some evidence that early motor abilities in young children with ASD can have longitudinal cross-domain influences, potentially contributing, in part, to the linguistic difficulties that characterise ASD. Autism Res 2016, 9: 993-1001. © 2015 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research. © 2015 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research.

  20. INTEGRATED DEVELOPMENT, MOTOR APTITUDE AND INTELLECTUAL PERFORMANCE.

    ERIC Educational Resources Information Center

    GRUBER, J.J.; ISMAIL, A.H.

    THE RELATIONSHIP OF MOVEMENT RESPONSES TO LEARNING ACHIEVEMENT WERE INVESTIGATED (1) TO IDENTIFY FACTORS CLAIMED TO MEASURE MOTOR APTITUDE AND INTELLECTUAL ACHIEVEMENT IN PRE-ADOLESCENTS, (2) TO DEVELOP MOTOR APTITUDE TEST BATTERIES FOR PREDICTING INTELLECTUAL ACHIEVEMENT, (3) TO STUDY RELATIONSHIPS OF COORDINATION AND BALANCE TEST ITEMS IN…

  1. Development and Validation of a Computational Model for Predicting the Behavior of Plumes from Large Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Wells, Jason E.; Black, David L.; Taylor, Casey L.

    2013-01-01

    Exhaust plumes from large solid rocket motors fired at ATK's Promontory test site carry particulates to high altitudes and typically produce deposits that fall on regions downwind of the test area. As populations and communities near the test facility grow, ATK has become increasingly concerned about the impact of motor testing on those surrounding communities. To assess the potential impact of motor testing on the community and to identify feasible mitigation strategies, it is essential to have a tool capable of predicting plume behavior downrange of the test stand. A software package, called PlumeTracker, has been developed and validated at ATK for this purpose. The code is a point model that offers a time-dependent, physics-based description of plume transport and precipitation. The code can utilize either measured or forecasted weather data to generate plume predictions. Next-Generation Radar (NEXRAD) data and field observations from twenty-three historical motor test fires at Promontory were collected to test the predictive capability of PlumeTracker. Model predictions for plume trajectories and deposition fields were found to correlate well with the collected dataset.

  2. Impact of maternal depressive symptoms and infant temperament on early infant growth and motor development: results from a population based study in Bangladesh.

    PubMed

    Nasreen, Hashima-E; Kabir, Zarina Nahar; Forsell, Yvonne; Edhborg, Maigun

    2013-04-05

    Evidence linking maternal depressive symptoms with infant's growth and development in low-income countries is inadequate and conflicting. This study investigated the independent effect of maternal perinatal depressive symptoms on infant's growth and motor development in rural Bangladesh. A cohort of 720 pregnant women was followed from the third trimester of pregnancy to 6-8 months postpartum. For growth and developmental outcomes, 652 infants at 2-3 months and 6-8 months were assessed. Explanatory variables comprised maternal depressive symptoms, socioeconomic status, and infant's health and temperament. Outcome measures included infant's underweight, stunting and motor development. Multiple linear regression analyses identified predictors of infant growth and development. Maternal postpartum depressive symptoms independently predicted infant's underweight and impaired motor development, and antepartum depressive symptoms predicted infant's stunting. Infant's unadaptable temperament was inversely associated with infant's weight-for-age and motor development, and fussy and unpredictable temperament with height-for-age and motor development. Repeated measures design might threaten the internal validity of the results 8.3% of the participant does not participate in the measurements at different times. As the study was conducted in two sub-districts of rural Bangladesh, it does not represent the urban scenario and cannot be generalized even for other rural areas of the country. This study provides evidence that maternal ante- and postpartum depressive symptoms predict infant's growth and motor development in rural Bangladesh. It is recommended to integrate psychosocial components in maternal and child health interventions in order to counsel mothers with depressive symptoms. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Can Perceptuo-Motor Skills Assessment Outcomes in Young Table Tennis Players (7–11 years) Predict Future Competition Participation and Performance? An Observational Prospective Study

    PubMed Central

    2016-01-01

    Forecasting future performance in youth table tennis players based on current performance is complex due to, among other things, differences between youth players in growth, development, maturity, context and table tennis experience. Talent development programmes might benefit from an assessment of underlying perceptuo-motor skills for table tennis, which is hypothesized to determine the players’ potential concerning the perceptuo-motor domain. The Dutch perceptuo-motor skills assessment intends to measure the perceptuo-motor potential for table tennis in youth players by assessing the underlying skills crucial for developing technical and tactical qualities. Untrained perceptuo-motor tasks are used as these are suggested to represent a player’s future potential better than specific sport skills themselves as the latter depend on exposure to the sport itself. This study evaluated the value of the perceptuo-motor skills assessment for a talent developmental programme by evaluating its predictive validity for competition participation and performance in 48 young table tennis players (7–11 years). Players were tested on their perceptuo-motor skills once during a regional talent day, and the subsequent competition results were recorded half-yearly over a period of 2.5 years. Logistic regression analysis showed that test scores did not predict future competition participation (p >0.05). Yet, the Generalized Estimating Equations analysis, including the test items ‘aiming at target’, ‘throwing a ball’, and ‘eye-hand coordination’ in the best fitting model, revealed that the outcomes of the perceptuo-motor skills assessment were significant predictors for future competition results (R2 = 51%). Since the test age influences the perceptuo-motor skills assessment’s outcome, another multivariable model was proposed including test age as a covariate (R2 = 53%). This evaluation demonstrates promising prospects for the perceptuo-motor skills assessment to be included in a talent development programme. Future studies are needed to clarify the predictive value in a larger sample of youth competition players over a longer period in time. PMID:26863212

  4. Development of the Affordances in the Home Environment for Motor Development-Infant Scale.

    PubMed

    Caçola, Priscila; Gabbard, Carl; Santos, Denise C C; Batistela, Ana Carolina T

    2011-12-01

    The present study reports the development and application of the Affordances in the Home Environment for Motor Development-Infant Scale (AHEMD-IS), a parental self-report designed to assess the quantity and quality of affordances in the home environment that are conducive to motor development for infants aged 3-18 months. Steps in its development included use of expert feedback, establishment of construct validity, interrater and intrarater reliability, and predictive validity. With all phases of the project, 113 homes were involved. Intraclass correlation coefficients for interrater and intrarater reliability for the total score were 1 and 0.94, respectively. In addition, results indicate that the test has the characteristic of differentiating a wide range of scores. Regression analysis for the AHEMD-IS and motor development using the Alberta Infant Motor Scale supports preliminary evidence for predictive validity. Our findings suggest that the AHEMD-IS has sufficient reliability and validity as an instrument for assessing affordances in the home environment, with clinical and research applications. © 2011 The Authors. Pediatrics International © 2011 Japan Pediatric Society.

  5. Young Zanzibari children with iron deficiency, iron deficiency anemia, stunting, or malaria have lower motor activity scores and spend less time in locomotion.

    PubMed

    Olney, Deanna K; Pollitt, Ernesto; Kariger, Patricia K; Khalfan, Sabra S; Ali, Nadra S; Tielsch, James M; Sazawal, Sunil; Black, Robert; Mast, Darrell; Allen, Lindsay H; Stoltzfus, Rebecca J

    2007-12-01

    Motor activity improves cognitive and social-emotional development through a child's exploration of his or her physical and social environment. This study assessed anemia, iron deficiency, hemoglobin (Hb), length-for-age Z-score (LAZ), and malaria infection as predictors of motor activity in 771 children aged 5-19 mo. Trained observers conducted 2- to 4-h observations of children's motor activity in and around their homes. Binary logistic regression assessed the predictors of any locomotion. Children who did not locomote during the observation (nonmovers) were excluded from further analyses. Linear regression evaluated the predictors of total motor activity (TMA) and time spent in locomotion for all children who locomoted during the observation combined (movers) and then separately for crawlers and walkers. Iron deficiency (77.0%), anemia (58.9%), malaria infection (33.9%), and stunting (34.6%) were prevalent. Iron deficiency with and without anemia, Hb, LAZ, and malaria infection significantly predicted TMA and locomotion in all movers. Malaria infection significantly predicted less TMA and locomotion in crawlers. In walkers, iron deficiency anemia predicted less activity and locomotion, whereas higher Hb and LAZ significantly predicted more activity and locomotion, even after controlling for attained milestone. Improvements in iron status and growth and prevention or effective treatment of malaria may improve children's motor, cognitive, and social-emotional development either directly or through improvements in motor activity. However, the relative importance of these factors is dependent on motor development, with malaria being important for the younger, less developmentally advanced children and Hb and LAZ becoming important as children begin to attain walking skills.

  6. Accuracy of Two Motor Assessments during the First Year of Life in Preterm Infants for Predicting Motor Outcome at Preschool Age.

    PubMed

    Spittle, Alicia J; Lee, Katherine J; Spencer-Smith, Megan; Lorefice, Lucy E; Anderson, Peter J; Doyle, Lex W

    2015-01-01

    The primary aim of this study was to investigate the accuracy of the Alberta Infant Motor Scale (AIMS) and Neuro-Sensory Motor Developmental Assessment (NSMDA) over the first year of life for predicting motor impairment at 4 years in preterm children. The secondary aims were to assess the predictive value of serial assessments over the first year and when using a combination of these two assessment tools in follow-up. Children born <30 weeks' gestation were prospectively recruited and assessed at 4, 8 and 12 months' corrected age using the AIMS and NSMDA. At 4 years' corrected age children were assessed for cerebral palsy (CP) and motor impairment using the Movement Assessment Battery for Children 2nd-edition (MABC-2). We calculated accuracy of the AIMS and NSMDA for predicting CP and MABC-2 scores ≤15th (at-risk of motor difficulty) and ≤5th centile (significant motor difficulty) for each test (AIMS and NSMDA) at 4, 8 and 12 months, for delay on one, two or all three of the time points over the first year, and finally for delay on both tests at each time point. Accuracy for predicting motor impairment was good for each test at each age, although false positives were common. Motor impairment on the MABC-2 (scores ≤5th and ≤15th) was most accurately predicted by the AIMS at 4 months, whereas CP was most accurately predicted by the NSMDA at 12 months. In regards to serial assessments, the likelihood ratio for motor impairment increased with the number of delayed assessments. When combining both the NSMDA and AIMS the best accuracy was achieved at 4 months, although results were similar at 8 and 12 months. Motor development during the first year of life in preterm infants assessed with the AIMS and NSMDA is predictive of later motor impairment at preschool age. However, false positives are common and therefore it is beneficial to follow-up children at high risk of motor impairment at more than one time point, or to use a combination of assessment tools. ACTR.org.au ACTRN12606000252516.

  7. The role of early fine and gross motor development on later motor and cognitive ability.

    PubMed

    Piek, Jan P; Dawson, Lisa; Smith, Leigh M; Gasson, Natalie

    2008-10-01

    The aim of this study was to determine whether information obtained from measures of motor performance taken from birth to 4 years of age predicted motor and cognitive performance of children once they reached school age. Participants included 33 children aged from 6 years to 11 years and 6 months who had been assessed at ages 4 months to 4 years using the ages and stages questionnaires (ASQ: [Squires, J. K., Potter, L., & Bricker, D. (1995). The ages and stages questionnaire users guide. Baltimore: Brookes]). These scores were used to obtain trajectory information consisting of the age of asymptote, maximum or minimum score, and the variance of ASQ scores. At school age, both motor and cognitive ability were assessed using the McCarron Assessment of Neuromuscular Development (MAND: [McCarron, L. (1997). McCarron assessment of neuromuscular development: Fine and gross motor abilities (revised ed.). Dallas, TX: Common Market Press.]), and the Wechsler Intelligence Scale for Children-Version IV (WISC-IV: [Wechsler, D. (2004). WISC-IV integrated technical and interpretive manual. San Antonio, Texas: Harcourt Assessment]). In contrast to previous research, results demonstrated that, although socio-economic status (SES) predicted fine motor performance and three of four cognitive domains at school age, gestational age was not a significant predictor of later development. This may have been due to the low-risk nature of the sample. After controlling for SES, fine motor trajectory information did not account for a significant proportion of the variance in school aged fine motor performance or cognitive performance. The ASQ gross motor trajectory set of predictors accounted for a significant proportion of the variance for cognitive performance once SES was controlled for. Further analysis showed a significant predictive relationship for gross motor trajectory information and the subtests of working memory and processing speed. These results provide evidence for detecting children at risk of developmental delays or disorders with a parent report questionnaire prior to school age. The findings also add to recent investigations into the relationship between early motor development and later cognitive function, and support the need for ongoing research into a potential etiological relationship.

  8. Prediction of recovery of motor function after stroke.

    PubMed

    Stinear, Cathy

    2010-12-01

    Stroke is a leading cause of disability. The ability to live independently after stroke depends largely on the reduction of motor impairment and the recovery of motor function. Accurate prediction of motor recovery assists rehabilitation planning and supports realistic goal setting by clinicians and patients. Initial impairment is negatively related to degree of recovery, but inter-individual variability makes accurate prediction difficult. Neuroimaging and neurophysiological assessments can be used to measure the extent of stroke damage to the motor system and predict subsequent recovery of function, but these techniques are not yet used routinely. The use of motor impairment scores and neuroimaging has been refined by two recent studies in which these investigations were used at multiple time points early after stroke. Voluntary finger extension and shoulder abduction within 5 days of stroke predicted subsequent recovery of upper-limb function. Diffusion-weighted imaging within 7 days detected the effects of stroke on caudal motor pathways and was predictive of lasting motor impairment. Thus, investigations done soon after stroke had good prognostic value. The potential prognostic value of cortical activation and neural plasticity has been explored for the first time by two recent studies. Functional MRI detected a pattern of cortical activation at the acute stage that was related to subsequent reduction in motor impairment. Transcranial magnetic stimulation enabled measurement of neural plasticity in the primary motor cortex, which was related to subsequent disability. These studies open interesting new lines of enquiry. WHERE NEXT?: The accuracy of prediction might be increased by taking into account the motor system's capacity for functional reorganisation in response to therapy, in addition to the extent of stroke-related damage. Improved prognostic accuracy could also be gained by combining simple tests of motor impairment with neuroimaging, genotyping, and neurophysiological assessment of neural plasticity. The development of algorithms to guide the sequential combinations of these assessments could also further increase accuracy, in addition to improving rehabilitation planning and outcomes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Acoustic Measurements of Small Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Kenny, R. Jeremy

    2010-01-01

    Rocket acoustic noise can induce loads and vibration on the vehicle as well as the surrounding structures. Models have been developed to predict these acoustic loads based on scaling existing solid rocket motor data. The NASA Marshall Space Flight Center acoustics team has measured several small solid rocket motors (thrust below 150,000 lbf) to anchor prediction models. This data will provide NASA the capability to predict the acoustic environments and consequent vibro-acoustic response of larger rockets (thrust above 1,000,000 lbf) such as those planned for the NASA Constellation program. This paper presents the methods used to measure acoustic data during the static firing of small solid rocket motors and the trends found in the data.

  10. SENSITIVITY ANALYSIS AND EVALUATION OF MICROFACPM: A MICROSCALE MOTOR VEHICLE EMISSION FACTOR MODEL FOR PARTICULATE MATTER EMISSIONS

    EPA Science Inventory

    A microscale emission factor model (MicroFacPM) for predicting real-time site-specific motor vehicle particulate matter emissions was presented in the companion paper entitled "Development of a Microscale Emission Factor Model for Particulate Matter (MicroFacPM) for Predicting Re...

  11. The EXCITE Trial: Predicting a Clinically Meaningful Motor Activity Log Outcome

    PubMed Central

    Park, Si-Woon; Wolf, Steven L.; Blanton, Sarah; Winstein, Carolee; Nichols-Larsen, Deborah S.

    2013-01-01

    Background and Objective This study determined which baseline clinical measurements best predicted a predefined clinically meaningful outcome on the Motor Activity Log (MAL) and developed a predictive multivariate model to determine outcome after 2 weeks of constraint-induced movement therapy (CIMT) and 12 months later using the database from participants in the Extremity Constraint Induced Therapy Evaluation (EXCITE) Trial. Methods A clinically meaningful CIMT outcome was defined as achieving higher than 3 on the MAL Quality of Movement (QOM) scale. Predictive variables included baseline MAL, Wolf Motor Function Test (WMFT), the sensory and motor portion of the Fugl-Meyer Assessment (FMA), spasticity, visual perception, age, gender, type of stroke, concordance, and time after stroke. Significant predictors identified by univariate analysis were used to develop the multivariate model. Predictive equations were generated and odds ratios for predictors were calculated from the multivariate model. Results Pretreatment motor function measured by MAL QOM, WMFT, and FMA were significantly associated with outcome immediately after CIMT. Pretreatment MAL QOM, WMFT, proprioception, and age were significantly associated with outcome after 12 months. Each unit of higher pretreatment MAL QOM score and each unit of faster pretreatment WMFT log mean time improved the probability of achieving a clinically meaningful outcome by 7 and 3 times at posttreatment, and 5 and 2 times after 12 months, respectively. Patients with impaired proprioception had a 20% probability of achieving a clinically meaningful outcome compared with those with intact proprioception. Conclusions Baseline clinical measures of motor and sensory function can be used to predict a clinically meaningful outcome after CIMT. PMID:18780883

  12. The EXCITE Trial: Predicting a clinically meaningful motor activity log outcome.

    PubMed

    Park, Si-Woon; Wolf, Steven L; Blanton, Sarah; Winstein, Carolee; Nichols-Larsen, Deborah S

    2008-01-01

    This study determined which baseline clinical measurements best predicted a predefined clinically meaningful outcome on the Motor Activity Log (MAL) and developed a predictive multivariate model to determine outcome after 2 weeks of constraint-induced movement therapy (CIMT) and 12 months later using the database from participants in the Extremity Constraint Induced Therapy Evaluation (EXCITE) Trial. A clinically meaningful CIMT outcome was defined as achieving higher than 3 on the MAL Quality of Movement (QOM) scale. Predictive variables included baseline MAL, Wolf Motor Function Test (WMFT), the sensory and motor portion of the Fugl-Meyer Assessment (FMA), spasticity, visual perception, age, gender, type of stroke, concordance, and time after stroke. Significant predictors identified by univariate analysis were used to develop the multivariate model. Predictive equations were generated and odds ratios for predictors were calculated from the multivariate model. Pretreatment motor function measured by MAL QOM, WMFT, and FMA were significantly associated with outcome immediately after CIMT. Pretreatment MAL QOM, WMFT, proprioception, and age were significantly associated with outcome after 12 months. Each unit of higher pretreatment MAL QOM score and each unit of faster pretreatment WMFT log mean time improved the probability of achieving a clinically meaningful outcome by 7 and 3 times at posttreatment, and 5 and 2 times after 12 months, respectively. Patients with impaired proprioception had a 20% probability of achieving a clinically meaningful outcome compared with those with intact proprioception. Baseline clinical measures of motor and sensory function can be used to predict a clinically meaningful outcome after CIMT.

  13. Space Shuttle SRM development. [Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Brinton, B. C.; Kilminster, J. C.

    1979-01-01

    The successful static test of the fourth Development Space Shuttle Solid Rocket Motor (SRM) in February 1979 concluded the development testing phase of the SRM Project. Qualification and flight motors are currently being fabricated, with the first qualification motor to be static tested. Delivered thrust-time traces on all development motors were very close to predicted values, and both specific and total impulse exceeded specification requirements. 'All-up' static tests conducted with a solid rocket booster equipment on development motors achieved all test objectives. Transportation and support equipment concepts have been proven, baselining is complete, and component reusability has been demonstrated. Evolution of the SRM transportation support equipment, and special test equipment designs are reviewed, and development activities discussed. Handling and processing aspects of large, heavy components are described.

  14. Exploring the Link between Visual Perception, Visual-Motor Integration, and Reading in Normal Developing and Impaired Children using DTVP-2.

    PubMed

    Bellocchi, Stéphanie; Muneaux, Mathilde; Huau, Andréa; Lévêque, Yohana; Jover, Marianne; Ducrot, Stéphanie

    2017-08-01

    Reading is known to be primarily a linguistic task. However, to successfully decode written words, children also need to develop good visual-perception skills. Furthermore, motor skills are implicated in letter recognition and reading acquisition. Three studies have been designed to determine the link between reading, visual perception, and visual-motor integration using the Developmental Test of Visual Perception version 2 (DTVP-2). Study 1 tests how visual perception and visual-motor integration in kindergarten predict reading outcomes in Grade 1, in typical developing children. Study 2 is aimed at finding out if these skills can be seen as clinical markers in dyslexic children (DD). Study 3 determines if visual-motor integration and motor-reduced visual perception can distinguish DD children according to whether they exhibit or not developmental coordination disorder (DCD). Results showed that phonological awareness and visual-motor integration predicted reading outcomes one year later. DTVP-2 demonstrated similarities and differences in visual-motor integration and motor-reduced visual perception between children with DD, DCD, and both of these deficits. DTVP-2 is a suitable tool to investigate links between visual perception, visual-motor integration and reading, and to differentiate cognitive profiles of children with developmental disabilities (i.e. DD, DCD, and comorbid children). Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Mothers' questionnaire of preschoolers' language and motor skills: a validation study.

    PubMed

    Gudmundsson, E; Gretarsson, S J

    2013-03-01

    Parent questionnaires of child motor and language skills are useful in many contexts. This study validates one such measure, the Preschool Child Development Inventory (PCDI), a mother-answered standardized measure of motor (fine and gross) and language (expression and comprehension) skills of 3-6-year-old children. Eighty-one mothers answered the inventory and their children were concurrently tested on six verbal subtests of WPPSI-R(IS). The six language and motor subtests of the PCDI revealed the predicted convergent and divergent correlations with the verbal subtests of the WPPSI-R(IS). As predicted, the motor subtests diverged and the language subtests converged with the expected WPPSI-R(IS) subtests. Principal components analysis of all the measures (the PCDI and the WPPSI-R(IS) subtests) revealed two components, verbal and motor in content. The findings support the validity of a mother-answered inventory to assess language and motor development. It is pointed out that such inventories are a viable brief and cost effective alternative to individual testing, both to supplement such measures in clinical practice and as main information in research, for example on determinants of development. Some suggestions are made for future research and applications. © 2012 Blackwell Publishing Ltd.

  16. Accuracy of Two Motor Assessments during the First Year of Life in Preterm Infants for Predicting Motor Outcome at Preschool Age

    PubMed Central

    Spittle, Alicia J.; Lee, Katherine J.; Spencer-Smith, Megan; Lorefice, Lucy E.; Anderson, Peter J.; Doyle, Lex W.

    2015-01-01

    Aim The primary aim of this study was to investigate the accuracy of the Alberta Infant Motor Scale (AIMS) and Neuro-Sensory Motor Developmental Assessment (NSMDA) over the first year of life for predicting motor impairment at 4 years in preterm children. The secondary aims were to assess the predictive value of serial assessments over the first year and when using a combination of these two assessment tools in follow-up. Method Children born <30 weeks’ gestation were prospectively recruited and assessed at 4, 8 and 12 months’ corrected age using the AIMS and NSMDA. At 4 years’ corrected age children were assessed for cerebral palsy (CP) and motor impairment using the Movement Assessment Battery for Children 2nd-edition (MABC-2). We calculated accuracy of the AIMS and NSMDA for predicting CP and MABC-2 scores ≤15th (at-risk of motor difficulty) and ≤5th centile (significant motor difficulty) for each test (AIMS and NSMDA) at 4, 8 and 12 months, for delay on one, two or all three of the time points over the first year, and finally for delay on both tests at each time point. Results Accuracy for predicting motor impairment was good for each test at each age, although false positives were common. Motor impairment on the MABC-2 (scores ≤5th and ≤15th) was most accurately predicted by the AIMS at 4 months, whereas CP was most accurately predicted by the NSMDA at 12 months. In regards to serial assessments, the likelihood ratio for motor impairment increased with the number of delayed assessments. When combining both the NSMDA and AIMS the best accuracy was achieved at 4 months, although results were similar at 8 and 12 months. Interpretation Motor development during the first year of life in preterm infants assessed with the AIMS and NSMDA is predictive of later motor impairment at preschool age. However, false positives are common and therefore it is beneficial to follow-up children at high risk of motor impairment at more than one time point, or to use a combination of assessment tools. Trial Registration ACTR.org.au ACTRN12606000252516 PMID:25970619

  17. Association between sleep position and early motor development.

    PubMed

    Majnemer, Annette; Barr, Ronald G

    2006-11-01

    To compare motor performance in infants sleeping in prone versus supine positions. Healthy 4-month-olds (supine: n = 71, prone: n = 12) and 6-month olds (supine: n = 50, prone: n = 22) were evaluated with the Alberta Infant Motor Scale (AIMS) and Peabody Developmental Motor Scale (PDMS), and parents completed a positioning diary. Infants were reassessed at 15 months. At 4 months, motor scores were lower in the supine group and were less likely to achieve prone extension (P < .05). At 6 months, there were wide discrepancies on the AIMS (supine: 44.5 +/- 21.6, prone: 60.0 +/- 18.8, P = .005) and the gross motor PDMS (supine: 85.7 +/- 7.6, prone: 90.2 +/- 9.5, P = .03). Motor delays were documented in 22% of babies sleeping supine. Prone sleep-positioned infants were more likely to sit and roll. Daily exposure to awake prone positioning was predictive of motor performance in infants sleeping supine. At 15 months, sleep position continued to predict motor performance. Infants sleeping supine may exhibit early motor lags, associated with less time in prone while awake. This has implications for accurate interpretation of assessment of infants at risk and prevention of inappropriate referrals. Rate of infant motor development appears influenced by extrinsic factors such as positioning practices.

  18. Kinesin-8 Motors Improve Nuclear Centering by Promoting Microtubule Catastrophe

    NASA Astrophysics Data System (ADS)

    Glunčić, Matko; Maghelli, Nicola; Krull, Alexander; Krstić, Vladimir; Ramunno-Johnson, Damien; Pavin, Nenad; Tolić, Iva M.

    2015-02-01

    In fission yeast, microtubules push against the cell edge, thereby positioning the nucleus in the cell center. Kinesin-8 motors regulate microtubule catastrophe; however, their role in nuclear positioning is not known. Here we develop a physical model that describes how kinesin-8 motors affect nuclear centering by promoting a microtubule catastrophe. Our model predicts the improved centering of the nucleus in the presence of motors, which we confirmed experimentally in living cells. The model also predicts a characteristic time for the recentering of a displaced nucleus, which is supported by our experiments where we displaced the nucleus using optical tweezers.

  19. Co-occurring development of early childhood communication and motor skills: results from a population-based longitudinal study.

    PubMed

    Wang, M V; Lekhal, R; Aarø, L E; Schjølberg, S

    2014-01-01

    Communicative and motor development is frequently found to be associated. In the current study we investigate to what extent communication and motor skills at 1½ years predict skills in the same domains at 3 years of age. This study is based on the Norwegian Mother and Child Cohort Study (MoBa) conducted by the Norwegian Institute of Public Heath. Data stem from 62,944 children and their mothers. Mothers completed questionnaires on their child's communication and motor skills at ages 1½ and 3. Associations between communication and motor skills were estimated in a cross-lagged model with latent variables. Early communication skills were correlated with early motor skills (0.72). Stability was high (0.81) across time points for motor skills and somewhat lower (0.40) for communication skills. Early motor skills predicted later communication skills (0.38) whereas early communication skills negatively predicted later motor skills (-0.14). Our findings provide support for the hypothesis that these two difficulties are not symptoms of separate disorders, but might rather be different manifestations of a common underlying neurodevelopmental weakness. However, there also seem to be specific developmental pathways for each domain. Besides theoretical interest, more knowledge about the relationship between these early skills might shed light upon early intervention strategies and preventive efforts commonly used with children with problems in these areas. Our findings suggest that the relationship between language and motor skills is not likely to be simple and directional but rather to be complex and multifaceted. © 2012 John Wiley & Sons Ltd.

  20. Motor testing at 1 year improves the prediction of motor and mental outcome at 2 years after perinatal hypoxic-ischaemic encephalopathy.

    PubMed

    van Schie, Petra E M; Becher, Jules G; Dallmeijer, Annet J; Barkhof, Frederik; Van Weissenbruch, Mirjam M; Vermeulen, R Jeroen

    2010-01-01

    To investigate the predictive value of motor testing at 1 year for motor and mental outcome at 2 years after perinatal hypoxic-ischaemic encephalopathy (HIE) in term neonates. Motor and mental outcome at 2 years was assessed with the Bayley Scales of Infant Development, 2nd edition (BSID-II) in 32 surviving children (20 males, 12 females; mean gestational age 40.2 wk, SD 1.4; mean birthweight 3217g, SD 435) participating in a prospective cohort study of HIE. The predictive value of three motor tests (Alberta Infant Motor Scale [AIMS], BSID-II, and the Neurological Optimality Score [NOS]) at 1 year was analysed, in addition to predictions based on neonatal Sarnat staging and magnetic resonance imaging (MRI). Poor motor test results were defined as an AIMS z-score of <-2, a psychomotor developmental index of the BSID-II of <70, or a NOS of <26. Poor motor and poor mental outcome at 2 years was defined as a psychomotor developmental index or mental developmental index of the BSID-II of <70. Twelve children, all with Sarnat grade II, had a poor motor outcome and 12 children, of whom one had Sarnat grade I, had a poor mental outcome at 2 years. Nine children had cerebral palsy, of whom five had quadriplegia, three had dyskinesia, and one had hemiplegia. Poor motor tests at 1 year increased the probability of a poor motor outcome from 71% (range 92 to 100%), and a poor mental outcome from 59% (range 77 to 100%) in children with Sarnat grade II and abnormal MRI, assessed with the AIMS and BSID-II or NOS respectively. Additional motor testing at 1 year improves the prediction of motor and mental outcome at 2 years in children with Sarnat grade II and abnormal MRI.

  1. PPREMO: a prospective cohort study of preterm infant brain structure and function to predict neurodevelopmental outcome.

    PubMed

    George, Joanne M; Boyd, Roslyn N; Colditz, Paul B; Rose, Stephen E; Pannek, Kerstin; Fripp, Jurgen; Lingwood, Barbara E; Lai, Melissa M; Kong, Annice H T; Ware, Robert S; Coulthard, Alan; Finn, Christine M; Bandaranayake, Sasaka E

    2015-09-16

    More than 50 percent of all infants born very preterm will experience significant motor and cognitive impairment. Provision of early intervention is dependent upon accurate, early identification of infants at risk of adverse outcomes. Magnetic resonance imaging at term equivalent age combined with General Movements assessment at 12 weeks corrected age is currently the most accurate method for early prediction of cerebral palsy at 12 months corrected age. To date no studies have compared the use of earlier magnetic resonance imaging combined with neuromotor and neurobehavioural assessments (at 30 weeks postmenstrual age) to predict later motor and neurodevelopmental outcomes including cerebral palsy (at 12-24 months corrected age). This study aims to investigate i) the relationship between earlier brain imaging and neuromotor/neurobehavioural assessments at 30 and 40 weeks postmenstrual age, and ii) their ability to predict motor and neurodevelopmental outcomes at 3 and 12 months corrected age. This prospective cohort study will recruit 80 preterm infants born ≤ 30 week's gestation and a reference group of 20 healthy term born infants from the Royal Brisbane & Women's Hospital in Brisbane, Australia. Infants will undergo brain magnetic resonance imaging at approximately 30 and 40 weeks postmenstrual age to develop our understanding of very early brain structure at 30 weeks and maturation that occurs between 30 and 40 weeks postmenstrual age. A combination of neurological (Hammersmith Neonatal Neurologic Examination), neuromotor (General Movements, Test of Infant Motor Performance), neurobehavioural (NICU Network Neurobehavioural Scale, Premie-Neuro) and visual assessments will be performed at 30 and 40 weeks postmenstrual age to improve our understanding of the relationship between brain structure and function. These data will be compared to motor assessments at 12 weeks corrected age and motor and neurodevelopmental outcomes at 12 months corrected age (neurological assessment by paediatrician, Bayley scales of Infant and Toddler Development, Alberta Infant Motor Scale, Neurosensory Motor Developmental Assessment) to differentiate atypical development (including cerebral palsy and/or motor delay). Earlier identification of those very preterm infants at risk of adverse neurodevelopmental and motor outcomes provides an additional period for intervention to optimise outcomes. Australian New Zealand Clinical Trials Registry ACTRN12613000280707. Registered 8 March 2013.

  2. Fault diagnosis and fault-tolerant finite control set-model predictive control of a multiphase voltage-source inverter supplying BLDC motor.

    PubMed

    Salehifar, Mehdi; Moreno-Equilaz, Manuel

    2016-01-01

    Due to its fault tolerance, a multiphase brushless direct current (BLDC) motor can meet high reliability demand for application in electric vehicles. The voltage-source inverter (VSI) supplying the motor is subjected to open circuit faults. Therefore, it is necessary to design a fault-tolerant (FT) control algorithm with an embedded fault diagnosis (FD) block. In this paper, finite control set-model predictive control (FCS-MPC) is developed to implement the fault-tolerant control algorithm of a five-phase BLDC motor. The developed control method is fast, simple, and flexible. A FD method based on available information from the control block is proposed; this method is simple, robust to common transients in motor and able to localize multiple open circuit faults. The proposed FD and FT control algorithm are embedded in a five-phase BLDC motor drive. In order to validate the theory presented, simulation and experimental results are conducted on a five-phase two-level VSI supplying a five-phase BLDC motor. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Using a generalized linear mixed model approach to explore the role of age, motor proficiency, and cognitive styles in children's reach estimation accuracy.

    PubMed

    Caçola, Priscila M; Pant, Mohan D

    2014-10-01

    The purpose was to use a multi-level statistical technique to analyze how children's age, motor proficiency, and cognitive styles interact to affect accuracy on reach estimation tasks via Motor Imagery and Visual Imagery. Results from the Generalized Linear Mixed Model analysis (GLMM) indicated that only the 7-year-old age group had significant random intercepts for both tasks. Motor proficiency predicted accuracy in reach tasks, and cognitive styles (object scale) predicted accuracy in the motor imagery task. GLMM analysis is suitable to explore age and other parameters of development. In this case, it allowed an assessment of motor proficiency interacting with age to shape how children represent, plan, and act on the environment.

  4. Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors

    PubMed Central

    Marko, Matthew David; Shevach, Glenn

    2017-01-01

    A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions. PMID:28076418

  5. Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors.

    PubMed

    Marko, Matthew David; Shevach, Glenn

    2017-01-01

    A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions.

  6. The Race that Precedes Coactivation: Development of Multisensory Facilitation in Children

    ERIC Educational Resources Information Center

    Barutchu, Ayla; Crewther, David P.; Crewther, Sheila G.

    2009-01-01

    Rationale: The facilitating effect of multisensory integration on motor responses in adults is much larger than predicted by race-models and is in accordance with the idea of coactivation. However, the development of multisensory facilitation of endogenously driven motor processes and its relationship to the development of complex cognitive skills…

  7. Brazilian validation of the Alberta Infant Motor Scale.

    PubMed

    Valentini, Nadia Cristina; Saccani, Raquel

    2012-03-01

    The Alberta Infant Motor Scale (AIMS) is a well-known motor assessment tool used to identify potential delays in infants' motor development. Although Brazilian researchers and practitioners have used the AIMS in laboratories and clinical settings, its translation to Portuguese and validation for the Brazilian population is yet to be investigated. This study aimed to translate and validate all AIMS items with respect to internal consistency and content, criterion, and construct validity. A cross-sectional and longitudinal design was used. A cross-cultural translation was used to generate a Brazilian-Portuguese version of the AIMS. In addition, a validation process was conducted involving 22 professionals and 766 Brazilian infants (aged 0-18 months). The results demonstrated language clarity and internal consistency for the motor criteria (motor development score, α=.90; prone, α=.85; supine, α=.92; sitting, α=.84; and standing, α=.86). The analysis also revealed high discriminative power to identify typical and atypical development (motor development score, P<.001; percentile, P=.04; classification criterion, χ(2)=6.03; P=.05). Temporal stability (P=.07) (rho=.85, P<.001) was observed, and predictive power (P<.001) was limited to the group of infants aged from 3 months to 9 months. Limited predictive validity was observed, which may have been due to the restricted time that the groups were followed longitudinally. In sum, the translated version of AIMS presented adequate validity and reliability.

  8. On Nonlinear Combustion Instability in Liquid Propellant Rocket Motors

    NASA Technical Reports Server (NTRS)

    Sims, J. D. (Technical Monitor); Flandro, Gary A.; Majdalani, Joseph; Sims, Joseph D.

    2004-01-01

    All liquid propellant rocket instability calculations in current use have limited value in the predictive sense and serve mainly as a correlating framework for the available data sets. The well-known n-t model first introduced by Crocco and Cheng in 1956 is still used as the primary analytical tool of this type. A multitude of attempts to establish practical analytical methods have achieved only limited success. These methods usually produce only stability boundary maps that are of little use in making critical design decisions in new motor development programs. Recent progress in understanding the mechanisms of combustion instability in solid propellant rockets"' provides a firm foundation for a new approach to prediction, diagnosis, and correction of the closely related problems in liquid motor instability. For predictive tools to be useful in the motor design process, they must have the capability to accurately determine: 1) time evolution of the pressure oscillations and limit amplitude, 2) critical triggering pulse amplitude, and 3) unsteady heat transfer rates at injector surfaces and chamber walls. The method described in this paper relates these critical motor characteristics directly to system design parameters. Inclusion of mechanisms such as wave steepening, vorticity production and transport, and unsteady detonation wave phenomena greatly enhance the representation of key features of motor chamber oscillatory behavior. The basic theoretical model is described and preliminary computations are compared to experimental data. A plan to develop the new predictive method into a comprehensive analysis tool is also described.

  9. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR CO FOR PREDICTING REAL-TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    The United States Environmental Protection Agency's (EPA) National Exposure Research Laboratory (NERL) has initiated a project to improve the methodology for modeling human exposure to motor vehicle emission. The overall project goal is to develop improved methods for modeling...

  10. L-shaped piezoelectric motor--part II: analytical modeling.

    PubMed

    Avirovik, Dragan; Karami, M Amin; Inman, Daniel; Priya, Shashank

    2012-01-01

    This paper develops an analytical model for an L-shaped piezoelectric motor. The motor structure has been described in detail in Part I of this study. The coupling of the bending vibration mode of the bimorphs results in an elliptical motion at the tip. The emphasis of this paper is on the development of a precise analytical model which can predict the dynamic behavior of the motor based on its geometry. The motor was first modeled mechanically to identify the natural frequencies and mode shapes of the structure. Next, an electromechanical model of the motor was developed to take into account the piezoelectric effect, and dynamics of L-shaped piezoelectric motor were obtained as a function of voltage and frequency. Finally, the analytical model was validated by comparing it to experiment results and the finite element method (FEM). © 2012 IEEE

  11. Research on dynamic characteristics of motor vibration isolation system through mechanical impedance method

    NASA Astrophysics Data System (ADS)

    Zhao, Xingqian; Xu, Wei; Shuai, Changgeng; Hu, Zechao

    2017-12-01

    A mechanical impedance model of a coupled motor-shaft-bearing system has been developed to predict the dynamic characteristics and partially validated by comparing the computing results with finite element method (FEM), including the comparison of displacement amplitude in x and z directions at the two ends of the flexible coupling, the comparison of normalized vertical reaction force in z direction at bearing pedestals. The results demonstrate that the developed model can precisely predict the dynamic characteristics and the main advantage of such a method is that it can clearly illustrate the vibration property of the motor subsystem, which plays an important role in the isolation system design.

  12. A Neo-Piagetian Theory of Constructive Operators: Applications to Perceptual-Motor Development and Learning.

    ERIC Educational Resources Information Center

    Todor, John I.

    The author presents an overview of Pascual-Leone's Theory of Constructive Operators, a process-structural theory based upon Piagetian constructs which has evolved to both explain and predict the temporal unfolding of behavior. An application is made of the theory to the demands of a discrete motor task and prediction of (a) the minimal age…

  13. Prenatal methamphetamine exposure and neurodevelopmental outcomes in children from 1 to 3 years

    PubMed Central

    Wouldes, Trecia A.; LaGasse, Linda L.; Huestis, Marilyn A.; DellaGrotta, Sheri; Dansereau, Lynne M.; Lester, Barry M.

    2014-01-01

    Background: Despite the evidence that women world-wide are using methamphetamine (MA) during pregnancy little is known about the neurodevelopment of their children. Design: The controlled, prospective longitudinal New Zealand (NZ) Infant Development, Environment and Lifestyle (IDEAL) study was carried out in Auckland, NZ. Participants were 103 children exposed to MA prenatally and 107 not exposed. The Mental Developmental Index (MDI) and the Psychomotor Developmental Index (PDI) of the Bayley Scales of Infant Development, Second Edition (BSID-II) measured cognitive and motor performance at ages 1, 2 and 3, and the Peabody Developmental Motor Scale, Second Edition (PDMS-II) measured gross and fine motor performance at 1 and 3. Measures of the child’s environment included the Home Observation of Measurement of the Environment and the Maternal Lifestyle Interview. The Substance Use Inventory measured maternal drug use. Results: After controlling for other drug use and contextual factors, prenatal MA exposure was associated with poorer motor performance at 1 and 2 years on the BSID-II. No differences were observed for cognitive development (MDI). Relative to non-MA exposed children, longitudinal scores on the PDI and the gross motor scale of the PDMS-2 were 4.3 and 3.2 points lower, respectively. Being male and of Maori descent predicted lower cognitive scores (MDI) and being male predicted lower fine motor scores (PDMS-2) Conclusions: Prenatal exposure to MA was associated with delayed gross motor development over the first 3 years, but not cognitive development. However, being male and of Maori descent were both associated with poorer cognitive outcomes. Males in general did more poorly on tasks related to fine motor development. PMID:24566524

  14. Prenatal methamphetamine exposure and neurodevelopmental outcomes in children from 1 to 3 years.

    PubMed

    Wouldes, Trecia A; Lagasse, Linda L; Huestis, Marilyn A; Dellagrotta, Sheri; Dansereau, Lynne M; Lester, Barry M

    2014-01-01

    Despite the evidence that women world-wide are using methamphetamine (MA) during pregnancy little is known about the neurodevelopment of their children. The controlled, prospective longitudinal New Zealand (NZ) Infant Development, Environment and Lifestyle (IDEAL) study was carried out in Auckland, NZ. Participants were 103 children exposed to MA prenatally and 107 who were not exposed. The Mental Developmental Index (MDI) and the Psychomotor Developmental Index (PDI) of the Bayley Scales of Infant Development, Second Edition (BSID-II) measured cognitive and motor performances at ages 1, 2 and 3, and the Peabody Developmental Motor Scale, Second Edition (PDMS-II) measured gross and fine motor performances at 1 and 3. Measures of the child's environment included the Home Observation of Measurement of the Environment and the Maternal Lifestyle Interview. The Substance Use Inventory measured maternal drug use. After controlling for other drug use and contextual factors, prenatal MA exposure was associated with poorer motor performance at 1 and 2 years on the BSID-II. No differences were observed for cognitive development (MDI). Relative to non-MA exposed children, longitudinal scores on the PDI and the gross motor scale of the PDMS-2 were 4.3 and 3.2 points lower, respectively. Being male and of Maori descent predicted lower cognitive scores (MDI) and being male predicted lower fine motor scores (PDMS-2). Prenatal exposure to MA was associated with delayed gross motor development over the first 3 years, but not with cognitive development. However, being male and of Maori descent were both associated with poorer cognitive outcomes. Males in general did more poorly on tasks related to fine motor development. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR PARTICULATE MATTER (MICROFACPM) FOR PREDICTING REAL-TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    The United States Environmental Protection Agency's National Exposure Research Laboratory has initiated a project to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project goal is to develop improved methods for modeling the source t...

  16. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR PARTICULATE MATTER (MICROFACPM) FOR PREDICTING REAL-TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    The United States Environmental Protection Agency's National Exposure Research Laboratory is pursuing a project to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project is to develop improved methods for modeling the source through...

  17. Development of nutritionally at-risk young children is predicted by malaria, anemia, and stunting in Pemba, Zanzibar

    USDA-ARS?s Scientific Manuscript database

    Nutritionally at-risk children suffer delays in physical growth and motor and language development. Infectious diseases such as malaria pose an additional risk. We examined the cross-sectional relationships among malaria infection, hemoglobin (Hb) concentration, length-for-age Z-scores (LAZ), motor ...

  18. Modal Survey of ETM-3, A 5-Segment Derivative of the Space Shuttle Solid Rocket Booster

    NASA Technical Reports Server (NTRS)

    Nielsen, D.; Townsend, J.; Kappus, K.; Driskill, T.; Torres, I.; Parks, R.

    2005-01-01

    The complex interactions between internal motor generated pressure oscillations and motor structural vibration modes associated with the static test configuration of a Reusable Solid Rocket Motor have potential to generate significant dynamic thrust loads in the 5-segment configuration (Engineering Test Motor 3). Finite element model load predictions for worst-case conditions were generated based on extrapolation of a previously correlated 4-segment motor model. A modal survey was performed on the largest rocket motor to date, Engineering Test Motor #3 (ETM-3), to provide data for finite element model correlation and validation of model generated design loads. The modal survey preparation included pretest analyses to determine an efficient analysis set selection using the Effective Independence Method and test simulations to assure critical test stand component loads did not exceed design limits. Historical Reusable Solid Rocket Motor modal testing, ETM-3 test analysis model development and pre-test loads analyses, as well as test execution, and a comparison of results to pre-test predictions are discussed.

  19. ATK Launch Vehicle (ALV-X1) Liftoff Acoustic Environments: Prediction vs. Measurement

    NASA Technical Reports Server (NTRS)

    Houston, J.; Counter, Douglas; Kenny, Jeremy; Murphy, John

    2010-01-01

    Launched from the Mid-Atlantic Regional Spaceport (MARS) Pad 01B on August 22, 2008, the ATK Launch Vehicle (ALV-X1) provided an opportunity to measure liftoff acoustic noise data. Predicted lift-off acoustic environments were developed by both NASA MSFC and ATK engineers. ATK engineers developed predictions for use in determining vibro-acoustic loads using the method described in the monograph NASA SP-8072. The MSFC ALV-X1 lift-off acoustic prediction was made with the Vehicle Acoustic Environment Prediction Program (VAEPP). The VAEPP and SP-8072 methods predict acoustic pressures of rocket systems generally scaled to existing rocket motor data based upon designed motor or engine characteristics. The predicted acoustic pressures are sound-pressure spectra at specific positions on the vehicle. This paper presents the measured liftoff acoustics on the vehicle and tower. This data is useful for the ALV-X1 in validating the pre-launch environments and loads predictions.

  20. The role of older siblings in infant motor development.

    PubMed

    Leonard, Hayley C; Hill, Elisabeth L

    2016-12-01

    Previous research has suggested that infant motor skills may be affected by older siblings but has not considered whether this is due to specific characteristics of the older sibling or of the quality of the sibling relationship. The current study used a longitudinal diary method to record infant motor milestones from 23 infants with older siblings along with parent reports and standardized assessments of motor skills. Parent reports of the older siblings' motor skills and the sibling relationship were also collected until the infants were 18months old. The motor skills, age, and sex of the older siblings were not significantly related to any measure of infant motor development. A significant correlation was revealed between perceived agonism between siblings and infant fine motor skills at 18months, suggesting the importance of considering reciprocal effects of motor development on sibling relationships. Overall, the suggestion that older siblings may provide a good model of motor skills for infants is not supported by the current data. In the future, it will be important to assess the dynamic interactions between different factors in predicting infant motor development, allowing early identification of motor difficulties, which could affect other areas of cognitive development and health. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Two models for identification and predicting behaviour of an induction motor system

    NASA Astrophysics Data System (ADS)

    Kuo, Chien-Hsun

    2018-01-01

    System identification or modelling is the process of building mathematical models of dynamical systems based on the available input and output data from the systems. This paper introduces system identification by using ARX (Auto Regressive with eXogeneous input) and ARMAX (Auto Regressive Moving Average with eXogeneous input) models. Through the identified system model, the predicted output could be compared with the measured one to help prevent the motor faults from developing into a catastrophic machine failure and avoid unnecessary costs and delays caused by the need to carry out unscheduled repairs. The induction motor system is illustrated as an example. Numerical and experimental results are shown for the identified induction motor system.

  2. IUS solid rocket motor contamination prediction methods

    NASA Technical Reports Server (NTRS)

    Mullen, C. R.; Kearnes, J. H.

    1980-01-01

    A series of computer codes were developed to predict solid rocket motor produced contamination to spacecraft sensitive surfaces. Subscale and flight test data have confirmed some of the analytical results. Application of the analysis tools to a typical spacecraft has provided early identification of potential spacecraft contamination problems and provided insight into their solution; e.g., flight plan modifications, plume or outgassing shields and/or contamination covers.

  3. Reducing unscheduled plant maintenance delays -- Field test of a new method to predict electric motor failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homce, G.T.; Thalimer, J.R.

    1996-05-01

    Most electric motor predictive maintenance methods have drawbacks that limit their effectiveness in the mining environment. The US Bureau of Miens (USBM) is developing an alternative approach to detect winding insulation breakdown in advance of complete motor failure. In order to evaluate the analysis algorithms necessary for this approach, the USBM has designed and installed a system to monitor 120 electric motors in a coal preparation plant. The computer-based experimental system continuously gathers, stores, and analyzes electrical parameters for each motor. The results are then correlated to data from conventional motor-maintenance methods and in-service failures to determine if the analysismore » algorithms can detect signs of insulation deterioration and impending failure. This paper explains the on-line testing approach used in this research, and describes monitoring system design and implementation. At this writing data analysis is underway, but conclusive results are not yet available.« less

  4. Rotary Motors Actuated by Traveling Ultrasonic Flexural Waves

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Bao, Xiaoqi; Grandia, Willem

    1999-01-01

    Efficient miniature actuators that are compact and consume low power are needed to drive space and planetary mechanisms in future NASA missions. Ultrasonic rotary motors have the potential to meet this NASA need and they are developed as actuators for miniature telerobotic applications. These motors have emerged in commercial products but they need to be adapted for operation at the harsh space environments that include cryogenic temperatures and vacuum and also require effective analytical tools for the design of efficient motors. A finite element analytical model was developed to examine the excitation of flexural plate wave traveling in a piezoelectrically actuated rotary motor. The model uses 3D finite element and equivalent circuit models that are applied to predict the excitation frequency and modal response of the stator. This model incorporates the details of the stator including the teeth, piezoelectric ceramic, geometry, bonding layer, etc. The theoretical predictions were corroborated experimentally for the stator. In parallel, efforts have been made to determine the thermal and vacuum performance of these motors. Experiments have shown that the motor can sustain at least 230 temperature cycles from 0 C to -90 C at 7 Torr pressure significant performance change. Also, in an earlier study the motor lasted over 334 hours at -150 C and vacuum. To explore telerobotic applications for USMs a robotic arm was constructed with such motors.

  5. The influence of speed abilities and technical skills in early adolescence on adult success in soccer: A long-term prospective analysis using ANOVA and SEM approaches

    PubMed Central

    2017-01-01

    Several talent development programs in youth soccer have implemented motor diagnostics measuring performance factors. However, the predictive value of such tests for adult success is a controversial topic in talent research. This prospective cohort study evaluated the long-term predictive value of 1) motor tests and 2) players’ speed abilities (SA) and technical skills (TS) in early adolescence. The sample consisted of 14,178 U12 players from the German talent development program. Five tests (sprint, agility, dribbling, ball control, shooting) were conducted and players’ height, weight as well as relative age were assessed at nationwide diagnostics between 2004 and 2006. In the 2014/15 season, the players were then categorized as professional (n = 89), semi-professional (n = 913), or non-professional players (n = 13,176), indicating their adult performance level (APL). The motor tests’ prognostic relevance was determined using ANOVAs. Players’ future success was predicted by a logistic regression threshold model. This structural equation model comprised a measurement model with the motor tests and two correlated latent factors, SA and TS, with simultaneous consideration for the manifest covariates height, weight and relative age. Each motor predictor and anthropometric characteristic discriminated significantly between the APL (p < .001; η2 ≤ .02). The threshold model significantly predicted the APL (R2 = 24.8%), and in early adolescence the factor TS (p < .001) seems to have a stronger effect on adult performance than SA (p < .05). Both approaches (ANOVA, SEM) verified the diagnostics’ predictive validity over a long-term period (≈ 9 years). However, because of the limited effect sizes, the motor tests’ prognostic relevance remains ambiguous. A challenge for future research lies in the integration of different (e.g., person-oriented or multilevel) multivariate approaches that expand beyond the “traditional” topic of single tests’ predictive validity and toward more theoretically founded issues. PMID:28806410

  6. Subjective perception of sleep benefit in Parkinson's disease: Valid or irrelevant?

    PubMed

    Lee, Will; Evans, Andrew; Williams, David R

    2017-09-01

    The phenomenon of sleep benefit (SB) in Parkinson's disease (PD), whereby waking motor function is improved despite no dopaminergic treatment overnight, is controversial. Previous studies suggested a significant discrepancy between subjective functional and objective motor improvement. The aim of this study was to determine how well subjective reporting of SB correlates with objective measures and if true motor improvement can be predicted by a standardized questionnaire. Ninety-two patients with PD participated. A structured questionnaire was developed to assess subjective SB. Quantitative motor assessment was performed using a validated smartphone application. Objective motor SB was considered to be present when the waking motor function was similar or superior to the daytime on-state. Twenty (22%) patients showed objective motor improvement on waking compared to end-of-dose. Most patients (77%) reported subjective SB without corresponding objective motor benefit. Our structured questionnaire could not predict Motor SB. The ability to delay morning medications and a perception of indifference or paradoxical worsening following the morning levodopa dose may suggest Motor SB. Most patients experience subjective SB with no measureable motor improvement. This perceived benefit could be related to non-motor improvement that is distinctly different to objective motor benefit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Development of a miniature fan motor

    NASA Astrophysics Data System (ADS)

    Wang, Chien-Chang; Yao, Yeong-Der; Liang, Kun-Yi; Huang, Chung-Chun; Chang, Yu-Choung

    2012-04-01

    A novel compact axial flux fan motor was developed. Such a micromotor could be a potential candidate for using as the cooling solution for the next generation mobile devices, for example, smart phones and pico-projectors. The key parameters of the motor, such as back electromotive force, cogging torque, and axial preload are predicted using finite element method. In addition, new approaches are proposed to measure these items, and the corresponding experimental results are in good agreement with the simulated one. Moreover, the undesired vibration harmonic is successfully suppressed, and the fan motor represents a high static pressure and air flow rate.

  8. Prenatal Antecedents of Newborn Neurological Maturation

    PubMed Central

    DiPietro, Janet A.; Kivlighan, Katie T.; Costigan, Kathleen A.; Rubin, Suzanne E.; Shiffler, Dorothy E.; Henderson, Janice L.; Pillion, Joseph P.

    2009-01-01

    Fetal neurobehavioral development was modeled longitudinally using data collected at weekly intervals from 24- to -38 weeks gestation in a sample of 112 healthy pregnancies. Predictive associations between 3 measures of fetal neurobehavioral functioning and their developmental trajectories to neurological maturation in the 1st weeks after birth were examined. Prenatal measures included fetal heart rate variability, fetal movement, and coupling between fetal motor activity and heart rate patterning; neonatal outcomes include a standard neurologic examination (n = 97) and brainstem auditory evoked potential (BAEP; n = 47). Optimality in newborn motor activity and reflexes was predicted by fetal motor activity; fetal heart rate variability and somatic-cardiac coupling predicted BAEP parameters. Maternal pregnancy-specific psychological stress was associated with accelerated neurologic maturation. PMID:20331657

  9. Disruption to functional networks in neonates with perinatal brain injury predicts motor skills at 8 months.

    PubMed

    Linke, Annika C; Wild, Conor; Zubiaurre-Elorza, Leire; Herzmann, Charlotte; Duffy, Hester; Han, Victor K; Lee, David S C; Cusack, Rhodri

    2018-01-01

    Functional connectivity magnetic resonance imaging (fcMRI) of neonates with perinatal brain injury could improve prediction of motor impairment before symptoms manifest, and establish how early brain organization relates to subsequent development. This cohort study is the first to describe and quantitatively assess functional brain networks and their relation to later motor skills in neonates with a diverse range of perinatal brain injuries. Infants ( n  = 65, included in final analyses: n  = 53) were recruited from the neonatal intensive care unit (NICU) and were stratified based on their age at birth (premature vs. term), and on whether neuropathology was diagnosed from structural MRI. Functional brain networks and a measure of disruption to functional connectivity were obtained from 14 min of fcMRI acquired during natural sleep at term-equivalent age. Disruption to connectivity of the somatomotor and frontoparietal executive networks predicted motor impairment at 4 and 8 months. This disruption in functional connectivity was not found to be driven by differences between clinical groups, or by any of the specific measures we captured to describe the clinical course. fcMRI was predictive over and above other clinical measures available at discharge from the NICU, including structural MRI. Motor learning was affected by disruption to somatomotor networks, but also frontoparietal executive networks, which supports the functional importance of these networks in early development. Disruption to these two networks might be best addressed by distinct intervention strategies.

  10. Longitudinal motor performance development in early adolescence and its relationship to adult success: An 8-year prospective study of highly talented soccer players

    PubMed Central

    Kelava, Augustin; Raabe, Johannes; Höner, Oliver

    2018-01-01

    Several talent identification and development (TID) programs in soccer have implemented diagnostics to measure players’ motor performance. Yet, there is a lack of research investigating the relationship between motor development in adolescence and future, adult performance. This longitudinal study analyzed the three-year development of highly talented young soccer players’ speed abilities and technical skills and examined the relevance of this development to their adult success. The current research sample consisted of N = 1,134 players born between 1993 and 1995 who were selected for the German Soccer Association’s TID program and participated in nationwide motor diagnostics (sprinting, agility, dribbling, ball control, shooting) four times between the Under 12 (U12) and Under 15 (U15) age class. Relative age (RA) was assessed for all players, and a total motor score was calculated based on performances in the individual tests. In order to investigate players’ future success, participants were divided into two groups according to their adult performance level (APL) in the 2014/2015 season: Elite (1st-5th German division; N = 145, 12.8%) and non-elite players (lower divisions; N = 989, 87.2%). Using multilevel regression analyses each motor performance was predicted by Time, Time2 (level-1 predictors), APL, and RA (level-2 covariates) with simultaneous consideration for interaction effects between the respective variables. Time and Time2 were significant predictors for each test performance. A predictive value for RA was confirmed for sprinting and the total motor score. A significant relationship between APL and the motor score as well as between APL and agility, dribbling, ball control, and shooting emerged. Interaction effects distinctly failed to reach significance. The study found a non-linear improvement in players’ performance for all considered motor performance factors over a three-year period from early to middle adolescence. While their predictive value for future success was confirmed by a significant relationship between APL and most of the considered factors, there was no significant interaction between APL and Time. These findings indicate that future elite players had already been better at the beginning of the TID program and maintained this high level throughout their promotion from U12 to U15. PMID:29723200

  11. Longitudinal motor performance development in early adolescence and its relationship to adult success: An 8-year prospective study of highly talented soccer players.

    PubMed

    Leyhr, Daniel; Kelava, Augustin; Raabe, Johannes; Höner, Oliver

    2018-01-01

    Several talent identification and development (TID) programs in soccer have implemented diagnostics to measure players' motor performance. Yet, there is a lack of research investigating the relationship between motor development in adolescence and future, adult performance. This longitudinal study analyzed the three-year development of highly talented young soccer players' speed abilities and technical skills and examined the relevance of this development to their adult success. The current research sample consisted of N = 1,134 players born between 1993 and 1995 who were selected for the German Soccer Association's TID program and participated in nationwide motor diagnostics (sprinting, agility, dribbling, ball control, shooting) four times between the Under 12 (U12) and Under 15 (U15) age class. Relative age (RA) was assessed for all players, and a total motor score was calculated based on performances in the individual tests. In order to investigate players' future success, participants were divided into two groups according to their adult performance level (APL) in the 2014/2015 season: Elite (1st-5th German division; N = 145, 12.8%) and non-elite players (lower divisions; N = 989, 87.2%). Using multilevel regression analyses each motor performance was predicted by Time, Time2 (level-1 predictors), APL, and RA (level-2 covariates) with simultaneous consideration for interaction effects between the respective variables. Time and Time2 were significant predictors for each test performance. A predictive value for RA was confirmed for sprinting and the total motor score. A significant relationship between APL and the motor score as well as between APL and agility, dribbling, ball control, and shooting emerged. Interaction effects distinctly failed to reach significance. The study found a non-linear improvement in players' performance for all considered motor performance factors over a three-year period from early to middle adolescence. While their predictive value for future success was confirmed by a significant relationship between APL and most of the considered factors, there was no significant interaction between APL and Time. These findings indicate that future elite players had already been better at the beginning of the TID program and maintained this high level throughout their promotion from U12 to U15.

  12. Brainstem White Matter Predicts Individual Differences in Manual Motor Difficulties and Symptom Severity in Autism

    ERIC Educational Resources Information Center

    Travers, Brittany G.; Bigler, Erin D.; Tromp, Do P. M.; Adluru, Nagesh; Destiche, Dan; Samsin, Danica; Froehlich, Alyson; Prigge, Molly D. B.; Duffield, Tyler C.; Lange, Nicholas; Alexander, Andrew L.; Lainhart, Janet E.

    2015-01-01

    Mounting evidence suggests that poorer motor skills may be related to more severe autism symptoms. This study investigated if atypical white matter microstructure in the brain mediated the relationship between motor skills and ASD symptom severity. Sixty-seven males with ASD and 42 males with typical development (5-33 years old) completed a…

  13. A Potential Psychological Mechanism Linking Disaster-Related Prenatal Maternal Stress with Child Cognitive and Motor Development at 16 Months: The QF2011 Queensland Flood Study

    ERIC Educational Resources Information Center

    Moss, Katrina M.; Simcock, Gabrielle; Cobham, Vanessa; Kildea, Sue; Elgbeili, Guillaume; Laplante, David P.; King, Suzanne

    2017-01-01

    Fetal exposure to prenatal maternal stress can have lifelong consequences, with different types of maternal stress associated with different areas of child development. Fewer studies have focused on motor skills, even though they are strongly predictive of later development across a range of domains. Research on mechanisms of transmission has…

  14. Using kinematic analysis of movement to predict the time occurrence of an evoked potential associated with a motor command.

    PubMed

    O'Reilly, Christian; Plamondon, Réjean; Landou, Mohamed K; Stemmer, Brigitte

    2013-01-01

    This article presents an exploratory study investigating the possibility of predicting the time occurrence of a motor event related potential (ERP) from a kinematic analysis of human movements. Although the response-locked motor potential may link the ERP components to the recorded response, to our knowledge no previous attempt has been made to predict a priori (i.e. before any contact with the electroencephalographic data) the time occurrence of an ERP component based only on the modeling of an overt response. The proposed analysis relies on the delta-lognormal modeling of velocity, as proposed by the kinematic theory of rapid human movement used in several studies of motor control. Although some methodological aspects of this technique still need to be fine-tuned, the initial results showed that the model-based kinematic analysis allowed the prediction of the time occurrence of a motor command ERP in most participants in the experiment. The average map of the motor command ERPs showed that this signal was stronger in electrodes close to the contra-lateral motor area (Fz, FCz, FC1, and FC3). These results seem to support the claims made by the kinematic theory that a motor command is emitted at time t(0), the time reference parameter of the model. This article proposes a new time marker directly associated with a cerebral event (i.e. the emission of a motor command) that can be used for the development of new data analysis methodologies and for the elaboration of new experimental protocols based on ERP. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  15. Magnetic Circuit Model of PM Motor-Generator to Predict Radial Forces

    NASA Technical Reports Server (NTRS)

    McLallin, Kerry (Technical Monitor); Kascak, Peter E.; Dever, Timothy P.; Jansen, Ralph H.

    2004-01-01

    A magnetic circuit model is developed for a PM motor for flywheel applications. A sample motor is designed and modeled. Motor configuration and selection of materials is discussed, and the choice of winding configuration is described. A magnetic circuit model is described, which includes the stator back iron, rotor yoke, permanent magnets, air gaps and the stator teeth. Iterative solution of this model yields flux linkages, back EMF, torque, power, and radial force at the rotor caused by eccentricity. Calculated radial forces are then used to determine motor negative stiffness.

  16. Early functional MRI activation predicts motor outcome after ischemic stroke: a longitudinal, multimodal study.

    PubMed

    Du, Juan; Yang, Fang; Zhang, Zhiqiang; Hu, Jingze; Xu, Qiang; Hu, Jianping; Zeng, Fanyong; Lu, Guangming; Liu, Xinfeng

    2018-05-15

    An accurate prediction of long term outcome after stroke is urgently required to provide early individualized neurorehabilitation. This study aimed to examine the added value of early neuroimaging measures and identify the best approaches for predicting motor outcome after stroke. This prospective study involved 34 first-ever ischemic stroke patients (time since stroke: 1-14 days) with upper limb impairment. All patients underwent baseline multimodal assessments that included clinical (age, motor impairment), neurophysiological (motor-evoked potentials, MEP) and neuroimaging (diffusion tensor imaging and motor task-based fMRI) measures, and also underwent reassessment 3 months after stroke. Bivariate analysis and multivariate linear regression models were used to predict the motor scores (Fugl-Meyer assessment, FMA) at 3 months post-stroke. With bivariate analysis, better motor outcome significantly correlated with (1) less initial motor impairment and disability, (2) less corticospinal tract injury, (3) the initial presence of MEPs, (4) stronger baseline motor fMRI activations. In multivariate analysis, incorporating neuroimaging data improved the predictive accuracy relative to only clinical and neurophysiological assessments. Baseline fMRI activation in SMA was an independent predictor of motor outcome after stroke. A multimodal model incorporating fMRI and clinical measures best predicted the motor outcome following stroke. fMRI measures obtained early after stroke provided independent prediction of long-term motor outcome.

  17. Longitudinal development of manual motor ability in autism spectrum disorder from childhood to mid-adulthood relates to adaptive daily living skills.

    PubMed

    Travers, Brittany G; Bigler, Erin D; Duffield, Tyler C; Prigge, Molly D B; Froehlich, Alyson L; Lange, Nicholas; Alexander, Andrew L; Lainhart, Janet E

    2017-07-01

    Many individuals with autism spectrum disorder (ASD) exhibit motor difficulties, but it is unknown whether manual motor skills improve, plateau, or decline in ASD in the transition from childhood into adulthood. Atypical development of manual motor skills could impact the ability to learn and perform daily activities across the life span. This study examined longitudinal grip strength and finger tapping development in individuals with ASD (n = 90) compared to individuals with typical development (n = 56), ages 5 to 40 years old. We further examined manual motor performance as a possible correlate of current and future daily living skills. The group with ASD demonstrated atypical motor development, characterized by similar performance during childhood but increasingly poorer performance from adolescence into adulthood. Grip strength was correlated with current adaptive daily living skills, and Time 1 grip strength predicted daily living skills eight years into the future. These results suggest that individuals with ASD may experience increasingly more pronounced motor difficulties from adolescence into adulthood and that manual motor performance in ASD is related to adaptive daily living skills. © 2016 John Wiley & Sons Ltd.

  18. Relation between early motor delay and later communication delay in infants at risk for autism.

    PubMed

    Bhat, A N; Galloway, J C; Landa, R J

    2012-12-01

    Motor delays have been reported in retrospective studies of young infants who later develop Autism Spectrum Disorders (ASDs). In this study, we prospectively compared the gross motor development of a cohort at risk for ASDs; infant siblings of children with ASDs (AU sibs) to low risk typically developing (LR) infants. 24 AU sibs and 24 LR infants were observed at 3 and 6 months using a standardized motor measure, the Alberta Infant Motor Scale (AIMS). In addition, as part of a larger study, the AU sibs also received a follow-up assessment to determine motor and communication performance at 18 months using the Mullen Scales of Early Learning. Significantly more AU sibs showed motor delays at 3 and 6 months than LR infants. The majority of the AU sibs showed both early motor delays and later communication delays. Small sample size and limited follow-up. Early motor delays are more common in AU sibs than LR infants. Communication delays later emerged in 67-73% of the AU sibs who had presented with early motor delays. Overall, early motor delays may be predictive of future communication delays in children at risk for autism. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Identification by machine vision of the rate of motor activity decline as a lifespan predictor in C. elegans

    PubMed Central

    Hsu, Ao-Lin; Feng, Zhaoyang; Hsieh, Meng-Yin; Xu, X. Z. Shawn

    2009-01-01

    One challenge in aging research concerns identifying physiological parameters or biomarkers that can reflect the physical health of an animal and predict its lifespan. In C. elegans, a model organism widely used in aging research, motor deficits develop in old worms. Here we employed machine vision to quantify worm locomotion behavior throughout lifespan. We confirm that aging worms undergo a progressive decline in motor activity, beginning in early life. Importantly, the rate of motor activity decline rather than the absolute motor activity in the early-to-mid life of individual worms in an isogenic population inversely correlates with their lifespan, and thus may serve as a lifespan predictor. Long-lived mutant strains with deficits in insulin/IGF-1 signaling or food intake display a reduction in the rate of motor activity decline, suggesting that this parameter might also be used for across-strain comparison of healthspan. Our work identifies an endogenous physiological parameter for lifespan prediction and healthspan comparison. PMID:18255194

  20. Identification by machine vision of the rate of motor activity decline as a lifespan predictor in C. elegans.

    PubMed

    Hsu, Ao-Lin; Feng, Zhaoyang; Hsieh, Meng-Yin; Xu, X Z Shawn

    2009-09-01

    One challenge in aging research concerns identifying physiological parameters or biomarkers that can reflect the physical health of an animal and predict its lifespan. In C. elegans, a model organism widely used in aging research, motor deficits develop in old worms. Here we employed machine vision to quantify worm locomotion behavior throughout lifespan. We confirm that aging worms undergo a progressive decline in motor activity, beginning in early life. Importantly, the rate of motor activity decline rather than the absolute motor activity in the early-to-mid life of individual worms in an isogenic population inversely correlates with their lifespan, and thus may serve as a lifespan predictor. Long-lived mutant strains with deficits in insulin/IGF-1 signaling or food intake display a reduction in the rate of motor activity decline, suggesting that this parameter might also be used for across-strain comparison of healthspan. Our work identifies an endogenous physiological parameter for lifespan prediction and healthspan comparison.

  1. Exploration as a Mediator of the Relation between the Attainment of Motor Milestones and the Development of Spatial Cognition and Spatial Language

    ERIC Educational Resources Information Center

    Oudgenoeg-Paz, Ora; Leseman, Paul P. M.; Volman, M. J. M.

    2015-01-01

    The embodied-cognition approach views cognition and language as grounded in daily sensorimotor child-environment interactions. Therefore, the attainment of motor milestones is expected to play a role in cognitive-linguistic development. Early attainment of unsupported sitting and independent walking indeed predict better spatial cognition and…

  2. Motor prediction in Brain-Computer Interfaces for controlling mobile robots.

    PubMed

    Geng, Tao; Gan, John Q

    2008-01-01

    EEG-based Brain-Computer Interface (BCI) can be regarded as a new channel for motor control except that it does not involve muscles. Normal neuromuscular motor control has two fundamental components: (1) to control the body, and (2) to predict the consequences of the control command, which is called motor prediction. In this study, after training with a specially designed BCI paradigm based on motor imagery, two subjects learnt to predict the time course of some features of the EEG signals. It is shown that, with this newly-obtained motor prediction skill, subjects can use motor imagery of feet to directly control a mobile robot to avoid obstacles and reach a small target in a time-critical scenario.

  3. The development of local calibration factors for implementing the highway safety manual in Maryland.

    DOT National Transportation Integrated Search

    2014-03-01

    The goal of the study was to determine local calibration factors (LCFs) to adjust predicted motor : vehicle traffic crashes for the Maryland-specific application of the Highway Safety Manual : (HSM). Since HSM predictive models were developed using d...

  4. PREDICT-CP: study protocol of implementation of comprehensive surveillance to predict outcomes for school-aged children with cerebral palsy

    PubMed Central

    Boyd, Roslyn N; Davies, Peter SW; Ziviani, Jenny; Trost, Stewart; Barber, Lee; Ware, Robert; Rose, Stephen; Whittingham, Koa; Bell, Kristie; Carty, Christopher; Obst, Steven; Benfer, Katherine; Reedman, Sarah; Edwards, Priya; Kentish, Megan; Copeland, Lisa; Weir, Kelly; Davenport, Camilla; Brooks, Denise; Coulthard, Alan; Pelekanos, Rebecca; Guzzetta, Andrea; Fiori, Simona; Wynter, Meredith; Finn, Christine; Burgess, Andrea; Morris, Kym; Walsh, John; Lloyd, Owen; Whitty, Jennifer A; Scuffham, Paul A

    2017-01-01

    Objectives Cerebral palsy (CP) remains the world’s most common childhood physical disability with total annual costs of care and lost well-being of $A3.87b. The PREDICT-CP (NHMRC 1077257 Partnership Project: Comprehensive surveillance to PREDICT outcomes for school age children with CP) study will investigate the influence of brain structure, body composition, dietary intake, oropharyngeal function, habitual physical activity, musculoskeletal development (hip status, bone health) and muscle performance on motor attainment, cognition, executive function, communication, participation, quality of life and related health resource use costs. The PREDICT-CP cohort provides further follow-up at 8–12 years of two overlapping preschool-age cohorts examined from 1.5 to 5 years (NHMRC 465128 motor and brain development; NHMRC 569605 growth, nutrition and physical activity). Methods and analyses This population-based cohort study undertakes state-wide surveillance of 245 children with CP born in Queensland (birth years 2006–2009). Children will be classified for Gross Motor Function Classification System; Manual Ability Classification System, Communication Function Classification System and Eating and Drinking Ability Classification System. Outcomes include gross motor function, musculoskeletal development (hip displacement, spasticity, muscle contracture), upper limb function, communication difficulties, oropharyngeal dysphagia, dietary intake and body composition, participation, parent-reported and child-reported quality of life and medical and allied health resource use. These detailed phenotypical data will be compared with brain macrostructure and microstructure using 3 Tesla MRI (3T MRI). Relationships between brain lesion severity and outcomes will be analysed using multilevel mixed-effects models. Ethics and dissemination The PREDICT-CP protocol is a prospectively registered and ethically accepted study protocol. The study combines data at 1.5–5 then 8–12 years of direct clinical assessment to enable prediction of outcomes and healthcare needs essential for tailoring interventions (eg, rehabilitation, orthopaedic surgery and nutritional supplements) and the projected healthcare utilisation. Trial registration number ACTRN: 12616001488493 PMID:28706091

  5. How Kinesthetic Motor Imagery works: a predictive-processing theory of visualization in sports and motor expertise.

    PubMed

    Ridderinkhof, K Richard; Brass, Marcel

    2015-01-01

    Kinesthetic Motor Imagery (KMI) is an important technique to acquire and refine motor skills. KMI is widely used by professional athletes as an effective way to improve motor performance without overt motor output. Despite this obvious relevance, the functional mechanisms and neural circuits involved in KMI in sports are still poorly understood. In the present article, which aims at bridging the sport sciences and cognitive neurophysiology literatures, we give a brief overview of relevant research in the field of KMI. Furthermore, we develop a theoretical account that relates KMI to predictive motor control theories assuming that it is based on internal activation of anticipatory images of action effects. This mechanism allows improving motor performance solely based on internal emulation of action. In accordance with previous literature, we propose that this emulation mechanism is implemented in brain regions that partially overlap with brain areas involved in overt motor performance including the posterior parietal cortex, the cerebellum, the basal ganglia and the premotor cortex. Finally, we outline one way to test the heuristic value of our theoretical framework for KMI; we suggest that experience with motor performance improves the ability to correctly infer the goals of others, in particular in penalty blocking in soccer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Predicting the severity of motor neuron disease progression using electronic health record data with a cloud computing Big Data approach.

    PubMed

    Ko, Kyung Dae; El-Ghazawi, Tarek; Kim, Dongkyu; Morizono, Hiroki

    2014-05-01

    Motor neuron diseases (MNDs) are a class of progressive neurological diseases that damage the motor neurons. An accurate diagnosis is important for the treatment of patients with MNDs because there is no standard cure for the MNDs. However, the rates of false positive and false negative diagnoses are still very high in this class of diseases. In the case of Amyotrophic Lateral Sclerosis (ALS), current estimates indicate 10% of diagnoses are false-positives, while 44% appear to be false negatives. In this study, we developed a new methodology to profile specific medical information from patient medical records for predicting the progression of motor neuron diseases. We implemented a system using Hbase and the Random forest classifier of Apache Mahout to profile medical records provided by the Pooled Resource Open-Access ALS Clinical Trials Database (PRO-ACT) site, and we achieved 66% accuracy in the prediction of ALS progress.

  7. Youth Sport Readiness: A Predictive Model for Success.

    ERIC Educational Resources Information Center

    Aicinena, Steven

    1992-01-01

    A model for predicting organized youth sport participation readiness has four predictive components: sport-related fundamental motor skill development; sport-specific knowledge; motivation; and socialization. Physical maturation is also important. The model emphasizes the importance of preparing children for successful participation through…

  8. Growing up with Down syndrome: Development from 6 months to 10.7 years.

    PubMed

    Marchal, Jan Pieter; Maurice-Stam, Heleen; Houtzager, Bregje A; Rutgers van Rozenburg-Marres, Susanne L; Oostrom, Kim J; Grootenhuis, Martha A; van Trotsenburg, A S Paul

    2016-12-01

    We analysed developmental outcomes from a clinical trial early in life and its follow-up at 10.7 years in 123 children with Down syndrome. To determine 1) strengths and weaknesses in adaptive functioning and motor skills at 10.7 years, and 2) prognostic value of early-life characteristics (early developmental outcomes, parental and child characteristics, and comorbidity) for later intelligence, adaptive functioning and motor skills. We used standardized assessments of mental and motor development at ages 6, 12 and 24 months, and of intelligence, adaptive functioning and motor skills at 10.7 years. We compared strengths and weaknesses in adaptive functioning and motor skills by repeated-measures ANOVAs in the total group and in children scoring above-average versus below-average. The prognostic value of demographics, comorbidity and developmental outcomes was analysed by two-step regression. Socialisation was a stronger adaptive skill than Communication followed by Daily Living. Aiming and catching was a stronger motor skill than Manual dexterity, followed by Balance. Above-average and below-average scoring children showed different profiles of strengths and weaknesses. Gender, (the absence or presence of) infantile spasms and particularly 24-month mental functioning predicted later intelligence and adaptive functioning. Motor skills, however, appeared to be less well predicted by early life characteristics. These findings provide a reference for expected developmental levels and strengths and weaknesses in Down syndrome. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Developing stochastic model of thrust and flight dynamics for small UAVs

    NASA Astrophysics Data System (ADS)

    Tjhai, Chandra

    This thesis presents a stochastic thrust model and aerodynamic model for small propeller driven UAVs whose power plant is a small electric motor. First a model which relates thrust generated by a small propeller driven electric motor as a function of throttle setting and commanded engine RPM is developed. A perturbation of this model is then used to relate the uncertainty in throttle and engine RPM commanded to the error in the predicted thrust. Such a stochastic model is indispensable in the design of state estimation and control systems for UAVs where the performance requirements of the systems are specied in stochastic terms. It is shown that thrust prediction models for small UAVs are not a simple, explicit functions relating throttle input and RPM command to thrust generated. Rather they are non-linear, iterative procedures which depend on a geometric description of the propeller and mathematical model of the motor. A detailed derivation of the iterative procedure is presented and the impact of errors which arise from inaccurate propeller and motor descriptions are discussed. Validation results from a series of wind tunnel tests are presented. The results show a favorable statistical agreement between the thrust uncertainty predicted by the model and the errors measured in the wind tunnel. The uncertainty model of aircraft aerodynamic coefficients developed based on wind tunnel experiment will be discussed at the end of this thesis.

  10. Development of fine motor skills is associated with expressive language outcomes in infants at high and low risk for autism spectrum disorder.

    PubMed

    Choi, Boin; Leech, Kathryn A; Tager-Flusberg, Helen; Nelson, Charles A

    2018-04-12

    A growing body of research suggests that fine motor abilities are associated with skills in a variety of domains in both typical and atypical development. In this study, we investigated developmental trajectories of fine motor skills between 6 and 24 months in relation to expressive language outcomes at 36 months in infants at high and low familial risk for autism spectrum disorder (ASD). Participants included 71 high-risk infants without ASD diagnoses, 30 high-risk infants later diagnosed with ASD, and 69 low-risk infants without ASD diagnoses. As part of a prospective, longitudinal study, fine motor skills were assessed at 6, 12, 18, and 24 months of age and expressive language outcomes at 36 months using the Mullen Scales of Early Learning. Diagnosis of ASD was determined at the infant's last visit to the lab (18, 24, or 36 months) using the Autism Diagnostic Observation Schedule. Hierarchical linear modeling revealed that high-risk infants who later developed ASD showed significantly slower growth in fine motor skills between 6 and 24 months, compared to their typically developing peers. In contrast to group differences in growth from age 6 months, cross-sectional group differences emerged only in the second year of life. Also, fine motor skills at 6 months predicted expressive language outcomes at 3 years of age. These results highlight the importance of utilizing longitudinal approaches in measuring early fine motor skills to reveal subtle group differences in infancy between ASD high-risk and low-risk infant populations and to predict their subsequent language outcomes.

  11. Fine motor skill predicts expressive language in infant siblings of children with autism.

    PubMed

    LeBarton, Eve Sauer; Iverson, Jana M

    2013-11-01

    We investigated whether fine motor and expressive language skills are related in the later-born siblings of children with autism (heightened-risk, HR infants) who are at increased risk for language delays. We observed 34 HR infants longitudinally from 12 to 36 months. We used parent report and standardized observation measures to assess fine motor skill from 12 to 24 months in HR infants (Study 1) and its relation to later expressive vocabulary at 36 months in HR infants (Study 2). In Study 1, we also included 25 infants without a family history of autism to serve as a normative comparison group for a parent-report fine motor measure. We found that HR infants exhibited fine motor delays between 12 and 24 months and expressive vocabulary delays at 36 months. Further, fine motor skill significantly predicted expressive language at 36 months. Fine motor and expressive language skills are related early in development in HR infants, who, as a group, exhibit risk for delays in both. Our findings highlight the importance of considering fine motor skill in children at risk for language impairments and may have implications for early identification of expressive language difficulties. © 2013 John Wiley & Sons Ltd.

  12. Predicting efficacy of robot-aided rehabilitation in chronic stroke patients using an MRI-compatible robotic device.

    PubMed

    Sergi, Fabrizio; Krebs, Hermano Igo; Groissier, Benjamin; Rykman, Avrielle; Guglielmelli, Eugenio; Volpe, Bruce T; Schaechter, Judith D

    2011-01-01

    We are investigating the neural correlates of motor recovery promoted by robot-mediated therapy in chronic stroke. This pilot study asked whether efficacy of robot-aided motor rehabilitation in chronic stroke could be predicted by a change in functional connectivity within the sensorimotor network in response to a bout of motor rehabilitation. To address this question, two stroke patients participated in a functional connectivity MRI study pre and post a 12-week robot-aided motor rehabilitation program. Functional connectivity was evaluated during three consecutive scans before the rehabilitation program: resting-state; point-to-point reaching movements executed by the paretic upper extremity (UE) using a newly developed MRI-compatible sensorized passive manipulandum; resting-state. A single resting-state scan was conducted after the rehabilitation program. Before the program, UE movement reduced functional connectivity between the ipsilesional and contralesional primary motor cortex. Reduced interhemispheric functional connectivity persisted during the second resting-state scan relative to the first and during the resting-state scan after the rehabilitation program. Greater reduction in interhemispheric functional connectivity during the resting-state was associated with greater gains in UE motor function induced by the 12-week robotic therapy program. These findings suggest that greater reduction in interhemispheric functional connectivity in response to a bout of motor rehabilitation may predict greater efficacy of the full rehabilitation program.

  13. Relationship between early motor delay and later communication delay in infants at risk for autism

    PubMed Central

    Bhat, A. N.; Galloway, J. C.; Landa, R. J.

    2012-01-01

    Background Motor delays have been reported in retrospective studies of young infants who later develop Autism Spectrum Disorders (ASDs). Objective In this study, we prospectively compared the gross motor development of a cohort at risk for ASDs; infant siblings of children with ASDs (AU sibs) to low risk typically developing (LR) infants. Methods 24 AU sibs and 24 LR infants were observed at 3 and 6 months using a standardized motor measure, the Alberta Infant Motor Scale (AIMS). In addition, as part of a larger study, the AU sibs also received a follow-up assessment to determine motor and communication performance at 18 months using the Mullen Scales of Early Learning. Results Significantly more AU sibs showed motor delays at 3 and 6 months than LR infants. The majority of the AU sibs showed both early motor delays and later communication delays. Limitations Small sample size and limited follow-up. Conclusions Early motor delays are more common in infant AU sibs than LR infants. Communication delays later emerged in 67–73% of the AU sibs who had presented with early motor delays. Overall, early motor delays may be predictive of future communication delays in children at risk for autism. PMID:22982285

  14. Complete modeling of rotary ultrasonic motors actuated by traveling flexural waves

    NASA Astrophysics Data System (ADS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph

    2000-06-01

    Ultrasonic rotary motors have the potential to meet this NASA need and they are developed as actuators for miniature telerobotic applications. These motors are being adapted for operation at the harsh space environments that include cryogenic temperatures and vacuum and analytical tools for the design of efficient motors are being developed. A hybrid analytical model was developed to address a complete ultrasonic motor as a system. Included in this model is the influence of the rotor dynamics, which was determined experimentally to be important to the motor performance. The analysis employs a 3D finite element model to express the dynamic characteristics of the stator with piezoelectric elements and the rotor. The details of the stator including the teeth, piezoelectric ceramic, geometry, bonding layer, etc. are included to support practical USM designs. A brush model is used for the interface layer and Coulomb's law for the friction between the stator and the rotor. The theoretical predictions were corroborated experimentally for the motor. In parallel, efforts have been made to determine the thermal and vacuum performance of these motors. To explore telerobotic applications for USMs a robotic arm was constructed with such motors.

  15. The Test of Infant Motor Performance at 3 months predicts language, cognitive, and motor outcomes in infants born preterm at 2 years of age.

    PubMed

    Peyton, Colleen; Schreiber, Michael D; Msall, Michael E

    2018-03-13

    To determine the relationship between the Test of Infant Motor Performance (TIMP) at 3 months and cognitive, language, and motor outcomes on the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III) at 2 years of age in high-risk infants born preterm. One hundred and six infants (47 females, 59 males) born at earlier than 31 weeks gestational age were prospectively tested with the TIMP at 10 to 15 weeks after term age and were assessed again with the Bayley-III at 2 years corrected age. Sensitivity and specificity were calculated for various cut points of the TIMP z-score and Bayley-III composite scores of no more than 85. The TIMP z-scores at 10 to 15 weeks of age were significantly associated with all three subscales on the Bayley-III at 2 years of age (p<0.001). Using a TIMP z-score cutoff of -0.5, specificity was relatively high for cognitive (87%), language (88%), and motor (89%) outcomes, but sensitivity was low (cognitive 41%, language 49%, motor 57%). This study demonstrates that the TIMP is related to cognitive, language, and motor outcomes on the Bayley-III at 2 years of age in high-risk infants born preterm. The Test of Infant Motor Performance (TIMP) predicts Bayley Scales of Infant and Toddler Development, Third Edition outcomes at 2 years of age. The TIMP is relatively good at discriminating between children who will and will not have typical development. © 2018 Mac Keith Press.

  16. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR PARTICULATE MATTER (MICROFACPM) FOR PREDICTING REAL TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    Health risk evaluation needs precise measurement and modeling of human exposures in microenvironments to support review of current air quality standards. The particulate matter emissions from motor vehicles are a major component of human exposures in urban microenvironments. Cu...

  17. Global time trends in PAH emissions from motor vehicles

    PubMed Central

    Shen, Huizhong; Tao, Shu; Wang, Rong; Wang, Bin; Shen, Guofeng; Li, Wei; Su, Shenshen; Huang, Ye; Wang, Xilong; Liu, Wenxin; Li, Bengang; Sun, Kang

    2013-01-01

    Emission from motor vehicles is the most important source of polycyclic aromatic hydrocarbons (PAHs) in urban areas. Emission factors of individual PAHs for motor vehicles reported in the literature varied 4 to 5 orders of magnitude, leading to high uncertainty in emission inventory. In this study, key factors affecting emission factors of PAHs (EFPAH) for motor vehicles were evaluated quantitatively based on thousands of EFPAH measured in 16 countries for over 50 years. The result was used to develop a global emission inventory of PAHs from motor vehicles. It was found that country and vehicle model year are the most important factors affecting EFPAH, which can be quantified using a monovariate regression model with per capita gross domestic production (purchasing power parity) as a sole independent variable. On average, 29% of variation in log-transformed EFPAH could be explained by the model, which was equivalent to 90% reduction in overall uncertainty on arithmetic scale. The model was used to predict EFPAH and subsequently PAH emissions from motor vehicles for various countries in the world during a period from 1971 to 2030. It was estimated that the global emission reached its peak value of approximate 101 Gg in 1978 and decreased afterwards due to emission control in developed countries. The annual emission picked up again since 1990 owing to accelerated energy consumption in China and other developing countries. With more and more rigid control measures taken in the developing world, global emission of PAHs is currently passing its second peak. It was predicted that the emission would decrease from 77 Gg in 2010 to 42 Gg in 2030. PMID:24198716

  18. Predictability of action sub-steps modulates motor system activation during the observation of goal-directed actions.

    PubMed

    Braukmann, Ricarda; Bekkering, Harold; Hidding, Margreeth; Poljac, Edita; Buitelaar, Jan K; Hunnius, Sabine

    2017-08-01

    Action perception and execution are linked in the human motor system, and researchers have proposed that this action-observation matching system underlies our ability to predict observed behavior. If the motor system is indeed involved in the generation of action predictions, activation should be modulated by the degree of predictability of an observed action. This study used EEG and eye-tracking to investigate whether and how predictability of an observed action modulates motor system activation as well as behavioral predictions in the form of anticipatory eye-movements. Participants were presented with object-directed actions (e.g., making a cup of tea) consisting of three action steps which increased in their predictability. While the goal of the first step was ambiguous (e.g., when making tea, one can first grab the teabag or the cup), the goals of the following steps became predictable over the course of the action. Motor system activation was assessed by measuring attenuation of sensorimotor mu- and beta-oscillations. We found that mu- and beta-power were attenuated during observation, indicating general activation of the motor system. Importantly, predictive motor system activation, indexed by beta-band attenuation, increased for each action step, showing strongest activation prior to the final (i.e. most predictable) step. Sensorimotor activity was related to participants' predictive eye-movements which also showed a modulation by action step. Our results demonstrate that motor system activity and behavioral predictions become stronger for more predictable action steps. The functional roles of sensorimotor oscillations in predicting other's actions are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Variability in Cadence During Forced Cycling Predicts Motor Improvement in Individuals With Parkinson’s Disease

    PubMed Central

    Ridgel, Angela L.; Abdar, Hassan Mohammadi; Alberts, Jay L.; Discenzo, Fred M.; Loparo, Kenneth A.

    2014-01-01

    Variability in severity and progression of Parkinson’s disease symptoms makes it challenging to design therapy interventions that provide maximal benefit. Previous studies showed that forced cycling, at greater pedaling rates, results in greater improvements in motor function than voluntary cycling. The precise mechanism for differences in function following exercise is unknown. We examined the complexity of biomechanical and physiological features of forced and voluntary cycling and correlated these features to improvements in motor function as measured by the Unified Parkinson’s Disease Rating Scale (UPDRS). Heart rate, cadence, and power were analyzed using entropy signal processing techniques. Pattern variability in heart rate and power were greater in the voluntary group when compared to forced group. In contrast, variability in cadence was higher during forced cycling. UPDRS Motor III scores predicted from the pattern variability data were highly correlated to measured scores in the forced group. This study shows how time series analysis methods of biomechanical and physiological parameters of exercise can be used to predict improvements in motor function. This knowledge will be important in the development of optimal exercise-based rehabilitation programs for Parkinson’s disease. PMID:23144045

  20. Rocket nozzle thermal shock tests in an arc heater facility

    NASA Technical Reports Server (NTRS)

    Painter, James H.; Williamson, Ronald A.

    1986-01-01

    A rocket motor nozzle thermal structural test technique that utilizes arc heated nitrogen to simulate a motor burn was developed. The technique was used to test four heavily instrumented full-scale Star 48 rocket motor 2D carbon/carbon segments at conditions simulating the predicted thermal-structural environment. All four nozzles survived the tests without catastrophic or other structural failures. The test technique demonstrated promise as a low cost, controllable alternative to rocket motor firing. The technique includes the capability of rapid termination in the event of failure, allowing post-test analysis.

  1. The relationship between body mass index and gross motor development in children aged 3 to 5 years.

    PubMed

    Nervik, Deborah; Martin, Kathy; Rundquist, Peter; Cleland, Joshua

    2011-01-01

    To investigate the relationship between obesity and gross motor development in children who are developing typically and determine whether body mass index (BMI) predicts difficulty in gross motor skills. BMIs were calculated and gross motor skills examined in 50 children who were healthy aged 3 to 5 years using the Peabody Developmental Motor Scales, 2nd edition (PDMS-2). Pearson chi-square statistic and stepwise linear hierarchical regression were used for analysis. A total of 24% of the children were overweight/obese, whereas 76% were found not to be overweight/obese. Fifty-eight percent of the overweight/obese group scored below average on the PDMS-2 compared to 15% of the nonoverweight group. Association between BMI and gross motor quotients was identified with significance of less than 0.002. Regression results were nonsignificant with all 50 subjects, yet showed significance (P = 0.018) when an outlier was excluded. Children aged 3 to 5 years with high BMIs may have difficulty with their gross motor skills. Further research is needed.

  2. Early Developmental Assessment of Children with Major Non-Cardiac Congenital Anomalies Predicts Development at the Age of 5 Years

    ERIC Educational Resources Information Center

    Mazer, Petra; Gischler, Saskia J.; van der Cammen-van Zijp, Monique H. M.; Tibboel, Dick; Bax, Nicolaas M. A.; Ijsselstijn, Hanneke; van Dijk, Monique; Duivenvoorden, Hugo J.

    2010-01-01

    Aim: The aim of this study was to evaluate cognitive and motor development in children with major congenital anomalies and the predictability of development at age 5 years. Method: A prospective, longitudinal follow-up study was undertaken. The Dutch version of the Bayley Scales of Infant Development--Mental Developmental Index (MDI) and…

  3. Acoustic Measurements for Small Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Kenny, R. Jeremy

    2010-01-01

    Models have been developed to predict large solid rocket motor acoustic loads based on the scaling of small solid rocket motors. MSFC has measured several small solid rocket motors in horizontal and launch configurations to anchor these models. Solid Rocket Test Motor (SRTM) has ballistics similar to the Reusable Solid Rocket Motor (RSRM) therefore a good choice for acoustic scaling. Acoustic measurements were collected during the test firing of the Insulation Configuration Extended Length (ICXL) 7,6, and 8 (in firing order) in order to compare to RSRM horizontal firing data. The scope of this presentation includes: Acoustic test procedures and instrumentation implemented during the three SRTM firings and Data analysis method and general trends observed in the data.

  4. Optimal input selection for neural machine interfaces predicting multiple non-explicit outputs.

    PubMed

    Krepkovich, Eileen T; Perreault, Eric J

    2008-01-01

    This study implemented a novel algorithm that optimally selects inputs for neural machine interface (NMI) devices intended to control multiple outputs and evaluated its performance on systems lacking explicit output. NMIs often incorporate signals from multiple physiological sources and provide predictions for multidimensional control, leading to multiple-input multiple-output systems. Further, NMIs often are used with subjects who have motor disabilities and thus lack explicit motor outputs. Our algorithm was tested on simulated multiple-input multiple-output systems and on electromyogram and kinematic data collected from healthy subjects performing arm reaches. Effects of output noise in simulated systems indicated that the algorithm could be useful for systems with poor estimates of the output states, as is true for systems lacking explicit motor output. To test efficacy on physiological data, selection was performed using inputs from one subject and outputs from a different subject. Selection was effective for these cases, again indicating that this algorithm will be useful for predictions where there is no motor output, as often is the case for disabled subjects. Further, prediction results generalized for different movement types not used for estimation. These results demonstrate the efficacy of this algorithm for the development of neural machine interfaces.

  5. ADAPTATION OF A TECHNIQUE FOR PREDICTING LARGE SOLID ROCKET MOTOR SPECIFIC IMPULSE FROM DATA OBTAINED IN MICROMOTORS.

    DTIC Science & Technology

    Laboratory. The purpose of this technique is to predict specific impulse in large solid rocket motors based on data obtained in micromotors . As little as 2...concerning performance of a propellant in a large solid motor. Predictions, based on data obtained in micromotors , were within 0.6% of the delivered impulse in 6-pound motors and 70-pound BATES motors. (Author)

  6. Neural Underpinnings of Impaired Predictive Motor Timing in Children with Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Debrabant, Julie; Gheysen, Freja; Caeyenberghs, Karen; Van Waelvelde, Hilde; Vingerhoets, Guy

    2013-01-01

    A dysfunction in predictive motor timing is put forward to underlie DCD-related motor problems. Predictive timing allows for the pre-selection of motor programmes (except "program" in computers) in order to decrease processing load and facilitate reactions. Using functional magnetic resonance imaging (fMRI), this study investigated the neural…

  7. Definition of perspective scheme of organization of traffic using methods of forecasting and modeling

    NASA Astrophysics Data System (ADS)

    Vlasov, V. M.; Novikov, A. N.; Novikov, I. A.; Shevtsova, A. G.

    2018-03-01

    In the environment of highly developed urban agglomerations, one of the main problems arises - inability of the road network to reach a high level of motorization. The introduction of intelligent transport systems allows solving this problem, but the main issue in their implementation remains open: to what extent this or that method of improving the transport network will be effective and whether it is able to solve the problem of vehicle growth especially for the long-term period. The main goal of this work was the development of an approach to forecasting the increase in the intensity of traffic flow for a long-term period using the population and the level of motorization. The developed approach made it possible to determine the projected population and, taking into account the level of motorization, to determine the growth factor of the traffic flow intensity, which allows calculating the intensity value for a long-term period with high accuracy. The analysis of the main methods for predicting the characteristics of the transport stream is performed. The basic values and parameters necessary for their use are established. The analysis of the urban settlement is carried out and the level of motorization characteristic for the given locality is determined. A new approach to predicting the intensity of the traffic flow has been developed, which makes it possible to predict the change in the transport situation in the long term in high accuracy. Calculations of the magnitude of the intensity increase on the basis of the developed forecasting method are made and the errors in the data obtained are determined. The main recommendations on the use of the developed forecasting approach for the long-term functioning of the road network are formulated.

  8. Clinical course of asymmetric motor performance and deformational plagiocephaly in very preterm infants.

    PubMed

    Nuysink, Jacqueline; Eijsermans, Maria J C; van Haastert, Ingrid C; Koopman-Esseboom, Corine; Helders, Paul J M; de Vries, Linda S; van der Net, Janjaap

    2013-09-01

    To describe the clinical courses of positional preference and deformational plagiocephaly up to 6 months corrected age (CA) in infants born at gestational age <30 weeks or birth weight <1000 g, and to explore predictive factors for the persistence of these phenomena. A total of 120 infants were examined 3 times each. The presence of deformational plagiocephaly and a score of 0-6 on an asymmetry performance scale served as outcome measures at 6 months CA. Predictive factors were determined using regression analysis. The prevalence of a positional preference of the head was 65.8% (79 of 120) at term-equivalent age (TEA) and 36.7% (44 of 120) at 3 months CA and that of deformational plagiocephaly was 30% (36 of 120) at TEA and 50% (60 of 120) at 3 months CA. At 6 months CA, 15.8% of the infants (19 of 120) scored ≥ 2 of a possible 6 on the asymmetry performance scale and 23.3% (28 of 120) had deformational plagiocephaly. Sleeping in the supine position was predictive of an asymmetric motor performance at 6 months CA. Chronic lung disease and/or slow gross motor maturation at 3 months CA predicted the persistence of deformational plagiocephaly. Infants born very preterm may develop deformational plagiocephaly. A positional preference of the head at TEA seems to be a normal aspect of these infants' motor repertoire, with limited ability to predict persistence of an asymmetric motor performance. The decreased prevalence of deformational plagiocephaly between 3 and 6 months CA indicates an optimistic course. Infants with a history of chronic lung disease and/or slow gross motor maturation merit timely intervention. Copyright © 2013 Mosby, Inc. All rights reserved.

  9. Decoding a wide range of hand configurations from macaque motor, premotor, and parietal cortices.

    PubMed

    Schaffelhofer, Stefan; Agudelo-Toro, Andres; Scherberger, Hansjörg

    2015-01-21

    Despite recent advances in decoding cortical activity for motor control, the development of hand prosthetics remains a major challenge. To reduce the complexity of such applications, higher cortical areas that also represent motor plans rather than just the individual movements might be advantageous. We investigated the decoding of many grip types using spiking activity from the anterior intraparietal (AIP), ventral premotor (F5), and primary motor (M1) cortices. Two rhesus monkeys were trained to grasp 50 objects in a delayed task while hand kinematics and spiking activity from six implanted electrode arrays (total of 192 electrodes) were recorded. Offline, we determined 20 grip types from the kinematic data and decoded these hand configurations and the grasped objects with a simple Bayesian classifier. When decoding from AIP, F5, and M1 combined, the mean accuracy was 50% (using planning activity) and 62% (during motor execution) for predicting the 50 objects (chance level, 2%) and substantially larger when predicting the 20 grip types (planning, 74%; execution, 86%; chance level, 5%). When decoding from individual arrays, objects and grip types could be predicted well during movement planning from AIP (medial array) and F5 (lateral array), whereas M1 predictions were poor. In contrast, predictions during movement execution were best from M1, whereas F5 performed only slightly worse. These results demonstrate for the first time that a large number of grip types can be decoded from higher cortical areas during movement preparation and execution, which could be relevant for future neuroprosthetic devices that decode motor plans. Copyright © 2015 the authors 0270-6474/15/351068-14$15.00/0.

  10. Scaling Equations for Ballistic Modeling of Solid Rocket Motor Case Breach

    NASA Technical Reports Server (NTRS)

    McMillin, Joshua E.

    2006-01-01

    This paper explores the development of a series of scaling equations that can take a known nominal motor performance and scale it for small and growing case failures. This model was developed for the Malfunction-Turn Study as part of Return to Flight activities for the Space Shuttle program. To verify the model, data from the Challenger accident (STS- 51L) were used. The model is able to predict the motor performance beyond the last recorded Challenger data and show how the failed right hand booster would have performed if the vehicle had remained intact.

  11. Transient Modeling of Hybrid Rocket Low Frequency Instabilities

    NASA Technical Reports Server (NTRS)

    Karabeyoglu, M. Arif; DeZilwa, Shane; Cantwell, Brian; Zilliac, Greg

    2003-01-01

    A comprehensive dynamic model of a hybrid rocket has been developed in order to understand and predict the transient behavior including instabilities. A linearized version of the transient model predicted the low-frequency chamber pressure oscillations that are commonly observed in hybrids. The source of the instabilities is based on a complex coupling of thermal transients in the solid fuel, wall heat transfer blocking due to fuel regression rate and the transients in the boundary layer that forms on the fuel surface. The oscillation frequencies predicted by the linearized theory are in very good agreement with 43 motor test results obtained from the hybrid propulsion literature. The motor test results used in the comparison cover a very wide spectrum of parameters including: 1) four separate research and development programs, 2) three different oxidizers (LOX, GOX, N2O), 3) a wide range of motor dimensions (i.e. from 5 inch diameter to 72 inch diameter) and operating conditions and 4) several fuel formulations. A simple universal scaling formula for the frequency of the primary oscillation mode is suggested.

  12. User's Self-Prediction of Performance in Motor Imagery Brain-Computer Interface.

    PubMed

    Ahn, Minkyu; Cho, Hohyun; Ahn, Sangtae; Jun, Sung C

    2018-01-01

    Performance variation is a critical issue in motor imagery brain-computer interface (MI-BCI), and various neurophysiological, psychological, and anatomical correlates have been reported in the literature. Although the main aim of such studies is to predict MI-BCI performance for the prescreening of poor performers, studies which focus on the user's sense of the motor imagery process and directly estimate MI-BCI performance through the user's self-prediction are lacking. In this study, we first test each user's self-prediction idea regarding motor imagery experimental datasets. Fifty-two subjects participated in a classical, two-class motor imagery experiment and were asked to evaluate their easiness with motor imagery and to predict their own MI-BCI performance. During the motor imagery experiment, an electroencephalogram (EEG) was recorded; however, no feedback on motor imagery was given to subjects. From EEG recordings, the offline classification accuracy was estimated and compared with several questionnaire scores of subjects, as well as with each subject's self-prediction of MI-BCI performance. The subjects' performance predictions during motor imagery task showed a high positive correlation ( r = 0.64, p < 0.01). Interestingly, it was observed that the self-prediction became more accurate as the subjects conducted more motor imagery tasks in the Correlation coefficient (pre-task to 2nd run: r = 0.02 to r = 0.54, p < 0.01) and root mean square error (pre-task to 3rd run: 17.7% to 10%, p < 0.01). We demonstrated that subjects may accurately predict their MI-BCI performance even without feedback information. This implies that the human brain is an active learning system and, by self-experiencing the endogenous motor imagery process, it can sense and adopt the quality of the process. Thus, it is believed that users may be able to predict MI-BCI performance and results may contribute to a better understanding of low performance and advancing BCI.

  13. The relation between cognitive and motor performance and their relevance for children's transition to school: a latent variable approach.

    PubMed

    Roebers, Claudia M; Röthlisberger, Marianne; Neuenschwander, Regula; Cimeli, Patrizia; Michel, Eva; Jäger, Katja

    2014-02-01

    Both theoretically and empirically there is a continuous interest in understanding the specific relation between cognitive and motor development in childhood. In the present longitudinal study including three measurement points, this relation was targeted. At the beginning of the study, the participating children were 5-6-year-olds. By assessing participants' fine motor skills, their executive functioning, and their non-verbal intelligence, their cross-sectional and cross-lagged interrelations were examined. Additionally, performance in these three areas was used to predict early school achievement (in terms of mathematics, reading, and spelling) at the end of participants' first grade. Correlational analyses and structural equation modeling revealed that fine motor skills, non-verbal intelligence and executive functioning were significantly interrelated. Both fine motor skills and intelligence had significant links to later school achievement. However, when executive functioning was additionally included into the prediction of early academic achievement, fine motor skills and non-verbal intelligence were no longer significantly associated with later school performance suggesting that executive functioning plays an important role for the motor-cognitive performance link. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Ready, Set, Go! Low Anticipatory Response during a Dyadic Task in Infants at High Familial Risk for Autism

    PubMed Central

    Landa, Rebecca J.; Haworth, Joshua L.; Nebel, Mary Beth

    2016-01-01

    Children with autism spectrum disorder (ASD) demonstrate a host of motor impairments that may share a common developmental basis with ASD core symptoms. School-age children with ASD exhibit particular difficulty with hand-eye coordination and appear to be less sensitive to visual feedback during motor learning. Sensorimotor deficits are observable as early as 6 months of age in children who later develop ASD; yet the interplay of early motor, visual and social skill development in ASD is not well understood. Integration of visual input with motor output is vital for the formation of internal models of action. Such integration is necessary not only to master a wide range of motor skills, but also to imitate and interpret the actions of others. Thus, closer examination of the early development of visual-motor deficits is of critical importance to ASD. In the present study of infants at high risk (HR) and low risk (LR) for ASD, we examined visual-motor coupling, or action anticipation, during a dynamic, interactive ball-rolling activity. We hypothesized that, compared to LR infants, HR infants would display decreased anticipatory response (perception-guided predictive action) to the approaching ball. We also examined visual attention before and during ball rolling to determine whether attention engagement contributed to differences in anticipation. Results showed that LR and HR infants demonstrated context appropriate looking behavior, both before and during the ball’s trajectory toward them. However, HR infants were less likely to exhibit context appropriate anticipatory motor response to the approaching ball (moving their arm/hand to intercept the ball) than LR infants. This finding did not appear to be driven by differences in motor skill between risk groups at 6 months of age and was extended to show an atypical predictive relationship between anticipatory behavior at 6 months and preference for looking at faces compared to objects at age 14 months in the HR group. PMID:27252667

  15. Fine motor skills and executive function both contribute to kindergarten achievement.

    PubMed

    Cameron, Claire E; Brock, Laura L; Murrah, William M; Bell, Lindsay H; Worzalla, Samantha L; Grissmer, David; Morrison, Frederick J

    2012-01-01

    This study examined the contribution of executive function (EF) and multiple aspects of fine motor skills to achievement on 6 standardized assessments in a sample of middle-socioeconomic status kindergarteners. Three- and 4-year-olds' (n=213) fine and gross motor skills were assessed in a home visit before kindergarten, EF was measured at fall of kindergarten, and Woodcock-Johnson III Tests of Academic Achievement were administered at fall and spring. Correlations indicated that EF and fine motor skills appeared distinct. Further, controlling for background variables, higher levels of both EF and fine motor skills, specifically design copy, predicted higher achievement on multiple subtests at kindergarten entry, as well as improvement from fall to spring. Implications for research on school readiness are discussed. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.

  16. Parenting stress and development of late preterm infants at 4 months corrected age.

    PubMed

    Mughal, Muhammad K; Ginn, Carla S; Magill-Evans, Joyce; Benzies, Karen M

    2017-10-01

    Parenting stress has been linked to child development issues in early preterm infants, but less is known about its effects on development in infants born late preterm. We examined relationships between parenting stress of 108 mothers and 108 fathers and development of late preterm infants born at 34 0/7 to 36 6/7 weeks gestation. At 4 months corrected age, mothers and fathers completed the Parenting Stress Index (PSI-3); mothers were primary caregivers in almost all families and completed the Ages and Stages Questionnaire (ASQ-2) on child development. Mothers reported significantly more stress than fathers on the PSI-3 Parent Domain. PSI-3 subscale scores from the Child Domain were significant predictors of mother-reported infant development as measured by the ASQ-2 in regression models: Reinforces Parent predicted Gross Motor, Mood predicted Communication, and Acceptability predicted Communication, Fine Motor, Problem Solving, and Personal -Social development scale scores. Experiences of parenting stress differed for mothers and fathers. Further research is required on specific dimensions of parenting stress related to development of late preterm infants. © 2017 Wiley Periodicals, Inc.

  17. The Dutch motor skills assessment as tool for talent development in table tennis: a reproducibility and validity study.

    PubMed

    Faber, Irene R; Nijhuis-Van Der Sanden, Maria W G; Elferink-Gemser, Marije T; Oosterveld, Frits G J

    2015-01-01

    A motor skills assessment could be helpful in talent development by estimating essential perceptuo-motor skills of young players, which are considered requisite to develop excellent technical and tactical qualities. The Netherlands Table Tennis Association uses a motor skills assessment in their talent development programme consisting of eight items measuring perceptuo-motor skills specific to table tennis under varying conditions. This study aimed to investigate this assessment regarding its reproducibility, internal consistency, underlying dimensions and concurrent validity in 113 young table tennis players (6-10 years). Intraclass correlation coefficients of six test items met the criteria of 0.7 with coefficients of variation between 3% and 8%. Cronbach's alpha valued 0.853 for internal consistency. The principal components analysis distinguished two conceptually meaningful factors: "ball control" and "gross motor function." Concurrent validity analyses demonstrated moderate associations between the motor skills assessment's results and national ranking; boys r = -0.53 (P < 0.001) and girls r = -0.45 (P = 0.015). In conclusion, this evaluation demonstrated six test items with acceptable reproducibility, good internal consistency and good prospects for validity. Two test items need revision to upgrade reproducibility. Since the motor skills assessment seems to be a reproducible, objective part of a talent development programme, more longitudinal studies are required to investigate its predictive validity.

  18. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development & Performance Analysis

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan

    2014-01-01

    ATA-002 Technical Team has successfully designed, developed, tested and assessed the SLS Pathfinder propulsion systems for the Main Base Heating Test Program. Major Outcomes of the Pathfinder Test Program: Reach 90% of full-scale chamber pressure Achieved all engine/motor design parameter requirements Reach steady plume flow behavior in less than 35 msec Steady chamber pressure for 60 to 100 msec during engine/motor operation Similar model engine/motor performance to full-scale SLS system Mitigated nozzle throat and combustor thermal erosion Test data shows good agreement with numerical prediction codes Next phase of the ATA-002 Test Program Design & development of the SLS OML for the Main Base Heating Test Tweak BSRM design to optimize performance Tweak CS-REM design to increase robustness MSFC Aerosciences and CUBRC have the capability to develop sub-scale propulsion systems to meet desired performance requirements for short-duration testing.

  19. Flowfield predictions for multiple body launch vehicles

    NASA Technical Reports Server (NTRS)

    Deese, Jerry E.; Pavish, D. L.; Johnson, Jerry G.; Agarwal, Ramesh K.; Soni, Bharat K.

    1992-01-01

    A method is developed for simulating inviscid and viscous flow around multicomponent launch vehicles. Grids are generated by the GENIE general-purpose grid-generation code, and the flow solver is a finite-volume Runge-Kutta time-stepping method. Turbulence effects are simulated using Baldwin and Lomax (1978) turbulence model. Calculations are presented for three multibody launch vehicle configurations: one with two small-diameter solid motors, one with nine small-diameter solid motors, and one with three large-diameter solid motors.

  20. A Motor-Driven Mechanism for Cell-Length Sensing

    PubMed Central

    Rishal, Ida; Kam, Naaman; Perry, Rotem Ben-Tov; Shinder, Vera; Fisher, Elizabeth M.C.; Schiavo, Giampietro; Fainzilber, Mike

    2012-01-01

    Summary Size homeostasis is fundamental in cell biology, but it is not clear how large cells such as neurons can assess their own size or length. We examined a role for molecular motors in intracellular length sensing. Computational simulations suggest that spatial information can be encoded by the frequency of an oscillating retrograde signal arising from a composite negative feedback loop between bidirectional motor-dependent signals. The model predicts that decreasing either or both anterograde or retrograde signals should increase cell length, and this prediction was confirmed upon application of siRNAs for specific kinesin and/or dynein heavy chains in adult sensory neurons. Heterozygous dynein heavy chain 1 mutant sensory neurons also exhibited increased lengths both in vitro and during embryonic development. Moreover, similar length increases were observed in mouse embryonic fibroblasts upon partial downregulation of dynein heavy chain 1. Thus, molecular motors critically influence cell-length sensing and growth control. PMID:22773964

  1. Analytical modeling of eddy-current losses caused by pulse-width-modulation switching in permanent-magnet brushless direct-current motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, F.; Nehl, T.W.

    1998-09-01

    Because of their high efficiency and power density the PM brushless dc motor is a strong candidate for electric and hybrid vehicle propulsion systems. An analytical approach is developed to predict the inverter high frequency pulse width modulation (PWM) switching caused eddy-current losses in a permanent magnet brushless dc motor. The model uses polar coordinates to take curvature effects into account, and is also capable of including the space harmonic effect of the stator magnetic field and the stator lamination effect on the losses. The model was applied to an existing motor design and was verified with the finite elementmore » method. Good agreement was achieved between the two approaches. Hence, the model is expected to be very helpful in predicting PWM switching losses in permanent magnet machine design.« less

  2. Overlapping Phenotypes in Autism Spectrum Disorder and Developmental Coordination Disorder: A Cross-Syndrome Comparison of Motor and Social Skills.

    PubMed

    Sumner, Emma; Leonard, Hayley C; Hill, Elisabeth L

    2016-08-01

    Motor and social difficulties are often found in children with an autism spectrum disorder (ASD) and with developmental coordination disorder (DCD), to varying degrees. This study investigated the extent of overlap of these problems in children aged 7-10 years who had a diagnosis of either ASD or DCD, compared to typically-developing controls. Children completed motor and face processing assessments. Parents completed questionnaires concerning their child's early motor and current motor and social skills. There was considerable overlap between the ASD and DCD groups on the motor and social assessments, with both groups more impaired than controls. Furthermore, motor skill predicted social functioning for both groups. Future research should consider the relationships between core symptoms and their consequences in other domains.

  3. How Do Maternal Subclinical Symptoms Influence Infant Motor Development during the First Year of Life?

    PubMed Central

    Piallini, Giulia; Brunoro, Stefania; Fenocchio, Chiara; Marini, Costanza; Simonelli, Alessandra; Biancotto, Marina; Zoia, Stefania

    2016-01-01

    An unavoidable reciprocal influence characterizes the mother-child dyad. Within this relationship, the presence of depression, somatization, hostility, paranoid ideation, and interpersonal sensitivity symptoms at a subclinical level and their possible input on infant motor competences has not been yet considered. Bearing in mind that motor abilities represent not only an indicator of the infant's health-status, but also the principal field to infer his/her needs, feelings and intentions, in this study the quality of infants' movements were assessed and analyzed in relationship with the maternal attitudes. The aim of this research was to investigate if/how maternal symptomatology may pilot infant's motor development during his/her first year of life by observing the characteristics of motor development in infants aged 0–11 months. Participants included 123 mothers and their infants (0–11 months-old). Mothers' symptomatology was screened with the Symptom Checklist-90-Revised (SCL-90-R), while infants were tested with the Peabody Developmental Motor Scale-Second Edition. All dyads belonged to a non-clinical population, however, on the basis of SCL-90-R scores, the mothers' sample was divided into two groups: normative and subclinical. Descriptive, t-test, correlational analysis between PDMS-2 scores and SCL-90-R results are reported, as well as regression models results. Both positive and negative correlations were found between maternal perceived symptomatology, Somatization (SOM), Interpersonal Sensitivity (IS), Depression (DEP), Hostility (HOS), and Paranoid Ideation (PAR) and infants' motor abilities. These results were further verified by applying regression models to predict the infant's motor outcomes on the basis of babies' age and maternal status. The presence of positive symptoms in the SCL-90-R questionnaire (subclinical group) predicted good visual-motor integration and stationary competences in the babies. In particular, depressive and hostility feelings in mothers seemed to induce an infant motor behavior characterized by a major control of the environmental space. When mothers perceived a higher level of hostility and somatization, their babies showed difficulties in sharing action space, such as required in the development of stationary positions and grasping abilities. In a completely different way, when infants can rely on a mother with low-perceived symptoms (normative group) his/her motor performances develop with a higher degree of freedom/independence. These findings suggest, for the first time, that even in a non-clinical sample, mother's perceived-symptoms can produce important consequences not in infant motor development as a whole, but in some specific areas, contributing to shape the infant's motor ability and his/her capability to act in the world. PMID:27847489

  4. Global time trends in PAH emissions from motor vehicles

    NASA Astrophysics Data System (ADS)

    Shen, Huizhong; Tao, Shu; Wang, Rong; Wang, Bin; Shen, Guofeng; Li, Wei; Su, Shenshen; Huang, Ye; Wang, Xilong; Liu, Wenxin; Li, Bengang; Sun, Kang

    2011-04-01

    Emission from motor vehicles is the most important source of polycyclic aromatic hydrocarbons (PAHs) in urban areas. Emission factors of individual PAHs for motor vehicles reported in the literature varied 4 to 5 orders of magnitude, leading to high uncertainty in emission inventory. In this study, key factors affecting emission factors of PAHs (EF PAH) for motor vehicles were evaluated quantitatively based on thousands of EF PAH measured in 16 countries for over 50 years. The result was used to develop a global emission inventory of PAHs from motor vehicles. It was found that country and vehicle model year are the most important factors affecting EF PAH, which can be quantified using a monovariate regression model with per capita gross domestic production (purchasing power parity) as a sole independent variable. On average, 29% of variation in log-transformed EF PAH could be explained by the model, which was equivalent to 90% reduction in overall uncertainty on arithmetic scale. The model was used to predict EF PAH and subsequently PAH emissions from motor vehicles for various countries in the world during a period from 1971 to 2030. It was estimated that the global emission reached its peak value of approximate 101 Gg in 1978 and decreased afterwards due to emission control in developed countries. The annual emission picked up again since 1990 owing to accelerated energy consumption in China and other developing countries. With more and more rigid control measures taken in the developing world, global emission of PAHs is currently passing its second peak. It was predicted that the emission would decrease from 77 Gg in 2010 to 42 Gg in 2030.

  5. Modeling and experimental investigation of thermal-mechanical-electric coupling dynamics in a standing wave ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Yao, Zhiyuan; He, Yigang; Dai, Shichao

    2017-09-01

    Ultrasonic motor operation relies on high-frequency vibration of a piezoelectric vibrator and interface friction between the stator and rotor/slider, which can cause temperature rise of the motor under continuous operation, and can affect motor parameters and performance in turn. In this paper, an integral model is developed to study the thermal-mechanical-electric coupling dynamics in a typical standing wave ultrasonic motor. Stick-slip motion at the contact interface and the temperature dependence of material parameters of the stator are taken into account in this model. The elastic, piezoelectric and dielectric material coefficients of the piezoelectric ceramic, as a function of temperature, are determined experimentally using a resonance method. The critical parameters in the model are identified via measured results. The resulting model can be used to evaluate the variation in output characteristics of the motor caused by the thermal-mechanical-electric coupling effects. Furthermore, the dynamic temperature rise of the motor can be accurately predicted under different input parameters using the developed model, which will contribute to improving the reliable life of a motor for long-term running.

  6. Predicting Motor Skills from Strengths and Difficulties Questionnaire Scores, Language Ability, and Other Features of New Zealand Children Entering Primary School

    ERIC Educational Resources Information Center

    Sargisson, Rebecca J.; Powell, Cheniel; Stanley, Peter; de Candole, Rosalind

    2014-01-01

    The motor and language skills, emotional and behavioural problems of 245 children were measured at school entry. Fine motor scores were significantly predicted by hyperactivity, phonetic awareness, prosocial behaviour, and the presence of medical problems. Gross motor scores were significantly predicted by the presence of medical problems. The…

  7. Comparative predictive validity of the Harris Infant Neuromotor Test and the Alberta Infant Motor Scale.

    PubMed

    Harris, Susan R; Backman, Catherine L; Mayson, Tanja A

    2010-05-01

    We compared abilities of the Alberta Infant Motor Scale (AIMS) and the Harris Infant Neuromotor Test (HINT), during the infant's first year, in predicting scores on the Bayley Scales of Infant Development (BSID) at age 2 and 3 years. This prospective study involved 144 infants (71 females, 73 males), assessed with the HINT and AIMS at 4 to 6.5 and 10 to 12.5 months and with the BSID at 2 and 3 years. Inclusion criteria for typical infants (n=58) were the following: 38 to 42 weeks' gestation, birthweight at least 2500g, and no congenital anomaly, postnatal health concern, nor major prenatal or perinatal maternal risk factor. For at-risk infants (n=86), inclusion criteria were any of the following: less than 38 weeks' gestation, birthweight less than 2500g, maternal age older than 35 years or younger than 19 years at infant birth, maternal psychiatric/mental health concerns, prenatal drug/alcohol exposure, multiple births, or use of reproductive technology. For the overall sample, the early (4-6.5mo) HINT had higher predictive correlations than the AIMS for 2-year BSID-II motor outcomes (r=-0.36 vs 0.26), and 3-year BSID-III gross motor outcomes (r=-0.45 vs 0.31), as did the 10- to 12.5-month HINT (r=-0.55 vs 0.47). Correlations were identical for 10- to 12.5-month HINT and AIMS scores and 3-year BSID-III gross motor (r=-0.58 and 0.58) and fine motor (r=-0.35 and 0.35) subscales. When the sample was divided into typical and at-risk groups, predictive correlations were consistently stronger for the at-risk infants. Categorical predictive analyses were reasonably similar across both tests. Results suggest that the HINT has comparable predictive validity to the AIMS and should be considered for use in clinical and research settings.

  8. PREDICT-CP: study protocol of implementation of comprehensive surveillance to predict outcomes for school-aged children with cerebral palsy.

    PubMed

    Boyd, Roslyn N; Davies, Peter Sw; Ziviani, Jenny; Trost, Stewart; Barber, Lee; Ware, Robert; Rose, Stephen; Whittingham, Koa; Sakzewski, Leanne; Bell, Kristie; Carty, Christopher; Obst, Steven; Benfer, Katherine; Reedman, Sarah; Edwards, Priya; Kentish, Megan; Copeland, Lisa; Weir, Kelly; Davenport, Camilla; Brooks, Denise; Coulthard, Alan; Pelekanos, Rebecca; Guzzetta, Andrea; Fiori, Simona; Wynter, Meredith; Finn, Christine; Burgess, Andrea; Morris, Kym; Walsh, John; Lloyd, Owen; Whitty, Jennifer A; Scuffham, Paul A

    2017-07-12

    Cerebral palsy (CP) remains the world's most common childhood physical disability with total annual costs of care and lost well-being of $A3.87b. The PREDICT-CP (NHMRC 1077257 Partnership Project: Comprehensive surveillance to PREDICT outcomes for school age children with CP) study will investigate the influence of brain structure, body composition, dietary intake, oropharyngeal function, habitual physical activity, musculoskeletal development (hip status, bone health) and muscle performance on motor attainment, cognition, executive function, communication, participation, quality of life and related health resource use costs. The PREDICT-CP cohort provides further follow-up at 8-12 years of two overlapping preschool-age cohorts examined from 1.5 to 5 years (NHMRC 465128 motor and brain development; NHMRC 569605 growth, nutrition and physical activity). This population-based cohort study undertakes state-wide surveillance of 245 children with CP born in Queensland (birth years 2006-2009). Children will be classified for Gross Motor Function Classification System; Manual Ability Classification System, Communication Function Classification System and Eating and Drinking Ability Classification System. Outcomes include gross motor function, musculoskeletal development (hip displacement, spasticity, muscle contracture), upper limb function, communication difficulties, oropharyngeal dysphagia, dietary intake and body composition, participation, parent-reported and child-reported quality of life and medical and allied health resource use. These detailed phenotypical data will be compared with brain macrostructure and microstructure using 3 Tesla MRI (3T MRI). Relationships between brain lesion severity and outcomes will be analysed using multilevel mixed-effects models. The PREDICT-CP protocol is a prospectively registered and ethically accepted study protocol. The study combines data at 1.5-5 then 8-12 years of direct clinical assessment to enable prediction of outcomes and healthcare needs essential for tailoring interventions (eg, rehabilitation, orthopaedic surgery and nutritional supplements) and the projected healthcare utilisation. ACTRN: 12616001488493. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Assessment of specific characteristics of abnormal general movements: does it enhance the prediction of cerebral palsy?

    PubMed

    Hamer, Elisa G; Bos, Arend F; Hadders-Algra, Mijna

    2011-08-01

    Abnormal general movements at around 3 months corrected age indicate a high risk of cerebral palsy (CP). We aimed to determine whether specific movement characteristics can improve the predictive power of definitely abnormal general movements. Video recordings of 46 infants with definitely abnormal general movements at 9 to 13 weeks corrected age (20 males; 26 females; median gestational age 30wks; median birthweight 1200g) were analysed for the following characteristics: presence of fidgety, cramped synchronized, stiff, or jerky movements and asymmetrical tonic neck reflex pattern. Neurological condition (presence or absence of CP), gross motor development (Alberta Infant Motor Scales), quality of motor behaviour (Infant Motor Profile), functional mobility (Pediatric Evaluation of Disability Inventory), and Mental Developmental Index (Bayley Scales) were assessed at 18 months corrected age. Infants were excluded from participating in the study if they had severe congenital anomalies or if their caregivers had an insufficient knowledge of the Dutch language. Of the 46 assessed infants, 10 developed spastic CP (Gross Motor Function Classification System levels I to V; eight bilateral spastic CP, two unilateral spastic CP). The absence of fidgety movements and the presence of predominantly stiff movements were associated with CP (Fisher's exact test, p=0.018 and p=0.007 respectively) and lower Infant Motor Profile scores (Mann-Whitney U test, p=0.015 and p=0.022 respectively); stiff and predominantly stiff movements were associated with lower Alberta Infant Motor Scales scores (Mann-Whitney U test, p=0.01 and p=0.004 respectively). Cramped synchronized movements and the asymmetrical tonic neck reflex pattern were not related to outcome. None of the movement characteristics were associated with Pediatric Evaluation of Disability Inventory scores or the Mental Developmental Index. The assessment of fidgety movements and movement stiffness may improve the predictive power of definitely abnormal general movements for developmental outcome. However, the presence of fidgety movements does not preclude the development of CP. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.

  10. Feedforward motor control in developmental dyslexia and developmental coordination disorder: Does comorbidity matter?

    PubMed

    Cignetti, Fabien; Vaugoyeau, Marianne; Fontan, Aurelie; Jover, Marianne; Livet, Marie-Odile; Hugonenq, Catherine; Audic, Frédérique; Chabrol, Brigitte; Assaiante, Christine

    2018-05-01

    Feedforward and online controls are two facets of predictive motor control from internal models, which is suspected to be impaired in learning disorders. We examined whether the feedforward component is affected in children (8-12 years) with developmental dyslexia (DD) and/or with developmental coordination disorder (DCD) compared to typically developing (TD) children. Children underwent a bimanual unloading paradigm during which a load supported to one arm, the postural arm, was either unexpectedly unloaded by a computer or voluntary unloaded by the subject with the other arm. All children showed a better stabilization (lower flexion) of the postural arm and an earlier inhibition of the arm flexors during voluntary unloading, indicating anticipation of unloading. Between-group comparisons of kinematics and electromyographic activity of the postural arm revealed that the difference during voluntary unloading was between DD-DCD children and the other groups, with the former showing a delayed inhibition of the flexor muscles. Deficit of the feedforward component of motor control may particularly apply to comorbid subtypes, here the DD-DCD subtype. The development of a comprehensive framework for motor performance deficits in children with learning disorders will be achieved only by dissociating key components of motor prediction and focusing on subtypes and comorbidities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Motor cortex guides selection of predictable movement targets

    PubMed Central

    Woodgate, Philip J.W.; Strauss, Soeren; Sami, Saber A.; Heinke, Dietmar

    2016-01-01

    The present paper asks whether the motor cortex contributes to prediction-based guidance of target selection. This question was inspired by recent evidence that suggests (i) recurrent connections from the motor system into the attentional system may extract movement-relevant perceptual information and (ii) that the motor cortex cannot only generate predictions of the sensory consequences of movements but may also operate as predictor of perceptual events in general. To test this idea we employed a choice reaching task requiring participants to rapidly reach and touch a predictable or unpredictable colour target. Motor cortex activity was modulated via transcranial direct current stimulation (tDCS). In Experiment 1 target colour repetitions were predictable. Under such conditions anodal tDCS facilitated selection versus sham and cathodal tDCS. This improvement was apparent for trajectory curvature but not movement initiation. Conversely, where no predictability of colour was embedded reach performance was unaffected by tDCS. Finally, the results of a key-press experiment suggested that motor cortex involvement is restricted to tasks where the predictable target colour is movement-relevant. The outcomes are interpreted as evidence that the motor system contributes to the top-down guidance of selective attention to movement targets. PMID:25835319

  12. Advanced axial field D.C. motor development for electric passenger vehicle

    NASA Technical Reports Server (NTRS)

    Jones, W. J.

    1982-01-01

    A wound-field axial-flux dc motor was developed for an electric vehicle drive system. The motor is essentially an axial-flux version of the classical Gramme-ring winding motor, but the active conductors are recessed into slots cut into the two opposite faces of the laminated tape-wound core ring. Three motors were built and tested in the program. The second (functional) model was a six-pole machine which weighed 88.5 kg. It developed 16.9 km (33.0 hp), and a max speed of 4800 rpm. Full load efficiency was 92% and predicted SAE D-cycle efficiency was 88%. The last engineering) model was a 4-pole machine with compoles, allowing a weight reduction to 45 kg (100 lbs.) while addressing some manufacturability problems. The engineering model was rated at 13.2 kw (17.6 hp) at 3000 rpm, with a peak power of 19.8 km (26.4 hp) and a max speed of 7200 rpm. Initial test results on this motor showed poor commutation and efficiency; the program was terminated without resolution of these problems.

  13. Scoliosis in children with osteogenesis imperfecta: influence of severity of disease and age of reaching motor milestones.

    PubMed

    Engelbert, Raoul H H; Uiterwaal, Cuno S P M; van der Hulst, Annelies; Witjes, Baukje; Helders, Paul J M; Pruijs, Hans E H

    2003-04-01

    We studied the relationship between the age of reaching motor milestones, especially anti-gravity activities, and the age of development of pathological spinal curvatures in children with osteogenesis imperfecta (OI). We hypothesized that earlier achievement of anti-gravity motor milestones predicts a later development of pathological spinal curvatures. Ninety-six children participated in this retrospective study. The severity of the disease was classified according to Sillence into types I-IV. Spinal radiography was performed annually and spinal deformities were measured according to the Cobb angle. Scoliosis was defined as a Cobb angle exceeding 9 degrees. Pathological thoracic kyphosis was defined as a Cobb angle exceeding 40 degrees. The parents were asked to report the age at which the child achieved motor milestones, and data were checked against health care records. Thirty-seven of 96 children (39%) developed a scoliosis of more than 9 degrees. Nine of 96 children (9%) developed a pathological kyphosis. The age of developing scoliosis was significantly lower than the age of development of the pathological kyphosis (P=0.01). Bone mineral density was measured by dual energy X-ray absorptiometry (DEXA) in 53 children, 28 of whom developed scoliosis, and 25 of whom did not. The mean DEXA Z-score of the 28 children with scoliosis was significantly lower than that of the 25 children without (-5.2, SD 1.3 vs -3.2, SD 1.9; P-value <0.001). Children with OI type IV, but particularly OI type III, reached motor milestones much later than children with OI type I. The motor milestone "supported sitting" showed a significant inverse association with time of the first presence of scoliosis with a Cobb angle greater than 9 degrees (linear regression coefficient: -1.3, 95% confidence interval: -2.6 to -0.03). The age of achieving the motor milestones "lifting the head to 45 degrees in prone position", "rolling", and "supported-" and "unsupported standing" were not significantly associated with age of the first presence of scoliosis with a Cobb angle greater than 9 degrees. However, the directions of associations suggest that here, too, there is a tendency for later development of scoliosis in those who reach milestones at earlier ages. Multivariable analyses showed that the motor milestone "sitting with support" was significantly associated with age of first achieving scoliosis, independent of gender and type of OI (linear regression coefficient: -0.9, 95% confidence interval: -1.3 to -0.5). We conclude that in children with OI, the age of anti-gravity motor milestones was associated with the age of development of pathological spinal curvatures. Earlier achievement of the motor milestone "supported sitting" predicted significantly a later development of pathological spinal curvatures, independent of gender and type of OI.

  14. Complex Burn Region Module (CBRM) update

    NASA Technical Reports Server (NTRS)

    Adams, Carl L.; Jenkins, Billy

    1991-01-01

    Presented here is a Complex Burn Region Module (CBRM) update for the Solid Rocket Internal Ballistics Module (SRIBM) Program for the Advanced Solid Rocket Motor (ASRM) design/performance assessments. The goal was to develop an improved version of the solid rocket internal ballistics module program that contains a diversified complex region model for motor grain design, performance prediction, and evaluation.

  15. Infant Vocal-Motor Coordination: Precursor to the Gesture-Speech System?

    ERIC Educational Resources Information Center

    Iverson, Jana M.; Fagan, Mary K.

    2004-01-01

    This study was designed to provide a general picture of infant vocal-motor coordination and test predictions generated by Iverson and Thelen's (1999) model of the development of the gesture-speech system. Forty-seven 6- to 9-month-old infants were videotaped with a primary caregiver during rattle and toy play. Results indicated an age-related…

  16. Do Nimble Hands Make for Nimble Lexicons? Fine Motor Skills Predict Knowledge of Embodied Vocabulary Items

    ERIC Educational Resources Information Center

    Suggate, Sebastian P.; Stoeger, Heidrun

    2014-01-01

    Theories and research in embodied cognition postulate that cognition grounded in action enjoys a processing advantage. Extending this theory to the study of how fine motor skills (FMS) link to vocabulary development in preschool children, the authors investigated FMS and vocabulary in 76 preschoolers. Building on previous research, they…

  17. Prediction of cognitive and motor development in preterm children using exhaustive feature selection and cross-validation of near-term white matter microstructure.

    PubMed

    Schadl, Kornél; Vassar, Rachel; Cahill-Rowley, Katelyn; Yeom, Kristin W; Stevenson, David K; Rose, Jessica

    2018-01-01

    Advanced neuroimaging and computational methods offer opportunities for more accurate prognosis. We hypothesized that near-term regional white matter (WM) microstructure, assessed on diffusion tensor imaging (DTI), using exhaustive feature selection with cross-validation would predict neurodevelopment in preterm children. Near-term MRI and DTI obtained at 36.6 ± 1.8 weeks postmenstrual age in 66 very-low-birth-weight preterm neonates were assessed. 60/66 had follow-up neurodevelopmental evaluation with Bayley Scales of Infant-Toddler Development, 3rd-edition (BSID-III) at 18-22 months. Linear models with exhaustive feature selection and leave-one-out cross-validation computed based on DTI identified sets of three brain regions most predictive of cognitive and motor function; logistic regression models were computed to classify high-risk infants scoring one standard deviation below mean. Cognitive impairment was predicted (100% sensitivity, 100% specificity; AUC = 1) by near-term right middle-temporal gyrus MD, right cingulate-cingulum MD, left caudate MD. Motor impairment was predicted (90% sensitivity, 86% specificity; AUC = 0.912) by left precuneus FA, right superior occipital gyrus MD, right hippocampus FA. Cognitive score variance was explained (29.6%, cross-validated Rˆ2 = 0.296) by left posterior-limb-of-internal-capsule MD, Genu RD, right fusiform gyrus AD. Motor score variance was explained (31.7%, cross-validated Rˆ2 = 0.317) by left posterior-limb-of-internal-capsule MD, right parahippocampal gyrus AD, right middle-temporal gyrus AD. Search in large DTI feature space more accurately identified neonatal neuroimaging correlates of neurodevelopment.

  18. Thermal cut-off response modelling of universal motors

    NASA Astrophysics Data System (ADS)

    Thangaveloo, Kashveen; Chin, Yung Shin

    2017-04-01

    This paper presents a model to predict the thermal cut-off (TCO) response behaviour in universal motors. The mathematical model includes the calculations of heat loss in the universal motor and the flow characteristics around the TCO component which together are the main parameters for TCO response prediction. In order to accurately predict the TCO component temperature, factors like the TCO component resistance, the effect of ambient, and the flow conditions through the motor are taken into account to improve the prediction accuracy of the model.

  19. A motor unit-based model of muscle fatigue

    PubMed Central

    2017-01-01

    Muscle fatigue is a temporary decline in the force and power capacity of skeletal muscle resulting from muscle activity. Because control of muscle is realized at the level of the motor unit (MU), it seems important to consider the physiological properties of motor units when attempting to understand and predict muscle fatigue. Therefore, we developed a phenomenological model of motor unit fatigue as a tractable means to predict muscle fatigue for a variety of tasks and to illustrate the individual contractile responses of MUs whose collective action determines the trajectory of changes in muscle force capacity during prolonged activity. An existing MU population model was used to simulate MU firing rates and isometric muscle forces and, to that model, we added fatigue-related changes in MU force, contraction time, and firing rate associated with sustained voluntary contractions. The model accurately estimated endurance times for sustained isometric contractions across a wide range of target levels. In addition, simulations were run for situations that have little experimental precedent to demonstrate the potential utility of the model to predict motor unit fatigue for more complicated, real-world applications. Moreover, the model provided insight into the complex orchestration of MU force contributions during fatigue, that would be unattainable with current experimental approaches. PMID:28574981

  20. Prediction error induced motor contagions in human behaviors.

    PubMed

    Ikegami, Tsuyoshi; Ganesh, Gowrishankar; Takeuchi, Tatsuya; Nakamoto, Hiroki

    2018-05-29

    Motor contagions refer to implicit effects on one's actions induced by observed actions. Motor contagions are believed to be induced simply by action observation and cause an observer's action to become similar to the action observed. In contrast, here we report a new motor contagion that is induced only when the observation is accompanied by prediction errors - differences between actions one observes and those he/she predicts or expects. In two experiments, one on whole-body baseball pitching and another on simple arm reaching, we show that the observation of the same action induces distinct motor contagions, depending on whether prediction errors are present or not. In the absence of prediction errors, as in previous reports, participants' actions changed to become similar to the observed action, while in the presence of prediction errors, their actions changed to diverge away from it, suggesting distinct effects of action observation and action prediction on human actions. © 2018, Ikegami et al.

  1. The association between motor skill competence and physical fitness in young adults.

    PubMed

    Stodden, David; Langendorfer, Stephen; Roberton, Mary Ann

    2009-06-01

    We examined the relationship between competence in three fundamental motor skills (throwing kicking, and jumping) and six measures of health-related physical fitness in young adults (ages 18-25). We assessed motor skill competence using product scores of maximum kicking and throwing speed and maximum jumping distance. A factor analysis indicated the 12-min run/walk, percent body fat, curl-ups, grip strength, and maximum leg press strength all loaded on one factor defining the construct of "overall fitness. "Multiple regression analyses indicated that the product scores for jumping (74%), kicking (58%), and throwing (59%) predicted 79% of the variance in overall fitness. Gender was not a significant predictor of fitness. Results suggest that developing motor skill competence may be fundamental in developing and maintaining adequate physical fitness into adulthood. These data represent the strongest to date on the relationship between motor skill competence and physical fitness.

  2. Functional connectivity between somatosensory and motor brain areas predicts individual differences in motor learning by observing.

    PubMed

    McGregor, Heather R; Gribble, Paul L

    2017-08-01

    Action observation can facilitate the acquisition of novel motor skills; however, there is considerable individual variability in the extent to which observation promotes motor learning. Here we tested the hypothesis that individual differences in brain function or structure can predict subsequent observation-related gains in motor learning. Subjects underwent an anatomical MRI scan and resting-state fMRI scans to assess preobservation gray matter volume and preobservation resting-state functional connectivity (FC), respectively. On the following day, subjects observed a video of a tutor adapting her reaches to a novel force field. After observation, subjects performed reaches in a force field as a behavioral assessment of gains in motor learning resulting from observation. We found that individual differences in resting-state FC, but not gray matter volume, predicted postobservation gains in motor learning. Preobservation resting-state FC between left primary somatosensory cortex and bilateral dorsal premotor cortex, primary motor cortex, and primary somatosensory cortex and left superior parietal lobule was positively correlated with behavioral measures of postobservation motor learning. Sensory-motor resting-state FC can thus predict the extent to which observation will promote subsequent motor learning. NEW & NOTEWORTHY We show that individual differences in preobservation brain function can predict subsequent observation-related gains in motor learning. Preobservation resting-state functional connectivity within a sensory-motor network may be used as a biomarker for the extent to which observation promotes motor learning. This kind of information may be useful if observation is to be used as a way to boost neuroplasticity and sensory-motor recovery for patients undergoing rehabilitation for diseases that impair movement such as stroke. Copyright © 2017 the American Physiological Society.

  3. Accurate Prediction of Motor Failures by Application of Multi CBM Tools: A Case Study

    NASA Astrophysics Data System (ADS)

    Dutta, Rana; Singh, Veerendra Pratap; Dwivedi, Jai Prakash

    2018-02-01

    Motor failures are very difficult to predict accurately with a single condition-monitoring tool as both electrical and the mechanical systems are closely related. Electrical problem, like phase unbalance, stator winding insulation failures can, at times, lead to vibration problem and at the same time mechanical failures like bearing failure, leads to rotor eccentricity. In this case study of a 550 kW blower motor it has been shown that a rotor bar crack was detected by current signature analysis and vibration monitoring confirmed the same. In later months in a similar motor vibration monitoring predicted bearing failure and current signature analysis confirmed the same. In both the cases, after dismantling the motor, the predictions were found to be accurate. In this paper we will be discussing the accurate predictions of motor failures through use of multi condition monitoring tools with two case studies.

  4. Mathematical skills in 3- and 5-year-olds with spina bifida and their typically developing peers: a longitudinal approach.

    PubMed

    Barnes, Marcia A; Stubbs, Allison; Raghubar, Kimberly P; Agostino, Alba; Taylor, Heather; Landry, Susan; Fletcher, Jack M; Smith-Chant, Brenda

    2011-05-01

    Preschoolers with spina bifida (SB) were compared to typically developing (TD) children on tasks tapping mathematical knowledge at 36 months (n = 102) and 60 months of age (n = 98). The group with SB had difficulty compared to TD peers on all mathematical tasks except for transformation on quantities in the subitizable range. At 36 months, vocabulary knowledge, visual-spatial, and fine motor abilities predicted achievement on a measure of informal math knowledge in both groups. At 60 months of age, phonological awareness, visual-spatial ability, and fine motor skill were uniquely and differentially related to counting knowledge, oral counting, object-based arithmetic skills, and quantitative concepts. Importantly, the patterns of association between these predictors and mathematical performance were similar across the groups. A novel finding is that fine motor skill uniquely predicted object-based arithmetic abilities in both groups, suggesting developmental continuity in the neurocognitive correlates of early object-based and later symbolic arithmetic problem solving. Models combining 36-month mathematical ability and these language-based, visual-spatial, and fine motor abilities at 60 months accounted for considerable variance on 60-month informal mathematical outcomes. Results are discussed with reference to models of mathematical development and early identification of risk in preschoolers with neurodevelopmental disorder.

  5. Mathematical Skills in 3- and 5-Year-Olds with Spina Bifida and Their Typically Developing Peers: A Longitudinal Approach

    PubMed Central

    Barnes, Marcia A.; Stubbs, Allison; Raghubar, Kimberly P.; Agostino, Alba; Taylor, Heather; Landry, Susan; Fletcher, Jack M.; Smith-Chant, Brenda

    2011-01-01

    Preschoolers with spina bifida (SB) were compared to typically developing (TD) children on tasks tapping mathematical knowledge at 36 months (n = 102) and 60 months of age (n = 98). The group with SB had difficulty compared to TD peers on all mathematical tasks except for transformation on quantities in the subitizable range. At 36 months, vocabulary knowledge, visual–spatial, and fine motor abilities predicted achievement on a measure of informal math knowledge in both groups. At 60 months of age, phonological awareness, visual–spatial ability, and fine motor skill were uniquely and differentially related to counting knowledge, oral counting, object-based arithmetic skills, and quantitative concepts. Importantly, the patterns of association between these predictors and mathematical performance were similar across the groups. A novel finding is that fine motor skill uniquely predicted object-based arithmetic abilities in both groups, suggesting developmental continuity in the neurocognitive correlates of early object-based and later symbolic arithmetic problem solving. Models combining 36-month mathematical ability and these language-based, visual–spatial, and fine motor abilities at 60 months accounted for considerable variance on 60-month informal mathematical outcomes. Results are discussed with reference to models of mathematical development and early identification of risk in preschoolers with neurodevelopmental disorder. PMID:21418718

  6. Nonlinear rocket motor stability prediction: Limit amplitude, triggering, and mean pressure shifta)

    NASA Astrophysics Data System (ADS)

    Flandro, Gary A.; Fischbach, Sean R.; Majdalani, Joseph

    2007-09-01

    High-amplitude pressure oscillations in solid propellant rocket motor combustion chambers display nonlinear effects including: (1) limit cycle behavior in which the fluctuations may dwell for a considerable period of time near their peak amplitude, (2) elevated mean chamber pressure (DC shift), and (3) a triggering amplitude above which pulsing will cause an apparently stable system to transition to violent oscillations. Along with the obvious undesirable vibrations, these features constitute the most damaging impact of combustion instability on system reliability and structural integrity. The physical mechanisms behind these phenomena and their relationship to motor geometry and physical parameters must, therefore, be fully understood if instability is to be avoided in the design process, or if effective corrective measures must be devised during system development. Predictive algorithms now in use have limited ability to characterize the actual time evolution of the oscillations, and they do not supply the motor designer with information regarding peak amplitudes or the associated critical triggering amplitudes. A pivotal missing element is the ability to predict the mean pressure shift; clearly, the designer requires information regarding the maximum chamber pressure that might be experienced during motor operation. In this paper, a comprehensive nonlinear combustion instability model is described that supplies vital information. The central role played by steep-fronted waves is emphasized. The resulting algorithm provides both detailed physical models of nonlinear instability phenomena and the critically needed predictive capability. In particular, the origin of the DC shift is revealed.

  7. Studying action representation in children via motor imagery.

    PubMed

    Gabbard, Carl

    2009-12-01

    The use of motor imagery is a widely used experimental paradigm for the study of cognitive aspects of action planning and control in adults. Furthermore, there are indications that motor imagery provides a window into the process of action representation. These notions complement internal model theory suggesting that such representations allow predictions (estimates) about the mapping of the self to parameters of the external world; processes that enable successful planning and execution of action. The ability to mentally represent action is important to the development of motor control. This paper presents a critical review of motor imagery research conducted with children (typically developing and special populations) with focus on its merits and possible shortcomings in studying action representation. Included in the review are age-related findings, possible brain structures involved, experimental paradigms, and recommendations for future work. The merits of this review are associated with the apparent increasing attraction for using and studying motor imagery to understand the developmental aspects of action processing in children.

  8. Exploration as a mediator of the relation between the attainment of motor milestones and the development of spatial cognition and spatial language.

    PubMed

    Oudgenoeg-Paz, Ora; Leseman, Paul P M; Volman, M Chiel J M

    2015-09-01

    The embodied-cognition approach views cognition and language as grounded in daily sensorimotor child-environment interactions. Therefore, the attainment of motor milestones is expected to play a role in cognitive-linguistic development. Early attainment of unsupported sitting and independent walking indeed predict better spatial cognition and language at later ages. However, evidence linking these milestones with the development of spatial language and evidence regarding factors that might mediate this relation are scarce. The current study examined whether exploration of spatial-relational object properties (e.g., the possibility of containing or stacking) and exploration of the space through self-locomotion mediate the effect of, respectively, age of sitting and age of walking on spatial cognition and spatial language. Thus, we hypothesized that an earlier age of sitting and walking predicts, respectively, higher levels of spatial-relational object exploration and exploration through self-locomotion, which in turn, predict better spatial cognition and spatial language at later ages. Fifty-nine Dutch children took part in a longitudinal study. A combination of tests, observations, and parental reports was used to measure motor development, exploratory behavior (age 20 months), spatial memory (age 24 months), spatial processing (age 32 months), and spatial language (age 36 months). Results show that attainment of sitting predicted spatial memory and spatial language, but spatial-relational object exploration did not mediate these effects. Attainment of independent walking predicted spatial processing and spatial language, and exploration through self-locomotion (partially) mediated these relations. These findings extend previous work and provide partial support for the hypotheses about the mediating role of exploration. (c) 2015 APA, all rights reserved).

  9. Gross Motor Function Measure Evolution Ratio: Use as a Control for Natural Progression in Cerebral Palsy.

    PubMed

    Marois, Pierre; Marois, Mikael; Pouliot-Laforte, Annie; Vanasse, Michel; Lambert, Jean; Ballaz, Laurent

    2016-05-01

    To develop a new way to interpret Gross Motor Function Measure (GMFM-66) score improvement in studies conducted without control groups in children with cerebral palsy (CP). The curves, which describe the pattern of motor development according to the children's Gross Motor Function Classification System level, were used as historical control to define the GMFM-66 expected natural evolution in children with CP. These curves have been modeled and generalized to fit the curve to particular children characteristics. Research center. Not applicable. Not applicable. Not applicable. Assuming that the GMFM-66 score evolution followed the shape of the Rosenbaum curves, by taking into account the age and GMFM-66 score of children, the expected natural evolution of the GMFM-66 score was predicted for any group of children with CP who were <8 years old. Because the expected natural evolution could be predicted for a specific group of children with CP, the efficacy of a treatment could be determined by comparing the GMFM-66 score evolution measured before and after treatment with the expected natural evolution for the same period. A new index, the Gross Motor Function Measure Evolution Ratio, was defined as follows: Gross Motor Function Measure Evolution Ratio=measured GMFM-66 score change/expected natural evolution. For practical or ethical reasons, it is almost impossible to use control groups in studies evaluating effectiveness of many therapeutic modalities. The Gross Motor Function Measure Evolution Ratio gives the opportunity to take into account the expected natural evolution of the gross motor function of children with CP, which is essential to accurately interpret the therapy effect on the GMFM-66. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. Prediction of motor recovery after stroke: advances in biomarkers.

    PubMed

    Stinear, Cathy M

    2017-10-01

    Stroke remains a leading cause of adult disability, and the recovery of motor function after stroke is crucial for the patient to regain independence. However, making accurate predictions of a patient's motor recovery and outcome is difficult when based on clinical assessment alone. Clinical assessment of motor impairment within a few days of stroke can help to predict subsequent recovery, while neurophysiological and neuroimaging biomarkers of corticomotor structure and function can help to predict both motor recovery and motor outcome after stroke. The combination of biomarkers can provide clinically useful information when planning the personalised rehabilitation of a patient. These biomarkers can also be used for patient selection and stratification in trials investigating rehabilitation interventions that are initiated early after stroke. Ongoing multicentre trials that incorporate motor biomarkers could help to bring their use into routine clinical practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Ignition transient analysis of solid rocket motor

    NASA Technical Reports Server (NTRS)

    Han, Samuel S.

    1990-01-01

    To predict pressure-time and thrust-time behavior of solid rocket motors, a one-dimensional numerical model is developed. The ignition phase of solid rocket motors (time less than 0.4 sec) depends critically on complex interactions among many elements, such as rocket geometry, heat and mass transfer, flow development, and chemical reactions. The present model solves the mass, momentum, and energy equations governing the transfer processes in the rocket chamber as well as the attached converging-diverging nozzle. A qualitative agreement with the SRM test data in terms of head-end pressure gradient and the total thrust build-up is obtained. Numerical results show that the burning rate in the star-segmented head-end section and the erosive burning are two important parameters in the ignition transient of the solid rocket motor (SRM).

  12. Longitudinal Change in the Relationship between Fundamental Motor Skills and Perceived Competence: Kindergarten to Grade 2

    PubMed Central

    Naylor, Patti-Jean

    2017-01-01

    As children transition from early to middle childhood, the relationship between motor skill proficiency and perceptions of physical competence should strengthen as skills improve and inflated early childhood perceptions decrease. This study examined change in motor skills and perceptions of physical competence and the relationship between those variables from kindergarten to grade 2. Participants were 250 boys and girls (Mean age = 5 years 8 months in kindergarten). Motor skills were assessed using the Test of Gross Motor Development-2 and perceptions were assessed using a pictorial scale of perceived competence. Mixed-design analyses of variance revealed there was a significant increase in object-control skills and perceptions from kindergarten to grade 2, but no change in locomotor skills. In kindergarten, linear regression showed that locomotor skills and object-control skills explained 10% and 9% of the variance, respectively, in perceived competence for girls, and 7% and 11%, respectively, for boys. In grade 2, locomotor skills predicted 11% and object-control skills predicted 19% of the variance in perceptions of physical competence, but only among the boys. Furthermore, the relationship between motor skills and perceptions of physical competence strengthened for boys only from early to middle childhood. However, it seems that forces other than motor skill proficiency influenced girls’ perceptions of their abilities in grade 2.

  13. Investigation of mechanical field weakening of axial flux permanent magnet motor

    NASA Astrophysics Data System (ADS)

    Syaifuddin Mohd, M.; Aziz, A. Rashid A.; Syafiq Mohd, M.

    2015-12-01

    An investigation of axial flux permanent magnet motor (AFPM) characteristics was conducted with a proposed mechanical field weakening control mechanisms (by means of stator-rotor force manipulation) on the motor through modeling and experimentation. By varying the air gap between at least two bistable positions, the peak torque and top speed of the motor can be extended. The motor high efficiency region can also be extended to cover greater part of the motor operating points. An analytical model of the motor had been developed to study the correlation between the total attraction force (between the rotor and the stator) and the operating parameters of the motor. The test results shows that the motor output complies with the prediction of the research hypothesis and it is likely that a spring locking mechanism can be built to dynamically adjust the air gap of the motor to increase the operating range and could be applied in electric drivetrain applications to improve overall efficiency of electric and hybrid electric vehicles.

  14. Maternal speech to preterm infants during the first 2 years of life: stability and change.

    PubMed

    Suttora, Chiara; Salerni, Nicoletta

    2011-01-01

    Studies on typical language development documented that mothers fine-tune their verbal input to children's advancing skills and development. Although premature birth has often been associated with delays in communicative and language development, studies investigating maternal language addressed to these children are still rare. The principal aim of this longitudinal study was to investigate the maternal speech directed at very preterm children by examining its changes across time and the stability of maternal individual styles. A sample of 16 mother-preterm infant dyads participated in semi-structured play sessions when children were 6, 12, 18 and 24 months of corrected age. Maternal speech directed at the children was analysed in terms of lexical and syntactical complexity as well as verbal productivity. Also children's motor, cognitive and communicative skills were assessed. Results highlight an overall increase in the lexical and syntactical complexity and in the amount of maternal speech across the first years of life. At the same time, individual maternal communicative styles seem stable as infants grow older, even if between 12 and 18 months all the indices' predictive values decrease, indicating a noteworthy modification in individual maternal styles. Furthermore, between 12 and 18 months predictive relationships between children's motor and vocal skills and maternal changes in input were found. Verbal input addressed to children born preterm during the first 2 years of life does not seem to differ considerably from the language usually used with full-term infants. Nevertheless, maternal verbal adjustments seem to be predicted by earlier infant achievements in vocal and motor development. This suggests that infants' motor skill maturation may function as a major signal for mothers of preterm babies to adjust aspects of their linguistic interactive style. © 2011 Royal College of Speech & Language Therapists.

  15. Development of a high-efficiency motor/generator for flywheel energy storage

    NASA Astrophysics Data System (ADS)

    Lashley, Christopher; Anand, Dave K.; Kirk, James A.; Zmood, Ronald B.

    This study addresses the design changes and extensions necessary to construct and test a working prototype of a motor/generator for a magnetically suspended flywheel energy storage system. The brushless motor controller for the motor was specified and the electronic commutation arrangement designed. The laminations were redesigned and fabricated using laser machining. Flux density measurements were made and the results used to redesign the armature windings. A test rig was designed and built, and the motor/generator was installed and speed tested to 9000 rpm. Experimental methods of obtaining the machine voltage and torque constants Kv and Kt, obtaining the useful air-gap flux density, and characterizing the motor and other system components are described. The measured Kv and Kt were approximately 40 percent greater than predicted by theory and initial experiment.

  16. Development of a high-efficiency motor/generator for flywheel energy storage

    NASA Technical Reports Server (NTRS)

    Lashley, Christopher; Anand, Dave K.; Kirk, James A.; Zmood, Ronald B.

    1991-01-01

    This study addresses the design changes and extensions necessary to construct and test a working prototype of a motor/generator for a magnetically suspended flywheel energy storage system. The brushless motor controller for the motor was specified and the electronic commutation arrangement designed. The laminations were redesigned and fabricated using laser machining. Flux density measurements were made and the results used to redesign the armature windings. A test rig was designed and built, and the motor/generator was installed and speed tested to 9000 rpm. Experimental methods of obtaining the machine voltage and torque constants Kv and Kt, obtaining the useful air-gap flux density, and characterizing the motor and other system components are described. The measured Kv and Kt were approximately 40 percent greater than predicted by theory and initial experiment.

  17. Early developmental influences on self-esteem trajectories from adolescence through adulthood: Impact of birth weight and motor skills.

    PubMed

    Poole, Kristie L; Schmidt, Louis A; Ferro, Mark A; Missiuna, Cheryl; Saigal, Saroj; Boyle, Michael H; Van Lieshout, Ryan J

    2018-02-01

    While the trajectory of self-esteem from adolescence to adulthood varies from person to person, little research has examined how differences in early developmental processes might affect these pathways. This study examined how early motor skill development interacted with preterm birth status to predict self-esteem from adolescence through the early 30s. We addressed this using the oldest known, prospectively followed cohort of extremely low birth weight (<1000 g) survivors (N = 179) and normal birth weight controls (N = 145) in the world, born between 1977 and 1982. Motor skills were measured using a performance-based assessment at age 8 and a retrospective self-report, and self-esteem was reported during three follow-up periods (age 12-16, age 22-26, and age 29-36). We found that birth weight status moderated the association between early motor skills and self-esteem. Stable over three decades, the self-esteem of normal birth weight participants was sensitive to early motor skills such that those with poorer motor functioning manifested lower self-esteem, while those with better motor skills manifested higher self-esteem. Conversely, differences in motor skill development did not affect the self-esteem from adolescence to adulthood in individuals born at extremely low birth weight. Early motor skill development may exert differential effects on self-esteem, depending on whether one is born at term or prematurely.

  18. Experimental and numerical study of windage losses in the small gap region of a high speed electric motor

    NASA Astrophysics Data System (ADS)

    Anderson, Kevin; Lin, Jun T.; Wong, Alexander J.

    2017-11-01

    Research findings of an experimental and numerical investigation of windage losses in the small annular air gap region between the stator and rotor of a high speed electric motor are presented herein. The experimental set-up is used to empirically measure the windage losses in the motor by measuring torque and rotational speed. The motor rotor spins at roughly 30,000 rpm and the rotor sets up windage losses on the order of 100 W. Axial air flow of 200 L/min is used to cool the motor, thus setting up a pseudo Taylor-Couette Poiseuille type of flow. Details of the experimental test apparatus, instrumentation and data acquisition are given. Experimental data for spin-down (both actively and passively cooled) and calibration of bearing windage losses are discussed. A Computational Fluid Dynamics (CFD) model is developed and used to predict the torque speed curve and windage losses in the motor. The CFD model is correlated with the experimental data. The CFD model is also used to predict the formation of the Taylor-Couette cells in the small gap region of the high speed motor. Results for windage losses, spin-down time constant, bearing losses, and torque of the motor versus cooling air mass flow rate and rotational speed are presented in this study. Mechanical Engineering.

  19. Multivariate prediction of motor diagnosis in Huntington's disease: 12 years of PREDICT-HD.

    PubMed

    Long, Jeffrey D; Paulsen, Jane S

    2015-10-01

    It is well known in Huntington's disease that cytosine-adenine-guanine expansion and age at study entry are predictive of the timing of motor diagnosis. The goal of this study was to assess whether additional motor, imaging, cognitive, functional, psychiatric, and demographic variables measured at study entry increased the ability to predict the risk of motor diagnosis over 12 years. One thousand seventy-eight Huntington's disease gene-expanded carriers (64% female) from the Neurobiological Predictors of Huntington's Disease study were followed up for up to 12 y (mean = 5, standard deviation = 3.3) covering 2002 to 2014. No one had a motor diagnosis at study entry, but 225 (21%) carriers prospectively received a motor diagnosis. Analysis was performed with random survival forests, which is a machine learning method for right-censored data. Adding 34 variables along with cytosine-adenine-guanine and age substantially increased predictive accuracy relative to cytosine-adenine-guanine and age alone. Adding six of the common motor and cognitive variables (total motor score, diagnostic confidence level, Symbol Digit Modalities Test, three Stroop tests) resulted in lower predictive accuracy than the full set, but still had twice the 5-y predictive accuracy than when using cytosine-adenine-guanine and age alone. Additional analysis suggested interactions and nonlinear effects that were characterized in a post hoc Cox regression model. Measurement of clinical variables can substantially increase the accuracy of predicting motor diagnosis over and above cytosine-adenine-guanine and age (and their interaction). Estimated probabilities can be used to characterize progression level and aid in future studies' sample selection. © 2015 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.

  20. Typical action perception and interpretation without motor simulation.

    PubMed

    Vannuscorps, Gilles; Caramazza, Alfonso

    2016-01-05

    Every day, we interact with people synchronously, immediately understand what they are doing, and easily infer their mental state and the likely outcome of their actions from their kinematics. According to various motor simulation theories of perception, such efficient perceptual processing of others' actions cannot be achieved by visual analysis of the movements alone but requires a process of motor simulation--an unconscious, covert imitation of the observed movements. According to this hypothesis, individuals incapable of simulating observed movements in their motor system should have difficulty perceiving and interpreting observed actions. Contrary to this prediction, we found across eight sensitive experiments that individuals born with absent or severely shortened upper limbs (upper limb dysplasia), despite some variability, could perceive, anticipate, predict, comprehend, and memorize upper limb actions, which they cannot simulate, as efficiently as typically developed participants. We also found that, like the typically developed participants, the dysplasic participants systematically perceived the position of moving upper limbs slightly ahead of their real position but only when the anticipated position was not biomechanically awkward. Such anticipatory bias and its modulation by implicit knowledge of the body biomechanical constraints were previously considered as indexes of the crucial role of motor simulation in action perception. Our findings undermine this assumption and the theories that place the locus of action perception and comprehension in the motor system and invite a shift in the focus of future research to the question of how the visuo-perceptual system represents and processes observed body movements and actions.

  1. Typical action perception and interpretation without motor simulation

    PubMed Central

    Vannuscorps, Gilles; Caramazza, Alfonso

    2016-01-01

    Every day, we interact with people synchronously, immediately understand what they are doing, and easily infer their mental state and the likely outcome of their actions from their kinematics. According to various motor simulation theories of perception, such efficient perceptual processing of others’ actions cannot be achieved by visual analysis of the movements alone but requires a process of motor simulation—an unconscious, covert imitation of the observed movements. According to this hypothesis, individuals incapable of simulating observed movements in their motor system should have difficulty perceiving and interpreting observed actions. Contrary to this prediction, we found across eight sensitive experiments that individuals born with absent or severely shortened upper limbs (upper limb dysplasia), despite some variability, could perceive, anticipate, predict, comprehend, and memorize upper limb actions, which they cannot simulate, as efficiently as typically developed participants. We also found that, like the typically developed participants, the dysplasic participants systematically perceived the position of moving upper limbs slightly ahead of their real position but only when the anticipated position was not biomechanically awkward. Such anticipatory bias and its modulation by implicit knowledge of the body biomechanical constraints were previously considered as indexes of the crucial role of motor simulation in action perception. Our findings undermine this assumption and the theories that place the locus of action perception and comprehension in the motor system and invite a shift in the focus of future research to the question of how the visuo-perceptual system represents and processes observed body movements and actions. PMID:26699468

  2. Predictive validity of the Sødring Motor Evaluation of Stroke Patients (SMES).

    PubMed

    Wyller, T B; Sødring, K M; Sveen, U; Ljunggren, A E; Bautz-Holter, E

    1996-12-01

    The Sødring Motor Evaluation of Stroke Patients (SMES) has been developed as an instrument for the evaluation by physiotherapists of motor function and activities in stroke patients. The predictive validity of the instrument was studied in a consecutive sample of 93 acute stroke patients, assessed in the acute phase and after one year. The outcome measures were: survival, residence at home or in institution, the Barthel ADL index (dichotomized at 19/20), and the Frenchay Activities Index (FAI) (dichotomized at 9/10). The SMES, scored in the acute phase, demonstrated a marginally significant predictive power regarding survival, but was a highly significant predictor regarding the other outcomes. The adjusted odds ratio for a good versus a poor outcome for patients in the upper versus the lower tertile of the SMES arm subscore was 5.4 (95% confidence interval 0.9-59) for survival, 11.5 (2.1-88) for living at home, 86.3 (11-infinity) for a high Barthel score, and 31.4 (5.2-288) for a high FAI score. We conclude that SMES has high predictive validity.

  3. 'Incremental thermocouple probe' for testing insulation erosion on a rocket motor

    NASA Technical Reports Server (NTRS)

    Gould, Reginald J.

    1993-01-01

    An incremental thermocouple probe was developed to measure insulation erosion during a solid rocket motor firing. The probe's new and unique design is described along with its theory of operation. Data from an actual firing are reported which show that the probe's performance greatly exceeded predictions and present technology as a temperature measurement device and as an event gage.

  4. Topological self-organization and prediction learning support both action and lexical chains in the brain.

    PubMed

    Chersi, Fabian; Ferro, Marcello; Pezzulo, Giovanni; Pirrelli, Vito

    2014-07-01

    A growing body of evidence in cognitive psychology and neuroscience suggests a deep interconnection between sensory-motor and language systems in the brain. Based on recent neurophysiological findings on the anatomo-functional organization of the fronto-parietal network, we present a computational model showing that language processing may have reused or co-developed organizing principles, functionality, and learning mechanisms typical of premotor circuit. The proposed model combines principles of Hebbian topological self-organization and prediction learning. Trained on sequences of either motor or linguistic units, the network develops independent neuronal chains, formed by dedicated nodes encoding only context-specific stimuli. Moreover, neurons responding to the same stimulus or class of stimuli tend to cluster together to form topologically connected areas similar to those observed in the brain cortex. Simulations support a unitary explanatory framework reconciling neurophysiological motor data with established behavioral evidence on lexical acquisition, access, and recall. Copyright © 2014 Cognitive Science Society, Inc.

  5. Relations among motor, social, and cognitive skills in pre-kindergarten children with developmental disabilities.

    PubMed

    Kim, Helyn; Carlson, Abby G; Curby, Timothy W; Winsler, Adam

    2016-01-01

    Despite the comorbidity between motor difficulties and certain disabilities, limited research has examined links between early motor, cognitive, and social skills in preschool-aged children with developmental disabilities. The present study examined the relative contributions of gross motor and fine motor skills to the prediction of improvements in children's cognitive and social skills among 2,027 pre-kindergarten children with developmental disabilities, including specific learning disorder, speech/language impairment, intellectual disability, and autism spectrum disorder. Results indicated that for pre-kindergarten children with developmental disabilities, fine motor skills, but not gross motor skills, were predictive of improvements in cognitive and social skills, even after controlling for demographic information and initial skill levels. Moreover, depending on the type of developmental disability, the pattern of prediction of gross motor and fine motor skills to improvements in children's cognitive and social skills differed. Implications are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Fine motor skills and early comprehension of the world: two new school readiness indicators.

    PubMed

    Grissmer, David; Grimm, Kevin J; Aiyer, Sophie M; Murrah, William M; Steele, Joel S

    2010-09-01

    Duncan et al. (2007) presented a new methodology for identifying kindergarten readiness factors and quantifying their importance by determining which of children's developing skills measured around kindergarten entrance would predict later reading and math achievement. This article extends Duncan et al.'s work to identify kindergarten readiness factors with 6 longitudinal data sets. Their results identified kindergarten math and reading readiness and attention as the primary long-term predictors but found no effects from social skills or internalizing and externalizing behavior. We incorporated motor skills measures from 3 of the data sets and found that fine motor skills are an additional strong predictor of later achievement. Using one of the data sets, we also predicted later science scores and incorporated an additional early test of general knowledge of the social and physical world as a predictor. We found that the test of general knowledge was by far the strongest predictor of science and reading and also contributed significantly to predicting later math, making the content of this test another important kindergarten readiness indicator. Together, attention, fine motor skills, and general knowledge are much stronger overall predictors of later math, reading, and science scores than early math and reading scores alone.

  7. Around Marshall

    NASA Image and Video Library

    1996-06-10

    The dart and associated launching system was developed by engineers at MSFC to collect a sample of the aluminum oxide particles during the static fire testing of the Shuttle's solid rocket motor. The dart is launched through the exhaust and recovered post test. The particles are collected on sticky copper tapes affixed to a cylindrical shaft in the dart. A protective sleeve draws over the tape after the sample is collected to prevent contamination. The sample is analyzed under a scarning electron microscope under high magnification and a particle size distribution is determined. This size distribution is input into the analytical model to predict the radiative heating rates from the motor exhaust. Good prediction models are essential to optimizing the development of the thermal protection system for the Shuttle.

  8. A new method for the prediction of combustion instability

    NASA Astrophysics Data System (ADS)

    Flanagan, Steven Meville

    This dissertation presents a new approach to the prediction of combustion instability in solid rocket motors. Previous attempts at developing computational tools to solve this problem have been largely unsuccessful, showing very poor agreement with experimental results and having little or no predictive capability. This is due primarily to deficiencies in the linear stability theory upon which these efforts have been based. Recent advances in linear instability theory by Flandro have demonstrated the importance of including unsteady rotational effects, previously considered negligible. Previous versions of the theory also neglected corrections to the unsteady flow field of the first order in the mean flow Mach number. This research explores the stability implications of extending the solution to include these corrections. Also, the corrected linear stability theory based upon a rotational unsteady flow field extended to first order in mean flow Mach number has been implemented in two computer programs developed for the Macintosh platform. A quasi one-dimensional version of the program has been developed which is based upon an approximate solution to the cavity acoustics problem. The three-dimensional program applies Greens's Function Discretization (GFD) to the solution for the acoustic mode shapes and frequency. GFD is a recently developed numerical method for finding fully three dimensional solutions for this class of problems. The analysis of complex motor geometries, previously a tedious and time consuming task, has also been greatly simplified through the development of a drawing package designed specifically to facilitate the specification of typical motor geometries. The combination of the drawing package, improved acoustic solutions, and new analysis, results in a tool which is capable of producing more accurate and meaningful predictions than have been possible in the past.

  9. The ability to tap to a beat relates to cognitive, linguistic, and perceptual skills

    PubMed Central

    Tierney, Adam T.; Kraus, Nina

    2013-01-01

    Reading-impaired children have difficulty tapping to a beat. Here we tested whether this relationship between reading ability and synchronized tapping holds in typically-developing adolescents. We also hypothesized that tapping relates to two other abilities. First, since auditory-motor synchronization requires monitoring of the relationship between motor output and auditory input, we predicted that subjects better able to tap to the beat would perform better on attention tests. Second, since auditory-motor synchronization requires fine temporal precision within the auditory system for the extraction of a sound’s onset time, we predicted that subjects better able to tap to the beat would be less affected by backward masking, a measure of temporal precision within the auditory system. As predicted, tapping performance related to reading, attention, and backward masking. These results motivate future research investigating whether beat synchronization training can improve not only reading ability, but potentially executive function and basic auditory processing as well. PMID:23400117

  10. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability.

    PubMed

    Wu, Howard G; Miyamoto, Yohsuke R; Gonzalez Castro, Luis Nicolas; Ölveczky, Bence P; Smith, Maurice A

    2014-02-01

    Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning.

  11. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability

    PubMed Central

    Wu, Howard G; Miyamoto, Yohsuke R; Castro, Luis Nicolas Gonzalez; Ölveczky, Bence P; Smith, Maurice A

    2015-01-01

    Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning. PMID:24413700

  12. Robust and accurate decoding of motoneuron behavior and prediction of the resulting force output.

    PubMed

    Thompson, Christopher K; Negro, Francesco; Johnson, Michael D; Holmes, Matthew R; McPherson, Laura Miller; Powers, Randall K; Farina, Dario; Heckman, Charles J

    2018-05-03

    The spinal alpha motoneuron is the only cell in the human CNS whose discharge can be routinely recorded in humans. We have reengineered motor unit collection and decomposition approaches, originally developed in humans, to measure the neural drive to muscle and estimate muscle force generation in the decerebrate cat model. Experimental, computational, and predictive approaches are used to demonstrate the validity of this approach across a wide range of modes to activate the motor pool. The utility of this approach is shown through the ability to track individual motor units across trials, allowing for better predictions of muscle force than the electromyography signal, and providing insights in to the stereotypical discharge characteristics in response to synaptic activation of the motor pool. This approach now allows for a direct link between the intracellular data of single motoneurons, the discharge properties of motoneuron populations, and muscle force generation in the same preparation. The discharge of a spinal alpha motoneuron and the resulting contraction of its muscle fibers represents the functional quantum of the motor system. Recent advances in the recording and decomposition of the electromyographic signal allows for the identification of several tens of concurrently active motor units. These detailed population data provide the potential to achieve deep insights into the synaptic organization of motor commands. Yet most of our understanding of the synaptic input to motoneurons is derived from intracellular recordings in animal preparations. Thus, it is necessary to extend the new electrode and decomposition methods to recording of motor unit populations in these same preparations. To achieve this goal, we use high-density electrode arrays and decomposition techniques, analogous to those developed for humans, to record and decompose the activity of tens of concurrently active motor units in a hindlimb muscle in the decerebrate cat. Our results showed that the decomposition method in this animal preparation was highly accurate, with conventional two-source validation providing rates of agreement equal to or superior to those found in humans. Multidimensional reconstruction of the motor unit action potential provides the ability to accurately track the same motor unit across multiple contractions. Additionally, correlational analyses demonstrate that the composite spike train provides better estimates of whole muscle force than conventional estimates obtained from the electromyographic signal. Lastly, stark differences are observed between the modes of activation, in particular tendon vibration produced quantal interspike intervals at integer multiples of the vibration period. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Modeling myosin VI stepping dynamics

    NASA Astrophysics Data System (ADS)

    Tehver, Riina

    Myosin VI is a molecular motor that transports intracellular cargo as well as acts as an anchor. The motor has been measured to have unusually large step size variation and it has been reported to make both long forward and short inchworm-like forward steps, as well as step backwards. We have been developing a model that incorporates this diverse stepping behavior in a consistent framework. Our model allows us to predict the dynamics of the motor under different conditions and investigate the evolutionary advantages of the large step size variation.

  14. Is it possible to predict the infant's neurodevelopmental outcome at 14 months of age by means of a single preterm assessment of General Movements?

    PubMed Central

    Manacero, Sonia Aparecida; Marschik, Peter B.; Nunes, Magda Lahorgue; Einspieler, Christa

    2012-01-01

    Background It continues to be a challenge for clinicians to identify preterm infants likely to experience subsequent neurodevelopmental deficits. The Test of Infant Motor Performance (TIMP) and the assessment of spontaneous general movements (GMs) are the only reliable diagnostic and predictive tools for the functionality of the developing nervous system, if applied before term. Aim To determine to what extent singular preterm assessments of motor performance can predict the neurodevelopmental outcome in 14-month olds. Methods Thirty-seven preterm infants born < 34 weeks gestational age were recruited for the study at the NICU of the São Lucas University Hospital, Porto Alegre, RS, Brazil. At 34 weeks, their GMs were assessed; and the Test of Infant Motor Performance (TIMP) was applied. A prospective design was used to examine (A) the association between the GM assessment and the TIMP; and (B) the relation between GMs or the TIMP and the developmental status at 14 months, assessed by means of Alberta Infant Motor Scales (AIMS) and the Pediatric Evaluation of Disability Inventory (PEDI). Results Nineteen infants (41%) had abnormal GMs; only one scored within the TIMP average range. Hence, GMs and TIMP were not related. Children with cramped-synchronized GMs at 34 weeks preterm had a lower AIMS centile rank than those with poor repertoire or normal GMs. There was a marginal association between cramped-synchronized GMs and a lower PEDI mobility score. Conclusions A single preterm GM assessment is only fairly to moderately associated with the 14-month motor development. The TIMP is not suitable as a complementary assessment tool at such a young age. PMID:21775078

  15. Multivariate prediction of motor diagnosis in Huntington's disease: 12 years of PREDICT‐HD

    PubMed Central

    Long, Jeffrey D.

    2015-01-01

    Abstract Background It is well known in Huntington's disease that cytosine‐adenine‐guanine expansion and age at study entry are predictive of the timing of motor diagnosis. The goal of this study was to assess whether additional motor, imaging, cognitive, functional, psychiatric, and demographic variables measured at study entry increased the ability to predict the risk of motor diagnosis over 12 years. Methods One thousand seventy‐eight Huntington's disease gene–expanded carriers (64% female) from the Neurobiological Predictors of Huntington's Disease study were followed up for up to 12 y (mean = 5, standard deviation = 3.3) covering 2002 to 2014. No one had a motor diagnosis at study entry, but 225 (21%) carriers prospectively received a motor diagnosis. Analysis was performed with random survival forests, which is a machine learning method for right‐censored data. Results Adding 34 variables along with cytosine‐adenine‐guanine and age substantially increased predictive accuracy relative to cytosine‐adenine‐guanine and age alone. Adding six of the common motor and cognitive variables (total motor score, diagnostic confidence level, Symbol Digit Modalities Test, three Stroop tests) resulted in lower predictive accuracy than the full set, but still had twice the 5‐y predictive accuracy than when using cytosine‐adenine‐guanine and age alone. Additional analysis suggested interactions and nonlinear effects that were characterized in a post hoc Cox regression model. Conclusions Measurement of clinical variables can substantially increase the accuracy of predicting motor diagnosis over and above cytosine‐adenine‐guanine and age (and their interaction). Estimated probabilities can be used to characterize progression level and aid in future studies' sample selection. © 2015 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society PMID:26340420

  16. Global emission of black carbon from motor vehicles from 1960 to 2006.

    PubMed

    Wang, Rong; Tao, Shu; Shen, Huizhong; Wang, Xilong; Li, Bengang; Shen, Guofeng; Wang, Bin; Li, Wei; Liu, Xiaopeng; Huang, Ye; Zhang, Yanyan; Lu, Yan; Ouyang, Huiling

    2012-01-17

    Black carbon (BC) is a key short-lived climate change forcer. Motor vehicles are important sources of BC in the environment. BC emission factors (EF(BC)), defined as BC emitted per mass of fuel consumed, are critical in the development of BC emission inventories for motor vehicles. However, measured EF(BC) for motor vehicles vary in orders of magnitude, which is one of the major sources of uncertainty in the estimation of emissions. In this study, the main factors affecting EF(BC) for motor vehicles were investigated based on 385 measured EF(BC) collected from the literature. It was found that EF(BC) for motor vehicles of a given year in a particular country can be predicted using gross domestic product per capita (GDP(c)), temperature, and the year a country's GDP(c) reached 3000 USD (Y(3000)). GDP(c) represents technical progress in terms of emission control, while Y(3000) suggest the technical transfer from developed to developing countries. For global BC emission calculations, 87 and 64% of the variation can be eliminated for diesel and gasoline vehicles by using this model. In addition to a reduction in uncertainty, the model can be used to develop a global on-road vehicle BC emission inventory with spatial and temporal resolution.

  17. Prediction of outcome at 5 years from assessments at 2 years among extremely preterm children: a Norwegian national cohort study.

    PubMed

    Leversen, Katrine Tyborg; Sommerfelt, Kristian; Elgen, Irene Bircow; Eide, Geir Egil; Irgens, Lorentz M; Júlíusson, Pétur B; Markestad, Trond

    2012-03-01

    To examine the predictive value of early assessments on developmental outcome at 5 years in children born extremely preterm. This is a prospective observational study of all infants born in Norway in 1999-2000 with gestational age (GA) <28 weeks or birth weight (BW) <1000 g. At 2 years of age, paediatricians assessed mental and motor development from milestones. At 5 years, parents completed questionnaires on development and professional support before cognitive function was assessed with Wechsler Preschool and Primary Scale of Intelligence-Revised (WPPSI-R) and motor function with the Movement Assessment Battery for children (ABC test). Twenty-six of 373 (7%) children had cerebral palsy at 2 and 29 of 306 (9%) children at 5 years. Of children without major impairments, 51% (95% CI 35-67) of those with and 22% (95% CI 16-28) without mental delay at 2 years had IQ <85 at 5 years, and 36% (95% CI 20-53 with and 16% (95% CI 11-21) without motor delay at 2 years had an ABC score >95th percentile (poor function). Approximately half of those without major impairments but IQ <85 or ABC score >95th percentile had received support or follow-up beyond routine primary care. Previous assessments had limited value in predicting cognitive and motor function at 5 years in these extremely preterm children without major impairments. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.

  18. Motor Prediction at the Edge of Instability: Alteration of Grip Force Control during Changes in Bimanual Coordination

    ERIC Educational Resources Information Center

    Danion, Frederic; Jirsa, Viktor K.

    2010-01-01

    Predicting the consequences of actions is fundamental for skilled motor behavior. We investigated whether motor prediction is influenced by the fact that some movements are easier to perform and stabilize than others. Twelve subjects performed a bimanual rhythmical task either symmetrically or asymmetrically (the latter being more difficult and…

  19. Dynamics of relaxation to a stationary state for interacting molecular motors

    NASA Astrophysics Data System (ADS)

    Gomes, Luiza V. F.; Kolomeisky, Anatoly B.

    2018-01-01

    Motor proteins are active enzymatic molecules that drive a variety of biological processes, including transfer of genetic information, cellular transport, cell motility and muscle contraction. It is known that these biological molecular motors usually perform their cellular tasks by acting collectively, and there are interactions between individual motors that specify the overall collective behavior. One of the fundamental issues related to the collective dynamics of motor proteins is the question if they function at stationary-state conditions. To investigate this problem, we analyze a relaxation to the stationary state for the system of interacting molecular motors. Our approach utilizes a recently developed theoretical framework, which views the collective dynamics of motor proteins as a totally asymmetric simple exclusion process of interacting particles, where interactions are taken into account via a thermodynamically consistent approach. The dynamics of relaxation to the stationary state is analyzed using a domain-wall method that relies on a mean-field description, which takes into account some correlations. It is found that the system quickly relaxes for repulsive interactions, while attractive interactions always slow down reaching the stationary state. It is also predicted that for some range of parameters the fastest relaxation might be achieved for a weak repulsive interaction. Our theoretical predictions are tested with Monte Carlo computer simulations. The implications of our findings for biological systems are briefly discussed.

  20. Subliminal action priming modulates the perceived intensity of sensory action consequences.

    PubMed

    Stenner, Max-Philipp; Bauer, Markus; Sidarus, Nura; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J

    2014-02-01

    The sense of control over the consequences of one's actions depends on predictions about these consequences. According to an influential computational model, consistency between predicted and observed action consequences attenuates perceived stimulus intensity, which might provide a marker of agentic control. An important assumption of this model is that these predictions are generated within the motor system. However, previous studies of sensory attenuation have typically confounded motor-specific perceptual modulation with perceptual effects of stimulus predictability that are not specific to motor action. As a result, these studies cannot unambiguously attribute sensory attenuation to a motor locus. We present a psychophysical experiment on auditory attenuation that avoids this pitfall. Subliminal masked priming of motor actions with compatible prime-target pairs has previously been shown to modulate both reaction times and the explicit feeling of control over action consequences. Here, we demonstrate reduced perceived loudness of tones caused by compatibly primed actions. Importantly, this modulation results from a manipulation of motor processing and is not confounded by stimulus predictability. We discuss our results with respect to theoretical models of the mechanisms underlying sensory attenuation and subliminal motor priming. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Subliminal action priming modulates the perceived intensity of sensory action consequences☆

    PubMed Central

    Stenner, Max-Philipp; Bauer, Markus; Sidarus, Nura; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J.

    2014-01-01

    The sense of control over the consequences of one’s actions depends on predictions about these consequences. According to an influential computational model, consistency between predicted and observed action consequences attenuates perceived stimulus intensity, which might provide a marker of agentic control. An important assumption of this model is that these predictions are generated within the motor system. However, previous studies of sensory attenuation have typically confounded motor-specific perceptual modulation with perceptual effects of stimulus predictability that are not specific to motor action. As a result, these studies cannot unambiguously attribute sensory attenuation to a motor locus. We present a psychophysical experiment on auditory attenuation that avoids this pitfall. Subliminal masked priming of motor actions with compatible prime–target pairs has previously been shown to modulate both reaction times and the explicit feeling of control over action consequences. Here, we demonstrate reduced perceived loudness of tones caused by compatibly primed actions. Importantly, this modulation results from a manipulation of motor processing and is not confounded by stimulus predictability. We discuss our results with respect to theoretical models of the mechanisms underlying sensory attenuation and subliminal motor priming. PMID:24333539

  2. Why Do Fine Motor Skills Predict Mathematics? Construct Validity of the Design Copying Task

    ERIC Educational Resources Information Center

    Murrah, William M.; Chen, Wei-Bing; Cameron, Claire E.

    2013-01-01

    Recent educational studies have found evidence that measures of fine motor skills are predictive of educational outcomes. However, the precise nature of fine motor skills has received little attention in these studies. With evidence mounting that fine motor skills are an important indicator of school readiness, investigating the nature of this…

  3. A Single-Session Preliminary Evaluation of an Affordable BCI-Controlled Arm Exoskeleton and Motor-Proprioception Platform.

    PubMed

    Elnady, Ahmed Mohamed; Zhang, Xin; Xiao, Zhen Gang; Yong, Xinyi; Randhawa, Bubblepreet Kaur; Boyd, Lara; Menon, Carlo

    2015-01-01

    Traditional, hospital-based stroke rehabilitation can be labor-intensive and expensive. Furthermore, outcomes from rehabilitation are inconsistent across individuals and recovery is hard to predict. Given these uncertainties, numerous technological approaches have been tested in an effort to improve rehabilitation outcomes and reduce the cost of stroke rehabilitation. These techniques include brain-computer interface (BCI), robotic exoskeletons, functional electrical stimulation (FES), and proprioceptive feedback. However, to the best of our knowledge, no studies have combined all these approaches into a rehabilitation platform that facilitates goal-directed motor movements. Therefore, in this paper, we combined all these technologies to test the feasibility of using a BCI-driven exoskeleton with FES (robotic training device) to facilitate motor task completion among individuals with stroke. The robotic training device operated to assist a pre-defined goal-directed motor task. Because it is hard to predict who can utilize this type of technology, we considered whether the ability to adapt skilled movements with proprioceptive feedback would predict who could learn to control a BCI-driven robotic device. To accomplish this aim, we developed a motor task that requires proprioception for completion to assess motor-proprioception ability. Next, we tested the feasibility of robotic training system in individuals with chronic stroke (n = 9) and found that the training device was well tolerated by all the participants. Ability on the motor-proprioception task did not predict the time to completion of the BCI-driven task. Both participants who could accurately target (n = 6) and those who could not (n = 3), were able to learn to control the BCI device, with each BCI trial lasting on average 2.47 min. Our results showed that the participants' ability to use proprioception to control motor output did not affect their ability to use the BCI-driven exoskeleton with FES. Based on our preliminary results, we show that our robotic training device has potential for use as therapy for a broad range of individuals with stroke.

  4. A Single-Session Preliminary Evaluation of an Affordable BCI-Controlled Arm Exoskeleton and Motor-Proprioception Platform

    PubMed Central

    Elnady, Ahmed Mohamed; Zhang, Xin; Xiao, Zhen Gang; Yong, Xinyi; Randhawa, Bubblepreet Kaur; Boyd, Lara; Menon, Carlo

    2015-01-01

    Traditional, hospital-based stroke rehabilitation can be labor-intensive and expensive. Furthermore, outcomes from rehabilitation are inconsistent across individuals and recovery is hard to predict. Given these uncertainties, numerous technological approaches have been tested in an effort to improve rehabilitation outcomes and reduce the cost of stroke rehabilitation. These techniques include brain–computer interface (BCI), robotic exoskeletons, functional electrical stimulation (FES), and proprioceptive feedback. However, to the best of our knowledge, no studies have combined all these approaches into a rehabilitation platform that facilitates goal-directed motor movements. Therefore, in this paper, we combined all these technologies to test the feasibility of using a BCI-driven exoskeleton with FES (robotic training device) to facilitate motor task completion among individuals with stroke. The robotic training device operated to assist a pre-defined goal-directed motor task. Because it is hard to predict who can utilize this type of technology, we considered whether the ability to adapt skilled movements with proprioceptive feedback would predict who could learn to control a BCI-driven robotic device. To accomplish this aim, we developed a motor task that requires proprioception for completion to assess motor-proprioception ability. Next, we tested the feasibility of robotic training system in individuals with chronic stroke (n = 9) and found that the training device was well tolerated by all the participants. Ability on the motor-proprioception task did not predict the time to completion of the BCI-driven task. Both participants who could accurately target (n = 6) and those who could not (n = 3), were able to learn to control the BCI device, with each BCI trial lasting on average 2.47 min. Our results showed that the participants’ ability to use proprioception to control motor output did not affect their ability to use the BCI-driven exoskeleton with FES. Based on our preliminary results, we show that our robotic training device has potential for use as therapy for a broad range of individuals with stroke. PMID:25870554

  5. Early motor repertoire in very low birth weight infants in India is associated with motor development at one year.

    PubMed

    Adde, Lars; Thomas, Niranjan; John, Hima B; Oommen, Samuel; Vågen, Randi Tynes; Fjørtoft, Toril; Jensenius, Alexander Refsum; Støen, Ragnhild

    2016-11-01

    Most studies on Prechtl's method of assessing General Movements (GMA) in young infants originate in Europe. To determine if motor behavior at an age of 3 months post term is associated with motor development at 12 months post age in VLBW infants in India. 243 VLBW infants (135 boys, 108 girls; median gestational age 31wks, range 26-39wks) were video-recorded at a median age of 11wks post term (range 9-16wks). Certified and experienced observers assessed the videos by the "Assessment of Motor Repertoire - 2-5 Months". Fidgety movements (FMs) were classified as abnormal if absent, sporadic or exaggerated, and as normal if intermittently or continually present. The motor behaviour was evaluated by repertoire of co-existent other movements (age-adequacy) and concurrent motor repertoire. In addition, videos of 215 infants were analyzed by computer and the variability of the spatial center of motion (C SD ) was calculated. The Peabody Developmental Motor Scales was used to assess motor development at 12 months. Abnormal FMs, reduced age adequacy, and an abnormal concurrent motor repertoire were significantly associated with lower Gross Motor and Total Motor Quotient (GMQ, TMQ) scores (p < 0.05). The C SD was higher in children with TMQ scores <90 (-1SD) than in children with higher TMQ scores (p = 0.002). Normal FMs (assessed by Gestalt perception) and a low variability of the spatial center of motion (assessed by computer-based video analysis) predicted higher Peabody scores in 12-month-old infants born in India with a very low birth weight. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  6. Investigation of language and motor skills in Serbian speaking children with specific language impairment and in typically developing children.

    PubMed

    Vukovic, Mile; Vukovic, Irena; Stojanovik, Vesna

    2010-01-01

    Specific language impairment (SLI) is usually defined as a developmental language disorder which does not result from a hearing loss, autism, neurological and emotional difficulties, severe social deprivation, low non-verbal abilities. Children affected with SLI typically have difficulties with the acquisition of different aspects of language and by definition, their impairment is specific to language and no other skills are affected. However, there has been a growing body of literature to suggest that children with SLI also have non-linguistic deficits, including impaired motor abilities. The aim of the current study is to investigate language and motor abilities of a group of thirty children with SLI (aged between 4 and 7) in comparison to a group of 30 typically developing children matched for chronological age. The results showed that the group of children with SLI had significantly more difficulties on the language and motor assessments compared to the control group. The SLI group also showed delayed onset in the development of all motor skills under investigation in comparison to the typically developing group. More interestingly, the two groups differed with respect to which language abilities were correlated with motor abilities, however Imitation of Complex Movements was the unique skill which reliably predicted expressive vocabulary in both typically developing children and in children with SLI. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Predicting explorative motor learning using decision-making and motor noise.

    PubMed

    Chen, Xiuli; Mohr, Kieran; Galea, Joseph M

    2017-04-01

    A fundamental problem faced by humans is learning to select motor actions based on noisy sensory information and incomplete knowledge of the world. Recently, a number of authors have asked whether this type of motor learning problem might be very similar to a range of higher-level decision-making problems. If so, participant behaviour on a high-level decision-making task could be predictive of their performance during a motor learning task. To investigate this question, we studied performance during an explorative motor learning task and a decision-making task which had a similar underlying structure with the exception that it was not subject to motor (execution) noise. We also collected an independent measurement of each participant's level of motor noise. Our analysis showed that explorative motor learning and decision-making could be modelled as the (approximately) optimal solution to a Partially Observable Markov Decision Process bounded by noisy neural information processing. The model was able to predict participant performance in motor learning by using parameters estimated from the decision-making task and the separate motor noise measurement. This suggests that explorative motor learning can be formalised as a sequential decision-making process that is adjusted for motor noise, and raises interesting questions regarding the neural origin of explorative motor learning.

  8. Predicting explorative motor learning using decision-making and motor noise

    PubMed Central

    Galea, Joseph M.

    2017-01-01

    A fundamental problem faced by humans is learning to select motor actions based on noisy sensory information and incomplete knowledge of the world. Recently, a number of authors have asked whether this type of motor learning problem might be very similar to a range of higher-level decision-making problems. If so, participant behaviour on a high-level decision-making task could be predictive of their performance during a motor learning task. To investigate this question, we studied performance during an explorative motor learning task and a decision-making task which had a similar underlying structure with the exception that it was not subject to motor (execution) noise. We also collected an independent measurement of each participant’s level of motor noise. Our analysis showed that explorative motor learning and decision-making could be modelled as the (approximately) optimal solution to a Partially Observable Markov Decision Process bounded by noisy neural information processing. The model was able to predict participant performance in motor learning by using parameters estimated from the decision-making task and the separate motor noise measurement. This suggests that explorative motor learning can be formalised as a sequential decision-making process that is adjusted for motor noise, and raises interesting questions regarding the neural origin of explorative motor learning. PMID:28437451

  9. Effect of the microtubule-associated protein tau on dynamics of single-headed motor proteins KIF1A

    NASA Astrophysics Data System (ADS)

    Sparacino, J.; Farías, M. G.; Lamberti, P. W.

    2014-02-01

    Intracellular transport based on molecular motors and its regulation are crucial to the functioning of cells. Filamentary tracks of the cells are abundantly decorated with nonmotile microtubule-associated proteins, such as tau. Motivated by experiments on kinesin-tau interactions [Dixit et al., Science 319, 1086 (2008), 10.1126/science.1152993] we developed a stochastic model of interacting single-headed motor proteins KIF1A that also takes into account the interactions between motor proteins and tau molecules. Our model reproduces experimental observations and predicts significant effects of tau on bound time and run length which suggest an important role of tau in regulation of kinesin-based transport.

  10. Magnetostrictive direct drive motors

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1990-01-01

    Developing magnetostrictive direct drive research motors to power robot joints is discussed. These type motors are expected to produce extraordinary torque density, to be able to perform microradian incremental steps and to be self-braking and safe with the power off. Several types of motor designs have been attempted using magnetostrictive materials. One of the candidate approaches (the magnetostrictive roller drive) is described. The method in which the design will function is described as is the reason why this approach is inherently superior to the other approaches. Following this, the design will be modelled and its expected performance predicted. This particular candidate design is currently undergoing detailed engineering with prototype construction and testing scheduled for mid 1991.

  11. Motor cortex plasticity can indicate vulnerability to motor fluctuation and high L-DOPA need in drug-naïve Parkinson's disease.

    PubMed

    Kishore, Asha; James, Praveen; Krishnan, Syam; Yahia-Cherif, Lydia; Meunier, Sabine; Popa, Traian

    2017-02-01

    Motor cortex plasticity is reported to be decreased in Parkinson's disease in studies which pooled patients in various stages of the disease. Whether the early decrease in plasticity is related to the motor signs or is linked to the future development of motor complications of treatment is unclear. The aim of the study was to test if motor cortex plasticity and its cerebellar modulation are impaired in treatment-naïve Parkinson's disease, are related to the motor signs of the disease and predict occurrence of motor complications of treatment. Twenty-nine denovo patients with Parkinson's disease were longitudinally assessed for motor complications for four years. Using transcranial magnetic stimulation, the plasticity of the motor cortex and its cerebellar modulation were measured (response to paired-associative stimulation alone or preceded by 2 active cerebellar stimulation protocols), both in the untreated state and after a single dose of L-DOPA. Twenty-six matched, healthy volunteers were tested, only without L-DOPA. Patients and healthy controls had similar proportions of responders and non-responders to plasticity induction. In the untreated state, the more efficient was the cerebellar modulation of motor cortex plasticity, the lower were the bradykinesia and rigidity scores. The extent of the individual plastic response to paired associative stimulation could indicate a vulnerability to develop early motor fluctuation but not dyskinesia. Measuring motor cortex plasticity in denovo Parkinson's disease could be a neurophysiological parameter that may help identify patients with greater propensity for early motor fluctuations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. [Testing a Model to Predict Problem Gambling in Speculative Game Users].

    PubMed

    Park, Hyangjin; Kim, Suk Sun

    2018-04-01

    The purpose of the study was to develop and test a model for predicting problem gambling in speculative game users based on Blaszczynski and Nower's pathways model of problem and pathological gambling. The participants were 262 speculative game users recruited from seven speculative gambling places located in Seoul, Gangwon, and Gyeonggi, Korea. They completed a structured self-report questionnaire comprising measures of problem gambling, negative emotions, attentional impulsivity, motor impulsivity, non-planning impulsivity, gambler's fallacy, and gambling self-efficacy. Structural Equation Modeling was used to test the hypothesized model and to examine the direct and indirect effects on problem gambling in speculative game users using SPSS 22.0 and AMOS 20.0 programs. The hypothetical research model provided a reasonable fit to the data. Negative emotions, motor impulsivity, gambler's fallacy, and gambling self-efficacy had direct effects on problem gambling in speculative game users, while indirect effects were reported for negative emotions, motor impulsivity, and gambler's fallacy. These predictors explained 75.2% problem gambling in speculative game users. The findings suggest that developing intervention programs to reduce negative emotions, motor impulsivity, and gambler's fallacy, and to increase gambling self-efficacy in speculative game users are needed to prevent their problem gambling. © 2018 Korean Society of Nursing Science.

  13. Motor trajectories from birth to 5 years of children born at less than 30 weeks' gestation: early predictors and functional implications. Protocol for a prospective cohort study.

    PubMed

    Spittle, Alicia J; McGinley, Jennifer L; Thompson, Deanne; Clark, Ross; FitzGerald, Tara L; Mentiplay, Benjamin F; Lee, Katherine J; Olsen, Joy E; Burnett, Alice; Treyvaud, Karli; Josev, Elisha; Alexander, Bonnie; Kelly, Claire E; Doyle, Lex W; Anderson, Peter J; Cheong, Jeanie Ly

    2016-10-01

    Motor impairments are one of the most frequently reported adverse neurodevelopmental consequences in children born < 30 weeks' gestation. Up to 15% of children born at < 30 weeks have cerebral palsy and an additional 50% have mild to severe motor impairment at school age. The first 5 years of life are critical for the development of fundamental motor skills. These skills form the basis for more complex skills that are required to competently and confidently participate in schooling, sporting and recreational activities. In children born at < 30 weeks' gestation, the trajectory of motor development from birth to 5 years is not fully understood. The neural alterations that underpin motor impairments in these children are also unclear. It is essential to determine if early clinical evaluations and neuroimaging biomarkers can predict later motor impairment and associated functional problems at 5 years of age. This will help to identify children who will benefit the most from early intervention and improve functional outcomes at school age. The primary aim of this study is to compare the prevalence of motor impairment from birth to 5 years of age between children born at < 30 weeks and term-born controls, and to determine whether persistent abnormal motor assessments in the newborn period in those born at < 30 weeks predict abnormal motor functioning at 5 years of age. Secondary aims for children born at < 30 weeks and term-born children are: 1) to determine whether novel early magnetic resonance imaging-based structural or functional biomarkers that can predict motor impairments at 5 years are detectable in the neonatal period; 2) to investigate the association between motor impairments and concurrent deficits in body structure and function at 5 years of age; and 3) to explore how motor impairments at 5 years (including abnormalities of gait, postural control and strength) are associated with concurrent functional outcomes, including physical activity, cognitive ability, learning ability, and behavioural and emotional problems. Prospective longitudinal cohort study. 150 preterm children (born at < 30 weeks' gestation) and 151 term-born children (born at > 36 completed weeks' gestation and weighing > 2499g) admitted to the Royal Women's Hospital, Melbourne, were recruited at birth and will be invited to participate in a 5-year follow-up study. This study will examine previously collected data (from birth to 2 years) that comprise detailed motor assessments, and structural and functional brain MRI images. At 5 years, preterm and term, children will be examined using comprehensive motor assessments, including: the Movement Assessment Battery for Children (2nd edition) and measures of gait function through spatiotemporal (assessed with the GAITRite® Walkway) and dynamic postural control (assessed with Microsoft Kinect) variables; and hand grip strength (assessed with a dynamometer); and measures of physical activity (assessed using accelerometry), cognitive development (assessed with Wechsler Preschool and Primary Scale of Intelligence), and emotional and behavioural status (assessed with the Strengths and Difficulties Questionnaire and the Developmental and Wellbeing Assessment). At the 5-year assessment, parents/caregivers will be asked to complete questionnaires on demographics, physical activity, activities of daily living, behaviour, additional therapy (eg, physiotherapy and occupational therapy), and motor function (assessed with Pediatric Evaluation of Disability Inventory, Pediatric Quality of Life Questionnaire, the Little Developmental Co-ordination Questionnaire and an activity diary). For the primary aim, the prevalence of motor impairment from birth to 5 years will be compared between children born at < 30 weeks and at term, using the proportion of children classified as abnormal at each of the time points (term age, 1, 2 and 5 years). Persistent motor impairments during the neonatal period will be assessed as a predictor of severity of motor impairment at 5 years of age in children born < 30 weeks using linear regression. Models will be fitted using generalised estimating equations to allow for the clustering of multiple births. Analysis will be repeated with adjustment for predictors of motor outcome, including additional therapy, sex, brain injury and chronic lung disease. Understanding the developmental precursors of motor impairment in children born before 30 weeks is essential for limiting disruption to skill development, and potential secondary impacts on physical activity, participation, academic achievement, self-esteem and associated outcomes (such as obesity, poor physical fitness and social isolation). An improved understanding of motor skill development will enable targeting of interventions and streamlining of services to children at highest risk of motor impairments. Copyright © 2016 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  14. Motor Development of Premature Infants Born between 32 and 34 Weeks

    PubMed Central

    Prins, S. A.; von Lindern, J. S.; van Dijk, S.; Versteegh, F. G. A.

    2010-01-01

    Little is known about motor development in late preterm born infants. Our objective was to determine long-term outcome of motor skills of infants born between 32 and 34 weeks. All infants were assessed at corrected ages of 3 and 9 months, using the Alberta Infant Motor Scale. At corrected ages of 4 years, the Movement Assessment Battery for Children was done. Seventy infants were seen at 4 years of age (median of 3 assessments per infant). Abnormal assessment at 3 or 9 months of age resulted in normal outcome in almost 80% at 4 years. On the other hand, a normal outcome in the first year of life resulted in an abnormal outcome at 4 years in 10% of the infants. Our results suggest that long-term followup of these late preterm born infants is necessary, as the assessments in the first year do not predict the long-term outcome. PMID:20885965

  15. Somatosensory responses in a human motor cortex

    PubMed Central

    Donoghue, John P.; Hochberg, Leigh R.

    2013-01-01

    Somatic sensory signals provide a major source of feedback to motor cortex. Changes in somatosensory systems after stroke or injury could profoundly influence brain computer interfaces (BCI) being developed to create new output signals from motor cortex activity patterns. We had the unique opportunity to study the responses of hand/arm area neurons in primary motor cortex to passive joint manipulation in a person with a long-standing brain stem stroke but intact sensory pathways. Neurons responded to passive manipulation of the contralateral shoulder, elbow, or wrist as predicted from prior studies of intact primates. Thus fundamental properties and organization were preserved despite arm/hand paralysis and damage to cortical outputs. The same neurons were engaged by attempted arm actions. These results indicate that intact sensory pathways retain the potential to influence primary motor cortex firing rates years after cortical outputs are interrupted and may contribute to online decoding of motor intentions for BCI applications. PMID:23343902

  16. Motor contributions to the temporal precision of auditory attention

    PubMed Central

    Morillon, Benjamin; Schroeder, Charles E.; Wyart, Valentin

    2014-01-01

    In temporal—or dynamic—attending theory, it is proposed that motor activity helps to synchronize temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection. Here we develop a mechanistic behavioural account for this theory by asking human participants to track a slow reference beat, by noiseless finger pressing, while extracting auditory target tones delivered on-beat and interleaved with distractors. We find that overt rhythmic motor activity improves the segmentation of auditory information by enhancing sensitivity to target tones while actively suppressing distractor tones. This effect is triggered by cyclic fluctuations in sensory gain locked to individual motor acts, scales parametrically with the temporal predictability of sensory events and depends on the temporal alignment between motor and attention fluctuations. Together, these findings reveal how top-down influences associated with a rhythmic motor routine sharpen sensory representations, enacting auditory ‘active sensing’. PMID:25314898

  17. Calculation of cogging force in a novel slotted linear tubular brushless permanent magnet motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Z.Q.; Hor, P.J.; Howe, D.

    1997-09-01

    There is an increasing requirement for controlled linear motion over short and long strokes, in the factory automation and packaging industries, for example. Linear brushless PM motors could offer significant advantages over conventional actuation technologies, such as motor driven cams and linkages and pneumatic rams--in terms of efficiency, operating bandwidth, speed and thrust control, stroke and positional accuracy, and indeed over other linear motor technologies, such as induction motors. Here, a finite element/analytical based technique for the prediction of cogging force in a novel topology of slotted linear brushless permanent magnet motor has been developed and validated. The various forcemore » components, which influence cogging are pre-calculated by the finite element analysis of some basic magnetic structures, facilitate the analytical synthesis of the resultant cogging force. The technique can be used to aid design for the minimization of cogging.« less

  18. Motor contributions to the temporal precision of auditory attention.

    PubMed

    Morillon, Benjamin; Schroeder, Charles E; Wyart, Valentin

    2014-10-15

    In temporal-or dynamic-attending theory, it is proposed that motor activity helps to synchronize temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection. Here we develop a mechanistic behavioural account for this theory by asking human participants to track a slow reference beat, by noiseless finger pressing, while extracting auditory target tones delivered on-beat and interleaved with distractors. We find that overt rhythmic motor activity improves the segmentation of auditory information by enhancing sensitivity to target tones while actively suppressing distractor tones. This effect is triggered by cyclic fluctuations in sensory gain locked to individual motor acts, scales parametrically with the temporal predictability of sensory events and depends on the temporal alignment between motor and attention fluctuations. Together, these findings reveal how top-down influences associated with a rhythmic motor routine sharpen sensory representations, enacting auditory 'active sensing'.

  19. Effect of fuel concentration on cargo transport by a team of Kinesin motors

    NASA Astrophysics Data System (ADS)

    Takshak, Anjneya; Mishra, Nirvantosh; Kulkarni, Aditi; Kunwar, Ambarish

    2017-02-01

    Eukaryotic cells employ specialized proteins called molecular motors for transporting organelles and vesicles from one location to another in a regulated and directed manner. These molecular motors often work collectively in a team while transporting cargos. Molecular motors use cytoplasmic ATP as fuel, which is hydrolyzed to generate mechanical force. While the effect of ATP concentration on cargo transport by single Kinesin motor function is well understood, it is still unexplored, both theoretically and experimentally, how ATP concentration would affect cargo transport by a team of Kinesin motors. For instance, how does fuel concentration affect the travel distances and travel velocities of cargo? How cooperativity of Kinesin motors engaged on a cargo is affected by ATP concentration? To answer these questions, here we develop mechano-chemical models of cargo transport by a team of Kinesin motors. To develop these models we use experimentally-constrained mechano-chemical model of a single Kinesin motor as well as earlier developed mean-field and stochastic models of load sharing for cargo transport. Thus, our new models for cargo transport by a team of Kinesin motors include fuel concentration explicitly, which was not considered in earlier models. We make several interesting predictions which can be tested experimentally. For instance, the travel distances of cargos are very large at limited ATP concentrations in spite of very small travel velocity. Velocities of cargos driven by multiple Kinesin have a Michaelis-Menten dependence on ATP concentration. Similarly, cooperativity among the engaged Kinesin motors on the cargo shows a Michaelis-Menten type dependence, which attains a maximum value near physiological ATP concentrations. Our new results can be potentially useful in controlling artificial nano-molecular shuttles precisely for targeted delivery in various nano-technological applications.

  20. Spatial Attention, Motor Intention, and Bayesian Cue Predictability in the Human Brain.

    PubMed

    Kuhns, Anna B; Dombert, Pascasie L; Mengotti, Paola; Fink, Gereon R; Vossel, Simone

    2017-05-24

    Predictions about upcoming events influence how we perceive and respond to our environment. There is increasing evidence that predictions may be generated based upon previous observations following Bayesian principles, but little is known about the underlying cortical mechanisms and their specificity for different cognitive subsystems. The present study aimed at identifying common and distinct neural signatures of predictive processing in the spatial attentional and motor intentional system. Twenty-three female and male healthy human volunteers performed two probabilistic cueing tasks with either spatial or motor cues while lying in the fMRI scanner. In these tasks, the percentage of cue validity changed unpredictably over time. Trialwise estimates of cue predictability were derived from a Bayesian observer model of behavioral responses. These estimates were included as parametric regressors for analyzing the BOLD time series. Parametric effects of cue predictability in valid and invalid trials were considered to reflect belief updating by precision-weighted prediction errors. The brain areas exhibiting predictability-dependent effects dissociated between the spatial attention and motor intention task, with the right temporoparietal cortex being involved during spatial attention and the left angular gyrus and anterior cingulate cortex during motor intention. Connectivity analyses revealed that all three areas showed predictability-dependent coupling with the right hippocampus. These results suggest that precision-weighted prediction errors of stimulus locations and motor responses are encoded in distinct brain regions, but that crosstalk with the hippocampus may be necessary to integrate new trialwise outcomes in both cognitive systems. SIGNIFICANCE STATEMENT The brain is able to infer the environments' statistical structure and responds strongly to expectancy violations. In the spatial attentional domain, it has been shown that parts of the attentional networks are sensitive to the predictability of stimuli. It remains unknown, however, whether these effects are ubiquitous or if they are specific for different cognitive systems. The present study compared the influence of model-derived cue predictability on brain activity in the spatial attentional and motor intentional system. We identified areas with distinct predictability-dependent activation for spatial attention and motor intention, but also common connectivity changes of these regions with the hippocampus. These findings provide novel insights into the generality and specificity of predictive processing signatures in the human brain. Copyright © 2017 the authors 0270-6474/17/375334-11$15.00/0.

  1. Correlation Imaging Reveals Specific Crowding Dynamics of Kinesin Motor Proteins

    NASA Astrophysics Data System (ADS)

    Miedema, Daniël M.; Kushwaha, Vandana S.; Denisov, Dmitry V.; Acar, Seyda; Nienhuis, Bernard; Peterman, Erwin J. G.; Schall, Peter

    2017-10-01

    Molecular motor proteins fulfill the critical function of transporting organelles and other building blocks along the biopolymer network of the cell's cytoskeleton, but crowding effects are believed to crucially affect this motor-driven transport due to motor interactions. Physical transport models, like the paradigmatic, totally asymmetric simple exclusion process (TASEP), have been used to predict these crowding effects based on simple exclusion interactions, but verifying them in experiments remains challenging. Here, we introduce a correlation imaging technique to precisely measure the motor density, velocity, and run length along filaments under crowding conditions, enabling us to elucidate the physical nature of crowding and test TASEP model predictions. Using the kinesin motor proteins kinesin-1 and OSM-3, we identify crowding effects in qualitative agreement with TASEP predictions, and we achieve excellent quantitative agreement by extending the model with motor-specific interaction ranges and crowding-dependent detachment probabilities. These results confirm the applicability of basic nonequilibrium models to the intracellular transport and highlight motor-specific strategies to deal with crowding.

  2. Prediction of Nine Month Performance from Neonatal and Developmental Criteria.

    ERIC Educational Resources Information Center

    Sweet, John F., Jr.; And Others

    This study investigated the ability of the Neonatal Behavioral Assessment Scale (NBAS), in combination with neonatal histories and developmental assessments, to predict mental and motor performance of 9-month-old infants on the Bayley Scales of Infant Development (BSID). Fourteen normal, full-term infants and 10 average-for-gestational-age,…

  3. Young children with autism spectrum disorder use predictive eye movements in action observation.

    PubMed

    Falck-Ytter, Terje

    2010-06-23

    Does a dysfunction in the mirror neuron system (MNS) underlie the social symptoms defining autism spectrum disorder (ASD)? Research suggests that the MNS matches observed actions to motor plans for similar actions, and that these motor plans include directions for predictive eye movements when observing goal-directed actions. Thus, one important question is whether children with ASD use predictive eye movements in action observation. Young children with ASD as well as typically developing children and adults were shown videos in which an actor performed object-directed actions (human agent condition). Children with ASD were also shown control videos showing objects moving by themselves (self-propelled condition). Gaze was measured using a corneal reflection technique. Children with ASD and typically developing individuals used strikingly similar goal-directed eye movements when observing others' actions in the human agent condition. Gaze was reactive in the self-propelled condition, suggesting that prediction is linked to seeing a hand-object interaction. This study does not support the view that ASD is characterized by a global dysfunction in the MNS.

  4. Relationship between perceived competence and performance during real and virtual motor tasks by children with developmental coordination disorder.

    PubMed

    Engel-Yeger, Batya; Sido, Rotem; Mimouni-Bloch, Aviva; Weiss, Patrice L

    2017-10-01

    (i) To compare children with DCD and typically developing participants via standard motor assessments, two interactive virtual games, measures of physical, social and cognitive self-competence and feedback while playing the virtual games and (ii) To examine the contribution of age and each motor assessment to predict self-competence. Participants were 25 boys with DCD and 25 typically developing boys, aged 5-9 years. They completed the M-ABC-2, the Pictorial Scale of Perceived Competence, the 6-Minute Walk Test, and then played the two Kinect games and completed the Short Feedback Questionnaire for Children. Children with DCD showed lower physical competence and lower performance than the typical controls in all standard motor assessments. This performance significantly correlated with the children achievements in part of virtual games and with their self-perceived experience while performing within virtual environments. Among the DCD group, Kinect Running game significantly predicted physical and social competence. The significant correlations between the virtual games and standard motor assessments support the feasibility of using these games when evaluating children with DCD for the richer profile they provide. Implications for rehabilitation Clinicians should refer to the impacts of DCD on child's self-competence and daily life. Technological rehabilitation and the use of VR games have the potential to improve self-competence of children with DCD. By including VR games that simulate real life in the intervention for DCD, clinicians may raise child's enjoyment, self-competence and involvement in therapy.

  5. Predicting Handwriting Legibility in Taiwanese Elementary School Children.

    PubMed

    Lee, Tzu-I; Howe, Tsu-Hsin; Chen, Hao-Ling; Wang, Tien-Ni

    This study investigates handwriting characteristics and potential predictors of handwriting legibility among typically developing elementary school children in Taiwan. Predictors of handwriting legibility included visual-motor integration (VMI), visual perception (VP), eye-hand coordination (EHC), and biomechanical characteristics of handwriting. A total of 118 children were recruited from an elementary school in Taipei, Taiwan. A computerized program then assessed their handwriting legibility. The biomechanics of handwriting were assessed using a digitizing writing tablet. The children's VMI, VP, and EHC were assessed using the Beery-Buktenica Developmental Test of Visual-Motor Integration. Results indicated that predictive factors of handwriting legibility varied in different age groups. VMI predicted handwriting legibility for first-grade students, and EHC and stroke force predicted handwriting legibility for second-grade students. Kinematic factors such as stroke velocity were the only predictor for children in fifth and sixth grades. Copyright © 2016 by the American Occupational Therapy Association, Inc.

  6. K-nearest neighbors based methods for identification of different gear crack levels under different motor speeds and loads: Revisited

    NASA Astrophysics Data System (ADS)

    Wang, Dong

    2016-03-01

    Gears are the most commonly used components in mechanical transmission systems. Their failures may cause transmission system breakdown and result in economic loss. Identification of different gear crack levels is important to prevent any unexpected gear failure because gear cracks lead to gear tooth breakage. Signal processing based methods mainly require expertize to explain gear fault signatures which is usually not easy to be achieved by ordinary users. In order to automatically identify different gear crack levels, intelligent gear crack identification methods should be developed. The previous case studies experimentally proved that K-nearest neighbors based methods exhibit high prediction accuracies for identification of 3 different gear crack levels under different motor speeds and loads. In this short communication, to further enhance prediction accuracies of existing K-nearest neighbors based methods and extend identification of 3 different gear crack levels to identification of 5 different gear crack levels, redundant statistical features are constructed by using Daubechies 44 (db44) binary wavelet packet transform at different wavelet decomposition levels, prior to the use of a K-nearest neighbors method. The dimensionality of redundant statistical features is 620, which provides richer gear fault signatures. Since many of these statistical features are redundant and highly correlated with each other, dimensionality reduction of redundant statistical features is conducted to obtain new significant statistical features. At last, the K-nearest neighbors method is used to identify 5 different gear crack levels under different motor speeds and loads. A case study including 3 experiments is investigated to demonstrate that the developed method provides higher prediction accuracies than the existing K-nearest neighbors based methods for recognizing different gear crack levels under different motor speeds and loads. Based on the new significant statistical features, some other popular statistical models including linear discriminant analysis, quadratic discriminant analysis, classification and regression tree and naive Bayes classifier, are compared with the developed method. The results show that the developed method has the highest prediction accuracies among these statistical models. Additionally, selection of the number of new significant features and parameter selection of K-nearest neighbors are thoroughly investigated.

  7. On the nature of the fragment environment created by the range destruction or random failure of solid rocket motor casings

    NASA Technical Reports Server (NTRS)

    Eck, M.; Mukunda, M.

    1988-01-01

    Given here are predictions of fragment velocities and azimuths resulting from the Space Transportation System Solid Rocket Motor range destruct, or random failure occurring at any time during the 120 seconds of Solid Rocket Motor burn. Results obtained using the analytical methods described showed good agreement between predictions and observations for two specific events. It was shown that these methods have good potential for use in predicting the fragmentation process of a number of generically similar casing systems. It was concluded that coupled Eulerian-Lagrangian calculational methods of the type described here provide a powerful tool for predicting Solid Rocket Motor response.

  8. Internal Flow Analysis of Large L/D Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Laubacher, Brian A.

    2000-01-01

    Traditionally, Solid Rocket Motor (SRM) internal ballistic performance has been analyzed and predicted with either zero-dimensional (volume filling) codes or one-dimensional ballistics codes. One dimensional simulation of SRM performance is only necessary for ignition modeling, or for motors that have large length to port diameter ratios which exhibit an axial "pressure drop" during the early burn times. This type of prediction works quite well for many types of motors, however, when motor aspect ratios get large, and port to throat ratios get closer to one, two dimensional effects can become significant. The initial propellant grain configuration for the Space Shuttle Reusable Solid Rocket Motor (RSRM) was analyzed with 2-D, steady, axi-symmetric computational fluid dynamics (CFD). The results of the CFD analysis show that the steady-state performance prediction at the initial burn geometry, in general, agrees well with 1-D transient prediction results at an early time, however, significant features of the 2-D flow are captured with the CFD results that would otherwise go unnoticed. Capturing these subtle differences gives a greater confidence to modeling accuracy, and additional insight with which to model secondary internal flow effects like erosive burning. Detailed analysis of the 2-D flowfield has led to the discovery of its hidden 1-D isentropic behavior, and provided the means for a thorough and simplified understanding of internal solid rocket motor flow. Performance parameters such as nozzle stagnation pressure, static pressure drop, characteristic velocity, thrust and specific impulse are discussed in detail and compared for different modeling and prediction methods. The predicted performance using both the 1-D codes and the CFD results are compared with measured data obtained from static tests of the RSRM. The differences and limitations of predictions using ID and 2-D flow fields are discussed and some suggestions for the design of large L/D motors and more critically, motors with port to throat ratios near one, are covered.

  9. The prediction of nonlinear three dimensional combustion instability in liquid rockets with conventional nozzles

    NASA Technical Reports Server (NTRS)

    Powell, E. A.; Zinn, B. T.

    1973-01-01

    An analytical technique is developed to solve nonlinear three-dimensional, transverse and axial combustion instability problems associated with liquid-propellant rocket motors. The Method of Weighted Residuals is used to determine the nonlinear stability characteristics of a cylindrical combustor with uniform injection of propellants at one end and a conventional DeLaval nozzle at the other end. Crocco's pressure sensitive time-lag model is used to describe the unsteady combustion process. The developed model predicts the transient behavior and nonlinear wave shapes as well as limit-cycle amplitudes and frequencies typical of unstable motor operation. The limit-cycle amplitude increases with increasing sensitivity of the combustion process to pressure oscillations. For transverse instabilities, calculated pressure waveforms exhibit sharp peaks and shallow minima, and the frequency of oscillation is within a few percent of the pure acoustic mode frequency. For axial instabilities, the theory predicts a steep-fronted wave moving back and forth along the combustor.

  10. Change in motor function and adverse health outcomes in older African-Americans.

    PubMed

    Buchman, Aron S; Wilson, Robert S; Leurgans, Sue E; Bennett, David A; Barnes, Lisa L

    2015-10-01

    We tested whether declining motor function accelerates with age in older African-Americans. Eleven motor performances were assessed annually in 513 older African-Americans. During follow-up of 5 years, linear mixed-effect models showed that motor function declined by about 0.03 units/year (Estimate, -0.026, p<0.001); about 4% more rapidly for each additional year of age at baseline. A proportional hazard model showed that both baseline motor function level and its rate of change were independent predictors of death and incident disability (all p's<0.001). These models showed that the additional annual amount of motor decline in 85 year old persons at baseline versus 65 year old persons was associated with a 1.5-fold higher rate of death and a 3-fold higher rate of developing Katz disability. The rate of declining motor function accelerates with increasing age and its rate of decline predicts adverse health outcomes in older African-Americans. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Change in Motor Function and Adverse Health Outcomes in Older African Americas

    PubMed Central

    Buchman, Aron S.; Wilson, Robert S.; Leurgans, Sue E.; Bennett, David A.; Barnes, Lisa L.

    2015-01-01

    Objective We tested whether declining motor function accelerates with age in older African Americans. Methods Eleven motor performances were assessed annually in 513 older African Americans. Results During follow-up of 5 years, linear mixed-effect models showed that motor function declined by about 0.03 units/yr (Estimate, −0.026, p<0.001); about 4% more rapidly for each additional year of age at baseline. A proportional hazard model showed that both baseline motor function level and its rate of change were independent predictors of death and incident disability (all p’s <0.001). These models showed that the additional annual amount of motor decline in 85 year old persons at baseline versus 65 year old persons was associated with a 1.5-fold higher rate of death and a 3-fold higher rate of developing Katz disability. Conclusions The rate of declining motor function accelerates with increasing age and its rate of decline predicts adverse health outcomes in older African Americans. PMID:26209439

  12. Premotor neural correlates of predictive motor timing for speech production and hand movement: evidence for a temporal predictive code in the motor system.

    PubMed

    Johari, Karim; Behroozmand, Roozbeh

    2017-05-01

    The predictive coding model suggests that neural processing of sensory information is facilitated for temporally-predictable stimuli. This study investigated how temporal processing of visually-presented sensory cues modulates movement reaction time and neural activities in speech and hand motor systems. Event-related potentials (ERPs) were recorded in 13 subjects while they were visually-cued to prepare to produce a steady vocalization of a vowel sound or press a button in a randomized order, and to initiate the cued movement following the onset of a go signal on the screen. Experiment was conducted in two counterbalanced blocks in which the time interval between visual cue and go signal was temporally-predictable (fixed delay at 1000 ms) or unpredictable (variable between 1000 and 2000 ms). Results of the behavioral response analysis indicated that movement reaction time was significantly decreased for temporally-predictable stimuli in both speech and hand modalities. We identified premotor ERP activities with a left-lateralized parietal distribution for hand and a frontocentral distribution for speech that were significantly suppressed in response to temporally-predictable compared with unpredictable stimuli. The premotor ERPs were elicited approximately -100 ms before movement and were significantly correlated with speech and hand motor reaction times only in response to temporally-predictable stimuli. These findings suggest that the motor system establishes a predictive code to facilitate movement in response to temporally-predictable sensory stimuli. Our data suggest that the premotor ERP activities are robust neurophysiological biomarkers of such predictive coding mechanisms. These findings provide novel insights into the temporal processing mechanisms of speech and hand motor systems.

  13. Development of Predictive Algorithms for Pre-Treatment Motor Deficit and 90-Day Mortality in Spinal Epidural Abscess.

    PubMed

    Shah, Akash A; Ogink, Paul T; Harris, Mitchel B; Schwab, Joseph H

    2018-06-20

    Spinal epidural abscess is a high-risk condition that can lead to paralysis or death. It would be of clinical and prognostic utility to identify which subset of patients with spinal epidural abscess is likely to develop a motor deficit or die within 90 days of discharge. We identified all patients ≥18 years of age who were admitted to our hospital system with a diagnosis of spinal epidural abscess during the period of 1993 to 2016. Explanatory variables were collected retrospectively. Bivariate and multivariable logistic regression was performed using these variables to identify independent predictors of motor deficit and 90-day mortality. Nomograms were then constructed to quantify the risk of these outcomes. Of the 1,053 patients we identified with spinal epidural abscess, 362 presented with motor weakness. One hundred and thirty-four patients died within 90 days of discharge, inclusive of those who died during hospitalization. Multivariable logistic regression yielded 8 independent predictors of pre-treatment motor deficit and 8 independent predictors of 90-day mortality. We constructed nomograms that generated a probability of pre-treatment motor deficit or 90-day mortality on the basis of the presence of these factors. By quantifying the risk of pre-treatment motor deficit and 90-day mortality, our nomograms may provide useful prognostic information for the treatment team. Timely treatment of neurologically intact patients with a high risk of developing a motor deficit is necessary to avoid residual motor weakness and improve survival. Therapeutic Level IV. See Instructions for Authors for a complete description of Levels of Evidence.

  14. First Steps into Language? Examining the Specific Longitudinal Relations between Walking, Exploration and Linguistic Skills

    PubMed Central

    Oudgenoeg-Paz, Ora; Volman, M(Chiel). J. M.; Leseman, Paul P. M.

    2016-01-01

    Recent empirical evidence demonstrates relationships between motor and language development that are partially mediated by exploration. This is in line with the embodied cognition approach to development that views language as grounded in real-life sensorimotor interactions with the environment. This view implies that the relations between motor and linguistic skills should be specific. Moreover, as motor development initially changes the possibilities children have to explore the environment, initial relations between motor and linguistic skills should become weaker over time. Empirical evidence pertaining to the duration and specificity of these relations is still lacking. The current study investigated longitudinal relations between attainment of walking and the development of several linguistic skills, and tested whether exploration through self-locomotion mediated these relations. Linguistic skills were measured at age 43 months, which is later than the age used in previous studies. Three hypotheses were tested: (1) the relations between walking and language found at younger ages will decrease over time (2) exploration through self-locomotion will remain an important predictor of spatial language (3) no relation will be found between walking, exploration and the use of grammatical and lexical categories and between exploration and general vocabulary. Thirty-one Dutch children took part in a longitudinal study. Parents reported about age of attainment of walking. Exploration through self-locomotion was measured using observations of play with a standard set of toys at age 20 months. Receptive vocabulary, spatial language and use of grammatical and lexical categories were measured at age 43 months using (standard) tests. Results reveal that age of walking does not directly predict spatial language at age 43 months. Exploration through self-locomotion does significantly and completely mediate the indirect effect of age of walking on spatial language. Moreover, neither age of walking nor exploration predict general vocabulary and the use of grammatical and lexical categories. Results support the idea that the initial relations between motor development and linguistic skills decrease over time and that these relations are specific and intrinsically dependent on the information children pick up through the execution of specific motor activities. PMID:27729885

  15. First Steps into Language? Examining the Specific Longitudinal Relations between Walking, Exploration and Linguistic Skills.

    PubMed

    Oudgenoeg-Paz, Ora; Volman, M Chiel J M; Leseman, Paul P M

    2016-01-01

    Recent empirical evidence demonstrates relationships between motor and language development that are partially mediated by exploration. This is in line with the embodied cognition approach to development that views language as grounded in real-life sensorimotor interactions with the environment. This view implies that the relations between motor and linguistic skills should be specific. Moreover, as motor development initially changes the possibilities children have to explore the environment, initial relations between motor and linguistic skills should become weaker over time. Empirical evidence pertaining to the duration and specificity of these relations is still lacking. The current study investigated longitudinal relations between attainment of walking and the development of several linguistic skills, and tested whether exploration through self-locomotion mediated these relations. Linguistic skills were measured at age 43 months, which is later than the age used in previous studies. Three hypotheses were tested: (1) the relations between walking and language found at younger ages will decrease over time (2) exploration through self-locomotion will remain an important predictor of spatial language (3) no relation will be found between walking, exploration and the use of grammatical and lexical categories and between exploration and general vocabulary. Thirty-one Dutch children took part in a longitudinal study. Parents reported about age of attainment of walking. Exploration through self-locomotion was measured using observations of play with a standard set of toys at age 20 months. Receptive vocabulary, spatial language and use of grammatical and lexical categories were measured at age 43 months using (standard) tests. Results reveal that age of walking does not directly predict spatial language at age 43 months. Exploration through self-locomotion does significantly and completely mediate the indirect effect of age of walking on spatial language. Moreover, neither age of walking nor exploration predict general vocabulary and the use of grammatical and lexical categories. Results support the idea that the initial relations between motor development and linguistic skills decrease over time and that these relations are specific and intrinsically dependent on the information children pick up through the execution of specific motor activities.

  16. A unifying motor control framework for task-specific dystonia

    PubMed Central

    Rothwell, John C.; Edwards, Mark J.

    2018-01-01

    Task-specific dystonia is a movement disorder characterized by the development of a painless loss of dexterity specific to a particular motor skill. This disorder is prevalent among writers, musicians, dancers and athletes. No current treatment is predictably effective and the disorder generally ends the careers of affected individuals. There are a number of limitations with traditional dystonic disease models for task-specific dystonia. We therefore review emerging evidence that the disorder has its origins within normal compensatory mechanisms of a healthy motor system in which the representation and reproduction of motor skill is disrupted. We describe how risk factors for task-specific dystonia can be stratified and translated into mechanisms of dysfunctional motor control. The proposed model aims to define new directions for experimental research and stimulate therapeutic advances for this highly disabling disorder. PMID:29104291

  17. Motor skills development in children with inattentive versus combined subtypes of ADHD.

    PubMed

    Vasserman, Marsha; Bender, H Allison; Macallister, William S

    2014-01-01

    The relations between attention-deficit hyperactivity disorder (ADHD) and motor skills are well documented, with research indicating both early and lifelong motor deficits in children with this disorder. Despite neuroanatomical and neurodevelopmental differences, which may predict differential rates of motor impairment between ADHD subtypes, evaluation of motor skill deficits in children with different presentations are limited in scope and equivocal in findings. The present investigation evaluated early motor development history and objectively measured motor skills in children with ADHD-Inattentive subtype (ADHD-I) and ADHD-Combined subtype (ADHD-C). One hundred and one children with ADHD-I (n = 53) and ADHD-C (n = 48) were included. Variables included Full-Scale IQ (FSIQ), history of motor delays, and utilization of early intervention services, as well as objectively measured motor impairment as assessed via tasks of fine-motor coordination. No between-group differences were found for FSIQ, but differences in age emerged, with the ADHD-I group being older. No differences in early motor delays were observed, though a considerably higher percentage of children with ADHD-C demonstrated early difficulties. Surprisingly, although children and adolescents with ADHD-C reported more frequent utilization of early intervention services, those with ADHD-I exhibited greater levels of current motor impairment on objective tasks. Given the over-representation of older children in the ADHD-I group, data were reanalyzed after excluding participants older than 10 years of age. Although the between-group differences were no longer significant, more than twice the number of parents of children with ADHD-C reported early motor delays, as compared with the ADHD-I group. Overall, children with ADHD-I were more likely to exhibit current objectively measured motor impairment, possibly due to later identification, less intervention, and/or different neurodevelopmental substrates underlying this disorder subtype.

  18. Motor outcome at the age of one after perinatal hypoxic-ischemic encephalopathy.

    PubMed

    van Schie, P E M; Becher, J G; Dallmeijer, A J; Barkhof, F; Weissenbruch, M M; Vermeulen, R J

    2007-04-01

    The aim of this report is to describe the motor outcome in one year-old children who were born at full-term with perinatal hypoxic-ischemic encephalopathy (HIE). Relationships between motor ability tests and neurological examination at one year, and between these tests and neonatal brain magnetic resonance imaging (MRI) were investigated. 32 surviving children, born full-term with perinatal HIE, are included in this report. All children had a neonatal MRI. At one year, motor ability was assessed with the Alberta Infant Motor Scale and the Bayley Scales of Infant Development (2nd version). Neurological examinations included the neurological optimality score (NOS). At one year, 14 children (44%) had normal motor ability, nine (28%) had mildly delayed, and nine had significantly delayed motor ability. The NOS ranged from 14.6-27 points. All children with normal motor ability had (near) optimal NOS, however, not all children with high NOS had normal motor ability. Eleven children (34%) had normal neonatal MRI; at one year, six of them had normal, and five had mildly delayed motor ability. Eight children with normal motor ability showed abnormalities on neonatal MRI. Neonatal brain MRI does not predict motor outcome at one year. Motor ability tests and neurological examinations should be used in a complementary manner to describe outcome after HIE.

  19. What happens to the motor theory of perception when the motor system is damaged?

    PubMed

    Stasenko, Alena; Garcea, Frank E; Mahon, Bradford Z

    2013-09-01

    Motor theories of perception posit that motor information is necessary for successful recognition of actions. Perhaps the most well known of this class of proposals is the motor theory of speech perception, which argues that speech recognition is fundamentally a process of identifying the articulatory gestures (i.e. motor representations) that were used to produce the speech signal. Here we review neuropsychological evidence from patients with damage to the motor system, in the context of motor theories of perception applied to both manual actions and speech. Motor theories of perception predict that patients with motor impairments will have impairments for action recognition. Contrary to that prediction, the available neuropsychological evidence indicates that recognition can be spared despite profound impairments to production. These data falsify strong forms of the motor theory of perception, and frame new questions about the dynamical interactions that govern how information is exchanged between input and output systems.

  20. What happens to the motor theory of perception when the motor system is damaged?

    PubMed Central

    Stasenko, Alena; Garcea, Frank E.; Mahon, Bradford Z.

    2016-01-01

    Motor theories of perception posit that motor information is necessary for successful recognition of actions. Perhaps the most well known of this class of proposals is the motor theory of speech perception, which argues that speech recognition is fundamentally a process of identifying the articulatory gestures (i.e. motor representations) that were used to produce the speech signal. Here we review neuropsychological evidence from patients with damage to the motor system, in the context of motor theories of perception applied to both manual actions and speech. Motor theories of perception predict that patients with motor impairments will have impairments for action recognition. Contrary to that prediction, the available neuropsychological evidence indicates that recognition can be spared despite profound impairments to production. These data falsify strong forms of the motor theory of perception, and frame new questions about the dynamical interactions that govern how information is exchanged between input and output systems. PMID:26823687

  1. SRB-3D Solid Rocket Booster performance prediction program. Volume 2: Sample case

    NASA Technical Reports Server (NTRS)

    Winkler, J. C.

    1976-01-01

    The sample case presented in this volume is an asymmetrical eight sector thermal gradient performance prediction for the solid rocket motor. This motor is the TC-227A-75 grain design and the initial grain geometry is assumed to be symmetrical about the motors longitudinal axis.

  2. Changing ideas about others’ intentions: updating prior expectations tunes activity in the human motor system

    PubMed Central

    Jacquet, Pierre O.; Roy, Alice C.; Chambon, Valérian; Borghi, Anna M.; Salemme, Roméo; Farnè, Alessandro; Reilly, Karen T.

    2016-01-01

    Predicting intentions from observing another agent’s behaviours is often thought to depend on motor resonance – i.e., the motor system’s response to a perceived movement by the activation of its stored motor counterpart, but observers might also rely on prior expectations, especially when actions take place in perceptually uncertain situations. Here we assessed motor resonance during an action prediction task using transcranial magnetic stimulation to probe corticospinal excitability (CSE) and report that experimentally-induced updates in observers’ prior expectations modulate CSE when predictions are made under situations of perceptual uncertainty. We show that prior expectations are updated on the basis of both biomechanical and probabilistic prior information and that the magnitude of the CSE modulation observed across participants is explained by the magnitude of change in their prior expectations. These findings provide the first evidence that when observers predict others’ intentions, motor resonance mechanisms adapt to changes in their prior expectations. We propose that this adaptive adjustment might reflect a regulatory control mechanism that shares some similarities with that observed during action selection. Such a mechanism could help arbitrate the competition between biomechanical and probabilistic prior information when appropriate for prediction. PMID:27243157

  3. Changing ideas about others' intentions: updating prior expectations tunes activity in the human motor system.

    PubMed

    Jacquet, Pierre O; Roy, Alice C; Chambon, Valérian; Borghi, Anna M; Salemme, Roméo; Farnè, Alessandro; Reilly, Karen T

    2016-05-31

    Predicting intentions from observing another agent's behaviours is often thought to depend on motor resonance - i.e., the motor system's response to a perceived movement by the activation of its stored motor counterpart, but observers might also rely on prior expectations, especially when actions take place in perceptually uncertain situations. Here we assessed motor resonance during an action prediction task using transcranial magnetic stimulation to probe corticospinal excitability (CSE) and report that experimentally-induced updates in observers' prior expectations modulate CSE when predictions are made under situations of perceptual uncertainty. We show that prior expectations are updated on the basis of both biomechanical and probabilistic prior information and that the magnitude of the CSE modulation observed across participants is explained by the magnitude of change in their prior expectations. These findings provide the first evidence that when observers predict others' intentions, motor resonance mechanisms adapt to changes in their prior expectations. We propose that this adaptive adjustment might reflect a regulatory control mechanism that shares some similarities with that observed during action selection. Such a mechanism could help arbitrate the competition between biomechanical and probabilistic prior information when appropriate for prediction.

  4. Early communicative behaviors and their relationship to motor skills in extremely preterm infants.

    PubMed

    Benassi, Erika; Savini, Silvia; Iverson, Jana M; Guarini, Annalisa; Caselli, Maria Cristina; Alessandroni, Rosina; Faldella, Giacomo; Sansavini, Alessandra

    2016-01-01

    Despite the predictive value of early spontaneous communication for identifying risk for later language concerns, very little research has focused on these behaviors in extremely low-gestational-age infants (ELGA<28 weeks) or on their relationship with motor development. In this study, communicative behaviors (gestures, vocal utterances and their coordination) were evaluated during mother-infant play interactions in 20 ELGA infants and 20 full-term infants (FT) at 12 months (corrected age for ELGA infants). Relationships between gestures and motor skills, evaluated using the Bayley-III Scales were also examined. ELGA infants, compared with FT infants, showed less advanced communicative, motor, and cognitive skills. Giving and representational gestures were produced at a lower rate by ELGA infants. In addition, pointing gestures and words were produced by a lower percentage of ELGA infants. Significant positive correlations between gestures (pointing and representational gestures) and fine motor skills were found in the ELGA group. We discuss the relevance of examining spontaneous communicative behaviors and motor skills as potential indices of early development that may be useful for clinical assessment and intervention with ELGA infants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effects of Word Prediction on Writing Fluency for Students with Physical Disabilities

    ERIC Educational Resources Information Center

    Mezei, Peter J.; Heller, Kathryn Wolff

    2012-01-01

    Many students with physical disabilities have difficulty with writing fluency due to motor limitations. One type of assistive technology that has been developed to improve writing speed and accuracy is word prediction software, although there is a paucity of research supporting its use for individuals with physical disabilities. This study used an…

  6. Dynamic modeling and characteristics analysis of a modal-independent linear ultrasonic motor.

    PubMed

    Li, Xiang; Yao, Zhiyuan; Zhou, Shengli; Lv, Qibao; Liu, Zhen

    2016-12-01

    In this paper, an integrated model is developed to analyze the fundamental characteristics of a modal-independent linear ultrasonic motor with double piezoelectric vibrators. The energy method is used to model the dynamics of the two piezoelectric vibrators. The interface forces are coupled into the dynamic equations of the two vibrators and the moving platform, forming a whole machine model of the motor. The behavior of the force transmission of the motor is analyzed via the resulting model to understand the drive mechanism. In particular, the relative contact length is proposed to describe the intermittent contact characteristic between the stator and the mover, and its role in evaluating motor performance is discussed. The relations between the output speed and various inputs to the motor and the start-stop transients of the motor are analyzed by numerical simulations, which are validated by experiments. Furthermore, the dead-zone behavior is predicted and clarified analytically using the proposed model, which is also observed in experiments. These results are useful for designing servo control scheme for the motor. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The cerebellum for jocks and nerds alike.

    PubMed

    Popa, Laurentiu S; Hewitt, Angela L; Ebner, Timothy J

    2014-01-01

    Historically the cerebellum has been implicated in the control of movement. However, the cerebellum's role in non-motor functions, including cognitive and emotional processes, has also received increasing attention. Starting from the premise that the uniform architecture of the cerebellum underlies a common mode of information processing, this review examines recent electrophysiological findings on the motor signals encoded in the cerebellar cortex and then relates these signals to observations in the non-motor domain. Simple spike firing of individual Purkinje cells encodes performance errors, both predicting upcoming errors as well as providing feedback about those errors. Further, this dual temporal encoding of prediction and feedback involves a change in the sign of the simple spike modulation. Therefore, Purkinje cell simple spike firing both predicts and responds to feedback about a specific parameter, consistent with computing sensory prediction errors in which the predictions about the consequences of a motor command are compared with the feedback resulting from the motor command execution. These new findings are in contrast with the historical view that complex spikes encode errors. Evaluation of the kinematic coding in the simple spike discharge shows the same dual temporal encoding, suggesting this is a common mode of signal processing in the cerebellar cortex. Decoding analyses show the considerable accuracy of the predictions provided by Purkinje cells across a range of times. Further, individual Purkinje cells encode linearly and independently a multitude of signals, both kinematic and performance errors. Therefore, the cerebellar cortex's capacity to make associations across different sensory, motor and non-motor signals is large. The results from studying how Purkinje cells encode movement signals suggest that the cerebellar cortex circuitry can support associative learning, sequencing, working memory, and forward internal models in non-motor domains.

  8. The cerebellum for jocks and nerds alike

    PubMed Central

    Popa, Laurentiu S.; Hewitt, Angela L.; Ebner, Timothy J.

    2014-01-01

    Historically the cerebellum has been implicated in the control of movement. However, the cerebellum's role in non-motor functions, including cognitive and emotional processes, has also received increasing attention. Starting from the premise that the uniform architecture of the cerebellum underlies a common mode of information processing, this review examines recent electrophysiological findings on the motor signals encoded in the cerebellar cortex and then relates these signals to observations in the non-motor domain. Simple spike firing of individual Purkinje cells encodes performance errors, both predicting upcoming errors as well as providing feedback about those errors. Further, this dual temporal encoding of prediction and feedback involves a change in the sign of the simple spike modulation. Therefore, Purkinje cell simple spike firing both predicts and responds to feedback about a specific parameter, consistent with computing sensory prediction errors in which the predictions about the consequences of a motor command are compared with the feedback resulting from the motor command execution. These new findings are in contrast with the historical view that complex spikes encode errors. Evaluation of the kinematic coding in the simple spike discharge shows the same dual temporal encoding, suggesting this is a common mode of signal processing in the cerebellar cortex. Decoding analyses show the considerable accuracy of the predictions provided by Purkinje cells across a range of times. Further, individual Purkinje cells encode linearly and independently a multitude of signals, both kinematic and performance errors. Therefore, the cerebellar cortex's capacity to make associations across different sensory, motor and non-motor signals is large. The results from studying how Purkinje cells encode movement signals suggest that the cerebellar cortex circuitry can support associative learning, sequencing, working memory, and forward internal models in non-motor domains. PMID:24987338

  9. Smart sensorless prediction diagnosis of electric drives

    NASA Astrophysics Data System (ADS)

    Kruglova, TN; Glebov, NA; Shoshiashvili, ME

    2017-10-01

    In this paper, the discuss diagnostic method and prediction of the technical condition of an electrical motor using artificial intelligent method, based on the combination of fuzzy logic and neural networks, are discussed. The fuzzy sub-model determines the degree of development of each fault. The neural network determines the state of the object as a whole and the number of serviceable work periods for motors actuator. The combination of advanced techniques reduces the learning time and increases the forecasting accuracy. The experimental implementation of the method for electric drive diagnosis and associated equipment is carried out at different speeds. As a result, it was found that this method allows troubleshooting the drive at any given speed.

  10. Development of hierarchical structures for actions and motor imagery: a constructivist view from synthetic neuro-robotics study.

    PubMed

    Nishimoto, Ryunosuke; Tani, Jun

    2009-07-01

    The current paper shows a neuro-robotics experiment on developmental learning of goal-directed actions. The robot was trained to predict visuo-proprioceptive flow of achieving a set of goal-directed behaviors through iterative tutor training processes. The learning was conducted by employing a dynamic neural network model which is characterized by their multiple time-scale dynamics. The experimental results showed that functional hierarchical structures emerge through stages of developments where behavior primitives are generated in earlier stages and their sequences of achieving goals appear in later stages. It was also observed that motor imagery is generated in earlier stages compared to actual behaviors. Our claim that manipulatable inner representation should emerge through the sensory-motor interactions is corresponded to Piaget's constructivist view.

  11. Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task

    NASA Astrophysics Data System (ADS)

    Laubach, Mark; Wessberg, Johan; Nicolelis, Miguel A. L.

    2000-06-01

    When an animal learns to make movements in response to different stimuli, changes in activity in the motor cortex seem to accompany and underlie this learning. The precise nature of modifications in cortical motor areas during the initial stages of motor learning, however, is largely unknown. Here we address this issue by chronically recording from neuronal ensembles located in the rat motor cortex, throughout the period required for rats to learn a reaction-time task. Motor learning was demonstrated by a decrease in the variance of the rats' reaction times and an increase in the time the animals were able to wait for a trigger stimulus. These behavioural changes were correlated with a significant increase in our ability to predict the correct or incorrect outcome of single trials based on three measures of neuronal ensemble activity: average firing rate, temporal patterns of firing, and correlated firing. This increase in prediction indicates that an association between sensory cues and movement emerged in the motor cortex as the task was learned. Such modifications in cortical ensemble activity may be critical for the initial learning of motor tasks.

  12. Development of Displacement Gages Exposed to Solid Rocket Motor Internal Environments

    NASA Technical Reports Server (NTRS)

    Bolton, D. E.; Cook, D. J.

    2003-01-01

    The Space Shuttle Reusable Solid Rocket Motor (RSRM) has three non-vented segment-to-segment case field joints. These joints use an interference fit J-joint that is bonded at assembly with a Pressure Sensitive Adhesive (PSA) inboard of redundant O-ring seals. Full-scale motor and sub-scale test article experience has shown that the ability to preclude gas leakage past the J-joint is a function of PSA type, joint moisture from pre-assembly humidity exposure, and the magnitude of joint displacement during motor operation. To more accurately determine the axial displacements at the J-joints, two thermally durable displacement gages (one mechanical and one electrical) were designed and developed. The mechanical displacement gage concept was generated first as a non-electrical, self-contained gage to capture the maximum magnitude of the J-joint motion. When it became feasible, the electrical displacement gage concept was generated second as a real-time linear displacement gage. Both of these gages were refined in development testing that included hot internal solid rocket motor environments and simulated vibration environments. As a result of this gage development effort, joint motions have been measured in static fired RSRM J-joints where intentional venting was produced (Flight Support Motor #8, FSM-8) and nominal non-vented behavior occurred (FSM-9 and FSM-10). This data gives new insight into the nominal characteristics of the three case J-joint positions (forward, center and aft) and characteristics of some case J-joints that became vented during motor operation. The data supports previous structural model predictions. These gages will also be useful in evaluating J-joint motion differences in a five-segment Space Shuttle solid rocket motor.

  13. A Computational Model of Spatial Development

    NASA Astrophysics Data System (ADS)

    Hiraki, Kazuo; Sashima, Akio; Phillips, Steven

    Psychological experiments on children's development of spatial knowledge suggest experience at self-locomotion with visual tracking as important factors. Yet, the mechanism underlying development is unknown. We propose a robot that learns to mentally track a target object (i.e., maintaining a representation of an object's position when outside the field-of-view) as a model for spatial development. Mental tracking is considered as prediction of an object's position given the previous environmental state and motor commands, and the current environment state resulting from movement. Following Jordan & Rumelhart's (1992) forward modeling architecture the system consists of two components: an inverse model of sensory input to desired motor commands; and a forward model of motor commands to desired sensory input (goals). The robot was tested on the `three cups' paradigm (where children are required to select the cup containing the hidden object under various movement conditions). Consistent with child development, without the capacity for self-locomotion the robot's errors are self-center based. When given the ability of self-locomotion the robot responds allocentrically.

  14. Can cerebral MRI at age 1 year predict motor and intellectual outcomes in very-low-birthweight children?

    PubMed

    Skranes, J; Vik, T; Nilsen, G; Smevik, O; Andersson, H W; Brubakk, A M

    1998-04-01

    This follow-up study reports on cerebral MRI findings in 20 very-low-birthweight (VLBW) infants without disabilities at age 1 year in relation to motor, intellectual, and perceptual function at age 6 years. MRI findings, anthropometrics, and Bayley Scales of Infant Development scores at age 1 year as predictors of psychomotor status at age 6 years are also evaluated and compared. Outcome parameters were the Peabody Developmental Motor Scales and the Wechsler Preschool and Primary Scale of Intelligence. The results show that infants with myelin hyperintensities including the centrum semiovale or with occipital hyperintensities with associated ventricular dilatation at age 1 scored lower on the Peabody Gross Motor Locomotion Scale at age 6 than infants with normal myelination or with isolated occipital hyperintensities. This may indicate damage to motor fibers caused by perinatal periventricular leukomalacia. No relation was found between abnormal MRI findings at age 1 and later fine motor, intellectual, and perceptual function. Comparing different age 1-year predictors, an abnormality score defined by MRI was used as an independent predictor of gross motor locomotion function at age 6 years. However, the Bayley Mental Development Index scores and weight at age 1 were more important predictors of later motor and intellectual outcome, respectively, than MRI findings. It is recommended that cerebral MRI should not be used routinely to examine VLBW infants without disabilities at 1 year of age.

  15. Volunteers, Head Start Children, and Development

    ERIC Educational Resources Information Center

    Wooden, Howard E.; And Others

    1976-01-01

    Investigated with 12 preschool children were whether IQ scores are a predictive indicator of potential learning disability and whether nonprofessional volunteers can remediate possible motor, perceptual, or verbal deficiencies with a concomitant increase in IQ score. (DB)

  16. Using Video Game Telemetry Data to Research Motor Chunking, Action Latencies, and Complex Cognitive-Motor Skill Learning.

    PubMed

    Thompson, Joseph J; McColeman, C M; Stepanova, Ekaterina R; Blair, Mark R

    2017-04-01

    Many theories of complex cognitive-motor skill learning are built on the notion that basic cognitive processes group actions into easy-to-perform sequences. The present work examines predictions derived from laboratory-based studies of motor chunking and motor preparation using data collected from the real-time strategy video game StarCraft 2. We examined 996,163 action sequences in the telemetry data of 3,317 players across seven levels of skill. As predicted, the latency to the first action (thought to be the beginning of a chunked sequence) is delayed relative to the other actions in the group. Other predictions, inspired by the memory drum theory of Henry and Rogers, received only weak support. Copyright © 2017 Cognitive Science Society, Inc.

  17. The potential of iRest in measuring the hand function performance of stroke patients.

    PubMed

    Abdul Rahman, Hisyam; Khor, Kang Xiang; Yeong, Che Fai; Su, Eileen Lee Ming; Narayanan, Aqilah Leela T

    2017-01-01

    Clinical scales such as Fugl-Meyer Assessment (FMA) and Motor Assessment Scale (MAS) are widely used to evaluate stroke patient's motor performance. However, there are several limitations with these assessment scales such as subjectivity, lack of repeatability, time-consuming and highly depend on the ability of the physiotherapy. In contrast, robot-based assessments are objective, repeatable, and could potentially reduce the assessment time. However, robot-based assessments are not as well established as conventional assessment scale and the correlation to conventional assessment scale is unclear. This study was carried out to identify important parameters in designing tasks that efficiently assess hand function of stroke patients and to quantify potential benefits of robotic assessment modules to predict the conventional assessment score with iRest. Twelve predictive variables were explored, relating to movement time, velocity, strategy, accuracy and smoothness from three robotic assessment modules which are Draw I, Draw Diamond and Draw Circle. Regression models using up to four predictors were developed to describe the MAS. Results show that the time given should be not too long and it would affect the trajectory error. Besides, result also shows that it is possible to use iRest in predicting MAS score. There is a potential of using iRest, a non-motorized device in predicting MAS score.

  18. Infant temperament reactivity and early maternal caregiving: independent and interactive links to later childhood attention-deficit/hyperactivity disorder symptoms.

    PubMed

    Miller, Natalie V; Degnan, Kathryn A; Hane, Amie A; Fox, Nathan A; Chronis-Tuscano, Andrea

    2018-06-11

    Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder with origins early in life. There is growing evidence that individual differences in temperament reactivity are predictive of ADHD symptoms, yet little is known about the relations between temperament reactivity in early infancy and later ADHD symptoms or the combined effect of reactivity with early environmental factors on ADHD symptom development. Using a 9-year prospective longitudinal design, this study tested the independent and interactive contributions of infant reactivity and maternal caregiving behaviors (MCB) on parent- and teacher-reported childhood ADHD symptoms. Participants included 291 children (132 male; 159 female) who participated in a larger study of temperament and social-emotional development. Reactivity was assessed by behavioral observation of negative affect, positive affect, and motor activity during novel stimuli presentations at 4 months of age. MCB were observed during a series of semistructured mother-infant tasks at 9 months of age. Finally, ADHD symptoms were assessed by parent- and teacher-report questionnaires at 7 and 9 years, respectively. Reactivity was predictive of ADHD symptoms, but results were sex specific. For boys, infant motor activity was positively predictive of later ADHD symptoms, but only at lower quality MCB. For girls, infant positive affect was positively predictive of later ADHD symptoms at lower quality MCB, and-unexpectedly-infant positive affect and motor activity were negatively predictive of later ADHD symptoms at higher quality MCB. These results point to early parenting as a moderating factor to mitigate temperament-related risk for later ADHD, suggesting this as a potential intervention target to mitigate risk for ADHD among reactive infants. © 2018 Association for Child and Adolescent Mental Health.

  19. CSMP (Continuous System Modeling Program) modeling of brushless DC motors

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.

    1984-09-01

    Recent improvements in rare earth magnets have made it possible to construct strong, lightweight, high horsepower DC motors. This has occasioned a reassessment of electromechanical actuators as alternatives to comparable pneumatic and hydraulic systems for use in flight control actuators for tactical missiles. This thesis develops a low-order mathematical model for the simulation and analysis of brushless DC motor performance. This model is implemented in CSMP language. It is used to predict such motor performance curves as speed, current and power versus torque. Electronic commutation based on Hall effect sensor positional feedback is simulated. Steady state motor behavior is studied under both constant and variable air gap flux conditions. The variable flux takes two different forms. In the first case, the flux is varied as a simple sinusoid. In the second case, the flux is varied as the sum of a sinusoid and one of its harmonics.

  20. Psychometric properties of the Affordances in the Home Environment for Motor Development inventory for use with Iranian children aged 18-42 months.

    PubMed

    Valadi, Saeed; Gabbard, Carl; Arabameri, Elahe; Kashi, Ali; Ghasemi, Abdollah

    2018-02-01

    The aim of this study was to translate the original English language version of the Affordances in the Home Environment for Motor Development (AHEMD) inventory and test its psychometric properties for use with Iranian children aged 18-42 months. For this purpose, the tool was translated into Farsi (a Persian language) using the forward-backward translation method and some of its psychometric properties were examined. Multistage stratified-cluster sampling was used to study 1019 families having children aged 18-42 months from among the regional divisions of Tehran urban community health centers. The questionnaire evaluated five factors: outside space, inside space, variety of stimulation, fine motor toys and gross motor toys. Expert opinion was used for content-related validity evaluation and confirmatory factor analysis was used to determine construct validity. For test-retest reliability, parents completed identical questionnaires two weeks apart. Internal consistency was evaluated using inter-examiner reliability, Cronbach's alpha and construct reliability. Linear regression analysis was used to explain and predict the effects of toys on AHEMD total score. Results showed that content-related validity was 0.92. Data confirmatory factor analysis showed an acceptable fit to the original five factors. Reliability over time was 0.91 and internal consistency was 0.93. It was also found that fine- and gross-motor toys showed a significant 55% predictability of affordance provision in the home. The Farsi translation of the AHEMD is acceptable for use with Iranian children aged 18-42 month. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Comparison of Linear Induction Motor Theories for the LIMRV and TLRV Motors

    DOT National Transportation Integrated Search

    1978-01-01

    The Oberretl, Yamamura, and Mosebach theories of the linear induction motor are described and also applied to predict performance characteristics of the TLRV & LIMRV linear induction motors. The effect of finite motor width and length on performance ...

  2. Advanced dc motor controller for battery-powered electric vehicles

    NASA Technical Reports Server (NTRS)

    Belsterling, C. A.

    1981-01-01

    A motor generation set is connected to run from the dc source and generate a voltage in the traction motor armature circuit that normally opposes the source voltage. The functional feasibility of the concept is demonstrated with tests on a Proof of Principle System. An analog computer simulation is developed, validated with the results of the tests, applied to predict the performance of a full scale Functional Model dc Controller. The results indicate high efficiencies over wide operating ranges and exceptional recovery of regenerated energy. The new machine integrates both motor and generator on a single two bearing shaft. The control strategy produces a controlled bidirectional plus or minus 48 volts dc output from the generator permitting full control of a 96 volt dc traction motor from a 48 volt battery, was designed to control a 20 hp traction motor. The controller weighs 63.5 kg (140 lb.) and has a peak efficiency of 90% in random driving modes and 96% during the SAE J 227a/D driving cycle.

  3. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR CO (MICROFACCO) FOR PREDICTING REAL-TIME VEHICLE EMISSIONS

    EPA Science Inventory

    The United States Environmental Protection Agency's National Exposure Research Laboratory has initiated a project to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project goal is to develop improved methods for modeling the source t...

  4. Hyperactivity in Attention-Deficit/Hyperactivity Disorder (ADHD): Impairing Deficit or Compensatory Behavior?

    PubMed

    Sarver, Dustin E; Rapport, Mark D; Kofler, Michael J; Raiker, Joseph S; Friedman, Lauren M

    2015-10-01

    Excess gross motor activity (hyperactivity) is considered a core diagnostic feature of childhood ADHD that impedes learning. This view has been challenged, however, by recent models that conceptualize excess motor activity as a compensatory mechanism that facilitates neurocognitive functioning in children with ADHD. The current study investigated competing model predictions regarding activity level's relation with working memory (WM) performance and attention in boys aged 8-12 years (M = 9.64, SD = 1.26) with ADHD (n = 29) and typically developing children (TD; n = 23). Children's phonological WM and attentive behavior were objectively assessed during four counterbalanced WM tasks administered across four separate sessions. These data were then sequenced hierarchically based on behavioral observations of each child's gross motor activity during each task. Analysis of the relations among intra-individual changes in observed activity level, attention, and performance revealed that higher rates of activity level predicted significantly better, but not normalized WM performance for children with ADHD. Conversely, higher rates of activity level predicted somewhat lower WM performance for TD children. Variations in movement did not predict changes in attention for either group. At the individual level, children with ADHD and TD children were more likely to be classified as reliably Improved and Deteriorated, respectively, when comparing their WM performance at their highest versus lowest observed activity level. These findings appear most consistent with models ascribing a functional role to hyperactivity in ADHD, with implications for selecting behavioral treatment targets to avoid overcorrecting gross motor activity during academic tasks that rely on phonological WM.

  5. The Generalization of Visuomotor Learning to Untrained Movements and Movement Sequences Based on Movement Vector and Goal Location Remapping

    PubMed Central

    Wu, Howard G.

    2013-01-01

    The planning of goal-directed movements is highly adaptable; however, the basic mechanisms underlying this adaptability are not well understood. Even the features of movement that drive adaptation are hotly debated, with some studies suggesting remapping of goal locations and others suggesting remapping of the movement vectors leading to goal locations. However, several previous motor learning studies and the multiplicity of the neural coding underlying visually guided reaching movements stand in contrast to this either/or debate on the modes of motor planning and adaptation. Here we hypothesize that, during visuomotor learning, the target location and movement vector of trained movements are separately remapped, and we propose a novel computational model for how motor plans based on these remappings are combined during the control of visually guided reaching in humans. To test this hypothesis, we designed a set of experimental manipulations that effectively dissociated the effects of remapping goal location and movement vector by examining the transfer of visuomotor adaptation to untrained movements and movement sequences throughout the workspace. The results reveal that (1) motor adaptation differentially remaps goal locations and movement vectors, and (2) separate motor plans based on these features are effectively averaged during motor execution. We then show that, without any free parameters, the computational model we developed for combining movement-vector-based and goal-location-based planning predicts nearly 90% of the variance in novel movement sequences, even when multiple attributes are simultaneously adapted, demonstrating for the first time the ability to predict how motor adaptation affects movement sequence planning. PMID:23804099

  6. [Psychoreactive disorders after motor vehicle accidents. Is it possible to predict the development of psychoreactive disorders after motor vehicle accidents?].

    PubMed

    Meyer, C; Dittrich, U; Küster, S; Markgraf, E; Hofmann, G O; Strauss, B

    2005-12-01

    The aim of this study was to assess common risk factors for the early development of psychoreactive disorders during traumatological treatment and to estimate their predictive potential. The sample consisted of 126 consecutive patients with accidental injuries recruited in an emergency room of the university hospital. We assessed this population 1 week (T1) and-on average-8 months following the accident (T2). At T1 34.5% of all patients indicated moderate and 26.4% strong symptoms of an acute stress disorder; 26.7% of all patients assessed at T2 suffered from severe post-traumatic symptoms. Linear regression analysis, using morbidity status at T2 as the dependent variable, allowed the explanation of 46.2% of the variance. The degree of early acute stress symptoms, injury, and pain intensity contributed significantly to the predictive model. We conclude that a substantial proportion of severely injured accident victims that will develop PTSD can be screened to some degree by the assessment of early stress disorder, the degree of their injury, and pain intensity, enabling secondary prevention of trauma-dependent symptomatology.

  7. Collective behavior of minus-ended motors in mitotic microtubule asters gliding toward DNA

    NASA Astrophysics Data System (ADS)

    Athale, Chaitanya A.; Dinarina, Ana; Nedelec, Francois; Karsenti, Eric

    2014-02-01

    Microtubules (MTs) nucleated by centrosomes form star-shaped structures referred to as asters. Aster motility and dynamics is vital for genome stability, cell division, polarization and differentiation. Asters move either toward the cell center or away from it. Here, we focus on the centering mechanism in a membrane independent system of Xenopus cytoplasmic egg extracts. Using live microscopy and single particle tracking, we find that asters move toward chromatinized DNA structures. The velocity and directionality profiles suggest a random-walk with drift directed toward DNA. We have developed a theoretical model that can explain this movement as a result of a gradient of MT length dynamics and MT gliding on immobilized dynein motors. In simulations, the antagonistic action of the motor species on the radial array of MTs leads to a tug-of-war purely due to geometric considerations and aster motility resembles a directed random-walk. Additionally, our model predicts that aster velocities do not change greatly with varying initial distance from DNA. The movement of asymmetric asters becomes increasingly super-diffusive with increasing motor density, but for symmetric asters it becomes less super-diffusive. The transition of symmetric asters from superdiffusive to diffusive mobility is the result of number fluctuations in bound motors in the tug-of-war. Overall, our model is in good agreement with experimental data in Xenopus cytoplasmic extracts and predicts novel features of the collective effects of motor-MT interactions.

  8. One-year neurodevelopmental outcome of very and late preterm infants: Risk factors and correlation with maternal stress.

    PubMed

    Coletti, Maria Franca; Caravale, Barbara; Gasparini, Corinna; Franco, Francesco; Campi, Francesca; Dotta, Andrea

    2015-05-01

    Although "late preterm" (LP) newborns (33-36 weeks of gestational age) represent more than 70% of all preterm labors, little is known about the relation between certain risk factors and developmental outcomes in LP compared to "very preterm" (≤32 weeks) children (VP). This study investigates: (1) LP and VP infants' development at 12 months of corrected age (CA) using the Bayley Scales of Infant Development - 3rd Edition (BSID-III); (2) correlation between BSID-III performances and maternal stress (using Parenting Stress Index-Short Form, PSI-SF) among LP and VP at 12 months CA; and (3) the link between known neonatal and demographic risk factors and developmental outcomes of LP and VP infants. For both LP and VP infants the Mean Cognitive (LP: 102.69±7.68; VP: 103.63±10.68), Language (LP: 96.23±10.08; VP: 99.10±10.37) and Motor (LP: 91.11±10.33; VP: 93.85±10.17) composite scores were in the normal range, without significant differences between the groups. Correlations between PSI-SF and BSID-III showed that in the VP group (but not LP), Language score was negatively related to the PSI-SF 'Difficult Child' scale (r=-.34, p<.05). Regression models revealed that cognitive performance was significantly predicted by physical therapy in LP and by cesarean section in VP infants. For VP only maternal education and length of stay predicted Language score, whereas physical therapy predicted Motor score. Results of the study underline the importance of considering cognitive, language and motor developments separately when assessing a preterm child's development. Prediction models of developmental performance confirm the influence of some known neonatal risk factors and indicate the need for further research on the role of sociodemographic risk factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Radiation from advanced solid rocket motor plumes

    NASA Technical Reports Server (NTRS)

    Farmer, Richard C.; Smith, Sheldon D.; Myruski, Brian L.

    1994-01-01

    The overall objective of this study was to develop an understanding of solid rocket motor (SRM) plumes in sufficient detail to accurately explain the majority of plume radiation test data. Improved flowfield and radiation analysis codes were developed to accurately and efficiently account for all the factors which effect radiation heating from rocket plumes. These codes were verified by comparing predicted plume behavior with measured NASA/MSFC ASRM test data. Upon conducting a thorough review of the current state-of-the-art of SRM plume flowfield and radiation prediction methodology and the pertinent data base, the following analyses were developed for future design use. The NOZZRAD code was developed for preliminary base heating design and Al2O3 particle optical property data evaluation using a generalized two-flux solution to the radiative transfer equation. The IDARAD code was developed for rapid evaluation of plume radiation effects using the spherical harmonics method of differential approximation to the radiative transfer equation. The FDNS CFD code with fully coupled Euler-Lagrange particle tracking was validated by comparison to predictions made with the industry standard RAMP code for SRM nozzle flowfield analysis. The FDNS code provides the ability to analyze not only rocket nozzle flow, but also axisymmetric and three-dimensional plume flowfields with state-of-the-art CFD methodology. Procedures for conducting meaningful thermo-vision camera studies were developed.

  10. Prediction of Ablation Rates from Solid Surfaces Exposed to High Temperature Gas Flow

    NASA Technical Reports Server (NTRS)

    Akyuzlu, Kazim M.; Coote, David

    2013-01-01

    A mathematical model and a solution algorithm is developed to study the physics of high temperature heat transfer and material ablation and identify the problems associated with the flow of hydrogen gas at very high temperatures and velocities through pipes and various components of Nuclear Thermal Rocket (NTR) motors. Ablation and melting can be experienced when the inner solid surface of the cooling channels and the diverging-converging nozzle of a Nuclear Thermal Rocket (NTR) motor is exposed to hydrogen gas flow at temperatures around 2500 degrees Kelvin and pressures around 3.4 MPa. In the experiments conducted on typical NTR motors developed in 1960s, degradation of the cooling channel material (cracking in the nuclear fuel element cladding) and in some instances melting of the core was observed. This paper presents the results of a preliminary study based on two types of physics based mathematical models that were developed to simulate the thermal-hydrodynamic conditions that lead to ablation of the solid surface of a stainless steel pipe exposed to high temperature hydrogen gas near sonic velocities. One of the proposed models is one-dimensional and assumes the gas flow to be unsteady, compressible and viscous. An in-house computer code was developed to solve the conservations equations of this model using a second-order accurate finite-difference technique. The second model assumes the flow to be three-dimensional, unsteady, compressible and viscous. A commercial CFD code (Fluent) was used to solve the later model equations. Both models assume the thermodynamic and transport properties of the hydrogen gas to be temperature dependent. In the solution algorithm developed for this study, the unsteady temperature of the pipe is determined from the heat equation for the solid. The solid-gas interface temperature is determined from an energy balance at the interface which includes heat transfer from or to the interface by conduction, convection, radiation, and ablation. Two different ablation models are proposed to determine the heat loss from the solid surface due to the ablation of the solid material. Both of them are physics based. Various numerical simulations were carried out using both models to predict the temperature distribution in the solid and in the gas flow, and then predict the ablation rates at a typical NTR motor hydrogen gas temperature and pressure. Solid mass loss rate per foot of a pipe was also calculated from these predictions. The results are presented for fully developed turbulent flow conditions in a sample SS pipe with a 6 inch diameter.

  11. A Monte Carlo Analysis of the Thrust Imbalance for the RSRMV Booster During Both the Ignition Transient and Steady State Operation

    NASA Technical Reports Server (NTRS)

    Foster, Winfred A., Jr.; Crowder, Winston; Steadman, Todd E.

    2014-01-01

    This paper presents the results of statistical analyses performed to predict the thrust imbalance between two solid rocket motor boosters to be used on the Space Launch System (SLS) vehicle. Two legacy internal ballistics codes developed for the Space Shuttle program were coupled with a Monte Carlo analysis code to determine a thrust imbalance envelope for the SLS vehicle based on the performance of 1000 motor pairs. Thirty three variables which could impact the performance of the motors during the ignition transient and thirty eight variables which could impact the performance of the motors during steady state operation of the motor were identified and treated as statistical variables for the analyses. The effects of motor to motor variation as well as variations between motors of a single pair were included in the analyses. The statistical variations of the variables were defined based on data provided by NASA's Marshall Space Flight Center for the upgraded five segment booster and from the Space Shuttle booster when appropriate. The results obtained for the statistical envelope are compared with the design specification thrust imbalance limits for the SLS launch vehicle

  12. A Monte Carlo Analysis of the Thrust Imbalance for the Space Launch System Booster During Both the Ignition Transient and Steady State Operation

    NASA Technical Reports Server (NTRS)

    Foster, Winfred A., Jr.; Crowder, Winston; Steadman, Todd E.

    2014-01-01

    This paper presents the results of statistical analyses performed to predict the thrust imbalance between two solid rocket motor boosters to be used on the Space Launch System (SLS) vehicle. Two legacy internal ballistics codes developed for the Space Shuttle program were coupled with a Monte Carlo analysis code to determine a thrust imbalance envelope for the SLS vehicle based on the performance of 1000 motor pairs. Thirty three variables which could impact the performance of the motors during the ignition transient and thirty eight variables which could impact the performance of the motors during steady state operation of the motor were identified and treated as statistical variables for the analyses. The effects of motor to motor variation as well as variations between motors of a single pair were included in the analyses. The statistical variations of the variables were defined based on data provided by NASA's Marshall Space Flight Center for the upgraded five segment booster and from the Space Shuttle booster when appropriate. The results obtained for the statistical envelope are compared with the design specification thrust imbalance limits for the SLS launch vehicle.

  13. Links between motor control and classroom behaviors: Moderation by low birth weight

    PubMed Central

    Razza, Rachel A.; Martin, Anne; Brooks-Gunn, Jeanne

    2016-01-01

    It is unclear from past research on effortful control whether one of its components, motor control, independently contributes to adaptive classroom behaviors. The goal of this study was to identify associations between early motor control, measured by the walk-a-line task at age 3, and teacher-reported learning-related behaviors (approaches to learning and attention problems) and behavior problems in kindergarten classrooms. Models tested whether children who were vulnerable to poorer learning behaviors and more behavior problems due to having been born low birth weight benefited more, less, or the same as other children from better motor control. Data were drawn from the national Fragile Families and Child-Wellbeing Study (n = 751). Regression models indicated that motor control was significantly associated with better approaches to learning and fewer behavior problems. Children who were low birth weight benefitted more than normal birth weight children from better motor control with respect to their approaches to learning, but equally with respect to behavior problems. Additionally, for low but not normal birth weight children, better motor control predicted fewer attention problems. These findings suggest that motor control follows a compensatory model of development for low birth weight children and classroom behaviors. PMID:27594776

  14. Exercise Capacity and Self-Efficacy are Associated with Moderate-to-Vigorous Intensity Physical Activity in Children with Congenital Heart Disease.

    PubMed

    Banks, Laura; Rosenthal, Shelly; Manlhiot, Cedric; Fan, Chun-Po Steve; McKillop, Adam; Longmuir, Patricia E; McCrindle, Brian W

    2017-08-01

    This study sought to determine whether exercise capacity, self-efficacy, and gross motor skills are associated with moderate-to-vigorous physical activity (MVPA) levels in children, and if these associations differ by congenital heart disease (CHD) type. Medical history was abstracted from chart review. We assessed MVPA levels (via accelerometry), percent-predicted peak oxygen consumption ([Formula: see text] cardiopulmonary exercise test), gross motor skill percentiles (test of gross motor development version-2), and self-efficacy [children's self-perceptions of adequacy and predilection for physical activity scale (CSAPPA scale)]. CHD patients (n = 137, range 4-12 years) included children with a repaired atrial septal defect (n = 31, mean ± standard deviation MVPA = 454 ± 246 min/week), transposition of the great arteries after the arterial switch operation (n = 34, MVPA = 423 ± 196 min/week), tetralogy of Fallot after primary repair (n = 37, MVPA = 389 ± 211 min/week), or single ventricle after the Fontan procedure (n = 35, MVPA = 405 ± 256 min/week). MVPA did not differ significantly between CHD groups (p = 0.68). Higher MVPA was associated with a higher percent-predicted [Formula: see text] (EST[95% CI] = 16.9[-0.2, 34] MVPA min/week per 10% increase in percent-predicted [Formula: see text] p = 0.05) and higher self-efficacy (EST[95% CI] = 5.2[1.0, 9.3] MVPA min/week per 1-unit increase in CSAPPA score, p = 0.02), after adjustment for age, sex, and testing seasonality, with no association with CHD type. Higher MVPA was not associated with gross motor skill percentile (p = 0.92). There were no significant interactions between CHD type and percent-predicted [Formula: see text] self-efficacy scores, and gross motor skill percentiles regarding their association with MVPA (p > 0.05 for all). Greater MVPA was associated with higher exercise capacity and self-efficacy, but not gross motor skills.

  15. Hypnosis in sport: an Isomorphic Model.

    PubMed

    Robazza, C; Bortoli, L

    1994-10-01

    Hypnosis in sport can be applied according to an Isomorphic Model. Active-alert hypnosis is induced before or during practice whereas traditional hypnosis is induced after practice to establish connections between the two experiences. The fundamental goals are to (a) develop mental skills important to both motor and hypnotic performance, (b) supply a wide range of motor and hypnotic bodily experiences important to performance, and (c) induce alert hypnosis before or during performance. The model is based on the assumption that hypnosis and motor performance share common skills modifiable through training. Similarities between hypnosis and peak performance in the model are also considered. Some predictions are important from theoretical and practical points of view.

  16. Predicting VO[subscript 2max] in College-Aged Participants Using Cycle Ergometry and Perceived Functional Ability

    ERIC Educational Resources Information Center

    Nielson, David E.; George, James D.; Vehrs, Pat R.; Hager, Ron L.; Webb, Carrie V.

    2010-01-01

    The purpose of this study was to develop a multiple linear regression model to predict treadmill VO[subscript 2max] scores using both exercise and non-exercise data. One hundred five college-aged participants (53 male, 52 female) successfully completed a submaximal cycle ergometer test and a maximal graded exercise test on a motorized treadmill.…

  17. A Predictive Mathematical Model of Muscle Forces for Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Lee, Samuel C. K.; Ding, Jun; Prosser, Laura A.; Wexler, Anthony S.; Binder-Macleod, Stuart A.

    2009-01-01

    Aim: The purpose of this study was to determine if our previously developed muscle model could be used to predict forces of the quadriceps femoris and triceps surae muscles of children with spastic diplegic cerebral palsy (CP). Method: Twenty-two children with CP (12 males, 10 females; mean age 10y, SD 2y, range 7-13y; Gross Motor Function…

  18. Modeling stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Yao, Zhiyuan; Lv, Qibao; Liu, Zhen

    2016-11-01

    Ultrasonic motor (USM) is an electromechanical coupling system with ultrasonic vibration, which is driven by the frictional contact force between the stator (vibrating body) and the rotor/slider (driven body). Stick-slip motion can occur at the contact interface when USM is operating, which may affect the performance of the motor. This paper develops a physically-based model to investigate the complex stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor. The model includes both friction nonlinearity and intermittent separation nonlinearity of the system. Utilizing Hamilton's principle and assumed mode method, the dynamic equations of the stator are deduced. Based on the dynamics of the stator and the slider, sticking force during the stick phase is derived, which is used to examine the stick-to-slip transition. Furthermore, the stick-slip-separation kinematics is analyzed by establishing analytical criteria that predict the transition between stick, slip and separation of the interface. Stick-slip-separation motion is observed in the resulting model, and numerical simulations are performed to study the influence of parameters on the range of possible motions. Results show that stick-slip motion can occur with greater preload and smaller voltage amplitude. Furthermore, a dimensionless parameter is proposed to predict the occurrence of stick-slip versus slip-separation motions, and its role in designing ultrasonic motors is discussed. It is shown that slip-separation motion is favorable for the slider velocity.

  19. The Cerebellum Generates Motor-to-Auditory Predictions: ERP Lesion Evidence

    ERIC Educational Resources Information Center

    Knolle, Franziska; Schroger, Erich; Baess, Pamela; Kotz, Sonja A.

    2012-01-01

    Forward predictions are crucial in motor action (e.g., catching a ball, or being tickled) but may also apply to sensory or cognitive processes (e.g., listening to distorted speech or to a foreign accent). According to the "internal forward model," the cerebellum generates predictions about somatosensory consequences of movements. These predictions…

  20. Predicting ground level impacts of solid rocket motor testing

    NASA Technical Reports Server (NTRS)

    Douglas, Willard L.; Eagan, Ellen E.; Kennedy, Carolyn D.; Mccaleb, Rebecca C.

    1993-01-01

    Beginning in August of 1988 and continuing until the present, NASA at Stennis Space Center, Mississippi has conducted environmental monitoring of selected static test firings of the solid rocket motor used on the Space Shuttle. The purpose of the study was to assess the modeling protocol adapted for use in predicting plume behavior for the Advanced Solid Rocket Motor that is to be tested in Mississippi beginning in the mid-1990's. Both motors use an aluminum/ammonium perchlorate fuel that produces HCl and Al2O3 particulates as the major combustion products of concern. A combination of COMBUS.sr and PRISE.sr subroutines and the INPUFF model are used to predict the centerline stabilization height, the maximum concentration of HCl and Al2O3 at ground level, and distance to maximum concentration. Ground studies were conducted to evaluate the ability of the model to make these predictions. The modeling protocol was found to be conservative in the prediction of plume stabilization height and in the concentrations of the two emission products predicted.

  1. Anomalous Putamen Volume in Children with Complex Motor Stereotypies

    PubMed Central

    Mahone, E. Mark; Crocetti, Deana; Tochen, Laura; Kline, Tina; Mostofsky, Stewart H.; Singer, Harvey S.

    2016-01-01

    Introduction Complex motor stereotypies in children are repetitive, rhythmic movements that have a predictable pattern and location, seem purposeful, but serve no obvious function, tend to be prolonged, and stop with distraction, e.g., arm/hand flapping, waving. They occur in both “primary” (otherwise typically developing) and secondary conditions. These movements are best defined as habitual behaviors and therefore pathophysiologically hypothesized to reside in premotor to posterior putamen circuits. This study sought to clarify the underlying neurobiological abnormality in children with primary complex motor stereotypies using structural neuroimaging, emphasizing brain regions hypothesized to underlie these atypical behaviors. Methods High-resolution anatomical MRI images, acquired at 3.0T, were analyzed in children ages 8–12 years (20 with primary complex motor stereotypies, 20 typically developing). Frontal lobe sub-regions and striatal structures were delineated for analysis. Results Significant reductions (p=0.045) in the stereotypies group were identified in total putamen volume, but not caudate, nucleus accumbens or frontal sub-regions. There were no group differences in total cerebral volume. Conclusion Findings of a smaller putamen provide preliminary evidence suggesting the potential involvement of the habitual pathway as the underlying anatomical site in primary complex motor stereotypies. PMID:27751663

  2. A new comparator account of auditory verbal hallucinations: how motor prediction can plausibly contribute to the sense of agency for inner speech

    PubMed Central

    Swiney, Lauren; Sousa, Paulo

    2014-01-01

    The comparator account holds that processes of motor prediction contribute to the sense of agency by attenuating incoming sensory information and that disruptions to this process contribute to misattributions of agency in schizophrenia. Over the last 25 years this simple and powerful model has gained widespread support not only as it relates to bodily actions but also as an account of misattributions of agency for inner speech, potentially explaining the etiology of auditory verbal hallucination (AVH). In this paper we provide a detailed analysis of the traditional comparator account for inner speech, pointing out serious problems with the specification of inner speech on which it is based and highlighting inconsistencies in the interpretation of the electrophysiological evidence commonly cited in its favor. In light of these analyses we propose a new comparator account of misattributed inner speech. The new account follows leading models of motor imagery in proposing that inner speech is not attenuated by motor prediction, but rather derived directly from it. We describe how failures of motor prediction would therefore directly affect the phenomenology of inner speech and trigger a mismatch in the comparison between motor prediction and motor intention, contributing to abnormal feelings of agency. We argue that the new account fits with the emerging phenomenological evidence that AVHs are both distinct from ordinary inner speech and heterogeneous. Finally, we explore the possibility that the new comparator account may extend to explain disruptions across a range of imagistic modalities, and outline avenues for future research. PMID:25221502

  3. A new comparator account of auditory verbal hallucinations: how motor prediction can plausibly contribute to the sense of agency for inner speech.

    PubMed

    Swiney, Lauren; Sousa, Paulo

    2014-01-01

    The comparator account holds that processes of motor prediction contribute to the sense of agency by attenuating incoming sensory information and that disruptions to this process contribute to misattributions of agency in schizophrenia. Over the last 25 years this simple and powerful model has gained widespread support not only as it relates to bodily actions but also as an account of misattributions of agency for inner speech, potentially explaining the etiology of auditory verbal hallucination (AVH). In this paper we provide a detailed analysis of the traditional comparator account for inner speech, pointing out serious problems with the specification of inner speech on which it is based and highlighting inconsistencies in the interpretation of the electrophysiological evidence commonly cited in its favor. In light of these analyses we propose a new comparator account of misattributed inner speech. The new account follows leading models of motor imagery in proposing that inner speech is not attenuated by motor prediction, but rather derived directly from it. We describe how failures of motor prediction would therefore directly affect the phenomenology of inner speech and trigger a mismatch in the comparison between motor prediction and motor intention, contributing to abnormal feelings of agency. We argue that the new account fits with the emerging phenomenological evidence that AVHs are both distinct from ordinary inner speech and heterogeneous. Finally, we explore the possibility that the new comparator account may extend to explain disruptions across a range of imagistic modalities, and outline avenues for future research.

  4. Predicting clinical diagnosis in Huntington's disease: An imaging polymarker

    PubMed Central

    Daws, Richard E.; Soreq, Eyal; Johnson, Eileanoir B.; Scahill, Rachael I.; Tabrizi, Sarah J.; Barker, Roger A.; Hampshire, Adam

    2018-01-01

    Objective Huntington's disease (HD) gene carriers can be identified before clinical diagnosis; however, statistical models for predicting when overt motor symptoms will manifest are too imprecise to be useful at the level of the individual. Perfecting this prediction is integral to the search for disease modifying therapies. This study aimed to identify an imaging marker capable of reliably predicting real‐life clinical diagnosis in HD. Method A multivariate machine learning approach was applied to resting‐state and structural magnetic resonance imaging scans from 19 premanifest HD gene carriers (preHD, 8 of whom developed clinical disease in the 5 years postscanning) and 21 healthy controls. A classification model was developed using cross‐group comparisons between preHD and controls, and within the preHD group in relation to “estimated” and “actual” proximity to disease onset. Imaging measures were modeled individually, and combined, and permutation modeling robustly tested classification accuracy. Results Classification performance for preHDs versus controls was greatest when all measures were combined. The resulting polymarker predicted converters with high accuracy, including those who were not expected to manifest in that time scale based on the currently adopted statistical models. Interpretation We propose that a holistic multivariate machine learning treatment of brain abnormalities in the premanifest phase can be used to accurately identify those patients within 5 years of developing motor features of HD, with implications for prognostication and preclinical trials. Ann Neurol 2018;83:532–543 PMID:29405351

  5. Can parents' concerns predict autism spectrum disorder? A prospective study of high-risk siblings from 6 to 36 months of age.

    PubMed

    Sacrey, Lori-Ann R; Zwaigenbaum, Lonnie; Bryson, Susan; Brian, Jessica; Smith, Isabel M; Roberts, Wendy; Szatmari, Peter; Roncadin, Caroline; Garon, Nancy; Novak, Christopher; Vaillancourt, Tracy; McCormick, Theresa; MacKinnon, Bonnie; Jilderda, Sanne; Armstrong, Vickie

    2015-06-01

    This prospective study characterized parents' concerns about infants at high risk for developing autism spectrum disorder (ASD; each with an older sibling with ASD) at multiple time points in the first 2 years, and assessed their relation to diagnostic outcome at 3 years. Parents of low-risk controls (LR) and high-risk infant siblings (HR) reported any concerns that they had regarding their children's development between 6 and 24 months of age regarding sleep, diet, sensory behavior, gross/fine motor skills, repetitive movements, communication, communication regression, social skills, play, and behavioral problems, using a parent concern form designed for this study. At 3 years of age, an independent, gold-standard diagnostic assessment for ASD was conducted for all participants. As predicted, parents of HR children who received an ASD diagnosis reported more concerns than parents of LR and HR children who did not have ASD. The total number of concerns predicted a subsequent diagnosis of ASD as early as 12 months within the HR group. Concerns regarding sensory behavior and motor development predicted a subsequent diagnosis of ASD as early as 6 months, whereas concerns about social communication and repetitive behaviors did not predict diagnosis of ASD until after 12 months. Parent-reported concerns can improve earlier recognition of ASD in HR children. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Does childhood motor skill proficiency predict adolescent fitness?

    PubMed

    Barnett, Lisa M; Van Beurden, Eric; Morgan, Philip J; Brooks, Lyndon O; Beard, John R

    2008-12-01

    To determine whether childhood fundamental motor skill proficiency predicts subsequent adolescent cardiorespiratory fitness. In 2000, children's proficiency in a battery of skills was assessed as part of an elementary school-based intervention. Participants were followed up during 2006/2007 as part of the Physical Activity and Skills Study, and cardiorespiratory fitness was measured using the Multistage Fitness Test. Linear regression was used to examine the relationship between childhood fundamental motor skill proficiency and adolescent cardiorespiratory fitness controlling for gender. Composite object control (kick, catch, throw) and locomotor skill (hop, side gallop, vertical jump) were constructed for analysis. A separate linear regression examined the ability of the sprint run to predict cardiorespiratory fitness. Of the 928 original intervention participants, 481 were in 28 schools, 276 (57%) of whom were assessed. Two hundred and forty-four students (88.4%) completed the fitness test. One hundred and twenty-seven were females (52.1%), 60.1% of whom were in grade 10 and 39.0% were in grade 11. As children, almost all 244 completed each motor assessments, except for the sprint run (n = 154, 55.8%). The mean composite skill score in 2000 was 17.7 (SD 5.1). In 2006/2007, the mean number of laps on the Multistage Fitness Test was 50.5 (SD 24.4). Object control proficiency in childhood, adjusting for gender (P = 0.000), was associated with adolescent cardiorespiratory fitness (P = 0.012), accounting for 26% of fitness variation. Children with good object control skills are more likely to become fit adolescents. Fundamental motor skill development in childhood may be an important component of interventions aiming to promote long-term fitness.

  7. Verification of spatial and temporal pressure distributions in segmented solid rocket motors

    NASA Technical Reports Server (NTRS)

    Salita, Mark

    1989-01-01

    A wide variety of analytical tools are in use today to predict the history and spatial distributions of pressure in the combustion chambers of solid rocket motors (SRMs). Experimental and analytical methods are presented here that allow the verification of many of these predictions. These methods are applied to the redesigned space shuttle booster (RSRM). Girth strain-gage data is compared to the predictions of various one-dimensional quasisteady analyses in order to verify the axial drop in motor static pressure during ignition transients as well as quasisteady motor operation. The results of previous modeling of radial flows in the bore, slots, and around grain overhangs are supported by approximate analytical and empirical techniques presented here. The predictions of circumferential flows induced by inhibitor asymmetries, nozzle vectoring, and propellant slump are compared to each other and to subscale cold air and water tunnel measurements to ascertain their validity.

  8. Emotion Regulation through Movement: Unique Sets of Movement Characteristics are Associated with and Enhance Basic Emotions.

    PubMed

    Shafir, Tal; Tsachor, Rachelle P; Welch, Kathleen B

    2015-01-01

    We have recently demonstrated that motor execution, observation, and imagery of movements expressing certain emotions can enhance corresponding affective states and therefore could be used for emotion regulation. But which specific movement(s) should one use in order to enhance each emotion? This study aimed to identify, using Laban Movement Analysis (LMA), the Laban motor elements (motor characteristics) that characterize movements whose execution enhances each of the basic emotions: anger, fear, happiness, and sadness. LMA provides a system of symbols describing its motor elements, which gives a written instruction (motif) for the execution of a movement or movement-sequence over time. Six senior LMA experts analyzed a validated set of video clips showing whole body dynamic expressions of anger, fear, happiness and sadness, and identified the motor elements that were common to (appeared in) all clips expressing the same emotion. For each emotion, we created motifs of different combinations of the motor elements common to all clips of the same emotion. Eighty subjects from around the world read and moved those motifs, to identify the emotion evoked when moving each motif and to rate the intensity of the evoked emotion. All subjects together moved and rated 1241 motifs, which were produced from 29 different motor elements. Using logistic regression, we found a set of motor elements associated with each emotion which, when moved, predicted the feeling of that emotion. Each emotion was predicted by a unique set of motor elements and each motor element predicted only one emotion. Knowledge of which specific motor elements enhance specific emotions can enable emotional self-regulation through adding some desired motor qualities to one's personal everyday movements (rather than mimicking others' specific movements) and through decreasing motor behaviors which include elements that enhance negative emotions.

  9. Emotion Regulation through Movement: Unique Sets of Movement Characteristics are Associated with and Enhance Basic Emotions

    PubMed Central

    Shafir, Tal; Tsachor, Rachelle P.; Welch, Kathleen B.

    2016-01-01

    We have recently demonstrated that motor execution, observation, and imagery of movements expressing certain emotions can enhance corresponding affective states and therefore could be used for emotion regulation. But which specific movement(s) should one use in order to enhance each emotion? This study aimed to identify, using Laban Movement Analysis (LMA), the Laban motor elements (motor characteristics) that characterize movements whose execution enhances each of the basic emotions: anger, fear, happiness, and sadness. LMA provides a system of symbols describing its motor elements, which gives a written instruction (motif) for the execution of a movement or movement-sequence over time. Six senior LMA experts analyzed a validated set of video clips showing whole body dynamic expressions of anger, fear, happiness and sadness, and identified the motor elements that were common to (appeared in) all clips expressing the same emotion. For each emotion, we created motifs of different combinations of the motor elements common to all clips of the same emotion. Eighty subjects from around the world read and moved those motifs, to identify the emotion evoked when moving each motif and to rate the intensity of the evoked emotion. All subjects together moved and rated 1241 motifs, which were produced from 29 different motor elements. Using logistic regression, we found a set of motor elements associated with each emotion which, when moved, predicted the feeling of that emotion. Each emotion was predicted by a unique set of motor elements and each motor element predicted only one emotion. Knowledge of which specific motor elements enhance specific emotions can enable emotional self-regulation through adding some desired motor qualities to one's personal everyday movements (rather than mimicking others' specific movements) and through decreasing motor behaviors which include elements that enhance negative emotions. PMID:26793147

  10. Structural equation modeling of motor impairment, gross motor function, and the functional outcome in children with cerebral palsy.

    PubMed

    Park, Eun-Young; Kim, Won-Ho

    2013-05-01

    Physical therapy intervention for children with cerebral palsy (CP) is focused on reducing neurological impairments, improving strength, and preventing the development of secondary impairments in order to improve functional outcomes. However, relationship between motor impairments and functional outcome has not been proved definitely. This study confirmed the construct of motor impairment and performed structural equation modeling (SEM) between motor impairment, gross motor function, and functional outcomes of regarding activities of daily living in children with CP. 98 children (59 boys, 39 girls) with CP participated in this cross-sectional study. Mean age was 11 y 5 mo (SD 1 y 9 mo). The Manual Muscle Test (MMT), the Modified Ashworth Scale (MAS), range of motion (ROM) measurement, and the selective motor control (SMC) scale were used to assess motor impairments. Gross motor function and functional outcomes were measured using the Gross Motor Function Measure (GMFM) and the Functional Skills domain of the Pediatric Evaluation of Disability Inventory (PEDI) respectively. Measurement of motor impairment was consisted of strength, spasticity, ROM, and SMC. The construct of motor impairment was confirmed though an examination of a measurement model. The proposed SEM model showed good fit indices. Motor impairment effected gross motor function (β=-.0869). Gross motor function and motor impairment affected functional outcomes directly (β=0.890) and indirectly (β=-0.773) respectively. We confirmed that the construct of motor impairment consist of strength, spasticity, ROM, and SMC and it was identified through measurement model analysis. Functional outcomes are best predicted by gross motor function and motor impairments have indirect effects on functional outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Predicting motor outcome at preschool age for infants tested at 7, 30, 60, and 90 days after term age using the Test of Infant Motor Performance.

    PubMed

    Kolobe, Thubi H A; Bulanda, Michelle; Susman, Louisa

    2004-12-01

    Accurate and diagnostic measures are central to early identification and intervention with infants who are at risk for developmental delays or disabilities. The purpose of this study was to examine (1) the ability of infants' Test of Infant Motor Performance (TIMP) scores at 7, 30, 60 and 90 days after term age to predict motor development at preschool age and (2) the contribution of the home environment and medical risk to the prediction. Sixty-one children from an original cohort of 90 infants who were assessed weekly with the TIMP, between 34 weeks gestational age and 4 months after term age, participated in this follow-up study. The Peabody Developmental Motor Scales, 2nd edition (PDMS-2), were administered to the children at the mean age of 57 months (SD=4.8 months). The quality and quantity of the home environment also were assessed at this age using the Early Childhood Home Observation for Measurement of the Environment (EC-HOME). Pearson product moment correlation coefficients, multiple regression, sensitivity and specificity, and positive and negative predictive values were used to assess the relationship among the TIMP, HOME, medical risk, and PDMS-2 scores. The correlation coefficients between the TIMP and PDMS-2 scores were statistically significant for all ages except at 7 days. The highest correlation coefficient was at 90 days (r=.69, P=.001). The TIMP scores at 30, 60, and 90 days after term; medical risk scores; and EC-HOME scores explained 24%, 23%, and 52% of the variance in the PDMS-2 scores, respectively. The TIMP score at 90 days after term was the most significant contributor to the prediction. The TIMP cutoff score of -0.5 standard deviation below the mean correctly classified 80%, 79%, and 87% of the children using a cutoff score of -2 standard deviations on the PDMS-2 at 30, 60, and 90 days, respectively. The results compare favorably with those of developmental tests administered to infants at 6 months of age or older. These findings underscore the need for age-specific test values and developmental surveillance of infants before making referrals.

  12. Sensor-Motor Maps for Describing Linear Reflex Composition in Hopping.

    PubMed

    Schumacher, Christian; Seyfarth, André

    2017-01-01

    In human and animal motor control several sensory organs contribute to a network of sensory pathways modulating the motion depending on the task and the phase of execution to generate daily motor tasks such as locomotion. To better understand the individual and joint contribution of reflex pathways in locomotor tasks, we developed a neuromuscular model that describes hopping movements. In this model, we consider the influence of proprioceptive length (LFB), velocity (VFB) and force feedback (FFB) pathways of a leg extensor muscle on hopping stability, performance and efficiency (metabolic effort). Therefore, we explore the space describing the blending of the monosynaptic reflex pathway gains. We call this reflex parameter space a sensor-motor map . The sensor-motor maps are used to visualize the functional contribution of sensory pathways in multisensory integration. We further evaluate the robustness of these sensor-motor maps to changes in tendon elasticity, body mass, segment length and ground compliance. The model predicted that different reflex pathway compositions selectively optimize specific hopping characteristics (e.g., performance and efficiency). Both FFB and LFB were pathways that enable hopping. FFB resulted in the largest hopping heights, LFB enhanced hopping efficiency and VFB had the ability to disable hopping. For the tested case, the topology of the sensor-motor maps as well as the location of functionally optimal compositions were invariant to changes in system designs (tendon elasticity, body mass, segment length) or environmental parameters (ground compliance). Our results indicate that different feedback pathway compositions may serve different functional roles. The topology of the sensor-motor map was predicted to be robust against changes in the mechanical system design indicating that the reflex system can use different morphological designs, which does not apply for most robotic systems (for which the control often follows a specific design). Consequently, variations in body mechanics are permitted with consistent compositions of sensory feedback pathways. Given the variability in human body morphology, such variations are highly relevant for human motor control.

  13. Cortical dynamics and subcortical signatures of motor-language coupling in Parkinson's disease.

    PubMed

    Melloni, Margherita; Sedeño, Lucas; Hesse, Eugenia; García-Cordero, Indira; Mikulan, Ezequiel; Plastino, Angelo; Marcotti, Aida; López, José David; Bustamante, Catalina; Lopera, Francisco; Pineda, David; García, Adolfo M; Manes, Facundo; Trujillo, Natalia; Ibáñez, Agustín

    2015-07-08

    Impairments of action language have been documented in early stage Parkinson's disease (EPD). The action-sentence compatibility effect (ACE) paradigm has revealed that EPD involves deficits to integrate action-verb processing and ongoing motor actions. Recent studies suggest that an abolished ACE in EPD reflects a cortico-subcortical disruption, and recent neurocognitive models highlight the role of the basal ganglia (BG) in motor-language coupling. Building on such breakthroughs, we report the first exploration of convergent cortical and subcortical signatures of ACE in EPD patients and matched controls. Specifically, we combined cortical recordings of the motor potential, functional connectivity measures, and structural analysis of the BG through voxel-based morphometry. Relative to controls, EPD patients exhibited an impaired ACE, a reduced motor potential, and aberrant frontotemporal connectivity. Furthermore, motor potential abnormalities during the ACE task were predicted by overall BG volume and atrophy. These results corroborate that motor-language coupling is mainly subserved by a cortico-subcortical network including the BG as a key hub. They also evince that action-verb processing may constitute a neurocognitive marker of EPD. Our findings suggest that research on the relationship between language and motor domains is crucial to develop models of motor cognition as well as diagnostic and intervention strategies.

  14. Orthostatic hypotension predicts motor decline in early Parkinson disease.

    PubMed

    Kotagal, Vikas; Lineback, Christina; Bohnen, Nicolaas I; Albin, Roger L

    2016-11-01

    Orthostatic hypotension is increasingly reported as a risk factor for development of late-stage disease features in Parkinson disease (PD). Less is known about its significance in individuals with early PD who are often targeted for neuroprotective trials. Using data from the CALM-PD trial (n = 275), we explored whether early orthostatic hypotension predicts a decline in the Unified Parkinson's Disease Rating Scale (UPDRS) II (activities of daily living) or UDPRS III (motor) score after 102 weeks. We also explored risk factors for worsening orthostatic hypotension over a nearly 2-year period. After controlling for age, disease duration, gender, study drug, change in mini-mental status exam score, levodopa equivalent dose, and baseline UPDRS II or III score respectively, the degree of orthostatic hypotension at enrollment associated with a worsening in UPDRS motor score (t = 2.40, p = 0.017) at week 102 but not with UPDRS ADL score (t = 0.83, p = 0.409). Worsening in orthostatic hypotension during the study associated with longer disease duration (t = 2.37, p = 0.019) and lower body mass index (BMI) (t = -2.96, p = 0.003). Baseline orthostatic hypotension is a predictor of UPDRS motor decline in individuals with early PD and should be accounted for in clinical trial design. Low BMI may predict orthostatic hypotension in PD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A Motor-Gradient and Clustering Model of the Centripetal Motility of MTOCs in Meiosis I of Mouse Oocytes

    PubMed Central

    2016-01-01

    Asters nucleated by Microtubule (MT) organizing centers (MTOCs) converge on chromosomes during spindle assembly in mouse oocytes undergoing meiosis I. Time-lapse imaging suggests that this centripetal motion is driven by a biased ‘search-and-capture’ mechanism. Here, we develop a model of a random walk in a drift field to test the nature of the bias and the spatio-temporal dynamics of the search process. The model is used to optimize the spatial field of drift in simulations, by comparison to experimental motility statistics. In a second step, this optimized gradient is used to determine the location of immobilized dynein motors and MT polymerization parameters, since these are hypothesized to generate the gradient of forces needed to move MTOCs. We compare these scenarios to self-organized mechanisms by which asters have been hypothesized to find the cell-center- MT pushing at the cell-boundary and clustering motor complexes. By minimizing the error between simulation outputs and experiments, we find a model of “pulling” by a gradient of dynein motors alone can drive the centripetal motility. Interestingly, models of passive MT based “pushing” at the cortex, clustering by cross-linking motors and MT-dynamic instability gradients alone, by themselves do not result in the observed motility. The model predicts the sensitivity of the results to motor density and stall force, but not MTs per aster. A hybrid model combining a chromatin-centered immobilized dynein gradient, diffusible minus-end directed clustering motors and pushing at the cell cortex, is required to comprehensively explain the available data. The model makes experimentally testable predictions of a spatial bias and self-organized mechanisms by which MT asters can find the center of a large cell. PMID:27706163

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stathakis, S; Defoor, D; Linden, P

    Purpose: To study the frequency of Multi-Leaf Collimator (MLC) leaf failures, investigate methods to predict them and reduce linac downtime. Methods: A Varian HD120 MLC was used in our study. The hyperterminal MLC errors logged from 06/2012 to 12/2014 were collected. Along with the hyperterminal errors, the MLC motor changes and all other MLC interventions by the linear accelerator engineer were recorded. The MLC dynalog files were also recorded on a daily basis for each treatment and during linac QA. The dynalog files were analyzed to calculate root mean square errors (RMS) and cumulative MLC travel distance per motor. Anmore » in-house MatLab code was used to analyze all dynalog files, record RMS errors and calculate the distance each MLC traveled per day. Results: A total of 269 interventions were recorded over a period of 18 months. Of these, 146 included MLC motor leaf change, 39 T-nut replacements, and 84 MLC cleaning sessions. Leaves close to the middle of each side required the most maintenance. In the A bank, leaves A27 to A40 recorded 73% of all interventions, while the same leaves in the B bank counted for 52% of the interventions. On average, leaves in the middle of the bank had their motors changed approximately every 1500m of travel. Finally, it was found that the number of RMS errors increased prior to an MLC motor change. Conclusion: An MLC dynalog file analysis software was developed that can be used to log daily MLC usage. Our eighteen-month data analysis showed that there is a correlation between the distance an MLC travels, the RMS and the life of the MLC motor. We plan to use this tool to predict MLC motor failures and with proper and timely intervention, reduce the downtime of the linac during clinical hours.« less

  17. Passive Thermal Control for the Low Density Supersonic Decelerator (LDSD) Test Vehicle Spin Motors Sub-System

    NASA Technical Reports Server (NTRS)

    Redmond, Matthew; Mastropietro, A. J.; Pauken, Michael; Mobley, Brandon

    2014-01-01

    Future missions to Mars will require improved entry, descent, and landing (EDL) technology over the Viking-heritage systems which recently landed the largest payload to date, the 900 kg Mars Science Laboratory. As a result, NASA's Low Density Supersonic Decelerator (LDSD) project is working to advance the state of the art in Mars EDL systems by developing and testing three key technologies which will enable heavier payloads and higher altitude landing sites on the red planet. These technologies consist of a large 33.5 m diameter Supersonic Disk Sail (SSDS) parachute and two different Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class that inflates to a 6 m diameter torus (SIAD-R), and an exploration class that inflates to an 8 m diameter isotensoid (SIADE). All three technologies will be demonstrated on test vehicles at high earth altitudes in order to simulate the Mars EDL environment. Each vehicle will be carried to altitude by a large helium balloon, released, spun up using spin motors to stabilize the vehicle's trajectory, and accelerated to supersonic speeds using a large solid rocket motor. The vehicle will then be spun down using another set of spin motors, and will deploy either the SIAD-R or SIAD-E, followed by the SSDS parachute until the vehicle lands in the ocean. Component level testing and bounding analysis are used to ensure the survival of system components in extreme thermal environments and predict temperatures throughout the flight. This paper presents a general description of the thermal testing, model correlation, and analysis of the spin motor passive thermal control sub-system to maintain spin motor performance, prescribed vehicle trajectory, and structural integrity of the test vehicle. The spin motor subsystem is predicted to meet its requirements with margin.

  18. A Motor-Gradient and Clustering Model of the Centripetal Motility of MTOCs in Meiosis I of Mouse Oocytes.

    PubMed

    Khetan, Neha; Athale, Chaitanya A

    2016-10-01

    Asters nucleated by Microtubule (MT) organizing centers (MTOCs) converge on chromosomes during spindle assembly in mouse oocytes undergoing meiosis I. Time-lapse imaging suggests that this centripetal motion is driven by a biased 'search-and-capture' mechanism. Here, we develop a model of a random walk in a drift field to test the nature of the bias and the spatio-temporal dynamics of the search process. The model is used to optimize the spatial field of drift in simulations, by comparison to experimental motility statistics. In a second step, this optimized gradient is used to determine the location of immobilized dynein motors and MT polymerization parameters, since these are hypothesized to generate the gradient of forces needed to move MTOCs. We compare these scenarios to self-organized mechanisms by which asters have been hypothesized to find the cell-center- MT pushing at the cell-boundary and clustering motor complexes. By minimizing the error between simulation outputs and experiments, we find a model of "pulling" by a gradient of dynein motors alone can drive the centripetal motility. Interestingly, models of passive MT based "pushing" at the cortex, clustering by cross-linking motors and MT-dynamic instability gradients alone, by themselves do not result in the observed motility. The model predicts the sensitivity of the results to motor density and stall force, but not MTs per aster. A hybrid model combining a chromatin-centered immobilized dynein gradient, diffusible minus-end directed clustering motors and pushing at the cell cortex, is required to comprehensively explain the available data. The model makes experimentally testable predictions of a spatial bias and self-organized mechanisms by which MT asters can find the center of a large cell.

  19. Contributions to muscle force and EMG by combined neural excitation and electrical stimulation

    NASA Astrophysics Data System (ADS)

    Crago, Patrick E.; Makowski, Nathaniel S.; Cole, Natalie M.

    2014-10-01

    Objective. Stimulation of muscle for research or clinical interventions is often superimposed on ongoing physiological activity without a quantitative understanding of the impact of the stimulation on the net muscle activity and the physiological response. Experimental studies show that total force during stimulation is less than the sum of the isolated voluntary and stimulated forces, but the occlusion mechanism is not understood. Approach. We develop a model of efferent motor activity elicited by superimposing stimulation during a physiologically activated contraction. The model combines action potential interactions due to collision block, source resetting, and refractory periods with previously published models of physiological motor unit recruitment, rate modulation, force production, and EMG generation in human first dorsal interosseous muscle to investigate the mechanisms and effectiveness of stimulation on the net muscle force and EMG. Main results. Stimulation during a physiological contraction demonstrates partial occlusion of force and the neural component of the EMG, due to action potential interactions in motor units activated by both sources. Depending on neural and stimulation firing rates as well as on force-frequency properties, individual motor unit forces can be greater, smaller, or unchanged by the stimulation. In contrast, voluntary motor unit EMG potentials in simultaneously stimulated motor units show progressive occlusion with increasing stimulus rate. The simulations predict that occlusion would be decreased by a reverse stimulation recruitment order. Significance. The results are consistent with and provide a mechanistic interpretation of previously published experimental evidence of force occlusion. The models also predict two effects that have not been reported previously—voluntary EMG occlusion and the advantages of a proximal stimulation site. This study provides a basis for the rational design of both future experiments and clinical neuroprosthetic interventions involving either motor or sensory stimulation.

  20. Contributions to muscle force and EMG by combined neural excitation and electrical stimulation

    PubMed Central

    Crago, Patrick E; Makowski, Nathaniel S; Cole, Natalie M

    2014-01-01

    Objective Stimulation of muscle for research or clinical interventions is often superimposed on ongoing physiological activity, without a quantitative understanding of the impact of the stimulation on the net muscle activity and the physiological response. Experimental studies show that total force during stimulation is less than the sum of the isolated voluntary and stimulated forces, but the occlusion mechanism is not understood. Approach We develop a model of efferent motor activity elicited by superimposing stimulation during a physiologically activated contraction. The model combines action potential interactions due to collision block, source resetting, and refractory periods with previously published models of physiological motor unit recruitment, rate modulation, force production, and EMG generation in human first dorsal interosseous muscle to investigate the mechanisms and effectiveness of stimulation on the net muscle force and EMG. Main Results Stimulation during a physiological contraction demonstrates partial occlusion of force and the neural component of the EMG, due to action potential interactions in motor units activated by both sources. Depending on neural and stimulation firing rates as well as on force-frequency properties, individual motor unit forces can be greater, smaller, or unchanged by the stimulation. In contrast, voluntary motor unit EMG potentials in simultaneously stimulated motor units show progressive occlusion with increasing stimulus rate. The simulations predict that occlusion would be decreased by a reverse stimulation recruitment order. Significance The results are consistent with and provide a mechanistic interpretation of previously published experimental evidence of force occlusion. The models also predict two effects that have not been reported previously - voluntary EMG occlusion and the advantages of a proximal stimulation site. This study provides a basis for the rational design of both future experiments and clinical neuroprosthetic interventions involving either motor or sensory stimulation. PMID:25242203

  1. Diffusion tensor imaging of the corticospinal tract before and after mass resection as correlated with clinical motor findings: preliminary data.

    PubMed

    Laundre, Bryan J; Jellison, Brian J; Badie, Behnam; Alexander, Andrew L; Field, Aaron S

    2005-04-01

    The role of diffusion tensor imaging (DTI) in neurosurgical planning and follow-up is currently being defined and needs clinical validation. To that end, we sought correlations between preoperative and postoperative DTI and clinical motor deficits in patients with space-occupying lesions involving the corticospinal tract (CST). DTI findings in four patients with masses near the CST and not involving motor cortex were retrospectively reviewed and compared with contralateral motor strength. CST involvement was determined from anisotropy and eigenvector directional color maps. The CST was considered involved if it was substantially deviated or had decreased anisotropy. Interpretations of the DTIs were blinded to assessments of motor strength, and vice versa. Of the four patients with potential CST involvement before surgery, DTI confirmed CST involvement in three, all of whom had preoperative motor deficits. The patient without CST involvement on DTI had no motor deficit. After surgery, DTI showed CST preservation and normalization of the position and/or anisotropy in two of the three patients with preoperative deficits, and both of those patients had improvement in motor strength. The other patient with preoperative deficits had evidence of wallerian degeneration on DTI and had only equivocal clinical improvement. Preoperative CST involvement, as determined on DTI, was predictive of the presence or absence of motor deficits, and postoperative CST normalization on DTI was predictive of clinical improvement. Further study is warranted to define the role of DTI in planning tumor resections and predicting postoperative motor function.

  2. Multivariate Relationships among Morphology, Fitness and Motor Coordination in Prepubertal Girls

    PubMed Central

    Luz, Leonardo G. O.; Coelho-e-Silva, Manuel J.; Duarte, João P.; Valente-dos-Santos, João; Machado-Rodrigues, Aristides; Seabra, André; Carmo, Bruno C. M.; Vaeyens, Roel; Philippaerts, Renaat M.; Cumming, Sean P.; Malina, Robert M.

    2018-01-01

    Motor coordination and physical fitness are multidimensional concepts which cannot be reduced to a single variable. This study evaluated multivariate relationships among morphology, physical fitness and motor coordination in 74 pre-pubertal girls 8.0-8.9 years of age. Data included body dimensions, eight fitness items and four motor coordination tasks (KTK battery). Maturity status was estimated as percentage of predicted mature stature attained at the time of observation. Canonical correlation analysis was used to examine the relationships between multivariate domains. Significant pairs of linear functions between indicators of morphology and fitness (rc = 0.778, Wilks’ Lambda = 0.175), and between fitness and motor coordination (rc = 0.765, Wilks’ Lambda = 0.289) were identified. Girls who were lighter and had a lower waist-to-stature ratio and % fat mass attained better scores in the endurance run, sit-ups and standing long jump tests, but poorer performances in hand grip strength and 2-kg ball throw. Better fitness test scores were also associated with better motor coordination scores. Relationships between body size and estimated fatness with motor fitness suggested an inverse relationship that was particularly evident in performance items that required the displacement of the body through space, while motor coordination was more closely related with fitness than with somatic variables. Key points Morphology and motor coordination were not substantially related in this sample of 8-year-old girls suggesting that motor coordination was independent of variation in morphology. Sit-ups (abdominal strength and endurance), the 10x5-m shuttle run (agility) and the 20-m aerobic endurance tests were the main contributors to the significant canonical correlation between fitness and motor coordination. By inference, development of these components of fitness is important during the primary school years. Relationships between estimated maturity status based on percentage of predicted mature height and fitness and coordination were negligible, with the exception of a moderate and inverse association with aerobic endurance. Nevertheless, within the single chronological age group, girls who were advanced in maturity status tended to taller and heavier and performed better in tests which did not require displacement of the body through space. PMID:29769820

  3. Relationship of neonatal cerebral blood flow velocity asymmetry with early motor, cognitive and language development in term infants.

    PubMed

    Wu, Ying-Chin; Hsieh, Wu-Shiun; Hsu, Chyong-Hsin; Chiu, Nan-Chang; Chou, Hung-Chieh; Chen, Chien-Yi; Peng, Shinn-Forng; Hung, Han-Yang; Chang, Jui-Hsing; Chen, Wei J; Jeng, Suh-Fang

    2013-05-01

    The objective of this study was to examine the relationships of Doppler cerebral blood flow velocity (CBFV) asymmetry measures with developmental outcomes in term infants. Doppler CBFV parameters (peak systolic velocity [PSV] and mean velocity [MV]) of the bilateral middle cerebral arteries of 52 healthy term infants were prospectively examined on postnatal days 1-5, and then their motor, cognitive and language development was evaluated with the Bayley Scales of Infant and Toddler Development, Third Edition, at 6, 12, 18 and 24 months of age. The left CBFV asymmetry measure (PSV or MV) was calculated by subtracting the right-side value from the left-side value. Left CBFV asymmetry measures were significantly positively related to motor scores at 6 (r = 0.3-0.32, p < 0.05) and 12 (r = 0.35, p < 0.05) months of age, but were not related to cognitive or language outcome. Thus, the leftward hemodynamic status of the middle cerebral arteries, as measured by cranial Doppler ultrasound in the neonatal period, predicts early motor outcome in term infants. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. Development of Erosive Burning Models for CFD Predictions of Solid Rocket Motor Internal Environments

    NASA Technical Reports Server (NTRS)

    Wang, Qun-Zhen

    2003-01-01

    Four erosive burning models, equations (11) to (14). are developed in this work by using a power law relationship to correlate (1) the erosive burning ratio and the local velocity gradient at propellant surfaces; (2) the erosive burning ratio and the velocity gradient divided by centerline velocity; (3) the erosive burning difference and the local velocity gradient at propellant surfaces; and (4) the erosive burning difference and the velocity gradient divided by centerline velocity. These models depend on the local velocity gradient at the propellant surface (or the velocity gradient divided by centerline velocity) only and, unlike other empirical models, are independent of the motor size. It was argued that, since the erosive burning is a local phenomenon occurring near the surface of the solid propellant, the erosive burning ratio should be independent of the bore diameter if it is correlated with some local flow parameters such as the velocity gradient at the propellant surface. This seems to be true considering the good results obtained by applying these models, which are developed from the small size 5 inch CP tandem motor testing, to CFD simulations of much bigger motors.

  5. Steady State Thermal Analyses of SCEPTOR X-57 Wingtip Propulsion

    NASA Technical Reports Server (NTRS)

    Schnulo, Sydney L.; Chin, Jeffrey C.; Smith, Andrew D.; Dubois, Arthur

    2017-01-01

    Electric aircraft concepts enable advanced propulsion airframe integration approaches that promise increased efficiency as well as reduced emissions and noise. NASA's fully electric Maxwell X-57, developed under the SCEPTOR program, features distributed propulsion across a high aspect ratio wing. There are 14 propulsors in all: 12 high lift motor that are only active during take off and climb, and 2 larger motors positioned on the wingtips that operate over the entire mission. The power electronics involved in the wingtip propulsion are temperature sensitive and therefore require thermal management. This work focuses on the high and low fidelity heat transfer analysis methods performed to ensure that the wingtip motor inverters do not reach their temperature limits. It also explores different geometry configurations involved in the X-57 development and any thermal concerns. All analyses presented are performed at steady state under stressful operating conditions, therefore predicting temperatures which are considered the worst-case scenario to remain conservative.

  6. Logistic Regression Analyses for Predicting Clinically Important Differences in Motor Capacity, Motor Performance, and Functional Independence after Constraint-Induced Therapy in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Wang, Tien-ni; Wu, Ching-yi; Chen, Chia-ling; Shieh, Jeng-yi; Lu, Lu; Lin, Keh-chung

    2013-01-01

    Given the growing evidence for the effects of constraint-induced therapy (CIT) in children with cerebral palsy (CP), there is a need for investigating the characteristics of potential participants who may benefit most from this intervention. This study aimed to establish predictive models for the effects of pediatric CIT on motor and functional…

  7. Investigation of Perceptual-Motor Behavior Across the Expert Athlete to Disabled Patient Skill Continuum can Advance Theory and Practical Application.

    PubMed

    Müller, Sean; Vallence, Ann-Maree; Winstein, Carolee

    2017-12-14

    A framework is presented of how theoretical predictions can be tested across the expert athlete to disabled patient skill continuum. Common-coding theory is used as the exemplar to discuss sensory and motor system contributions to perceptual-motor behavior. Behavioral and neural studies investigating expert athletes and patients recovering from cerebral stroke are reviewed. They provide evidence of bi-directional contributions of visual and motor systems to perceptual-motor behavior. Majority of this research is focused on perceptual-motor performance or learning, with less on transfer. The field is ripe for research designed to test theoretical predictions across the expert athlete to disabled patient skill continuum. Our view has implications for theory and practice in sports science, physical education, and rehabilitation.

  8. Prediction of manifest Huntington's disease with clinical and imaging measures: a prospective observational study.

    PubMed

    Paulsen, Jane S; Long, Jeffrey D; Ross, Christopher A; Harrington, Deborah L; Erwin, Cheryl J; Williams, Janet K; Westervelt, Holly James; Johnson, Hans J; Aylward, Elizabeth H; Zhang, Ying; Bockholt, H Jeremy; Barker, Roger A

    2014-12-01

    Although the association between cytosine-adenine-guanine (CAG) repeat length and age at onset of Huntington's disease is well known, improved prediction of onset would be advantageous for clinical trial design and prognostic counselling. We compared various measures for tracking progression and predicting conversion to manifest Huntington's disease. In this prospective observational study, we assessed the ability of 40 measures in five domains (motor, cognitive, psychiatric, functional, and imaging) to predict time to motor diagnosis of Huntington's disease, accounting for CAG repeat length, age, and the interaction of CAG repeat length and age. Eligible participants were individuals from the PREDICT-HD study (from 33 centres in six countries [USA, Canada, Germany, Australia, Spain, UK]) with the gene mutation for Huntington's disease but without a motor diagnosis (a rating below 4 on the diagnostic confidence level from the 15-item motor assessment of the Unified Huntington's Disease Rating Scale). Participants were followed up between September, 2002, and July, 2014. We used joint modelling of longitudinal and survival data to examine the extent to which baseline and change of measures analysed separately was predictive of CAG-adjusted age at motor diagnosis. 1078 individuals with a CAG expansion were included in this analysis. Participants were followed up for a mean of 5·1 years (SD 3·3, range 0·0-12·0). 225 (21%) of these participants received a motor diagnosis of Huntington's disease during the study. 37 of 40 cross-sectional and longitudinal clinical and imaging measures were significant predictors of motor diagnosis beyond CAG repeat length and age. The strongest predictors were in the motor, imaging, and cognitive domains: an increase of one SD in total motor score (motor domain) increased the risk of a motor diagnosis by 3·07 times (95% CI 2·26-4·16), a reduction of one SD in putamen volume (imaging domain) increased risk by 3·32 times (2·37-4·65), and a reduction of one SD in Stroop word score (cognitive domain) increased risk by 2·32 times (1·88-2·87). Prediction of diagnosis of Huntington's disease can be improved beyond that obtained by CAG repeat length and age alone. Such knowledge about potential predictors of manifest Huntington's disease should inform discussions about guidelines for diagnosis, prognosis, and counselling, and might be useful in guiding the selection of participants and outcome measures for clinical trials. US National Institutes of Health, US National Institute of Neurological Disorders and Stroke, and CHDI Foundation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Computing the motor torque of Escherichia coli.

    PubMed

    Das, Debasish; Lauga, Eric

    2018-06-13

    The rotary motor of bacteria is a natural nano-technological marvel that enables cell locomotion by powering the rotation of semi-rigid helical flagellar filaments in fluid environments. It is well known that the motor operates essentially at constant torque in counter-clockwise direction but past work have reported a large range of values of this torque. Focusing on Escherichia coli cells that are swimming and cells that are stuck on a glass surface for which all geometrical and environmental parameters are known (N. C. Darnton et al., J. Bacteriol., 2007, 189, 1756-1764), we use two validated numerical methods to compute the value of the motor torque consistent with experiments. Specifically, we use (and compare) a numerical method based on the boundary integral representation of Stokes flow and also develop a hybrid method combining boundary element and slender body theory to model the cell body and flagellar filament, respectively. Using measured rotation speed of the motor, our computations predict a value of the motor torque in the range 440 pN nm to 829 pN nm, depending critically on the distance between the flagellar filaments and the nearby surface.

  10. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study.

    PubMed

    Kim, Soyoung; Stephenson, Mary C; Morris, Peter G; Jackson, Stephen R

    2014-10-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability in a polarity specific manner and has been shown to influence learning and memory. tDCS may have both on-line and after-effects on learning and memory, and the latter are thought to be based upon tDCS-induced alterations in neurochemistry and synaptic function. We used ultra-high-field (7 T) magnetic resonance spectroscopy (MRS), together with a robotic force adaptation and de-adaptation task, to investigate whether tDCS-induced alterations in GABA and Glutamate within motor cortex predict motor learning and memory. Note that adaptation to a robot-induced force field has long been considered to be a form of model-based learning that is closely associated with the computation and 'supervised' learning of internal 'forward' models within the cerebellum. Importantly, previous studies have shown that on-line tDCS to the cerebellum, but not to motor cortex, enhances model-based motor learning. Here we demonstrate that anodal tDCS delivered to the hand area of the left primary motor cortex induces a significant reduction in GABA concentration. This effect was specific to GABA, localised to the left motor cortex, and was polarity specific insofar as it was not observed following either cathodal or sham stimulation. Importantly, we show that the magnitude of tDCS-induced alterations in GABA concentration within motor cortex predicts individual differences in both motor learning and motor memory on the robotic force adaptation and de-adaptation task. Copyright © 2014. Published by Elsevier Inc.

  11. Reliability in the location of hindlimb motor representations in Fischer-344 rats: laboratory investigation.

    PubMed

    Frost, Shawn B; Iliakova, Maria; Dunham, Caleb; Barbay, Scott; Arnold, Paul; Nudo, Randolph J

    2013-08-01

    The purpose of the present study was to determine the feasibility of using a common laboratory rat strain for reliably locating cortical motor representations of the hindlimb. Intracortical microstimulation techniques were used to derive detailed maps of the hindlimb motor representations in 6 adult Fischer-344 rats. The organization of the hindlimb movement representation, while variable across individual rats in topographic detail, displayed several commonalities. The hindlimb representation was positioned posterior to the forelimb motor representation and posterolateral to the motor trunk representation. The areal extent of the hindlimb representation across the cortical surface averaged 2.00 ± 0.50 mm(2). Superimposing individual maps revealed an overlapping area measuring 0.35 mm(2), indicating that the location of the hindlimb representation can be predicted reliably based on stereotactic coordinates. Across the sample of rats, the hindlimb representation was found 1.25-3.75 mm posterior to the bregma, with an average center location approximately 2.6 mm posterior to the bregma. Likewise, the hindlimb representation was found 1-3.25 mm lateral to the midline, with an average center location approximately 2 mm lateral to the midline. The location of the cortical hindlimb motor representation in Fischer-344 rats can be reliably located based on its stereotactic position posterior to the bregma and lateral to the longitudinal skull suture at midline. The ability to accurately predict the cortical localization of functional hindlimb territories in a rodent model is important, as such animal models are being increasingly used in the development of brain-computer interfaces for restoration of function after spinal cord injury.

  12. Reliability in the Location of Hindlimb Motor Representations in Fischer-344 Rats

    PubMed Central

    Frost, Shawn B.; Iliakova, Maria; Dunham, Caleb; Barbay, Scott; Arnold, Paul; Nudo, Randolph J.

    2014-01-01

    Object The purpose of the present study was to determine the feasibility of using a common laboratory rat strain for locating cortical motor representations of the hindlimb reliably. Methods Intracortical Microstimulation (ICMS) techniques were used to derive detailed maps of the hindlimb motor representations in six adult Fischer-344 rats. Results The organization of the hindlimb movement representation, while variable across individuals in topographic detail, displayed several commonalities. The hindlimb representation was positioned posterior to the forelimb motor representation and postero-lateral to the motor trunk representation. The areal extent of the hindlimb representation across the cortical surface averaged 2.00 +/− 0.50 mm2. Superimposing individual maps revealed an overlapping area measuring 0.35 mm2, indicating that the location of the hindlimb representation can be predicted reliably based on stereotactic coordinates. Across the sample of rats, the hindlimb representation was found 1.25–3.75 mm posterior to Bregma, with an average center location ~ 2.6 mm posterior to Bregma. Likewise, the hindlimb representation was found 1–3.25 mm lateral to the midline, with an average center location ~ 2 mm lateral to midline. Conclusions The location of the cortical hindlimb motor representation in Fischer-344 rats can be reliably located based on its stereotactic position posterior to Bregma and lateral to the longitudinal skull suture at midline. The ability to accurately predict the cortical localization of functional hindlimb territories in a rodent model is important, as such animal models are being used increasingly in the development of brain-computer interfaces for restoration of function after spinal cord injury. PMID:23725395

  13. Congenital hypothyroidism: influence of disease severity and L-thyroxine treatment on intellectual, motor, and school-associated outcomes in young adults.

    PubMed

    Oerbeck, Beate; Sundet, Kjetil; Kase, Bengt F; Heyerdahl, Sonja

    2003-10-01

    To describe intellectual, motor, and school-associated outcome in young adults with early treated congenital hypothyroidism (CH) and to study the association between long-term outcome and CH variables acting at different points in time during early development (CH severity and early L-thyroxine treatment levels [0-6 years]). Neuropsychological tests were administered to all 49 subjects with CH identified during the first 3 years of the Norwegian neonatal screening program (1979-1981) at a mean age of 20 years and to 41 sibling control subjects (mean age: 21 years). The CH group attained significantly lower scores than control subjects on intellectual, motor, and school-associated tests (total IQ: 102.4 [standard deviation: 13] vs 111.4 [standard deviation: 13]). Twelve (24%) of the 49 CH subjects had not completed senior high school, in contrast to 6% of the control subjects. CH severity (pretreatment serum thyroxine [T4]) correlated primarily with motor tests, whereas early L-thyroxine treatment levels were related to verbal IQ and school-associated tests. In multiple regression analysis, initial L-thyroxine dose (beta = 0.32) and mean serum T4 level during the second year (beta = 0.48) predicted Verbal IQ, whereas mean serum T4 level during the second year (beta = 0.44) predicted Arithmetic. Long-term outcome revealed enduring cognitive and motor deficits in young adults with CH relative to control subjects. Verbal functions and Arithmetic were associated with L-thyroxine treatment variables, suggesting that more optimal treatment might be possible. Motor outcome was associated with CH severity, indicating a prenatal effect.

  14. Thrust imbalance of solid rocket motor pairs on Space Shuttle flights

    NASA Technical Reports Server (NTRS)

    Foster, W. A., Jr.; Shu, P. H.; Sforzini, R. H.

    1986-01-01

    This analysis extends the investigation presented at the 17th Joint Propulsion Conference in 1981 to include fifteen sets of Space Shuttle flight data. The previous report dealt only with static test data and the first flight pair. The objective is to compare the authors' previous theoretical analysis of thrust imbalance with actual Space Shuttle performance. The theoretical prediction method, which involves a Monte Carlo technique, is reviewed briefly as are salient features of the flight instrumentation system and the statistical analysis. A scheme for smoothing flight data is discussed. The effects of changes in design parameters are discussed with special emphasis on the filament wound motor case being developed to replace the steel case. Good agreement between the predictions and the flight data is demonstrated.

  15. Motor system contributions to verbal and non-verbal working memory.

    PubMed

    Liao, Diana A; Kronemer, Sharif I; Yau, Jeffrey M; Desmond, John E; Marvel, Cherie L

    2014-01-01

    Working memory (WM) involves the ability to maintain and manipulate information held in mind. Neuroimaging studies have shown that secondary motor areas activate during WM for verbal content (e.g., words or letters), in the absence of primary motor area activation. This activation pattern may reflect an inner speech mechanism supporting online phonological rehearsal. Here, we examined the causal relationship between motor system activity and WM processing by using transcranial magnetic stimulation (TMS) to manipulate motor system activity during WM rehearsal. We tested WM performance for verbalizable (words and pseudowords) and non-verbalizable (Chinese characters) visual information. We predicted that disruption of motor circuits would specifically affect WM processing of verbalizable information. We found that TMS targeting motor cortex slowed response times (RTs) on verbal WM trials with high (pseudoword) vs. low (real word) phonological load. However, non-verbal WM trials were also significantly slowed with motor TMS. WM performance was unaffected by sham stimulation or TMS over visual cortex (VC). Self-reported use of motor strategy predicted the degree of motor stimulation disruption on WM performance. These results provide evidence of the motor system's contributions to verbal and non-verbal WM processing. We speculate that the motor system supports WM by creating motor traces consistent with the type of information being rehearsed during maintenance.

  16. Motor system contributions to verbal and non-verbal working memory

    PubMed Central

    Liao, Diana A.; Kronemer, Sharif I.; Yau, Jeffrey M.; Desmond, John E.; Marvel, Cherie L.

    2014-01-01

    Working memory (WM) involves the ability to maintain and manipulate information held in mind. Neuroimaging studies have shown that secondary motor areas activate during WM for verbal content (e.g., words or letters), in the absence of primary motor area activation. This activation pattern may reflect an inner speech mechanism supporting online phonological rehearsal. Here, we examined the causal relationship between motor system activity and WM processing by using transcranial magnetic stimulation (TMS) to manipulate motor system activity during WM rehearsal. We tested WM performance for verbalizable (words and pseudowords) and non-verbalizable (Chinese characters) visual information. We predicted that disruption of motor circuits would specifically affect WM processing of verbalizable information. We found that TMS targeting motor cortex slowed response times (RTs) on verbal WM trials with high (pseudoword) vs. low (real word) phonological load. However, non-verbal WM trials were also significantly slowed with motor TMS. WM performance was unaffected by sham stimulation or TMS over visual cortex (VC). Self-reported use of motor strategy predicted the degree of motor stimulation disruption on WM performance. These results provide evidence of the motor system’s contributions to verbal and non-verbal WM processing. We speculate that the motor system supports WM by creating motor traces consistent with the type of information being rehearsed during maintenance. PMID:25309402

  17. Time trend of polycyclic aromatic hydrocarbon emission factors from motor vehicles

    NASA Astrophysics Data System (ADS)

    Tao, Shu; Shen, Huizhong; Wang, Rong; Sun, Kang

    2010-05-01

    Motor vehicle is an important emission source of polycyclic aromatic hydrocarbons (PAHs) and this is particularly true in urban areas. Motor vehicle emission factors (EFs) for individual PAH compound reported in the literature varied for 4 to 5 orders of magnitude, leading to high uncertainty in emission estimation. In this study, the major factors affecting EFs were investigated and characterized by regression models. Based on the model developed, a motor vehicle PAH emission inventory at country level was developed. It was found that country and model year are the most important factors affecting EFs for PAHs. The influence of the two factors can be quantified by a single parameter of per capita gross domestic production (purchasing power parity), which was used as the independent variables of the regression models. The models developed using randomly selected 80% of measurements and tested with the remained data accounted for 28 to 48% of the variations in EFs for PAHs measured in 16 countries over 50 years. The regression coefficients of the EF prediction models were molecular weight dependent. Motor vehicle emission of PAHs from individual countries in the world in 1985, 1995, 2005, 2015, and 2025 were calculated and the global emission of total PAHs were 470, 390, and 430 Gg in 1985, 1995, and 2005 and will be 290 and 130 Gg in 2015 and 2025, respectively. The emission is currently passing its peak and will decrease due to significant decrease in China and other developing countries.

  18. Participation in physical play and leisure: developing a theory- and evidence-based intervention for children with motor impairments.

    PubMed

    Kolehmainen, Niina; Francis, Jillian J; Ramsay, Craig R; Owen, Christine; McKee, Lorna; Ketelaar, Marjolijn; Rosenbaum, Peter

    2011-11-07

    Children with motor impairments (e.g. difficulties with motor control, muscle tone or balance) experience significant difficulties in participating in physical play and leisure. Current interventions are often poorly defined, lack explicit hypotheses about why or how they might work, and have insufficient evidence about effectiveness. This project will identify (i) the 'key ingredients' of an effective intervention to increase participation in physical play and leisure in children with motor impairments; and (ii) how these ingredients can be combined in a feasible and acceptable intervention. The project draws on the WHO International Classification of Functioning, Disability and Health and the UK Medical Research Council guidance for developing 'complex interventions'. There will be five steps: 1) identifying biomedical, personal and environmental factors proposed to predict children's participation in physical play and leisure; 2) developing an explicit model of the key predictors; 3) selecting intervention strategies to target the predictors, and specifying the pathways to change; 4) operationalising the strategies in a feasible and acceptable intervention; and 5) modelling the intervention processes and outcomes within single cases. The primary output from this project will be a detailed protocol for an intervention. The intervention, if subsequently found to be effective, will support children with motor difficulties to attain life-long well-being and participation in society. The project will also be an exemplar of methodology for a systematic development of non-drug interventions for children.

  19. Participation in physical play and leisure: developing a theory- and evidence-based intervention for children with motor impairments

    PubMed Central

    2011-01-01

    Background Children with motor impairments (e.g. difficulties with motor control, muscle tone or balance) experience significant difficulties in participating in physical play and leisure. Current interventions are often poorly defined, lack explicit hypotheses about why or how they might work, and have insufficient evidence about effectiveness. This project will identify (i) the 'key ingredients' of an effective intervention to increase participation in physical play and leisure in children with motor impairments; and (ii) how these ingredients can be combined in a feasible and acceptable intervention. Methods/Design The project draws on the WHO International Classification of Functioning, Disability and Health and the UK Medical Research Council guidance for developing 'complex interventions'. There will be five steps: 1) identifying biomedical, personal and environmental factors proposed to predict children's participation in physical play and leisure; 2) developing an explicit model of the key predictors; 3) selecting intervention strategies to target the predictors, and specifying the pathways to change; 4) operationalising the strategies in a feasible and acceptable intervention; and 5) modelling the intervention processes and outcomes within single cases. Discussion The primary output from this project will be a detailed protocol for an intervention. The intervention, if subsequently found to be effective, will support children with motor difficulties to attain life-long well-being and participation in society. The project will also be an exemplar of methodology for a systematic development of non-drug interventions for children. PMID:22061203

  20. Imitation of body postures and hand movements in children with specific language impairment.

    PubMed

    Marton, Klara

    2009-01-01

    Within the domain-general theory of language impairment, this study examined body posture and hand movement imitation in children with specific language impairment (SLI) and in their age-matched peers. Participants included 40 children with SLI (5 years 3 months to 6 years 10 months of age) and 40 children with typical language development (5 years 3 months to 6 years 7 months of age). Five tests were used to examine imitation and its underlying cognitive and motor skills such as kinesthesia, working memory, and gross motor coordination. It was hypothesized that children with SLI show a weakness in imitation of body postures and that this deficit is not equally influenced by the underlying cognitive and motor skills. There was a group effect in each cognitive and motor task, but only gross motor coordination proved to be a strong predictor of imitation in children with SLI. In contrast, hand movement imitation was strongly predicted by performance in the Kinesthesia task in typically developing children. Thus, the findings show not only that children with SLI performed more poorly on the imitation tasks than their typically developing peers but also that the groups' performances showed qualitative differences. The results of the current study provide additional support to the view that the weaknesses in children with SLI are not limited to the verbal domain.

  1. Unbalance Response Analysis and Experimental Validation of an Ultra High Speed Motor-Generator for Microturbine Generators Considering Balancing

    PubMed Central

    Hong, Do-Kwan; Joo, Dae-Suk; Woo, Byung-Chul; Koo, Dae-Hyun; Ahn, Chan-Woo

    2014-01-01

    The objective of the present study was to deal with the rotordynamics of the rotor of an ultra-high speed PM type synchronous motor-generator for a 500 W rated micro gas turbine generator. This paper introduces dynamic analysis, and experiments on the motor-generator. The focus is placed on an analytical approach considering the mechanical dynamic problems. It is essential to deal with dynamic stability at ultra-high speeds. Unbalance response analysis is performed by calculating the unbalance with and without balancing using a balancing machine. Critical speed analysis is performed to determine the operating speed with sufficient separation margin. The unbalance response analysis is compared with the experimental results considering the balancing grade (ISO 1940-1) and predicted vibration displacement with and without balancing. Based on these results, a high-speed motor-generator was successfully developed. PMID:25177804

  2. Star 48 solid rocket motor nozzle analyses and instrumented firings

    NASA Technical Reports Server (NTRS)

    Porter, R. L.

    1986-01-01

    The analyses and testing performed by NASA in support of an expanded and improved nozzle design data base for use by the U.S. solid rocket motor industry is presented. A production nozzle with a history of one ground failure and two flight failures was selected for analyses and testing. The stress analysis was performed with the Champion computer code developed by the U.S. Navy. Several improvements were made to the code. Strain predictions were made and compared to test data. Two short duration motor firings were conducted with highly instrumented nozzles. The first nozzle had 58 thermocouples, 66 strain gages, and 8 bondline pressure measurements. The second nozzle had 59 thermocouples, 68 strain measurements, and 8 bondline pressure measurements. Most of this instrumentation was on the nonmetallic parts, and provided significantly more thermal and strain data on the nonmetallic components of a nozzle than has been accumulated in a solid rocket motor test to date.

  3. Erosive burning research. [for solid-propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Strand, L.; Yang, L. C.; Nguyen, M. H.; Cohen, N. S.

    1986-01-01

    A status report is given on the results for the completed tests in a series of motor firings being carried out to measure the effects of the parameters that are considered to most strongly influence the scaling to larger rocket motor sizes of the transition to/or threshold conditions for erosive burning rate augmentation. Propellant burning rates at locations along the axis of the test motors are measured with a newly developed plasma capacitance gauge technique. The measured results are compared with erosive-burning predictions from a supporting ballistics analysis. The completed motor firings have successfully demonstrated response to the designed test variables. The trends with varying propellant burning rate, chamber pressure, and mass flow rate are consistent with existing results, but no pronounced effect of surface roughness has been observed. Rather, the influence of propellant oxidizer particle size on erosive burning is through its effect on the base, no-corssflow burning rate.

  4. Less Structured Movement Patterns Predict Severity of Positive Syndrome, Excitement, and Disorganization

    PubMed Central

    Walther, Sebastian

    2014-01-01

    Disorganized behavior is a key symptom of schizophrenia. The objective assessment of disorganized behavior is particularly challenging. Actigraphy has enabled the objective assessment of motor behavior in various settings. Reduced motor activity was associated with negative syndrome scores, but simple motor activity analyses were not informative on other symptom dimensions. The analysis of movement patterns, however, could be more informative for assessing schizophrenia symptom dimensions. Here, we use time series analyses on actigraphic data of 100 schizophrenia spectrum disorder patients. Actigraphy recording intervals were set at 2 s. Data from 2 defined 60-min periods were analyzed, and partial autocorrelations of the actigraphy time series indicated predictability of movements in each individual. Increased positive syndrome scores were associated with reduced predictability of movements but not with the overall amount of movement. Negative syndrome scores were associated with low activity levels but unrelated with predictability of movement. The factors disorganization and excitement were related to movement predictability but emotional distress was not. Thus, the predictability of objectively assessed motor behavior may be a marker of positive symptoms and disorganized behavior. This behavior could become relevant for translational research. PMID:23502433

  5. The role of inattention and hyperactivity/impulsivity in the fine motor coordination in children with ADHD.

    PubMed

    Fenollar-Cortés, Javier; Gallego-Martínez, Ana; Fuentes, Luis J

    2017-10-01

    Deficits in fine motor coordination have been suggested to be associated with Attention-Deficit/Hyperactivity Disorder (ADHD). However, despite the negative impact of poor fine motor skills on academic achievement, researchers have paid little attention to this problem. The aim of this study was to explore the relationship between ADHD dimensions and fine motor performance. Participants were 43 children with a diagnosis of ADHD aged between 7 and 14 years (M=9.61; 81% male) and 42 typically developing (TP) children in the same age range (M=10.76; 75.2% male). Children with ADHD performed worse than TP on all tasks (δ Fine_motor_tasks, -0.19 to -0.44). After controlling for age and ADHD-HY (hyperactivity/impulsivity), higher scores on ADHD-IN (inattentiveness) predicted a larger number of mistakes among all psychomotricity tasks and conditions (β 0.39-0.58, ps<0.05). The ADHD group showed poorer fine motor performance than controls across all fine motor coordination tasks. However, lower performance (more mistakes), was related to the inattention dimension but not to the hyperactivity/impulsivity dimensions. Authors recommend including training and enhancement of the fine motor skills for more comprehensive ADHD treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Atrophy of spared gray matter tissue predicts poorer motor recovery and rehabilitation response in chronic stroke.

    PubMed

    Gauthier, Lynne V; Taub, Edward; Mark, Victor W; Barghi, Ameen; Uswatte, Gitendra

    2012-02-01

    Although the motor deficit after stroke is clearly due to the structural brain damage that has been sustained, this relationship is attenuated from the acute to chronic phases. We investigated the possibility that motor impairment and response to constraint-induced movement therapy in patients with chronic stroke may relate more strongly to the structural integrity of brain structures remote from the lesion than to measures of overt tissue damage. Voxel-based morphometry analysis was performed on MRI scans from 80 patients with chronic stroke to investigate whether variations in gray matter density were correlated with extent of residual motor impairment or with constraint-induced movement therapy-induced motor recovery. Decreased gray matter density in noninfarcted motor regions was significantly correlated with magnitude of residual motor deficit. In addition, reduced gray matter density in multiple remote brain regions predicted a lesser extent of motor improvement from constraint-induced movement therapy. Atrophy in seemingly healthy parts of the brain that are distant from the infarct accounts for at least a portion of the sustained motor deficit in chronic stroke.

  7. Atrophy of spared grey matter tissue predicts poorer motor recovery and rehabilitation response in chronic stroke

    PubMed Central

    Gauthier, Lynne V.; Taub, Edward; Mark, Victor W.; Barghi, Ameen; Uswatte, Gitendra

    2011-01-01

    Background and Purpose Although the motor deficit following stroke is clearly due to the structural brain damage that has been sustained, this relationship is attenuated from the acute to chronic phases. We investigated the possibility that motor impairment and response to Constraint-Induced Movement therapy (CI therapy) in chronic stroke patients may relate more strongly to the structural integrity of brain structures remote from the lesion than to measures of overt tissue damage. Methods Voxel-based morphometry (VBM) analysis was performed on MRI scans from 80 chronic stroke patients to investigate whether variations in grey matter density were correlated with extent of residual motor impairment or with CI therapy-induced motor recovery. Results Decreased grey matter density in non-infarcted motor regions was significantly correlated with magnitude of residual motor deficit. In addition, reduced grey matter density in multiple remote brain regions predicted a lesser extent of motor improvement from CI therapy. Conclusions Atrophy in seemingly healthy parts of the brain that are distant from the infarct accounts for at least a portion of the sustained motor deficit in chronic stroke. PMID:22096036

  8. Predictive Model and Methodology for Heat Treatment Distortion Final Report CRADA No. TC-298-92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikkel, D. J.; McCabe, J.

    This project was a multi-lab, multi-partner CRADA involving LLNL, Los Alamos National Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, Martin Marietta Energy Systems and the industrial partner, The National Center of Manufacturing Sciences (NCMS). A number of member companies of NCMS participated including General Motors Corporation, Ford Motor Company, The Torrington Company, Gear Research, the Illinois Institute of Technology Research Institute, and Deformation Control Technology •. LLNL was the lead laboratory for metrology technology used for validation of the computational tool/methodology. LLNL was also the lead laboratory for the development of the software user interface , for the computationalmore » tool. This report focuses on the participation of LLNL and NCMS. The purpose of the project was to develop a computational tool/methodology that engineers would use to predict the effects of heat treatment on the _size and shape of industrial parts made of quench hardenable alloys. Initially, the target application of the tool was gears for automotive power trains.« less

  9. Predicting future learning from baseline network architecture.

    PubMed

    Mattar, Marcelo G; Wymbs, Nicholas F; Bock, Andrew S; Aguirre, Geoffrey K; Grafton, Scott T; Bassett, Danielle S

    2018-05-15

    Human behavior and cognition result from a complex pattern of interactions between brain regions. The flexible reconfiguration of these patterns enables behavioral adaptation, such as the acquisition of a new motor skill. Yet, the degree to which these reconfigurations depend on the brain's baseline sensorimotor integration is far from understood. Here, we asked whether spontaneous fluctuations in sensorimotor networks at baseline were predictive of individual differences in future learning. We analyzed functional MRI data from 19 participants prior to six weeks of training on a new motor skill. We found that visual-motor connectivity was inversely related to learning rate: sensorimotor autonomy at baseline corresponded to faster learning in the future. Using three additional scans, we found that visual-motor connectivity at baseline is a relatively stable individual trait. These results suggest that individual differences in motor skill learning can be predicted from sensorimotor autonomy at baseline prior to task execution. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Action understanding and active inference

    PubMed Central

    Mattout, Jérémie; Kilner, James

    2012-01-01

    We have suggested that the mirror-neuron system might be usefully understood as implementing Bayes-optimal perception of actions emitted by oneself or others. To substantiate this claim, we present neuronal simulations that show the same representations can prescribe motor behavior and encode motor intentions during action–observation. These simulations are based on the free-energy formulation of active inference, which is formally related to predictive coding. In this scheme, (generalised) states of the world are represented as trajectories. When these states include motor trajectories they implicitly entail intentions (future motor states). Optimizing the representation of these intentions enables predictive coding in a prospective sense. Crucially, the same generative models used to make predictions can be deployed to predict the actions of self or others by simply changing the bias or precision (i.e. attention) afforded to proprioceptive signals. We illustrate these points using simulations of handwriting to illustrate neuronally plausible generation and recognition of itinerant (wandering) motor trajectories. We then use the same simulations to produce synthetic electrophysiological responses to violations of intentional expectations. Our results affirm that a Bayes-optimal approach provides a principled framework, which accommodates current thinking about the mirror-neuron system. Furthermore, it endorses the general formulation of action as active inference. PMID:21327826

  11. Acquisition of Internal Models of Motor Tasks in Children with Autism

    ERIC Educational Resources Information Center

    Gidley Larson, Jennifer C.; Bastian, Amy J.; Donchin, Opher; Shadmehr, Reza; Mostofsky, Stewart H.

    2008-01-01

    Children with autism exhibit a host of motor disorders including poor coordination, poor tool use and delayed learning of complex motor skills like riding a tricycle. Theory suggests that one of the crucial steps in motor learning is the ability to form internal models: to predict the sensory consequences of motor commands and learn from errors to…

  12. Fine motor skills predict performance in the Jebsen Taylor Hand Function Test after stroke.

    PubMed

    Allgöwer, Kathrin; Hermsdörfer, Joachim

    2017-10-01

    To determine factors characterizing the differences in fine motor performance between stroke patients and controls. To confirm the relevance of the factors by analyzing their predictive power with regard to the Jebsen Taylor Hand Function Test (JTHFT), a common clinical test of fine motor control. Twenty-two people with slight paresis in an early chronic phase following stroke and twenty-two healthy controls were examined. Performance on the JTHFT, Nine-Hole Peg Test and 2-point discrimination was evaluated. To analyze object manipulation skills, grip forces and temporal measures were examined during (1) lifting actions with variations of weight and surface (2) cyclic movements (3) predictive/reactive catching tasks. Three other aspects of force control included (4) visuomotor tracking (5) fast force changes and (6) grip strength. Based on 9 parameters which significantly distinguished fine motor performance in the two groups, we identified three principal components (factors): grip force scaling, motor coordination and speed of movement. The three factors are shown to predict JTHFT scores via linear regression (R 2 =0.687, p<0.001). We revealed a factor structure behind fine motor impairments following stroke and showed that it explains JTHFT results to a large extend. This result can serve as a basis for improving diagnostics and enabling more targeted therapy. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  13. Culture Influences Action Understanding in Infancy: Prediction of Actions Performed With Chopsticks and Spoons in Chinese and Swedish Infants.

    PubMed

    Green, Dorota; Li, Qi; Lockman, Jeffrey J; Gredebäck, Gustaf

    2016-05-01

    The cultural specificity of action prediction was assessed in 8-month-old Chinese and Swedish infants. Infants were presented with an actor eating with a spoon or chopsticks. Predictive goal-directed gaze shifts were examined using eye tracking. The results demonstrate that Chinese infants only predict the goal of eating actions performed with chopsticks, whereas Swedish infants exclusively predict the goal of eating actions performed with a spoon. Infants in neither culture predicted the goal of object manipulation actions (e.g., picking up food) performed with a spoon or chopsticks. The results support the view that multiple processes (both visual/cultural learning and motor-based direct matching processes) facilitate goal prediction during observation of other peoples' actions early in infancy. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  14. Acoustic Characterization and Prediction of Representative, Small-Scale Rotary-Wing Unmanned Aircraft System Components

    NASA Technical Reports Server (NTRS)

    Zawodny, Nikolas S.; Boyd, D. Douglas, Jr.; Burley, Casey L.

    2016-01-01

    In this study, hover performance and acoustic measurements are taken on two different isolated rotors representative of small-scale rotary-wing unmanned aircraft systems (UAS) for a range of rotation rates. Each rotor system consists of two fixed-pitch blades powered by a brushless motor. For nearly the same thrust condition, significant differences in overall sound pressure level (OASPL), up to 8 dB, and directivity were observed between the two rotor systems. Differences are shown to be in part attributed to different rotor tip speeds, along with increased broadband and motor noise levels. In addition to acoustic measurements, aeroacoustic predictions were implemented in order to better understand the noise content of the rotor systems. Numerical aerodynamic predictions were computed using the unsteady Reynoldsaveraged Navier Stokes code OVERFLOW2 on one of the isolated rotors, while analytical predictions were computed using the Propeller Analysis System of the Aircraft NOise Prediction Program (ANOPP-PAS) on the two rotor configurations. Preliminary semi-empirical frequency domain broadband noise predictions were also carried out based on airfoil self-noise theory in a rotational reference frame. The prediction techniques further supported trends identified in the experimental data analysis. The brushless motors were observed to be important noise contributors and warrant further investigation. It is believed that UAS acoustic prediction capabilities must consider both rotor and motor components as part of a combined noise-generating system.

  15. Anomalous Putamen Volume in Children With Complex Motor Stereotypies.

    PubMed

    Mahone, E Mark; Crocetti, Deana; Tochen, Laura; Kline, Tina; Mostofsky, Stewart H; Singer, Harvey S

    2016-12-01

    Complex motor stereotypies in children are repetitive rhythmic movements that have a predictable pattern and location, seem purposeful, but serve no obvious function, tend to be prolonged, and stop with distraction, e.g., arm or hand flapping, waving. They occur in both "primary" (otherwise typically developing) and secondary conditions. These movements are best defined as habitual behaviors and therefore pathophysiologically hypothesized to reside in premotor to posterior putamen circuits. This study sought to clarify the underlying neurobiologic abnormality in children with primary complex motor stereotypies using structural neuroimaging, emphasizing brain regions hypothesized to underlie these atypical behaviors. High-resolution anatomic magnetic resonance images, acquired at 3.0 T, were analyzed in children aged eight to twelve years (20 with primary complex motor stereotypies and 20 typically developing). Frontal lobe subregions and striatal structures were delineated for analysis. Significant reductions (P = 0.045) in the stereotypies group were identified in total putamen volume but not in caudate, nucleus accumbens, or frontal subregions. There were no group differences in total cerebral volume. Findings of a smaller putamen provide preliminary evidence suggesting the potential involvement of the habitual pathway as the underlying anatomic site in primary complex motor stereotypies. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Analysis of Neuronal Spike Trains, Deconstructed

    PubMed Central

    Aljadeff, Johnatan; Lansdell, Benjamin J.; Fairhall, Adrienne L.; Kleinfeld, David

    2016-01-01

    As information flows through the brain, neuronal firing progresses from encoding the world as sensed by the animal to driving the motor output of subsequent behavior. One of the more tractable goals of quantitative neuroscience is to develop predictive models that relate the sensory or motor streams with neuronal firing. Here we review and contrast analytical tools used to accomplish this task. We focus on classes of models in which the external variable is compared with one or more feature vectors to extract a low-dimensional representation, the history of spiking and other variables are potentially incorporated, and these factors are nonlinearly transformed to predict the occurrences of spikes. We illustrate these techniques in application to datasets of different degrees of complexity. In particular, we address the fitting of models in the presence of strong correlations in the external variable, as occurs in natural sensory stimuli and in movement. Spectral correlation between predicted and measured spike trains is introduced to contrast the relative success of different methods. PMID:27477016

  17. Right Lateral Cerebellum Represents Linguistic Predictability.

    PubMed

    Lesage, Elise; Hansen, Peter C; Miall, R Chris

    2017-06-28

    Mounting evidence indicates that posterolateral portions of the cerebellum (right Crus I/II) contribute to language processing, but the nature of this role remains unclear. Based on a well-supported theory of cerebellar motor function, which ascribes to the cerebellum a role in short-term prediction through internal modeling, we hypothesize that right cerebellar Crus I/II supports prediction of upcoming sentence content. We tested this hypothesis using event-related fMRI in male and female human subjects by manipulating the predictability of written sentences. Our design controlled for motor planning and execution, as well as for linguistic features and working memory load; it also allowed separation of the prediction interval from the presentation of the final sentence item. In addition, three further fMRI tasks captured semantic, phonological, and orthographic processing to shed light on the nature of the information processed. As hypothesized, activity in right posterolateral cerebellum correlated with the predictability of the upcoming target word. This cerebellar region also responded to prediction error during the outcome of the trial. Further, this region was engaged in phonological, but not semantic or orthographic, processing. This is the first imaging study to demonstrate a right cerebellar contribution in language comprehension independently from motor, cognitive, and linguistic confounds. These results complement our work using other methodologies showing cerebellar engagement in linguistic prediction and suggest that internal modeling of phonological representations aids language production and comprehension. SIGNIFICANCE STATEMENT The cerebellum is traditionally seen as a motor structure that allows for smooth movement by predicting upcoming signals. However, the cerebellum is also consistently implicated in nonmotor functions such as language and working memory. Using fMRI, we identify a cerebellar area that is active when words are predicted and when these predictions are violated. This area is active in a separate task that requires phonological processing, but not in tasks that require semantic or visuospatial processing. Our results support the idea of prediction as a unifying cerebellar function in motor and nonmotor domains. We provide new insights by linking the cerebellar role in prediction to its role in verbal working memory, suggesting that these predictions involve phonological processing. Copyright © 2017 Lesage et al.

  18. Pressure Oscillations and Structural Vibrations in Space Shuttle RSRM and ETM-3 Motors

    NASA Technical Reports Server (NTRS)

    Mason, D. R.; Morstadt, R. A.; Cannon, S. M.; Gross, E. G.; Nielsen, D. B.

    2004-01-01

    The complex interactions between internal motor pressure oscillations resulting from vortex shedding, the motor's internal acoustic modes, and the motor's structural vibration modes were assessed for the Space Shuttle four-segment booster Reusable Solid Rocket Motor and for the five-segment engineering test motor ETM-3. Two approaches were applied 1) a predictive procedure based on numerically solving modal representations of a solid rocket motor s acoustic equations of motion and 2) a computational fluid dynamics two-dimensional axi-symmetric large eddy simulation at discrete motor burn times.

  19. Subjective and objective scales to assess the development of children cerebral palsy.

    PubMed

    Pietrzak, S; Jóźwiak, M

    2001-01-01

    Many scoring systems hale been constructed to assess the motor development of cerebral palsy children and to evaluate the effectiveness of treatment. According to the purposes they fulfill, these instruments may be divided into three types: discriminative, evaluative and predictive. The design and measurement methodology are the criteria that determine whether a given scale is quantitative or qualitative in nature, and whether is should be considered to be objective or subjective. The article presents the "reaching, losing and regaining" scale (constructed by the authors to assess functional development and its changes in certain periods of time), the Munich Functional Development Diagnostics, and the Gross Motor Function Measure (GMFM). Special attention is given to the GMFM, its methods, evaluation of results, and application. A comparison of subjective and objective assessment of two cerebral palsy children is included.

  20. Method and system for early detection of incipient faults in electric motors

    DOEpatents

    Parlos, Alexander G; Kim, Kyusung

    2003-07-08

    A method and system for early detection of incipient faults in an electric motor are disclosed. First, current and voltage values for one or more phases of the electric motor are measured during motor operations. A set of current predictions is then determined via a neural network-based current predictor based on the measured voltage values and an estimate of motor speed values of the electric motor. Next, a set of residuals is generated by combining the set of current predictions with the measured current values. A set of fault indicators is subsequently computed from the set of residuals and the measured current values. Finally, a determination is made as to whether or not there is an incipient electrical, mechanical, and/or electromechanical fault occurring based on the comparison result of the set of fault indicators and a set of predetermined baseline values.

  1. Re-thinking the role of motor cortex: Context-sensitive motor outputs?

    PubMed Central

    Gandolla, Marta; Ferrante, Simona; Molteni, Franco; Guanziroli, Eleonora; Frattini, Tiziano; Martegani, Alberto; Ferrigno, Giancarlo; Friston, Karl; Pedrocchi, Alessandra; Ward, Nick S.

    2014-01-01

    The standard account of motor control considers descending outputs from primary motor cortex (M1) as motor commands and efference copy. This account has been challenged recently by an alternative formulation in terms of active inference: M1 is considered as part of a sensorimotor hierarchy providing top–down proprioceptive predictions. The key difference between these accounts is that predictions are sensitive to the current proprioceptive context, whereas efference copy is not. Using functional electric stimulation to experimentally manipulate proprioception during voluntary movement in healthy human subjects, we assessed the evidence for context sensitive output from M1. Dynamic causal modeling of functional magnetic resonance imaging responses showed that FES altered proprioception increased the influence of M1 on primary somatosensory cortex (S1). These results disambiguate competing accounts of motor control, provide some insight into the synaptic mechanisms of sensory attenuation and may speak to potential mechanisms of action of FES in promoting motor learning in neurorehabilitation. PMID:24440530

  2. Re-thinking the role of motor cortex: context-sensitive motor outputs?

    PubMed

    Gandolla, Marta; Ferrante, Simona; Molteni, Franco; Guanziroli, Eleonora; Frattini, Tiziano; Martegani, Alberto; Ferrigno, Giancarlo; Friston, Karl; Pedrocchi, Alessandra; Ward, Nick S

    2014-05-01

    The standard account of motor control considers descending outputs from primary motor cortex (M1) as motor commands and efference copy. This account has been challenged recently by an alternative formulation in terms of active inference: M1 is considered as part of a sensorimotor hierarchy providing top-down proprioceptive predictions. The key difference between these accounts is that predictions are sensitive to the current proprioceptive context, whereas efference copy is not. Using functional electric stimulation to experimentally manipulate proprioception during voluntary movement in healthy human subjects, we assessed the evidence for context sensitive output from M1. Dynamic causal modeling of functional magnetic resonance imaging responses showed that FES altered proprioception increased the influence of M1 on primary somatosensory cortex (S1). These results disambiguate competing accounts of motor control, provide some insight into the synaptic mechanisms of sensory attenuation and may speak to potential mechanisms of action of FES in promoting motor learning in neurorehabilitation. Copyright © 2014 unknown. Published by Elsevier Inc. All rights reserved.

  3. The relationship of motor skills and social communicative skills in school-aged children with autism spectrum disorder.

    PubMed

    MacDonald, Megan; Lord, Catherine; Ulrich, Dale A

    2013-07-01

    Motor skill deficits are present and persist in school-aged children with autism spectrum disorder (ASD; Staples & Reid, 2010). Yet the focus of intervention is on core impairments, which are part of the diagnostic criteria for ASD, deficits in social communication skills. The purpose of this study is to determine whether the functional motor skills, of 6- to 15-year-old children with high-functioning ASD, predict success in standardized social communicative skills. It is hypothesized that children with better motor skills will have better social communicative skills. A total of 35 children with ASD between the ages of 6-15 years participated in this study. The univariate GLM (general linear model) tested the relationship of motor skills on social communicative skills holding constant age, IQ, ethnicity, gender, and clinical ASD diagnosis. Object-control motor skills significantly predicted calibrated ASD severity (p < .05). Children with weaker motor skills have greater social communicative skill deficits. How this relationship exists behaviorally, needs to be explored further.

  4. Predicting the multi-domain progression of Parkinson's disease: a Bayesian multivariate generalized linear mixed-effect model.

    PubMed

    Wang, Ming; Li, Zheng; Lee, Eun Young; Lewis, Mechelle M; Zhang, Lijun; Sterling, Nicholas W; Wagner, Daymond; Eslinger, Paul; Du, Guangwei; Huang, Xuemei

    2017-09-25

    It is challenging for current statistical models to predict clinical progression of Parkinson's disease (PD) because of the involvement of multi-domains and longitudinal data. Past univariate longitudinal or multivariate analyses from cross-sectional trials have limited power to predict individual outcomes or a single moment. The multivariate generalized linear mixed-effect model (GLMM) under the Bayesian framework was proposed to study multi-domain longitudinal outcomes obtained at baseline, 18-, and 36-month. The outcomes included motor, non-motor, and postural instability scores from the MDS-UPDRS, and demographic and standardized clinical data were utilized as covariates. The dynamic prediction was performed for both internal and external subjects using the samples from the posterior distributions of the parameter estimates and random effects, and also the predictive accuracy was evaluated based on the root of mean square error (RMSE), absolute bias (AB) and the area under the receiver operating characteristic (ROC) curve. First, our prediction model identified clinical data that were differentially associated with motor, non-motor, and postural stability scores. Second, the predictive accuracy of our model for the training data was assessed, and improved prediction was gained in particularly for non-motor (RMSE and AB: 2.89 and 2.20) compared to univariate analysis (RMSE and AB: 3.04 and 2.35). Third, the individual-level predictions of longitudinal trajectories for the testing data were performed, with ~80% observed values falling within the 95% credible intervals. Multivariate general mixed models hold promise to predict clinical progression of individual outcomes in PD. The data was obtained from Dr. Xuemei Huang's NIH grant R01 NS060722 , part of NINDS PD Biomarker Program (PDBP). All data was entered within 24 h of collection to the Data Management Repository (DMR), which is publically available ( https://pdbp.ninds.nih.gov/data-management ).

  5. Predictive value of the Movement Assessment Battery for Children - Second Edition at 4 years, for motor impairment at 8 years in children born preterm.

    PubMed

    Griffiths, Alison; Morgan, Prue; Anderson, Peter J; Doyle, Lex W; Lee, Katherine J; Spittle, Alicia J

    2017-05-01

    To assess the predictive validity at 4 years of the Movement Assessment Battery for Children - Second Edition (MABC-2) for motor impairment at 8 years in children born preterm. We also aimed to determine if sex, cognition, medical, or social risks were associated with motor impairment at 8 years or with a change in MABC-2 score between 4 years and 8 years. Ninety-six children born at less than 30 weeks' gestation were assessed with the MABC-2 at 4 years and 8 years of age. Motor impairment was defined as less than or equal to the 5th centile. The Differential Ability Scales - Second Edition (DAS-II) was used to measure General Conceptual Ability (GCA) at 4 years, with a score <90 defined as 'below average'. There was a strong association between the MABC-2 total standard scores at 4 years and 8 years (59% variance explained, regression coefficient=0.80, 95% confidence interval [CI] 0.69-0.91, p<0.001). The MABC-2 at 4 years had high sensitivity (79%) and specificity (93%) for predicting motor impairment at 8 years. Below average cognition and higher medical risk were associated with increased odds of motor impairment at 8 years (odds ratio [OR]=15.3, 95% CI 4.19-55.8, p<0.001, and OR=3.77, 95% CI 1.28-11.1, p=0.016 respectively). Sex and social risk did not appear to be associated with motor impairment at 8 years. There was little evidence that any variables were related to change in MABC-2 score between 4 years and 8 years. The MABC-2 at 4 years is predictive of motor functioning in middle childhood. Below average cognition and higher medical risk may be predictors of motor impairment. © 2017 Mac Keith Press.

  6. Economic decision-making compared with an equivalent motor task.

    PubMed

    Wu, Shih-Wei; Delgado, Mauricio R; Maloney, Laurence T

    2009-04-14

    There is considerable evidence that human economic decision-making deviates from the predictions of expected utility theory (EUT) and that human performance conforms to EUT in many perceptual and motor decision tasks. It is possible that these results reflect a real difference in decision-making in the 2 domains but it is also possible that the observed discrepancy simply reflects typical differences in experimental design. We developed a motor task that is mathematically equivalent to choosing between lotteries and used it to compare how the same subject chose between classical economic lotteries and the same lotteries presented in equivalent motor form. In experiment 1, we found that subjects are more risk seeking in deciding between motor lotteries. In experiment 2, we used cumulative prospect theory to model choice and separately estimated the probability weighting functions and the value functions for each subject carrying out each task. We found no patterned differences in how subjects represented outcome value in the motor and the classical tasks. However, the probability weighting functions for motor and classical tasks were markedly and significantly different. Those for the classical task showed a typical tendency to overweight small probabilities and underweight large probabilities, and those for the motor task showed the opposite pattern of probability distortion. This outcome also accounts for the increased risk-seeking observed in the motor tasks of experiment 1. We conclude that the same subject distorts probability, but not value, differently in making identical decisions in motor and classical form.

  7. Oxidative Stress, Antioxidant Status and Neurodevelopmental Outcome in Neonates Born to Pre-eclamptic Mothers.

    PubMed

    Bharadwaj, Shruthi K; Vishnu Bhat, B; Vickneswaran, V; Adhisivam, B; Bobby, Zachariah; Habeebullah, S

    2018-05-01

    To measure the oxidative stress and antioxidant status in preeclamptic mother-newborn dyads and correlate them with neurodevelopmental outcome at one year of corrected age. This cohort study conducted in a tertiary care teaching hospital, south India included 71 preeclamptic and 72 normal mother-newborn dyads. Biochemical parameters including total antioxidant status (TAS), protein carbonyls and malondialdehyde levels (MDA) were measured in both maternal and cord blood. Infants in both the groups were followed up to one year of corrected age and neurodevelopmental assessment was done using Developmental Assessment Scale for Indian Infants (DASII). Correlation and multivariate regression analysis was done to evaluate the oxidative stress markers in relation to neurodevelopmental outcome. All oxidative stress markers were higher in maternal and cord blood of pre-ecclampsia group compared to the normal group. Maternal Total antioxidant status (M-TAS) was lower in pre-eclampsia group than normal group. More neonates in the pre-ecclampsia group were preterm and intrauterine growth restriction (IUGR) and had higher incidence of morbidities like respiratory distress syndrome (RDS) and early onset sepsis (EOS). Infants in the preeclampsia group had lower motor age, motor score and motor developmental quotient (MoDQ). On multivariate logistic regression analyses, lower M-TAS levels were strongly associated with poor neuro-motor outcomes at 1 y of corrected age. Maternal TAS with a cut-off value of 0.965 mmol/L had a sensitivity of 77.8% and specificity of 55.3% in predicting MoDQ <70 at one year corrected age in infants born to preeclamptic mothers. Oxidative stress is increased in preeclamptic mother-newborn dyads. Low maternal TAS levels are associated with poor neuro-motor outcomes. Maternal TAS in preeclampsia is useful in predicting poor motor development at one year corrected age.

  8. Predictors of Handwriting in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Hellinckx, Tinneke; Roeyers, Herbert; Van Waelvelde, Hilde

    2013-01-01

    During writing, perceptual, motor, and cognitive processes interact. This study explored the predictive value of several factors on handwriting quality as well as on speed in children with Autism Spectrum Disorder (ASD). Our results showed that, in this population, age, gender, and visual-motor integration significantly predicted handwriting…

  9. Predictive motor control of sensory dynamics in Auditory Active Sensing

    PubMed Central

    Morillon, Benjamin; Hackett, Troy A.; Kajikawa, Yoshinao; Schroeder, Charles E.

    2016-01-01

    Neuronal oscillations present potential physiological substrates for brain operations that require temporal prediction. We review this idea in the context of auditory perception. Using speech as an exemplar, we illustrate how hierarchically organized oscillations can be used to parse and encode complex input streams. We then consider the motor system as a major source of rhythms (temporal priors) in auditory processing, that act in concert with attention to sharpen sensory representations and link them across areas. We discuss the anatomo-functional pathways that could mediate this audio-motor interaction, and notably the potential role of the somatosensory cortex. Finally, we reposition temporal predictions in the context of internal models, discussing how they interact with feature-based or spatial predictions. We argue that complementary predictions interact synergistically according to the organizational principles of each sensory system, forming multidimensional filters crucial to perception. PMID:25594376

  10. Preoperative mapping of the supplementary motor area in patients harboring tumors in the medial frontal lobe.

    PubMed

    Nelson, Lindsey; Lapsiwala, Samir; Haughton, Victor M; Noyes, Jane; Sadrzadeh, Amir H; Moritz, Chad H; Meyerand, M Elizabeth; Badie, Behnam

    2002-11-01

    Injury to the supplementary motor area (SMA) is thought to be responsible for transient motor and speech deficits following resection of tumors involving the medial frontal lobe. Because direct intraoperative localization of SMA is difficult, the authors hypothesized that functional magnetic resonance (fMR) imaging might be useful in predicting the risk of postoperative deficits in patients who undergo resection of tumors in this region. Twelve patients who had undergone fMR imaging mapping while performing speech and motor tasks prior to excision of their tumor, that is, based on anatomical landmarks involving the SMA, were included in this study. The distance between the edge of the tumor and the center of SMA activation was measured and was correlated with the risk of incurring postoperative neurological deficits. In every patient, SMA activation was noted in the superior frontal gyrus on preoperative fMR imaging. Two speech and two motor deficits typical of SMA injury were observed in three of the 12 patients. The two speech deficits occurred in patients with tumors involving the dominant hemisphere, whereas one of the motor deficits occurred in a patient with a tumor in the nondominant hemisphere. The risk of developing a postoperative speech or motor deficit was 100% when the distance between the SMA and the tumor was 5 mm or less. When the distance between SMA activation and the lesion was greater than 5 mm, the risk of developing a motor or a speech deficit was 0% (p = 0.0007). Early data from this study indicated that fMR imaging might be useful in localizing the SMA and in determining the risk of postoperative deficits in patients who undergo resection of tumors located in the medial frontal lobe.

  11. The Relationship between Fundamental Motor Skill Proficiency and Participation in Organized Sports and Active Recreation in Middle Childhood

    PubMed Central

    Field, Stephanie C.; Temple, Viviene A.

    2017-01-01

    Motor skill proficiency in middle childhood is associated with higher physical activity levels at that age and is predictive of adolescent physical activity levels. Much of the previous research in this area has used accelerometry in determining these relationships, and as a result, little is known about what physical activities the children are engaging in. Therefore the aim of this study was to examine rates of participation in physical activities, the relationships between motor proficiency and how often children participate, and if there were gender-based differences in participation, motor skills, or the relationship between these variables. Participants were 400 boys and girls (Mean age = 9 years 6 months) in grade 4. Motor skills were assessed using the Test of Gross Motor Development-2 (TGMD-2) and physical activity participation was measured using the Children’s Assessment of Participation and Enjoyment (CAPE). Descriptive statistics, chi-squared analyses, and multivariate analysis of variance (MANOVA) were used to examine activity patterns and whether these patterns differed by gender. Correlation coefficients were used to estimate the relationships between fundamental motor skill proficiency and participation. The boys and girls participated in many of the same activities, but girls were more likely to participate in most of the informal physical activities. More boys than girls participated in team sports, boys participated more frequently in team sports, and the boys’ object control and locomotor skill proficiency were significantly associated with participation in team sports. There were some significant associations between motor skills and participation in specific activities; however it is not clear if participation is developing skillfulness or those who are more skilled are engaging and persisting with particular activities.

  12. Schema generation in recurrent neural nets for intercepting a moving target.

    PubMed

    Fleischer, Andreas G

    2010-06-01

    The grasping of a moving object requires the development of a motor strategy to anticipate the trajectory of the target and to compute an optimal course of interception. During the performance of perception-action cycles, a preprogrammed prototypical movement trajectory, a motor schema, may highly reduce the control load. Subjects were asked to hit a target that was moving along a circular path by means of a cursor. Randomized initial target positions and velocities were detected in the periphery of the eyes, resulting in a saccade toward the target. Even when the target disappeared, the eyes followed the target's anticipated course. The Gestalt of the trajectories was dependent on target velocity. The prediction capability of the motor schema was investigated by varying the visibility range of cursor and target. Motor schemata were determined to be of limited precision, and therefore visual feedback was continuously required to intercept the moving target. To intercept a target, the motor schema caused the hand to aim ahead and to adapt to the target trajectory. The control of cursor velocity determined the point of interception. From a modeling point of view, a neural network was developed that allowed the implementation of a motor schema interacting with feedback control in an iterative manner. The neural net of the Wilson type consists of an excitation-diffusion layer allowing the generation of a moving bubble. This activation bubble runs down an eye-centered motor schema and causes a planar arm model to move toward the target. A bubble provides local integration and straightening of the trajectory during repetitive moves. The schema adapts to task demands by learning and serves as forward controller. On the basis of these model considerations the principal problem of embedding motor schemata in generalized control strategies is discussed.

  13. Study of linear induction motor characteristics : the Oberretl model

    DOT National Transportation Integrated Search

    1975-05-30

    The Oberretl theory of the double-sided linear induction motor (LIM) is examined, starting with the idealized model and accompanying assumptions, and ending with relations for predicted thrust, airgap power, and motor efficiency. The effect of varyin...

  14. A First Look at Electric Motor Noise For Future Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Henderson, Brenda S.; Envia, Edmane

    2016-01-01

    Motor tone predictions using a vibration analysis and input from design parameters for high power density motors show that the noise can be significantly higher or lower than the empirical correlations and exceeds the stated uncertainty.

  15. Tandem internal models execute motor learning in the cerebellum.

    PubMed

    Honda, Takeru; Nagao, Soichi; Hashimoto, Yuji; Ishikawa, Kinya; Yokota, Takanori; Mizusawa, Hidehiro; Ito, Masao

    2018-06-25

    In performing skillful movement, humans use predictions from internal models formed by repetition learning. However, the computational organization of internal models in the brain remains unknown. Here, we demonstrate that a computational architecture employing a tandem configuration of forward and inverse internal models enables efficient motor learning in the cerebellum. The model predicted learning adaptations observed in hand-reaching experiments in humans wearing a prism lens and explained the kinetic components of these behavioral adaptations. The tandem system also predicted a form of subliminal motor learning that was experimentally validated after training intentional misses of hand targets. Patients with cerebellar degeneration disease showed behavioral impairments consistent with tandemly arranged internal models. These findings validate computational tandemization of internal models in motor control and its potential uses in more complex forms of learning and cognition. Copyright © 2018 the Author(s). Published by PNAS.

  16. The Motor System Contributes to Comprehension of Abstract Language

    PubMed Central

    Guan, Connie Qun; Meng, Wanjin; Yao, Ru; Glenberg, Arthur M.

    2013-01-01

    If language comprehension requires a sensorimotor simulation, how can abstract language be comprehended? We show that preparation to respond in an upward or downward direction affects comprehension of the abstract quantifiers “more and more” and “less and less” as indexed by an N400-like component. Conversely, the semantic content of the sentence affects the motor potential measured immediately before the upward or downward action is initiated. We propose that this bidirectional link between motor system and language arises because the motor system implements forward models that predict the sensory consequences of actions. Because the same movement (e.g., raising the arm) can have multiple forward models for different contexts, the models can make different predictions depending on whether the arm is raised, for example, to place an object or raised as a threat. Thus, different linguistic contexts invoke different forward models, and the predictions constitute different understandings of the language. PMID:24086463

  17. A firm size and safety performance profile of the U.S. motor carrier industry.

    DOT National Transportation Integrated Search

    2014-12-01

    The purpose of this study was the development of a driver-focused truck crash prediction model with a particular focus on the size of : the carrier that the driver is associated with at the time of a state reportable crash. While previous studies hav...

  18. Do Perceptions of Competence Mediate The Relationship Between Fundamental Motor Skill Proficiency and Physical Activity Levels of Children in Kindergarten?

    PubMed

    Crane, Jeff R; Naylor, Patti J; Cook, Ryan; Temple, Viviene A

    2015-07-01

    Perceptions of competence mediate the relationship between motor skill proficiency and physical activity among older children and adolescents. This study examined kindergarten children's perceptions of physical competence as a mediator of the relationship between motor skill proficiency as a predictor variable and physical activity levels as the outcome variable; and also with physical activity as a predictor and motor skill proficiency as the outcome. Participants were 116 children (mean age = 5 years 7 months, 58% boys) from 10 schools. Motor skills were measured using the Test of Gross Motor Development-2 and physical activity was monitored through accelerometry. Perceptions of physical competence were measured using The Pictorial Scale of Perceived Competence and Social Acceptance for Young Children, and the relationships between these variables were examined using a model of mediation. The direct path between object control skills and moderate-vigorous physical activity (MVPA) was significant and object control skills predicted perceived physical competence. However, perceived competence did not mediate the relationship between object control skills and MVPA. The significant relationship between motor proficiency and perceptions of competence did not in turn influence kindergarten children's participation in physical activity. These findings support concepts of developmental differences in the structure of the self-perception system.

  19. Propulsion Powertrain Real-Time Simulation Using Hardware-in-the-Loop (HIL) for Aircraft Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Brown, Gerald V.

    2017-01-01

    It is essential to design a propulsion powertrain real-time simulator using the hardware-in-the-loop (HIL) system that emulates an electrified aircraft propulsion (EAP) systems power grid. This simulator would enable us to facilitate in-depth understanding of the system principles, to validate system model analysis and performance prediction, and to demonstrate the proof-of-concept of the EAP electrical system. This paper describes how subscale electrical machines with their controllers can mimic the power components in an EAP powertrain. In particular, three powertrain emulations are presented to mimic 1) a gas turbo-=shaft engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft, 2) a motor driving a propulsive fan, and 3) a turbo-shaft engine driven fan (turbofan engine) operation. As a first step towards the demonstration, experimental dynamic characterization of the two motor drive systems, coupled by a mechanical shaft, were performed. The previously developed analytical motor models1 were then replaced with the experimental motor models to perform the real-time demonstration in the predefined flight path profiles. This technique can convert the plain motor system into a unique EAP power grid emulator that enables rapid analysis and real-time simulation performance using hardware-in-the-loop (HIL).

  20. Brain-computer interface analysis of a dynamic visuo-motor task.

    PubMed

    Logar, Vito; Belič, Aleš

    2011-01-01

    The area of brain-computer interfaces (BCIs) represents one of the more interesting fields in neurophysiological research, since it investigates the development of the machines that perform different transformations of the brain's "thoughts" to certain pre-defined actions. Experimental studies have reported some successful implementations of BCIs; however, much of the field still remains unexplored. According to some recent reports the phase coding of informational content is an important mechanism in the brain's function and cognition, and has the potential to explain various mechanisms of the brain's data transfer, but it has yet to be scrutinized in the context of brain-computer interface. Therefore, if the mechanism of phase coding is plausible, one should be able to extract the phase-coded content, carried by brain signals, using appropriate signal-processing methods. In our previous studies we have shown that by using a phase-demodulation-based signal-processing approach it is possible to decode some relevant information on the current motor action in the brain from electroencephalographic (EEG) data. In this paper the authors would like to present a continuation of their previous work on the brain-information-decoding analysis of visuo-motor (VM) tasks. The present study shows that EEG data measured during more complex, dynamic visuo-motor (dVM) tasks carries enough information about the currently performed motor action to be successfully extracted by using the appropriate signal-processing and identification methods. The aim of this paper is therefore to present a mathematical model, which by means of the EEG measurements as its inputs predicts the course of the wrist movements as applied by each subject during the task in simulated or real time (BCI analysis). However, several modifications to the existing methodology are needed to achieve optimal decoding results and a real-time, data-processing ability. The information extracted from the EEG could, therefore, be further used for the development of a closed-loop, non-invasive, brain-computer interface. For the case of this study two types of measurements were performed, i.e., the electroencephalographic (EEG) signals and the wrist movements were measured simultaneously, during the subject's performance of a dynamic visuo-motor task. Wrist-movement predictions were computed by using the EEG data-processing methodology of double brain-rhythm filtering, double phase demodulation and double principal component analyses (PCA), each with a separate set of parameters. For the movement-prediction model a fuzzy inference system was used. The results have shown that the EEG signals measured during the dVM tasks carry enough information about the subjects' wrist movements for them to be successfully decoded using the presented methodology. Reasonably high values of the correlation coefficients suggest that the validation of the proposed approach is satisfactory. Moreover, since the causality of the rhythm filtering and the PCA transformation has been achieved, we have shown that these methods can also be used in a real-time, brain-computer interface. The study revealed that using non-causal, optimized methods yields better prediction results in comparison with the causal, non-optimized methodology; however, taking into account that the causality of these methods allows real-time processing, the minor decrease in prediction quality is acceptable. The study suggests that the methodology that was proposed in our previous studies is also valid for identifying the EEG-coded content during dVM tasks, albeit with various modifications, which allow better prediction results and real-time data processing. The results have shown that wrist movements can be predicted in simulated or real time; however, the results of the non-causal, optimized methodology (simulated) are slightly better. Nevertheless, the study has revealed that these methods should be suitable for use in the development of a non-invasive, brain-computer interface. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Modeling the Malaysian motor insurance claim using artificial neural network and adaptive NeuroFuzzy inference system

    NASA Astrophysics Data System (ADS)

    Mohd Yunos, Zuriahati; Shamsuddin, Siti Mariyam; Ismail, Noriszura; Sallehuddin, Roselina

    2013-04-01

    Artificial neural network (ANN) with back propagation algorithm (BP) and ANFIS was chosen as an alternative technique in modeling motor insurance claims. In particular, an ANN and ANFIS technique is applied to model and forecast the Malaysian motor insurance data which is categorized into four claim types; third party property damage (TPPD), third party bodily injury (TPBI), own damage (OD) and theft. This study is to determine whether an ANN and ANFIS model is capable of accurately predicting motor insurance claim. There were changes made to the network structure as the number of input nodes, number of hidden nodes and pre-processing techniques are also examined and a cross-validation technique is used to improve the generalization ability of ANN and ANFIS models. Based on the empirical studies, the prediction performance of the ANN and ANFIS model is improved by using different number of input nodes and hidden nodes; and also various sizes of data. The experimental results reveal that the ANFIS model has outperformed the ANN model. Both models are capable of producing a reliable prediction for the Malaysian motor insurance claims and hence, the proposed method can be applied as an alternative to predict claim frequency and claim severity.

  2. Enhanced pid vs model predictive control applied to bldc motor

    NASA Astrophysics Data System (ADS)

    Gaya, M. S.; Muhammad, Auwal; Aliyu Abdulkadir, Rabiu; Salim, S. N. S.; Madugu, I. S.; Tijjani, Aminu; Aminu Yusuf, Lukman; Dauda Umar, Ibrahim; Khairi, M. T. M.

    2018-01-01

    BrushLess Direct Current (BLDC) motor is a multivariable and highly complex nonlinear system. Variation of internal parameter values with environment or reference signal increases the difficulty in controlling the BLDC effectively. Advanced control strategies (like model predictive control) often have to be integrated to satisfy the control desires. Enhancing or proper tuning of a conventional algorithm results in achieving the desired performance. This paper presents a performance comparison of Enhanced PID and Model Predictive Control (MPC) applied to brushless direct current motor. The simulation results demonstrated that the PSO-PID is slightly better than the PID and MPC in tracking the trajectory of the reference signal. The proposed scheme could be useful algorithms for the system.

  3. Predicting Slag Generation in Sub-Scale Test Motors Using a Neural Network

    NASA Technical Reports Server (NTRS)

    Wiesenberg, Brent

    1999-01-01

    Generation of slag (aluminum oxide) is an important issue for the Reusable Solid Rocket Motor (RSRM). Thiokol performed testing to quantify the relationship between raw material variations and slag generation in solid propellants by testing sub-scale motors cast with propellant containing various combinations of aluminum fuel and ammonium perchlorate (AP) oxidizer particle sizes. The test data were analyzed using statistical methods and an artificial neural network. This paper primarily addresses the neural network results with some comparisons to the statistical results. The neural network showed that the particle sizes of both the aluminum and unground AP have a measurable effect on slag generation. The neural network analysis showed that aluminum particle size is the dominant driver in slag generation, about 40% more influential than AP. The network predictions of the amount of slag produced during firing of sub-scale motors were 16% better than the predictions of a statistically derived empirical equation. Another neural network successfully characterized the slag generated during full-scale motor tests. The success is attributable to the ability of neural networks to characterize multiple complex factors including interactions that affect slag generation.

  4. Predicting the velocity and azimuth of fragments generated by the range destruction or random failure of rocket casings and tankage

    NASA Technical Reports Server (NTRS)

    Eck, Marshall; Mukunda, Meera

    1988-01-01

    A calculational method is described which provides a powerful tool for predicting solid rocket motor (SRM) casing and liquid rocket tankage fragmentation response. The approach properly partitions the available impulse to each major system-mass component. It uses the Pisces code developed by Physics International to couple the forces generated by an Eulerian-modeled gas flow field to a Lagrangian-modeled fuel and casing system. The details of the predictive analytical modeling process and the development of normalized relations for momentum partition as a function of SRM burn time and initial geometry are discussed. Methods for applying similar modeling techniques to liquid-tankage-overpressure failures are also discussed. Good agreement between predictions and observations are obtained for five specific events.

  5. Muscle activation described with a differential equation model for large ensembles of locally coupled molecular motors.

    PubMed

    Walcott, Sam

    2014-10-01

    Molecular motors, by turning chemical energy into mechanical work, are responsible for active cellular processes. Often groups of these motors work together to perform their biological role. Motors in an ensemble are coupled and exhibit complex emergent behavior. Although large motor ensembles can be modeled with partial differential equations (PDEs) by assuming that molecules function independently of their neighbors, this assumption is violated when motors are coupled locally. It is therefore unclear how to describe the ensemble behavior of the locally coupled motors responsible for biological processes such as calcium-dependent skeletal muscle activation. Here we develop a theory to describe locally coupled motor ensembles and apply the theory to skeletal muscle activation. The central idea is that a muscle filament can be divided into two phases: an active and an inactive phase. Dynamic changes in the relative size of these phases are described by a set of linear ordinary differential equations (ODEs). As the dynamics of the active phase are described by PDEs, muscle activation is governed by a set of coupled ODEs and PDEs, building on previous PDE models. With comparison to Monte Carlo simulations, we demonstrate that the theory captures the behavior of locally coupled ensembles. The theory also plausibly describes and predicts muscle experiments from molecular to whole muscle scales, suggesting that a micro- to macroscale muscle model is within reach.

  6. Understanding physical (in-) activity, overweight, and obesity in childhood: Effects of congruence between physical self-concept and motor competence.

    PubMed

    Utesch, T; Dreiskämper, D; Naul, R; Geukes, K

    2018-04-12

    Both the physical self-concept and actual motor competence are important for healthy future physical activity levels and consequently decrease overweight and obesity in childhood. However, children scoring high on motor competence do not necessarily report high levels of physical self-concept and vice versa, resulting in respective (in-) accuracy also referred to as (non-) veridicality. This study examines whether children's accuracy of physical self-concept is a meaningful predictive factor for their future physical activity. Motor competence, physical self-concept and physical activity were assessed in 3 rd grade and one year later in 4 th grade. Children's weight status was categorized based on WHO recommendations. Polynomial regression with Response surface analyses were conducted with a quasi-DIF approach examining moderating weight status effects. Analyses revealed that children with higher motor competence levels and higher self-perceptions show greater physical activity. Importantly, children who perceive their motor competence more accurately (compared to less) show more future physical activity. This effect is strong for underweight and overweight/obese children, but weak for normal weight children. This study indicates that an accurate self-perception of motor competence fosters future physical activity beyond single main effects, respectively. Hence, the promotion of actual motor competence should be linked with the respective development of accurate self-knowledge.

  7. Motor network efficiency and disability in multiple sclerosis

    PubMed Central

    Yaldizli, Özgür; Sethi, Varun; Muhlert, Nils; Liu, Zheng; Samson, Rebecca S.; Altmann, Daniel R.; Ron, Maria A.; Wheeler-Kingshott, Claudia A.M.; Miller, David H.; Chard, Declan T.

    2015-01-01

    Objective: To develop a composite MRI-based measure of motor network integrity, and determine if it explains disability better than conventional MRI measures in patients with multiple sclerosis (MS). Methods: Tract density imaging and constrained spherical deconvolution tractography were used to identify motor network connections in 22 controls. Fractional anisotropy (FA), magnetization transfer ratio (MTR), and normalized volume were computed in each tract in 71 people with relapse onset MS. Principal component analysis was used to distill the FA, MTR, and tract volume data into a single metric for each tract, which in turn was used to compute a composite measure of motor network efficiency (composite NE) using graph theory. Associations were investigated between the Expanded Disability Status Scale (EDSS) and the following MRI measures: composite motor NE, NE calculated using FA alone, FA averaged in the combined motor network tracts, brain T2 lesion volume, brain parenchymal fraction, normal-appearing white matter MTR, and cervical cord cross-sectional area. Results: In univariable analysis, composite motor NE explained 58% of the variation in EDSS in the whole MS group, more than twice that of the other MRI measures investigated. In a multivariable regression model, only composite NE and disease duration were independently associated with EDSS. Conclusions: A composite MRI measure of motor NE was able to predict disability substantially better than conventional non-network-based MRI measures. PMID:26320199

  8. Effects of sleep schedules on commercial motor vehicle driver performance : part 1

    DOT National Transportation Integrated Search

    2000-09-01

    The Federal Motor Carrier Safety Administration sponsored a study to gather and analyze data on commercial motor vehicle (CMV) driver rest and recovery cycles, effects of partial sleep deprivation, and prediction of subsequent performance. The study ...

  9. Effects of sleep schedules on commercial motor vehicle driver performance : part 2

    DOT National Transportation Integrated Search

    2000-09-01

    The Federal Motor Carrier Safety Administration sponsored a study to gather and analyze data on commercial motor vehicle driver rest and recovery cycles, effects of partial sleep deprivation, and prediction of subsequent performance. The study began ...

  10. The Premotor theory of attention: time to move on?

    PubMed

    Smith, Daniel T; Schenk, Thomas

    2012-05-01

    Spatial attention and eye-movements are tightly coupled, but the precise nature of this coupling is controversial. The influential but controversial Premotor theory of attention makes four specific predictions about the relationship between motor preparation and spatial attention. Firstly, spatial attention and motor preparation use the same neural substrates. Secondly, spatial attention is functionally equivalent to planning goal directed actions such as eye-movements (i.e. planning an action is both necessary and sufficient for a shift of spatial attention). Thirdly, planning a goal directed action with any effector system is sufficient to trigger a shift of spatial attention. Fourthly, the eye-movement system has a privileged role in orienting visual spatial attention. This article reviews empirical studies that have tested these predictions. Contrary to predictions one and two there is evidence of anatomical and functional dissociations between endogenous spatial attention and motor preparation. However, there is compelling evidence that exogenous attention is reliant on activation of the oculomotor system. With respect to the third prediction, there is correlational evidence that spatial attention is directed to the endpoint of goal-directed actions but no direct evidence that this attention shift is dependent on motor preparation. The few studies to have directly tested the fourth prediction have produced conflicting results, so the extent to which the oculomotor system has a privileged role in spatial attention remains unclear. Overall, the evidence is not consistent with the view that spatial attention is functionally equivalent to motor preparation so the Premotor theory should be rejected, although a limited version of the Premotor theory in which only exogenous attention is dependent on motor preparation may still be tenable. A plausible alternative account is that activity in the motor system contributes to biased competition between different sensory representations with the winner of the competition becoming the attended item. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Motor Proficiency Predicts Cognitive Ability in Four-Year-Olds

    ERIC Educational Resources Information Center

    Hernandez, Amanda Martinez; Caçola, Priscila

    2015-01-01

    Research has shown links between motor proficiency and cognition in school-age children, however, few have explored earlier ages. We aimed to determine the association between motor proficiency and cognitive ability in four-year-olds. Motor and cognitive skills were examined in 32 (15 males, 17 females) four-year-olds (±5.59 months) using the…

  12. Flight Motor Set 360L003 (STS-29R)

    NASA Technical Reports Server (NTRS)

    Riehr, Glen A.

    1989-01-01

    The redesigned solid rocket motor (RSRM) flight set 360L003 was launched on March 13, 1989 as part of NASA space shuttle mission STS-29R. As was the case with flight sets 360L001 and 360L002 (STS-26R and STS-27R), both motors (360L003A and 360L003B) performed in an excellent manner. Evaluation of the ground environment instrumentation measurements verified thermal model analysis data and showed agreement with predicted environmental effects. The right-hand aft field joint primary heater failed during the countdown; the secondary heater was activated and performed as designed. All other field joint heaters and aft skirt thermal conditioning systems had no anomalies. Shuttle thermal imager infrared readings compared favorably with measured ground environment instrumentation data. No thermal launch commit criteria violations occurred at any time. Evaluation of the development flight instrumentation showed exceptional propulsion performance. All ballistic parameters closely matched the predicted values and were well within the required specification levels. Girth and biaxial strain gage measurements compared closely with corresponding gages on previous flight motors, static tests, and with preflight predictions. Adequate safety factors were verified. (Some ignition transient spiking was noted in a few girth gages; the spiking was determined not to be representative of actual case behavior, but an instrumentation phenomena.) The accelerometers again measured high vibration amplitude levels during the ignition transient and the reentry Max Q phases. Postflight inspection showed that all combustion gas was contained by the insulation in the field and case-to-nozzle joints. No anomalous insulation erosion patterns were found, and the seals that did directly contain motor pressure showed no heat effects, erosion, or blowby. All anomalies identified were a result of splashdown damage, with the exception of fretting in the case field joint interference (nonsealing) surfaces and a prelaunch field joint heater failure. The disposition of all anomalies and the complete results are reported.

  13. Fine-Motor Skill Deficits in Childhood Predict Adulthood Tic Severity and Global Psychosocial Functioning in Tourette's Syndrome

    ERIC Educational Resources Information Center

    Bloch, Michael H.; Sukhodolsky, Denis G.; Leckman, James F.; Schultz, Robert T.

    2006-01-01

    Background: Most children with Tourette's syndrome (TS) experience a significant decline in tic symptoms during adolescence. Currently no clinical measures have been identified that can predict whose tic symptoms will persist into adulthood. Patients with TS have deficits on neuropsychological tests involving fine-motor coordination and…

  14. Measurement and Characterization of Space Shuttle Solid Rocket Motor Plume Acoustics

    NASA Technical Reports Server (NTRS)

    Kenny, Jeremy; Hobbs, Chris; Plotkin, Ken; Pilkey, Debbie

    2009-01-01

    Lift-off acoustic environments generated by the future Ares I launch vehicle are assessed by the NASA Marshall Space Flight Center (MSFC) acoustics team using several prediction tools. This acoustic environment is directly caused by the Ares I First Stage booster, powered by the five-segment Reusable Solid Rocket Motor (RSRMV). The RSRMV is a larger-thrust derivative design from the currently used Space Shuttle solid rocket motor, the Reusable Solid Rocket Motor (RSRM). Lift-off acoustics is an integral part of the composite launch vibration environment affecting the Ares launch vehicle and must be assessed to help generate hardware qualification levels and ensure structural integrity of the vehicle during launch and lift-off. Available prediction tools that use free field noise source spectrums as a starting point for generation of lift-off acoustic environments are described in the monograph NASA SP-8072: "Acoustic Loads Generated by the Propulsion System." This monograph uses a reference database for free field noise source spectrums which consist of subscale rocket motor firings, oriented in horizontal static configurations. The phrase "subscale" is appropriate, since the thrust levels of rockets in the reference database are orders of magnitude lower than the current design thrust for the Ares launch family. Thus, extrapolation is needed to extend the various reference curves to match Ares-scale acoustic levels. This extrapolation process yields a subsequent amount of uncertainty added upon the acoustic environment predictions. As the Ares launch vehicle design schedule progresses, it is important to take every opportunity to lower prediction uncertainty and subsequently increase prediction accuracy. Never before in NASA s history has plume acoustics been measured for large scale solid rocket motors. Approximately twice a year, the RSRM prime vendor, ATK Launch Systems, static fires an assembled RSRM motor in a horizontal configuration at their test facility in Utah. The remaining RSRM static firings will take place on elevated terrain, with the nozzle exit plume being mostly undeflected and the landscape allowing placement of microphones within direct line of sight to the exhaust plume. These measurements will help assess the current extrapolation process by direct comparison between subscale and full scale solid rocket motor data.

  15. Comparing Prognostic Strength of Acute Corticospinal Tract Injury Measured by a New Diffusion Tensor Imaging Based Template Approach Versus Common Approaches

    PubMed Central

    Hirai, Kelsi K.; Groisser, Benjamin N.; Copen, William A.; Singhal, Aneesh B.; Schaechter, Judith D.

    2015-01-01

    Background Long-term motor outcome of acute stroke patients with severe motor impairment is difficult to predict. While measure of corticospinal tract (CST) injury based on diffusion tensor imaging (DTI) in subacute stroke patients strongly predicts motor outcome, its predictive value in acute stroke patients is unclear. Using a new DTI-based, density-weighted CST template approach, we demonstrated recently that CST injury measured in acute stroke patients with moderately-severe to severe motor impairment of the upper limb strongly predicts motor outcome of the limb at 6 months. New Method The current study compared the prognostic strength of CST injury measured in 10 acute stroke patients with moderately-severe to severe motor impairment of the upper limb by the new density-weighted CST template approach versus several variants of commonly used DTI-based approaches. Results and Comparison with Existing Methods Use of the density-weighted CST template approach yielded measurements of acute CST injury that correlated most strongly, in absolute magnitude, with 6-month upper limb strength (rs = 0.93), grip (rs = 0.94) and dexterity (rs = 0.89) compared to all other 11 approaches. Formal statistical comparison of correlation coefficients revealed that acute CST injury measured by the density-weighted CST template approach correlated significantly more strongly with 6-month upper limb strength, grip and dexterity than 9, 10 and 6 of the 11 alternative measurements, respectively. Conclusions Measurements of CST injury in acute stroke patients with substantial motor impairment by the density-weighted CST template approach may have clinical utility for anticipating healthcare needs and improving clinical trial design. PMID:26386285

  16. Generating linear regression model to predict motor functions by use of laser range finder during TUG.

    PubMed

    Adachi, Daiki; Nishiguchi, Shu; Fukutani, Naoto; Hotta, Takayuki; Tashiro, Yuto; Morino, Saori; Shirooka, Hidehiko; Nozaki, Yuma; Hirata, Hinako; Yamaguchi, Moe; Yorozu, Ayanori; Takahashi, Masaki; Aoyama, Tomoki

    2017-05-01

    The purpose of this study was to investigate which spatial and temporal parameters of the Timed Up and Go (TUG) test are associated with motor function in elderly individuals. This study included 99 community-dwelling women aged 72.9 ± 6.3 years. Step length, step width, single support time, variability of the aforementioned parameters, gait velocity, cadence, reaction time from starting signal to first step, and minimum distance between the foot and a marker placed to 3 in front of the chair were measured using our analysis system. The 10-m walk test, five times sit-to-stand (FTSTS) test, and one-leg standing (OLS) test were used to assess motor function. Stepwise multivariate linear regression analysis was used to determine which TUG test parameters were associated with each motor function test. Finally, we calculated a predictive model for each motor function test using each regression coefficient. In stepwise linear regression analysis, step length and cadence were significantly associated with the 10-m walk test, FTSTS and OLS test. Reaction time was associated with the FTSTS test, and step width was associated with the OLS test. Each predictive model showed a strong correlation with the 10-m walk test and OLS test (P < 0.01), which was not significant higher correlation than TUG test time. We showed which TUG test parameters were associated with each motor function test. Moreover, the TUG test time regarded as the lower extremity function and mobility has strong predictive ability in each motor function test. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  17. Comparisons Between Stability Prediction and Measurements for the Reusable Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean R.; Kenny, R. Jeremy

    2010-01-01

    The Space Transportation System has used the solid rocket boosters for lift-off and ascent propulsion over the history of the program. Part of the structural loads assessment of the assembled vehicle is the contribution due to solid rocket booster thrust oscillations. These thrust oscillations are a consequence of internal motor pressure oscillations active during operation. Understanding of these pressure oscillations is key to predicting the subsequent thrust oscillations and vehicle loading. The pressure oscillation characteristics of the Reusable Solid Rocket Motor (RSRM) design are reviewed in this work. Dynamic pressure data from the static test and flight history are shown, with emphasis on amplitude, frequency, and timing of the oscillations. Physical mechanisms that cause these oscillations are described by comparing data observations to predictions made by the Solid Stability Prediction (SSP) code.

  18. Space shuttle solid rocket booster water entry cavity collapse loads

    NASA Technical Reports Server (NTRS)

    Keefe, R. T.; Rawls, E. A.; Kross, D. A.

    1982-01-01

    Solid rocket booster cavity collapse flight measurements included external pressures on the motor case and aft skirt, internal motor case pressures, accelerometers located in the forward skirt, mid-body area, and aft skirt, as well as strain gages located on the skin of the motor case. This flight data yielded applied pressure longitudinal and circumferential distributions which compare well with model test predictions. The internal motor case ullage pressure, which is below atmospheric due to the rapid cooling of the hot internal gas, was more severe (lower) than anticipated due to the ullage gas being hotter than predicted. The structural dynamic response characteristics were as expected. Structural ring and wall damage are detailed and are considered to be attributable to the direct application of cavity collapse pressure combined with the structurally destabilizing, low internal motor case pressure.

  19. Dimensional reduction in sensorimotor systems: A framework for understanding muscle coordination of posture

    PubMed Central

    Ting, Lena H.

    2014-01-01

    The simple act of standing up is an important and essential motor behavior that most humans and animals achieve with ease. Yet, maintaining standing balance involves complex sensorimotor transformations that must continually integrate a large array of sensory inputs and coordinate multiple motor outputs to muscles throughout the body. Multiple, redundant local sensory signals are integrated to form an estimate of a few global, task-level variables important to postural control, such as body center of mass position and body orientation with respect to Earth-vertical. Evidence suggests that a limited set of muscle synergies, reflecting preferential sets of muscle activation patterns, are used to move task variables such as center of mass position in a predictable direction following a postural perturbations. We propose a hierarchal feedback control system that allows the nervous system the simplicity of performing goal-directed computations in task-variable space, while maintaining the robustness afforded by redundant sensory and motor systems. We predict that modulation of postural actions occurs in task-variable space, and in the associated transformations between the low-dimensional task-space and high-dimensional sensor and muscle spaces. Development of neuromechanical models that reflect these neural transformations between low and high-dimensional representations will reveal the organizational principles and constraints underlying sensorimotor transformations for balance control, and perhaps motor tasks in general. This framework and accompanying computational models could be used to formulate specific hypotheses about how specific sensory inputs and motor outputs are generated and altered following neural injury, sensory loss, or rehabilitation. PMID:17925254

  20. Watching novice action degrades expert motor performance: Causation between action production and outcome prediction of observed actions by humans

    PubMed Central

    Ikegami, Tsuyoshi; Ganesh, Gowrishankar

    2014-01-01

    Our social skills are critically determined by our ability to understand and appropriately respond to actions performed by others. However despite its obvious importance, the mechanisms enabling action understanding in humans have remained largely unclear. A popular but controversial belief is that parts of the motor system contribute to our ability to understand observed actions. Here, using a novel behavioral paradigm, we investigated this belief by examining a causal relation between action production, and a component of action understanding - outcome prediction, the ability of a person to predict the outcome of observed actions. We asked dart experts to watch novice dart throwers and predict the outcome of their throws. We modulated the feedbacks provided to them, caused a specific improvement in the expert's ability to predict watched actions while controlling the other experimental factors, and exhibited that a change (improvement) in their outcome prediction ability results in a progressive and proportional deterioration in the expert's own darts performance. This causal relationship supports involvement of the motor system in outcome prediction by humans of actions observed in others. PMID:25384755

  1. Neonatal Sleep-Wake Analyses Predict 18-month Neurodevelopmental Outcomes.

    PubMed

    Shellhaas, Renée A; Burns, Joseph W; Hassan, Fauziya; Carlson, Martha D; Barks, John D E; Chervin, Ronald D

    2017-11-01

    The neurological examination of critically ill neonates is largely limited to reflexive behavior. The exam often ignores sleep-wake physiology that may reflect brain integrity and influence long-term outcomes. We assessed whether polysomnography and concurrent cerebral near-infrared spectroscopy (NIRS) might improve prediction of 18-month neurodevelopmental outcomes. Term newborns with suspected seizures underwent standardized neurologic examinations to generate Thompson scores and had 12-hour bedside polysomnography with concurrent cerebral NIRS. For each infant, the distribution of sleep-wake stages and electroencephalogram delta power were computed. NIRS-derived fractional tissue oxygen extraction (FTOE) was calculated across sleep-wake stages. At age 18-22 months, surviving participants were evaluated with Bayley Scales of Infant Development (Bayley-III), 3rd edition. Twenty-nine participants completed Bayley-III. Increased newborn time in quiet sleep predicted worse 18-month cognitive and motor scores (robust regression models, adjusted r2 = 0.22, p = .007, and 0.27, .004, respectively). Decreased 0.5-2 Hz electroencephalograph (EEG) power during quiet sleep predicted worse 18-month language and motor scores (adjusted r2 = 0.25, p = .0005, and 0.33, .001, respectively). Predictive values remained significant after adjustment for neonatal Thompson scores or exposure to phenobarbital. Similarly, an attenuated difference in FTOE, between neonatal wakefulness and quiet sleep, predicted worse 18-month cognitive, language, and motor scores in adjusted analyses (each p < .05). These prospective, longitudinal data suggest that inefficient neonatal sleep-as quantified by increased time in quiet sleep, lower electroencephalogram delta power during that stage, and muted differences in FTOE between quiet sleep and wakefulness-may improve prediction of adverse long-term outcomes for newborns with neurological dysfunction. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  2. Screening accuracy of the parent-completed Ages and Stages Questionnaires - second edition as a broadband screener for motor problems in preschoolers with autism spectrum disorders.

    PubMed

    Vanvuchelen, Marleen; Van Schuerbeeck, Lise; Braeken, Marijke Aka

    2017-01-01

    Children with autism spectrum disorders are at risk for motor problems. However, this area is often overlooked in the developmental evaluation in autism diagnostic clinics. An alternative can be to identify children who should receive intensive motor assessment by using a parent-based screener. The aim of this study was to examine whether the Ages and Stages Questionnaires - second edition may be used to identify gross and fine motor problems in children. High-functioning children with autism spectrum disorder (n = 43, 22-54 m) participated in this study. Sensitivity, specificity, predictive values and areas under the receiver operating characteristic curve were calculated by comparing the Ages and Stages Questionnaires - second edition scores to the developmental evaluation of the Peabody Developmental Motor Scale - second edition. The results revealed that both the Ages and Stages Questionnaires - second edition gross and fine motor domain may be used to identify children without motor problems. In contrast, sensitivity analyses revealed the likelihood of under screening motor problems in this population. The Ages and Stages Questionnaires - second edition met only the criteria of a fair to good accuracy to identify poor gross motor (sensitivity = 100%) and below-average fine motor development (sensitivity = 71%) in this sample. Hence, the capacity of the Ages and Stages Questionnaires - second edition to identify motor problems in preschoolers with autism spectrum disorder appears to be limited. It is recommended to include a formal standardized motor test in the diagnostic procedure for all children with autism spectrum disorder. © The Author(s) 2016.

  3. Use of noise attenuation modeling in managing missile motor detonation activities.

    PubMed

    McFarland, Michael J; Watkins, Jeffrey W; Kordich, Micheal M; Pollet, Dean A; Palmer, Glenn R

    2004-03-01

    The Sound Intensity Prediction System (SIPS) and Blast Operation Overpressure Model (BOOM) are semiempirical sound models that are employed by the Utah Test and Training Range (UTTR) to predict whether noise levels from the detonation of large missile motors will exceed regulatory thresholds. Field validation of SIPS confirmed that the model was effective in limiting the number of detonations of large missile motors that could potentially result in a regulatory noise exceedance. Although the SIPS accurately predicted the impact of weather on detonation noise propagation, regulators have required that the more conservative BOOM model be employed in conjunction with SIPS in evaluating peak noise levels in populated areas. By simultaneously considering the output of both models, in 2001, UTTR detonated 104 missile motors having net explosive weights (NEW) that ranged between 14,960 and 38,938 lb without a recorded public noise complaint. Based on the encouraging results, the U.S. Department of Defense is considering expanding the application of these noise models to support the detonation of missile motors having a NEW of 81,000 lb. Recent modeling results suggest that, under appropriate weather conditions, missile motors containing up to 96,000 lb NEW can be detonated at the UTTR without exceeding the regulatory noise limit of 134 decibels (dB).

  4. Relationship of physical therapy inpatient rehabilitation interventions and patient characteristics to outcomes following spinal cord injury: The SCIRehab project

    PubMed Central

    Teeter, Laura; Gassaway, Julie; Taylor, Sally; LaBarbera, Jacqueline; McDowell, Shari; Backus, Deborah; Zanca, Jeanne M.; Natale, Audrey; Cabrera, Jordan; Smout, Randall J.; Kreider, Scott E. D.; Whiteneck, Gale

    2012-01-01

    Background/objective Examine associations of type and quantity of physical therapy (PT) interventions delivered during inpatient spinal cord injury (SCI) rehabilitation and patient characteristics with outcomes at the time of discharge and at 1 year post-injury. Methods Physical therapists delivering routine care documented details of PT interventions provided. Regression modeling was used to predict outcomes at discharge and 1 year post-injury for a 75% subset; models were validated with the remaining 25%. Injury subgroups also were examined: motor complete low tetraplegia, motor complete paraplegia, and American Spinal Injury Association (ASIA) Impairment Scale (AIS) D motor incomplete tetra-/paraplegia. Results PT treatment variables explain more variation in three functionally homogeneous subgroups than in the total sample. Among patients with motor complete low tetraplegia, higher scores for the transfer component of the discharge motor Functional Independence Measure () are strongly associated with more time spent working on manual wheelchair skills. Being male is the most predictive variable for the motor FIM score at discharge for patients with motor complete paraplegia. Admission ASIA lower extremity motor score (LEMS) and change in LEMS were the factors most predictive for having the primary locomotion mode of “walk” or “both (walk and wheelchair)” on the discharge motor FIM for patients with AIS D injuries. Conclusion Injury classification influences type and quantity of PT interventions during inpatient SCI rehabilitation and is a strong predictor of outcomes at discharge and 1 year post-injury. The impact of PT treatment increases when patient groupings become more homogeneous and outcomes become specific to the groupings. Note This is the second of nine articles in the SCIRehab series. PMID:23318034

  5. Deliberate Play and Preparation Jointly Benefit Motor and Cognitive Development: Mediated and Moderated Effects

    PubMed Central

    Pesce, Caterina; Masci, Ilaria; Marchetti, Rosalba; Vazou, Spyridoula; Sääkslahti, Arja; Tomporowski, Phillip D.

    2016-01-01

    In light of the interrelation between motor and cognitive development and the predictive value of the former for the latter, the secular decline observed in motor coordination ability as early as preschool urges identification of interventions that may jointly impact motor and cognitive efficiency. The aim of this study was twofold. It (1) explored the outcomes of enriched physical education (PE), centered on deliberate play and cognitively challenging variability of practice, on motor coordination and cognitive processing; (2) examined whether motor coordination outcomes mediate intervention effects on children’s cognition, while controlling for moderation by lifestyle factors as outdoor play habits and weight status. Four hundred and sixty children aged 5–10 years participated in a 6-month group randomized intervention in PE, with or without playful coordinative and cognitive enrichment. The weight status and spontaneous outdoor play habits of children (parental report of outdoor play) were evaluated at baseline. Before and after the intervention, motor developmental level (Movement Assessment Battery for Children) was evaluated in all children, who were then assessed either with a test of working memory (Random Number Generation task), or with a test of attention (from the Cognitive Assessment System). Children assigned to the ‘enriched’ intervention showed more pronounced improvements in all motor coordination assessments (manual dexterity, ball skills, static/dynamic balance). The beneficial effect on ball skills was amplified by the level of spontaneous outdoor play and weight status. Among indices of executive function and attention, only that of inhibition showed a differential effect of intervention type. Moderated mediation showed that the better outcome of the enriched PE on ball skills mediated the better inhibition outcome, but only when the enrichment intervention was paralleled by a medium-to-high level of outdoor play. Results suggest that specifically tailored physical activity (PA) games provide a unique form of enrichment that impacts children’s cognitive development through motor coordination improvement, particularly object control skills, which are linked to children’s PA habits later in life. Outdoor play appears to offer the natural ground for the stimulation by designed PA games to take root in children’s mind. PMID:27014155

  6. Motor Synergies and the Equilibrium-Point Hypothesis

    PubMed Central

    Latash, Mark L.

    2010-01-01

    The article offers a way to unite three recent developments in the field of motor control and coordination: (1) The notion of synergies is introduced based on the principle of motor abundance; (2) The uncontrolled manifold hypothesis is described as offering a computational framework to identify and quantify synergies; and (3) The equilibrium-point hypothesis is described for a single muscle, single joint, and multi-joint systems. Merging these concepts into a single coherent scheme requires focusing on control variables rather than performance variables. The principle of minimal final action is formulated as the guiding principle within the referent configuration hypothesis. Motor actions are associated with setting two types of variables by a controller, those that ultimately define average performance patterns and those that define associated synergies. Predictions of the suggested scheme are reviewed, such as the phenomenon of anticipatory synergy adjustments, quick actions without changes in synergies, atypical synergies, and changes in synergies with practice. A few models are briefly reviewed. PMID:20702893

  7. Motor synergies and the equilibrium-point hypothesis.

    PubMed

    Latash, Mark L

    2010-07-01

    The article offers a way to unite three recent developments in the field of motor control and coordination: (1) The notion of synergies is introduced based on the principle of motor abundance; (2) The uncontrolled manifold hypothesis is described as offering a computational framework to identify and quantify synergies; and (3) The equilibrium-point hypothesis is described for a single muscle, single joint, and multijoint systems. Merging these concepts into a single coherent scheme requires focusing on control variables rather than performance variables. The principle of minimal final action is formulated as the guiding principle within the referent configuration hypothesis. Motor actions are associated with setting two types of variables by a controller, those that ultimately define average performance patterns and those that define associated synergies. Predictions of the suggested scheme are reviewed, such as the phenomenon of anticipatory synergy adjustments, quick actions without changes in synergies, atypical synergies, and changes in synergies with practice. A few models are briefly reviewed.

  8. Abnormal sensory reactivity in preterm infants during the first year correlates with adverse neurodevelopmental outcomes at 2 years of age.

    PubMed

    Chorna, Olena; Solomon, Jessica E; Slaughter, James C; Stark, Ann R; Maitre, Nathalie L

    2014-11-01

    Sensory experience is the basis for learning in infancy. In older children, abnormal sensory reactivity is associated with behavioural and developmental disorders. We hypothesised that in preterm infants, abnormal sensory reactivity during infancy would be associated with perinatal characteristics and correlate with 2-year neurodevelopmental outcomes. We conducted a prospective observational study of infants with birth weight ≤1500 g using the Test of Sensory Function in Infants (TSFI) in the first year. Infants with gestational age ≤30 weeks were tested with the Bayley Scales of Infant and Toddler Development III (BSID III) at 24 months. Of the 72 participants evaluated at 4-12 months corrected age (median 8 months), 59 (82%) had a least one TSFI score concerning for abnormal sensory reactivity. Lower gestational age was associated with abnormal reactivity to deep pressure and vestibular stimulation (p<0.001). Poor ocular-motor control predicted worse cognitive and motor scores in early childhood (OR 16.7; p=0.004), but was tightly correlated to the presence of severe white matter injury. Poor adaptive motor function in response to tactile stimuli predicted worse BSID III motor (p=0.01) and language scores (p=0.04) at 2 years, even after adjusting for confounders. Abnormal sensory reactivity is common in preterm infants; is associated with immaturity at birth, severe white matter injury and lower primary caregiver education; and predicts neurodevelopmental delays. Early identification of abnormal sensory reactivity of very preterm infants may promote parental support and education and may facilitate improved neurodevelopment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Longitudinal prediction of language emergence in infants at high and low risk for autism spectrum disorder.

    PubMed

    Edmunds, Sarah R; Ibañez, Lisa V; Warren, Zachary; Messinger, Daniel S; Stone, Wendy L

    2017-02-01

    This study used a prospective longitudinal design to examine the early developmental pathways that underlie language growth in infants at high risk (n = 50) and low risk (n = 34) for autism spectrum disorder in the first 18 months of life. While motor imitation and responding to joint attention (RJA) have both been found to predict expressive language in children with autism spectrum disorder and those with typical development, the longitudinal relation between these capacities has not yet been identified. As hypothesized, results revealed that 15-month RJA mediated the association between 12-month motor imitation and 18-month expressive vocabulary, even after controlling for earlier levels of RJA and vocabulary. These results provide new information about the developmental sequencing of skills relevant to language growth that may inform future intervention efforts for children at risk for language delay or other developmental challenges.

  10. Application of the Conway-Maxwell-Poisson generalized linear model for analyzing motor vehicle crashes.

    PubMed

    Lord, Dominique; Guikema, Seth D; Geedipally, Srinivas Reddy

    2008-05-01

    This paper documents the application of the Conway-Maxwell-Poisson (COM-Poisson) generalized linear model (GLM) for modeling motor vehicle crashes. The COM-Poisson distribution, originally developed in 1962, has recently been re-introduced by statisticians for analyzing count data subjected to over- and under-dispersion. This innovative distribution is an extension of the Poisson distribution. The objectives of this study were to evaluate the application of the COM-Poisson GLM for analyzing motor vehicle crashes and compare the results with the traditional negative binomial (NB) model. The comparison analysis was carried out using the most common functional forms employed by transportation safety analysts, which link crashes to the entering flows at intersections or on segments. To accomplish the objectives of the study, several NB and COM-Poisson GLMs were developed and compared using two datasets. The first dataset contained crash data collected at signalized four-legged intersections in Toronto, Ont. The second dataset included data collected for rural four-lane divided and undivided highways in Texas. Several methods were used to assess the statistical fit and predictive performance of the models. The results of this study show that COM-Poisson GLMs perform as well as NB models in terms of GOF statistics and predictive performance. Given the fact the COM-Poisson distribution can also handle under-dispersed data (while the NB distribution cannot or has difficulties converging), which have sometimes been observed in crash databases, the COM-Poisson GLM offers a better alternative over the NB model for modeling motor vehicle crashes, especially given the important limitations recently documented in the safety literature about the latter type of model.

  11. Factor structure of paediatric timed motor examination and its relationship with IQ

    PubMed Central

    MARTIN, REBECCA; TIGERA, CASSIE; DENCKLA, MARTHA B; MAHONE, E MARK

    2012-01-01

    AIM Brain systems supporting higher cognitive and motor control develop in a parallel manner, dependent on functional integrity and maturation of related regions, suggesting neighbouring neural circuitry. Concurrent examination of motor and cognitive control can provide a window into neurological development. However, identification of performance-based measures that do not correlate with IQ has been a challenge. METHOD Timed motor performance from the Physical and Neurological Examination of Subtle Signs and IQ were analysed in 136 children aged 6 to 16 (mean age 10y 2.6mo, SD 2y 6.4mo; 98 female, 38male) attending an outpatient neuropsychology clinic and 136 right-handed comparison individuals aged 6 to 16 (mean age 10y 3.1mo, SD 2y 6.1mo; 98 female, 38male). Timed activities – three repetitive movements (toe tapping, hand patting, finger tapping) and three sequenced movements (heel–toe tap, hand pronate/supinate, finger sequencing) each performed on the right and left – were included in exploratory factor analyses. RESULTS Among comparison individuals, factor analysis yielded two factors – repetitive and sequenced movements – with the sequenced factor significantly predictive of Verbal IQ (VIQ) (ΔR2=0.018, p=0.019), but not the repetitive factor (ΔR2=0.004, p=0.39). Factor analysis within the clinical group yielded two similar factors (repetitive and sequenced), both significantly predictive of VIQ, (ΔR2=0.028, p=0.015; ΔR2=0.046, p=0.002 respectively). INTERPRETATION Among typical children, repetitive timed tasks may be independent of IQ; however, sequenced tasks share more variance, implying shared neural substrates. Among neurologically vulnerable populations, however, both sequenced and repetitive movements covary with IQ, suggesting that repetitive speed is more indicative of underlying neurological integrity. PMID:20412260

  12. [Factors predicting sensory profile of 4 to 18 month old infants].

    PubMed

    Pedrosa, Carina; Caçola, Priscila; Carvalhal, Maria Isabel Martins Mourão

    2015-01-01

    To identify environment factors predicting sensory profile of infants between 4 and 18 months old. This cross-sectional study evaluated 97 infants (40 females e 57 males), with a mean age of 1.05±0.32 years with the Test of Sensory Functions in Infants (TSFI) and also asked 97 parents and 11 kindergarten teachers of seven daycare centers to answer the Affordances in the Home Environment for Motor Development- Infant Scale (AHEMD-IS). The AHEMD-IS is a questionnaire that characterizes the opportunities in the home environment for infants between 3 and 18 months of age. We tested the association between affordances and the sensory profile of infants. Significant variables were entered into a regression model to determine predictors of sensory profile. The majority of infants (66%) had a normal sensory profile and 34% were at risk or deficit. Affordances in the home were classified as adequate and they were good in the studied daycare centers. The results of the regression revealed that only daily hours in daycare center and daycare outside space influenced the sensory profile of infants, in particular the Ocular-Motor Control component. The sensory profile of infants was between normal and at risk. While the family home offered adequate affordances for motor development, the daycare centers of the infants involved demonstrated a good quantity and quality of affordances. Overall, we conclude that daily hours in the daycare center and daycare outside space were predictors of the sensory profile, particular on Ocular-Motor Control component. Copyright © 2015 Associação de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  13. Association Between Brain-Derived Neurotrophic Factor Genotype and Upper Extremity Motor Outcome After Stroke.

    PubMed

    Chang, Won Hyuk; Park, Eunhee; Lee, Jungsoo; Lee, Ahee; Kim, Yun-Hee

    2017-06-01

    The identification of intrinsic factors for predicting upper extremity motor outcome could aid the design of individualized treatment plans in stroke rehabilitation. The aim of this study was to identify prognostic factors, including intrinsic genetic factors, for upper extremity motor outcome in patients with subacute stroke. A total of 97 patients with subacute stroke were enrolled. Upper limb motor impairment was scored according to the upper limb of Fugl-Meyer assessment score at 3 months after stroke. The prediction of upper extremity motor outcome at 3 months was modeled using various factors that could potentially influence this impairment, including patient characteristics, baseline upper extremity motor impairment, functional and structural integrity of the corticospinal tract, and brain-derived neurotrophic factor genotype. Multivariate ordinal logistic regression models were used to identify the significance of each factor. The independent predictors of motor outcome at 3 months were baseline upper extremity motor impairment, age, stroke type, and corticospinal tract functional integrity in all stroke patients. However, in the group with severe motor impairment at baseline (upper limb score of Fugl-Meyer assessment <25), the number of Met alleles in the brain-derived neurotrophic factor genotype was also an independent predictor of upper extremity motor outcome 3 months after stroke. Brain-derived neurotrophic factor genotype may be a potentially useful predictor of upper extremity motor outcome in patients with subacute stroke with severe baseline motor involvement. © 2017 American Heart Association, Inc.

  14. Preliminary results of BRAVO project: brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks.

    PubMed

    Bergamasco, Massimo; Frisoli, Antonio; Fontana, Marco; Loconsole, Claudio; Leonardis, Daniele; Troncossi, Marco; Foumashi, Mohammad Mozaffari; Parenti-Castelli, Vincenzo

    2011-01-01

    This paper presents the preliminary results of the project BRAVO (Brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks). The objective of this project is to define a new approach to the development of assistive and rehabilitative robots for motor impaired users to perform complex visuomotor tasks that require a sequence of reaches, grasps and manipulations of objects. BRAVO aims at developing new robotic interfaces and HW/SW architectures for rehabilitation and regain/restoration of motor function in patients with upper limb sensorimotor impairment through extensive rehabilitation therapy and active assistance in the execution of Activities of Daily Living. The final system developed within this project will include a robotic arm exoskeleton and a hand orthosis that will be integrated together for providing force assistance. The main novelty that BRAVO introduces is the control of the robotic assistive device through the active prediction of intention/action. The system will actually integrate the information about the movement carried out by the user with a prediction of the performed action through an interpretation of current gaze of the user (measured through eye-tracking), brain activation (measured through BCI) and force sensor measurements. © 2011 IEEE

  15. Perceptual reasoning predicts handwriting impairments in adolescents with autism

    PubMed Central

    Fuentes, Christina T.; Mostofsky, Stewart H.; Bastian, Amy J.

    2010-01-01

    Background: We have previously shown that children with autism spectrum disorder (ASD) have specific handwriting deficits consisting of poor form, and that these deficits are predicted by their motor abilities. It is not known whether the same handwriting impairments persist into adolescence and whether they remain linked to motor deficits. Methods: A case-control study of handwriting samples from adolescents with and without ASD was performed using the Minnesota Handwriting Assessment. Samples were scored on an individual letter basis in 5 categories: legibility, form, alignment, size, and spacing. Subjects were also administered an intelligence test and the Physical and Neurological Examination for Subtle (Motor) Signs (PANESS). Results: We found that adolescents with ASD, like children, show overall worse performance on a handwriting task than do age- and intelligence-matched controls. Also comparable to children, adolescents with ASD showed motor impairments relative to controls. However, adolescents with ASD differ from children in that Perceptual Reasoning Indices were significantly predictive of handwriting performance whereas measures of motor skills were not. Conclusions: Like children with ASD, adolescents with ASD have poor handwriting quality relative to controls. Despite still demonstrating motor impairments, in adolescents perceptual reasoning is the main predictor of handwriting performance, perhaps reflecting subjects' varied abilities to learn strategies to compensate for their motor impairments. GLOSSARY ASD = autism spectrum disorder; DSM-IV = Diagnostic and Statistical Manual of Mental Disorders, 4th edition; PANESS = Physical and Neurological Examination for Subtle (Motor) Signs; PRI = Perceptual Reasoning Index; WASI = Wechsler Abbreviated Scale of Intelligence; WISC = Wechsler Intelligence Scale for Children IV. PMID:21079184

  16. Motorized Activity on Legacy Seismic Lines: A Predictive Modeling Approach to Prioritize Restoration Efforts.

    PubMed

    Hornseth, M L; Pigeon, K E; MacNearney, D; Larsen, T A; Stenhouse, G; Cranston, J; Finnegan, L

    2018-05-11

    Natural regeneration of seismic lines, cleared for hydrocarbon exploration, is slow and often hindered by vegetation damage, soil compaction, and motorized human activity. There is an extensive network of seismic lines in western Canada which is known to impact forest ecosystems, and seismic lines have been linked to declines in woodland caribou (Rangifer tarandus caribou). Seismic line restoration is costly, but necessary for caribou conservation to reduce cumulative disturbance. Understanding where motorized activity may be impeding regeneration of seismic lines will aid in prioritizing restoration. Our study area in west-central Alberta, encompassed five caribou ranges where restoration is required under federal species at risk recovery strategies, hence prioritizing seismic lines for restoration is of immediate conservation value. To understand patterns of motorized activity on seismic lines, we evaluated five a priori hypotheses using a predictive modeling framework and Geographic Information System variables across three landscapes in the foothills and northern boreal regions of Alberta. In the northern boreal landscape, motorized activity was most common in dry areas with a large industrial footprint. In highly disturbed areas of the foothills, motorized activity on seismic lines increased with low vegetation heights, relatively dry soils, and further from forest cutblocks, while in less disturbed areas of the foothills, motorized activity on seismic lines decreased proportional to seismic line density, slope steepness, and white-tailed deer abundance, and increased proportional with distance to roads. We generated predictive maps of high motorized activity, identifying 21,777 km of seismic lines where active restoration could expedite forest regeneration.

  17. Sensory-guided motor tasks benefit from mental training based on serial prediction

    PubMed Central

    Binder, Ellen; Hagelweide, Klara; Wang, Ling E.; Kornysheva, Katja; Grefkes, Christian; Fink, Gereon R.; Schubotz, Ricarda I.

    2017-01-01

    Mental strategies have been suggested to constitute a promising approach to improve motor abilities in both healthy subjects and patients. This behavioural effect has been shown to be associated with changes of neural activity in premotor areas, not only during movement execution, but also while performing motor imagery or action observation. However, how well such mental tasks are performed is often difficult to assess, especially in patients. We here used a novel mental training paradigm based on the serial prediction task (SPT) in order to activate premotor circuits in the absence of a motor task. We then tested whether this intervention improves motor-related performance such as sensorimotor transformation. Two groups of healthy young participants underwent a single-blinded five-day cognitive training schedule and were tested in four different motor tests on the day before and after training. One group (N = 22) received the SPT-training and the other one (N = 21) received a control training based on a serial match-to-sample task. The results revealed significant improvements of the SPT-group in a sensorimotor timing task, i.e. synchronization of finger tapping to a visually presented rhythm, as well as improved visuomotor coordination in a sensory-guided pointing task compared to the group that received the control training. However, mental training did not show transfer effects on motor abilities in healthy subjects beyond the trained modalities as evident by non-significant changes in the Jebsen–Taylor handfunctiontest. In summary, the data suggest that mental training based on the serial prediction task effectively engages sensorimotor circuits and thereby improves motor behaviour. PMID:24321273

  18. A mathematical tool to generate complex whole body motor tasks and test hypotheses on underlying motor planning.

    PubMed

    Tagliabue, Michele; Pedrocchi, Alessandra; Pozzo, Thierry; Ferrigno, Giancarlo

    2008-01-01

    In spite of the complexity of human motor behavior, difficulties in mathematical modeling have restricted to rather simple movements attempts to identify the motor planning criterion used by the central nervous system. This paper presents a novel-simulation technique able to predict the "desired trajectory" corresponding to a wide range of kinematic and kinetic optimality criteria for tasks involving many degrees of freedom and the coordination between goal achievement and balance maintenance. Employment of proper time discretization, inverse dynamic methods and constrained optimization technique are combined. The application of this simulator to a planar whole body pointing movement shows its effectiveness in managing system nonlinearities and instability as well as in ensuring the anatomo-physiological feasibility of predicted motor plans. In addition, the simulator's capability to simultaneously optimize competing movement aspects represents an interesting opportunity for the motor control community, in which the coexistence of several controlled variables has been hypothesized.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delpassand, M.S.

    The power section of a mud driven progressing cavity drill motors consists of a steel rotor shaped with an external helix rotating within a stationary tube with a molded helical elastomeric lining (stator). Operating temperature of the elastomer lining is an important parameter that affects the stator life. Motor operating conditions such as down hole temperature, torque, differential pressure, and speed determine the elastomer temperature. This paper presents an analysis technique to predict stator elastomer temperature as a function of the motor`s operating parameters. A non-linear finite element analysis technique is used to predict the stator temperature. Physical and mechanicalmore » properties of the elastomer are measured, using laboratory equipment such as Monsanto`s RPA2000 dynamic analyzer and BFGoodrich model (II) flexometer. Boundary conditions of the finite element model are defined based on the down hole temperature, differential pressure, and the motor`s speed. Results of the finite element analysis are compared with laboratory test data to verify the accuracy of the analysis.« less

  20. Neural correlates of sensory prediction errors in monkeys: evidence for internal models of voluntary self-motion in the cerebellum.

    PubMed

    Cullen, Kathleen E; Brooks, Jessica X

    2015-02-01

    During self-motion, the vestibular system makes essential contributions to postural stability and self-motion perception. To ensure accurate perception and motor control, it is critical to distinguish between vestibular sensory inputs that are the result of externally applied motion (exafference) and that are the result of our own actions (reafference). Indeed, although the vestibular sensors encode vestibular afference and reafference with equal fidelity, neurons at the first central stage of sensory processing selectively encode vestibular exafference. The mechanism underlying this reafferent suppression compares the brain's motor-based expectation of sensory feedback with the actual sensory consequences of voluntary self-motion, effectively computing the sensory prediction error (i.e., exafference). It is generally thought that sensory prediction errors are computed in the cerebellum, yet it has been challenging to explicitly demonstrate this. We have recently addressed this question and found that deep cerebellar nuclei neurons explicitly encode sensory prediction errors during self-motion. Importantly, in everyday life, sensory prediction errors occur in response to changes in the effector or world (muscle strength, load, etc.), as well as in response to externally applied sensory stimulation. Accordingly, we hypothesize that altering the relationship between motor commands and the actual movement parameters will result in the updating in the cerebellum-based computation of exafference. If our hypothesis is correct, under these conditions, neuronal responses should initially be increased--consistent with a sudden increase in the sensory prediction error. Then, over time, as the internal model is updated, response modulation should decrease in parallel with a reduction in sensory prediction error, until vestibular reafference is again suppressed. The finding that the internal model predicting the sensory consequences of motor commands adapts for new relationships would have important implications for understanding how responses to passive stimulation endure despite the cerebellum's ability to learn new relationships between motor commands and sensory feedback.

  1. Moving to the Beat and Singing are Linked in Humans

    PubMed Central

    Dalla Bella, Simone; Berkowska, Magdalena; Sowiński, Jakub

    2015-01-01

    The abilities to sing and to move to the beat of a rhythmic auditory stimulus emerge early during development, and both engage perceptual, motor, and sensorimotor processes. These similarities between singing and synchronization to a beat may be rooted in biology. Patel (2008) has suggested that motor synchronization to auditory rhythms may have emerged during evolution as a byproduct of selection for vocal learning (“vocal learning and synchronization hypothesis”). This view predicts a strong link between vocal performance and synchronization skills in humans. Here, we tested this prediction by asking occasional singers to tap along with auditory pulse trains and to imitate familiar melodies. Both vocal imitation and synchronization skills were measured in terms of accuracy and precision or consistency. Accurate and precise singers tapped more in the vicinity of the pacing stimuli (i.e., they were more accurate) than less accurate and less precise singers. Moreover, accurate singers were more consistent when tapping to the beat. These differences cannot be ascribed to basic motor skills or to motivational factors. Individual differences in terms of singing proficiency and synchronization skills may reflect the variability of a shared sensorimotor translation mechanism. PMID:26733370

  2. Comparing Self-Regulatory and Early Academic Skills as Predictors of Later Math, Reading, and Science Elementary School Achievement

    NASA Astrophysics Data System (ADS)

    Murrah, William M., III

    The achievement score gaps between advantaged and disadvantaged children at school entry is a major problem in education today. Identifying the skills critical for school readiness is an important step in developing interventions aimed at addressing these score gaps. The purpose of this study is to compare a number of school readiness skills with an eye toward finding out which are the best predictors of later academic achievement in math, reading, and science. The predictors were early reading, math, general knowledge, socioemotional skills, and motor skills. Data were obtained from the Early Childhood Longitudinal Study of 1998 (NCES, 1998) database. While controlling for an extensive set of family characteristics, predictions were made across five years - from the end of kindergarten to the end of fifth grade. Consistent with current findings, reading and math skills predicted later achievement. Interestingly, general knowledge, attention, and fine motor skills also proved to be important predictors of later academic achievement, but socioemotional skills were not. The findings were interpreted from a neurobiological perspective involving the development of self-regulation. These school entry skills are used to predict later achievement in reading, math, and science. I argued that in addition to acquiring early academic knowledge, children need to regulate the use of this knowledge to meet academic goals.

  3. Capacity of novelty-induced locomotor activity and the hole-board test to predict sensitivity to the conditioned rewarding effects of cocaine.

    PubMed

    Arenas, M Carmen; Daza-Losada, Manuel; Vidal-Infer, Antonio; Aguilar, Maria A; Miñarro, José; Rodríguez-Arias, Marta

    2014-06-22

    Novelty-seeking in rodents, defined as enhanced specific exploration of novel situations, is considered to predict the response of animals to drugs of abuse and, thus, allow "drug-vulnerable" individuals to be identified. The main objective of this study was to assess the predictive ability of two well-known paradigms of the novelty-seeking trait - novelty-induced locomotor activity (which distinguishes High- and Low-Responder mice, depending on their motor activity) and the hole-board test (which determines High- and Low-Novelty Seeker mice depending on the number of head dips they perform) - to identify subjects that would subsequently be more sensitive to the conditioned rewarding effects of cocaine in a population of young adult (PND 56) and adolescent (PND 35) OF1 mice of both sexes. Conditioned place preference (CPP), a useful tool for evaluating the sensitivity of individuals to the incentive properties of addictive drugs, was induced with a sub-threshold dose of cocaine (1 mg/kg, i.p.). Our results showed that novelty-induced motor activity had a greater predictive capacity to identify "vulnerable-drug" individuals among young-adult mice (PND 56), while the hole-board test was more effective in adolescents (PND 35). High-NR young-adults, which presented higher motor activity in the first ten minutes of the test (novelty-reactivity), were 3.9 times more likely to develop cocaine-induced CPP than Low-NR young-adults. When total activity (1h) was evaluated (novelty-habituation), only High-R (novelty-non-habituating) young-adult male and Low-R (novelty-habituating) female mice produced a high conditioning score. However, only High-Novelty Seeker male and female adolescents and Low-Novelty Seeker female young-adult animals (according to the hole-board test), acquired cocaine-induced CPP. These findings should contribute to the development of screening methods for identifying at-risk human drug users and prevention strategies for those with specific vulnerabilities. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Online Control of Prehension Predicts Performance on a Standardized Motor Assessment Test in 8- to 12-Year-Old Children

    PubMed Central

    Blanchard, Caroline C. V.; McGlashan, Hannah L.; French, Blandine; Sperring, Rachel J.; Petrocochino, Bianca; Holmes, Nicholas P.

    2017-01-01

    Goal-directed hand movements are guided by sensory information and may be adjusted ‘online,’ during the movement. If the target of a movement unexpectedly changes position, trajectory corrections can be initiated in as little as 100 ms in adults. This rapid visual online control is impaired in children with developmental coordination disorder (DCD), and potentially in other neurodevelopmental conditions. We investigated the visual control of hand movements in children in a ‘center-out’ double-step reaching and grasping task, and examined how parameters of this visuomotor control co-vary with performance on standardized motor tests often used with typically and atypically developing children. Two groups of children aged 8–12 years were asked to reach and grasp an illuminated central ball on a vertically oriented board. On a proportion of trials, and at movement onset, the illumination switched unpredictably to one of four other balls in a center-out configuration (left, right, up, or down). When the target moved, all but one of the children were able to correct their movements before reaching the initial target, at least on some trials, but the latencies to initiate these corrections were longer than those typically reported in the adult literature, ranging from 211 to 581 ms. These later corrections may be due to less developed motor skills in children, or to the increased cognitive and biomechanical complexity of switching movements in four directions. In the first group (n = 187), reaching and grasping parameters significantly predicted standardized movement scores on the MABC-2, most strongly for the aiming and catching component. In the second group (n = 85), these same parameters did not significantly predict scores on the DCDQ′07 parent questionnaire. Our reaching and grasping task provides a sensitive and continuous measure of movement skill that predicts scores on standardized movement tasks used to screen for DCD. PMID:28360874

  5. Assessing the Impact of Electrostatic Drag on Processive Molecular Motor Transport.

    PubMed

    Smith, J Darby; McKinley, Scott A

    2018-06-04

    The bidirectional movement of intracellular cargo is usually described as a tug-of-war among opposite-directed families of molecular motors. While tug-of-war models have enjoyed some success, recent evidence suggests underlying motor interactions are more complex than previously understood. For example, these tug-of-war models fail to predict the counterintuitive phenomenon that inhibiting one family of motors can decrease the functionality of opposite-directed transport. In this paper, we use a stochastic differential equations modeling framework to explore one proposed physical mechanism, called microtubule tethering, that could play a role in this "co-dependence" among antagonistic motors. This hypothesis includes the possibility of a trade-off: weakly bound trailing molecular motors can serve as tethers for cargoes and processing motors, thereby enhancing motor-cargo run lengths along microtubules; however, this introduces a cost of processing at a lower mean velocity. By computing the small- and large-time mean-squared displacement of our theoretical model and comparing our results to experimental observations of dynein and its "helper protein" dynactin, we find some supporting evidence for microtubule tethering interactions. We extrapolate these findings to predict how dynein-dynactin might interact with the opposite-directed kinesin motors and introduce a criterion for when the trade-off is beneficial in simple systems.

  6. Motor Asymmetry and Substantia Nigra Volume Are Related to Spatial Delayed Response Performance in Parkinson Disease

    ERIC Educational Resources Information Center

    Foster, Erin R.; Black, Kevin J.; Antenor-Dorsey, Jo Ann V.; Perlmutter, Joel S.; Hershey, Tamara

    2008-01-01

    Studies suggest motor deficit asymmetry may help predict the pattern of cognitive impairment in individuals with Parkinson disease (PD). We tested this hypothesis using a highly validated and sensitive spatial memory task, spatial delayed response (SDR), and clinical and neuroimaging measures of PD asymmetry. We predicted SDR performance would be…

  7. Developmental and Behavioral Performance of Internationally Adopted Preschoolers: A Pilot Study

    ERIC Educational Resources Information Center

    Jacobs, Emma; Miller, Laurie C.; Tirella, Linda G.

    2010-01-01

    Most international adoptees (IA) have rapid catch-up of the delays common at arrival. However, it is not known whether development at arrival predicts later abilities or school readiness. Therefore, we comprehensively evaluated language, fine motor, visual reception (VR), executive function (EF), attention (ATT), and sensory skills (SS) in IA…

  8. Variability and Diagnostic Accuracy of Speech Intelligibility Scores in Children

    ERIC Educational Resources Information Center

    Hustad, Katherine C.; Oakes, Ashley; Allison, Kristen

    2015-01-01

    Purpose: We examined variability of speech intelligibility scores and how well intelligibility scores predicted group membership among 5-year-old children with speech motor impairment (SMI) secondary to cerebral palsy and an age-matched group of typically developing (TD) children. Method: Speech samples varying in length from 1-4 words were…

  9. Fine Motor Skills and Early Comprehension of the World: Two New School Readiness Indicators

    ERIC Educational Resources Information Center

    Grissmer, David; Grimm, Kevin J.; Aiyer, Sophie M.; Murrah, William M.; Steele, Joel S.

    2010-01-01

    Duncan et al. (2007) presented a new methodology for identifying kindergarten readiness factors and quantifying their importance by determining which of children's developing skills measured around kindergarten entrance would predict later reading and math achievement. This article extends Duncan et al.'s work to identify kindergarten readiness…

  10. Motor delays in MDMA (ecstasy) exposed infants persist to 2 years.

    PubMed

    Singer, Lynn T; Moore, Derek G; Min, Meeyoung O; Goodwin, Julia; Turner, John J D; Fulton, Sarah; Parrott, Andrew C

    2016-01-01

    Recreational use of 3,4 methylenedioxymethamphetamine (ecstasy, MDMA) is increasing worldwide. Its use by pregnant women causes concern due to potentially harmful effects on the developing fetus. MDMA, an indirect monoaminergic agonist and reuptake inhibitor, affects the serotonin and dopamine systems. Preclinical studies of fetal exposure demonstrate effects on learning, motor behavior, and memory. In the first human studies, we found prenatal MDMA exposure related to poorer motor development in the first year of life. In the present study we assessed the effects of prenatal exposure to MDMA on the trajectory of child development through 2 years of age. We hypothesized that exposure would be associated with poorer mental and motor outcomes. The DAISY (Drugs and Infancy Study, 2003-2008) employed a prospective longitudinal cohort design to assess recreational drug use during pregnancy and child outcomes in the United Kingdom. Examiners masked to drug exposures followed infants from birth to 4, 12, 18, and 24 months of age. MDMA, cocaine, alcohol, tobacco, cannabis, and other drugs were quantified through a standardized clinical interview. The Bayley Scales (III) of Mental (MDI) and Motor (PDI) Development and the Behavior Rating Scales (BRS) were primary outcome measures. Statistical analyses included a repeated measures mixed model approach controlling for multiple confounders. Participants were pregnant women volunteers, primarily white, of middle class socioeconomic status, average IQ, with some college education, in stable partner relationships. Of 96 women enrolled, children of 93 had at least one follow-up assessment and 81 (87%) had ≥ two assessments. Heavier MDMA exposure (M=1.3±1.4 tablets per week) predicted lower PDI (p<.002), and poorer BRS motor quality from 4 to 24 months of age, but did not affect MDI, orientation, or emotional regulation. Children with heavier exposure were twice as likely to demonstrate poorer motor quality as lighter and non-exposed children (O.R.=2.2, 95%, CI=1.02-4.70, p<.05). Infants whose mothers reported heavier MDMA use during pregnancy had motor delays from 4 months to two years of age that were not attributable to other drug or lifestyle factors. Women of child bearing age should be cautioned about the use of MDMA and MDMA-exposed infants should be screened for motor delays and possible intervention. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Motor Delays in MDMA (Ecstasy) Exposed Infants Persist to 2 Years

    PubMed Central

    Singer, Lynn T.; Moore, Derek G.; Min, Meeyoung O.; Goodwin, Julia; Turner, John J.D.; Fulton, Sarah; Parrott, Andrew C.

    2016-01-01

    Background Recreational use of 3,4 methylenedioxymethamphetamine (Ecstasy, MDMA) is increasing worldwide. Its use by pregnant women causes concern due to potentially harmful effects on the developing fetus. MDMA, an indirect monoaminergic agonist and reuptake inhibitor, affects the serotonin and dopamine systems. Preclinical studies of fetal exposure demonstrate effects on learning, motor behavior, and memory. In the first human studies, we found prenatal MDMA exposure related to poorer motor development in the first year of life. In the present study we assessed the effects of prenatal exposure to MDMA on the trajectory of child development through 2 years of age. We hypothesized that exposure would be associated with poorer mental and motor outcomes. Materials and Methods The DAISY (Drugs and Infancy Study, 2003–2008) employed a prospective longitudinal cohort design to assess recreational drug use during pregnancy and child outcomes in the United Kingdom. Examiners masked to drug exposures followed infants from birth to 4, 12, 18, and 24 months of age. MDMA, cocaine, alcohol, tobacco, cannabis, and other drugs were quantified through a standardized clinical interview. The Bayley Scales (III) of Mental (MDI) and Motor (PDI) Development and the Behavior Rating Scales (BRS) were primary outcome measures. Statistical analyses included a repeated measures mixed model approach controlling for multiple confounders. Results Participants were pregnant women volunteers, primarily white, of middle class socioeconomic status, average IQ, with some college education, in stable partner relationships. Of 96 women enrolled, children of 93 had at least one follow-up assessment and 81 (87%) had two assessments. Heavier MDMA exposure, (M = 1.3 ± 1.4 tablets per week) predicted lower PDI (p < .002), and poorer BRS motor quality from 4 to 24 months of age, but did not affect MDI, orientation, or emotional regulation. Children with heavier exposure were twice as likely to demonstrate poorer motor quality as lighter and non-exposed children (O.R. = 2.2, 95%, CI = 1.02–4.70, p < .05). Discussion Infants whose mothers reported heavier MDMA use during pregnancy had motor delays from 4 months to two years of age that were not attributable to other drug or lifestyle factors. Women of child bearing age should be cautioned about the use of MDMA and MDMA-exposed infants should be screened for motor delays and possible intervention. PMID:26806601

  12. High Performance Pulse Tube Cryocoolers

    NASA Astrophysics Data System (ADS)

    Olson, J. R.; Roth, E.; Champagne, P.; Evtimov, B.; Nast, T. C.

    2008-03-01

    Lockheed Martin's Advanced Technology Center has been developing pulse tube cryocoolers for more than ten years. Recent innovations include successful testing of four-stage coldheads, no-load temperature below 4 K, and the recent development of a high-efficiency compressor. This paper discusses the predicted performance of single and multiple stage pulse tube coldheads driven by our new 6 kg "M5Midi" compressor, which is capable of 90% efficiency with 200 W input power, and a maximum input power of 1000 W. This compressor retains the simplicity of earlier LM-ATC compressors: it has a moving magnet and an external electrical coil, minimizing organics in the working gas and requiring no electrical penetrations through the pressure wall. Motor losses were minimized during design, resulting in a simple, easily-manufactured compressor with state-of-the-art motor efficiency. The predicted cryocooler performance is presented as simple formulae, allowing an engineer to include the impact of a highly-optimized cryocooler into a full system analysis. Performance is given as a function of the heat rejection temperature and the cold tip temperatures and cooling loads.

  13. Associations among Elementary School Children’s Actual Motor Competence, Perceived Motor Competence, Physical Activity and BMI: A Cross-Sectional Study

    PubMed Central

    Stodden, David; Brian, Ali; True, Larissa; Cardon, Greet; Tallir, Isabel; Haerens, Leen

    2016-01-01

    Background Positive associations between motor competence and physical activity have been identified by means of variable-centered analyses. To expand the understanding of these associations, this study used a person-centered approach to investigate whether different combinations (i.e., profiles) of actual and perceived motor competence exist (aim 1); and to examine differences in physical activity levels (aim 2) and weight status (aim 3) among children with different motor competence-based profiles. Materials and Methods Children’s (N = 361; 180 boys = 50%; Mage = 9.50±1.24yrs) actual motor competence was measured with the Test of Gross Motor Development-2 and their perceived motor competence via the Self Perception Profile for Children. We assessed physical activity via accelerometers; height through stadiometers, and weight through scales. Cluster analyses (aim 1) and MANCOVAs (aim 2 & 3) were used to analyze the data. Results The analysis generated two predictable groups: one group displaying relatively high levels of both actual (M TGMD-2 percentile = 42.54, SD = 2.33) and perceived motor competence (M = 3.42, SD = .37; high-high), and one group with relatively low levels of both (M percentile = 9.71, SD = 3.21; M PMC = 2.52, SD = .35; low-low). One additional group was also identified as having relatively low levels of actual motor competence (M percentile = 4.22, SD = 2.85) but relatively high levels of perceived motor competence (M = 3.52, SD = .30; low-high). The high-high group demonstrated higher daily physical activity (M = 48.39±2.03) and lower BMI (M = 18.13±.43) than the low-low group (MMVPA = 37.93±2.01; MBMI = 20.22±.42). The low-high group had similar physical activity-levels as the low-low group (M = 36.21±2.18) and did not significantly differ in BMI (M = 19.49±.46) from the other two groups. Conclusions A combination of high actual and perceived motor competence is related to higher physical activity and lower weight status. It is thus recommended to expand health interventions in children with components that foster the development of both actual and perceived motor competence. Health professionals should furthermore pay sufficient attention to endorsing children’s actual and perceived motor competence. PMID:27736964

  14. Associations among Elementary School Children's Actual Motor Competence, Perceived Motor Competence, Physical Activity and BMI: A Cross-Sectional Study.

    PubMed

    De Meester, An; Stodden, David; Brian, Ali; True, Larissa; Cardon, Greet; Tallir, Isabel; Haerens, Leen

    2016-01-01

    Positive associations between motor competence and physical activity have been identified by means of variable-centered analyses. To expand the understanding of these associations, this study used a person-centered approach to investigate whether different combinations (i.e., profiles) of actual and perceived motor competence exist (aim 1); and to examine differences in physical activity levels (aim 2) and weight status (aim 3) among children with different motor competence-based profiles. Children's (N = 361; 180 boys = 50%; Mage = 9.50±1.24yrs) actual motor competence was measured with the Test of Gross Motor Development-2 and their perceived motor competence via the Self Perception Profile for Children. We assessed physical activity via accelerometers; height through stadiometers, and weight through scales. Cluster analyses (aim 1) and MANCOVAs (aim 2 & 3) were used to analyze the data. The analysis generated two predictable groups: one group displaying relatively high levels of both actual (M TGMD-2 percentile = 42.54, SD = 2.33) and perceived motor competence (M = 3.42, SD = .37; high-high), and one group with relatively low levels of both (M percentile = 9.71, SD = 3.21; M PMC = 2.52, SD = .35; low-low). One additional group was also identified as having relatively low levels of actual motor competence (M percentile = 4.22, SD = 2.85) but relatively high levels of perceived motor competence (M = 3.52, SD = .30; low-high). The high-high group demonstrated higher daily physical activity (M = 48.39±2.03) and lower BMI (M = 18.13±.43) than the low-low group (MMVPA = 37.93±2.01; MBMI = 20.22±.42). The low-high group had similar physical activity-levels as the low-low group (M = 36.21±2.18) and did not significantly differ in BMI (M = 19.49±.46) from the other two groups. A combination of high actual and perceived motor competence is related to higher physical activity and lower weight status. It is thus recommended to expand health interventions in children with components that foster the development of both actual and perceived motor competence. Health professionals should furthermore pay sufficient attention to endorsing children's actual and perceived motor competence.

  15. Lesion Symptom Mapping of Manipulable Object Naming in Nonfluent Aphasia: Can a Brain be both Embodied and Disembodied?

    PubMed Central

    Reilly, Jamie; Harnish, Stacy; Garcia, Amanda; Hung, Jinyi; Rodriguez, Amy D.; Crosson, Bruce

    2014-01-01

    Embodied cognition offers an approach to word meaning firmly grounded in action and perception. A strong prediction of embodied cognition is that sensorimotor simulation is a necessary component of lexical-semantic representation. One semantic distinction where motor imagery is likely to play a key role involves the representation of manufactured artifacts. Many questions remain with respect to the scope of embodied cognition. One dominant unresolved issue is the extent to which motor enactment is necessary for representing and generating words with high motor salience. We investigated lesion correlates of manipulable relative to non-manipulable name generation (e.g., name a school supply; name a mountain range) in patients with nonfluent aphasia (N=14). Lesion volumes within motor (BA4) and premotor (BA6) cortices were not predictive of category discrepancies. Lesion symptom mapping linked impairment for manipulable objects to polymodal convergence zones and to projections of the left, primary visual cortex specialized for motion perception (MT/V5+). Lesions to motor and premotor cortex were not predictive of manipulability impairment. This lesion correlation is incompatible with an embodied perspective premised on necessity of motor cortex for the enactment and subsequent production of motor-related words. These findings instead support a graded or ‘soft’ approach to embodied cognition premised on an ancillary role of modality-specific cortical regions in enriching modality-neutral representations. We discuss a dynamic, hybrid approach to the neurobiology of semantic memory integrating both embodied and disembodied components. PMID:24839997

  16. Video Game Telemetry as a Critical Tool in the Study of Complex Skill Learning

    PubMed Central

    Thompson, Joseph J.; Blair, Mark R.; Chen, Lihan; Henrey, Andrew J.

    2013-01-01

    Cognitive science has long shown interest in expertise, in part because prediction and control of expert development would have immense practical value. Most studies in this area investigate expertise by comparing experts with novices. The reliance on contrastive samples in studies of human expertise only yields deep insight into development where differences are important throughout skill acquisition. This reliance may be pernicious where the predictive importance of variables is not constant across levels of expertise. Before the development of sophisticated machine learning tools for data mining larger samples, and indeed, before such samples were available, it was difficult to test the implicit assumption of static variable importance in expertise development. To investigate if this reliance may have imposed critical restrictions on the understanding of complex skill development, we adopted an alternative method, the online acquisition of telemetry data from a common daily activity for many: video gaming. Using measures of cognitive-motor, attentional, and perceptual processing extracted from game data from 3360 Real-Time Strategy players at 7 different levels of expertise, we identified 12 variables relevant to expertise. We show that the static variable importance assumption is false - the predictive importance of these variables shifted as the levels of expertise increased - and, at least in our dataset, that a contrastive approach would have been misleading. The finding that variable importance is not static across levels of expertise suggests that large, diverse datasets of sustained cognitive-motor performance are crucial for an understanding of expertise in real-world contexts. We also identify plausible cognitive markers of expertise. PMID:24058656

  17. Video game telemetry as a critical tool in the study of complex skill learning.

    PubMed

    Thompson, Joseph J; Blair, Mark R; Chen, Lihan; Henrey, Andrew J

    2013-01-01

    Cognitive science has long shown interest in expertise, in part because prediction and control of expert development would have immense practical value. Most studies in this area investigate expertise by comparing experts with novices. The reliance on contrastive samples in studies of human expertise only yields deep insight into development where differences are important throughout skill acquisition. This reliance may be pernicious where the predictive importance of variables is not constant across levels of expertise. Before the development of sophisticated machine learning tools for data mining larger samples, and indeed, before such samples were available, it was difficult to test the implicit assumption of static variable importance in expertise development. To investigate if this reliance may have imposed critical restrictions on the understanding of complex skill development, we adopted an alternative method, the online acquisition of telemetry data from a common daily activity for many: video gaming. Using measures of cognitive-motor, attentional, and perceptual processing extracted from game data from 3360 Real-Time Strategy players at 7 different levels of expertise, we identified 12 variables relevant to expertise. We show that the static variable importance assumption is false--the predictive importance of these variables shifted as the levels of expertise increased--and, at least in our dataset, that a contrastive approach would have been misleading. The finding that variable importance is not static across levels of expertise suggests that large, diverse datasets of sustained cognitive-motor performance are crucial for an understanding of expertise in real-world contexts. We also identify plausible cognitive markers of expertise.

  18. An Examination of the Relationship between Motor Coordination and Executive Functions in Adolescents

    ERIC Educational Resources Information Center

    Rigoli, Daniela; Piek, Jan P.; Kane, Robert; Oosterlaan, Jaap

    2012-01-01

    Aim: Research suggests important links between motor coordination and executive functions. The current study examined whether motor coordination predicts working memory, inhibition, and switching performance, extending previous research by accounting for attention-deficit-hyperactivity disorder (ADHD) symptomatology and other confounding factors,…

  19. A novel threshold criterion in transcranial motor evoked potentials during surgery for gliomas close to the motor pathway.

    PubMed

    Abboud, Tammam; Schaper, Miriam; Dührsen, Lasse; Schwarz, Cindy; Schmidt, Nils Ole; Westphal, Manfred; Martens, Tobias

    2016-10-01

    OBJECTIVE Warning criteria for monitoring of motor evoked potentials (MEP) after direct cortical stimulation during surgery for supratentorial tumors have been well described. However, little is known about the value of MEP after transcranial electrical stimulation (TES) in predicting postoperative motor deficit when monitoring threshold level. The authors aimed to evaluate the feasibility and value of this method in glioma surgery by using a new approach for interpreting changes in threshold level involving contra- and ipsilateral MEP. METHODS Between November 2013 and December 2014, 93 patients underwent TES-MEP monitoring during resection of gliomas located close to central motor pathways but not involving the primary motor cortex. The MEP were elicited by transcranial repetitive anodal train stimulation. Bilateral MEP were continuously evaluated to assess percentage increase of threshold level (minimum voltage needed to evoke a stable motor response from each of the muscles being monitored) from the baseline set before dural opening. An increase in threshold level on the contralateral side (facial, arm, or leg muscles contralateral to the affected hemisphere) of more than 20% beyond the percentage increase on the ipsilateral side (facial, arm, or leg muscles ipsilateral to the affected hemisphere) was considered a significant alteration. Recorded alterations were subsequently correlated with postoperative neurological deterioration and MRI findings. RESULTS TES-MEP could be elicited in all patients, including those with recurrent glioma (31 patients) and preoperative paresis (20 patients). Five of 73 patients without preoperative paresis showed a significant increase in threshold level, and all of them developed new paresis postoperatively (transient in 4 patients and permanent in 1 patient). Eight of 20 patients with preoperative paresis showed a significant increase in threshold level, and all of them developed postoperative neurological deterioration (transient in 4 patients and permanent in 4 patients). In 80 patients no significant change in threshold level was detected, and none of them showed postoperative neurological deterioration. The specificity and sensitivity in this series were estimated at 100%. Postoperative MRI revealed gross-total tumor resection in 56 of 82 patients (68%) in whom complete tumor resection was attainable; territorial ischemia was detected in 4 patients. CONCLUSIONS The novel threshold criterion has made TES-MEP a useful method for predicting postoperative motor deficit in patients who undergo glioma surgery, and has been feasible in patients with preoperative paresis as well as in patients with recurrent glioma. Including contra- and ipsilateral changes in threshold level has led to a high sensitivity and specificity.

  20. The motor origins of human and avian song structure

    PubMed Central

    Tierney, Adam T.; Russo, Frank A.; Patel, Aniruddh D.

    2011-01-01

    Human song exhibits great structural diversity, yet certain aspects of melodic shape (how pitch is patterned over time) are widespread. These include a predominance of arch-shaped and descending melodic contours in musical phrases, a tendency for phrase-final notes to be relatively long, and a bias toward small pitch movements between adjacent notes in a melody [Huron D (2006) Sweet Anticipation: Music and the Psychology of Expectation (MIT Press, Cambridge, MA)]. What is the origin of these features? We hypothesize that they stem from motor constraints on song production (i.e., the energetic efficiency of their underlying motor actions) rather than being innately specified. One prediction of this hypothesis is that any animals subject to similar motor constraints on song will exhibit similar melodic shapes, no matter how distantly related those animals are to humans. Conversely, animals who do not share similar motor constraints on song will not exhibit convergent melodic shapes. Birds provide an ideal case for testing these predictions, because their peripheral mechanisms of song production have both notable similarities and differences from human vocal mechanisms [Riede T, Goller F (2010) Brain Lang 115:69–80]. We use these similarities and differences to make specific predictions about shared and distinct features of human and avian song structure and find that these predictions are confirmed by empirical analysis of diverse human and avian song samples. PMID:21876156

  1. Remembering forward: Neural correlates of memory and prediction in human motor adaptation

    PubMed Central

    Scheidt, Robert A; Zimbelman, Janice L; Salowitz, Nicole M G; Suminski, Aaron J; Mosier, Kristine M; Houk, James; Simo, Lucia

    2011-01-01

    We used functional MR imaging (FMRI), a robotic manipulandum and systems identification techniques to examine neural correlates of predictive compensation for spring-like loads during goal-directed wrist movements in neurologically-intact humans. Although load changed unpredictably from one trial to the next, subjects nevertheless used sensorimotor memories from recent movements to predict and compensate upcoming loads. Prediction enabled subjects to adapt performance so that the task was accomplished with minimum effort. Population analyses of functional images revealed a distributed, bilateral network of cortical and subcortical activity supporting predictive load compensation during visual target capture. Cortical regions - including prefrontal, parietal and hippocampal cortices - exhibited trial-by-trial fluctuations in BOLD signal consistent with the storage and recall of sensorimotor memories or “states” important for spatial working memory. Bilateral activations in associative regions of the striatum demonstrated temporal correlation with the magnitude of kinematic performance error (a signal that could drive reward-optimizing reinforcement learning and the prospective scaling of previously learned motor programs). BOLD signal correlations with load prediction were observed in the cerebellar cortex and red nuclei (consistent with the idea that these structures generate adaptive fusimotor signals facilitating cancellation of expected proprioceptive feedback, as required for conditional feedback adjustments to ongoing motor commands and feedback error learning). Analysis of single subject images revealed that predictive activity was at least as likely to be observed in more than one of these neural systems as in just one. We conclude therefore that motor adaptation is mediated by predictive compensations supported by multiple, distributed, cortical and subcortical structures. PMID:21840405

  2. Association between sports participation, motor competence and weight status: A longitudinal study.

    PubMed

    Henrique, Rafael S; Ré, Alessandro H N; Stodden, David F; Fransen, Job; Campos, Carolina M C; Queiroz, Daniel R; Cattuzzo, Maria T

    2016-10-01

    The aim of this study was to investigate if baseline motor competence, weight status and sports participation in early childhood predict sports participation two years later. longitudinal study. In 2010, motor competence (object control and locomotor skills), weight status and sports participation were assessed in 292 children between three and five years-of-age. In 2012, sports participation was re-evaluated in 206 of the original 292 children. Logistic regression was implemented to examine if initial sports participation, motor competence and weight status would predict sports participation two years later. In the final model, sports participation in 2010 (OR=9.68, CI: 3.46 to 27.13) and locomotor skills (OR=1.21, CI: 1.01 to 1.46) significantly predicted sports participation after two years. These results suggest that initial sports participation and more advanced locomotor skills in preschool years may be important to promote continued participation in sports across childhood. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  3. The Physiologic Development of Speech Motor Control: Lip and Jaw Coordination

    PubMed Central

    Green, Jordan R.; Moore, Christopher A.; Higashikawa, Masahiko; Steeve, Roger W.

    2010-01-01

    This investigation was designed to describe the development of lip and jaw coordination during speech and to evaluate the potential influence of speech motor development on phonologic development. Productions of syllables containing bilabial consonants were observed from speakers in four age groups (i.e., 1-year-olds, 2-year-olds, 6-year-olds, and young adults). A video-based movement tracking system was used to transduce movement of the upper lip, lower lip, and jaw. The coordinative organization of these articulatory gestures was shown to change dramatically during the first several years of life and to continue to undergo refinement past age 6. The present results are consistent with three primary phases in the development of lip and jaw coordination for speech: integration, differentiation, and refinement. Each of these developmental processes entails the existence of distinct coordinative constraints on early articulatory movement. It is suggested that these constraints will have predictable consequences for the sequence of phonologic development. PMID:10668666

  4. Assessment of chamber pressure oscillations in the Shuttle SRB

    NASA Technical Reports Server (NTRS)

    Mathes, H. B.

    1980-01-01

    Combustion stability evaluations of the Shuttle solid propellant booster motor are reviewed. Measurement of the amplitude and frequency of low level chamber pressure oscillations which have been detected in motor firings, are discussed and a statistical analysis of the data is presented. Oscillatory data from three recent motor firings are shown and the results are compared with statistical predictions which are based on earlier motor firings.

  5. Learning to Predict and Control the Physics of Our Movements

    PubMed Central

    2017-01-01

    When we hold an object in our hand, the mass of the object alters the physics of our arm, changing the relationship between motor commands that our brain sends to our arm muscles and the resulting motion of our hand. If the object is unfamiliar to us, our first movement will exhibit an error, producing a trajectory that is different from the one we had intended. This experience of error initiates learning in our brain, making it so that on the very next attempt our motor commands partially compensate for the unfamiliar physics, resulting in smaller errors. With further practice, the compensation becomes more complete, and our brain forms a model that predicts the physics of the object. This model is a motor memory that frees us from having to relearn the physics the next time that we encounter the object. The mechanism by which the brain transforms sensory prediction errors into corrective motor commands is the basis for how we learn the physics of objects with which we interact. The cerebellum and the motor cortex appear to be critical for our ability to learn physics, allowing us to use tools that extend our capabilities, making us masters of our environment. PMID:28202784

  6. D2 receptor genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans.

    PubMed

    Fazio, Leonardo; Blasi, Giuseppe; Taurisano, Paolo; Papazacharias, Apostolos; Romano, Raffaella; Gelao, Barbara; Ursini, Gianluca; Quarto, Tiziana; Lo Bianco, Luciana; Di Giorgio, Annabella; Mancini, Marina; Popolizio, Teresa; Rubini, Giuseppe; Bertolino, Alessandro

    2011-02-14

    Pre-synaptic D2 receptors regulate striatal dopamine release and DAT activity, key factors for modulation of motor pathways. A functional SNP of DRD2 (rs1076560 G>T) is associated with alternative splicing such that the relative expression of D2S (mainly pre-synaptic) vs. D2L (mainly post-synaptic) receptor isoforms is decreased in subjects with the T allele with a putative increase of striatal dopamine levels. To evaluate how DRD2 genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans, we have investigated the association of rs1076560 with BOLD fMRI activity during a motor task. To further evaluate the relationship of this circuitry with dopamine signaling, we also explored the correlation between genotype based differences in motor brain activity and pre-synaptic striatal DAT binding measured with [(123)I] FP-CIT SPECT. Fifty healthy subjects, genotyped for DRD2 rs1076560 were studied with BOLD-fMRI at 3T while performing a visually paced motor task with their right hand; eleven of these subjects also underwent [(123)I]FP-CIT SPECT. SPM5 random-effects models were used for statistical analyses. Subjects carrying the T allele had greater BOLD responses in left basal ganglia, thalamus, supplementary motor area, and primary motor cortex, whose activity was also negatively correlated with reaction time at the task. Moreover, left striatal DAT binding and activity of left supplementary motor area were negatively correlated. The present results suggest that DRD2 genetic variation was associated with focusing of responses in the whole motor network, in which activity of predictable nodes was correlated with reaction time and with striatal pre-synaptic dopamine signaling. Our results in humans may help shed light on genetic risk for neurobiological mechanisms involved in the pathophysiology of disorders with dysregulation of striatal dopamine like Parkinson's disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Maternal Education Level Predicts Cognitive, Language, and Motor Outcome in Preterm Infants in the Second Year of Life.

    PubMed

    Patra, Kousiki; Greene, Michelle M; Patel, Aloka L; Meier, Paula

    2016-07-01

    Objective To evaluate the relative impact of maternal education level (MEL) on cognitive, language, and motor outcomes at 20 months' corrected age (CA) in preterm infants. Study Design A total of 177 preterm infants born between 2008 and 2010 were tested at 20 months' CA using the Bayley Scales of Infant and Toddler Development-III. Multiple regression analyses were done to determine the relative impact of MEL on cognitive, language, and motor scores. Results Infants born to mothers with high school MEL were 3.74 times more likely to have a subnormal motor index, while those born to mothers with some college and graduate school MEL had reduced odds (0.36 and 0.12, respectively) of having subnormal language index at 20 months. In linear regression, MEL was the strongest predictor of cognitive, language, and motor scores, and graduate school MEL was associated with increases in cognitive, motor, and language scores of 8.49, 8.23, and 15.74 points, respectively. Conclusions MEL is the most significant predictor of cognitive, language, and motor outcome at 20 months' CA in preterm infants. Further research is needed to evaluate if targeted interventions that focus on early childhood learning and parenting practices can ameliorate the impact of low MEL. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. Developmental pathways in infants from 4 to 24 months.

    PubMed

    Valla, L; Birkeland, M S; Hofoss, D; Slinning, K

    2017-07-01

    There has been limited epidemiological research describing population-based samples regarding developmental pathways throughout infancy, and the research that exists has revealed substantial diversity. Identifying predictors for developmental pathways can inform early intervention services. The Ages and Stages Questionnaire was used to measure communication, gross motor, fine motor, problem-solving and personal-social skills longitudinally in a large, population-based sample of 1555 infants recruited from well-baby clinics in five municipalities in southeast Norway. We conducted latent class analyses to identify common pathways within the five developmental areas. Our results indicated that most classes of infants showed generally positive and stable normative developmental pathways. However, for communication and gross motor areas, more heterogeneity was found. For gross motor development, a class of 10% followed a U-shaped curve. A class of 8% had a declining communication pathway and did not reach the level of the high stable communication class at 24 months. Low gestational age, low Apgar score, male sex, maternal depression symptoms, non-Scandinavian maternal ethnicity and high maternal education significantly predict less beneficial communication pathways. The results suggest that infants with low gestational age, low Apgar score, male sex and a mother with depression symptoms or non-Scandinavian ethnicity may be at risk of developing less beneficial developmental pathways, especially within the communication area. Targeting these infants for surveillance and support might be protective against delayed development in several areas during a critical window of development. © 2017 John Wiley & Sons Ltd.

  9. Behavioural and neural basis of anomalous motor learning in children with autism.

    PubMed

    Marko, Mollie K; Crocetti, Deana; Hulst, Thomas; Donchin, Opher; Shadmehr, Reza; Mostofsky, Stewart H

    2015-03-01

    Autism spectrum disorder is a developmental disorder characterized by deficits in social and communication skills and repetitive and stereotyped interests and behaviours. Although not part of the diagnostic criteria, individuals with autism experience a host of motor impairments, potentially due to abnormalities in how they learn motor control throughout development. Here, we used behavioural techniques to quantify motor learning in autism spectrum disorder, and structural brain imaging to investigate the neural basis of that learning in the cerebellum. Twenty children with autism spectrum disorder and 20 typically developing control subjects, aged 8-12, made reaching movements while holding the handle of a robotic manipulandum. In random trials the reach was perturbed, resulting in errors that were sensed through vision and proprioception. The brain learned from these errors and altered the motor commands on the subsequent reach. We measured learning from error as a function of the sensory modality of that error, and found that children with autism spectrum disorder outperformed typically developing children when learning from errors that were sensed through proprioception, but underperformed typically developing children when learning from errors that were sensed through vision. Previous work had shown that this learning depends on the integrity of a region in the anterior cerebellum. Here we found that the anterior cerebellum, extending into lobule VI, and parts of lobule VIII were smaller than normal in children with autism spectrum disorder, with a volume that was predicted by the pattern of learning from visual and proprioceptive errors. We suggest that the abnormal patterns of motor learning in children with autism spectrum disorder, showing an increased sensitivity to proprioceptive error and a decreased sensitivity to visual error, may be associated with abnormalities in the cerebellum. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Obesity Leads to Declines in Motor Skills across Childhood

    PubMed Central

    Cheng, Jessica; East, Patricia; Blanco, Estela; Sim, Eastern Kang; Castillo, Marcela; Lozoff, Betsy; Gahagan, Sheila

    2016-01-01

    Background Poor motor skills have been consistently linked with a higher body weight in childhood, but the causal direction of this association is not fully understood. This study investigated the temporal ordering between children’s motor skills and weight status at 5 and 10 years. Methods Participants were 668 children (54% male) who were studied from infancy as part of an iron-deficiency anemia preventive trial and follow-up study in Santiago, Chile. All were healthy, full term, and weighing 3 kg or more at birth. Cross-lagged panel modeling was conducted to understand the temporal precedence between children’s weight status and motor proficiency. Analyses also examined differences in gross and fine motor skills among healthy weight, overweight, and obese children. Results A higher BMI at 5 years contributed to declines in motor proficiency from 5 to 10 years. There was no support for the reverse; that is, poor motor skills at 5 years did not predict increases in relative weight from 5 to 10 years. Obesity at 5 years also predicted declines in motor proficiency. When compared to normal weight children, obese children had significantly poorer total and gross motor skills at both 5 and 10 years. Overweight children had poorer total and gross motor skills at 10 years only. The differences in total and gross motor skills among normal-weight, overweight, and obese children appear to increase with age. There were small differences in fine motor skill between obese and non-obese children at 5 years only. Conclusions Obesity preceded declines in motor skills and not the reverse. Study findings suggest that early childhood obesity intervention efforts might help prevent declines in motor proficiency which, in turn, may positively impact children’s physical activity and overall fitness levels. PMID:27059409

  11. Obesity leads to declines in motor skills across childhood.

    PubMed

    Cheng, J; East, P; Blanco, E; Sim, E Kang; Castillo, M; Lozoff, B; Gahagan, S

    2016-05-01

    Poor motor skills have been consistently linked with a higher body weight in childhood, but the causal direction of this association is not fully understood. This study investigated the temporal ordering between children's motor skills and weight status at 5 and 10 years. Participants were 668 children (54% male) who were studied from infancy as part of an iron deficiency anaemia preventive trial and follow-up study in Santiago, Chile. All were healthy, full-term and weighing 3 kg or more at birth. Cross-lagged panel modelling was conducted to understand the temporal precedence between children's weight status and motor proficiency. Analyses also examined differences in gross and fine motor skills among healthy weight, overweight, and obese children. A higher BMI at 5 years contributed to declines in motor proficiency from 5 to 10 years. There was no support for the reverse, that is, poor motor skills at 5 years did not predict increases in relative weight from 5 to 10 years. Obesity at 5 years also predicted declines in motor proficiency. When compared with normal weight children, obese children had significantly poorer total and gross motor skills at both 5 and 10 years. Overweight children had poorer total and gross motor skills at 10 years only. The differences in total and gross motor skills among normal weight, overweight and obese children appear to increase with age. There were small differences in fine motor skill between obese and non-obese children at 5 years only. Obesity preceded declines in motor skills and not the reverse. Study findings suggest that early childhood obesity intervention efforts might help prevent declines in motor proficiency that, in turn, may positively impact children's physical activity and overall fitness levels. © 2016 John Wiley & Sons Ltd.

  12. Evidence for Specificity of Motor Impairments in Catching and Balance in Children with Autism

    ERIC Educational Resources Information Center

    Ament, Katarina; Mejia, Amanda; Buhlman, Rebecca; Erklin, Shannon; Caffo, Brian; Mostofsky, Stewart; Wodka, Ericka

    2015-01-01

    To evaluate evidence for motor impairment specificity in autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). Children completed performance-based assessment of motor functioning (Movement Assessment Battery for Children: MABC-2). Logistic regression models were used to predict group membership. In the models…

  13. The Interaction between Interoceptive and Action States within a Framework of Predictive Coding

    PubMed Central

    Marshall, Amanda C.; Gentsch, Antje; Schütz-Bosbach, Simone

    2018-01-01

    The notion of predictive coding assumes that perception is an iterative process between prior knowledge and sensory feedback. To date, this perspective has been primarily applied to exteroceptive perception as well as action and its associated phenomenological experiences such as agency. More recently, this predictive, inferential framework has been theoretically extended to interoception. This idea postulates that subjective feeling states are generated by top–down inferences made about internal and external causes of interoceptive afferents. While the processing of motor signals for action control and the emergence of selfhood have been studied extensively, the contributions of interoceptive input and especially the potential interaction of motor and interoceptive signals remain largely unaddressed. Here, we argue for a specific functional relation between motor and interoceptive awareness. Specifically, we implicate interoceptive predictions in the generation of subjective motor-related feeling states. Furthermore, we propose a distinction between reflexive and pre-reflexive modes of agentic action control and suggest that interoceptive input may affect each differently. Finally, we advocate the necessity of continuous interoceptive input for conscious forms of agentic action control. We conclude by discussing further research contributions that would allow for a fuller understanding of the interaction between agency and interoceptive awareness. PMID:29515495

  14. JANNAF Lessons Learned Panel Discussion

    NASA Technical Reports Server (NTRS)

    Richards, Steve

    2010-01-01

    The difference between the AS-510 observed and predicted separation distance is attributed to a greater F-1 engine "tail off" impulse than that used in the separation distance prediction. . The F-1 thrust decay was normal and not appreciably different from previous (AS-505 through 509) flights. . Analysis indicates that with an S-IC stage having only four retro motors, failure of one retro motor to ignite would result in marginal separation distances and, in the 3-sigma case, re-contact of the two stages. . S-IC-11 and subsequent flight stages were equipped with eight retro motors rather than the planned four.

  15. Contralesional motor deficits after unilateral stroke reflect hemisphere-specific control mechanisms

    PubMed Central

    Mani, Saandeep; Mutha, Pratik K.; Przybyla, Andrzej; Haaland, Kathleen Y.; Good, David C.

    2013-01-01

    We have proposed a model of motor lateralization, in which the left and right hemispheres are specialized for different aspects of motor control: the left hemisphere for predicting and accounting for limb dynamics and the right hemisphere for stabilizing limb position through impedance control mechanisms. Our previous studies, demonstrating different motor deficits in the ipsilesional arm of stroke patients with left or right hemisphere damage, provided a critical test of our model. However, motor deficits after stroke are most prominent on the contralesional side. Post-stroke rehabilitation has also, naturally, focused on improving contralesional arm impairment and function. Understanding whether contralesional motor deficits differ depending on the hemisphere of damage is, therefore, of vital importance for assessing the impact of brain damage on function and also for designing rehabilitation interventions specific to laterality of damage. We, therefore, asked whether motor deficits in the contralesional arm of unilateral stroke patients reflect hemisphere-dependent control mechanisms. Because our model of lateralization predicts that contralesional deficits will differ depending on the hemisphere of damage, this study also served as an essential assessment of our model. Stroke patients with mild to moderate hemiparesis in either the left or right arm because of contralateral stroke and healthy control subjects performed targeted multi-joint reaching movements in different directions. As predicted, our results indicated a double dissociation; although left hemisphere damage was associated with greater errors in trajectory curvature and movement direction, errors in movement extent were greatest after right hemisphere damage. Thus, our results provide the first demonstration of hemisphere specific motor control deficits in the contralesional arm of stroke patients. Our results also suggest that it is critical to consider the differential deficits induced by right or left hemisphere lesions to enhance post-stroke rehabilitation interventions. PMID:23358602

  16. Application of quasi-steady state methods to molecular motor transport on microtubules in fungal hyphae.

    PubMed

    Dauvergne, Duncan; Edelstein-Keshet, Leah

    2015-08-21

    We consider bidirectional transport of cargo by molecular motors dynein and kinesin that walk along microtubules, and/or diffuse in the cell. The motors compete to transport cargo in opposite directions with respect to microtubule polarity (towards the plus or minus end of the microtubule). In recent work, Gou et al. (2014) used a hierarchical set of models, each consisting of continuum transport equations to track the evolution of motors and their cargo (early endosomes) in the specific case of the fungus Ustilago maydis. We complement their work using a framework of quasi-steady state analysis developed by Newby and Bressloff (2010) and Bressloff and Newby (2013) to reduce the models to an approximating steady state Fokker-Plank equation. This analysis allows us to find analytic approximations to the steady state solutions in many cases where the full models are not easily solved. Consequently, we can make predictions about parameter dependence of the resulting spatial distributions. We also characterize the overall rates of bulk transport and diffusion, and how these are related to state transition parameters, motor speeds, microtubule polarity distribution, and specific assumptions made. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Acquisition and improvement of human motor skills: Learning through observation and practice

    NASA Technical Reports Server (NTRS)

    Iba, Wayne

    1991-01-01

    Skilled movement is an integral part of the human existence. A better understanding of motor skills and their development is a prerequisite to the construction of truly flexible intelligent agents. We present MAEANDER, a computational model of human motor behavior, that uniformly addresses both the acquisition of skills through observation and the improvement of skills through practice. MAEANDER consists of a sensory-effector interface, a memory of movements, and a set of performance and learning mechanisms that let it recognize and generate motor skills. The system initially acquires such skills by observing movements performed by another agent and constructing a concept hierarchy. Given a stored motor skill in memory, MAEANDER will cause an effector to behave appropriately. All learning involves changing the hierarchical memory of skill concepts to more closely correspond to either observed experience or to desired behaviors. We evaluated MAEANDER empirically with respect to how well it acquires and improves both artificial movement types and handwritten script letters from the alphabet. We also evaluate MAEANDER as a psychological model by comparing its behavior to robust phenomena in humans and by considering the richness of the predictions it makes.

  18. Tug of war of molecular motors: the effects of uneven load sharing

    NASA Astrophysics Data System (ADS)

    Bouzat, Sebastián; Falo, Fernando

    2011-12-01

    We analyze theoretically the problem of cargo transport along microtubules by motors of two species with opposite polarities. We consider two different one-dimensional models previously developed in the literature: a quite widespread model which assumes equal force sharing, here referred to as the mean field model (MFM), and a stochastic model (SM) which considers individual motor-cargo links. We find that in generic situations, the MFM predicts larger cargo mean velocity, smaller mean run time and less frequent reversions than the SM. These phenomena are found to be the consequences of the load sharing assumptions and can be interpreted in terms of the probabilities of the different motility states. We also explore the influence of the viscosity in both models and the role of the stiffness of the motor-cargo links within the SM. Our results show that the mean cargo velocity is independent of the stiffness, while the mean run time decreases with such a parameter. We explore the case of symmetric forward and backward motors considering kinesin-1 parameters, and the problem of transport by kinesin-1 and cytoplasmic dyneins considering two different sets of parameters previously proposed for dyneins.

  19. Investigation of the flow turning loss in unstable solid propellant rocket motors

    NASA Astrophysics Data System (ADS)

    Matta, Lawrence Mark

    The goal of this study was to improve the understanding of the flow turning loss, which contributes to the damping of axial acoustic instabilities in solid propellant rocket motors. This understanding is needed to develop practical methods for designing motors that do not exhibit such instabilities. The flow turning loss results from the interaction of the flow of combustion products leaving the surface of the propellant with the acoustic field in an unstable motor. While state of the art solid rocket stability models generally account for the flow turning loss, its magnitude and characteristics have never been fully investigated. This thesis describes a combined theoretical, numerical, and experimental investigation of the flow turning loss and its dependence upon various motor design and operating parameters. First, a one dimensional acoustic stability equation that verifies the existence of the flow turning loss was derived for a chamber with constant mean pressure and temperature. The theoretical development was then extended to include the effects of mean temperature gradients to accommodate combustion systems in which mean temperature gradients and heat losses are significant. These analyses provided the background and expressions necessary to guide an experimental study. The relevant equations were then solved for the developed experimental setup to predict the behavior of the flow turning loss and the other terms of the developed acoustic stability equation. This was followed by and experimental study in which the flow turning region of an unstable solid propellant rocket motor was simulated. The setup was used, with and without combustion, to determine the dependence of the flow turning loss upon operating conditions. These studies showed that the flow turning loss strongly depends upon the gas velocity at the propellant surface and the location of the flow turning region relative to the standing acoustic wave. The flow turning loss measured in the experiment was found to be small relative to other mechanisms. This, however, was characteristic of the experimental setup and is not representative of actual rocket motors, in which the flow turning loss is often a significant part of the overall stability.

  20. Automated Bone Screw Tightening to Adaptive Levels of Stripping Torque.

    PubMed

    Reynolds, Karen J; Mohtar, Aaron A; Cleek, Tammy M; Ryan, Melissa K; Hearn, Trevor C

    2017-06-01

    To use relationships between tightening parameters, related to bone quality, to develop an automated system that determines and controls the level of screw tightening. An algorithm relating current at head contact (IHC) to current at construct failure (Imax) was developed. The algorithm was used to trigger cessation of screw insertion at a predefined tightening level, in real time, between head contact and maximum current. The ability of the device to stop at the predefined level was assessed. The mean (±SD) current at which screw insertion ceased was calculated to be [51.47 ± 9.75% × (Imax - IHC)] + IHC, with no premature bone failures. A smart screwdriver was developed that uses the current from the motor driving the screw to predict the current at which the screw will strip the bone threads. The device was implemented and was able to achieve motor shut-off and cease tightening at a predefined threshold, with no premature bone failures.

  1. Early life exposure to permethrin: a progressive animal model of Parkinson's disease.

    PubMed

    Nasuti, Cinzia; Brunori, Gloria; Eusepi, Piera; Marinelli, Lisa; Ciccocioppo, Roberto; Gabbianelli, Rosita

    Oxidative stress, alpha-synuclein changes, mitochondrial complex I defects and dopamine loss, observed in the striatum of rats exposed to the pesticide permethrin in early life, could represent neuropathological hallmarks of Parkinson's disease (PD). Nevertheless, an animal model of PD should also fulfill criteria of face and predictive validities. This study was designed to: 1) verify dopaminergic status in the striatum and substantia nigra pars compacta; 2) recognize non-motor symptoms; 3) investigate the time-course development of motor disabilities; 4) assess L-Dopa effectiveness on motor symptoms in rats previously exposed to permethrin in early life. The permethrin-treated group received 34mg/kg daily of permethrin from postnatal day 6 to 21, whereas the age-matched control group was administered with the vehicle only. At adolescent age, the permethrin-treated group showed decreased levels of dopamine in the striatum, loss of dopaminergic neurons in the substantia nigra pars compacta and cognitive impairments. Motor coordination defects appeared at adult age (150days old) in permethrin-treated rats on rotarod and beam walking tasks, whereas no differences between the treated and control groups were detected on the foot print task. Predictive validity was evaluated by testing the ability of L-Dopa (5, 10 or 15mg/kg, os) to restore the postural instability in permethrin-treated rats (150days old) tested in a beam walking task. The results revealed full reversal of motor deficits starting from 10mg/kg of L-Dopa. The overall results indicate that this animal model replicates the progressive, time-dependent nature of the neurodegenerative process in Parkinson's disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Field verification of sound attenuation modeling and air emission testing in support of missile motor disposal activities.

    PubMed

    McFarland, Michael J; Palmer, Glenn R; Rasmussen, Steve L; Kordich, Micheal M; Pollet, Dean A; Jensen, James A; Lindsay, Mitchell H

    2006-07-01

    The U.S. Department of Defense-approved activities conducted at the Utah Test and Training Range (UTTR) include both operational readiness test firing of intercontinental ballistic missile (ICBM) motors, as well as the destruction of obsolete or otherwise unusable ICBM motors through open burn/open detonation (OB/OD). Within the Utah Division of Air Quality, these activities have been identified as having the potential to generate unacceptable noise levels, as well as significant amounts of volatile organic compounds (VOCs). Hill Air Force Base, UT, has completed a series of field tests at the UTTR in which sound-monitoring surveillance of OB/OD activities was conducted to validate the Sound Intensity Prediction System (SIPS) model. Using results generated by the SIPS model to support the decision to detonate, the UTTR successfully disposed of missile motors having an aggregate net explosive weight (NEW) of 81,374 lb without generating adverse noise levels within populated areas. In conjunction with collecting noise-monitoring data, air emissions were collected to support the development of air emission factors for both static missile motor firings and OB/OD activities. Through the installation of 15 ground-based air samplers, the generation of combustion-fixed gases, VOCs, and chlorides was monitored during the 81,374-lb NEW detonation event. Comparison of field measurements to predictions generated from the US Navy energetic combustion pollutant formation model, POLU4WN, indicated that, as the detonation fire ball expanded, organic compounds, as well as CO, continued to oxidize as the combustion gases mixed with ambient air. VOC analysis of air samplers confirmed the presence of chloromethane, vinyl chloride, benzene, toluene, and 2-methyl-1-propene. Qualitative chloride analysis indicated that gaseous HCl was generated at low concentrations, if at all.

  3. Neural substrates of visuomotor learning based on improved feedback control and prediction

    PubMed Central

    Grafton, Scott T.; Schmitt, Paul; Horn, John Van; Diedrichsen, Jörn

    2008-01-01

    Motor skills emerge from learning feedforward commands as well as improvements in feedback control. These two components of learning were investigated in a compensatory visuomotor tracking task on a trial-by-trial basis. Between trial learning was characterized with a state-space model to provide smoothed estimates of feedforward and feedback learning, separable from random fluctuations in motor performance and error. The resultant parameters were correlated with brain activity using magnetic resonance imaging. Learning related to the generation of a feedforward command correlated with activity in dorsal premotor cortex, inferior parietal lobule, supplementary motor area and cingulate motor area, supporting a role of these areas in retrieving and executing a predictive motor command. Modulation of feedback control was associated with activity in bilateral posterior superior parietal lobule as well as right ventral premotor cortex. Performance error correlated with activity in a widespread cortical and subcortical network including bilateral parietal, premotor and rostral anterior cingulate cortex as well as the cerebellar cortex. Finally, trial-by-trial changes of kinematics, as measured by mean absolute hand acceleration, correlated with activity in motor cortex and anterior cerebellum. The results demonstrate that incremental, learning dependent changes can be modeled on a trial-by-trial basis and neural substrates for feedforward control of novel motor programs are localized to secondary motor areas. PMID:18032069

  4. Somatotopic Semantic Priming and Prediction in the Motor System

    PubMed Central

    Grisoni, Luigi; Dreyer, Felix R.; Pulvermüller, Friedemann

    2016-01-01

    The recognition of action-related sounds and words activates motor regions, reflecting the semantic grounding of these symbols in action information; in addition, motor cortex exerts causal influences on sound perception and language comprehension. However, proponents of classic symbolic theories still dispute the role of modality-preferential systems such as the motor cortex in the semantic processing of meaningful stimuli. To clarify whether the motor system carries semantic processes, we investigated neurophysiological indexes of semantic relationships between action-related sounds and words. Event-related potentials revealed that action-related words produced significantly larger stimulus-evoked (Mismatch Negativity-like) and predictive brain responses (Readiness Potentials) when presented in body-part-incongruent sound contexts (e.g., “kiss” in footstep sound context; “kick” in whistle context) than in body-part-congruent contexts, a pattern reminiscent of neurophysiological correlates of semantic priming. Cortical generators of the semantic relatedness effect were localized in areas traditionally associated with semantic memory, including left inferior frontal cortex and temporal pole, and, crucially, in motor areas, where body-part congruency of action sound–word relationships was indexed by a somatotopic pattern of activation. As our results show neurophysiological manifestations of action-semantic priming in the motor cortex, they prove semantic processing in the motor system and thus in a modality-preferential system of the human brain. PMID:26908635

  5. The relationship between executive function and fine motor control in young and older adults.

    PubMed

    Corti, Emily J; Johnson, Andrew R; Riddle, Hayley; Gasson, Natalie; Kane, Robert; Loftus, Andrea M

    2017-01-01

    The present study examined the relationship between executive function (EF) and fine motor control in young and older healthy adults. Participants completed 3 measures of executive function; a spatial working memory (SWM) task, the Stockings of Cambridge task (planning), and the Intra-Dimensional Extra-Dimensional Set-Shift task (set-shifting). Fine motor control was assessed using 3 subtests of the Purdue Pegboard (unimanual, bimanual, sequencing). For the younger adults, there were no significant correlations between measures of EF and fine motor control. For the older adults, all EFs significantly correlated with all measures of fine motor control. Three separate regressions examined whether planning, SWM and set-shifting independently predicted unimanual, bimanual, and sequencing scores for the older adults. Planning was the primary predictor of performance on all three Purdue subtests. A multiple-groups mediation model examined whether planning predicted fine motor control scores independent of participants' age, suggesting that preservation of planning ability may support fine motor control in older adults. Planning remained a significant predictor of unimanual performance in the older age group, but not bimanual or sequencing performance. The findings are discussed in terms of compensation theory, whereby planning is a key compensatory resource for fine motor control in older adults. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Improved system identification using artificial neural networks and analysis of individual differences in responses of an identified neuron.

    PubMed

    Costalago Meruelo, Alicia; Simpson, David M; Veres, Sandor M; Newland, Philip L

    2016-03-01

    Mathematical modelling is used routinely to understand the coding properties and dynamics of responses of neurons and neural networks. Here we analyse the effectiveness of Artificial Neural Networks (ANNs) as a modelling tool for motor neuron responses. We used ANNs to model the synaptic responses of an identified motor neuron, the fast extensor motor neuron, of the desert locust in response to displacement of a sensory organ, the femoral chordotonal organ, which monitors movements of the tibia relative to the femur of the leg. The aim of the study was threefold: first to determine the potential value of ANNs as tools to model and investigate neural networks, second to understand the generalisation properties of ANNs across individuals and to different input signals and third, to understand individual differences in responses of an identified neuron. A metaheuristic algorithm was developed to design the ANN architectures. The performance of the models generated by the ANNs was compared with those generated through previous mathematical models of the same neuron. The results suggest that ANNs are significantly better than LNL and Wiener models in predicting specific neural responses to Gaussian White Noise, but not significantly different when tested with sinusoidal inputs. They are also able to predict responses of the same neuron in different individuals irrespective of which animal was used to develop the model, although notable differences between some individuals were evident. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Computational neurorehabilitation: modeling plasticity and learning to predict recovery.

    PubMed

    Reinkensmeyer, David J; Burdet, Etienne; Casadio, Maura; Krakauer, John W; Kwakkel, Gert; Lang, Catherine E; Swinnen, Stephan P; Ward, Nick S; Schweighofer, Nicolas

    2016-04-30

    Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years, there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a fundamental understanding of neurologic recovery, and as a result accurate predictions at the individual level, will be facilitated by developing computational models of the salient neural processes, including plasticity and learning systems of the brain, and integrating them into a context specific to rehabilitation. Here, we therefore discuss Computational Neurorehabilitation, a newly emerging field aimed at modeling plasticity and motor learning to understand and improve movement recovery of individuals with neurologic impairment. We first explain how the emergence of robotics and wearable sensors for rehabilitation is providing data that make development and testing of such models increasingly feasible. We then review key aspects of plasticity and motor learning that such models will incorporate. We proceed by discussing how computational neurorehabilitation models relate to the current benchmark in rehabilitation modeling - regression-based, prognostic modeling. We then critically discuss the first computational neurorehabilitation models, which have primarily focused on modeling rehabilitation of the upper extremity after stroke, and show how even simple models have produced novel ideas for future investigation. Finally, we conclude with key directions for future research, anticipating that soon we will see the emergence of mechanistic models of motor recovery that are informed by clinical imaging results and driven by the actual movement content of rehabilitation therapy as well as wearable sensor-based records of daily activity.

  8. Motor pathway convergence predicts syllable repertoire size in oscine birds

    PubMed Central

    Moore, Jordan M.; Székely, Tamás; Büki, József; DeVoogd, Timothy J.

    2011-01-01

    Behavioral specializations are frequently associated with expansions of the brain regions controlling them. This principle of proper mass spans sensory, motor, and cognitive abilities and has been observed in a wide variety of vertebrate species. Yet, it is unknown if this concept extrapolates to entire neural pathways or how selection on a behavioral capacity might otherwise shape circuit structure. We investigate these questions by comparing the songs and neuroanatomy of 49 species from 17 families of songbirds, which vary immensely in the number of unique song components they produce and possess a conserved neural network dedicated to this behavior. We find that syllable repertoire size is strongly related to the degree of song motor pathway convergence. Repertoire size is more accurately predicted by the number of neurons in higher motor areas relative to that in their downstream targets than by the overall number of neurons in the song motor pathway. Additionally, the convergence values along serial premotor and primary motor projections account for distinct portions of the behavioral variation. These findings suggest that selection on song has independently shaped different components of this hierarchical pathway, and they elucidate how changes in pathway structure could have underlain elaborations of this learned motor behavior. PMID:21918109

  9. Design Tool

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Developed under a Small Business Innovation Research (SBIR) contract, RAMPANT is a CFD software package for computing flow around complex shapes. The package is flexible, fast and easy to use. It has found a great number of applications, including computation of air flow around a Nordic ski jumper, prediction of flow over an airfoil and computation of the external aerodynamics of motor vehicles.

  10. Modeling the Gas Dynamics Environment in a Subscale Solid Rocket Test Motor

    NASA Technical Reports Server (NTRS)

    Eaton, Andrew M.; Ewing, Mark E.; Bailey, Kirk M.; McCool, Alex (Technical Monitor)

    2001-01-01

    Subscale test motors are often used for the evaluation of solid rocket motor component materials such as internal insulation. These motors are useful for characterizing insulation performance behavior, screening insulation material candidates and obtaining material thermal and ablative property design data. One of the primary challenges associated with using subscale motors however, is the uncertainty involved when extrapolating the results to full-scale motor conditions. These uncertainties are related to differences in such phenomena as turbulent flow behavior and boundary layer development, propellant particle interactions with the wall, insulation off-gas mixing and thermochemical reactions with the bulk flow, radiation levels, material response to the local environment, and other anomalous flow conditions. In addition to the need for better understanding of physical mechanisms, there is also a need to better understand how to best simulate these phenomena using numerical modeling approaches such as computational fluid dynamics (CFD). To better understand and model interactions between major phenomena in a subscale test motor, a numerical study of the internal flow environment of a representative motor was performed. Simulation of the environment included not only gas dynamics, but two-phase flow modeling of entrained alumina particles like those found in an aluminized propellant, and offgassing from wall surfaces similar to an ablating insulation material. This work represents a starting point for establishing the internal environment of a subscale test motor using comprehensive modeling techniques, and lays the groundwork for improving the understanding of the applicability of subscale test data to full-scale motors. It was found that grid resolution, and inclusion of phenomena in addition to gas dynamics, such as two-phase and multi-component gas composition are all important factors that can effect the overall flow field predictions.

  11. Relationship between children's performance-based motor skills and child, parent, and teacher perceptions of children's motor abilities using self/informant-report questionnaires.

    PubMed

    Lalor, Aislinn; Brown, Ted; Murdolo, Yuki

    2016-04-01

    Occupational therapists often assess the motor skill performance of children referred to them as part of the assessment process. This study investigated whether children's, parents' and teachers' perceptions of children's motor skills using valid and reliable self/informant-report questionnaires were associated with and predictive of children's actual motor performance, as measured by a standardised performance-based motor skill assessment. Fifty-five typically developing children (8-12 years of age), their parents and classroom teachers were recruited to participate in the study. The children completed the Physical Self-Description Questionnaire (PSDQ) and the Self-Perception Profile for Children. The parents completed the Developmental Profile III (DP-III) and the Developmental Coordination Disorder Questionnaire, whereas the teachers completed the Developmental Coordination Disorder Questionnaire and the Teacher's Rating Scale of Child's Actual Behavior. Children's motor performance composite scores were determined using the Bruininks-Oseretsky Test of Motor Proficiency, Second Edition (BOT-2). Spearman's rho correlation coefficients were calculated to identify if significant correlations existed and multiple linear regression was used to identify whether self/informant report data were significant predictors of children's motor skill performance. The child self-report scores had the largest number of significant correlations with the BOT-2 composites. Regression analysis found that the parent report DP-III Physical subscale was a significant predictor of the BOT-2 Manual Coordination composite and the child-report questionnaire PSDQ. Endurance subscale was a significant predictor of the BOT-2 Strength and Agility composite. The findings support the use of top-down assessment methods from a variety of sources when evaluating children's motor abilities. © 2016 Occupational Therapy Australia.

  12. Using the abbreviated injury severity and Glasgow Coma Scale scores to predict 2-week mortality after traumatic brain injury.

    PubMed

    Timmons, Shelly D; Bee, Tiffany; Webb, Sharon; Diaz-Arrastia, Ramon R; Hesdorffer, Dale

    2011-11-01

    Prediction of outcome after traumatic brain injury (TBI) remains elusive. We tested the use of a single hospital Glasgow Coma Scale (GCS) Score, GCS Motor Score, and the Head component of the Abbreviated Injury Scale (AIS) Score to predict 2-week cumulative mortality in a large cohort of TBI patients admitted to the eight U.S. Level I trauma centers in the TBI Clinical Trials Network. Data on 2,808 TBI patients were entered into a centralized database. These TBI patients were categorized as severe (GCS score, 3-8), moderate (9-12), or complicated mild (13-15 with positive computed tomography findings). Intubation and chemical paralysis were recorded. The cumulative incidence of mortality in the first 2 weeks after head injury was calculated using Kaplan-Meier survival analysis. Cox proportional hazards regression was used to estimate the magnitude of the risk for 2-week mortality. Two-week cumulative mortality was independently predicted by GCS, GCS Motor Score, and Head AIS. GCS Severity Category and GCS Motor Score were stronger predictors of 2-week mortality than Head AIS. There was also an independent effect of age (<60 vs. ≥60) on mortality after controlling for both GCS and Head AIS Scores. Anatomic and physiologic scales are useful in the prediction of mortality after TBI. We did not demonstrate any added benefit to combining the total GCS or GCS Motor Scores with the Head AIS Score in the short-term prediction of death after TBI.

  13. Corollary Discharge Failure in an Oculomotor Task Is Related to Delusional Ideation in Healthy Individuals.

    PubMed

    Malassis, Raphaëlle; Del Cul, Antoine; Collins, Thérèse

    2015-01-01

    Predicting the sensory consequences of saccadic eye movements likely plays a crucial role in planning sequences of saccades and in maintaining visual stability despite saccade-caused retinal displacements. Deficits in predictive activity, such as that afforded by a corollary discharge signal, have been reported in patients with schizophrenia, and may lead to the emergence of positive symptoms, in particular delusions of control and auditory hallucinations. We examined whether a measure of delusional thinking in the general, non-clinical population correlated with measures of predictive activity in two oculomotor tasks. The double-step task measured predictive activity in motor control, and the in-flight displacement task measured predictive activity in trans-saccadic visual perception. Forty-one healthy adults performed both tasks and completed a questionnaire to assess delusional thinking. The quantitative measure of predictive activity we obtained correlated with the tendency towards delusional ideation, but only for the motor task, and not the perceptual task: Individuals with higher levels of delusional thinking showed less self-movement information use in the motor task. Variation of the degree of self-generated movement knowledge as a function of the prevalence of delusional ideation in the normal population strongly supports the idea that corollary discharge deficits measured in schizophrenic patients in previous researches are not due to neuroleptic medication. We also propose that this difference in results between the perceptual and the motor tasks may point to a dissociation between corollary discharge for perception and corollary discharge for action.

  14. Corollary Discharge Failure in an Oculomotor Task Is Related to Delusional Ideation in Healthy Individuals

    PubMed Central

    Malassis, Raphaëlle; Del Cul, Antoine; Collins, Thérèse

    2015-01-01

    Predicting the sensory consequences of saccadic eye movements likely plays a crucial role in planning sequences of saccades and in maintaining visual stability despite saccade-caused retinal displacements. Deficits in predictive activity, such as that afforded by a corollary discharge signal, have been reported in patients with schizophrenia, and may lead to the emergence of positive symptoms, in particular delusions of control and auditory hallucinations. We examined whether a measure of delusional thinking in the general, non-clinical population correlated with measures of predictive activity in two oculomotor tasks. The double-step task measured predictive activity in motor control, and the in-flight displacement task measured predictive activity in trans-saccadic visual perception. Forty-one healthy adults performed both tasks and completed a questionnaire to assess delusional thinking. The quantitative measure of predictive activity we obtained correlated with the tendency towards delusional ideation, but only for the motor task, and not the perceptual task: Individuals with higher levels of delusional thinking showed less self-movement information use in the motor task. Variation of the degree of self-generated movement knowledge as a function of the prevalence of delusional ideation in the normal population strongly supports the idea that corollary discharge deficits measured in schizophrenic patients in previous researches are not due to neuroleptic medication. We also propose that this difference in results between the perceptual and the motor tasks may point to a dissociation between corollary discharge for perception and corollary discharge for action. PMID:26305115

  15. Cortical oscillatory activity and the induction of plasticity in the human motor cortex.

    PubMed

    McAllister, Suzanne M; Rothwell, John C; Ridding, Michael C

    2011-05-01

    Repetitive transcranial magnetic stimulation paradigms such as continuous theta burst stimulation (cTBS) induce long-term potentiation- and long-term depression-like plasticity in the human motor cortex. However, responses to cTBS are highly variable and may depend on the activity of the cortex at the time of stimulation. We investigated whether power in different electroencephalogram (EEG) frequency bands predicted the response to subsequent cTBS, and conversely whether cTBS had after-effects on the EEG. cTBS may utilize similar mechanisms of plasticity to motor learning; thus, we conducted a parallel set of experiments to test whether ongoing electroencephalography could predict performance of a visuomotor training task, and whether training itself had effects on the EEG. Motor evoked potentials (MEPs) provided an index of cortical excitability pre- and post-intervention. The EEG was recorded over the motor cortex pre- and post-intervention, and power spectra were computed. cTBS reduced MEP amplitudes; however, baseline power in the delta, theta, alpha or beta frequencies did not predict responses to cTBS or learning of the visuomotor training task. cTBS had no effect on delta, theta, alpha or beta power. In contrast, there was an increase in alpha power following visuomotor training that was positively correlated with changes in MEP amplitude post-training. The results suggest that the EEG is not a useful state-marker for predicting responses to plasticity-inducing paradigms. The correlation between alpha power and changes in corticospinal excitability following visuomotor training requires further investigation, but may be related to disengagement of the somatosensory system important for motor memory consolidation. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  16. Language and Motor Speech Skills in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Pirila, Silja; van der Meere, Jaap; Pentikainen, Taina; Ruusu-Niemi, Pirjo; Korpela, Raija; Kilpinen, Jenni; Nieminen, Pirkko

    2007-01-01

    The aim of the study was to investigate associations between the severity of motor limitations, cognitive difficulties, language and motor speech problems in children with cerebral palsy. Also, the predictive power of neonatal cranial ultrasound findings on later outcome was investigated. For this purpose, 36 children (age range 1 year 10 months…

  17. Paradoxical effect of dopamine medication on cognition in Parkinson's disease: relationship to side of motor onset.

    PubMed

    Hanna-Pladdy, Brenda; Pahwa, Rajesh; Lyons, Kelly E

    2015-04-01

    Parkinson's disease (PD) is characterized by asymmetric motor symptom onset attributed to greater degeneration of dopamine neurons contralateral to the affected side. However, whether motor asymmetries predict cognitive profiles in PD, and to what extent dopamine influences cognition remains controversial. This study evaluated cognitive variability in PD by measuring differential response to dopamine replacement therapy (DRT) based on hemispheric asymmetries. The influence of DRT on cognition was evaluated in mild PD patients (n = 36) with left or right motor onset symptoms. All subjects were evaluated on neuropsychological measures on and off DRT and compared to controls (n = 42). PD patients were impaired in executive, memory and motor domains irrespective of side of motor onset, although patients with left hemisphere deficit displayed greater cognitive impairment. Patients with right hemisphere deficit responded to DRT with significant improvement in sensorimotor deficits, and with corresponding improvement in attention and verbal memory functions. Conversely, patients with greater left hemisphere dopamine deficiency did not improve in attentional functions and declined in verbal memory recall following DRT. These findings support the presence of extensive mild cognitive deficits in early PD not fully explained by dopamine depletion alone. The paradoxical effects of levodopa on verbal memory were predicted by extent of fine motor impairment and sensorimotor response to levodopa, which reflects extent of dopamine depletion. The findings are discussed with respect to factors influencing variable cognitive profiles in early PD, including hemispheric asymmetries and differential response to levodopa based on dopamine levels predicting amelioration or overdosing.

  18. Eye movement sequence generation in humans: Motor or goal updating?

    PubMed Central

    Quaia, Christian; Joiner, Wilsaan M.; FitzGibbon, Edmond J.; Optican, Lance M.; Smith, Maurice A.

    2011-01-01

    Saccadic eye movements are often grouped in pre-programmed sequences. The mechanism underlying the generation of each saccade in a sequence is currently poorly understood. Broadly speaking, two alternative schemes are possible: first, after each saccade the retinotopic location of the next target could be estimated, and an appropriate saccade could be generated. We call this the goal updating hypothesis. Alternatively, multiple motor plans could be pre-computed, and they could then be updated after each movement. We call this the motor updating hypothesis. We used McLaughlin’s intra-saccadic step paradigm to artificially create a condition under which these two hypotheses make discriminable predictions. We found that in human subjects, when sequences of two saccades are planned, the motor updating hypothesis predicts the landing position of the second saccade in two-saccade sequences much better than the goal updating hypothesis. This finding suggests that the human saccadic system is capable of executing sequences of saccades to multiple targets by planning multiple motor commands, which are then updated by serial subtraction of ongoing motor output. PMID:21191134

  19. The predictive roles of neural oscillations in speech motor adaptability.

    PubMed

    Sengupta, Ranit; Nasir, Sazzad M

    2016-06-01

    The human speech system exhibits a remarkable flexibility by adapting to alterations in speaking environments. While it is believed that speech motor adaptation under altered sensory feedback involves rapid reorganization of speech motor networks, the mechanisms by which different brain regions communicate and coordinate their activity to mediate adaptation remain unknown, and explanations of outcome differences in adaption remain largely elusive. In this study, under the paradigm of altered auditory feedback with continuous EEG recordings, the differential roles of oscillatory neural processes in motor speech adaptability were investigated. The predictive capacities of different EEG frequency bands were assessed, and it was found that theta-, beta-, and gamma-band activities during speech planning and production contained significant and reliable information about motor speech adaptability. It was further observed that these bands do not work independently but interact with each other suggesting an underlying brain network operating across hierarchically organized frequency bands to support motor speech adaptation. These results provide novel insights into both learning and disorders of speech using time frequency analysis of neural oscillations. Copyright © 2016 the American Physiological Society.

  20. Propositions for the Analysis of Commutation Phenomena and Modeling of Universal Motors Using the State Function Method

    NASA Astrophysics Data System (ADS)

    Niwa, Yuta; Akiyama, Yuji; Naruta, Tomokazu

    We carried out FEM simulations for modeling ultra-high-speed universal motors by using the state function method and analyzed the phenomenon of commutator sparking, the characteristics of the air gap surface, and the contact condition or contact resistance of the brushes and commutator bars. Thus, we could quantitatively analyze commutator sparking and investigate the configuration of the iron core. The results of FEM analysis were used to develop a model for predicting the configuration of the iron core and for estimating the electromotive force generated by the transformer, armature reaction field, spark voltage, contact resistance between the rotating brushes, and changes in the gap permeance. The results of our simulation were experimental results. This confirmed the validity of our analysis method. Thus, an ultra-high-speed, high-capacity of 1.5kw motor rotating at 30,000rpm can be designed for use in vacuum cleaners.

  1. Geometrical Origins of Contractility in Disordered Actomyosin Networks

    NASA Astrophysics Data System (ADS)

    Lenz, Martin

    2014-10-01

    Movement within eukaryotic cells largely originates from localized forces exerted by myosin motors on scaffolds of actin filaments. Although individual motors locally exert both contractile and extensile forces, large actomyosin structures at the cellular scale are overwhelmingly contractile, suggesting that the scaffold serves to favor contraction over extension. While this mechanism is well understood in highly organized striated muscle, its origin in disordered networks such as the cell cortex is unknown. Here, we develop a mathematical model of the actin scaffold's local two- or three-dimensional mechanics and identify four competing contraction mechanisms. We predict that one mechanism dominates, whereby local deformations of the actin break the balance between contraction and extension. In this mechanism, contractile forces result mostly from motors plucking the filaments transversely rather than buckling them longitudinally. These findings shed light on recent in vitro experiments and provide a new geometrical understanding of contractility in the myriad of disordered actomyosin systems found in vivo.

  2. Solutions of burnt-bridge models for molecular motor transport.

    PubMed

    Morozov, Alexander Yu; Pronina, Ekaterina; Kolomeisky, Anatoly B; Artyomov, Maxim N

    2007-03-01

    Transport of molecular motors, stimulated by interactions with specific links between consecutive binding sites (called "bridges"), is investigated theoretically by analyzing discrete-state stochastic "burnt-bridge" models. When an unbiased diffusing particle crosses the bridge, the link can be destroyed ("burned") with a probability p , creating a biased directed motion for the particle. It is shown that for probability of burning p=1 the system can be mapped into a one-dimensional single-particle hopping model along the periodic infinite lattice that allows one to calculate exactly all dynamic properties. For the general case of p<1 a theoretical method is developed and dynamic properties are computed explicitly. Discrete-time and continuous-time dynamics for periodic distribution of bridges and different burning dynamics are analyzed and compared. Analytical predictions are supported by extensive Monte Carlo computer simulations. Theoretical results are applied for analysis of the experiments on collagenase motor proteins.

  3. Lap time simulation and design optimisation of a brushed DC electric motorcycle for the Isle of Man TT Zero Challenge

    NASA Astrophysics Data System (ADS)

    Dal Bianco, N.; Lot, R.; Matthys, K.

    2018-01-01

    This works regards the design of an electric motorcycle for the annual Isle of Man TT Zero Challenge. Optimal control theory was used to perform lap time simulation and design optimisation. A bespoked model was developed, featuring 3D road topology, vehicle dynamics and electric power train, composed of a lithium battery pack, brushed DC motors and motor controller. The model runs simulations over the entire ? or ? of the Snaefell Mountain Course. The work is validated using experimental data from the BX chassis of the Brunel Racing team, which ran during the 2009 to 2015 TT Zero races. Optimal control is used to improve drive train and power train configurations. Findings demonstrate computational efficiency, good lap time prediction and design optimisation potential, achieving a 2 minutes reduction of the reference lap time through changes in final drive gear ratio, battery pack size and motor configuration.

  4. Exact Solutions of Burnt-Bridge Models for Molecular Motor Transport

    NASA Astrophysics Data System (ADS)

    Morozov, Alexander; Pronina, Ekaterina; Kolomeisky, Anatoly; Artyomov, Maxim

    2007-03-01

    Transport of molecular motors, stimulated by interactions with specific links between consecutive binding sites (called ``bridges''), is investigated theoretically by analyzing discrete-state stochastic ``burnt-bridge'' models. When an unbiased diffusing particle crosses the bridge, the link can be destroyed (``burned'') with a probability p, creating a biased directed motion for the particle. It is shown that for probability of burning p=1 the system can be mapped into one-dimensional single-particle hopping model along the periodic infinite lattice that allows one to calculate exactly all dynamic properties. For general case of p<1 a new theoretical method is developed, and dynamic properties are computed explicitly. Discrete-time and continuous-time dynamics, periodic and random distribution of bridges and different burning dynamics are analyzed and compared. Theoretical predictions are supported by extensive Monte Carlo computer simulations. Theoretical results are applied for analysis of the experiments on collagenase motor proteins.

  5. Solutions of burnt-bridge models for molecular motor transport

    NASA Astrophysics Data System (ADS)

    Morozov, Alexander Yu.; Pronina, Ekaterina; Kolomeisky, Anatoly B.; Artyomov, Maxim N.

    2007-03-01

    Transport of molecular motors, stimulated by interactions with specific links between consecutive binding sites (called “bridges”), is investigated theoretically by analyzing discrete-state stochastic “burnt-bridge” models. When an unbiased diffusing particle crosses the bridge, the link can be destroyed (“burned”) with a probability p , creating a biased directed motion for the particle. It is shown that for probability of burning p=1 the system can be mapped into a one-dimensional single-particle hopping model along the periodic infinite lattice that allows one to calculate exactly all dynamic properties. For the general case of p<1 a theoretical method is developed and dynamic properties are computed explicitly. Discrete-time and continuous-time dynamics for periodic distribution of bridges and different burning dynamics are analyzed and compared. Analytical predictions are supported by extensive Monte Carlo computer simulations. Theoretical results are applied for analysis of the experiments on collagenase motor proteins.

  6. Longitudinal evaluation of fine motor skills in children with leukemia.

    PubMed

    Hockenberry, Marilyn; Krull, Kevin; Moore, Ki; Gregurich, Mary Ann; Casey, Marissa E; Kaemingk, Kris

    2007-08-01

    Improved survival for children with acute lymphocytic leukemia (ALL) has allowed investigators to focus on the adverse or side effects of treatment and to develop interventions that promote cure while decreasing the long-term effects of therapy. Although much attention has been given to the significant neurocognitive sequelae that can occur after ALL therapy, limited investigation is found addressing fine motor function in these children and motor function that may contribute to neurocognitive deficits in ALL survivors. Fine motor and sensory-perceptual performances were examined in 82 children with ALL within 6-months of diagnosis and annually for 2 years (year 1 and year 2, respectively) during therapy. Purdue Pegboard assessments indicated significant slowing of fine motor speed and dexterity for the dominant hand, nondominant hand, and both hands simultaneously for children in this study. Mean Visual-Motor Integration (VMI) scores for children with low-risk and high-risk ALL decreased from the first evaluation to year 1 and again at year 2. Mean VMI scores for children with standard risk ALL increased from the first evaluation to year 1 and then decreased at year 2. Significant positive correlations were found between the Purdue and the VMI at both year 1 and year 2, suggesting that the Pegboard performance consistently predicts the later decline in visual-motor integration. Significant correlations were found between the Purdue Pegboard at baseline and the Performance IQ during year 1, though less consistently during year 2. A similar pattern was also observed between the baseline Pegboard performance and performance on the Coding and Symbol Search subtests during year 1 and year 2. In this study, children with ALL experienced significant and persistent visual-motor problems throughout therapy. These problems continued during the first and second years of treatment. These basic processing skills are necessary to the development of higher-level cognitive abilities, including nonverbal intelligence and academic achievement, particularly in arithmetic and written language.

  7. Neural Correlates of Semantic Prediction and Resolution in Sentence Processing.

    PubMed

    Grisoni, Luigi; Miller, Tally McCormick; Pulvermüller, Friedemann

    2017-05-03

    Most brain-imaging studies of language comprehension focus on activity following meaningful stimuli. Testing adult human participants with high-density EEG, we show that, already before the presentation of a critical word, context-induced semantic predictions are reflected by a neurophysiological index, which we therefore call the semantic readiness potential (SRP). The SRP precedes critical words if a previous sentence context constrains the upcoming semantic content (high-constraint contexts), but not in unpredictable (low-constraint) contexts. Specific semantic predictions were indexed by SRP sources within the motor system-in dorsolateral hand motor areas for expected hand-related words (e.g., "write"), but in ventral motor cortex for face-related words ("talk"). Compared with affirmative sentences, negated ones led to medial prefrontal and more widespread motor source activation, the latter being consistent with predictive semantic computation of alternatives to the negated expected concept. Predictive processing of semantic alternatives in negated sentences is further supported by a negative-going event-related potential at ∼400 ms (N400), which showed the typical enhancement to semantically incongruent sentence endings only in high-constraint affirmative contexts, but not to high-constraint negated ones. These brain dynamics reveal the interplay between semantic prediction and resolution (match vs error) processing in sentence understanding. SIGNIFICANCE STATEMENT Most neuroscientists agree on the eminent importance of predictive mechanisms for understanding basic as well as higher brain functions. This contrasts with a sparseness of brain measures that directly reflects specific aspects of prediction, as they are relevant in the processing of language and thought. Here we show that when critical words are strongly expected in their sentence context, a predictive brain response reflects meaning features of these anticipated symbols already before they appear. The granularity of the semantic predictions was so fine grained that the cortical sources in sensorimotor and medial prefrontal cortex even distinguished between predicted face- or hand-related action words (e.g., the words "lick" or "pick") and between affirmative and negated sentence meanings. Copyright © 2017 Grisoni et al.

  8. Neural Correlates of Semantic Prediction and Resolution in Sentence Processing

    PubMed Central

    2017-01-01

    Most brain-imaging studies of language comprehension focus on activity following meaningful stimuli. Testing adult human participants with high-density EEG, we show that, already before the presentation of a critical word, context-induced semantic predictions are reflected by a neurophysiological index, which we therefore call the semantic readiness potential (SRP). The SRP precedes critical words if a previous sentence context constrains the upcoming semantic content (high-constraint contexts), but not in unpredictable (low-constraint) contexts. Specific semantic predictions were indexed by SRP sources within the motor system—in dorsolateral hand motor areas for expected hand-related words (e.g., “write”), but in ventral motor cortex for face-related words (“talk”). Compared with affirmative sentences, negated ones led to medial prefrontal and more widespread motor source activation, the latter being consistent with predictive semantic computation of alternatives to the negated expected concept. Predictive processing of semantic alternatives in negated sentences is further supported by a negative-going event-related potential at ∼400 ms (N400), which showed the typical enhancement to semantically incongruent sentence endings only in high-constraint affirmative contexts, but not to high-constraint negated ones. These brain dynamics reveal the interplay between semantic prediction and resolution (match vs error) processing in sentence understanding. SIGNIFICANCE STATEMENT Most neuroscientists agree on the eminent importance of predictive mechanisms for understanding basic as well as higher brain functions. This contrasts with a sparseness of brain measures that directly reflects specific aspects of prediction, as they are relevant in the processing of language and thought. Here we show that when critical words are strongly expected in their sentence context, a predictive brain response reflects meaning features of these anticipated symbols already before they appear. The granularity of the semantic predictions was so fine grained that the cortical sources in sensorimotor and medial prefrontal cortex even distinguished between predicted face- or hand-related action words (e.g., the words “lick” or “pick”) and between affirmative and negated sentence meanings. PMID:28411271

  9. Field validation of sound mitigation models and air pollutant emission testing in support of missile motor disposal activities.

    PubMed

    McFarland, Michael J; Palmer, Glenn R; Kordich, Micheal M; Pollet, Dean A; Jensen, James A; Lindsay, Mitchell H

    2005-08-01

    The U.S. Department of Defense approved activities conducted at the Utah Test and Training Range (UTTR) include both operational readiness test firing of intercontinental ballistic missile motors as well as the destruction of obsolete or otherwise unusable intercontinental ballistic missile motors through open burn/open detonation (OB/ OD). Within the Utah Division of Air Quality, these activities have been identified as having the potential to generate unacceptable noise levels, as well as significant amounts of hazardous air pollutants. Hill Air Force Base, UT, has completed a series of field tests at the UTTR in which sound-monitoring surveillance of OB/OD activities was conducted to validate the Sound Intensity Prediction System (SIPS) model. Using results generated by the SIPS model to support the decision to detonate, the UTTR successfully disposed of missile motors having an aggregate net explosive weight (NEW) of 56,500 lbs without generating adverse noise levels within populated areas. These results suggest that, under appropriate conditions, missile motors of even larger NEW may be detonated without exceeding regulatory noise limits. In conjunction with collecting noise monitoring data, air quality data was collected to support the development of air emission factors for both static missile motor firings and OB/OD activities. Through the installation of 15 ground-based air samplers, the generation of combustion fixed gases, hazardous air pollutants, and chlorides were monitored during the 56,500-lb NEW detonation event. Comparison of field measurements to predictions generated from the U.S. Navy's energetic combustion pollutant formation model, POLU4WN, indicated that, as the detonation fireball expanded from ground zero, organic compounds as well as carbon monoxide continued to oxidize as the hot gases reacted with ambient air. Hazardous air pollutant analysis of air samplers confirmed the presence of chloromethane, benzene, toluene, 1,2-propadiene, and 2-methyl-l-propene, whereas the absence of hydrogen chloride gas suggested that free chlorine is not generated during the combustion process.

  10. An Injury Severity-, Time Sensitivity-, and Predictability-Based Advanced Automatic Crash Notification Algorithm Improves Motor Vehicle Crash Occupant Triage.

    PubMed

    Stitzel, Joel D; Weaver, Ashley A; Talton, Jennifer W; Barnard, Ryan T; Schoell, Samantha L; Doud, Andrea N; Martin, R Shayn; Meredith, J Wayne

    2016-06-01

    Advanced Automatic Crash Notification algorithms use vehicle telemetry measurements to predict risk of serious motor vehicle crash injury. The objective of the study was to develop an Advanced Automatic Crash Notification algorithm to reduce response time, increase triage efficiency, and improve patient outcomes by minimizing undertriage (<5%) and overtriage (<50%), as recommended by the American College of Surgeons. A list of injuries associated with a patient's need for Level I/II trauma center treatment known as the Target Injury List was determined using an approach based on 3 facets of injury: severity, time sensitivity, and predictability. Multivariable logistic regression was used to predict an occupant's risk of sustaining an injury on the Target Injury List based on crash severity and restraint factors for occupants in the National Automotive Sampling System - Crashworthiness Data System 2000-2011. The Advanced Automatic Crash Notification algorithm was optimized and evaluated to minimize triage rates, per American College of Surgeons recommendations. The following rates were achieved: <50% overtriage and <5% undertriage in side impacts and 6% to 16% undertriage in other crash modes. Nationwide implementation of our algorithm is estimated to improve triage decisions for 44% of undertriaged and 38% of overtriaged occupants. Annually, this translates to more appropriate care for >2,700 seriously injured occupants and reduces unnecessary use of trauma center resources for >162,000 minimally injured occupants. The algorithm could be incorporated into vehicles to inform emergency personnel of recommended motor vehicle crash triage decisions. Lower under- and overtriage was achieved, and nationwide implementation of the algorithm would yield improved triage decision making for an estimated 165,000 occupants annually. Copyright © 2016. Published by Elsevier Inc.

  11. SMA-MAP: a plasma protein panel for spinal muscular atrophy.

    PubMed

    Kobayashi, Dione T; Shi, Jing; Stephen, Laurie; Ballard, Karri L; Dewey, Ruth; Mapes, James; Chung, Brett; McCarthy, Kathleen; Swoboda, Kathryn J; Crawford, Thomas O; Li, Rebecca; Plasterer, Thomas; Joyce, Cynthia; Chung, Wendy K; Kaufmann, Petra; Darras, Basil T; Finkel, Richard S; Sproule, Douglas M; Martens, William B; McDermott, Michael P; De Vivo, Darryl C; Walker, Michael G; Chen, Karen S

    2013-01-01

    Spinal Muscular Atrophy (SMA) presents challenges in (i) monitoring disease activity and predicting progression, (ii) designing trials that allow rapid assessment of candidate therapies, and (iii) understanding molecular causes and consequences of the disease. Validated biomarkers of SMA motor and non-motor function would offer utility in addressing these challenges. Our objectives were (i) to discover additional markers from the Biomarkers for SMA (BforSMA) study using an immunoassay platform, and (ii) to validate the putative biomarkers in an independent cohort of SMA patients collected from a multi-site natural history study (NHS). BforSMA study plasma samples (N = 129) were analyzed by immunoassay to identify new analytes correlating to SMA motor function. These immunoassays included the strongest candidate biomarkers identified previously by chromatography. We selected 35 biomarkers to validate in an independent cohort SMA type 1, 2, and 3 samples (N = 158) from an SMA NHS. The putative biomarkers were tested for association to multiple motor scales and to pulmonary function, neurophysiology, strength, and quality of life measures. We implemented a Tobit model to predict SMA motor function scores. 12 of the 35 putative SMA biomarkers were significantly associated (p<0.05) with motor function, with a 13(th) analyte being nearly significant. Several other analytes associated with non-motor SMA outcome measures. From these 35 biomarkers, 27 analytes were selected for inclusion in a commercial panel (SMA-MAP) for association with motor and other functional measures. Discovery and validation using independent cohorts yielded a set of SMA biomarkers significantly associated with motor function and other measures of SMA disease activity. A commercial SMA-MAP biomarker panel was generated for further testing in other SMA collections and interventional trials. Future work includes evaluating the panel in other neuromuscular diseases, for pharmacodynamic responsiveness to experimental SMA therapies, and for predicting functional changes over time in SMA patients.

  12. Development of Tripropellant CFD Design Code

    NASA Technical Reports Server (NTRS)

    Farmer, Richard C.; Cheng, Gary C.; Anderson, Peter G.

    1998-01-01

    A tripropellant, such as GO2/H2/RP-1, CFD design code has been developed to predict the local mixing of multiple propellant streams as they are injected into a rocket motor. The code utilizes real fluid properties to account for the mixing and finite-rate combustion processes which occur near an injector faceplate, thus the analysis serves as a multi-phase homogeneous spray combustion model. Proper accounting of the combustion allows accurate gas-side temperature predictions which are essential for accurate wall heating analyses. The complex secondary flows which are predicted to occur near a faceplate cannot be quantitatively predicted by less accurate methodology. Test cases have been simulated to describe an axisymmetric tripropellant coaxial injector and a 3-dimensional RP-1/LO2 impinger injector system. The analysis has been shown to realistically describe such injector combustion flowfields. The code is also valuable to design meaningful future experiments by determining the critical location and type of measurements needed.

  13. Parallel processing streams for motor output and sensory prediction during action preparation

    PubMed Central

    Bauer, Markus; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J.

    2014-01-01

    Sensory consequences of one's own actions are perceived as less intense than identical, externally generated stimuli. This is generally taken as evidence for sensory prediction of action consequences. Accordingly, recent theoretical models explain this attenuation by an anticipatory modulation of sensory processing prior to stimulus onset (Roussel et al. 2013) or even action execution (Brown et al. 2013). Experimentally, prestimulus changes that occur in anticipation of self-generated sensations are difficult to disentangle from more general effects of stimulus expectation, attention and task load (performing an action). Here, we show that an established manipulation of subjective agency over a stimulus leads to a predictive modulation in sensory cortex that is independent of these factors. We recorded magnetoencephalography while subjects performed a simple action with either hand and judged the loudness of a tone caused by the action. Effector selection was manipulated by subliminal motor priming. Compatible priming is known to enhance a subjective experience of agency over a consequent stimulus (Chambon and Haggard 2012). In line with this effect on subjective agency, we found stronger sensory attenuation when the action that caused the tone was compatibly primed. This perceptual effect was reflected in a transient phase-locked signal in auditory cortex before stimulus onset and motor execution. Interestingly, this sensory signal emerged at a time when the hemispheric lateralization of motor signals in M1 indicated ongoing effector selection. Our findings confirm theoretical predictions of a sensory modulation prior to self-generated sensations and support the idea that a sensory prediction is generated in parallel to motor output (Walsh and Haggard 2010), before an efference copy becomes available. PMID:25540223

  14. Parallel processing streams for motor output and sensory prediction during action preparation.

    PubMed

    Stenner, Max-Philipp; Bauer, Markus; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J

    2015-03-15

    Sensory consequences of one's own actions are perceived as less intense than identical, externally generated stimuli. This is generally taken as evidence for sensory prediction of action consequences. Accordingly, recent theoretical models explain this attenuation by an anticipatory modulation of sensory processing prior to stimulus onset (Roussel et al. 2013) or even action execution (Brown et al. 2013). Experimentally, prestimulus changes that occur in anticipation of self-generated sensations are difficult to disentangle from more general effects of stimulus expectation, attention and task load (performing an action). Here, we show that an established manipulation of subjective agency over a stimulus leads to a predictive modulation in sensory cortex that is independent of these factors. We recorded magnetoencephalography while subjects performed a simple action with either hand and judged the loudness of a tone caused by the action. Effector selection was manipulated by subliminal motor priming. Compatible priming is known to enhance a subjective experience of agency over a consequent stimulus (Chambon and Haggard 2012). In line with this effect on subjective agency, we found stronger sensory attenuation when the action that caused the tone was compatibly primed. This perceptual effect was reflected in a transient phase-locked signal in auditory cortex before stimulus onset and motor execution. Interestingly, this sensory signal emerged at a time when the hemispheric lateralization of motor signals in M1 indicated ongoing effector selection. Our findings confirm theoretical predictions of a sensory modulation prior to self-generated sensations and support the idea that a sensory prediction is generated in parallel to motor output (Walsh and Haggard 2010), before an efference copy becomes available. Copyright © 2015 the American Physiological Society.

  15. Real-time estimation of FES-induced joint torque with evoked EMG : Application to spinal cord injured patients.

    PubMed

    Li, Zhan; Guiraud, David; Andreu, David; Benoussaad, Mourad; Fattal, Charles; Hayashibe, Mitsuhiro

    2016-06-22

    Functional electrical stimulation (FES) is a neuroprosthetic technique for restoring lost motor function of spinal cord injured (SCI) patients and motor-impaired subjects by delivering short electrical pulses to their paralyzed muscles or motor nerves. FES induces action potentials respectively on muscles or nerves so that muscle activity can be characterized by the synchronous recruitment of motor units with its compound electromyography (EMG) signal is called M-wave. The recorded evoked EMG (eEMG) can be employed to predict the resultant joint torque, and modeling of FES-induced joint torque based on eEMG is an essential step to provide necessary prediction of the expected muscle response before achieving accurate joint torque control by FES. Previous works on FES-induced torque tracking issues were mainly based on offline analysis. However, toward personalized clinical rehabilitation applications, real-time FES systems are essentially required considering the subject-specific muscle responses against electrical stimulation. This paper proposes a wireless portable stimulator used for estimating/predicting joint torque based on real time processing of eEMG. Kalman filter and recurrent neural network (RNN) are embedded into the real-time FES system for identification and estimation. Prediction results on 3 able-bodied subjects and 3 SCI patients demonstrate promising performances. As estimators, both Kalman filter and RNN approaches show clinically feasible results on estimation/prediction of joint torque with eEMG signals only, moreover RNN requires less computational requirement. The proposed real-time FES system establishes a platform for estimating and assessing the mechanical output, the electromyographic recordings and associated models. It will contribute to open a new modality for personalized portable neuroprosthetic control toward consolidated personal healthcare for motor-impaired patients.

  16. Characterization of Space Shuttle Reusable Rocket Motor Static Test Stand Thrust Measurements

    NASA Technical Reports Server (NTRS)

    Cook, Mart L.; Gruet, Laurent; Cash, Stephen F. (Technical Monitor)

    2003-01-01

    Space Shuttle Reusable Solid Rocket Motors (RSRM) are static tested at two ATK Thiokol Propulsion facilities in Utah, T-24 and T-97. The newer T-97 static test facility was recently upgraded to allow thrust measurement capability. All previous static test motor thrust measurements have been taken at T-24; data from these tests were used to characterize thrust parameters and requirement limits for flight motors. Validation of the new T-97 thrust measurement system is required prior to use for official RSRM performance assessments. Since thrust cannot be measured on RSRM flight motors, flight motor measured chamber pressure and a nominal thrust-to-pressure relationship (based on static test motor thrust and pressure measurements) are used to reconstruct flight motor performance. Historical static test and flight motor performance data are used in conjunction with production subscale test data to predict RSRM performance. The predicted motor performance is provided to support Space Shuttle trajectory and system loads analyses. Therefore, an accurate nominal thrust-to-pressure (F/P) relationship is critical for accurate RSRM flight motor performance and Space Shuttle analyses. Flight Support Motors (FSM) 7, 8, and 9 provided thrust data for the validation of the T-97 thrust measurement system. The T-97 thrust data were analyzed and compared to thrust previously measured at T-24 to verify measured thrust data and identify any test-stand bias. The T-97 FIP data were consistent and within the T-24 static test statistical family expectation. The FSMs 7-9 thrust data met all NASA contract requirements, and the test stand is now verified for future thrust measurements.

  17. Task-Relevant Information Modulates Primary Motor Cortex Activity Before Movement Onset.

    PubMed

    Calderon, Cristian B; Van Opstal, Filip; Peigneux, Philippe; Verguts, Tom; Gevers, Wim

    2018-01-01

    Monkey neurophysiology research supports the affordance competition hypothesis (ACH) proposing that cognitive information useful for action selection is integrated in sensorimotor areas. In this view, action selection would emerge from the simultaneous representation of competing action plans, in parallel biased by relevant task factors. This biased competition would take place up to primary motor cortex (M1). Although ACH is plausible in environments affording choices between actions, its relevance for human decision making is less clear. To address this issue, we designed an functional magnetic resonance imaging (fMRI) experiment modeled after monkey neurophysiology studies in which human participants processed cues conveying predictive information about upcoming button presses. Our results demonstrate that, as predicted by the ACH, predictive information (i.e., the relevant task factor) biases activity of primary motor regions. Specifically, first, activity before movement onset in contralateral M1 increases as the competition is biased in favor of a specific button press relative to activity in ipsilateral M1. Second, motor regions were more tightly coupled with fronto-parietal regions when competition between potential actions was high, again suggesting that motor regions are also part of the biased competition network. Our findings support the idea that action planning dynamics as proposed in the ACH are valid both in human and non-human primates.

  18. Priors Engaged in Long-Latency Responses to Mechanical Perturbations Suggest a Rapid Update in State Estimation

    PubMed Central

    Crevecoeur, Frédéric; Scott, Stephen H.

    2013-01-01

    In every motor task, our brain must handle external forces acting on the body. For example, riding a bike on cobblestones or skating on irregular surface requires us to appropriately respond to external perturbations. In these situations, motor predictions cannot help anticipate the motion of the body induced by external factors, and direct use of delayed sensory feedback will tend to generate instability. Here, we show that to solve this problem the motor system uses a rapid sensory prediction to correct the estimated state of the limb. We used a postural task with mechanical perturbations to address whether sensory predictions were engaged in upper-limb corrective movements. Subjects altered their initial motor response in ∼60 ms, depending on the expected perturbation profile, suggesting the use of an internal model, or prior, in this corrective process. Further, we found trial-to-trial changes in corrective responses indicating a rapid update of these perturbation priors. We used a computational model based on Kalman filtering to show that the response modulation was compatible with a rapid correction of the estimated state engaged in the feedback response. Such a process may allow us to handle external disturbances encountered in virtually every physical activity, which is likely an important feature of skilled motor behaviour. PMID:23966846

  19. Finite Element Analysis in the Estimation of Air-Gap Torque and Surface Temperature of Induction Machine

    NASA Astrophysics Data System (ADS)

    Mr., J. Ravi Kumar; Banakara, Basavaraja, Dr.

    2017-08-01

    This paper presents electromagnetic and thermal behavior of Induction Motor (IM) through the modeling and analysis by applying multiphysics coupled Finite Element Analysis (FEA). Therefore prediction of the magnetic flux, electromagnetic torque, stator and rotor losses and temperature distribution inside an operating electric motor are the most important issues during its design. Prediction and estimation of these parameters allows design engineers to decide capability of the machine for the proposed load, temperature rating and its application for which it is being designed ensuring normal motor operation at rated conditions. In this work, multiphysics coupled electromagnetic - thermal modeling and analysis of induction motor at rated and high frequency has carried out applying Arkkio’s torque method. COMSOL Multiphysics software is used for modeling and finite element analysis of IM. Transient electromagnetic torque, magnetic field distribution, speed-torque characteristics of IM were plotted and studied at different frequencies. This proposed work helps in the design and prediction of accurate performance of induction motor specific to various industrial drive applications. Results obtained are also validated with experimental analysis. The main purpose of this model is to use it as an integral part of the design aiming to system optimization of Variable Speed Drive (VSD) and its components using coupled simulations.

  20. Ability of three motor measures to predict functional outcomes reported by stroke patients after rehabilitation.

    PubMed

    Li, Kuan-Yi; Lin, Keh-Chung; Wang, Tien-Ni; Wu, Ching-Yi; Huang, Yan-Hua; Ouyang, Pei

    2012-01-01

    This investigation examined the demographic characteristics along with 3 measures of motor function in determining outcomes in activities of daily living (ADL) after distributed constraint-induced therapy (dCIT). The study recruited 69 stroke patients who received 3 weeks of dCIT for 2 hours daily, 5 days a week. The self-reported outcome measures for daily function were the Motor Activity Log (MAL) including the amount of use (AOU) and quality of movement (QOM), Nottingham Extended Activities of Daily Living Questionnaire (NEADL), and the Stroke Impact Scale (SIS). Age, sex, onset, side of stroke, Fugl-Meyer assessment (FMA), Wolf Motor Function Test (WMFT), and Action Research Arm Test (ARAT) were the potential predictors. The ARAT grasp-grip-pinch score was the most dominant predictor for MAL-AOU and NEADL (P< 0.05), and the ARAT total score for the subscore of the ADL/instrumental ADL section of the SIS (P< 0.05). The FMA wrist-hand score was a significant predictor for MAL-QOM (P< 0.05). Age was the only demographic factor that significantly predicted NEADL performance (P< 0.05). Among the 3 commonly used measures of motor function after stroke, ARAT was the strongest determinant in predicting MAL-AOU, MAL-QOM, and SIS-ADL/instrumental ADL after dCIT.

  1. A Muscle’s Force Depends on the Recruitment Patterns of Its Fibers

    PubMed Central

    Wakeling, James M.; Lee, Sabrina S. M.; Arnold, Allison S.; de Boef Miara, Maria; Biewener, Andrew A.

    2012-01-01

    Biomechanical models of whole muscles commonly used in simulations of musculoskeletal function and movement typically assume that the muscle generates force as a scaled-up muscle fiber. However, muscles are comprised of motor units that have different intrinsic properties and that can be activated at different times. This study tested whether a muscle model comprised of motor units that could be independently activated resulted in more accurate predictions of force than traditional Hill-type models. Forces predicted by the models were evaluated by direct comparison with the muscle forces measured in situ from the gastrocnemii in goats. The muscle was stimulated tetanically at a range of frequencies, muscle fiber strains were measured using sonomicrometry, and the activation patterns of the different types of motor unit were calculated from electromyographic recordings. Activation patterns were input into five different muscle models. Four models were traditional Hill-type models with different intrinsic speeds and fiber-type properties. The fifth model incorporated differential groups of fast and slow motor units. For all goats, muscles and stimulation frequencies the differential model resulted in the best predictions of muscle force. The in situ muscle output was shown to depend on the recruitment of different motor units within the muscle. PMID:22350666

  2. Moving the eye of the beholder. Motor components in vision determine aesthetic preference.

    PubMed

    Topolinski, Sascha

    2010-09-01

    Perception entails not only sensory input (e.g., merely seeing), but also subsidiary motor processes (e.g., moving the eyes); such processes have been neglected in research on aesthetic preferences. To fill this gap, the present research manipulated the fluency of perceptual motor processes independently from sensory input and predicted that this increased fluency would result in increased aesthetic preference for stimulus movements that elicited the same motor movements as had been previously trained. Specifically, addressing the muscles that move the eyes, I trained participants to follow a stimulus movement without actually seeing it. Experiment 1 demonstrated that ocular-muscle training resulted in the predicted increase in preference for trained stimulus movements compared with untrained stimulus movements, although participants had not previously seen any of the movements. Experiments 2 and 3 showed that actual motor matching and not perceptual similarity drove this effect. Thus, beauty may be not only in the eye of the beholder, but also in the eyes' movements.

  3. The Longitudinal Course of Gross Motor Activity in Schizophrenia – Within and between Episodes

    PubMed Central

    Walther, Sebastian; Stegmayer, Katharina; Horn, Helge; Rampa, Luca; Razavi, Nadja; Müller, Thomas J.; Strik, Werner

    2015-01-01

    Schizophrenia is associated with heterogeneous course of positive and negative symptoms. In addition, reduced motor activity as measured by wrist actigraphy has been reported. However, longitudinal studies of spontaneous motor activity are missing. We aimed to explore whether activity levels were stable within and between psychotic episodes. Furthermore, we investigated the association with the course of negative symptoms. In 45 medicated patients, we investigated motor behavior within a psychotic episode. In addition, we followed 18 medicated patients across 2 episodes. Wrist actigraphy and psychopathological ratings were applied. Within an episode symptoms changed but activity levels did not vary systematically. Activity at baseline predicted the course of negative symptoms. Between two episodes activity recordings were much more stable. Again, activity at the index episode predicted the outcome of negative symptoms. In sum, spontaneous motor activity shares trait and state characteristics, the latter are associated with negative symptom course. Actigraphy may therefore become an important ambulatory instrument to monitor negative symptoms and treatment outcome in schizophrenia. PMID:25698981

  4. Motor ability and inhibitory processes in children with ADHD: a neuroelectric study.

    PubMed

    Hung, Chiao-Ling; Chang, Yu-Kai; Chan, Yuan-Shuo; Shih, Chia-Hao; Huang, Chung-Ju; Hung, Tsung-Min

    2013-06-01

    The purpose of the current study was to examine the relationship between motor ability and response inhibition using behavioral and electrophysiological indices in children with ADHD. A total of 32 participants were recruited and underwent a motor ability assessment by administering the Basic Motor Ability Test-Revised (BMAT) as well as the Go/No-Go task and event-related potential (ERP) measurements at the same time. The results indicated that the BMAT scores were positively associated with the behavioral and ERP measures. Specifically, the BMAT average score was associated with a faster reaction time and higher accuracy, whereas higher BMAT subset scores predicted a shorter P3 latency in the Go condition. Although the association between the BMAT average score and the No-Go accuracy was limited, higher BMAT average and subset scores predicted a shorter N2 and P3 latency and a larger P3 amplitude in the No-Go condition. These findings suggest that motor abilities may play roles that benefit the cognitive performance of ADHD children.

  5. Reusable Solid Rocket Motor Nozzle Joint-4 Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Clayton, J. Louie

    2001-01-01

    This study provides for development and test verification of a thermal model used for prediction of joint heating environments, structural temperatures and seal erosions in the Space Shuttle Reusable Solid Rocket Motor (RSRM) Nozzle Joint-4. The heating environments are a result of rapid pressurization of the joint free volume assuming a leak path has occurred in the filler material used for assembly gap close out. Combustion gases flow along the leak path from nozzle environment to joint O-ring gland resulting in local heating to the metal housing and erosion of seal materials. Analysis of this condition was based on usage of the NASA Joint Pressurization Routine (JPR) for environment determination and the Systems Improved Numerical Differencing Analyzer (SINDA) for structural temperature prediction. Model generated temperatures, pressures and seal erosions are compared to hot fire test data for several different leak path situations. Investigated in the hot fire test program were nozzle joint-4 O-ring erosion sensitivities to leak path width in both open and confined joint geometries. Model predictions were in generally good agreement with the test data for the confined leak path cases. Worst case flight predictions are provided using the test-calibrated model. Analysis issues are discussed based on model calibration procedures.

  6. A Hebbian learning rule gives rise to mirror neurons and links them to control theoretic inverse models.

    PubMed

    Hanuschkin, A; Ganguli, S; Hahnloser, R H R

    2013-01-01

    Mirror neurons are neurons whose responses to the observation of a motor act resemble responses measured during production of that act. Computationally, mirror neurons have been viewed as evidence for the existence of internal inverse models. Such models, rooted within control theory, map-desired sensory targets onto the motor commands required to generate those targets. To jointly explore both the formation of mirrored responses and their functional contribution to inverse models, we develop a correlation-based theory of interactions between a sensory and a motor area. We show that a simple eligibility-weighted Hebbian learning rule, operating within a sensorimotor loop during motor explorations and stabilized by heterosynaptic competition, naturally gives rise to mirror neurons as well as control theoretic inverse models encoded in the synaptic weights from sensory to motor neurons. Crucially, we find that the correlational structure or stereotypy of the neural code underlying motor explorations determines the nature of the learned inverse model: random motor codes lead to causal inverses that map sensory activity patterns to their motor causes; such inverses are maximally useful, by allowing the imitation of arbitrary sensory target sequences. By contrast, stereotyped motor codes lead to less useful predictive inverses that map sensory activity to future motor actions. Our theory generalizes previous work on inverse models by showing that such models can be learned in a simple Hebbian framework without the need for error signals or backpropagation, and it makes new conceptual connections between the causal nature of inverse models, the statistical structure of motor variability, and the time-lag between sensory and motor responses of mirror neurons. Applied to bird song learning, our theory can account for puzzling aspects of the song system, including necessity of sensorimotor gating and selectivity of auditory responses to bird's own song (BOS) stimuli.

  7. A Hebbian learning rule gives rise to mirror neurons and links them to control theoretic inverse models

    PubMed Central

    Hanuschkin, A.; Ganguli, S.; Hahnloser, R. H. R.

    2013-01-01

    Mirror neurons are neurons whose responses to the observation of a motor act resemble responses measured during production of that act. Computationally, mirror neurons have been viewed as evidence for the existence of internal inverse models. Such models, rooted within control theory, map-desired sensory targets onto the motor commands required to generate those targets. To jointly explore both the formation of mirrored responses and their functional contribution to inverse models, we develop a correlation-based theory of interactions between a sensory and a motor area. We show that a simple eligibility-weighted Hebbian learning rule, operating within a sensorimotor loop during motor explorations and stabilized by heterosynaptic competition, naturally gives rise to mirror neurons as well as control theoretic inverse models encoded in the synaptic weights from sensory to motor neurons. Crucially, we find that the correlational structure or stereotypy of the neural code underlying motor explorations determines the nature of the learned inverse model: random motor codes lead to causal inverses that map sensory activity patterns to their motor causes; such inverses are maximally useful, by allowing the imitation of arbitrary sensory target sequences. By contrast, stereotyped motor codes lead to less useful predictive inverses that map sensory activity to future motor actions. Our theory generalizes previous work on inverse models by showing that such models can be learned in a simple Hebbian framework without the need for error signals or backpropagation, and it makes new conceptual connections between the causal nature of inverse models, the statistical structure of motor variability, and the time-lag between sensory and motor responses of mirror neurons. Applied to bird song learning, our theory can account for puzzling aspects of the song system, including necessity of sensorimotor gating and selectivity of auditory responses to bird's own song (BOS) stimuli. PMID:23801941

  8. Quantifying cardiorespiratory responses resulting from speed and slope increments during motorized treadmill propulsion among manual wheelchair users.

    PubMed

    Gauthier, Cindy; Grangeon, Murielle; Ananos, Ludivine; Brosseau, Rachel; Gagnon, Dany H

    2017-09-01

    Cardiorespiratory fitness assessment and training among manual wheelchair (MW) users are predominantly done with an arm-crank ergometer. However, arm-crank ergometer biomechanics differ substantially from MW propulsion biomechanics. This study aimed to quantify cardiorespiratory responses resulting from speed and slope increments during MW propulsion on a motorized treadmill and to calculate a predictive equation based on speed and slope for estimating peak oxygen uptake (VO 2peak ) in MW users. In total, 17 long-term MW users completed 12 MW propulsion periods (PP), each lasting 2min, on a motorized treadmill, in a random order. Each PP was separated by a 2-min rest. PPs were characterized by a combination of 3 speeds (0.6, 0.8 and 1.0m/s) and 4 slopes (0°, 2.7°, 3.6° and 4.8°). Six key cardiorespiratory outcome measures (VO 2 , heart rate, respiratory rate, minute ventilation and tidal volume) were recorded by using a gas-exchange analysis system. Rate of perceived exertion (RPE) was measured by using the modified 10-point Borg scale after each PP. For the 14 participants who completed the test, cardiorespiratory responses increased in response to speed and/or slope increments, except those recorded between the 3.6 o and 4.8 o slope, for which most outcome measures were comparable. The RPE was positively associated with cardiorespiratory response (r s ≥0.85). A VO 2 predictive equation (R 2 =99.7%) based on speed and slope for each PP was computed. This equation informed the development of a future testing protocol to linearly increase VO 2 via 1-min stages during treadmill MW propulsion. Increasing speed and slope while propelling a MW on a motorized treadmill increases cardiorespiratory response along with RPE. RPE can be used to easily and accurately monitor cardiorespiratory responses during MW exercise. The VO 2 can be predicted to some extent by speed and slope during MW propulsion. A testing protocol is proposed to assess cardiorespiratory fitness during motorized MW propulsion. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Predicting Receptive-Expressive Vocabulary Discrepancies in Preschool Children With Autism Spectrum Disorder.

    PubMed

    McDaniel, Jena; Yoder, Paul; Woynaroski, Tiffany; Watson, Linda R

    2018-05-15

    Correlates of receptive-expressive vocabulary size discrepancies may provide insights into why language development in children with autism spectrum disorder (ASD) deviates from typical language development and ultimately improve intervention outcomes. We indexed receptive-expressive vocabulary size discrepancies of 65 initially preverbal children with ASD (20-48 months) to a comparison sample from the MacArthur-Bates Communicative Development Inventories Wordbank (Frank, Braginsky, Yurovsky, & Marchman, 2017) to quantify typicality. We then tested whether attention toward a speaker and oral motor performance predict typicality of the discrepancy 8 months later. Attention toward a speaker correlated positively with receptive-expressive vocabulary size discrepancy typicality. Imitative and nonimitative oral motor performance were not significant predictors of vocabulary size discrepancy typicality. Secondary analyses indicated that midpoint receptive vocabulary size mediated the association between initial attention toward a speaker and end point receptive-expressive vocabulary size discrepancy typicality. Findings support the hypothesis that variation in attention toward a speaker might partially explain receptive-expressive vocabulary size discrepancy magnitude in children with ASD. Results are consistent with an input-processing deficit explanation of language impairment in this clinical population. Future studies should test whether attention toward a speaker is malleable and causally related to receptive-expressive discrepancies in children with ASD.

  10. Discerning measures of conscious brain processes associated with superior early motor performance: Capacity, coactivation, and character.

    PubMed

    van Duijn, Tina; Buszard, Tim; Hoskens, Merel C J; Masters, Rich S W

    2017-01-01

    This study explored the relationship between working memory (WM) capacity, corticocortical communication (EEG coherence), and propensity for conscious control of movement during the performance of a complex far-aiming task. We were specifically interested in the role of these variables in predicting motor performance by novices. Forty-eight participants completed (a) an assessment of WM capacity (an adapted Rotation Span task), (b) a questionnaire that assessed the propensity to consciously control movement (the Movement Specific Reinvestment Scale), and (c) a hockey push-pass task. The hockey push-pass task was performed in a single task (movement only) condition and a combined task (movement plus decision) condition. Electroencephalography (EEG) was used to examine brain activity during the single task. WM capacity best predicted single task performance. WM capacity in combination with T8-Fz coherence (between the visuospatial and motor regions of the brain) best predicted combined task performance. We discuss the implied roles of visuospatial information processing capacity, neural coactivation, and propensity for conscious processing during performance of complex motor tasks. © 2017 Elsevier B.V. All rights reserved.

  11. Long-Term Prognostic Validity of Talent Selections: Comparing National and Regional Coaches, Laypersons and Novices

    PubMed Central

    Schorer, Jörg; Rienhoff, Rebecca; Fischer, Lennart; Baker, Joseph

    2017-01-01

    In most sports, the development of elite athletes is a long-term process of talent identification and support. Typically, talent selection systems administer a multi-faceted strategy including national coach observations and varying physical and psychological tests when deciding who is chosen for talent development. The aim of this exploratory study was to evaluate the prognostic validity of talent selections by varying groups 10 years after they had been conducted. This study used a unique, multi-phased approach. Phase 1 involved players (n = 68) in 2001 completing a battery of general and sport-specific tests of handball ‘talent’ and performance. In Phase 2, national and regional coaches (n = 7) in 2001 who attended training camps identified the most talented players. In Phase 3, current novice and advanced handball players (n = 12 in each group) selected the most talented from short videos of matches played during the talent camp. Analyses compared predictions among all groups with a best model-fit derived from the motor tests. Results revealed little difference between regional and national coaches in the prediction of future performance and little difference in forecasting performance between novices and players. The best model-fit regression by the motor-tests outperformed all predictions. While several limitations are discussed, this study is a useful starting point for future investigations considering athlete selection decisions in talent identification in sport. PMID:28744238

  12. Long-Term Prognostic Validity of Talent Selections: Comparing National and Regional Coaches, Laypersons and Novices.

    PubMed

    Schorer, Jörg; Rienhoff, Rebecca; Fischer, Lennart; Baker, Joseph

    2017-01-01

    In most sports, the development of elite athletes is a long-term process of talent identification and support. Typically, talent selection systems administer a multi-faceted strategy including national coach observations and varying physical and psychological tests when deciding who is chosen for talent development. The aim of this exploratory study was to evaluate the prognostic validity of talent selections by varying groups 10 years after they had been conducted. This study used a unique, multi-phased approach. Phase 1 involved players ( n = 68) in 2001 completing a battery of general and sport-specific tests of handball 'talent' and performance. In Phase 2, national and regional coaches ( n = 7) in 2001 who attended training camps identified the most talented players. In Phase 3, current novice and advanced handball players ( n = 12 in each group) selected the most talented from short videos of matches played during the talent camp. Analyses compared predictions among all groups with a best model-fit derived from the motor tests. Results revealed little difference between regional and national coaches in the prediction of future performance and little difference in forecasting performance between novices and players. The best model-fit regression by the motor-tests outperformed all predictions. While several limitations are discussed, this study is a useful starting point for future investigations considering athlete selection decisions in talent identification in sport.

  13. Development of a Portable Motor Learning Laboratory (PoMLab)

    PubMed Central

    Shinya, Masahiro

    2016-01-01

    Most motor learning experiments have been conducted in a laboratory setting. In this type of setting, a huge and expensive manipulandum is frequently used, requiring a large budget and wide open space. Subjects also need to travel to the laboratory, which is a burden for them. This burden is particularly severe for patients with neurological disorders. Here, we describe the development of a novel application based on Unity3D and smart devices, e.g., smartphones or tablet devices, that can be used to conduct motor learning experiments at any time and in any place, without requiring a large budget and wide open space and without the burden of travel on subjects. We refer to our application as POrtable Motor learning LABoratory, or PoMLab. PoMLab is a multiplatform application that is available and sharable for free. We investigated whether PoMLab could be an alternative to the laboratory setting using a visuomotor rotation paradigm that causes sensory prediction error, enabling the investigation of how subjects minimize the error. In the first experiment, subjects could adapt to a constant visuomotor rotation that was abruptly applied at a specific trial. The learning curve for the first experiment could be modeled well using a state space model, a mathematical model that describes the motor leaning process. In the second experiment, subjects could adapt to a visuomotor rotation that gradually increased each trial. The subjects adapted to the gradually increasing visuomotor rotation without being aware of the visuomotor rotation. These experimental results have been reported for conventional experiments conducted in a laboratory setting, and our PoMLab application could reproduce these results. PoMLab can thus be considered an alternative to the laboratory setting. We also conducted follow-up experiments in university physical education classes. A state space model that was fit to the data obtained in the laboratory experiments could predict the learning curves obtained in the follow-up experiments. Further, we investigated the influence of vibration function, weight, and screen size on learning curves. Finally, we compared the learning curves obtained in the PoMLab experiments to those obtained in the conventional reaching experiments. The results of the in-class experiments show that PoMLab can be used to conduct motor learning experiments at any time and place. PMID:27348223

  14. Development of a Portable Motor Learning Laboratory (PoMLab).

    PubMed

    Takiyama, Ken; Shinya, Masahiro

    2016-01-01

    Most motor learning experiments have been conducted in a laboratory setting. In this type of setting, a huge and expensive manipulandum is frequently used, requiring a large budget and wide open space. Subjects also need to travel to the laboratory, which is a burden for them. This burden is particularly severe for patients with neurological disorders. Here, we describe the development of a novel application based on Unity3D and smart devices, e.g., smartphones or tablet devices, that can be used to conduct motor learning experiments at any time and in any place, without requiring a large budget and wide open space and without the burden of travel on subjects. We refer to our application as POrtable Motor learning LABoratory, or PoMLab. PoMLab is a multiplatform application that is available and sharable for free. We investigated whether PoMLab could be an alternative to the laboratory setting using a visuomotor rotation paradigm that causes sensory prediction error, enabling the investigation of how subjects minimize the error. In the first experiment, subjects could adapt to a constant visuomotor rotation that was abruptly applied at a specific trial. The learning curve for the first experiment could be modeled well using a state space model, a mathematical model that describes the motor leaning process. In the second experiment, subjects could adapt to a visuomotor rotation that gradually increased each trial. The subjects adapted to the gradually increasing visuomotor rotation without being aware of the visuomotor rotation. These experimental results have been reported for conventional experiments conducted in a laboratory setting, and our PoMLab application could reproduce these results. PoMLab can thus be considered an alternative to the laboratory setting. We also conducted follow-up experiments in university physical education classes. A state space model that was fit to the data obtained in the laboratory experiments could predict the learning curves obtained in the follow-up experiments. Further, we investigated the influence of vibration function, weight, and screen size on learning curves. Finally, we compared the learning curves obtained in the PoMLab experiments to those obtained in the conventional reaching experiments. The results of the in-class experiments show that PoMLab can be used to conduct motor learning experiments at any time and place.

  15. Improving actuation efficiency through variable recruitment hydraulic McKibben muscles: modeling, orderly recruitment control, and experiments.

    PubMed

    Meller, Michael; Chipka, Jordan; Volkov, Alexander; Bryant, Matthew; Garcia, Ephrahim

    2016-11-03

    Hydraulic control systems have become increasingly popular as the means of actuation for human-scale legged robots and assistive devices. One of the biggest limitations to these systems is their run time untethered from a power source. One way to increase endurance is by improving actuation efficiency. We investigate reducing servovalve throttling losses by using a selective recruitment artificial muscle bundle comprised of three motor units. Each motor unit is made up of a pair of hydraulic McKibben muscles connected to one servovalve. The pressure and recruitment state of the artificial muscle bundle can be adjusted to match the load in an efficient manner, much like the firing rate and total number of recruited motor units is adjusted in skeletal muscle. A volume-based effective initial braid angle is used in the model of each recruitment level. This semi-empirical model is utilized to predict the efficiency gains of the proposed variable recruitment actuation scheme versus a throttling-only approach. A real-time orderly recruitment controller with pressure-based thresholds is developed. This controller is used to experimentally validate the model-predicted efficiency gains of recruitment on a robot arm. The results show that utilizing variable recruitment allows for much higher efficiencies over a broader operating envelope.

  16. Underlying mechanisms of writing difficulties among children with neurofibromatosis type 1.

    PubMed

    Gilboa, Yafit; Josman, Naomi; Fattal-Valevski, Aviva; Toledano-Alhadef, Hagit; Rosenblum, Sara

    2014-06-01

    Writing is a complex activity in which lower-level perceptual-motor processes and higher-level cognitive processes continuously interact. Preliminary evidence suggests that writing difficulties are common to children with Neurofibromatosis type 1 (NF1). The aim of this study was to compare the performance of children with and without NF1 in lower (visual perception, motor coordination and visual-motor integration) and higher processes (verbal and performance intelligence, visual spatial organization and visual memory) required for intact writing; and to identify the components that predict the written product's spatial arrangement and content among children with NF1. Thirty children with NF1 (ages 8-16) and 30 typically developing children matched by gender and age were tested, using standardized assessments. Children with NF1 had a significantly inferior performance in comparison to control children, on all tests that measured lower and higher level processes. The cognitive planning skill was found as a predictor of the written product's spatial arrangement. The verbal intelligence predicted the written content level. Results suggest that high level processes underlie the poor quality of writing product in children with NF1. Treatment approaches for children with NF1 must include detailed assessments of cognitive planning and language skills. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Exploring the Basic Principles of Electric Motors and Generators with a Low-Cost Sophomore-Level Experiment

    ERIC Educational Resources Information Center

    Schubert, T. F.; Jacobitz, F. G.; Kim, E. M.

    2009-01-01

    In order to meet changing curricular needs, an electric motor and generator laboratory experience was designed, implemented, and assessed. The experiment is unusual in its early placement in the curriculum and in that it focuses on modeling electric motors, predicting their performance, and measuring efficiency of energy conversion. While…

  18. Associations between Low-Income Children's Fine Motor Skills in Preschool and Academic Performance in Second Grade

    ERIC Educational Resources Information Center

    Dinehart, Laura; Manfra, Louis

    2013-01-01

    Research Findings: Given the growing literature pertaining to the importance of fine motor skills for later academic achievement (D. W. Grissmer, K. J. Grimm, S. M. Aiyer, W. M. Murrah, & J. S. Steele, 2010), the current study examines whether the fine motor skills of economically disadvantaged preschool students predict later academic…

  19. Developing grasshopper neurons show variable levels of guanylyl cyclase activity on arrival at their targets.

    PubMed

    Ball, E E; Truman, J W

    1998-04-27

    The ability of certain grasshopper neurons to respond to exogenously applied donors of nitric oxide (NO) by producing cyclic GMP (cGMP) depends on their developmental state. ODQ, a selective blocker of NO-sensitive guanylyl cyclase, blocks cGMP production at 10(-5) M, thus confirming the nature of the response. Experiments in which the distal axon is separated from its proximal stump before application of an NO donor show that guanylyl cyclase is distributed uniformly throughout the neuron. In the locust abdomen, where segments are formed sequentially, the pattern of guanylyl cyclase up-regulation is predictable and sequential from anterior to posterior. There are two patterns of innervation by cGMP-expressing motor neurons. In the first, typified by muscle 187, an innervating neuron begins to be NO responsive on arrival at its muscle and continues to be so over most of the remainder of embryonic development, including the formation of motor end plates. In the second, typified by a neuron innervating muscle 191, the neuron extends well along the muscle, apparently laying down a number of sites of contact with it, before it becomes NO responsive. In both patterns, however, NO responsiveness marks the neuron's transition from growth cone elongation to the production of lateral branches. Individual muscles receive innervation from multiple motor neurons, some of which express transient NO sensitivity during development and others which do not. With the exception of the leg motor neuron SETi, the first motor neuron to reach any muscle is usually not NO responsive. We suggest that cGMP plays a role in, or reflects, the early stages of communication between a target and specific innervating neurons.

  20. Adaptive reliance on the most stable sensory predictions enhances perceptual feature extraction of moving stimuli.

    PubMed

    Kumar, Neeraj; Mutha, Pratik K

    2016-03-01

    The prediction of the sensory outcomes of action is thought to be useful for distinguishing self- vs. externally generated sensations, correcting movements when sensory feedback is delayed, and learning predictive models for motor behavior. Here, we show that aspects of another fundamental function-perception-are enhanced when they entail the contribution of predicted sensory outcomes and that this enhancement relies on the adaptive use of the most stable predictions available. We combined a motor-learning paradigm that imposes new sensory predictions with a dynamic visual search task to first show that perceptual feature extraction of a moving stimulus is poorer when it is based on sensory feedback that is misaligned with those predictions. This was possible because our novel experimental design allowed us to override the "natural" sensory predictions present when any action is performed and separately examine the influence of these two sources on perceptual feature extraction. We then show that if the new predictions induced via motor learning are unreliable, rather than just relying on sensory information for perceptual judgments, as is conventionally thought, then subjects adaptively transition to using other stable sensory predictions to maintain greater accuracy in their perceptual judgments. Finally, we show that when sensory predictions are not modified at all, these judgments are sharper when subjects combine their natural predictions with sensory feedback. Collectively, our results highlight the crucial contribution of sensory predictions to perception and also suggest that the brain intelligently integrates the most stable predictions available with sensory information to maintain high fidelity in perceptual decisions. Copyright © 2016 the American Physiological Society.

  1. Motor Learning as Young Gymnast's Talent Indicator.

    PubMed

    di Cagno, Alessandra; Battaglia, Claudia; Fiorilli, Giovanni; Piazza, Marina; Giombini, Arrigo; Fagnani, Federica; Borrione, Paolo; Calcagno, Giuseppe; Pigozzi, Fabio

    2014-12-01

    Talent identification plans are designed to select young athletes with the ability to achieve future success in sports. The aim of the study was to verify the predictive value of coordination and precision in skill acquisition during motor learning, as indicators of talent. One hundred gymnasts, both cadets (aged 11.5 ± 0.5 yr.) and juniors (aged 13.3 ± 0.5 years), competing at the national level, were enrolled in the study. The assessment of motor coordination involved three tests of the validated Hirtz's battery (1985), and motor skill learning involved four technical tests, specific of rhythmic gymnastics. All the tests were correlated with ranking and performance scores reached by each gymnast in the 2011, 2012, and 2013 National Championships. Coordination tests were significantly correlated to 2013 Championships scores (p < 0.01) and ranking (p < 0.05) of elite cadet athletes. Precision, in skill acquisition test results, was positively and significantly associated with scores in 2013 (adj. R(2) = 0.26, p < 0.01). Gymnasts with the best results in coordination and motor learning tests went on to achieve better competition results in three- year time. Key pointsIn talent identification and selection procedures it is better to include the evaluation of coordination and motor learning ability.Motor learning assessment concerns performance improvement and the ability to develop it, rather than evaluating the athlete's current performance.In this manner talent identification processes should be focused on the future performance capabilities of athletes.

  2. Motor Learning as Young Gymnast’s Talent Indicator

    PubMed Central

    di Cagno, Alessandra; Battaglia, Claudia; Fiorilli, Giovanni; Piazza, Marina; Giombini, Arrigo; Fagnani, Federica; Borrione, Paolo; Calcagno, Giuseppe; Pigozzi, Fabio

    2014-01-01

    Talent identification plans are designed to select young athletes with the ability to achieve future success in sports. The aim of the study was to verify the predictive value of coordination and precision in skill acquisition during motor learning, as indicators of talent. One hundred gymnasts, both cadets (aged 11.5 ± 0.5 yr.) and juniors (aged 13.3 ± 0.5 years), competing at the national level, were enrolled in the study. The assessment of motor coordination involved three tests of the validated Hirtz’s battery (1985), and motor skill learning involved four technical tests, specific of rhythmic gymnastics. All the tests were correlated with ranking and performance scores reached by each gymnast in the 2011, 2012, and 2013 National Championships. Coordination tests were significantly correlated to 2013 Championships scores (p < 0.01) and ranking (p < 0.05) of elite cadet athletes. Precision, in skill acquisition test results, was positively and significantly associated with scores in 2013 (adj. R2 = 0.26, p < 0.01). Gymnasts with the best results in coordination and motor learning tests went on to achieve better competition results in three- year time. Key points In talent identification and selection procedures it is better to include the evaluation of coordination and motor learning ability. Motor learning assessment concerns performance improvement and the ability to develop it, rather than evaluating the athlete’s current performance. In this manner talent identification processes should be focused on the future performance capabilities of athletes. PMID:25435768

  3. Ultrasound-based motor control training for the pelvic floor pre- and post-prostatectomy: Scoring reliability and skill acquisition.

    PubMed

    Doorbar-Baptist, Stuart; Adams, Roger; Rebbeck, Trudy

    2017-04-01

    This study documents a protocol designed to evaluate pelvic floor motor control in men with prostate cancer. It also aims to evaluate the reliability of therapists in rating motor control of pelvic floor muscles (PFMs) using real time ultrasound imaging (RUSI) video clips. We further determine predictors of acquiring motor control. Ninety-one men diagnosed with prostate cancer attending a physiotherapy clinic for pelvic floor exercises were taught detailed pelvic floor motor control exercises by a physiotherapist using trans-abdominal RUSI for biofeedback. A new protocol to rate motor control skill acquisition was developed. Three independent physiotherapists assessed motor control skill attainment by viewing RUSI videos of the contractions. Inter-rater reliability was evaluated using intra-class correlation coefficients. Logistic regression analysis was conducted to identify predictors of successful skill attainment. Acquisition of the skill was compared between pre- and post-operative participants using an independent-group t-test. There was good reliability for rating the RUSI video clips (ICC 0.73 (95%CI 0.59-0.82)) for experienced therapists. Having low BMI and being seen pre-operatively predicted motor skill attainment, accounting for 46.3% of the variance. Significantly more patients trained pre-operatively acquired the skill of pelvic floor control compared with patients initially seen post-operatively (OR 11.87, 95%CI 1.4 to 99.5, p = 0.02). A new protocol to evaluate attainment of pelvic floor control in men with prostate cancer can be assessed reliably from RUSI images, and is most effectively delivered pre-operatively.

  4. Complex interaction of sensory and motor signs and symptoms in chronic CRPS.

    PubMed

    Huge, Volker; Lauchart, Meike; Magerl, Walter; Beyer, Antje; Moehnle, Patrick; Kaufhold, Wibke; Schelling, Gustav; Azad, Shahnaz Christina

    2011-04-29

    Spontaneous pain, hyperalgesia as well as sensory abnormalities, autonomic, trophic, and motor disturbances are key features of Complex Regional Pain Syndrome (CRPS). This study was conceived to comprehensively characterize the interaction of these symptoms in 118 patients with chronic upper limb CRPS (duration of disease: 43±23 months). Disease-related stress, depression, and the degree of accompanying motor disability were likewise assessed. Stress and depression were measured by Posttraumatic Stress Symptoms Score and Center for Epidemiological Studies Depression Test. Motor disability of the affected hand was determined by Sequential Occupational Dexterity Assessment and Michigan Hand Questionnaire. Sensory changes were assessed by Quantitative Sensory Testing according to the standards of the German Research Network on Neuropathic Pain. Almost two-thirds of all patients exhibited spontaneous pain at rest. Hand force as well as hand motor function were found to be substantially impaired. Results of Quantitative Sensory Testing revealed a distinct pattern of generalized bilateral sensory loss and hyperalgesia, most prominently to blunt pressure. Patients reported substantial motor complaints confirmed by the objective motor disability testings. Interestingly, patients displayed clinically relevant levels of stress and depression. We conclude that chronic CRPS is characterized by a combination of ongoing pain, pain-related disability, stress and depression, potentially triggered by peripheral nerve/tissue damage and ensuing sensory loss. In order to consolidate the different dimensions of disturbances in chronic CRPS, we developed a model based on interaction analysis suggesting a complex hierarchical interaction of peripheral (injury/sensory loss) and central factors (pain/disability/stress/depression) predicting motor dysfunction and hyperalgesia.

  5. Complex Interaction of Sensory and Motor Signs and Symptoms in Chronic CRPS

    PubMed Central

    Huge, Volker; Lauchart, Meike; Magerl, Walter; Beyer, Antje; Moehnle, Patrick; Kaufhold, Wibke; Schelling, Gustav; Azad, Shahnaz Christina

    2011-01-01

    Spontaneous pain, hyperalgesia as well as sensory abnormalities, autonomic, trophic, and motor disturbances are key features of Complex Regional Pain Syndrome (CRPS). This study was conceived to comprehensively characterize the interaction of these symptoms in 118 patients with chronic upper limb CRPS (duration of disease: 43±23 months). Disease-related stress, depression, and the degree of accompanying motor disability were likewise assessed. Stress and depression were measured by Posttraumatic Stress Symptoms Score and Center for Epidemiological Studies Depression Test. Motor disability of the affected hand was determined by Sequential Occupational Dexterity Assessment and Michigan Hand Questionnaire. Sensory changes were assessed by Quantitative Sensory Testing according to the standards of the German Research Network on Neuropathic Pain. Almost two-thirds of all patients exhibited spontaneous pain at rest. Hand force as well as hand motor function were found to be substantially impaired. Results of Quantitative Sensory Testing revealed a distinct pattern of generalized bilateral sensory loss and hyperalgesia, most prominently to blunt pressure. Patients reported substantial motor complaints confirmed by the objective motor disability testings. Interestingly, patients displayed clinically relevant levels of stress and depression. We conclude that chronic CRPS is characterized by a combination of ongoing pain, pain-related disability, stress and depression, potentially triggered by peripheral nerve/tissue damage and ensuing sensory loss. In order to consolidate the different dimensions of disturbances in chronic CRPS, we developed a model based on interaction analysis suggesting a complex hierarchical interaction of peripheral (injury/sensory loss) and central factors (pain/disability/stress/depression) predicting motor dysfunction and hyperalgesia. PMID:21559525

  6. Causal Role of Motor Simulation in Turn-Taking Behavior.

    PubMed

    Hadley, Lauren V; Novembre, Giacomo; Keller, Peter E; Pickering, Martin J

    2015-12-16

    Overlap between sensory and motor representations has been documented for a range of human actions, from grasping (Rizzolatti et al., 1996b) to playing a musical instrument (Novembre and Keller, 2014). Such overlap suggests that individuals use motor simulation to predict the outcome of observed actions (Wolpert, 1997). Here we investigate motor simulation as a basis of human communication. Using a musical turn-taking task, we show that pianists call on motor representations of their partner's part to predict when to come in for their own turn. Pianists played alternating solos with a videoed partner, and double-pulse transcranial magnetic stimulation was applied around the turn-switch to temporarily disrupt processing in two cortical regions implicated previously in different forms of motor simulation: (1) the dorsal premotor cortex (dPMC), associated with automatic motor resonance during passive observation of hand actions, especially when the actions are familiar (Lahav et al., 2007); and (2) the supplementary motor area (SMA), involved in active motor imagery, especially when the actions are familiar (Baumann et al., 2007). Stimulation of the right dPMC decreased the temporal accuracy of pianists' (right-hand) entries relative to sham when the partner's (left-hand) part had been rehearsed previously. This effect did not occur for dPMC stimulation without rehearsal or for SMA stimulation. These findings support the role of the dPMC in predicting the time course of observed actions via resonance-based motor simulation during turn-taking. Because turn-taking spans multiple modes of human interaction, we suggest that simulation is a foundational mechanism underlying the temporal dynamics of joint action. Even during passive observation, seeing or hearing somebody execute an action from within our repertoire activates motor cortices of our brain. But what is the functional relevance of such "motor simulation"? By combining a musical duet task with a real-time repetitive transcranial magnetic stimulation protocol, we provide evidence indicating that the dorsal premotor cortex plays a causal role in accurate turn-taking coordination between a pianist and their observed interaction partner. Given that turn-taking behavior is a fundamental feature of human communication, we suggest that simulation is a foundational mechanism underlying the temporal dynamics of communicative joint action. Copyright © 2015 the authors 0270-6474/15/3516516-05$15.00/0.

  7. Characteristic Examination of New Synchronous Motor that Composes Craw Teeth of Soft Magnetic Composite

    NASA Astrophysics Data System (ADS)

    Enomoto, Yuji; Ito, Motoya; Masaki, Ryozo; Asaka, Kazuo

    We examined the claw type teeth motor as one application of the soft magnetic composite to a motor core. In order to understand quantitatively the characteristics of the claw type teeth motor, we used the 3-dimensional electromagnetic field analysis to predict its characteristics in advance and manufactured a trial motor to estimate it. And we examined the advantages of the claw type teeth motor comparing with a conventional slot type motor. The results are: 1. By using the 3-dimensional electromagnetic field analysis, it is able to estimate with high accuracy the characteristics of the 3-phase permanent magnet synchronous claw type teeth motor having a core composed of the soft magnetic composite. 2. The claw type teeth motor is able to achieve about 20% higher output than a conventional slot type motor having an electromagnetic steel core, while both volumes are equal. 3. The motor efficiency of the claw type teeth motor is about 3.5% higher than the conventional motor.

  8. Predictive Value of Glasgow Coma Score and Full Outline of Unresponsiveness Score on the Outcome of Multiple Trauma Patients.

    PubMed

    Baratloo, Alireza; Shokravi, Masumeh; Safari, Saeed; Aziz, Awat Kamal

    2016-03-01

    The Full Outline of Unresponsiveness (FOUR) score was developed to compensate for the limitations of Glasgow coma score (GCS) in recent years. This study aimed to assess the predictive value of GCS and FOUR score on the outcome of multiple trauma patients admitted to the emergency department. The present prospective cross-sectional study was conducted on multiple trauma patients admitted to the emergency department. GCS and FOUR scores were evaluated at the time of admission and at the sixth and twelfth hours after admission. Then the receiver operating characteristic (ROC) curve, sensitivity, specificity, as well as positive and negative predictive value of GCS and FOUR score were evaluated to predict patients' outcome. Patients' outcome was divided into discharge with and without a medical injury (motor deficit, coma or death). Finally, 89 patients were studied. Sensitivity and specificity of GCS in predicting adverse outcome (motor deficit, coma or death) were 84.2% and 88.6% at the time of admission, 89.5% and 95.4% at the sixth hour and 89.5% and 91.5% at the twelfth hour, respectively. These values for the FOUR score were 86.9% and 88.4% at the time of admission, 89.5% and 100% at the sixth hour and 89.5% and 94.4% at the twelfth hour, respectively. Findings of this study indicate that the predictive value of FOUR score and GCS on the outcome of multiple trauma patients admitted to the emergency department is similar.

  9. Validity of the Test of Infant Motor Performance for prediction of 6-, 9- and 12-month scores on the Alberta Infant Motor Scale.

    PubMed

    Campbell, Suzann K; Kolobe, Thubi H A; Wright, Benjamin D; Linacre, John Michael

    2002-04-01

    The Test of Infant Motor Performance (TIMP) is a test of functional movement in infants from 32 weeks' post-conceptional age to 4 months postterm. The purpose of this study was to assess in 96 infants (44 females, 52 males) with varying risk, the relation between measures on the TIMP at 7, 30, 60, and 90 days after term age and percentile ranks (PR) on the Alberta Infant Motor Scale (AIMS). Correlation between scores on the TIMP and the AIMS was highest for TIMP tests at 90 days and AIMS testing at 6 months (r=0.67, p=0.0001), but all comparisons were statistically significant except those between the TIMP at 7 days and AIMS PR at 9 months. In a multiple regression analysis combining a perinatal risk score and 7-day TIMP measures to predict 12-month AIMS PR, risk, but not TIMP, predicted outcome (21% of variance explained). At older ages TIMP measures made increasing contributions to prediction of 12-month AIMS PR (30% of variance explained by 90-day TIMP). The best TIMP score to maximize specificity and correctly identify 84% of the infants above versus below the 10th PR at 6 months was a cut-off point of 1 SD below the mean. The same cut-off point correctly identified 88% of the infants at 12 months. A cut-off of -0.5 SD, however, maximized sensitivity at 92%. A negative test result, i.e. score above -0.5 SD at 3 months, carried only a 2% probability of a poor 12-month outcome. We conclude that TIMP scores significantly predict AIMS PR 6 to 12 months later, but the TIMP at 3 months of age has the greatest degree of validity for predicting motor performance on the AIMS at 12 months and can be used clinically to identify infants likely to benefit from intervention.

  10. Children with Heavy Prenatal Alcohol Exposure Experience Reduced Control of Isotonic Force

    PubMed Central

    Nguyen, Tanya T.; Levy, Susan S.; Riley, Edward P.; Thomas, Jennifer D.; Simmons, Roger W.

    2013-01-01

    Background Heavy prenatal alcohol exposure can result in diverse and extensive damage to the central nervous system, including the cerebellum, basal ganglia, and cerebral cortex. Given that these brain regions are involved in the generation and maintenance of motor force, we predicted that prenatal alcohol exposure would adversely affect this parameter of motor control. We previously reported that children with gestational alcohol exposure experience significant deficits in regulating isometric (i.e., constant) force. The purpose of the present study was to determine if these children exhibit similar deficits when producing isotonic (i.e., graded) force. Methods Children with heavy prenatal alcohol exposure and typically developing children completed a series of isotonic force contractions by exerting force on a load cell to match a criterion target force displayed on a computer monitor. Two levels of target force (5% or 20% of maximum voluntary force) were investigated in combination with varying levels of visual feedback. Results Compared to controls, children with heavy prenatal alcohol exposure generated isotonic force signals that were less accurate, more variable, and less complex in the time domain compared to control children. Specifically, interactions were found between group and visual feedback for response accuracy and signal complexity, suggesting that these children have greater difficulty altering their motor output when visual feedback is low. Conclusions These data suggest that prenatal alcohol exposure produces deficits in regulating isotonic force, which presumably result from alcohol-related damage to developing brain regions involved in motor control. These children will most likely experience difficulty performing basic motor skills and daily functional skills that require coordination of finely graded force. Therapeutic strategies designed to increase feedback and, consequently, facilitate visual-motor integration could improve isotonic force production in these children. PMID:22834891

  11. The development of a screening tool to evaluate gross motor function in HIV-infected infants.

    PubMed

    Hilburn, Nicole; Potterton, Joanne; Stewart, Aimee; Becker, Piet

    2011-12-01

    Neurodevelopmental delay or HIV encephalopathy is a stage four disease indicator for paediatric HIV/AIDS according to the World Health Organisation (WHO), and may be used as a criterion for initiation of highly active antiretroviral therapy (HAART). To date, the only means of prevention of this condition is early initiation of HAART. Studies which have been carried out in South African clinics have revealed the high prevalence of this condition. In developing countries, commencement of HAART is based on declining virologic and immunologic status, as standardised neurodevelopmental assessment tools are not widely available. A standardised developmental screening tool which is suitable for use in a developing country is therefore necessary in order to screen for neurodevelopmental delay to allow for further assessment and referral to rehabilitation services, as well as providing an additional assessment criterion for initiation of HAART. The infant gross motor screening test (IGMST) was developed for this purpose. The standardisation sample of the IGMST consisted of 112 HIV-infected infants between six and 18 months of age. Item selection for the IGMST was based on the Gross Motor scale of the Bayley Scales of Infant Development (BSID)-III. Content validity was assessed by a panel of experts using a nominal group technique (NGT; agreement >80%). Concurrent validity (n=60) of the IGMST was carried out against the BSID-III, and agreement was excellent (K=0.85). The diagnostic properties of the IGMST were evaluated and revealed: sensitivity 97.4%, specificity 85.7%, positive predictive value (PPV) 92.7%, and negative predictive value (NPV) 94.7%. Reliability testing (n=30) revealed inter-rater reliability as: r=1, test-retest reliability: r=0.98 and intra-rater reliability: r=0.98. The results indicate that the statistical properties of the IGMST are excellent, and the tool is suitable for use within the paediatric HIV setting.

  12. Flight motor set 360L001 (STS-26R). (Reconstructed dynamic loads analysis)

    NASA Technical Reports Server (NTRS)

    Call, V. B.

    1989-01-01

    A transient analysis was performed to correlate the predicted versus measured behavior of the Redesigned Solid Rocket Booster (RSRB) during Flight 360L001 (STS-26R) liftoff. Approximately 9 accelerometers, 152 strain gages, and 104 girth gages were bonded to the motors during this event. Prior to Flight 360L001, a finite element model of the RSRB was analyzed to predict the accelerations, strains, and displacements measured by this developmental flight instrumentation (DFI) within an order of magnitude. Subsequently, an analysis has been performed which uses actual Flight 360L001 liftoff loading conditions, and makes more precise predictions for the RSRB structural behavior. Essential information describing the analytical model, analytical techniques used, correlation of the predicted versus measured RSRB behavior, and conclusions, are presented. A detailed model of the RSRB was developed and correlated for use in analyzing the motor behavior during liftoff loading conditions. This finite element model, referred to as the RSRB global model, uses super-element techniques to model all components of the RSRB. The objective of the RSRB global model is to accurately predict deflections and gap openings in the field joints to an accuracy of approximately 0.001 inch. The model of the field joint component was correlated to Referee and Joint Environment Simulation (JES) tests. The accuracy of the assembled RSRB global model was validated by correlation to static-fire tests such DM-8, DM-9, QM-7, and QM-8. This validated RSRB global model was used to predict RSRB structural behavior and joint gap opening during Flight 360L001 liftoff. The results of a transient analysis of the RSRB global model with imposed liftoff loading conditions are presented. Rockwell used many gage measurements to reconstruct the load parameters which were imposed on the RSRB during the Flight 360L001 liftoff. Each load parameter, and its application, is described. Also presented are conclusions and recommendations based on the analysis of this load case and the resulting correlation between predicted and measured RSRB structural behavior.

  13. Experimental Characteristics of Particle Dynamics within Solid Rocket Motors Environments

    DTIC Science & Technology

    2009-04-03

    McCrorie, J. D., Vaughn, J. K., Netzer, D. W., “Motor and Plume Particle Size Measurements in Solid Propellant Micromotors ,” Journal of Propulsion...Solid Propellant Micromotors ,” Journal of Propulsion and Power 10(3), 410-418 (1994). 6. Kovalev, O. B., “Motor and Plume Particle Size Prediction in...McCrorie, J. D., Vaughn, J. K., Netzer, D. W., “Motor and Plume Particle Size Measurements in Solid Propellant Micromotors ,” Journal of Propulsion

  14. Learning new gait patterns: Exploratory muscle activity during motor learning is not predicted by motor modules

    PubMed Central

    Ranganathan, Rajiv; Krishnan, Chandramouli; Dhaher, Yasin Y.; Rymer, William Z.

    2018-01-01

    The motor module hypothesis in motor control proposes that the nervous system can simplify the problem of controlling a large number of muscles in human movement by grouping muscles into a smaller number of modules. Here, we tested one prediction of the modular organization hypothesis by examining whether there is preferential exploration along these motor modules during the learning of a new gait pattern. Healthy college-aged participants learned a new gait pattern which required increased hip and knee flexion during the swing phase while walking in a lower-extremity robot (Lokomat). The new gait pattern was displayed as a foot trajectory in the sagittal plane and participants attempted to match their foot trajectory to this template. We recorded EMG from 8 lower-extremity muscles and we extracted motor modules during both baseline walking and target-tracking using non-negative matrix factorization (NMF). Results showed increased trajectory variability in the first block of learning, indicating that participants were engaged in exploratory behavior. Critically, when we examined the muscle activity during this exploratory phase, we found that the composition of motor modules changed significantly within the first few strides of attempting the new gait pattern. The lack of persistence of the motor modules under even short time scales suggests that motor modules extracted during locomotion may be more indicative of correlated muscle activity induced by the task constraints of walking, rather than reflecting a modular control strategy. PMID:26916510

  15. Cryogenic actuator testing for the SAFARI ground calibration setup

    NASA Astrophysics Data System (ADS)

    de Jonge, C.; Eggens, M.; Nieuwenhuizen, A. C. T.; Detrain, A.; Smit, H.; Dieleman, P.

    2012-09-01

    For the on-ground calibration setup of the SAFARI instrument cryogenic mechanisms are being developed at SRON Netherlands Institute for Space Research, including a filter wheel, XYZ-scanner and a flipmirror mechanism. Due to the extremely low background radiation requirement of the SAFARI instrument, all of these mechanisms will have to perform their work at 4.5 Kelvin and low-dissipative cryogenic actuators are required to drive these mechanisms. In this paper, the performance of stepper motors, piezoelectric actuators and brushless DC-motors as cryogenic actuators are compared. We tested stepper motor mechanical performance and electrical dissipation at 4K. The actuator requirements, test setup and test results are presented. Furthermore, design considerations and early performance tests of the flipmirror mechanism are discussed. This flipmirror features a 102 x 72 mm aluminum mirror that can be rotated 45°. A Phytron stepper motor with reduction gearbox has been chosen to drive the flipmirror. Testing showed that this motor has a dissipation of 49mW at 4K with a torque of 60Nmm at 100rpm. Thermal modeling of the flipmirror mechanism predicts that with proper thermal strapping the peak temperature of the flipmirror after a single action will be within the background level requirements of the SAFARI instrument. Early tests confirm this result. For low-duty cycle operations commercial stepper motors appear suitable as actuators for test equipment in the SAFARI on ground calibration setup.

  16. Effects of Prenatal Tobacco, Alcohol and Marijuana Exposure on Processing Speed, Visual-Motor Coordination, and Interhemispheric Transfer

    PubMed Central

    Willford, Jennifer A.; Chandler, Lynette S.; Goldschmidt, Lidush; Day, Nancy L.

    2010-01-01

    Deficits in motor control are often reported in children with prenatal alcohol exposure (PAE). Less is known about the effects of prenatal tobacco exposure (PTE) and prenatal marijuana exposure (PME) on motor coordination, and previous studies have not considered whether PTE, PAE, and PME interact to affect motor control. This study investigated the effects of PTE, PAE, and PME as well as current drug use on speed of processing, visual-motor coordination, and interhemispheric transfer in 16-year-old adolescents. Data were collected as part of the Maternal Health Practices and Child Development Project. Adolescents (age 16, n=320) participating in a longitudinal study of the effects of prenatal substance exposure on developmental outcomes were evaluated in this study. The computerized Bimanual Coordination Test (BCT) was used to assess each domain of function. Other important variables, such as demographics, home environment, and psychological characteristics of the mother and adolescent were also considered in the analyses. There were significant and independent effects of PTE, PAE, and PME on processing speed and interhemispheric transfer of information. PTEand PME were associated with deficits in visual motor coordination. There were no interactions between PAE, PTE, and PME. Current tobacco use predicted deficits in speed of processing. Current alcohol and marijuana use by the offspring were not associated with any measures of performance on the BCT. PMID:20600845

  17. Biochemical and bioinformatic analysis of the MYO19 motor domain

    PubMed Central

    Adikes, Rebecca C.; Unrath, William C.; Yengo, Christopher M.; Quintero, Omar A.

    2014-01-01

    Mitochondrial dynamics are dependent on both the microtubule and actin cytoskeletal systems. Evidence for the involvement of myosin motors has been described in many systems, and until recently a candidate mitochondrial transport motor had not been described in vertebrates. Myosin-XIX (MYO19) was predicted to represent a novel class of myosin and had previously been shown to bind to mitochondria and increase mitochondrial network dynamics when ectopically expressed. Our analyses comparing ∼40 MYO19 orthologs to ∼2000 other myosin motor domain sequences identified instances of homology well-conserved within class XIX myosins that were not found in other myosin classes, suggesting MYO19-specific mechanochemistry. Steady-state biochemical analyses of the MYO19 motor domain indicate that Homo sapiens MYO19 is a functional motor. Insect cell-expressed constructs bound calmodulin as a light chain at the predicted stoichiometry and displayed actin-activated ATPase activity. MYO19 constructs demonstrated high actin affinity in the presence of ATP in actin-cosedimentation assays, and translocated actin filaments in gliding assays. Expression of GFP-MYO19 containing a mutation impairing ATPase activity did not enhance mitochondrial network dynamics, as occurs with wild-type MYO19, indicating that myosin motor activity is required for mitochondrial motility. The measured biochemical properties of MYO19 suggest it is a high-duty ratio motor that could serve to transport mitochondria or anchor mitochondria, depending upon the cellular microenvironment. PMID:23568824

  18. Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning.

    PubMed

    Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Seidenberg, Mark S; Binder, Jeffrey R

    2016-09-21

    The capacity to process information in conceptual form is a fundamental aspect of human cognition, yet little is known about how this type of information is encoded in the brain. Although the role of sensory and motor cortical areas has been a focus of recent debate, neuroimaging studies of concept representation consistently implicate a network of heteromodal areas that seem to support concept retrieval in general rather than knowledge related to any particular sensory-motor content. We used predictive machine learning on fMRI data to investigate the hypothesis that cortical areas in this "general semantic network" (GSN) encode multimodal information derived from basic sensory-motor processes, possibly functioning as convergence-divergence zones for distributed concept representation. An encoding model based on five conceptual attributes directly related to sensory-motor experience (sound, color, shape, manipulability, and visual motion) was used to predict brain activation patterns associated with individual lexical concepts in a semantic decision task. When the analysis was restricted to voxels in the GSN, the model was able to identify the activation patterns corresponding to individual concrete concepts significantly above chance. In contrast, a model based on five perceptual attributes of the word form performed at chance level. This pattern was reversed when the analysis was restricted to areas involved in the perceptual analysis of written word forms. These results indicate that heteromodal areas involved in semantic processing encode information about the relative importance of different sensory-motor attributes of concepts, possibly by storing particular combinations of sensory and motor features. The present study used a predictive encoding model of word semantics to decode conceptual information from neural activity in heteromodal cortical areas. The model is based on five sensory-motor attributes of word meaning (color, shape, sound, visual motion, and manipulability) and encodes the relative importance of each attribute to the meaning of a word. This is the first demonstration that heteromodal areas involved in semantic processing can discriminate between different concepts based on sensory-motor information alone. This finding indicates that the brain represents concepts as multimodal combinations of sensory and motor representations. Copyright © 2016 the authors 0270-6474/16/369763-07$15.00/0.

  19. Development and Optimized Design of Propeller Pump System & Structure with VFD in Low-head Pumping Station

    NASA Astrophysics Data System (ADS)

    Rentian, Zhang; Honggeng, Zhu; Arnold, Jaap; Linbi, Yao

    2010-06-01

    Compared with vertical-installed pumps, the propeller (bulb tubular) pump systems can achieve higher hydraulic efficiencies, which are particularly suitable for low-head pumping stations. More than four propeller pumping stations are being, or will be built in the first stage of the S-to-N Water Diversion Project in China, diverting water from Yangtze River to the northern part of China to alleviate water-shortage problems and develop the economy. New structures of propeller pump have been developed for specified pumping stations in Jiangsu and Shandong Provinces respectively and Variable Frequency Drives (VFDs) are used in those pumping stations to regulate operating conditions. Based on the Navier-Stokes equations and the standard k-e turbulent model, numerical simulations of the flow field and performance prediction in the propeller pump system were conducted on the platform of commercial software CFX by using the SIMPLEC algorithm. Through optimal design of bulb dimensions and diffuser channel shape, the hydraulic system efficiency has improved evidently. Furthermore, the structures of propeller pumps have been optimized to for the introduction of conventional as well as permanent magnet motors. In order to improve the hydraulic efficiency of pumping systems, both the pump discharge and the motor diameter were optimized respectively. If a conventional motor is used, the diameter of the pump casing has to be increased to accommodate the motor installed inside. If using a permanent magnet motor, the diameter of motor casing can be decreased effectively without decreasing its output power, thus the cross-sectional area is enlarged and the velocity of flowing water decreased favorably to reduce hydraulic loss of discharge channel and thereby raising the pumping system efficiency. Witness model tests were conducted after numerical optimization on specific propeller pump systems, indicating that the model system hydraulic efficiencies can be improved by 0.5%˜3.7% in different specified operational conditions.

  20. Steady-state, lumped-parameter model for capacitor-run, single-phase induction motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umans, S.D.

    1996-01-01

    This paper documents a technique for deriving a steady-state, lumped-parameter model for capacitor-run, single-phase induction motors. The objective of this model is to predict motor performance parameters such as torque, loss distribution, and efficiency as a function of applied voltage and motor speed as well as the temperatures of the stator windings and of the rotor. The model includes representations of both the main and auxiliary windings (including arbitrary external impedances) and also the effects of core and rotational losses. The technique can be easily implemented and the resultant model can be used in a wide variety of analyses tomore » investigate motor performance as a function of load, speed, and winding and rotor temperatures. The technique is based upon a coupled-circuit representation of the induction motor. A notable feature of the model is the technique used for representing core loss. In equivalent-circuit representations of transformers and induction motors, core loss is typically represented by a core-loss resistance in shunt with the magnetizing inductance. In order to maintain the coupled-circuit viewpoint adopted in this paper, this technique was modified slightly; core loss is represented by a set of core-loss resistances connected to the ``secondaries`` of a set of windings which perfectly couple to the air-gap flux of the motor. An example of the technique is presented based upon a 3.5 kW, single-phase, capacitor-run motor and the validity of the technique is demonstrated by comparing predicted and measured motor performance.« less

Top