Sample records for motor function improved

  1. The functional alterations associated with motor imagery training: a comparison between motor execution and motor imagery of sequential finger tapping

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Yao, Li; Long, Zhiying

    2011-03-01

    Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.

  2. Low-frequency group exercise improved the motor functions of community-dwelling elderly people in a rural area when combined with home exercise with self-monitoring

    PubMed Central

    Matsubayashi, Yoshito; Asakawa, Yasuyoshi; Yamaguchi, Haruyasu

    2016-01-01

    [Purpose] This study examined whether low-frequency group exercise improved the motor functions of community-dwelling elderly people in a rural area when combined with home exercise with self-monitoring. [Subjects] The subjects were community-dwelling elderly people in a rural area of Japan. [Methods] One group (n = 50) performed group exercise combined with home exercise with self-monitoring. Another group (n = 37) performed group exercise only. Low-frequency group exercise (warm-up, exercises for motor functions, and cool-down) was performed in seven 40 to 70-minute sessions over 9 weeks by both groups. Five items of motor functions were assessed before and after the intervention. [Results] Significant interactions were observed between groups and assessment times for all motor functions. Improvements in motor functions were significantly greater in the group that performed group exercise combined with home exercise with self-monitoring than in the group that performed group exercise only. Post-hoc comparisons revealed significant differences in 3 items of motor functions. No significant improvements were observed in motor functions in the group that performed group exercise only. [Conclusions] Group exercise combined with home exercise with self-monitoring improved motor functions in the setting of low-frequency group exercise for community-dwelling elderly people in a rural area. PMID:27065520

  3. Forced, not voluntary, exercise improves motor function in Parkinson's disease patients.

    PubMed

    Ridgel, Angela L; Vitek, Jerrold L; Alberts, Jay L

    2009-01-01

    Animal studies indicate forced exercise (FE) improves overall motor function in Parkinsonian rodents. Global improvements in motor function following voluntary exercise (VE) are not widely reported in human Parkinson's disease (PD) patients. The aim of this study was to compare the effects of VE and FE on PD symptoms, motor function, and bimanual dexterity. Ten patients with mild to moderate PD were randomly assigned to complete 8 weeks of FE or VE. With the assistance of a trainer, patients in the FE group pedaled at a rate 30% greater than their preferred voluntary rate, whereas patients in the VE group pedaled at their preferred rate. Aerobic intensity for both groups was identical, 60% to 80% of their individualized training heart rate. Aerobic fitness improved for both groups. Following FE, Unified Parkinson's Disease Rating Scale (UPDRS) motor scores improved 35%, whereas patients completing VE did not exhibit any improvement. The control and coordination of grasping forces during the performance of a functional bimanual dexterity task improved significantly for patients in the FE group, whereas no changes in motor performance were observed following VE. Improvements in clinical measures of rigidity and bradykinesia and biomechanical measures of bimanual dexterity were maintained 4 weeks after FE cessation. Aerobic fitness can be improved in PD patients following both VE and FE interventions. However, only FE results in significant improvements in motor function and bimanual dexterity. Biomechanical data indicate that FE leads to a shift in motor control strategy, from feedback to a greater reliance on feedforward processes, which suggests FE may be altering central motor control processes.

  4. Modulation of motor performance and motor learning by transcranial direct current stimulation.

    PubMed

    Reis, Janine; Fritsch, Brita

    2011-12-01

    Transcranial direct current stimulation (tDCS) has shown preliminary success in improving motor performance and motor learning in healthy individuals, and restitution of motor deficits in stroke patients. This brief review highlights some recent work. Within the past years, behavioural studies have confirmed and specified the timing and polarity specific effects of tDCS on motor skill learning and motor adaptation. There is strong evidence that timely co-application of (hand/arm) training and anodal tDCS to the contralateral M1 can improve motor learning. Improvements in motor function as measured by clinical scores have been described for combined tDCS and training in stroke patients. For this purpose, electrode montages have been modified with respect to interhemispheric imbalance after brain injury. Cathodal tDCS applied to the unlesioned M1 or bihemispheric M1 stimulation appears to be well tolerated and useful to induce improvements in motor function. Mechanistic studies in humans and animals are discussed with regard to physiological motor learning. tDCS is well tolerated, easy to use and capable of inducing lasting improvements in motor function. This method holds promise for the rehabilitation of motor disabilities, although acute studies in patients with brain injury are so far lacking.

  5. Subjective perception of sleep benefit in Parkinson's disease: Valid or irrelevant?

    PubMed

    Lee, Will; Evans, Andrew; Williams, David R

    2017-09-01

    The phenomenon of sleep benefit (SB) in Parkinson's disease (PD), whereby waking motor function is improved despite no dopaminergic treatment overnight, is controversial. Previous studies suggested a significant discrepancy between subjective functional and objective motor improvement. The aim of this study was to determine how well subjective reporting of SB correlates with objective measures and if true motor improvement can be predicted by a standardized questionnaire. Ninety-two patients with PD participated. A structured questionnaire was developed to assess subjective SB. Quantitative motor assessment was performed using a validated smartphone application. Objective motor SB was considered to be present when the waking motor function was similar or superior to the daytime on-state. Twenty (22%) patients showed objective motor improvement on waking compared to end-of-dose. Most patients (77%) reported subjective SB without corresponding objective motor benefit. Our structured questionnaire could not predict Motor SB. The ability to delay morning medications and a perception of indifference or paradoxical worsening following the morning levodopa dose may suggest Motor SB. Most patients experience subjective SB with no measureable motor improvement. This perceived benefit could be related to non-motor improvement that is distinctly different to objective motor benefit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Combinatorial Motor Training Results in Functional Reorganization of Remaining Motor Cortex after Controlled Cortical Impact in Rats

    PubMed Central

    Combs, Hannah L.; Jones, Theresa A.; Kozlowski, Dorothy A.

    2016-01-01

    Abstract Cortical reorganization subsequent to post-stroke motor rehabilitative training (RT) has been extensively examined in animal models and humans. However, similar studies focused on the effects of motor training after traumatic brain injury (TBI) are lacking. We previously reported that after a moderate/severe TBI in adult male rats, functional improvements in forelimb use were accomplished only with a combination of skilled forelimb reach training and aerobic exercise, with or without nonimpaired forelimb constraint. Thus, the current study was designed to examine the relationship between functional motor cortical map reorganization after experimental TBI and the behavioral improvements resulting from this combinatorial rehabilitative regime. Adult male rats were trained to proficiency on a skilled reaching task, received a unilateral controlled cortical impact (CCI) over the forelimb area of the caudal motor cortex (CMC). Three days post-CCI, animals began RT (n = 13) or no rehabilitative training (NoRT) control procedures (n = 13). The RT group participated in daily skilled reach training, voluntary aerobic exercise, and nonimpaired forelimb constraint. This RT regimen significantly improved impaired forelimb reaching success and normalized reaching strategies, consistent with previous findings. RT also enlarged the area of motor cortical wrist representation, derived by intracortical microstimulation, compared to NoRT. These findings indicate that sufficient RT can greatly improve motor function and improve the functional integrity of remaining motor cortex after a moderate/severe CCI. When compared with findings from stroke models, these findings also suggest that more intense RT may be needed to improve motor function and remodel the injured cortex after TBI. PMID:26421759

  7. Combinatorial Motor Training Results in Functional Reorganization of Remaining Motor Cortex after Controlled Cortical Impact in Rats.

    PubMed

    Combs, Hannah L; Jones, Theresa A; Kozlowski, Dorothy A; Adkins, DeAnna L

    2016-04-15

    Cortical reorganization subsequent to post-stroke motor rehabilitative training (RT) has been extensively examined in animal models and humans. However, similar studies focused on the effects of motor training after traumatic brain injury (TBI) are lacking. We previously reported that after a moderate/severe TBI in adult male rats, functional improvements in forelimb use were accomplished only with a combination of skilled forelimb reach training and aerobic exercise, with or without nonimpaired forelimb constraint. Thus, the current study was designed to examine the relationship between functional motor cortical map reorganization after experimental TBI and the behavioral improvements resulting from this combinatorial rehabilitative regime. Adult male rats were trained to proficiency on a skilled reaching task, received a unilateral controlled cortical impact (CCI) over the forelimb area of the caudal motor cortex (CMC). Three days post-CCI, animals began RT (n = 13) or no rehabilitative training (NoRT) control procedures (n = 13). The RT group participated in daily skilled reach training, voluntary aerobic exercise, and nonimpaired forelimb constraint. This RT regimen significantly improved impaired forelimb reaching success and normalized reaching strategies, consistent with previous findings. RT also enlarged the area of motor cortical wrist representation, derived by intracortical microstimulation, compared to NoRT. These findings indicate that sufficient RT can greatly improve motor function and improve the functional integrity of remaining motor cortex after a moderate/severe CCI. When compared with findings from stroke models, these findings also suggest that more intense RT may be needed to improve motor function and remodel the injured cortex after TBI.

  8. Structural Equation Modeling of Motor Impairment, Gross Motor Function, and the Functional Outcome in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Park, Eun-Young; Kim, Won-Ho

    2013-01-01

    Physical therapy intervention for children with cerebral palsy (CP) is focused on reducing neurological impairments, improving strength, and preventing the development of secondary impairments in order to improve functional outcomes. However, relationship between motor impairments and functional outcome has not been proved definitely. This study…

  9. Structural equation modeling of motor impairment, gross motor function, and the functional outcome in children with cerebral palsy.

    PubMed

    Park, Eun-Young; Kim, Won-Ho

    2013-05-01

    Physical therapy intervention for children with cerebral palsy (CP) is focused on reducing neurological impairments, improving strength, and preventing the development of secondary impairments in order to improve functional outcomes. However, relationship between motor impairments and functional outcome has not been proved definitely. This study confirmed the construct of motor impairment and performed structural equation modeling (SEM) between motor impairment, gross motor function, and functional outcomes of regarding activities of daily living in children with CP. 98 children (59 boys, 39 girls) with CP participated in this cross-sectional study. Mean age was 11 y 5 mo (SD 1 y 9 mo). The Manual Muscle Test (MMT), the Modified Ashworth Scale (MAS), range of motion (ROM) measurement, and the selective motor control (SMC) scale were used to assess motor impairments. Gross motor function and functional outcomes were measured using the Gross Motor Function Measure (GMFM) and the Functional Skills domain of the Pediatric Evaluation of Disability Inventory (PEDI) respectively. Measurement of motor impairment was consisted of strength, spasticity, ROM, and SMC. The construct of motor impairment was confirmed though an examination of a measurement model. The proposed SEM model showed good fit indices. Motor impairment effected gross motor function (β=-.0869). Gross motor function and motor impairment affected functional outcomes directly (β=0.890) and indirectly (β=-0.773) respectively. We confirmed that the construct of motor impairment consist of strength, spasticity, ROM, and SMC and it was identified through measurement model analysis. Functional outcomes are best predicted by gross motor function and motor impairments have indirect effects on functional outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. ATF3 expression improves motor function in the ALS mouse model by promoting motor neuron survival and retaining muscle innervation.

    PubMed

    Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C; Chen, Adam; Tamrazian, Eric; Babaniyi, Olusegun; Selig, Martin; Hynynen, Meri; Woolf, Clifford J; Brown, Robert H

    2014-01-28

    ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.

  11. Sequencing bilateral robot-assisted arm therapy and constraint-induced therapy improves reach to press and trunk kinematics in patients with stroke.

    PubMed

    Hsieh, Yu-wei; Liing, Rong-jiuan; Lin, Keh-chung; Wu, Ching-yi; Liou, Tsan-hon; Lin, Jui-chi; Hung, Jen-wen

    2016-03-22

    The combination of robot-assisted therapy (RT) and a modified form of constraint-induced therapy (mCIT) shows promise for improving motor function of patients with stroke. However, whether the changes of motor control strategies are concomitant with the improvements in motor function after combination of RT and mCIT (RT + mCIT) is unclear. This study investigated the effects of the sequential combination of RT + mCIT compared with RT alone on the strategies of motor control measured by kinematic analysis and on motor function and daily performance measured by clinical scales. The study enrolled 34 patients with chronic stroke. The data were derived from part of a single-blinded randomized controlled trial. Participants in the RT + mCIT and RT groups received 20 therapy sessions (90 to 105 min/day, 5 days for 4 weeks). Patients in the RT + mCIT group received 10 RT sessions for first 2 weeks and 10 mCIT sessions for the next 2 weeks. The Bi-Manu-Track was used in RT sessions to provide bilateral practice of wrist and forearm movements. The primary outcome was kinematic variables in a task of reaching to press a desk bell. Secondary outcomes included scores on the Wolf Motor Function Test, Functional Independence Measure, and Nottingham Extended Activities of Daily Living. All outcome measures were administered before and after intervention. RT + mCIT and RT demonstrated different benefits on motor control strategies. RT + mCIT uniquely improved motor control strategies by reducing shoulder abduction, increasing elbow extension, and decreasing trunk compensatory movement during the reaching task. Motor function and quality of the affected limb was improved, and patients achieved greater independence in instrumental activities of daily living. Force generation at movement initiation was improved in the patients who received RT. A combination of RT and mCIT could be an effective approach to improve stroke rehabilitation outcomes, achieving better motor control strategies, motor function, and functional independence of instrumental activities of daily living. ClinicalTrials.gov. NCT01727648.

  12. Music supported therapy promotes motor plasticity in individuals with chronic stroke.

    PubMed

    Ripollés, P; Rojo, N; Grau-Sánchez, J; Amengual, J L; Càmara, E; Marco-Pallarés, J; Juncadella, M; Vaquero, L; Rubio, F; Duarte, E; Garrido, C; Altenmüller, E; Münte, T F; Rodríguez-Fornells, A

    2016-12-01

    Novel rehabilitation interventions have improved motor recovery by induction of neural plasticity in individuals with stroke. Of these, Music-supported therapy (MST) is based on music training designed to restore motor deficits. Music training requires multimodal processing, involving the integration and co-operation of visual, motor, auditory, affective and cognitive systems. The main objective of this study was to assess, in a group of 20 individuals suffering from chronic stroke, the motor, cognitive, emotional and neuroplastic effects of MST. Using functional magnetic resonance imaging (fMRI) we observed a clear restitution of both activity and connectivity among auditory-motor regions of the affected hemisphere. Importantly, no differences were observed in this functional network in a healthy control group, ruling out possible confounds such as repeated imaging testing. Moreover, this increase in activity and connectivity between auditory and motor regions was accompanied by a functional improvement of the paretic hand. The present results confirm MST as a viable intervention to improve motor function in chronic stroke individuals.

  13. Improving Survival and Promoting Respiratory Motor Function after Cervical Spinal Cord Injury

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-15-1-0378 TITLE: Improving Survival and Promoting Respiratory Motor Function after Cervical Spinal Cord Injury PRINCIPAL...Aug 2015 - 14 Aug 2016 4. TITLE AND SUBTITLE CordCorInjury 5a. CONTRACT NUMBER Improvi g Survival and Promoting Respiratory Motor Function After... respiratory complications. This application proposes to help improve survival, decrease early dependence on mechanical ventilation, and restore breathing

  14. How does the motor relearning program improve neurological function of brain ischemia monkeys?☆

    PubMed Central

    Yin, Yong; Gu, Zhen; Pan, Lei; Gan, Lu; Qin, Dongdong; Yang, Bo; Guo, Jin; Hu, Xintian; Wang, Tinghua; Feng, Zhongtang

    2013-01-01

    The motor relearning program can significantly improve various functional disturbance induced by ischemic cerebrovascular diseases. However, its mechanism of action remains poorly understood. In injured brain tissues, glial fibrillary acidic protein and neurofilament protein changes can reflect the condition of injured neurons and astrocytes, while vascular endothelial growth factor and basic fibroblast growth factor changes can indicate angiogenesis. In the present study, we induced ischemic brain injury in the rhesus macaque by electrocoagulation of the M1 segment of the right middle cerebral artery. The motor relearning program was conducted for 60 days from the third day after model establishment. Immunohistochemistry and single-photon emission CT showed that the numbers of glial fibrillary acidic protein-, neurofilament protein-, vascular endothelial growth factor- and basic fibroblast growth factor-positive cells were significantly increased in the infarcted side compared with the contralateral hemisphere following the motor relearning program. Moreover, cerebral blood flow in the infarcted side was significantly improved. The clinical rating scale for stroke was used to assess neurological function changes in the rhesus macaque following the motor relearning program. Results showed that motor function was improved, and problems with consciousness, self-care ability and balance function were significantly ameliorated. These findings indicate that the motor relearning program significantly promoted neuronal regeneration, repair and angiogenesis in the surroundings of the infarcted hemisphere, and improve neurological function in the rhesus macaque following brain ischemia. PMID:25206440

  15. Noninvasive and painless magnetic stimulation of nerves improved brain motor function and mobility in a cerebral palsy case.

    PubMed

    Flamand, Véronique H; Schneider, Cyril

    2014-10-01

    Motor deficits in cerebral palsy disturb functional independence. This study tested whether noninvasive and painless repetitive peripheral magnetic stimulation could improve motor function in a 7-year-old boy with spastic hemiparetic cerebral palsy. Stimulation was applied over different nerves of the lower limbs for 5 sessions. We measured the concurrent aftereffects of this intervention on ankle motor control, gait (walking velocity, stride length, cadence, cycle duration), and function of brain motor pathways. We observed a decrease of ankle plantar flexors resistance to stretch, an increase of active dorsiflexion range of movement, and improvements of corticospinal control of ankle dorsiflexors. Joint mobility changes were still present 15 days after the end of stimulation, when all gait parameters were also improved. Resistance to stretch was still lower than prestimulation values 45 days after the end of stimulation. This case illustrates the sustained effects of repetitive peripheral magnetic stimulation on brain plasticity, motor function, and gait. It suggests a potential impact for physical rehabilitation in cerebral palsy. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. The effect of aquatic intervention on the gross motor function and aquatic skills in children with cerebral palsy.

    PubMed

    Dimitrijević, Lidija; Aleksandrović, Marko; Madić, Dejan; Okičić, Tomislav; Radovanović, Dragan; Daly, Daniel

    2012-05-01

    The objective of this study was to investigate the effect of an aquatic intervention on the gross motor function and aquatic skills of children with cerebral palsy (CP). Twenty-nine children with CP, aged 5 to 14, were recruited. Fourteen children completed an aquatic intervention (EG), and 13 children served as controls (CG). Two participants dropped out due to events (illness) unrelated to the intervention. The aquatic intervention lasted 6 weeks (2 sessions per week at 55 minutes per session) with a follow-up period of 3 weeks. The outcome measures were the Gross Motor Function Measure (GMFM) for motor function and the Water Orientation Test Alyn 2 (WOTA 2) for aquatic skills assessment. A significant improvement was observed in the secondary assessment of GMFM and WOTA 2. In contrast to the aquatic skills improvement, the GMFM change was not maintained at follow-up. Our results indicate that children with CP can improve gross motor function on dry land and aquatic skills with a 6-week water intervention. The intervention period was too short for sustainable improvement in dry-land motor skills after intervention (follow-up), but time was sufficient to achieve sustainable improvements in aquatic skills.

  17. Aquatic therapy for a child with type III spinal muscular atrophy: a case report.

    PubMed

    Salem, Yasser; Gropack, Stacy Jaffee

    2010-11-01

    Spinal muscular atrophy (SMA) is a neuromuscular disorder characterized by degeneration of alpha motor neurons. This case report describes an aquatic therapy program and the outcomes for a 3-year-old girl with type III SMA. Motor skills were examined using the 88-item Gross Motor Function Measure (GMFM), the Peabody Developmental Motor Scales (PDMS-2), and the GAITRite system. The child received aquatic therapy twice per week for 45-min sessions, for 14 weeks. The intervention included aquatic activities designed to improve gross motor skills and age-appropriate functional mobility. The GMFM total score improved by 11% following the intervention. The Standing Dimension score improved by 28% and the Walking, Running, and Jumping Dimension score improved by 18%. The gross motor quotient for the PDMS-2 improved from 66 to 74. The child's gait showed improvement in walking velocity, stride length, and single-limb support time as a percentage of the gait cycle. The outcomes of this case report demonstrate the successful improvement of gross motor function and gait in a 3-year-old child with SMA. This study provides clinical information for therapists utilizing aquatic therapy as a modality for children with neuromuscular disorders.

  18. Outcomes of rotigotine clinical trials: effects on motor and nonmotor symptoms of Parkinson's disease.

    PubMed

    Lyons, Kelly E; Pahwa, Rajesh

    2013-08-01

    Rotigotine transdermal system is a nonergot, 24-hour dopamine agonist approved for the treatment of early and advanced Parkinson's disease (PD). Recent studies have demonstrated significant improvements with rotigotine in motor function in early PD and significant improvements in daily off-time and motor function in advanced PD. In addition to motor improvements, nonmotor symptoms have been shown to be improved with rotigotine in both early and advanced PD. Rotigotine has been shown in large, controlled studies to be safe and efficacious for the treatment of motor and some nonmotor symptoms of early and advanced PD. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Gross motor function change after multilevel soft tissue release in children with cerebral palsy.

    PubMed

    Chang, Chia-Hsieh; Chen, Yu-Ying; Yeh, Kuo-Kuang; Chen, Chia-Ling

    2017-06-01

    Improving motor function is a major goal of therapy for children with cerebral palsy (CP). However, changes in motor function after orthopedic surgery for gait disorders are seldom discussed. This study aimed to evaluate the postoperative changes in gross motor function and to investigate the prognostic factors for such changes. We prospectively studied 25 children with CP (4-12 years) who were gross motor function classification system (GMFCS) level II to IV and and underwent bilateral multilevel soft-tissue release for knee flexion gait. Patients were evaluated preoperatively and at 6 weeks and 3 and 6 months postoperatively for Gross Motor Function Measure (GMFM-66), range of motion, spasticity, and selective motor control. The associations between change in GMFM-66 score and possible factors were analyzed. 25 children with gross motor function level II to IV underwent surgery at a mean age of 8.6 years (range, 4-12 years). Mean GMFM-66 score decreased from 55.9 at baseline to 54.3 at 6-weeks postoperatively and increased to 57.5 at 6-months postoperatively (p < 0.05). Regression analysis revealed better gross motor function level and greater surgical reduction of spasticity were predictors for decreased GMFM-66 score at 6-weeks postoperatively. Younger age was a predictor for increased GMFM-66 score at 6-months postoperatively. Reduction of contracture and spasticity and improvement of selective motor control were noted after surgery in children with CP. However, a down-and-up course of GMFM-66 score was noted. It is emphasized that deterioration of motor function in children with ambulatory ability and the improvement in young children after orthopedic surgery for gait disorders. case series, therapeutic study, level 4. Copyright © 2017 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  20. Effect of functional electrical stimulation with mirror therapy on upper extremity motor function in poststroke patients.

    PubMed

    Kim, HyunJin; Lee, GyuChang; Song, ChangHo

    2014-04-01

    Motor recovery of the upper extremity in stroke patients is an important goal of rehabilitation. In particular, motor recovery can be accelerated when physical and cognitive interventions are combined. Thus, the aim of this study was to investigate the effects of functional electrical stimulation (FES) with mirror therapy (MT) on motor function of upper extremity in stroke patients. Twenty-seven stroke patients were recruited, and the 23 subjects who met the inclusion criteria were randomly allocated into 2 groups: the experimental group (n = 12) and the control group (n = 11). Both groups received conventional rehabilitation training for 60 minutes/day and 5 days/week for 4 weeks. In addition, members of the experimental group received FES with MT and members of the control group received FES without MT for 30 minutes/day and 5 days/week for 4 weeks. Immediately before and after intervention, motor recovery was measured using the Fugl-Meyer (FM) assessment, Brunnstrom's motor recovery stage (BMRS), the Manual Function Test (MFT), and the Box and Block Test (BBT). Significant upper extremity motor improvements were observed in the experimental and control groups according to the FM, BMRS, MFT, and BBT (P < .05). In particular, FM subscores for wrist, hand, and co-ordination and MFT subscores for hand function were more significantly improved in the experimental group (P < .05). Motor functions of the upper extremity were improved by FES with MT versus controls. The study shows that FES with MT during poststroke rehabilitation may effectively improve motor functions of the upper extremity. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  1. Do post-stroke patients benefit from robotic verticalization? A pilot-study focusing on a novel neurophysiological approach.

    PubMed

    Calabrò, Rocco Salvatore; Naro, Antonino; Russo, Margherita; Leo, Antonino; Balletta, Tina; Saccá, Ileana; De Luca, Rosaria; Bramanti, Placido

    2015-01-01

    Tilt-table equipped with the dynamic foot-support (ERIGO) and the functional electric stimulation could be a safe and suitable device for stabilization of vital signs, increasing patient's motivation for further recovery, decreasing the duration of hospitalization, and accelerating the adaptation to vertical posture in bedridden patients with brain-injury. Moreover, it is conceivable that verticalization may improve cognitive functions, and induce plastic changes at sensory motor and vestibular system level that may in turn facilitate motor functional recovery. To test the safety and effectiveness of ERIGO treatment on motor and cognitive functions, cortical plasticity within vestibular and sensory-motor systems in a bedridden post-stroke sample. 20 patients were randomly divided in two groups that performed ERIGO training (30 sessions) (G1) or physiotherapist-assisted verticalization training (same duration) (G2), beyond conventional neurorehabilitation treatment. Motor and cognitive functions as well as sensory-motor and vestibular system plasticity were investigated either before (T0) or after (T1) the rehabilitative protocols. Both the verticalization treatments were well-tolerated. Notably, the G1 patients had a significant improvement in cognitive function (p = 0.03), global motor function (p = 0.006), sensory-motor (p < 0.001) and vestibular system plasticity (p = 0.02) as compared to G2. ERIGO training could be a valuable tool for the adaptation to the vertical position with a better global function improvement, as also suggested by the sensory-motor and vestibular system plasticity induction.

  2. Improved motor and cognitive performance with sodium nitrite supplementation is related to small metabolite signatures: a pilot trial in middle-aged and older adults

    PubMed Central

    DeVan, Allison E.; Cruickshank-Quinn, Charmion; Reisdorph, Nichole; Bassett, Candace J.; Evans, Trent D.; Brooks, Forrest A.; Bryan, Nathan S.; Chonchol, Michel B.; Giordano, Tony; McQueen, Matthew B.; Seals, Douglas R.

    2015-01-01

    Advancing age is associated with reductions in nitric oxide bioavailability and changes in metabolic activity, which are implicated in declines in motor and cognitive function. In preclinical models, sodium nitrite supplementation (SN) increases plasma nitrite and improves motor function, whereas other nitric oxide-boosting agents improve cognitive function. This pilot study was designed to translate these findings to middle-aged and older (MA/O) humans to provide proof-of-concept support for larger trials. SN (10 weeks, 80 or 160 mg/day capsules, TheraVasc, Inc.) acutely and chronically increased plasma nitrite and improved performance on measures of motor and cognitive outcomes (all p<0.05 or better) in healthy MA/O adults (62 ± 7 years). Untargeted metabolomics analysis revealed that SN significantly altered 33 (160 mg/day) to 45 (80 mg/day) different metabolites, 13 of which were related to changes in functional outcomes; baseline concentrations of 99 different metabolites predicted functional improvements with SN. This pilot study provides the first evidence that SN improves aspects of motor and cognitive function in healthy MA/O adults, and that these improvements are associated with, and predicted by, the plasma metabolome. Our findings provide the necessary support for larger clinical trials on this promising pharmacological strategy for preserving physiological function with aging. PMID:26626856

  3. Task-relevant cognitive and motor functions are prioritized during prolonged speed-accuracy motor task performance.

    PubMed

    Solianik, Rima; Satas, Andrius; Mickeviciene, Dalia; Cekanauskaite, Agne; Valanciene, Dovile; Majauskiene, Daiva; Skurvydas, Albertas

    2018-06-01

    This study aimed to explore the effect of prolonged speed-accuracy motor task on the indicators of psychological, cognitive, psychomotor and motor function. Ten young men aged 21.1 ± 1.0 years performed a fast- and accurate-reaching movement task and a control task. Both tasks were performed for 2 h. Despite decreased motivation, and increased perception of effort as well as subjective feeling of fatigue, speed-accuracy motor task performance improved during the whole period of task execution. After the motor task, the increased working memory function and prefrontal cortex oxygenation at rest and during conflict detection, and the decreased efficiency of incorrect response inhibition and visuomotor tracking were observed. The speed-accuracy motor task increased the amplitude of motor-evoked potentials, while grip strength was not affected. These findings demonstrate that to sustain the performance of 2-h speed-accuracy task under conditions of self-reported fatigue, task-relevant functions are maintained or even improved, whereas less critical functions are impaired.

  4. Intrathecal baclofen in dyskinetic cerebral palsy: effects on function and activity.

    PubMed

    Eek, Meta N; Olsson, Kristina; Lindh, Karin; Askljung, Berit; Påhlman, Magnus; Corneliusson, Olle; Himmelmann, Kate

    2018-01-01

    To investigate the effect of intrathecal baclofen (ITB) on function and activity in dyskinetic cerebral palsy (CP). A retrospective cohort study of records from 25 children (15 males, 10 females; mean age 10y 11mo, SD 4y 9mo). Five were classified in Gross Motor Function Classification level IV and 20 in level V. Parents were interviewed about activities in daily life, sitting, communication, pain, sleep, and gross and fine motor function. Differences before and 1 year after ITB were graded as positive, no change, or negative. Assessments of dystonia (using the Barry-Albright Dystonia Scale) and muscle tone (Ashworth Scale) were made. Joint range of motion (ROM) was measured. Both dystonia and increased muscle tone, present in all participants before ITB, decreased after (p<0.001). Passive ROM was restricted, with no difference after. Parents reported improvements in activities in daily life (p<0.001), sitting (p<0.001), communication (p<0.001), and fine motor function (p=0.013), but no change in gross motor function. Before ITB, pain and disturbed sleep were reported. There was a reduction in pain (p=0.002) and sleep improved (p=0.004) after ITB. After ITB in individuals with dyskinetic CP, improvements were found in sitting, communication, and fine motor skills. There was a reduction in dystonia and muscle tone, and pain and sleep improved. Intrathecal baclofen can affect specific aspects of functioning in dyskinetic cerebral palsy. Sitting, communication, and fine motor function improved. Dystonia and spasticity were reduced. Pain was reduced and sleep improved. © 2017 Mac Keith Press.

  5. The Effect of Aquatic Intervention on the Gross Motor Function and Aquatic Skills in Children with Cerebral Palsy

    PubMed Central

    Dimitrijević, Lidija; Aleksandrović, Marko; Madić, Dejan; Okičić, Tomislav; Radovanović, Dragan; Daly, Daniel

    2012-01-01

    The objective of this study was to investigate the effect of an aquatic intervention on the gross motor function and aquatic skills of children with cerebral palsy (CP). Twenty-nine children with CP, aged 5 to 14, were recruited. Fourteen children completed an aquatic intervention (EG), and 13 children served as controls (CG). Two participants dropped out due to events (illness) unrelated to the intervention. The aquatic intervention lasted 6 weeks (2 sessions per week at 55 minutes per session) with a follow-up period of 3 weeks. The outcome measures were the Gross Motor Function Measure (GMFM) for motor function and the Water Orientation Test Alyn 2 (WOTA 2) for aquatic skills assessment. A significant improvement was observed in the secondary assessment of GMFM and WOTA 2. In contrast to the aquatic skills improvement, the GMFM change was not maintained at follow-up. Our results indicate that children with CP can improve gross motor function on dry land and aquatic skills with a 6-week water intervention. The intervention period was too short for sustainable improvement in dry-land motor skills after intervention (follow-up), but time was sufficient to achieve sustainable improvements in aquatic skills. PMID:23487257

  6. Corticospinal tract integrity and lesion volume play different roles in chronic hemiparesis and its improvement through motor practice.

    PubMed

    Sterr, Annette; Dean, Phil J A; Szameitat, Andre J; Conforto, Adriana Bastos; Shen, Shan

    2014-05-01

    Initial evidence suggests that the integrity of the ipsilesional corticospinal tract (CST) after stroke is strongly related to motor function in the chronic state but not the treatment gain induced by motor rehabilitation. We examined the association of motor status and treatment benefit by testing patients with a wide range of severity of hemiparesis of the left and right upper extremity. Diffusion tensor imaging was performed in 22 patients beyond 12 months after onset of stroke with severe to moderate hemiparesis. Motor function was tested before and after 2 weeks of modified constraint-induced movement therapy. CST integrity, but not lesion volume, correlated with the motor ability measures of the Wolf Motor Function Test and the Motor Activity Log. No differences were found between left and right hemiparesis. Motor performance improved significantly with the treatment regime, and did so equally for patients with left and right arm paresis. However, treatment benefit was not associated with either CST integrity or lesion volume. CST integrity correlated best in this small trial with chronic long-term status but not treatment-induced improvements. The CST may play a different role in the mechanisms mediating long-term outcome compared to those underlying practice-induced gains after a chronic plateau in motor function.

  7. Patients undergoing subacute physical rehabilitation following an acute hospital admission demonstrated improvement in cognitive functional task independence.

    PubMed

    McPhail, Steven M; Varghese, Paul N; Kuys, Suzanne S

    2014-01-01

    This study investigated cognitive functioning among older adults with physical debility not attributable to an acute injury or neurological condition who were receiving subacute inpatient physical rehabilitation. A cohort investigation with assessments at admission and discharge. Three geriatric rehabilitation hospital wards. Consecutive rehabilitation admissions (n = 814) following acute hospitalization (study criteria excluded orthopaedic, neurological, or amputation admissions). Usual rehabilitation care. The Functional Independence Measure (FIM) Cognitive and Motor items. A total of 704 (86.5%) participants (mean age = 76.5 years) completed both assessments. Significant improvement in FIM Cognitive items (Z-score range 3.93-8.74, all P < 0.001) and FIM Cognitive total score (Z-score = 9.12, P < 0.001) occurred, in addition to improvement in FIM Motor performance. A moderate positive correlation existed between change in Motor and Cognitive scores (Spearman's rho = 0.41). Generalized linear modelling indicated that better cognition at admission (coefficient = 0.398, P < 0.001) and younger age (coefficient = -0.280, P < 0.001) were predictive of improvement in Motor performance. Younger age (coefficient = -0.049, P < 0.001) was predictive of improvement in FIM Cognitive score. Improvement in cognitive functioning was observed in addition to motor function improvement among this population. Causal links cannot be drawn without further research.

  8. Cognitive and motor function of neurologically impaired extremely low birth weight children.

    PubMed

    Bernardo, Janine; Friedman, Harriet; Minich, Nori; Taylor, H Gerry; Wilson-Costello, Deanne; Hack, Maureen

    2015-01-01

    Rates of neurological impairment among extremely low birth weight children (ELBW [<1 kg]) have decreased since 2000; however, their functioning is unexamined. To compare motor and cognitive functioning of ELBW children with neurological impairment, including cerebral palsy and severe hypotonia/hypertonia, between two periods: 1990 to 1999 (n=83) and 2000 to 2005 (n=34). Measures of function at 20 months corrected age included the Mental and Psychomotor Developmental Indexes of the Bayley Scales of Infant Development and the Gross Motor Functional Classification System as primary outcomes and individual motor function items as secondary outcomes. Analysis failed to reveal significant differences for the primary outcomes, although during 2000 to 2005, sitting significantly improved in children with neurological impairment (P=0.003). Decreases in rates of neurological impairment among ELBW children have been accompanied by a suggestion of improved motor function, although cognitive function has not changed.

  9. Do post-stroke patients benefit from robotic verticalization? A pilot-study focusing on a novel neurophysiological approach

    PubMed Central

    Calabrò, Rocco Salvatore; Naro, Antonino; Russo, Margherita; Leo, Antonino; Balletta, Tina; Saccá, Ileana; De Luca, Rosaria; Bramanti, Placido

    2015-01-01

    Abstract Background: Tilt-table equipped with the dynamic foot-support (ERIGO) and the functional electric stimulation could be a safe and suitable device for stabilization of vital signs, increasing patient’s motivation for further recovery, decreasing the duration of hospitalization, and accelerating the adaptation to vertical posture in bedridden patients with brain-injury. Moreover, it is conceivable that verticalization may improve cognitive functions, and induce plastic changes at sensory motor and vestibular system level that may in turn facilitate motor functional recovery. Objective: To test the safety and effectiveness of ERIGO treatment on motor and cognitive functions, cortical plasticity within vestibular and sensory-motor systems in a bedridden post-stroke sample. Methods: 20 patients were randomly divided in two groups that performed ERIGO training (30 sessions) (G1) or physiotherapist-assisted verticalization training (same duration) (G2), beyond conventional neurorehabilitation treatment. Motor and cognitive functions as well as sensory-motor and vestibular system plasticity were investigated either before (T0) or after (T1) the rehabilitative protocols. Results: Both the verticalization treatments were well-tolerated. Notably, the G1 patients had a significant improvement in cognitive function (p = 0.03), global motor function (p = 0.006), sensory-motor (p <  0.001) and vestibular system plasticity (p = 0.02) as compared to G2. Conclusions: ERIGO training could be a valuable tool for the adaptation to the vertical position with a better global function improvement, as also suggested by the sensory-motor and vestibular system plasticity induction. PMID:26410207

  10. Immediate improvement of motor function after epilepsy surgery in congenital hemiparesis.

    PubMed

    Pascoal, Tharick; Paglioli, Eliseu; Palmini, André; Menezes, Rafael; Staudt, Martin

    2013-08-01

    Hemispherectomy often leads to a loss of contralateral hand function. In some children with congenital hemiparesis, however, paretic hand function remains unchanged. An immediate improvement of hand function has never been reported. A 17-year-old boy with congenital hemiparesis and therapy-refractory seizures due to a large infarction in the territory of the middle cerebral artery underwent epilepsy surgery. Intraoperatively, electrical cortical stimulation of the affected hemisphere demonstrated preserved motor projections from the sensorimotor cortex to the (contralateral) paretic hand. A frontoparietal resection was performed, which included a complete disconnection of all motor projections originating in the sensorimotor cortex of the affected hemisphere. Surprisingly, the paretic hand showed a significant functional improvement immediately after the operation. This observation demonstrates that, in congenital hemiparesis, crossed motor projections from the affected hemisphere are not always beneficial, but can be dysfunctional, interfering with ipsilateral motor control over the paretic hand by the contralesional hemisphere. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  11. Integrated versus isolated training of the hemiparetic upper extremity in haptically rendered virtual environments.

    PubMed

    Qiu, Qinyin; Fluet, Gerard G; Saleh, Soha; Lafond, Ian; Merians, Alma S; Adamovich, Sergei V

    2010-01-01

    This paper describes the preliminary results of an ongoing study of the effects of two training approaches on motor function and learning in persons with hemi paresis due to cerebrovascular accidents. Eighteen subjects with chronic stroke performed eight, three-hour sessions of sensorimotor training in haptically renedered environments. Eleven subjects performed training activities that integrated hand and arm movement while another seven subjects performed activities that trained the hand and arm with separately. As a whole, the eighteen subjects made statistically significant improvements in motor function as evidenced by robust improvements in Wolf Motor Function Test times and corresponding improvements in Jebsen Test of Hand Function times. There were no significant between group effects for these tests. However, the two training approaches elicited different patterns and magnitudes of performance improvement that suggest that they may elicit different types of change in motor learning and or control.

  12. SKILLED BIMANUAL TRAINING DRIVES MOTOR CORTEX PLASTICITY IN CHILDREN WITH UNILATERAL CEREBRAL PALSY

    PubMed Central

    Friel, Kathleen M.; Kuo, Hsing-Ching; Fuller, Jason; Ferre, Claudio L.; Brandão, Marina; Carmel, Jason B.; Bleyenheuft, Yannick; Gowatsky, Jaimie L.; Stanford, Arielle D.; Rowny, Stefan B.; Luber, Bruce; Bassi, Bruce; Murphy, David LK; Lisanby, Sarah H.; Gordon, Andrew M.

    2015-01-01

    Background Intensive bimanual therapy can improve hand function in children with unilateral spastic cerebral palsy (USCP). We compared the effects of structured bimanual skill training vs. unstructured bimanual practice on motor outcomes and motor map plasticity in children with USCP. Objective We hypothesized that structured skill training would produce greater motor map plasticity than unstructured practice. Methods Twenty children with USCP (average age 9,5; 12 males) received therapy in a day-camp-setting, 6 h/day, 5 days/week, for 3 weeks. In structured skill training (n=10), children performed progressively more difficult movements and practiced functional goals. In unstructured practice (n=10), children engaged in bimanual activities but did not practice skillful movements or functional goals. We used the Assisting Hand Assessment (AHA), Jebsen-Taylor test of Hand Function (JTTHF) and Canadian Occupational Performance Measure (COPM) to measure hand function. We used single-pulse transcranial magnetic stimulation (TMS) to map the representation of first dorsal interosseous (FDI) and flexor carpi radialis (FCR) muscles bilaterally. Results Both groups showed significant improvements in bimanual hand use (AHA; p<0.05) and hand dexterity (JTTHF; p<0.001). However, only the structured skill group showed increases in the size of the affected hand motor map and amplitudes of motor evoked potentials (p<0.01). Most children who showed the most functional improvements (COPM) had the largest changes in map size. Conclusions These findings uncover a dichotomy of plasticity: the unstructured practice group improved hand function but did not show changes in motor maps. Skill training is important for driving motor cortex plasticity in children with USCP. PMID:26867559

  13. Dynamic Neuro-Cognitive Imagery Improves Mental Imagery Ability, Disease Severity, and Motor and Cognitive Functions in People with Parkinson's Disease

    PubMed Central

    Hart, Ariel; Andrade, Isaac; Hackney, Madeleine E.

    2018-01-01

    People with Parkinson's disease (PD) experience kinesthetic deficits, which affect motor and nonmotor functions, including mental imagery. Imagery training is a recommended, yet underresearched, approach in PD rehabilitation. Dynamic Neuro-Cognitive Imagery (DNI™) is a codified method for imagery training. Twenty subjects with idiopathic PD (Hoehn and Yahr stages I–III) were randomly allocated into DNI training (experimental; n = 10) or in-home learning and exercise program (control; n = 10). Both groups completed at least 16 hours of training within two weeks. DNI training focused on anatomical embodiment and kinesthetic awareness. Imagery abilities, disease severity, and motor and nonmotor functions were assessed pre- and postintervention. The DNI participants improved (p < .05) in mental imagery abilities, disease severity, and motor and spatial cognitive functions. Participants also reported improvements in balance, walking, mood, and coordination, and they were more physically active. Both groups strongly agreed they enjoyed their program and were more mentally active. DNI training is a promising rehabilitation method for improving imagery ability, disease severity, and motor and nonmotor functions in people with PD. This training might serve as a complementary PD therapeutic approach. Future studies should explore the effect of DNI on motor learning and control strategies. PMID:29725348

  14. Music-supported therapy (MST) in improving post-stroke patients' upper-limb motor function: a randomised controlled pilot study.

    PubMed

    Tong, Yanna; Forreider, Brian; Sun, Xinting; Geng, Xiaokun; Zhang, Weidong; Du, Huishan; Zhang, Tong; Ding, Yuchuan

    2015-05-01

    Music-supported therapy (MST) is a new approach for motor rehabilitation of stroke patients. Recently, many studies have demonstrated that MST improved the motor functions of post-stroke patients. However, the underlying mechanism for this effect is still unclear. It may result from repeated practice or repeated practice combined with musical stimulation. Currently, few studies have been designed to clarify this discrepancy. In this study, the application of "mute" musical instruments allowed for the study of music as an independent factor. Thirty-three post-stroke patients with no substantial previous musical training were included. Participants were assigned to either audible music group (MG) or mute music group (CG), permitting observation of music's independent effect. All subjects received the conventional rehabilitation treatments. Patients in MG (n = 15) received 20 extra sessions of audible musical instrument training over 4 weeks. Patients in CG (n = 18) received "mute" musical instrument training of the same protocol as that of MG. Wolf motor function test (WMFT) and Fugl-Meyer assessment (FMA) for upper limbs were utilised to evaluate motor functions of patients in both groups before and after the treatment. Three patients in CG dropped out. All participants in both groups showed significant improvements in motor functions of upper limbs after 4  weeks' treatment. However, significant differences in the WMFT were found between the two groups (WMFT-quality: P = 0.025; WMFT-time: P = 0.037), but not in the FMA (P = 0.448). In short, all participants showed significant improvement after 4 weeks' treatment, but subjects in MG demonstrated greater improvement than those in CG. This study supports that MST, when combined with conventional treatment, is effective for the recovery of motor skills in post-stroke patients. Additionally, it suggests that apart from the repetitive practices of MST, music may play a unique role in improving upper-limb motor function for post-stroke patients.

  15. Mirror therapy in chronic stroke survivors with severely impaired upper limb function: a randomized controlled trial.

    PubMed

    Colomer, Carolina; NOé, Enrique; Llorens, Roberto

    2016-06-01

    Mirror therapy (MT) has been proposed to improve the motor function of chronic individuals with stroke with mild to moderate impairment. With regards to severe upper limb paresis, MT has shown to provide limited motor improvement in the acute or sub-acute phase. However, no previous research has described the effects of MT in chronic individuals with stroke with severely impaired upper limb function. The aim of this study was to determine the effectiveness of MT on chronic stroke survivors with severe upper-limb impairment in comparison with passive mobilization. A randomized controlled trial. Rehabilitative outpatient unit. A total of 31 chronic subjects poststroke with severely impaired upper limb function were randomly assigned to either an experimental group (N.=15), or a control group (N.=16). Twenty-four intervention sessions were performed for both groups. Each session included 45-minute period of MT (experimental group) or passive mobilization (control group), administered three days a week. Participants were assessed before and after the intervention with the Wolf Motor Function Test, the Fugl-Meyer Assessment, and the Nottingham Sensory Assessment. Improvement in motor function was observed in both groups on the time (P=0.002) and ability (P=0.001) subscales of the Wolf Motor Function Test. No differences were detected in kinesthesis or stereognosis. However, the experimental group showed a significant improvement in tactile sensation that was mainly observed as an increased sensitivity to light touches. In comparison with passive mobilization, MT in chronic stroke survivors with severely impaired upper-limb function may provide a limited but positive effect on light touch sensitivity while providing similar motor improvement. MT is a therapeutic approach that can be used in the rehabilitation of severely impaired upper limb in chronic stroke survivors, specifically to address light touch sensitivity deficits.

  16. Combining afferent stimulation and mirror therapy for rehabilitating motor function, motor control, ambulation, and daily functions after stroke.

    PubMed

    Lin, Keh-chung; Huang, Pai-chuan; Chen, Yu-ting; Wu, Ching-yi; Huang, Wen-ling

    2014-02-01

    Mirror therapy (MT) and mesh glove (MG) afferent stimulation may be effective in reducing motor impairment after stroke. A hybrid intervention of MT combined with MG (MT + MG) may broaden aspects of treatment benefits. To demonstrate the comparative effects of MG + MT, MT, and a control treatment (CT) on the outcomes of motor impairments, manual dexterity, ambulation function, motor control, and daily function. Forty-three chronic stroke patients with mild to moderate upper extremity impairment were randomly assigned to receive MT + MG, MT, or CT for 1.5 hours/day, 5 days/week for 4 weeks. Outcome measures were the Fugl-Meyer Assessment (FMA) and muscle tone measured by Myoton-3 for motor impairment and the Box and Block Test (BBT) and 10-Meter Walk Test (10 MWT) for motor function. Secondary outcomes included kinematic parameters for motor control and the Motor Activity Log and ABILHAND Questionnaire for daily function. FMA total scores were significantly higher and synergistic shoulder abduction during reach was less in the MT + MG and MT groups compared with the CT group. Performance on the BBT and the 10 MWT (velocity and stride length in self-paced task and velocity in as-quickly-as-possible task) were improved after MT + MG compared with MT. MT + MG improved manual dexterity and ambulation. MT + MG and MT reduced motor impairment and synergistic shoulder abduction more than CT. Future studies may integrate functional task practice into treatments to enhance functional outcomes in patients with various levels of motor severity. The long-term effects of MG + MT remain to be evaluated.

  17. Incorporating robotic-assisted telerehabilitation in a home program to improve arm function following stroke.

    PubMed

    Linder, Susan M; Reiss, Aimee; Buchanan, Sharon; Sahu, Komal; Rosenfeldt, Anson B; Clark, Cindy; Wolf, Steven L; Alberts, Jay L

    2013-09-01

    After stroke, many individuals lack resources to receive the intensive rehabilitation that is thought to improve upper extremity motor function. This case study describes the application of a telerehabilitation intervention using a portable robotic device combined with a home exercise program (HEP) designed to improve upper extremity function. The participant was a 54-year-old man, 22 weeks following right medullary pyramidal ischemic infarct. At baseline, he exhibited residual paresis of the left upper extremity, resulting in impaired motor control consistent with a flexion synergistic pattern, scoring 22 of 66 on the Fugl-Meyer Assessment. The participant completed 85 total hours of training (38 hours of robotic device and 47 hours of HEP) over the 8-week intervention period. The participant demonstrated an improvement of 26 points on the Action Research Arm Test, 5 points on the Functional Ability Scale portion of the Wolf Motor Function Test, and 20 points on the Fugl-Meyer Assessment, all of which surpassed the minimal clinically important difference. Of the 17 tasks of the Wolf Motor Function Test, he demonstrated improvement on 11 of the 15 time-based tasks and both strength measures. The participant reported an overall improvement in his recovery from stroke on the Stroke Impact Scale quality-of-life questionnaire from 40 of 100 to 65 of 100. His score on the Center for Epidemiologic Studies Depression Scale improved by 19 points. This case demonstrates that robotic-assisted therapy paired with an HEP can be successfully delivered within a home environment to a person with stroke. Robotic-assisted therapy may be a feasible and efficacious adjunct to an HEP program to elicit substantial improvements in upper extremity motor function, especially in those persons with stroke who lack access to stroke rehabilitation centers.

  18. Relationships Between Gross Motor Skills and Social Function in Young Boys With Autism Spectrum Disorder.

    PubMed

    Holloway, Jamie M; Long, Toby M; Biasini, Fred

    2018-05-02

    The purpose of this study was to examine the relationship between gross motor skills and social function in young boys with autism spectrum disorder. Twenty-one children with autism spectrum disorder participated in the study. The Peabody Developmental Motor Scales Second Edition and the Miller Function and Participation Scales were used to assess gross motor skills. The Social Skills Improvement System Rating Scales was used to assess social function. Moderately high correlations were found between overall gross motor and social skills (r = 0.644) and between the core stability motor subtest and overall social skills (r = -0.672). Specific motor impairments in stability, motor accuracy, and object manipulation scores were predictive of social function. This study suggests that motor skills and social function are related in young boys with autism. Implications for physical therapy intervention are also discussed.

  19. The addition of functional task-oriented mental practice to conventional physical therapy improves motor skills in daily functions after stroke.

    PubMed

    Santos-Couto-Paz, Clarissa C; Teixeira-Salmela, Luci F; Tierra-Criollo, Carlos J

    2013-01-01

    Mental practice (MP) is a cognitive strategy which may improve the acquisition of motor skills and functional performance of athletes and individuals with neurological injuries. To determine whether an individualized, specific functional task-oriented MP, when added to conventional physical therapy (PT), promoted better learning of motor skills in daily functions in individuals with chronic stroke (13 ± 6.5 months post-stroke). Nine individuals with stable mild and moderate upper limb impairments participated, by employing an A1-B-A2 single-case design. Phases A1 and A2 included one month of conventional PT, and phase B the addition of MP training to PT. The motor activity log (MAL-Brazil) was used to assess the amount of use (AOU) and quality of movement (QOM) of the paretic upper limb; the revised motor imagery questionnaire (MIQ-RS) to assess the abilities in kinesthetic and visual motor imagery; the Minnesota manual dexterity test to assess manual dexterity; and gait speed to assess mobility. After phase A1, no significant changes were observed for any of the outcome measures. However, after phase B, significant improvements were observed for the MAL, AOU and QOM scores (p<0.0001), and MIQ-RS kinesthetic and visual scores (p=0.003; p=0.007, respectively). The significant gains in manual dexterity (p=0.002) and gait speed (p=0.019) were maintained after phase A2. Specific functional task-oriented MP, when added to conventional PT, led to improvements in motor imagery abilities combined with increases in the AOU and QOM in daily functions, manual dexterity, and gait speed.

  20. Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats.

    PubMed

    Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto

    2014-03-01

    We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Bobath Concept versus constraint-induced movement therapy to improve arm functional recovery in stroke patients: a randomized controlled trial.

    PubMed

    Huseyinsinoglu, Burcu Ersoz; Ozdincler, Arzu Razak; Krespi, Yakup

    2012-08-01

    To compare the effects of the Bobath Concept and constraint-induced movement therapy on arm functional recovery among stroke patients with a high level of function on the affected side. A single-blinded, randomized controlled trial. Outpatient physiotherapy department of a stroke unit. A total of 24 patients were randomized to constraint-induced movement therapy or Bobath Concept group. The Bobath Concept group was treated for 1 hour whereas the constraint-induced movement therapy group received training for 3 hours per day during 10 consecutive weekdays. Main measures were the Motor Activity Log-28, the Wolf Motor Function Test, the Motor Evaluation Scale for Arm in Stroke Patients and the Functional Independence Measure. The two groups were found to be homogeneous based on demographic variables and baseline measurements. Significant improvements were seen after treatment only in the 'Amount of use' and 'Quality of movement' subscales of the Motor Activity Log-28 in the constraint-induced movement therapy group over the the Bobath Concept group (P = 0.003; P = 0.01 respectively). There were no significant differences in Wolf Motor Function Test 'Functional ability' (P = 0.137) and 'Performance time' (P = 0.922), Motor Evaluation Scale for Arm in Stroke Patients (P = 0.947) and Functional Independence Measure scores (P = 0.259) between the two intervention groups. Constraint-induced movement therapy and the Bobath Concept have similar efficiencies in improving functional ability, speed and quality of movement in the paretic arm among stroke patients with a high level of function. Constraint-induced movement therapy seems to be slightly more efficient than the Bobath Concept in improving the amount and quality of affected arm use.

  2. Effects of modified constraint-induced movement therapy on reach-to-grasp movements and functional performance after chronic stroke: a randomized controlled study.

    PubMed

    Lin, K-C; Wu, C-Y; Wei, T-H; Lee, C-Y; Liu, J-S

    2007-12-01

    To evaluate changes in (1) motor control characteristics of the hemiparetic hand during the performance of a functional reach-to-grasp task and (2) functional performance of daily activities in patients with stroke treated with modified constraint-induced movement therapy. Two-group randomized controlled trial with pretreatment and posttreatment measures. Rehabilitation clinics. Thirty-two chronic stroke patients (21 men, 11 women; mean age=57.9 years, range=43-81 years) 13-26 months (mean 16.3 months) after onset of a first-ever cerebrovascular accident. Thirty-two patients were randomized to receive modified constraint-induced movement therapy (restraint of the unaffected limb combined with intensive training of the affected limb) or traditional rehabilitation for three weeks. Kinematic analysis was used to assess motor control characteristics as patients reached to grasp a beverage can. Functional outcomes were evaluated using the Motor Activity Log and Functional Independence Measure. There were moderate and significant effects of modified constraint-induced movement therapy on some aspects of motor control of reach-to-grasp and on functional ability. The modified constraint-induced movement therapy group preplanned reaching and grasping (P=0.018) more efficiently and depended more on the feedforward control of reaching (P=0.046) than did the traditional rehabilitation group. The modified constraint-induced movement therapy group also showed significantly improved functional performance on the Motor Activity Log (P<0.0001) and the Functional Independence Measure (P=0.016). In addition to improving functional use of the affected arm and daily functioning, modified constraint-induced movement therapy improved motor control strategy during goal-directed reaching, a possible mechanism for the improved movement performance of stroke patients undergoing this therapy.

  3. Neural reorganization underlies improvement in stroke-induced motor dysfunction by music-supported therapy.

    PubMed

    Altenmüller, E; Marco-Pallares, J; Münte, T F; Schneider, S

    2009-07-01

    Motor impairments are common after stroke, but efficacious therapies for these dysfunctions are scarce. By extending an earlier study on the effects of music-supported therapy, behavioral indices of motor function as well as electrophysiological measures were obtained before and after a series of therapy sessions to assess whether this new treatment leads to neural reorganization and motor recovery in patients after stroke. The study group comprised 32 stroke patients in a large rehabilitation hospital; they had moderately impaired motor function and no previous musical experience. Over a period of 3 weeks, these patients received 15 sessions of music-supported therapy using a manualized step-by-step approach. For comparison 30 additional patients received standard rehabilitation procedures. Fine as well as gross motor skills were trained by using either a MIDI-piano or electronic drum pads programmed to emit piano tones. Motor functions were assessed by an extensive test battery. In addition, we studied event-related desynchronization/synchronization and coherences from all 62 patients performing self-paced movements of the index finger (MIDI-piano) and of the whole arm (drum pads). Results showed that music-supported therapy yielded significant improvement in fine as well as gross motor skills with respect to speed, precision, and smoothness of movements. Neurophysiological data showed a more pronounced event-related desynchronization before movement onset and a more pronounced coherence in the music-supported therapy group in the post-training assessment, whereas almost no differences were observed in the control group. Thus we see that music-supported therapy leads to marked improvements of motor function after stroke and that these are accompanied by electrophysiological changes indicative of a better cortical connectivity and improved activation of the motor cortex.

  4. Increased neuromuscular consistency in gait and balance after partnered, dance-based rehabilitation in Parkinson's disease.

    PubMed

    Allen, Jessica L; McKay, J Lucas; Sawers, Andrew; Hackney, Madeleine E; Ting, Lena H

    2017-07-01

    Here we examined changes in muscle coordination associated with improved motor performance after partnered, dance-based rehabilitation in individuals with mild to moderate idiopathic Parkinson's disease. Using motor module (a.k.a. muscle synergy) analysis, we identified changes in the modular control of overground walking and standing reactive balance that accompanied clinically meaningful improvements in behavioral measures of balance, gait, and disease symptoms after 3 wk of daily Adapted Tango classes. In contrast to previous studies that revealed a positive association between motor module number and motor performance, none of the six participants in this pilot study increased motor module number despite improvements in behavioral measures of balance and gait performance. Instead, motor modules were more consistently recruited and distinctly organized immediately after rehabilitation, suggesting more reliable motor output. Furthermore, the pool of motor modules shared between walking and reactive balance increased after rehabilitation, suggesting greater generalizability of motor module function across tasks. Our work is the first to show that motor module distinctness, consistency, and generalizability are more sensitive to improvements in gait and balance function after short-term rehabilitation than motor module number. Moreover, as similar differences in motor module distinctness, consistency, and generalizability have been demonstrated previously in healthy young adults with and without long-term motor training, our work suggests commonalities in the structure of muscle coordination associated with differences in motor performance across the spectrum from motor impairment to expertise. NEW & NOTEWORTHY We demonstrate changes in neuromuscular control of gait and balance in individuals with Parkinson's disease after short-term, dance-based rehabilitation. Our work is the first to show that motor module distinctness, consistency, and generalizability across gait and balance are more sensitive than motor module number to improvements in motor performance following short-term rehabilitation. Our results indicate commonalities in muscle coordination improvements associated with motor skill reacquisition due to rehabilitation and motor skill acquisition in healthy individuals. Copyright © 2017 the American Physiological Society.

  5. Subthalamic nucleus stimulation selectively improves motor and visual memory performance in Parkinson's disease.

    PubMed

    Mollion, Hélène; Dominey, Peter Ford; Broussolle, Emmanuel; Ventre-Dominey, Jocelyne

    2011-09-01

    Although the treatment of Parkinson's disease via subthalamic stimulation yields remarkable improvements in motor symptoms, its effects on memory function are less clear. In this context, we previously demonstrated dissociable effects of levodopa therapy on parkinsonian performance in spatial and nonspatial visual working memory. Here we used the same protocol with an additional, purely motor task to investigate visual memory and motor performance in 2 groups of patients with Parkinson's disease with or without subthalamic stimulation. In each stimulation condition, subjects performed a simple motor task and 3 successive cognitive tasks: 1 conditional color-response association task and 2 visual (spatial and nonspatial) working memory tasks. The Parkinson's groups were compared with a control group of age-matched healthy subjects. Our principal results demonstrated that (1) in the motor task, stimulated patients were significantly improved with respect to nonstimulated patients and did not differ significantly from healthy controls, and (2) in the cognitive tasks, stimulated patients were significantly improved with respect to nonstimulated patients, but both remained significantly impaired when compared with healthy controls. These results demonstrate selective effects of subthalamic stimulation on parkinsonian disorders of motor and visual memory functions, with clear motor improvement for stimulated patients and a partial improvement for their visual memory processing. Copyright © 2011 Movement Disorder Society.

  6. Changes in structural integrity are correlated with motor and functional recovery after post-stroke rehabilitation.

    PubMed

    Fan, Yang-teng; Lin, Keh-chung; Liu, Ho-ling; Chen, Yao-liang; Wu, Ching-yi

    2015-01-01

    Diffusion tensor imaging (DTI) studies indicate the structural integrity of the ipsilesional corticospinal tract (CST) and the transcallosal motor tract, which are closely linked to stroke recovery. However, the individual contribution of these 2 fibers on different levels of outcomes remains unclear. Here, we used DTI tractography to investigate whether structural changes of the ipsilesional CST and the transcallosal motor tracts associate with motor and functional recovery after stroke rehabilitation. Ten participants with post-acute stroke underwent the Fugl-Meyer Assessment (FMA), the Wolf Motor Function Test (WMFT), the Functional Independence Measure (FIM), and DTI before and after bilateral robotic training. All participants had marked improvements in motor performance, functional use of the affected arm, and independence in daily activities. Increased fractional anisotropy (FA) in the ipsilesional CST and the transcallosal motor tracts was noted from pre-treatment to the end of treatment. Participants with higher pre-to-post differences in FA values of the transcallosal motor tracts had greater gains in the WMFT and the FIM scores. A greater improvement on the FMA was coupled with increased FA changes along the ipsilesional CST. These findings suggest 2 different structural indicators for post-stroke recovery separately at the impairment-based and function-based levels.

  7. Time course of motor gains induced by music-supported therapy after stroke: An exploratory case study.

    PubMed

    Grau-Sánchez, Jennifer; Ramos, Neus; Duarte, Esther; Särkämö, Teppo; Rodríguez-Fornells, Antoni

    2017-09-01

    Previous studies have shown that Music-Supported Therapy (MST) can improve the motor function and promote functional neuroplastic changes in motor areas; however, the time course of motor gains across MST sessions and treatment periods remain unknown. The aim of this study was to explore the progression of the rehabilitation of motor deficits in a chronic stroke patient for a period of 7 months. A reversal design (ABAB) was implemented in a chronic stroke patient where no treatment was provided in the A periods and MST was applied in the B periods. Each period comprised of 4 weeks and an extensive evaluation of the motor function using clinical motor tests and 3D movement analysis was performed weekly. During the MST periods, a keyboard task was recorded daily. A follow-up evaluation was performed 3 months after the second MST treatment. Improvements were observed during the first sessions in the keyboard task but clinical gains were noticeable only at the end of the first treatment and during the second treatment period. These gains were maintained in the follow-up evaluation. This is the first study examining the pattern of motor recovery progression in MST, evidencing that gradual and continuous motor improvements are possible with the repeated application of MST training. Fast-acquisition in specific motor abilities was observed at the beginning of the MST training but generalization of these improvements to other motor tasks took place at the end or when another treatment period was provided. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Rasagiline for dysexecutive symptoms during wearing-off in Parkinson's disease: a pilot study.

    PubMed

    Rinaldi, Domiziana; Assogna, Francesca; Sforza, Michela; Tagliente, Stefania; Pontieri, Francesco E

    2018-01-01

    Wearing-off refers to the predictable worsening of motor and sometimes non-motor symptoms of Parkinson's disease occurring at the end of levodopa dose that improves with the next drug dose. Here, we investigated the efficacy of rasagiline on executive functions at the end of levodopa dose in patients displaying symptoms of wearing-off. Rasagiline was well-tolerated and produced a significant improvement at the Frontal Assessment Battery, together with improvement of motor symptoms at the end of levodopa dose. These results suggest that treatment of motor symptoms of wearing-off with rasagiline may be accompanied by improvement of executive functions, and further support the need for optimizing dopamine replacement therapy in fluctuating Parkinson's disease patients.

  9. Effectiveness of Interventions Within the Scope of Occupational Therapy Practice to Improve Motor Function of People With Traumatic Brain Injury: A Systematic Review.

    PubMed

    Chang, Pei-Fen J; Baxter, Mary Frances; Rissky, Jenna

    2016-01-01

    After traumatic brain injury (TBI), many people experience significant motor function impairments. To help occupational therapy practitioners make informed decisions in choosing treatment strategies to improve clients' motor function, we undertook a systematic review and synthesized applicable findings of intervention studies. Of 2,306 articles identified in the literature search, we reviewed 47 full-text articles, of which 16 met approved criteria. We found moderate evidence that various exercise programs increase motor function and limited evidence that people with TBI can benefit from rehabilitation and computer-based programs. We offer implications for practice, education, and research. Copyright © 2016 by the American Occupational Therapy Association, Inc.

  10. Motor skill changes and neurophysiologic adaptation to recovery-oriented virtual rehabilitation of hand function in a person with subacute stroke: a case study

    PubMed Central

    Fluet, Gerard G.; Patel, Jigna; Qiu, Qinyin; Yarossi, Matthew; Massood, Supriya; Adamovich, Sergei V.; Tunik, Eugene; Merians, Alma S.

    2016-01-01

    Purpose The complexity of upper extremity (UE) behavior requires recovery of near normal neuromuscular function to minimize residual disability following a stroke. This requirement places a premium on spontaneous recovery and neuroplastic adaptation to rehabilitation by the lesioned hemisphere. Motor skill learning is frequently cited as a requirement for neuroplasticity. Studies examining the links between training, motor learning, neuroplasticity, and improvements in hand motor function are indicated. Methods This case study describes a patient with slow recovering hand and finger movement (Total Upper Extremity Fugl–Meyer examination score = 25/66, Wrist and Hand items = 2/24 on poststroke day 37) following a stroke. The patient received an intensive eight-session intervention utilizing simulated activities that focused on the recovery of finger extension, finger individuation, and pinch-grasp force modulation. Results Over the eight sessions, the patient demonstrated improvements on untrained transfer tasks, which suggest that motor learning had occurred, as well a dramatic increase in hand function and corresponding expansion of the cortical motor map area representing several key muscles of the paretic hand. Recovery of hand function and motor map expansion continued after discharge through the three-month retention testing. Conclusion This case study describes a neuroplasticity based intervention for UE hemiparesis and a model for examining the relationship between training, motor skill acquisition, neuroplasticity, and motor function changes. PMID:27669997

  11. Motor cortex stimulation does not lead to functional recovery after experimental cortical injury in rats.

    PubMed

    Schönfeld, Lisa-Maria; Jahanshahi, Ali; Lemmens, Evi; Bauwens, Matthias; Hescham, Sarah-Anna; Schipper, Sandra; Lagiere, Melanie; Hendrix, Sven; Temel, Yasin

    2017-01-01

    Motor impairments are among the major complications that develop after cortical damage caused by either stroke or traumatic brain injury. Motor cortex stimulation (MCS) can improve motor functions in animal models of stroke by inducing neuroplasticity. In the current study, the therapeutic effect of chronic MCS was assessed in a rat model of severe cortical damage. A controlled cortical impact (CCI) was applied to the forelimb area of the motor cortex followed by implantation of a flat electrode covering the lesioned area. Forelimb function was assessed using the Montoya staircase test and the cylinder test before and after a period of chronic MCS. Furthermore, the effect of MCS on tissue metabolism and lesion size was measured using [18F]-fluorodesoxyglucose (FDG) μPET scanning. CCI caused a considerable lesion at the level of the motor cortex and dorsal striatum together with a long-lasting behavioral phenotype of forelimb impairment. However, MCS applied to the CCI lesion did not lead to any improvement in limb functioning when compared to non-stimulated control rats. Also, MCS neither changed lesion size nor distribution of FDG. The use of MCS as a standalone treatment did not improve motor impairments in a rat model of severe cortical damage using our specific treatment modalities.

  12. Improvements in motor tasks through the use of smartphone technology for individuals with Duchenne muscular dystrophy.

    PubMed

    Capelini, Camila Miliani; da Silva, Talita Dias; Tonks, James; Watson, Suzanna; Alvarez, Mayra Priscila Boscolo; de Menezes, Lilian Del Ciello; Favero, Francis Meire; Caromano, Fátima Aparecida; Massetti, Thais; de Mello Monteiro, Carlos Bandeira

    2017-01-01

    In individuals severely affected with Duchenne muscular dystrophy (DMD), virtual reality has recently been used as a tool to enhance community interaction. Smartphones offer the exciting potential to improve communication, access, and participation, and present the unique opportunity to directly deliver functionality to people with disabilities. To verify whether individuals with DMD improve their motor performance when undertaking a visual motor task using a smartphone game. Fifty individuals with DMD and 50 healthy, typically developing (TD) controls, aged 10-34 years participated in the study. The functional characterization of the sample was determined through Vignos, Egen Klassifikation, and the Motor Function Measure scales. To complete the task, individuals moved a virtual ball around a virtual maze and the time in seconds was measured after every attempt in order to analyze improvement of performance after the practice trials. Motor performance (time to finish each maze) was measured in phases of acquisition, short-term retention, and transfer. Use of the smartphone maze game promoted improvement in performance during acquisition in both groups, which remained in the retention phase. At the transfer phases, with alternative maze tasks, the performance in DMD group was similar to the performance of TD group, with the exception of the transfer to the contralateral hand (nondominant). However, the group with DMD demonstrated longer movement time at all stages of learning, compared with the TD group. The practice of a visual motor task delivered via smartphone game promoted an improvement in performance with similar patterns of learning in both groups. Performance can be influenced by task difficulty, and for people with DMD, motor deficits are responsible for the lower speed of execution. This study indicates that individuals with DMD showed improved performance in a short-term motor learning protocol using a smartphone. We advocate that this technology could be used to promote function in this population.

  13. Improvements in motor tasks through the use of smartphone technology for individuals with Duchenne muscular dystrophy

    PubMed Central

    Capelini, Camila Miliani; da Silva, Talita Dias; Tonks, James; Watson, Suzanna; Alvarez, Mayra Priscila Boscolo; de Menezes, Lilian Del Ciello; Favero, Francis Meire; Caromano, Fátima Aparecida; Massetti, Thais; de Mello Monteiro, Carlos Bandeira

    2017-01-01

    Background In individuals severely affected with Duchenne muscular dystrophy (DMD), virtual reality has recently been used as a tool to enhance community interaction. Smartphones offer the exciting potential to improve communication, access, and participation, and present the unique opportunity to directly deliver functionality to people with disabilities. Objective To verify whether individuals with DMD improve their motor performance when undertaking a visual motor task using a smartphone game. Patients and methods Fifty individuals with DMD and 50 healthy, typically developing (TD) controls, aged 10–34 years participated in the study. The functional characterization of the sample was determined through Vignos, Egen Klassifikation, and the Motor Function Measure scales. To complete the task, individuals moved a virtual ball around a virtual maze and the time in seconds was measured after every attempt in order to analyze improvement of performance after the practice trials. Motor performance (time to finish each maze) was measured in phases of acquisition, short-term retention, and transfer. Results Use of the smartphone maze game promoted improvement in performance during acquisition in both groups, which remained in the retention phase. At the transfer phases, with alternative maze tasks, the performance in DMD group was similar to the performance of TD group, with the exception of the transfer to the contralateral hand (nondominant). However, the group with DMD demonstrated longer movement time at all stages of learning, compared with the TD group. Conclusion The practice of a visual motor task delivered via smartphone game promoted an improvement in performance with similar patterns of learning in both groups. Performance can be influenced by task difficulty, and for people with DMD, motor deficits are responsible for the lower speed of execution. This study indicates that individuals with DMD showed improved performance in a short-term motor learning protocol using a smartphone. We advocate that this technology could be used to promote function in this population. PMID:28860778

  14. Neural correlates underlying micrographia in Parkinson’s disease

    PubMed Central

    Zhang, Jiarong; Hallett, Mark; Feng, Tao; Hou, Yanan; Chan, Piu

    2016-01-01

    Micrographia is a common symptom in Parkinson’s disease, which manifests as either a consistent or progressive reduction in the size of handwriting or both. Neural correlates underlying micrographia remain unclear. We used functional magnetic resonance imaging to investigate micrographia-related neural activity and connectivity modulations. In addition, the effect of attention and dopaminergic administration on micrographia was examined. We found that consistent micrographia was associated with decreased activity and connectivity in the basal ganglia motor circuit; while progressive micrographia was related to the dysfunction of basal ganglia motor circuit together with disconnections between the rostral supplementary motor area, rostral cingulate motor area and cerebellum. Attention significantly improved both consistent and progressive micrographia, accompanied by recruitment of anterior putamen and dorsolateral prefrontal cortex. Levodopa improved consistent micrographia accompanied by increased activity and connectivity in the basal ganglia motor circuit, but had no effect on progressive micrographia. Our findings suggest that consistent micrographia is related to dysfunction of the basal ganglia motor circuit; while dysfunction of the basal ganglia motor circuit and disconnection between the rostral supplementary motor area, rostral cingulate motor area and cerebellum likely contributes to progressive micrographia. Attention improves both types of micrographia by recruiting additional brain networks. Levodopa improves consistent micrographia by restoring the function of the basal ganglia motor circuit, but does not improve progressive micrographia, probably because of failure to repair the disconnected networks. PMID:26525918

  15. Motor and mental training in older people: Transfer, interference, and associated functional neural responses.

    PubMed

    Boraxbekk, C J; Hagkvist, Filip; Lindner, Philip

    2016-08-01

    Learning new motor skills may become more difficult with advanced age. In the present study, we randomized 56 older individuals, including 30 women (mean age 70.6 years), to 6 weeks of motor training, mental (motor imagery) training, or a combination of motor and mental training of a finger tapping sequence. Performance improvements and post-training functional magnetic resonance imaging (fMRI) were used to investigate performance gains and associated underlying neural processes. Motor-only training and a combination of motor and mental training improved performance in the trained task more than mental-only training. The fMRI data showed that motor training was associated with a representation in the premotor cortex and mental training with a representation in the secondary visual cortex. Combining motor and mental training resulted in both premotor and visual cortex representations. During fMRI scanning, reduced performance was observed in the combined motor and mental training group, possibly indicating interference between the two training methods. We concluded that motor and motor imagery training in older individuals is associated with different functional brain responses. Furthermore, adding mental training to motor training did not result in additional performance gains compared to motor-only training and combining training methods may result in interference between representations, reducing performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Variability in Cadence During Forced Cycling Predicts Motor Improvement in Individuals With Parkinson’s Disease

    PubMed Central

    Ridgel, Angela L.; Abdar, Hassan Mohammadi; Alberts, Jay L.; Discenzo, Fred M.; Loparo, Kenneth A.

    2014-01-01

    Variability in severity and progression of Parkinson’s disease symptoms makes it challenging to design therapy interventions that provide maximal benefit. Previous studies showed that forced cycling, at greater pedaling rates, results in greater improvements in motor function than voluntary cycling. The precise mechanism for differences in function following exercise is unknown. We examined the complexity of biomechanical and physiological features of forced and voluntary cycling and correlated these features to improvements in motor function as measured by the Unified Parkinson’s Disease Rating Scale (UPDRS). Heart rate, cadence, and power were analyzed using entropy signal processing techniques. Pattern variability in heart rate and power were greater in the voluntary group when compared to forced group. In contrast, variability in cadence was higher during forced cycling. UPDRS Motor III scores predicted from the pattern variability data were highly correlated to measured scores in the forced group. This study shows how time series analysis methods of biomechanical and physiological parameters of exercise can be used to predict improvements in motor function. This knowledge will be important in the development of optimal exercise-based rehabilitation programs for Parkinson’s disease. PMID:23144045

  17. Contributing Factors Analysis for the Changes of the Gross Motor Function in Children With Spastic Cerebral Palsy After Physical Therapy

    PubMed Central

    Yi, Tae Im; Kim, Sung Heon; Han, Kyung Hee

    2013-01-01

    Objective To investigate the factors which contribute to the improvements of the gross motor function in children with spastic cerebral palsy after physical therapy. Methods The subjects were 45 children with spastic cerebral palsy with no previous botulinum toxin injection or operation history within 6 months. They consisted of 24 males (53.3%) and 21 females (46.7%), and the age of the subjects ranged from 2 to 6 years, with the mean age being 41±18 months. The gross motor function was evaluated by Gross Motor Function Measure (GMFM)-88 at the time of admission and discharge, and then, the subtractions were correlated with associated factors. Results The GMFM-88 was increased by 7.17±3.10 through 52±16 days of physical therapy. The more days of admission, the more improvements of GMFM-88 were attained. The children with initial GMFM-88 values in the middle range showed more improvements in GMFM-88 (p<0.05). The children without dysphagia and children with less spasticity of lower extremities also showed more improvements in GMFM-88 (p<0.05). Conclusion We can predict the improvements of the gross motor function after physical therapy according to the days of admission, initial GMFM-88, dysphagia, and spasticity of lower extremities. Further controlled studies including larger group are necessary. PMID:24236252

  18. Gene Expression Changes in the Motor Cortex Mediating Motor Skill Learning

    PubMed Central

    Cheung, Vincent C. K.; DeBoer, Caroline; Hanson, Elizabeth; Tunesi, Marta; D'Onofrio, Mara; Arisi, Ivan; Brandi, Rossella; Cattaneo, Antonino; Goosens, Ki A.

    2013-01-01

    The primary motor cortex (M1) supports motor skill learning, yet little is known about the genes that contribute to motor cortical plasticity. Such knowledge could identify candidate molecules whose targeting might enable a new understanding of motor cortical functions, and provide new drug targets for the treatment of diseases which impair motor function, such as ischemic stroke. Here, we assess changes in the motor-cortical transcriptome across different stages of motor skill acquisition. Adult rats were trained on a gradually acquired appetitive reach and grasp task that required different strategies for successful pellet retrieval, or a sham version of the task in which the rats received pellet reward without needing to develop the reach and grasp skill. Tissue was harvested from the forelimb motor-cortical area either before training commenced, prior to the initial rise in task performance, or at peak performance. Differential classes of gene expression were observed at the time point immediately preceding motor task improvement. Functional clustering revealed that gene expression changes were related to the synapse, development, intracellular signaling, and the fibroblast growth factor (FGF) family, with many modulated genes known to regulate synaptic plasticity, synaptogenesis, and cytoskeletal dynamics. The modulated expression of synaptic genes likely reflects ongoing network reorganization from commencement of training till the point of task improvement, suggesting that motor performance improves only after sufficient modifications in the cortical circuitry have accumulated. The regulated FGF-related genes may together contribute to M1 remodeling through their roles in synaptic growth and maturation. PMID:23637843

  19. Use of a Y-tube conduit after facial nerve injury reduces collateral axonal branching at the lesion site but neither reduces polyinnervation of motor endplates nor improves functional recovery.

    PubMed

    Hizay, Arzu; Ozsoy, Umut; Demirel, Bahadir Murat; Ozsoy, Ozlem; Angelova, Srebrina K; Ankerne, Janina; Sarikcioglu, Sureyya Bilmen; Dunlop, Sarah A; Angelov, Doychin N; Sarikcioglu, Levent

    2012-06-01

    Despite increased understanding of peripheral nerve regeneration, functional recovery after surgical repair remains disappointing. A major contributing factor is the extensive collateral branching at the lesion site, which leads to inaccurate axonal navigation and aberrant reinnervation of targets. To determine whether the Y tube reconstruction improved axonal regrowth and whether this was associated with improved function. We used a Y-tube conduit with the aim of improving navigation of regenerating axons after facial nerve transection in rats. Retrograde labeling from the zygomatic and buccal branches showed a halving in the number of double-labeled facial motor neurons (15% vs 8%; P < .05) after Y tube reconstruction compared with facial-facial anastomosis coaptation. However, in both surgical groups, the proportion of polyinnervated motor endplates was similar (≈ 30%; P > .05), and video-based motion analysis of whisking revealed similarly poor function. Although Y-tube reconstruction decreases axonal branching at the lesion site and improves axonal navigation compared with facial-facial anastomosis coaptation, it fails to promote monoinnervation of motor endplates and confers no functional benefit.

  20. Exploratory study on the ayurvedic therapeutic management of cerebral palsy in children at a tertiary care hospital of karnataka, India.

    PubMed

    Shailaja, U; Rao, Prasanna N; Debnath, Parikshit; Adhikari, Anjan

    2014-01-01

    Cerebral palsy (CP) is the leading cause of childhood disability affecting cognitive function and developments in approximately 1.5 to 3 cases per 1000 live births. Based on Ayurvedic therapeutic principles, CP patients were subjected to Abhyanga (massage) with Moorchita Tila Taila (processed sesame oil) and Svedana (fomentation) with Shastikashali Pinda Sveda (fomentation with bolus of drugs prepared with boiled rice). Study group received Mustadi Rajayapana Basti (enema with herbal decoction) and Baladi Yoga (a poly-herbo-mineral formulation), while the placebo group received Godhuma Vati (tablet prepared with wheat powder) and saline water as enema. Treatment with Mustadi Rajayapana Basti and Baladi Yoga improved the activities of daily life by 8.79%, gross motor functions by 19.76%, and fine motor functions 15.05%, and mental functions like memory retention got improved by 15.43%. The placebo group showed an improvement of 0.21% in daily life activities, 2.8% in gross motor, and 2.4% in fine motor functions. Mustadi Rajayapana Basti and Baladi Yoga proved to be more supportive in improving the motor activities and gross behavioral pattern. Further clinical trials are required to evaluate and validate the maximum effect of the combination therapy in a large sample with repetition of the courses for longer duration.

  1. Exploratory Study on the Ayurvedic Therapeutic Management of Cerebral Palsy in Children at a Tertiary Care Hospital of Karnataka, India

    PubMed Central

    Shailaja, U; Rao, Prasanna N.; Debnath, Parikshit; Adhikari, Anjan

    2014-01-01

    Cerebral palsy (CP) is the leading cause of childhood disability affecting cognitive function and developments in approximately 1.5 to 3 cases per 1000 live births. Based on Ayurvedic therapeutic principles, CP patients were subjected to Abhyanga (massage) with Moorchita Tila Taila (processed sesame oil) and Svedana (fomentation) with Shastikashali Pinda Sveda (fomentation with bolus of drugs prepared with boiled rice). Study group received Mustadi Rajayapana Basti (enema with herbal decoction) and Baladi Yoga (a poly-herbo-mineral formulation), while the placebo group received Godhuma Vati (tablet prepared with wheat powder) and saline water as enema. Treatment with Mustadi Rajayapana Basti and Baladi Yoga improved the activities of daily life by 8.79%, gross motor functions by 19.76%, and fine motor functions 15.05%, and mental functions like memory retention got improved by 15.43%. The placebo group showed an improvement of 0.21% in daily life activities, 2.8% in gross motor, and 2.4% in fine motor functions. Mustadi Rajayapana Basti and Baladi Yoga proved to be more supportive in improving the motor activities and gross behavioral pattern. Further clinical trials are required to evaluate and validate the maximum effect of the combination therapy in a large sample with repetition of the courses for longer duration. PMID:24872933

  2. Strength training for a child with suspected developmental coordination disorder.

    PubMed

    Menz, Stacy M; Hatten, Kristin; Grant-Beuttler, Marybeth

    2013-01-01

    Children with developmental coordination disorder (DCD) demonstrate difficulty with feedforward motor control and use varied compensatory strategies. To examine gross motor function changes following strength training in a child with motor control difficulties. A girl aged 6 years 11 months, with apraxia and hypotonia, and demonstrating motor delays consistent with DCD. Twenty-four strength training sessions were completed using a universal exercise unit. Postintervention scores significantly improved on the Bruininks-Oseretsky test of motor proficiency, second edition, and the Canadian occupational performance measure scores and raised the developmental coordination disorder questionnaire, revised 2007, scores above the range where DCD is suspected. Nonsignificant changes in strength were observed. Improved function and significant gains in manual coordination were observed following blocked practice of isolated, simple joint movements during strength training. Improved motor skills may be because of effective use of feedforward control and improved stabilization. Strength training does not rehearse skills using momentum, explaining nonsignificant changes in locomotor or locomotion areas.

  3. Obesity Reduces Cognitive and Motor Functions across the Lifespan

    PubMed Central

    Wang, Chuanming; Chan, John S. Y.; Ren, Lijie; Yan, Jin H.

    2016-01-01

    Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised. PMID:26881095

  4. Obesity Reduces Cognitive and Motor Functions across the Lifespan.

    PubMed

    Wang, Chuanming; Chan, John S Y; Ren, Lijie; Yan, Jin H

    2016-01-01

    Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised.

  5. Evaluation of Esophageal Motor Function With High-resolution Manometry

    PubMed Central

    2013-01-01

    For several decades esophageal manometry has been the test of choice to evaluate disorders of esophageal motor function. The recent introduction of high-resolution manometry for the study of esophageal motor function simplified performance of esophageal manometry, and revealed previously unidentified patterns of normal and abnormal esophageal motor function. Presentation of pressure data as color contour plots or esophageal pressure topography led to the development of new tools for analyzing and classifying esophageal motor patterns. The current standard and still developing approach to do this is the Chicago classification. While this methodical approach is improving our diagnosis of esophageal motor disorders, it currently does not address all motor abnormalities. We will explore the Chicago classification and disorders that it does not address. PMID:23875094

  6. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    PubMed

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  7. Effects of Stand and Step Training with Epidural Stimulation on Motor Function for Standing in Chronic Complete Paraplegics

    PubMed Central

    Rejc, Enrico; Angeli, Claudia A.; Bryant, Nicole

    2017-01-01

    Abstract Individuals affected by motor complete spinal cord injury are unable to stand, walk, or move their lower limbs voluntarily; this diagnosis normally implies severe limitations for functional recovery. We have recently shown that the appropriate selection of epidural stimulation parameters was critical to promoting full-body, weight-bearing standing with independent knee extension in four individuals with chronic clinically complete paralysis. In the current study, we examined the effects of stand training and subsequent step training with epidural stimulation on motor function for standing in the same four individuals. After stand training, the ability to stand improved to different extents in the four participants. Step training performed afterwards substantially impaired standing ability in three of the four individuals. Improved standing ability generally coincided with continuous electromyography (EMG) patterns with constant levels of ground reaction forces. Conversely, poorer standing ability was associated with more variable EMG patterns that alternated EMG bursts and longer periods of negligible activity in most of the muscles. Stand and step training also differentially affected the evoked potentials amplitude modulation induced by sitting-to-standing transition. Finally, stand and step training with epidural stimulation were not sufficient to improve motor function for standing without stimulation. These findings show that the spinal circuitry of motor complete paraplegics can generate motor patterns effective for standing in response to task-specific training with optimized stimulation parameters. Conversely, step training can lead to neural adaptations resulting in impaired motor function for standing. PMID:27566051

  8. Effects of dance practice on functional mobility, motor symptoms and quality of life in people with Parkinson's disease: a systematic review with meta-analysis.

    PubMed

    Dos Santos Delabary, Marcela; Komeroski, Isabel Giovannini; Monteiro, Elren Passos; Costa, Rochelle Rocha; Haas, Aline Nogueira

    2018-07-01

    Patients with Parkinson's Disease (PD) undergo motor injuries, which decrease their quality of life (QL). Dance, added to drug therapy, can help treating these patients AIMS: To conduct a systematic review with meta-analysis with the aim to analyze the effects of dance classes in comparison to other interventions or to the absence of intervention, in randomized clinical trials (RCTs), on functional mobility, motor symptoms and QL of PD patients METHODS: The search was conducted in MEDLINE, LILACS, SciELO, Cochrane and PsycINFO (last searched in August 2017). RCTs analyzing dance effects in comparison to other physical training types or to no intervention, on functional mobility, motor symptoms and QL of PD patients were selected. The outcomes assessed were motor symptoms with Unified PD Rating Scale III (UPDRSIII), functional mobility with Timed Up and Go Test (TUG), endurance with 6 min walking test (6MWT), freezing of gait with Freezing of Gait Questionnaire (FOG_Q), walking velocity with GAITRite and QL with PD Questionnaire (PDQ39). Two reviewers independently extracted methodological quality and studies data. Results are presented as weighted mean differences. Five RCTs were included, totaling 159 patients. Dance promoted significant improvements on UPDRSIII, and a decrease in TUG time when compared to other types of exercise. In comparison to the absence of intervention, dance practice also showed significant improvements in motor scores. Dance can improve motor parameters of the disease and patients' functional mobility.

  9. Improving Motor and Drive System Performance – A Sourcebook for Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This sourcebook outlines opportunities to improve motor and drive systems performance. The sourcebook is divided into four main sections: (1) Motor and Drive System Basics: Summarizes important terms, relationships, and system design considerations relating to motor and drive systems. (2) Performance Opportunity Road Map: Details the key components of well-functioning motor and drive systems and opportunities for energy performance opportunities. (3) Motor System Economics: Offers recommendations on how to propose improvement projects based on corporate priorities, efficiency gains, and financial payback periods. (4) Where to Find Help: Provides a directory of organizations associated with motors and drives, as well asmore » resources for additional information, tools, software, videos, and training opportunities.« less

  10. Motor skill changes and neurophysiologic adaptation to recovery-oriented virtual rehabilitation of hand function in a person with subacute stroke: a case study.

    PubMed

    Fluet, Gerard G; Patel, Jigna; Qiu, Qinyin; Yarossi, Matthew; Massood, Supriya; Adamovich, Sergei V; Tunik, Eugene; Merians, Alma S

    2017-07-01

    The complexity of upper extremity (UE) behavior requires recovery of near normal neuromuscular function to minimize residual disability following a stroke. This requirement places a premium on spontaneous recovery and neuroplastic adaptation to rehabilitation by the lesioned hemisphere. Motor skill learning is frequently cited as a requirement for neuroplasticity. Studies examining the links between training, motor learning, neuroplasticity, and improvements in hand motor function are indicated. This case study describes a patient with slow recovering hand and finger movement (Total Upper Extremity Fugl-Meyer examination score = 25/66, Wrist and Hand items = 2/24 on poststroke day 37) following a stroke. The patient received an intensive eight-session intervention utilizing simulated activities that focused on the recovery of finger extension, finger individuation, and pinch-grasp force modulation. Over the eight sessions, the patient demonstrated improvements on untrained transfer tasks, which suggest that motor learning had occurred, as well a dramatic increase in hand function and corresponding expansion of the cortical motor map area representing several key muscles of the paretic hand. Recovery of hand function and motor map expansion continued after discharge through the three-month retention testing. This case study describes a neuroplasticity based intervention for UE hemiparesis and a model for examining the relationship between training, motor skill acquisition, neuroplasticity, and motor function changes. Implications for rehabilitation Intensive hand and finger rehabilitation activities can be added to an in-patient rehabilitation program for persons with subacute stroke. Targeted training of the thumb may have an impact on activity level function in persons with upper extremity hemiparesis. Untrained transfer tasks can be utilized to confirm that training tasks have elicited motor learning. Changes in cortical motor maps can be used to document changes in brain function which can be used to evaluate changes in motor behavior persons with subacute stroke.

  11. Electrical stimulation of motor cortex in the uninjured hemisphere after chronic unilateral injury promotes recovery of skilled locomotion through ipsilateral control.

    PubMed

    Carmel, Jason B; Kimura, Hiroki; Martin, John H

    2014-01-08

    Partial injury to the corticospinal tract (CST) causes sprouting of intact axons at their targets, and this sprouting correlates with functional improvement. Electrical stimulation of motor cortex augments sprouting of intact CST axons and promotes functional recovery when applied soon after injury. We hypothesized that electrical stimulation of motor cortex in the intact hemisphere after chronic lesion of the CST in the other hemisphere would restore function through ipsilateral control. To test motor skill, rats were trained and tested to walk on a horizontal ladder with irregularly spaced rungs. Eight weeks after injury, produced by pyramidal tract transection, half of the rats received forelimb motor cortex stimulation of the intact hemisphere. Rats with injury and stimulation had significantly improved forelimb control compared with rats with injury alone and achieved a level of proficiency similar to uninjured rats. To test whether recovery of forelimb function was attributable to ipsilateral control, we selectively inactivated the stimulated motor cortex using the GABA agonist muscimol. The dose of muscimol we used produces strong contralateral but no ipsilateral impairments in naive rats. In rats with injury and stimulation, but not those with injury alone, inactivation caused worsening of forelimb function; the initial deficit was reinstated. These results demonstrate that electrical stimulation can promote recovery of motor function when applied late after injury and that motor control can be exerted from the ipsilateral motor cortex. These results suggest that the uninjured motor cortex could be targeted for brain stimulation in people with large unilateral CST lesions.

  12. Safety and improvement of movement function after stroke with atomoxetine: A pilot randomized trial

    PubMed Central

    Ward, Andrea; Carrico, Cheryl; Powell, Elizabeth; Westgate, Philip M.; Nichols, Laurie; Fleischer, Anne; Sawaki, Lumy

    2016-01-01

    Background: Intensive, task-oriented motor training has been associated with neuroplastic reorganization and improved upper extremity movement function after stroke. However, to optimize such training for people with moderate-to-severe movement impairment, pharmacological modulation of neuroplasticity may be needed as an adjuvant intervention. Objective: Evaluate safety, as well as improvement in movement function, associated with motor training paired with a drug to upregulate neuroplasticity after stroke. Methods: In this double-blind, randomized, placebo-controlled study, 12 subjects with chronic stroke received either atomoxetine or placebo paired with motor training. Safety was assessed using vital signs. Upper extremity movement function was assessed using Fugl-Meyer Assessment, Wolf Motor Function Test, and Action Research Arm Test at baseline, post-intervention, and 1-month follow-up. Results: No significant between-groups differences were found in mean heart rate (95% CI, –12.4–22.6; p = 0.23), mean systolic blood pressure (95% CI, –1.7–29.6; p = 0.21), or mean diastolic blood pressure (95% CI, –10.4–13.3; p = 0.08). A statistically significant between-groups difference on Fugl-Meyer at post-intervention favored the atomoxetine group (95% CI, 1.6–12.7; p = 0.016). Conclusion: Atomoxetine combined with motor training appears safe and may optimize motor training outcomes after stroke. PMID:27858723

  13. A racket-sport intervention improves behavioral and cognitive performance in children with attention-deficit/hyperactivity disorder.

    PubMed

    Pan, Chien-Yu; Chu, Chia-Hua; Tsai, Chia-Liang; Lo, Shen-Yu; Cheng, Yun-Wen; Liu, Yu-Jen

    2016-10-01

    The present study assessed the effects of a 12-week table tennis exercise on motor skills, social behaviors, and executive functions in children with attention deficit hyperactivity disorder (ADHD). In the first 12-week phase, 16 children (group I) received the intervention, whereas 16 children (group II) did not. A second 12-week phase immediately followed with the treatments reversed. Improvements were observed in executive functions in both groups after the intervention. After the first 12-week phase, some motor and behavioral functions improved in group I. After the second 12-week phase, similar improvements were noted for group II, and the intervention effects achieved in the first phase were persisted in group I. The racket-sport intervention is valuable in promoting motor skills, social behaviors, and executive functions and should be included within the standard-of-care treatment for children with ADHD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Motor Learning Versus StandardWalking Exercise in Older Adults with Subclinical Gait Dysfunction: A Randomized Clinical Trial

    PubMed Central

    Brach, Jennifer S.; Van Swearingen, Jessie M.; Perera, Subashan; Wert, David M.; Studenski, Stephanie

    2013-01-01

    Background Current exercise recommendationsfocus on endurance and strength, but rarely incorporate principles of motor learning. Motor learning exerciseis designed to address neurological aspects of movement. Motor learning exercise has not been evaluated in older adults with subclinical gait dysfunction. Objectives Tocompare motor learning versus standard exercise on measures of mobility and perceived function and disability. Design Single-blind randomized trial. Setting University research center. Participants Olderadults (n=40), mean age 77.1±6.0 years), who had normal walking speed (≥1.0 m/s) and impaired motor skill (Figure of 8 walk time > 8 s). Interventions The motor learning program (ML) incorporated goal-oriented stepping and walking to promote timing and coordination within the phases of the gait cycle. The standard program (S) employed endurance training by treadmill walking.Both included strength training and were offered twice weekly for one hour for 12 weeks. Measurements Primary outcomes included mobility performance (gait efficiency, motor skill in walking, gait speed, and walking endurance)and secondary outcomes included perceived function and disability (Late Life Function and Disability Instrument). Results 38 of 40 participants completed the trial (ML, n=18; S, n=20). ML improved more than Sin gait speed (0.13 vs. 0.05 m/s, p=0.008) and motor skill (−2.2 vs. −0.89 s, p<0.0001). Both groups improved in walking endurance (28.3 and 22.9m, but did not differ significantly p=0.14). Changes in gait efficiency and perceived function and disability were not different between the groups (p>0.10). Conclusion In older adults with subclinical gait dysfunction, motor learning exercise improved some parameters of mobility performance more than standard exercise. PMID:24219189

  15. Enhancing Propriospinal Relays to Improve Functional Recovery after SCI

    DTIC Science & Technology

    2016-10-01

    the motor cortex , locus coeruleus or vestibular nuclei. In general, the number of GFP labeled neurons within the red nucleus was approximately a...Introduction: Spinal cord injury causes life-long neurological impairment, with loss of sensory and motor function distal to the point of injury...major problems remain in achieving long distance regeneration of higher functioning motor control systems, such as the corticospinal tract, making

  16. Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: a prospective, randomised, double-blind study.

    PubMed

    Scheidtmann, K; Fries, W; Müller, F; Koenig, E

    2001-09-08

    Functional disability is generally caused by hemiplegia after stroke. Physiotherapy used to be the only way of improving motor function in such patients. However, administration of amphetamines in addition to exercise improves motor recovery in animals, probably by increasing the concentration of norepinephrine in the central nervous system. Our aim was to ascertain whether levodopa could enhance the efficacy of physiotherapy after hemiplegia. We did a prospective, randomised, placebo-controlled, double-blind study in which we enrolled 53 primary stroke patients. For the first 3 weeks patients received single doses of levodopa 100 mg or placebo daily in combination with physiotherapy. For the second 3 weeks patients had only physiotherapy. We quantitatively assessed motor function every week with Rivermead motor assessment (RMA). Six patients were excluded from analyses because of non-neurological complications. Motor recovery was significantly improved after 3 weeks of drug intervention in those on levodopa (RMA improved by 6.4 points) compared with placebo (4.1), and the result was independent of initial degree of impairment (p<0.004). The advantage of the levodopa group was maintained at study endpoint 3 weeks after levodopa was stopped. At the end of the study the total RMA score gain for the levodopa group was 8.2 points compared with 5.7 in the placebo group (p=0.020). A single dose of levodopa is well tolerated and, when given in combination with physiotherapy, enhances motor recovery in patients with hemiplegia. In view of its minimal side-effects, levodopa will be a possible add- on during stroke rehabilitation.

  17. Selective left, right and bilateral stimulation of subthalamic nuclei in Parkinson's disease: differential effects on motor, speech and language function.

    PubMed

    Schulz, Geralyn M; Hosey, Lara A; Bradberry, Trent J; Stager, Sheila V; Lee, Li-Ching; Pawha, Rajesh; Lyons, Kelly E; Metman, Leo Verhagen; Braun, Allen R

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus improves the motor symptoms of Parkinson's disease, but may produce a worsening of speech and language performance at rates and amplitudes typically selected in clinical practice. The possibility that these dissociated effects might be modulated by selective stimulation of left and right STN has never been systematically investigated. To address this issue, we analyzed motor, speech and language functions of 12 patients implanted with bilateral stimulators configured for optimal motor responses. Behavioral responses were quantified under four stimulator conditions: bilateral DBS, right-only DBS, left-only DBS and no DBS. Under bilateral and left-only DBS conditions, our results exhibited a significant improvement in motor symptoms but worsening of speech and language. These findings contribute to the growing body of literature demonstrating that bilateral STN DBS compromises speech and language function and suggests that these negative effects may be principally due to left-sided stimulation. These findings may have practical clinical consequences, suggesting that clinicians might optimize motor, speech and language functions by carefully adjusting left- and right-sided stimulation parameters.

  18. The Effectiveness of 1 Hz rTMS Over the Primary Motor Area of the Unaffected Hemisphere to Improve Hand Function After Stroke Depends on Hemispheric Dominance.

    PubMed

    Lüdemann-Podubecká, Jitka; Bösl, Kathrin; Theilig, Steven; Wiederer, Ralf; Nowak, Dennis Alexander

    2015-01-01

    Inhibition of motor cortex excitability of the contralesional hemisphere may improve dexterity of the affected hand after stroke. 40 patients (17 dominant hemispheric stroke, 23 non-dominant hemispheric stroke) with a mild to moderate upper limb motor impairment were enrolled in a double-blind, randomized, placebo-controlled trial with two parallel-groups. Both groups received 15 daily sessions of motor training preceded by either 1 Hz rTMS or sham rTMS. Behavioral and neurophysiological evaluations were performed at baseline, after the first week and after the third week of treatment, and after a 6 months follow-up. In both groups motor function of the affected hand improved significantly. Patients with stroke of the non-dominant hemisphere made a similar improvement, regardless of whether the motor training was preceded by sham or 1 Hz rTMS. Patients with stroke of the dominant hemisphere had a less favorable improvement than those with stroke of the non-dominant hemisphere after motor training preceded by sham rTMS. However, when 1 Hz rTMS preceded the motor training, patients with stroke of the dominant hemisphere made a similar improvement as those with stroke of the non-dominant hemisphere. Motor recovery of the affected upper limb after stroke is determined by dominance of the affected hemisphere. Stroke of the dominant hemisphere is associated with per se poorer improvement of the affected hand. 1 Hz rTMS over the contralesional M1 significantly improves dexterity of the affected hand in patients with stroke of the dominant hemisphere, but not in those with stroke of the non-dominant hemisphere. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Potential determinants of efficacy of mirror therapy in stroke patients--A pilot study.

    PubMed

    Brunetti, Maddalena; Morkisch, Nadine; Fritzsch, Claire; Mehnert, Jan; Steinbrink, Jens; Niedeggen, Michael; Dohle, Christian

    2015-01-01

    Mirror therapy (MT) was found to improve motor function after stroke. However, there is high variability between patients regarding motor recovery. The following pilot study was designed to identify potential factors determining this variability between patients with severe upper limb paresis, receiving MT. Eleven sub-acute stroke patients with severe upper limb paresis participated, receiving in-patient rehabilitation. After a set of pre-assessments (including measurement of brain activity at the primary motor cortex and precuneus during the mirror illusion, using near-infrared spectroscopy as described previously), four weeks of MT were applied, followed by a set of post-assessments. Discriminant group analysis for MT responders and non-responders was performed. Six out of eleven patients were defined as responders and five as non-responders on the basis of their functional motor improvement. The initial motor function and the activity shift in both precunei (mirror index) were found to discriminate significantly between responders and non-responders. In line with earlier results, initial motor function was confirmed as crucial determinant of motor recovery. Additionally, activity response to the mirror illusion in both precunei was found to be a candidate for determination of the efficacy of MT.

  20. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy

    PubMed Central

    Mentis, George Z.; Blivis, Dvir; Liu, Wenfang; Drobac, Estelle; Crowder, Melissa E.; Kong, Lingling; Alvarez, Francisco J.; Sumner, Charlotte J.; O'Donovan, Michael J.

    2011-01-01

    SUMMARY To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes illustrating the reversibility of these synaptic defects. De-afferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention. PMID:21315257

  1. Effectiveness of Neuro-Developmental Treatment (Bobath Concept) on postural control and balance in Cerebral Palsied children.

    PubMed

    Tekin, Fatih; Kavlak, Erdogan; Cavlak, Ugur; Altug, Filiz

    2018-01-01

    The aim of this study was to show the effects of an 8-week Neurodevelopmental Treatment based posture and balance training on postural control and balance in diparetic and hemiparetic Cerebral Palsied children (CPC). Fifteen CPC (aged 5-15 yrs) were recruited from Denizli Yağmur Çocukları Rehabilitation Centre. Gross Motor Function Classification System, Gross Motor Function Measure, 1-Min Walking Test, Modified Timed Up and Go Test, Paediatric Balance Scale, Functional Independence Measure for Children and Seated Postural Control Measure were used for assessment before and after treatment. An 8-week NDT based posture and balance training was applied to the CPC in one session (60-min) 2 days in a week. After the treatment program, all participants showed statistically significant improvements in terms of gross motor function (p< 0.05). They also showed statistically significant improvements about balance abilities and independence in terms of daily living activities (p< 0.05). Seated Postural Control Measure scores increased after the treatment program (p< 0.05). The results of this study indicate that an 8-week Neurodevelopmental Treatment based posture and balance training is an effective approach in order to improve functional motor level and functional independency by improving postural control and balance in diparetic and hemiparetic CPC.

  2. Transcranial Direct Current Stimulation Potentiates Improvements in Functional Ability in Patients With Chronic Stroke Receiving Constraint-Induced Movement Therapy.

    PubMed

    Figlewski, Krystian; Blicher, Jakob Udby; Mortensen, Jesper; Severinsen, Kåre Eg; Nielsen, Jørgen Feldbæk; Andersen, Henning

    2017-01-01

    Transcranial direct current stimulation may enhance effect of rehabilitation in patients with chronic stroke. The objective was to evaluate the efficacy of anodal transcranial direct current stimulation combined with constraint-induced movement therapy of the paretic upper limb. A total of 44 patients with stroke were randomly allocated to receive 2 weeks of constraint-induced movement therapy with either anodal or sham transcranial direct current stimulation. The primary outcome measure, Wolf Motor Function Test, was assessed at baseline and after the intervention by blinded investigators. Both groups improved significantly on all Wolf Motor Function Test scores. Group comparison showed improvement on Wolf Motor Function Test in the anodal group compared with the sham group. Anodal transcranial direct current stimulation combined with constraint-induced movement therapy resulted in improvement of functional ability of the paretic upper limb compared with constraint-induced movement therapy alone. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01983319. © 2016 American Heart Association, Inc.

  3. [Effects of virtual reality training on limb movement in children with spastic diplegia cerebral palsy].

    PubMed

    Ren, Kai; Gong, Xiao-Ming; Zhang, Rong; Chen, Xiu-Hui

    2016-10-01

    To study the effects of virtual reality (VR) training on the gross motor function of the lower limb and the fine motor function of the upper limb in children with spastic diplegia cerebral palsy. Thirty-five children with spastic diplegia cerebral palsy were randomly assigned to VR training group (n=19) and conventional training group (n=16). The conventional training group received conventional physical therapy and occupational therapy for three months. The VR training group received VR training and occupational therapy for three months. Grip and visual-motor integration subtests in Peabody Developmental Motor Scales-2 were used to evaluate the fine movement in patients before and after treatment. The D and E domains of the 88-item version of the Gross Motor Function Measure (GMFM-88), Modified Ashworth Scale (MAS), and Berg Balance Scale (BBS) were used to evaluate the gross movement in patients before and after treatment. Before treatment, there were no significant differences in grip, visual-motor integration, fine motor development quotient, scores of D and E domains of GMFM-88, MAS score, or BBS score between the two groups (P>0.05). After treatment, all the indices were significantly improved in the VR training group compared with the conventional training group (P<0.05). VR training can effectively improve the gross motor function of the lower limb and the fine motor function of the upper limb in children with spastic diplegia cerebral palsy.

  4. Vagus Nerve Stimulation Delivered During Motor Rehabilitation Improves Recovery in a Rat Model of Stroke

    PubMed Central

    Khodaparast, Navid; Hays, Seth A.; Sloan, Andrew M.; Fayyaz, Tabbassum; Hulsey, Daniel R.; Rennaker, Robert L.; Kilgard, Michael P.

    2014-01-01

    Neural plasticity is widely believed to support functional recovery following brain damage. Vagus nerve stimulation paired with different forelimb movements causes long-lasting map plasticity in rat primary motor cortex that is specific to the paired movement. We tested the hypothesis that repeatedly pairing vagus nerve stimulation with upper forelimb movements would improve recovery of motor function in a rat model of stroke. Rats were separated into three groups: vagus nerve stimulation during rehab, vagus nerve stimulation after rehab, and rehab alone. Animals underwent 4 training stages: shaping (motor skill learning), pre-lesion training, post-lesion training, and therapeutic training. Rats were given a unilateral ischemic lesion within motor cortex and implanted with a left vagus nerve cuff. Animals were allowed one week of recovery before post-lesion baseline training. During the therapeutic training stage, rats received vagus nerve stimulation paired with each successful trial. All seventeen trained rats demonstrated significant contralateral forelimb impairment when performing a bradykinesia assessment task. Forelimb function was recovered completely to pre-lesion levels when vagus nerve stimulation was delivered during rehab training. Alternatively, intensive rehab training alone (without stimulation) failed to restore function to pre-lesion levels. Delivering the same amount of stimulation after rehab training did not yield improvements compared to rehab alone. These results demonstrate that vagus nerve stimulation repeatedly paired with successful forelimb movements can improve recovery after motor cortex ischemia and may be a viable option for stroke rehabilitation. PMID:24553102

  5. Deep brain stimulation does not change neurovascular coupling in non-motor visual cortex: an autonomic and visual evoked blood flow velocity response study.

    PubMed

    Azevedo, Elsa; Santos, Rosa; Freitas, João; Rosas, Maria-José; Gago, Miguel; Garrett, Carolina; Rosengarten, Bernhard

    2010-11-01

    In Parkinson's disease (PD) subthalamic nucleus deep brain stimulation (STN-DBS) improves motor function. Also an effect on the neurovascular coupling in motor cortex was reported due to a parallel activation of a subthalamic vasodilator area (SVA). To address this issue further we analysed neurovascular coupling in a non-motor area. Twenty PD patients selected for bilateral STN-DBS were investigated with functional transcranial Doppler (f-TCD) before and after surgery. Hemodynamic responses to visual stimulation were registered in left posterior cerebral artery (PCA) and analysed with a control-system approach (parameters gain, rate time, attenuation and natural frequency). To exclude autonomic effects of STN-DBS, we also addressed spectrum analysis of heart rate and of systolic arterial blood pressure variability, and baroreceptor gain. Findings in the PD group were compared with healthy age-matched controls. PD patients showed no neurovascular coupling changes in PCA territory, compared to controls, and STN-DBS changed neither blood flow regulatory parameters nor autonomic function. Improvement of vasoregulation in some motor cortical areas after STN-DBS might be related to an improved neuronal functional rather than indicating an effect on the neurovascular coupling or autonomic function. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition.

    PubMed

    Statton, Matthew A; Encarnacion, Marysol; Celnik, Pablo; Bastian, Amy J

    2015-01-01

    Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise-resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation programs.

  7. A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition

    PubMed Central

    Statton, Matthew A.; Encarnacion, Marysol; Celnik, Pablo; Bastian, Amy J.

    2015-01-01

    Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise–resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation programs. PMID:26506413

  8. IGF-1 delivery to CNS attenuates motor neuron cell death but does not improve motor function in type III SMA mice.

    PubMed

    Tsai, Li-Kai; Chen, Yi-Chun; Cheng, Wei-Cheng; Ting, Chen-Hung; Dodge, James C; Hwu, Wuh-Liang; Cheng, Seng H; Passini, Marco A

    2012-01-01

    The efficacy of administering a recombinant adeno-associated virus (AAV) vector encoding human IGF-1 (AAV2/1-hIGF-1) into the deep cerebellar nucleus (DCN) of a type III SMA mouse model was evaluated. High levels of IGF-1 transcripts and protein were detected in the spinal cord at 2 months post-injection demonstrating that axonal connections between the cerebellum and spinal cord were able to act as conduits for the viral vector and protein to the spinal cord. Mice treated with AAV2/1-hIGF-1 and analyzed 8 months later showed changes in endogenous Bax and Bcl-xl levels in spinal cord motor neurons that were consistent with IGF-1-mediated anti-apoptotic effects on motor neurons. However, although AAV2/1-hIGF-1 treatment reduced the extent of motor neuron cell death, the majority of rescued motor neurons were non-functional, as they lacked axons that innervated the muscles. Furthermore, treated SMA mice exhibited abnormal muscle fibers, aberrant neuromuscular junction structure, and impaired performance on motor function tests. These data indicate that although CNS-directed expression of IGF-1 could reduce motor neuron cell death, this did not translate to improvements in motor function in an adult mouse model of type III SMA. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Improving commercial motor vehicle safety in Oregon.

    DOT National Transportation Integrated Search

    2010-08-01

    This study addressed the primary functions of the Oregon Department of Transportations (ODOTs) Motor Carrier Safety Assistance Program (MCSAP), which is administered by the Motor Carrier Transportation Division (MCTD). The study first documente...

  10. Recruitment of prefrontal-striatal circuit in response to skilled motor challenge.

    PubMed

    Guo, Yumei; Wang, Zhuo; Prathap, Sandhya; Holschneider, Daniel P

    2017-12-13

    A variety of physical fitness regimens have been shown to improve cognition, including executive function, yet our understanding of which parameters of motor training are important in optimizing outcomes remains limited. We used functional brain mapping to compare the ability of two motor challenges to acutely recruit the prefrontal-striatal circuit. The two motor tasks - walking in a complex running wheel with irregularly spaced rungs or walking in a running wheel with a smooth internal surface - differed only in the extent of skill required for their execution. Cerebral perfusion was mapped in rats by intravenous injection of [C]-iodoantipyrine during walking in either a motorized complex wheel or in a simple wheel. Regional cerebral blood flow (rCBF) was quantified by whole-brain autoradiography and analyzed in three-dimensional reconstructed brains by statistical parametric mapping and seed-based functional connectivity. Skilled or simple walking compared with rest, increased rCBF in regions of the motor circuit, somatosensory and visual cortex, as well as the hippocampus. Significantly greater rCBF increases were noted during skilled walking than for simple walking. Skilled walking, unlike simple walking or the resting condition, was associated with a significant positive functional connectivity in the prefrontal-striatal circuit (prelimbic cortex-dorsomedial striatum) and greater negative functional connectivity in the prefrontal-hippocampal circuit. Our findings suggest that the level of skill of a motor training task determines the extent of functional recruitment of the prefrontal-corticostriatal circuit, with implications for a new approach in neurorehabilitation that uses circuit-specific neuroplasticity to improve motor and cognitive functions.

  11. GABA Levels Are Decreased After Stroke and GABA Changes During Rehabilitation Correlate With Motor Improvement

    PubMed Central

    Blicher, Jakob Udby; Near, Jamie; Næss-Schmidt, Erhard; Stagg, Charlotte J.; Johansen-Berg, Heidi; Nielsen, Jørgen Feldbæk; Østergaard, Leif; Ho, Yi-Ching Lynn

    2017-01-01

    Background and Objective γ-Aminobutyric acid (GABA) is the dominant inhibitory neurotransmitter in the brain and is important in motor learning. We aimed to measure GABA content in primary motor cortex poststroke (using GABA-edited magnetic resonance spectroscopy [MRS]) and in relation to motor recovery during 2 weeks of constraint-induced movement therapy (CIMT). Methods Twenty-one patients (3-12 months poststroke) and 20 healthy subjects were recruited. Magnetic resonance imaging structural T1 and GABA-edited MRS were performed at baseline and after CIMT, and once in healthy subjects. GABA:creatine (GABA:Cr) ratio was measured by GABA-edited MRS. Motor function was measured using Wolf Motor Function Test (WMFT). Results Baseline comparison between stroke patients (n = 19) and healthy subjects showed a significantly lower GABA:Cr ratio in stroke patients (P < .001) even after correcting for gray matter content in the voxel (P < .01) and when expressing GABA relative to N-acetylaspartic acid (NAA; P = .03). After 2 weeks of CIMT patients improved significantly on WMFT, but no consistent change across the group was observed for the GABA:Cr ratio (n = 17). However, the extent of improvement on WMFT correlated significantly with the magnitude of GABA:Cr changes (P < .01), with decreases in GABA:Cr ratio being associated with better improvements in motor function. Conclusions In patients 3 to 12 months poststroke, GABA levels are lower in the primary motor cortex than in healthy subjects. The observed association between GABA and recovery warrants further studies on the potential use of GABA MRS as a biomarker in poststroke recovery. PMID:25055837

  12. Assessing neuro-motor recovery in a stroke survivor with high-resolution EEG, robotics and Virtual Reality.

    PubMed

    Comani, Silvia; Schinaia, Lorenzo; Tamburro, Gabriella; Velluto, Lucia; Sorbi, Sandro; Conforto, Silvia; Guarnieri, Biancamaria

    2015-01-01

    One post-stroke patient underwent neuro-motor rehabilitation of one upper limb with a novel system combining a passive robotic device, Virtual Reality training applications and high resolution electroencephalography (HR-EEG). The outcome of the clinical tests and the evaluation of the kinematic parameters recorded with the robotic device concurred to highlight an improved motor recovery of the impaired limb despite the age of the patient, his compromised motor function, and the start of rehabilitation at the 3rd week post stroke. The time frequency and functional source analysis of the HR-EEG signals permitted to quantify the functional changes occurring in the brain in association with the rehabilitation motor tasks, and to highlight the recovery of the neuro-motor function.

  13. Motor recovery after stroke: a systematic review.

    PubMed

    Langhorne, Peter; Coupar, Fiona; Pollock, Alex

    2009-08-01

    Loss of functional movement is a common consequence of stroke for which a wide range of interventions has been developed. In this Review, we aimed to provide an overview of the available evidence on interventions for motor recovery after stroke through the evaluation of systematic reviews, supplemented by recent randomised controlled trials. Most trials were small and had some design limitations. Improvements in recovery of arm function were seen for constraint-induced movement therapy, electromyographic biofeedback, mental practice with motor imagery, and robotics. Improvements in transfer ability or balance were seen with repetitive task training, biofeedback, and training with a moving platform. Physical fitness training, high-intensity therapy (usually physiotherapy), and repetitive task training improved walking speed. Although the existing evidence is limited by poor trial designs, some treatments do show promise for improving motor recovery, particularly those that have focused on high-intensity and repetitive task-specific practice.

  14. The mirror therapy program enhances upper-limb motor recovery and motor function in acute stroke patients.

    PubMed

    Lee, Myung Mo; Cho, Hwi-Young; Song, Chang Ho

    2012-08-01

    The purpose of this study was to evaluate the effects of the mirror therapy program on upper-limb motor recovery and motor function in patients with acute stroke. Twenty-six patients who had an acute stroke within 6 mos of study commencement were assigned to the experimental group (n = 13) or the control group (n = 13). Both experimental and control group members participated in a standard rehabilitation program, but only the experimental group members additionally participated in mirror therapy program, for 25 mins twice a day, five times a week, for 4 wks. The Fugl-Meyer Assessment, Brunnstrom motor recovery stage, and Manual Function Test were used to assess changes in upper-limb motor recovery and motor function after intervention. In upper-limb motor recovery, the scores of Fugl-Meyer Assessment (by shoulder/elbow/forearm items, 9.54 vs. 4.61; wrist items, 2.76 vs. 1.07; hand items, 4.43 vs. 1.46, respectively) and Brunnstrom stages for upper limb and hand (by 1.77 vs. 0.69 and 1.92 vs. 0.50, respectively) were improved more in the experimental group than in the control group (P < 0.05). In upper-limb motor function, the Manual Function Test score (by shoulder item, 5.00 vs. 2.23; hand item, 5.07 vs. 0.46, respectively) was significantly increased in the experimental group compared with the control group (P < 0.01). No significant differences were found between the groups for the coordination items in Fugl-Meyer Assessment. This study confirms that mirror therapy program is an effective intervention for upper-limb motor recovery and motor function improvement in acute stroke patients. Additional research on mirror therapy program components, intensity, application time, and duration could result in it being used as a standardized form of hand rehabilitation in clinics and homes.

  15. Improvement of spasticity following intermittent theta burst stimulation in multiple sclerosis is associated with modulation of resting-state functional connectivity of the primary motor cortices.

    PubMed

    Boutière, Clémence; Rey, Caroline; Zaaraoui, Wafaa; Le Troter, Arnaud; Rico, Audrey; Crespy, Lydie; Achard, Sophie; Reuter, Françoise; Pariollaud, Fanelly; Wirsich, Jonathan; Asquinazi, Patrick; Confort-Gouny, Sylviane; Soulier, Elisabeth; Guye, Maxime; Pelletier, Jean; Ranjeva, Jean-Philippe; Audoin, Bertrand

    2017-05-01

    Intermittent theta burst stimulation (iTBS) of the primary motor cortex improves transiently lower limbs spasticity in multiple sclerosis (MS). However, the cerebral mechanisms underlying this effect have never been investigated. To assess whether modulation of spasticity induced by iTBS is underlined by functional reorganization of the primary motor cortices. A total of 17 patients with MS suffering from lower limbs spasticity were randomized to receive real iTBS or sham iTBS during the first half of a 5-week indoor rehabilitation programme. Spasticity was assessed using the Modified Ashworth Scale and the Visual Analogue Scale at baseline, after the stimulation session and at the end of the rehabilitation programme. Resting-state functional magnetic resonance imaging (fMRI) was performed at the three time points, and brain functional networks topology was analysed using graph-theoretical approach. At the end of stimulation, improvement of spasticity was greater in real iTBS group than in sham iTBS group ( p = 0.026). iTBS had a significant effect on the balance of the connectivity degree between the stimulated and the homologous primary motor cortex ( p = 0.005). Changes in inter-hemispheric balance were correlated with improvement of spasticity (rho = 0.56, p = 0.015). This longitudinal resting-state fMRI study evidences that functional reorganization of the primary motor cortices may underlie the effect of iTBS on spasticity in MS.

  16. [Virtual reality for therapeutic purposes in stroke: A systematic review].

    PubMed

    Viñas-Diz, S; Sobrido-Prieto, M

    2016-05-01

    Virtual reality (VR) is used in the field of rehabilitation/physical therapy to improve patients' functional abilities. The last 5 years have yielded numerous publications on the use of VR in patients with neurological disease which aim to establish whether this therapeutic resource contributes to the recovery of motor function. The following databases were reviewed: Cochrane Original, Joanna Briggs Connect, Medline/Pubmed, Cinahl, Scopus, Isi Web of Science, and Sport-Discus. We included articles published in the last 5 years in English and/or Spanish, focusing on using RV to improve motor function in patients with stroke. From this pool, we selected 4 systematic reviews and 21 controlled and/or randomised trials. Most studies focused on increasing motor function in the upper limbs, and/or improving performance of activities of daily living. An additional article examines use of the same technique to increase motor function in the lower limb and/or improve walking and static-dynamic balance. Strong scientific evidence supports the beneficial effects of VR on upper limb motor recovery in stroke patients. Further studies are needed to fully determine which changes are generated in cortical reorganisation, what type of VR system is the most appropriate, whether benefits are maintained in the long term, and which frequencies and intensities of treatment are the most suitable. Copyright © 2015 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  17. Improving balance, mobility, and dual-task performance in an adolescent with cerebral palsy: A case report.

    PubMed

    Fisher-Pipher, Sarah; Kenyon, Lisa K; Westman, Marci

    2017-07-01

    Improving functional mobility is often a desired outcome for adolescents with cerebral palsy (CP). Traditional neurorehabilitation approaches are frequently directed at impairments; however, improvements may not be carried over into functional mobility. The purpose of this case report was to describe the examination, intervention, and outcomes of a task-oriented physical therapy intervention program to improve dynamic balance, functional mobility, and dual-task performance in an adolescent with CP. The participant was a 15-year-old girl with spastic triplegic CP (Gross Motor Classification System Level II). Examination procedures included the Canadian Occupational Performance Measure, 6-minute walk test, Muscle Power Sprint Test, 10 x 5-meter sprint test, Timed Up and Down Stairs Test, Gross Motor Function Measure, Gillette Functional Assessment Questionnaire, and functional lower extremity strength tests. Intervention focused on task-oriented dynamic balance and mobility tasks that incorporated coordination and speed demands as well as task-specific lower extremity and trunk strengthening activities. Dual task demands were integrated into all intervention activities. Post-intervention testing revealed improvements in cardiovascular endurance, anaerobic power, agility, stair climbing, gross motor skills, and mobility. The participant appeared to benefit from a task-oriented program to improve dynamic balance, functional mobility, and dual-task performance.

  18. Human neural progenitors differentiate into astrocytes and protect motor neurons in aging rats.

    PubMed

    Das, Melanie M; Avalos, Pablo; Suezaki, Patrick; Godoy, Marlesa; Garcia, Leslie; Chang, Christine D; Vit, Jean-Philippe; Shelley, Brandon; Gowing, Genevieve; Svendsen, Clive N

    2016-06-01

    Age-associated health decline presents a significant challenge to healthcare, although there are few animal models that can be used to test potential treatments. Here, we show that there is a significant reduction in both spinal cord motor neurons and motor function over time in the aging rat. One explanation for this motor neuron loss could be reduced support from surrounding aging astrocytes. Indeed, we have previously shown using in vitro models that aging rat astrocytes are less supportive to rat motor neuron function and survival over time. Here, we test whether rejuvenating the astrocyte niche can improve the survival of motor neurons in an aging spinal cord. We transplanted fetal-derived human neural progenitor cells (hNPCs) into the aging rat spinal cord and found that the cells survive and differentiate into astrocytes with a much higher efficiency than when transplanted into younger animals, suggesting that the aging environment stimulates astrocyte maturation. Importantly, the engrafted astrocytes were able to protect against motor neuron loss associated with aging, although this did not result in an increase in motor function based on behavioral assays. We also transplanted hNPCs genetically modified to secrete glial cell line-derived neurotrophic factor (GDNF) into the aging rat spinal cord, as this combination of cell and protein delivery can protect motor neurons in animal models of ALS. During aging, GDNF-expressing hNPCs protected motor neurons, though to the same extent as hNPCs alone, and again had no effect on motor function. We conclude that hNPCs can survive well in the aging spinal cord, protect motor neurons and mature faster into astrocytes when compared to transplantation into the young spinal cord. While there was no functional improvement, there were no functional deficits either, further supporting a good safety profile of hNPC transplantation even into the older patient population. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Prediction of recovery of motor function after stroke.

    PubMed

    Stinear, Cathy

    2010-12-01

    Stroke is a leading cause of disability. The ability to live independently after stroke depends largely on the reduction of motor impairment and the recovery of motor function. Accurate prediction of motor recovery assists rehabilitation planning and supports realistic goal setting by clinicians and patients. Initial impairment is negatively related to degree of recovery, but inter-individual variability makes accurate prediction difficult. Neuroimaging and neurophysiological assessments can be used to measure the extent of stroke damage to the motor system and predict subsequent recovery of function, but these techniques are not yet used routinely. The use of motor impairment scores and neuroimaging has been refined by two recent studies in which these investigations were used at multiple time points early after stroke. Voluntary finger extension and shoulder abduction within 5 days of stroke predicted subsequent recovery of upper-limb function. Diffusion-weighted imaging within 7 days detected the effects of stroke on caudal motor pathways and was predictive of lasting motor impairment. Thus, investigations done soon after stroke had good prognostic value. The potential prognostic value of cortical activation and neural plasticity has been explored for the first time by two recent studies. Functional MRI detected a pattern of cortical activation at the acute stage that was related to subsequent reduction in motor impairment. Transcranial magnetic stimulation enabled measurement of neural plasticity in the primary motor cortex, which was related to subsequent disability. These studies open interesting new lines of enquiry. WHERE NEXT?: The accuracy of prediction might be increased by taking into account the motor system's capacity for functional reorganisation in response to therapy, in addition to the extent of stroke-related damage. Improved prognostic accuracy could also be gained by combining simple tests of motor impairment with neuroimaging, genotyping, and neurophysiological assessment of neural plasticity. The development of algorithms to guide the sequential combinations of these assessments could also further increase accuracy, in addition to improving rehabilitation planning and outcomes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. How Can a Ketogenic Diet Improve Motor Function?

    PubMed Central

    Veyrat-Durebex, Charlotte; Reynier, Pascal; Procaccio, Vincent; Hergesheimer, Rudolf; Corcia, Philippe; Andres, Christian R.; Blasco, Hélène

    2018-01-01

    A ketogenic diet (KD) is a normocaloric diet composed by high fat (80–90%), low carbohydrate, and low protein consumption that induces fasting-like effects. KD increases ketone body (KBs) production and its concentration in the blood, providing the brain an alternative energy supply that enhances oxidative mitochondrial metabolism. In addition to its profound impact on neuro-metabolism and bioenergetics, the neuroprotective effect of specific polyunsaturated fatty acids and KBs involves pleiotropic mechanisms, such as the modulation of neuronal membrane excitability, inflammation, or reactive oxygen species production. KD is a therapy that has been used for almost a century to treat medically intractable epilepsy and has been increasingly explored in a number of neurological diseases. Motor function has also been shown to be improved by KD and/or medium-chain triglyceride diets in rodent models of Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and spinal cord injury. These studies have proposed that KD may induce a modification in synaptic morphology and function, involving ionic channels, glutamatergic transmission, or synaptic vesicular cycling machinery. However, little is understood about the molecular mechanisms underlying the impact of KD on motor function and the perspectives of its use to acquire the neuromuscular effects. The aim of this review is to explore the conditions through which KD might improve motor function. First, we will describe the main consequences of KD exposure in tissues involved in motor function. Second, we will report and discuss the relevance of KD in pre-clinical and clinical trials in the major diseases presenting motor dysfunction. PMID:29434537

  1. Safinamide for the treatment of Parkinson's disease.

    PubMed

    deSouza, Ruth Mary; Schapira, Anthony

    2017-06-01

    The major unmet needs in the medical treatment of Parkinson disease (PD) are reduction of motor side effects from dopaminergic drugs, management of non-motor symptoms and disease modification. Areas covered: Motor fluctuations and OFF periods are a significant determinant of quality of life in PD and reducing their duration and severity can significantly improve motor function. This aim may be partly facilitated by the development of effective adjunctive drugs for dopamine replacement. Safinamide (Xadago), which is a first generation anticonvulsant, has pharmacological properties which are of interest in the context of neurodegenerative diseases, leading to research into its potential as an adjunct to levodopa in PD. Expert opinion: Although its mechanism has not been fully defined, safinamide provides enhanced symptom control of motor function in advanced PD and improves quality of life.

  2. Emerging Treatments for Motor Rehabilitation After Stroke

    PubMed Central

    Krishnan, Chandramouli; Khot, Sandeep P.

    2015-01-01

    Although numerous treatments are available to improve cerebral perfusion after acute stroke and prevent recurrent stroke, few rehabilitation treatments have been conclusively shown to improve neurologic recovery. The majority of stroke survivors with motor impairment do not recover to their functional baseline, and there remains a need for novel neurorehabilitation treatments to minimize long-term disability, maximize quality of life, and optimize psychosocial outcomes. In recent years, several novel therapies have emerged to restore motor function after stroke, and additional investigational treatments have also shown promise. Here, we familiarize the neurohospitalist with emerging treatments for poststroke motor rehabilitation. The rehabilitation treatments covered in this review will include selective serotonin reuptake inhibitor medications, constraint-induced movement therapy, noninvasive brain stimulation, mirror therapy, and motor imagery or mental practice. PMID:25829989

  3. Bilateral subthalamic deep brain stimulation initial impact on nonmotor and motor symptoms in Parkinson's disease

    PubMed Central

    Kurcova, Sandra; Bardon, Jan; Vastik, Miroslav; Vecerkova, Marketa; Frolova, Monika; Hvizdosova, Lenka; Nevrly, Martin; Mensikova, Katerina; Otruba, Pavel; Krahulik, David; Kurca, Egon; Sivak, Stefan; Zapletalova, Jana; Kanovsky, Petr

    2018-01-01

    Abstract Numerous studies document significant improvement in motor symptoms in patients with Parkinson's disease (PD) after deep brain stimulation of the subthalamic nucleus (STN-DBS). However, little is known about the initial effects of STN-DBS on nonmotor domains. Our objective was to elucidate the initial effects of STN-DBS on non-motor and motor symptoms in PD patients in a 4-month follow-up. This open prospective study followed 24 patients with PD who underwent STN-DBS. The patients were examined using dedicated rating scales preoperatively and at 1 and 4 months following STN-DBS to determine initial changes in motor and nonmotor symptoms. Patients at month 1 after STN-DBS had significantly reduced the Parkinson's disease Questionnaire scores (P = .018) and Scales for Outcomes in Parkinson's disease – Autonomic scores (P = .002); these scores had increased at Month 4 after DBS-STN. Nonmotor Symptoms Scale for Parkinson's Disease had improved significantly at Month 1 (P < .001); at Month 4, it remained significantly lower than before stimulation (P = .036). There was no significant difference in The Parkinson's Disease Sleep Scaleat Month 1 and significant improvement at Month 4 (P = .026). There were no significant changes in The Female Sexual Function Index or International Index of Erectile Function. Movement Disorder Society Unified Parkinson's Disease Rating Scale, Part III scores show significant improvements at Month 1 (P < .001) and at Month 4 (P < .001). STN-DBS in patients with advanced PD clearly improves not only motor symptoms, but also several domains of nonmotor functions, namely sleep, autonomic functions and quality of life quickly following the start of stimulation. PMID:29384860

  4. Motor intensive anti-gravity training improves performance in dynamic balance related tasks in persons with Parkinson's disease.

    PubMed

    Malling, Anne Sofie B; Jensen, Bente R

    2016-01-01

    Recent studies indicate that the effect of training on motor performance in persons with Parkinson's disease (PDP) is dependent on motor intensity. However, training of high motor intensity can be hard to apply in PDP due to e.g. bradykinesia, rigidity, tremor and postural instability. Therefore, the aim was to study the effect of motor intensive training performed in a safe anti-gravity environment using lower-body positive pressure (LBPP) technology on performance during dynamic balance related tasks. Thirteen male PDP went through an 8-week control period followed by 8 weeks of motor intensive antigravity training. Seventeen healthy males constituted a control group (CON). Performance during a five repetition sit-to-stand test (STS; sagittal plane) and a dynamic postural balance test (DPB; transversal plane) was evaluated. Effect measures were completion time, functional rates of force development, directional changes and force variance. STS completion time improved by 24% to the level of CON which was explained by shorter sitting-time and standing-time and larger numeric rate of force change during lowering to the chair, indicating faster vertical directional change and improved relaxation. DPB completion time tended to improve and was accompanied by improvements of functional medial and lateral rates of force development and higher vertical force variance during DPB. Our results suggest that the performance improvements may relate to improved inter-limb coordination. It is concluded that 8 weeks of motor intensive training in a safe LBPP environment improved performance during dynamic balance related tasks in PDP. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Effect of Baseline Spastic Hemiparesis on Recovery of Upper-Limb Function Following Botulinum Toxin Type A Injections and Postinjection Therapy

    PubMed Central

    Chang, Chia-Lin; Munin, Michael C.; Skidmore, Elizabeth R.; Niyonkuru, Christian; Huber, Lynne M.; Weber, Douglas J.

    2015-01-01

    Objective To determine whether baseline hand spastic hemiparesis assessed by the Chedoke-McMaster Assessment influences functional improvement after botulinum toxin type A (BTX-A) injections and postinjection therapy. Design Prospective cohort study. Setting Outpatient spasticity clinic. Participants Participants (N = 14) with spastic hemiparesis divided into 2 groups: Chedoke-McMaster Assessment Hand-Higher Function (stage≥4, n = 5) and Chedoke-McMaster Assessment Hand-Lower Function (stage = 2 or 3, n = 9). Interventions Upper-limb BTX-A injections followed by 6 weeks of postinjection therapy. Main Outcome Measures Primary outcomes were Motor Activity Log-28 and Motor Activity Log items. Secondary outcomes were Action Research Arm Test (ARAT), Motor Activity Log-Self-Report, and Modified Ashworth Scale (MAS). Measures were assessed at baseline (preinjection), 6 weeks, 9 weeks, and 12 weeks postinjection. Results Primary and secondary outcomes improved significantly over time in both groups. Although no significant differences in ARAT or MAS change scores were noted between groups, Chedoke-McMaster Assessment Hand-Higher Function group demonstrated greater change on Motor Activity Log-28 (P = .013) from baseline to 6 weeks and Motor Activity Log items (P = .006) from baseline to 12 weeks compared to Chedoke-McMaster Assessment Hand-Lower Function group. Conclusions BTX-A injections and postinjection therapy improved hand function and reduced spasticity for both Chedoke-McMaster Assessment Hand-Higher Function and Chedoke-McMaster Assessment Hand-Lower Function groups. Clinicians should expect to see larger gains for persons with less baseline impairment. PMID:19735772

  6. Potential determinants of efficacy of mirror therapy in stroke patients – A pilot study

    PubMed Central

    Brunetti, Maddalena; Morkisch, Nadine; Fritzsch, Claire; Mehnert, Jan; Steinbrink, Jens; Niedeggen, Michael; Dohle, Christian

    2015-01-01

    Abstract Background: Mirror therapy (MT) was found to improve motor function after stroke. However, there is high variability between patients regarding motor recovery. Objectives: The following pilot study was designed to identify potential factors determining this variability between patients with severe upper limb paresis, receiving MT. Methods: Eleven sub-acute stroke patients with severe upper limb paresis participated, receiving in-patient rehabilitation. After a set of pre-assessments (including measurement of brain activity at the primary motor cortex and precuneus during the mirror illusion, using near-infrared spectroscopy as described previously), four weeks of MT were applied, followed by a set of post-assessments. Discriminant group analysis for MT responders and non-responders was performed. Results: Six out of eleven patients were defined as responders and five as non-responders on the basis of their functional motor improvement. The initial motor function and the activity shift in both precunei (mirror index) were found to discriminate significantly between responders and non-responders. Conclusions: In line with earlier results, initial motor function was confirmed as crucial determinant of motor recovery. Additionally, activity response to the mirror illusion in both precunei was found to be a candidate for determination of the efficacy of MT. PMID:26409402

  7. Omega-3 Hastens and Omega-6 Delays the Progression of Neuropathology in a Murine Model of Familial ALS.

    PubMed

    Boumil, Edward F; Vohnoutka, Rishel Brenna; Liu, Yuguan; Lee, Sangmook; Shea, Thomas B

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive disease of motor neurons that has no cure or effective treatment. Any approach that could sustain minor motor function during terminal stages would improve quality of life. We examined the impact of omega-3 (Ω-3) and Ω-6, on motor neuron function in mice expressing mutant human superoxide dismutase-1 (SOD-1), which dominantly confers familial ALS and induces a similar sequence of motor neuron decline and eventual death when expressed in mice. Mice received standard diets supplemented with equivalent amounts of Ω-3 and Ω-6 or a 10x increase in Ω-6 with no change in Ω-3 commencing at 4 weeks of age. Motor function and biochemical/histological parameters were assayed by standard methodologies. Supplementation with equivalent Ω-3 and Ω-6 hastened motor neuron pathology and death, while 10x Ω-6 with no change in Ω-3 significantly delayed motor neuron pathology, including preservation of minor motor neuron function during the terminal stage. In the absence of a cure or treatment, affected individuals may resort to popular nutritional supplements such as Ω-3 as a form of "self-medication". However, our findings and those of other laboratories indicate that such an approach could be harmful. Our findings suggest that a critical balance of Ω-6 and Ω-3 may temporarily preserve motor neuron function during the terminal stages of ALS, which could provide a substantial improvement in quality of life for affected individuals and their caregivers.

  8. Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients.

    PubMed

    Wang, Zun-Rong; Wang, Ping; Xing, Liang; Mei, Li-Ping; Zhao, Jun; Zhang, Tong

    2017-11-01

    Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238).

  9. Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients

    PubMed Central

    Wang, Zun-rong; Wang, Ping; Xing, Liang; Mei, Li-ping; Zhao, Jun; Zhang, Tong

    2017-01-01

    Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238). PMID:29239328

  10. Bilateral and Unilateral Arm Training Improve Motor Function Through Differing Neuroplastic Mechanisms: A Single-Blinded Randomized Controlled Trial

    PubMed Central

    Whitall, Jill; McCombe Waller, Sandy; Sorkin, John D.; Forrester, Larry W.; Macko, Richard F.; Hanley, Daniel F.; Goldberg, Andrew P.; Luft, Andreas

    2013-01-01

    Background and Purpose This randomized controlled trial tests the efficacy of bilateral arm training with rhythmic auditory cueing (BATRAC) versus dose-matched therapeutic exercises (DMTEs) on upper-extremity (UE) function in stroke survivors and uses functional magnetic resonance imaging (fMRI) to examine effects on cortical reorganization. Methods A total of 111 adults with chronic UE paresis were randomized to 6 weeks (3×/week) of BATRAC or DMTE. Primary end points of UE assessments of Fugl-Meyer UE Test (FM) and modified Wolf Motor Function Test Time (WT) were performed 6 weeks prior to and at baseline, after training, and 4 months later. Pretraining and posttraining, fMRI for UE movement was evaluated in 17 BATRAC and 21 DMTE participants. Results The improvements in UE function (BATRAC: FM Δ = 1.1 + 0.5, P = .03; WT Δ = −2.6 + 0.8, P < .00; DMTE: FM Δ = 1.9 + 0.4, P < .00; WT Δ = −1.6 + 0.7; P = .04) were comparable between groups and retained after 4 months. Satisfaction was higher after BATRAC than DMTE (P = .003). BATRAC led to significantly higher increase in activation in ipsilesional precentral, anterior cingulate and postcentral gyri, and supplementary motor area and contralesional superior frontal gyrus (P < .05). Activation change in the latter was correlated with improvement in the WMFT (P = .01). Conclusions BATRAC is not superior to DMTE, but both rehabilitation programs durably improve motor function for individuals with chronic UE hemiparesis and with varied deficit severity. Adaptations in brain activation are greater after BATRAC than DMTE, suggesting that given similar benefits to motor function, these therapies operate through different mechanisms. PMID:20930212

  11. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma.

    PubMed

    Egawa, Junji; Schilling, Jan M; Cui, Weihua; Posadas, Edmund; Sawada, Atsushi; Alas, Basheer; Zemljic-Harpf, Alice E; Fannon-Pavlich, McKenzie J; Mandyam, Chitra D; Roth, David M; Patel, Hemal H; Patel, Piyush M; Head, Brian P

    2017-08-01

    Studies in vitro and in vivo demonstrate that membrane/lipid rafts and caveolin (Cav) organize progrowth receptors, and, when overexpressed specifically in neurons, Cav-1 augments neuronal signaling and growth and improves cognitive function in adult and aged mice; however, whether neuronal Cav-1 overexpression can preserve motor and cognitive function in the brain trauma setting is unknown. Here, we generated a neuron-targeted Cav-1-overexpressing transgenic (Tg) mouse [synapsin-driven Cav-1 (SynCav1 Tg)] and subjected it to a controlled cortical impact model of brain trauma and measured biochemical, anatomic, and behavioral changes. SynCav1 Tg mice exhibited increased hippocampal expression of Cav-1 and membrane/lipid raft localization of postsynaptic density protein 95, NMDA receptor, and tropomyosin receptor kinase B. When subjected to a controlled cortical impact, SynCav1 Tg mice demonstrated preserved hippocampus-dependent fear learning and memory, improved motor function recovery, and decreased brain lesion volume compared with wild-type controls. Neuron-targeted overexpression of Cav-1 in the adult brain prevents hippocampus-dependent learning and memory deficits, restores motor function after brain trauma, and decreases brain lesion size induced by trauma. Our findings demonstrate that neuron-targeted Cav-1 can be used as a novel therapeutic strategy to restore brain function and prevent trauma-associated maladaptive plasticity.-Egawa, J., Schilling, J. M., Cui, W., Posadas, E., Sawada, A., Alas, B., Zemljic-Harpf, A. E., Fannon-Pavlich, M. J., Mandyam, C. D., Roth, D. M., Patel, H. H., Patel, P. M., Head, B. P. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma. © FASEB.

  12. Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report.

    PubMed

    Broetz, Doris; Braun, Christoph; Weber, Cornelia; Soekadar, Surjo R; Caria, Andrea; Birbaumer, Niels

    2010-09-01

    There is no accepted and efficient rehabilitation strategy to reduce focal impairments for patients with chronic stroke who lack residual movements. A 67-year-old hemiplegic patient with no active finger extension was trained with a brain-computer interface (BCI) combined with a specific daily life-oriented physiotherapy. The BCI used electrical brain activity (EEG) and magnetic brain activity (MEG) to drive an orthosis and a robot affixed to the patient's affected upper extremity, which enabled him to move the paralyzed arm and hand driven by voluntary modulation of micro-rhythm activity. In addition, the patient practiced goal-directed physiotherapy training. Over 1 year, he completed 3 training blocks. Arm motor function, gait capacities (using Fugl-Meyer Assessment, Wolf Motor Function Test, Modified Ashworth Scale, 10-m walk speed, and goal attainment score), and brain reorganization (functional MRI, MEG) were repeatedly assessed. The ability of hand and arm movements as well as speed and safety of gait improved significantly (mean 46.6%). Improvement of motor function was associated with increased micro-oscillations in the ipsilesional motor cortex. This proof-of-principle study suggests that the combination of BCI training with goal-directed, active physical therapy may improve the motor abilities of chronic stroke patients despite apparent initial paralysis.

  13. Performance on a functional motor task is enhanced by sleep in middle-aged and older adults.

    PubMed

    Al-Sharman, Alham; Siengsukon, Catherine F

    2014-07-01

    Although sleep has been shown to enhance motor skill learning, it remains unclear whether sleep enhances learning of a functional motor task in middle-aged and older individuals. The purpose of this study was to examine whether sleep enhances motor learning of a functional motor task in middle-aged and older adults. Twenty middle-aged and 20 older individuals were randomly assigned to either the sleep condition or the no-sleep condition. Participants in the sleep condition practiced a novel walking task in the evening, and returned the following morning for retesting. Participants in the no-sleep condition practiced the walking task in the morning and returned the same day in the evening for a retest. Outcome measures included time around the walking path and spatiotemporal gait parameters. Only the middle-aged and older adults in the sleep condition demonstrated significant off-line improvement in performance, measured as a decline in time to walk around the novel path and improvement in spatiotemporal gait parameters. The middle-aged and older adults in the no-sleep condition failed to demonstrate off-line improvements in performance of this functional task. This is the first study to provide evidence that sleep facilitates learning a clinically relevant functional motor task in middle-aged and older adults. Because many neurologic conditions occur in the middle-aged and older adults and sleep issues are very prevalent in many neurologic conditions, it is imperative that physical therapists consider sleep as a factor that may impact motor learning and recovery in these individuals. (See Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A73) for more insights from the authors.

  14. Enhancement of Cortical Excitability and Lower Limb Motor Function in Patients With Stroke by Transcranial Direct Current Stimulation.

    PubMed

    Chang, Min Cheol; Kim, Dae Yul; Park, Dae Hwan

    2015-01-01

    Motor dysfunction in the lower limbs is a common sequela in stroke patients. We used transcranial magnetic stimulation (TMS) to determine if applying transcranial direct current stimulation (tDCS) to the primary motor cortex helps enhance cortical excitability. Furthermore, we evaluate if combination anodal tDCS and conventional physical therapy improves motor function in the lower limbs. Twenty-four patients with early-stage stroke were randomly assigned to 2 groups: 1) the tDCS group, in which patients received 10 sessions of anodal tDCS and conventional physical therapy; and 2) the sham group, in which patients received 10 sessions of sham stimulation and conventional physical therapy. One day before and after intervention, the motor-evoked potential (MEP) of the affected tibialis anterior muscle was evaluated and motor function was assessed using the lower limb subscale of the Fugl-Meyer Assessment (FMA-LE), lower limb Motricity Index (MI-LE), Functional Ambulatory Category (FAC), Berg Balance Scale (BBS), and gait analysis. The MEPs in the tDCS group became shorter in latency and higher in amplitude after intervention in comparison with the sham group. Improvements in FMA-LE and MI-LE were greater in the tDCS group, but no significant differences in FAC or BBS scores were found. Also, the changes observed on the gait analyses did not significantly differ between the tDCS and sham groups. Combination anodal tDCS and conservative physical therapy appears to be a beneficial therapeutic modality for improving motor function in the lower limbs in patients with subacute stroke. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Cortical changes after mental imagery training combined with electromyography-triggered electrical stimulation in patients with chronic stroke.

    PubMed

    Hong, Il Ki; Choi, Jong Bae; Lee, Jong Ha

    2012-09-01

    Paresis of the upper extremity after stroke is not effectively solved by existing therapies. We investigated whether mental imagery training combined with electromyogram-triggered electric stimulation improved motor function of the paretic upper extremity in patients with chronic stroke and induced cortical changes. Fourteen subjects with chronic stroke (≥12 months) were randomly allocated to receive mental imagery training combined with electromyogram-triggered electric stimulation (n=7) or generalized functional electric stimulation (n=7) on the forearm extensor muscles of the paretic extremity in 2 20-minute daily sessions 5 days a week for 4 weeks. The upper extremity component of the Fugl-Meyer Motor Assessment, the Motor Activity Log, the modified Barthel Index, and (18)F-fluorodeoxyglucose brain positron emission tomography were measured before and after the intervention. The group receiving mental imagery training combined with electromyogram-triggered electric stimulation exhibited significant improvements in the upper extremity component of the Fugl-Meyer Motor Assessment after intervention (median, 7; interquartile range, 5-8; P<0.05), but the group receiving functional electric stimulation did not (median, 0; interquartile range, 0-3). Differences in score changes between the 2 groups were significant. The mental imagery training combined with electromyogram-triggered electric stimulation group showed significantly increased metabolism in the contralesional supplementary motor, precentral, and postcentral gyri (P(uncorrected)<0.001) after the intervention, but the functional electric stimulation group showed no significant differences. Mental imagery training combined with electromyogram-triggered electric stimulation improved motor function of the paretic extremity in patients with chronic stroke. The intervention increased metabolism in the contralesional motor-sensory cortex. Clinical Trial Registration- URL: https://e-irb.khmccri.or.kr/eirb/receipt/index.html?code=02&status=5. Unique identifier: KHUHMDIRB 1008-02.

  16. Mirror therapy enhances upper extremity motor recovery in stroke patients.

    PubMed

    Mirela Cristina, Luca; Matei, Daniela; Ignat, Bogdan; Popescu, Cristian Dinu

    2015-12-01

    The purpose of this study was to evaluate the effects of mirror therapy program in addition with physical therapy methods on upper limb recovery in patients with subacute ischemic stroke. 15 subjects followed a comprehensive rehabilitative treatment, 8 subjects received only control therapy (CT) and 7 subjects received mirror therapy (MT) for 30 min every day, five times a week, for 6 weeks in addition to the conventional therapy. Brunnstrom stages, Fugl-Meyer Assessment (upper extremity), the Ashworth Scale, and Bhakta Test (finger flexion scale) were used to assess changes in upper limb motor recovery and motor function after intervention. After 6 weeks of treatment, patients in both groups showed significant improvements in the variables measured. Patients who received MT showed greater improvements compared to the CT group. The MT treatment results included: improvement of motor functions, manual skills and activities of daily living. The best results were obtained when the treatment was started soon after the stroke. MT is an easy and low-cost method to improve motor recovery of the upper limb.

  17. Investigating the Efficacy of Novel TrkB Agonists to Augment Stroke Recovery

    NASA Astrophysics Data System (ADS)

    Warraich, Zuha

    Stroke remains the leading cause of adult disability in developed countries. Most survivors live with residual motor impairments that severely diminish independence and quality of life. After stroke, the only accepted treatment for these patients is motor rehabilitation. However, the amount and kind of rehabilitation required to induce clinically significant improvements in motor function is rarely given due to the constraints of our current health care system. Research reported in this dissertation contributes towards developing adjuvant therapies that may augment the impact of motor rehabilitation and improve functional outcome. These studies have demonstrated reorganization of maps within motor cortex as a function of experience in both healthy and brain-injured animals by using intracortical microstimulation technique. Furthermore, synaptic plasticity has been identified as a key neural mechanism in directing motor map plasticity, evidenced by restoration of movement representations within the spared cortical tissue accompanied by increase in synapse number translating into motor improvement after stroke. There is increasing evidence that brain-derived neurotrophic factor (BDNF) modulates synaptic and morphological plasticity in the developing and mature nervous system. Unfortunately, BDNF itself is a poor candidate because of its short half-life, low penetration through the blood brain barrier, and activating multiple receptor units, p75 and TrkB on the neuronal membrane. In order to circumvent this problem efficacy of two recently developed novel TrkB agonists, LM22A-4 and 7,8-dihydroxyflavone, that actively penetrate the blood brain barrier and enhance functional recovery. Findings from these dissertation studies indicate that administration of these pharmacological compounds, accompanied by motor rehabilitation provide a powerful therapeutic tool for stroke recovery.

  18. Understanding the role of the primary somatosensory cortex: Opportunities for rehabilitation

    PubMed Central

    Borich, M.R.; Brodie, S.M.; Gray, W.A.; Ionta, S.; Boyd, L.A.

    2016-01-01

    Emerging evidence indicates impairments in somatosensory function may be a major contributor to motor dysfunction associated with neurologic injury or disorders. However, the neuroanatomical substrates underlying the connection between aberrant sensory input and ineffective motor output are still under investigation. The primary somatosensory cortex (S1) plays a critical role in processing afferent somatosensory input and contributes to the integration of sensory and motor signals necessary for skilled movement. Neuroimaging and neurostimulation approaches provide unique opportunities to non-invasively study S1 structure and function including connectivity with other cortical regions. These research techniques have begun to illuminate casual contributions of abnormal S1 activity and connectivity to motor dysfunction and poorer recovery of motor function in neurologic patient populations. This review synthesizes recent evidence illustrating the role of S1 in motor control, motor learning and functional recovery with an emphasis on how information from these investigations may be exploited to inform stroke rehabilitation to reduce motor dysfunction and improve therapeutic outcomes. PMID:26164474

  19. A piano training program to improve manual dexterity and upper extremity function in chronic stroke survivors.

    PubMed

    Villeneuve, Myriam; Penhune, Virginia; Lamontagne, Anouk

    2014-01-01

    Music-supported therapy was shown to induce improvements in motor skills in stroke survivors. Whether all stroke individuals respond similarly to the intervention and whether gains can be maintained over time remain unknown. We estimated the immediate and retention effects of a piano training program on upper extremity function in persons with chronic stroke. Thirteen stroke participants engaged in a 3-week piano training comprising supervised sessions (9 × 60 min) and home practice. Fine and gross manual dexterity, movement coordination, and functional use of the upper extremity were assessed at baseline, pre-intervention, post-intervention, and at a 3-week follow-up. Significant improvements were observed for all outcomes at post-intervention and follow-up compared to pre-intervention scores. Larger magnitudes of change in manual dexterity and functional use of the upper extremity were associated with higher initial levels of motor recovery. Piano training can result in sustainable improvements in upper extremity function in chronic stroke survivors. Individuals with a higher initial level of motor recovery at baseline appear to benefit the most from this intervention.

  20. Development of a novel haptic glove for improving finger dexterity in poststroke rehabilitation.

    PubMed

    Lin, Chi-Ying; Tsai, Chia-Min; Shih, Pei-Cheng; Wu, Hsiao-Ching

    2015-01-01

    Almost all stroke patients experience a certain degree of fine motor impairment, and impeded finger movement may limit activities in daily life. Thus, to improve the quality of life of stroke patients, designing an efficient training device for fine motor rehabilitation is crucial. This study aimed to develop a novel fine motor training glove that integrates a virtual-reality based interactive environment with vibrotactile feedback for more effective post stroke hand rehabilitation. The proposed haptic rehabilitation device is equipped with small DC vibration motors for vibrotactile feedback stimulation and piezoresistive thin-film force sensors for motor function evaluation. Two virtual-reality based games ``gopher hitting'' and ``musical note hitting'' were developed as a haptic interface. According to the designed rehabilitation program, patients intuitively push and practice their fingers to improve the finger isolation function. Preliminary tests were conducted to assess the feasibility of the developed haptic rehabilitation system and to identify design concerns regarding the practical use in future clinical testing.

  1. Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians.

    PubMed

    Saposnik, Gustavo; Levin, Mindy

    2011-05-01

    Approximately two thirds of stroke survivors continue to experience motor deficits of the arm resulting in diminished quality of life. Conventional rehabilitation provides modest and sometimes delayed effects. Virtual reality (VR) technology is a novel adjunctive therapy that could be applied in neurorehabilitation. We performed a meta-analysis to determine the added benefit of VR technology on arm motor recovery after stroke. We searched Medline, EMBASE, and Cochrane literature from 1966 to July 2010 with the terms "stroke," "virtual reality," and "upper arm/extremity." We evaluated the effect of VR on motor function improvement after stroke. From the 35 studies identified, 12 met the inclusion/exclusion criteria totaling 195 participants. Among them, there were 5 randomized clinical trials and 7 observational studies with a pre-/postintervention design. Interventions were delivered within 4 to 6 weeks in 9 of the studies and within 2 to 3 weeks in the remaining 3. Eleven of 12 studies showed a significant benefit toward VR for the selected outcomes. In the pooled analysis of all 5 randomized controlled trials, the effect of VR on motor impairment (Fugl-Meyer) was OR=4.89 (95% CI, 1.31 to 18.3). No significant difference was observed for Box and Block Test or motor function. Among observational studies, there was a 14.7% (95% CI, 8.7%-23.6%) improvement in motor impairment and a 20.1% (95% CI, 11.0%-33.8%) improvement in motor function after VR. VR and video game applications are novel and potentially useful technologies that can be combined with conventional rehabilitation for upper arm improvement after stroke.

  2. The DcpS inhibitor RG3039 improves motor function in SMA mice

    PubMed Central

    Van Meerbeke, James P.; Gibbs, Rebecca M.; Plasterer, Heather L.; Miao, Wenyan; Feng, Zhihua; Lin, Ming-Yi; Rucki, Agnieszka A.; Wee, Claribel D.; Xia, Bing; Sharma, Shefali; Jacques, Vincent; Li, Darrick K.; Pellizzoni, Livio; Rusche, James R.; Ko, Chien-Ping; Sumner, Charlotte J.

    2013-01-01

    Spinal muscular atrophy (SMA) is caused by mutations of the survival motor neuron 1 (SMN1) gene, retention of the survival motor neuron 2 (SMN2) gene and insufficient expression of full-length survival motor neuron (SMN) protein. Quinazolines increase SMN2 promoter activity and inhibit the ribonucleic acid scavenger enzyme DcpS. The quinazoline derivative RG3039 has advanced to early phase clinical trials. In preparation for efficacy studies in SMA patients, we investigated the effects of RG3039 in severe SMA mice. Here, we show that RG3039 distributed to central nervous system tissues where it robustly inhibited DcpS enzyme activity, but minimally activated SMN expression or the assembly of small nuclear ribonucleoproteins. Nonetheless, treated SMA mice showed a dose-dependent increase in survival, weight and motor function. This was associated with improved motor neuron somal and neuromuscular junction synaptic innervation and function and increased muscle size. RG3039 also enhanced survival of conditional SMA mice in which SMN had been genetically restored to motor neurons. As this systemically delivered drug may have therapeutic benefits that extend beyond motor neurons, it could act additively with SMN-restoring therapies delivered directly to the central nervous system such as antisense oligonucleotides or gene therapy. PMID:23727836

  3. Impact of selective posterior rhizotomy on fine motor skills. Long-term results using a validated evaluative measure.

    PubMed

    Mittal, Sandeep; Farmer, Jean-Pierre; Al-Atassi, Borhan; Montpetit, Kathleen; Gervais, Nathalie; Poulin, Chantal; Cantin, Marie-André; Benaroch, Thierry E

    2002-03-01

    Suprasegmental effects following selective posterior rhizotomy have been frequently reported. However, few studies have used validated functional outcome measures to report the surgical results beyond 3 years. The authors analyzed data obtained from the McGill Rhizotomy Database to determine the long-term impact of lumbosacral dorsal rhizotomy on fine motor skills. The study population comprised children with debilitating spasticity who underwent SPR and were evaluated by a multidisciplinary team preoperatively, at 6 months and 1 year postoperatively. Quantitative standardized assessments of upper extremity function were obtained using the fine motor skills section of the Peabody Developmental Motor Scales (PDMS) test. Of 70 patients who met the entry criteria for the study, 45 and 25 completed the 3- and 5-year assessments, respectively. Statistical analysis demonstrated significant improvements in grasping, hand use, eye-hand coordination, and manual dexterity at 1 year after SPR. More importantly, all improvements were maintained at 3 and 5 years following SPR. This study supports that significant improvements in upper extremity fine motor function using the PDMS evaluative measure are present after SPR and that these suprasegmental benefits are durable. Copyright 2002 S. Karger AG, Basel

  4. Community-Based Rehabilitation to Improve Stroke Survivors' Rehabilitation Participation and Functional Recovery.

    PubMed

    Ru, Xiaojuan; Dai, Hong; Jiang, Bin; Li, Ninghua; Zhao, Xingquan; Hong, Zhen; He, Li; Wang, Wenzhi

    2017-07-01

    The aim of this study was to evaluate the effectiveness of a community-based rehabilitation appropriate technique (CRAT) intervention program in increasing rehabilitation participation and improving functional recovery of stroke survivors. This study followed a quasi-experimental design. In each of 5 centers servicing approximately 50,000 individuals, 2 communities were designated as either the intervention or control community. A CRAT intervention program, including 2-year rehabilitation education and 3-month CRAT treatment, was regularly implemented in the intervention communities, whereas there was no special intervention in the control community. Two sampling surveys, at baseline and after intervention, were administered to evaluate the rehabilitation activity undertaken. In intervention communities, stroke survivor's motor function, daily activity, and social activity were evaluated pretreatment and posttreatment, using the Fugl-Meyer Motor Function Assessment, Barthel index, and Social Functional Activities Questionnaire. The proportion of individuals participating in rehabilitation-related activity was increased significantly (P < 0.05) in intervention communities, as compared with control communities. In intervention communities, the patients' Fugl-Meyer Motor Function Assessment, Barthel index, and Social Functional Activities Questionnaire scores were significantly improved after rehabilitation (P < 0.05) across all ages and disease courses, except for the FAQ scores in patients younger than 50 years (P > 0.05). Community-based rehabilitation appropriate technique increases rehabilitation participation rates and enhances motor function, daily activity, and social activity of stroke survivors.

  5. The Effect of Body Weight Support Treadmill Training on Gait Recovery, Proximal Lower Limb Motor Pattern, and Balance in Patients with Subacute Stroke

    PubMed Central

    Lo, Wai Leung; Lin, Qiang; Xiao, Xiang; Raghavan, Preeti; Huang, Dong-Feng

    2015-01-01

    Objective. Gait performance is an indicator of mobility impairment after stroke. This study evaluated changes in balance, lower extremity motor function, and spatiotemporal gait parameters after receiving body weight supported treadmill training (BWSTT) and conventional overground walking training (CT) in patients with subacute stroke using 3D motion analysis. Setting. Inpatient department of rehabilitation medicine at a university-affiliated hospital. Participants. 24 subjects with unilateral hemiplegia in the subacute stage were randomized to the BWSTT (n = 12) and CT (n = 12) groups. Parameters were compared between the two groups. Data from twelve age matched healthy subjects were recorded as reference. Interventions. Patients received gait training with BWSTT or CT for an average of 30 minutes/day, 5 days/week, for 3 weeks. Main Outcome Measures. Balance was measured by the Brunel balance assessment. Lower extremity motor function was evaluated by the Fugl-Meyer assessment scale. Kinematic data were collected and analyzed using a gait capture system before and after the interventions. Results. Both groups improved on balance and lower extremity motor function measures (P < 0.05), with no significant difference between the two groups after intervention. However, kinematic data were significantly improved (P < 0.05) after BWSTT but not after CT. Maximum hip extension and flexion angles were significantly improved (P < 0.05) for the BWSTT group during the stance and swing phases compared to baseline. Conclusion. In subacute patients with stroke, BWSTT can lead to improved gait quality when compared with conventional gait training. Both methods can improve balance and motor function. PMID:26649295

  6. The Effect of Body Weight Support Treadmill Training on Gait Recovery, Proximal Lower Limb Motor Pattern, and Balance in Patients with Subacute Stroke.

    PubMed

    Mao, Yu-Rong; Lo, Wai Leung; Lin, Qiang; Li, Le; Xiao, Xiang; Raghavan, Preeti; Huang, Dong-Feng

    2015-01-01

    Gait performance is an indicator of mobility impairment after stroke. This study evaluated changes in balance, lower extremity motor function, and spatiotemporal gait parameters after receiving body weight supported treadmill training (BWSTT) and conventional overground walking training (CT) in patients with subacute stroke using 3D motion analysis. Inpatient department of rehabilitation medicine at a university-affiliated hospital. 24 subjects with unilateral hemiplegia in the subacute stage were randomized to the BWSTT (n = 12) and CT (n = 12) groups. Parameters were compared between the two groups. Data from twelve age matched healthy subjects were recorded as reference. Patients received gait training with BWSTT or CT for an average of 30 minutes/day, 5 days/week, for 3 weeks. Balance was measured by the Brunel balance assessment. Lower extremity motor function was evaluated by the Fugl-Meyer assessment scale. Kinematic data were collected and analyzed using a gait capture system before and after the interventions. Both groups improved on balance and lower extremity motor function measures (P < 0.05), with no significant difference between the two groups after intervention. However, kinematic data were significantly improved (P < 0.05) after BWSTT but not after CT. Maximum hip extension and flexion angles were significantly improved (P < 0.05) for the BWSTT group during the stance and swing phases compared to baseline. In subacute patients with stroke, BWSTT can lead to improved gait quality when compared with conventional gait training. Both methods can improve balance and motor function.

  7. A 12-Week Cycling Training Regimen Improves Gait and Executive Functions Concomitantly in People with Parkinson’s Disease

    PubMed Central

    Nadeau, Alexandra; Lungu, Ovidiu; Duchesne, Catherine; Robillard, Marie-Ève; Bore, Arnaud; Bobeuf, Florian; Plamondon, Réjean; Lafontaine, Anne-Louise; Gheysen, Freja; Bherer, Louis; Doyon, Julien

    2017-01-01

    Background: There is increasing evidence that executive functions and attention are associated with gait and balance, and that this link is especially prominent in older individuals or those who are afflicted by neurodegenerative diseases that affect cognition and/or motor functions. People with Parkinson’s disease (PD) often present gait disturbances, which can be reduced when PD patients engage in different types of physical exercise (PE), such as walking on a treadmill. Similarly, PE has also been found to improve executive functions in this population. Yet, no exercise intervention investigated simultaneously gait and non-motor symptoms (executive functions, motor learning) in PD patients. Objective: To assess the impact of aerobic exercise training (AET) using a stationary bicycle on a set of gait parameters (walking speed, cadence, step length, step width, single and double support time, as well as variability of step length, step width and double support time) and executive functions (cognitive inhibition and flexibility) in sedentary PD patients and healthy controls. Methods: Two groups, 19 PD patients (Hoehn and Yahr ≤2) and 20 healthy adults, matched on age and sedentary level, followed a 3-month stationary bicycle AET regimen. Results: Aerobic capacity, as well as performance of motor learning and on cognitive inhibition, increased significantly in both groups after the training regimen, but only PD patients improved their walking speed and cadence (all p < 0.05; with no change in the step length). Moreover, in PD patients, training-related improvements in aerobic capacity correlated positively with improvements in walking speed (r = 0.461, p < 0.05). Conclusion: AET using stationary bicycle can independently improve gait and cognitive inhibition in sedentary PD patients. Given that increases in walking speed were obtained through increases in cadence, with no change in step length, our findings suggest that gait improvements are specific to the type of motor activity practiced during exercise (i.e., pedaling). In contrast, the improvements seen in cognitive inhibition were, most likely, not specific to the type of training and they could be due to indirect action mechanisms (i.e., improvement of cardiovascular capacity). These results are also relevant for the development of targeted AET interventions to improve functional autonomy in PD patients. PMID:28127282

  8. Impacts of dance on non-motor symptoms, participation, and quality of life in Parkinson disease and healthy older adults

    PubMed Central

    McNeely, ME; Duncan, RP; Earhart, GM

    2015-01-01

    Evidence indicates exercise is beneficial for motor and non-motor function in older adults and people with chronic diseases including Parkinson disease (PD). Dance may be a relevant form of exercise in PD and older adults due to social factors and accessibility. People with PD experience motor and non-motor symptoms, but treatments, interventions, and assessments often focus more on motor symptoms. Similar non-motor symptoms also occur in older adults. While it is well-known that dance may improve motor outcomes, it is less clear how dance affects non-motor symptoms. This review aims to describe the effects of dance interventions on non-motor symptoms in older adults and PD, highlights limitations of the literature, and identifies opportunities for future research. Overall, intervention parameters, study designs, and outcome measures differ widely, limiting comparisons across studies. Results are mixed in both populations, but evidence supports the potential for dance to improve mood, cognition, and quality of life in PD and healthy older adults. Participation and non-motor symptoms like sleep disturbances, pain, and fatigue have not been measured in older adults. Additional well-designed studies comparing dance and exercise interventions are needed to clarify the effects of dance on non-motor function and establish recommendations for these populations. PMID:26318265

  9. Kinesin and Dynein Mechanics: Measurement Methods and Research Applications.

    PubMed

    Abraham, Zachary; Hawley, Emma; Hayosh, Daniel; Webster-Wood, Victoria A; Akkus, Ozan

    2018-02-01

    Motor proteins play critical roles in the normal function of cells and proper development of organisms. Among motor proteins, failings in the normal function of two types of proteins, kinesin and dynein, have been shown to lead many pathologies, including neurodegenerative diseases and cancers. As such, it is critical to researchers to understand the underlying mechanics and behaviors of these proteins, not only to shed light on how failures may lead to disease, but also to guide research toward novel treatment and nano-engineering solutions. To this end, many experimental techniques have been developed to measure the force and motility capabilities of these proteins. This review will (a) discuss such techniques, specifically microscopy, atomic force microscopy (AFM), optical trapping, and magnetic tweezers, and (b) the resulting nanomechanical properties of motor protein functions such as stalling force, velocity, and dependence on adenosine triphosophate (ATP) concentrations will be comparatively discussed. Additionally, this review will highlight the clinical importance of these proteins. Furthermore, as the understanding of the structure and function of motor proteins improves, novel applications are emerging in the field. Specifically, researchers have begun to modify the structure of existing proteins, thereby engineering novel elements to alter and improve native motor protein function, or even allow the motor proteins to perform entirely new tasks as parts of nanomachines. Kinesin and dynein are vital elements for the proper function of cells. While many exciting experiments have shed light on their function, mechanics, and applications, additional research is needed to completely understand their behavior.

  10. Mirror therapy for improving motor function after stroke.

    PubMed

    Thieme, Holm; Mehrholz, Jan; Pohl, Marcus; Behrens, Johann; Dohle, Christian

    2013-01-01

    This systematic review summarizes the effectiveness of mirror therapy for improving motor function, activities of daily living, pain, and visuospatial neglect in patients after stroke. We searched the Cochrane Stroke Group’s Trials Register (June 2011), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 2), MEDLINE (1950 to June 2011), EMBASE (1980 to June 2011), CINAHL (1982 to June 2011), AMED (1985 to June 2011), PsycINFO (1806 to June 2011), and PEDro (June 2011). We also handsearched relevant conference proceedings, trials, and research registers; checked reference lists; and contacted trialists, researchers, and experts in our field of study. We included randomized controlled trials and randomized crossover trials comparing mirror therapy with any control intervention for patients after stroke. Two review authors independently selected trials based on the inclusion criteria, documented the methodological quality of studies, and extracted data. The primary outcome was motor function. We analyzed the results as standardized mean differences (SMDs) for continuous variables. We included 14 studies with a total of 567 participants, which compared mirror therapy with other interventions. When compared with all other interventions, mirror therapy was found to have a significant effect on motor function (postintervention data: SMD 0.61; 95% CI 0.22 to 1.0; P=0.002; change scores: SMD 1.04; 95% CI 0.57 to 1.51; P<0.0001) ; Figure). However, effects on motor function are influenced by the type of control intervention. Additionally, mirror therapy was found to improve activities of daily living (SMD 0.33; 95% CI 0.05 to 0.60; P=0.02). We found a significant positive effect on pain (SMD −1.10; 95% CI −2.10 to −0.09; P=0.03), which is influenced by patient population. We found limited evidence for improving visuospatial neglect (SMD 1.22; 95% CI 0.24 to 2.19; P=0.01). The effects on motor function were stable at follow-up assessment after 6 months.

  11. Mirror therapy for improving motor function after stroke.

    PubMed

    Thieme, Holm; Mehrholz, Jan; Pohl, Marcus; Behrens, Johann; Dohle, Christian

    2012-03-14

    Mirror therapy is used to improve motor function after stroke. During mirror therapy, a mirror is placed in the patient's midsagittal plane, thus reflecting movements of the non-paretic side as if it were the affected side. To summarise the effectiveness of mirror therapy for improving motor function, activities of daily living, pain and visuospatial neglect in patients after stroke. We searched the Cochrane Stroke Group's Trials Register (June 2011), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 2), MEDLINE (1950 to June 2011), EMBASE (1980 to June 2011), CINAHL (1982 to June 2011), AMED (1985 to June 2011), PsycINFO (1806 to June 2011) and PEDro (June 2011). We also handsearched relevant conference proceedings, trials and research registers, checked reference lists and contacted trialists, researchers and experts in our field of study. We included randomised controlled trials (RCTs) and randomised cross-over trials comparing mirror therapy with any control intervention for patients after stroke. Two review authors independently selected trials based on the inclusion criteria, documented the methodological quality of studies and extracted data. We analysed the results as standardised mean differences (SMDs) for continuous variables. We included 14 studies with a total of 567 participants that compared mirror therapy with other interventions. When compared with all other interventions, mirror therapy may have a significant effect on motor function (post-intervention data: SMD 0.61; 95% confidence interval (CI) 0.22 to 1.0; P = 0.002; change scores: SMD 1.04; 95% CI 0.57 to 1.51; P < 0.0001). However, effects on motor function are influenced by the type of control intervention. Additionally, mirror therapy may improve activities of daily living (SMD 0.33; 95% CI 0.05 to 0.60; P = 0.02). We found a significant positive effect on pain (SMD -1.10; 95% CI -2.10 to -0.09; P = 0.03) which is influenced by patient population. We found limited evidence for improving visuospatial neglect (SMD 1.22; 95% CI 0.24 to 2.19; P = 0.01). The effects on motor function were stable at follow-up assessment after six months. The results indicate evidence for the effectiveness of mirror therapy for improving upper extremity motor function, activities of daily living and pain, at least as an adjunct to normal rehabilitation for patients after stroke. Limitations are due to small sample sizes of most included studies, control interventions that are not used routinely in stroke rehabilitation and some methodological limitations of the studies.

  12. Intranasal insulin to improve developmental delay in children with 22q13 deletion syndrome: an exploratory clinical trial.

    PubMed

    Schmidt, H; Kern, W; Giese, R; Hallschmid, M; Enders, A

    2009-04-01

    The 22q13 deletion syndrome (Phelan-McDermid syndrome) is characterised by a global developmental delay, absent or delayed speech, generalised hypotonia, autistic behaviour and characteristic phenotypic features. Intranasal insulin has been shown to improve declarative memory in healthy adult subjects and in patients with Alzheimer disease. To assess if intranasal insulin is also able to improve the developmental delay in children with 22q13 deletion syndrome. We performed exploratory clinical trials in six children with 22q13 deletion syndrome who received intranasal insulin over a period of 1 year. Short-term (during the first 6 weeks) and long-term effects (after 12 months of treatment) on motor skills, cognitive functions, or autonomous functions, speech and communication, emotional state, social behaviour, behavioural disorders, independence in daily living and education were assessed. The children showed marked short-term improvements in gross and fine motor activities, cognitive functions and educational level. Positive long-term effects were found for fine and gross motor activities, nonverbal communication, cognitive functions and autonomy. Possible side effects were found in one patient who displayed changes in balance, extreme sensitivity to touch and general loss of interest. One patient complained of intermittent nose bleeding. We conclude that long-term administration of intranasal insulin may benefit motor development, cognitive functions and spontaneous activity in children with 22q13 deletion syndrome.

  13. Ankle Training With a Robotic Device Improves Hemiparetic Gait After a Stroke

    PubMed Central

    Forrester, Larry W.; Roy, Anindo; Krebs, Hermano Igo; Macko, Richard F.

    2013-01-01

    Background Task-oriented therapies such as treadmill exercise can improve gait velocity after stroke, but slow velocities and abnormal gait patterns often persist, suggesting a need for additional strategies to improve walking. Objectives To determine the effects of a 6-week visually guided, impedance controlled, ankle robotics intervention on paretic ankle motor control and gait function in chronic stroke. Methods This was a single-arm pilot study with a convenience sample of 8 stroke survivors with chronic hemiparetic gait, trained and tested in a laboratory. Subjects trained in dorsiflexion–plantarflexion by playing video games with the robot during three 1-hour training sessions weekly, totaling 560 repetitions per session. Assessments included paretic ankle ranges of motion, strength, motor control, and overground gait function. Results Improved paretic ankle motor control was seen as increased target success, along with faster and smoother movements. Walking velocity also increased significantly, whereas durations of paretic single support increased and double support decreased. Conclusions Robotic feedback training improved paretic ankle motor control with improvements in floor walking. Increased walking speeds were comparable with reports from other task-oriented, locomotor training approaches used in stroke, suggesting that a focus on ankle motor control may provide a valuable adjunct to locomotor therapies. PMID:21115945

  14. Motor, cognitive, and functional declines contribute to a single progressive factor in early HD.

    PubMed

    Schobel, Scott A; Palermo, Giuseppe; Auinger, Peggy; Long, Jeffrey D; Ma, Shiyang; Khwaja, Omar S; Trundell, Dylan; Cudkowicz, Merit; Hersch, Steven; Sampaio, Cristina; Dorsey, E Ray; Leavitt, Blair R; Kieburtz, Karl D; Sevigny, Jeffrey J; Langbehn, Douglas R; Tabrizi, Sarah J

    2017-12-12

    To identify an improved measure of clinical progression in early Huntington disease (HD) using data from prospective observational cohort studies and placebo group data from randomized double-blind clinical trials. We studied Unified Huntington Disease Rating Scale (UHDRS) and non-UHDRS clinical measures and brain measures of progressive atrophy in 1,668 individuals with early HD followed up prospectively for up to 30 to 36 months of longitudinal clinical follow-up. The results demonstrated that a composite measure of motor, cognitive, and global functional decline best characterized clinical progression and was most strongly associated with brain measures of progressive corticostriatal atrophy. Use of a composite motor, cognitive, and global functional clinical outcome measure in HD provides an improved measure of clinical progression more related to measures of progressive brain atrophy and provides an opportunity for enhanced clinical trial efficiency relative to currently used individual motor, cognitive, and functional outcome measures. © 2017 American Academy of Neurology.

  15. Trunk Robot Rehabilitation Training with Active Stepping Reorganizes and Enriches Trunk Motor Cortex Representations in Spinal Transected Rats

    PubMed Central

    Oza, Chintan S.

    2015-01-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. PMID:25948267

  16. Rehabilitation outcomes in children with cerebral palsy during a 2 year period

    PubMed Central

    İçağasıoğlu, Afitap; Mesci, Erkan; Yumusakhuylu, Yasemin; Turgut, Selin Turan; Murat, Sadiye

    2015-01-01

    [Purpose] To observe motor and functional progress of children with cerebral palsy during 2 years. [Subjects and Methods] Pediatric cerebral palsy patients aged 3–15 years (n = 35/69) with 24-month follow-up at our outpatient cerebral palsy clinic were evaluated retrospectively. The distribution of cerebral palsy types was as follows: diplegia (n = 19), hemiplegia (n = 4), and quadriplegia (n = 12). Participants were divided into 3 groups according to their Gross Motor Functional Classification System scores (i.e., mild, moderate, and severe). All participants were evaluated initially and at the final assessment 2 years later. During this time, patients were treated 3 times/week. Changes in motor and functional abilities were assessed based on Gross Motor Function Measure-88 and Wee Functional Independence Measure. [Results] Significant improvements were observed in Gross Motor Function Measure-88 and Wee Functional Independence Measure results in all 35 patients at the end of 2 years. The Gross Motor Function Measure-88 scores correlated with Wee Functional Independence Measure Scores. Marked increases in motor and functional capabilities in mild and moderate cerebral palsy patients were observed in the subgroup assessments, but not in those with severe cerebral palsy. [Conclusion] Rehabilitation may greatly help mild and moderate cerebral palsy patients achieve their full potential. PMID:26644677

  17. Role of Brain-Derived Neurotrophic Factor in Beneficial Effects of Repetitive Transcranial Magnetic Stimulation for Upper Limb Hemiparesis after Stroke.

    PubMed

    Niimi, Masachika; Hashimoto, Kenji; Kakuda, Wataru; Miyano, Satoshi; Momosaki, Ryo; Ishima, Tamaki; Abo, Masahiro

    2016-01-01

    Repetitive transcranial magnetic stimulation (rTMS) can improve upper limb hemiparesis after stroke but the mechanism underlying its efficacy remains elusive. rTMS seems to alter brain-derived neurotrophic factor (BDNF) and such effect is influenced by BDNF gene polymorphism. To investigate the molecular effects of rTMS on serum levels of BDNF, its precursor proBDNF and matrix metalloproteinase-9 (MMP-9) in poststroke patients with upper limb hemiparesis. Poststroke patients with upper limb hemiparesis were studied. Sixty-two patients underwent rehabilitation plus rTMS combination therapy and 33 patients underwent rehabilitation monotherapy without rTMS for 14 days at our hospital. One Hz rTMS was applied over the motor representation of the first dorsal interosseous muscle on the non-lesional hemisphere. Fugl-Meyer Assessment and Wolf Motor Function (WMFT) were used to evaluate motor function on the affected upper limb before and after intervention. Blood samples were collected for analysis of BDNF polymorphism and measurement of BDNF, proBDNF and MMP-9 levels. Two-week combination therapy increased BDNF and MMP-9 serum levels, but not serum proBDNF. Serum BDNF and MMP-9 levels did not correlate with motor function improvement, though baseline serum proBDNF levels correlated negatively and significantly with improvement in WMFT (ρ = -0.422, p = 0.002). The outcome of rTMS therapy was not altered by BDNF gene polymorphism. The combination therapy of rehabilitation plus low-frequency rTMS seems to improve motor function in the affected limb, by activating BDNF processing. BDNF and its precursor proBDNF could be potentially suitable biomarkers for poststroke motor recovery.

  18. Subthalamic nucleus deep brain stimulation impacts language in early Parkinson's disease.

    PubMed

    Phillips, Lara; Litcofsky, Kaitlyn A; Pelster, Michael; Gelfand, Matthew; Ullman, Michael T; Charles, P David

    2012-01-01

    Although deep brain stimulation (DBS) of the basal ganglia improves motor outcomes in Parkinson's disease (PD), its effects on cognition, including language, remain unclear. This study examined the impact of subthalamic nucleus (STN) DBS on two fundamental capacities of language, grammatical and lexical functions. These functions were tested with the production of regular and irregular past-tenses, which contrast aspects of grammatical (regulars) and lexical (irregulars) processing while controlling for multiple potentially confounding factors. Aspects of the motor system were tested by contrasting the naming of manipulated (motor) and non-manipulated (non-motor) objects. Performance was compared between healthy controls and early-stage PD patients treated with either DBS/medications or medications alone. Patients were assessed on and off treatment, with controls following a parallel testing schedule. STN-DBS improved naming of manipulated (motor) but not non-manipulated (non-motor) objects, as compared to both controls and patients with just medications, who did not differ from each other across assessment sessions. In contrast, STN-DBS led to worse performance at regulars (grammar) but not irregulars (lexicon), as compared to the other two subject groups, who again did not differ. The results suggest that STN-DBS negatively impacts language in early PD, but may be specific in depressing aspects of grammatical and not lexical processing. The finding that STN-DBS affects both motor and grammar (but not lexical) functions strengthens the view that both depend on basal ganglia circuitry, although the mechanisms for its differential impact on the two (improved motor, impaired grammar) remain to be elucidated.

  19. Subthalamic Nucleus Deep Brain Stimulation Impacts Language in Early Parkinson's Disease

    PubMed Central

    Phillips, Lara; Litcofsky, Kaitlyn A.; Pelster, Michael; Gelfand, Matthew

    2012-01-01

    Although deep brain stimulation (DBS) of the basal ganglia improves motor outcomes in Parkinson's disease (PD), its effects on cognition, including language, remain unclear. This study examined the impact of subthalamic nucleus (STN) DBS on two fundamental capacities of language, grammatical and lexical functions. These functions were tested with the production of regular and irregular past-tenses, which contrast aspects of grammatical (regulars) and lexical (irregulars) processing while controlling for multiple potentially confounding factors. Aspects of the motor system were tested by contrasting the naming of manipulated (motor) and non-manipulated (non-motor) objects. Performance was compared between healthy controls and early-stage PD patients treated with either DBS/medications or medications alone. Patients were assessed on and off treatment, with controls following a parallel testing schedule. STN-DBS improved naming of manipulated (motor) but not non-manipulated (non-motor) objects, as compared to both controls and patients with just medications, who did not differ from each other across assessment sessions. In contrast, STN-DBS led to worse performance at regulars (grammar) but not irregulars (lexicon), as compared to the other two subject groups, who again did not differ. The results suggest that STN-DBS negatively impacts language in early PD, but may be specific in depressing aspects of grammatical and not lexical processing. The finding that STN-DBS affects both motor and grammar (but not lexical) functions strengthens the view that both depend on basal ganglia circuitry, although the mechanisms for its differential impact on the two (improved motor, impaired grammar) remain to be elucidated. PMID:22880117

  20. A randomised trial into the effect of an isolated hip abductor strengthening programme and a functional motor control programme on knee kinematics and hip muscle strength.

    PubMed

    Palmer, Kathryn; Hebron, Clair; Williams, Jonathan M

    2015-05-03

    Dynamic knee valgus and internal femoral rotation are proposed to be contributory risk factors for patellofemoral pain and anterior cruciate ligament injuries. Multimodal interventions including hip abductor strengthening or functional motor control programmes have a positive impact of pain, however their effect on knee kinematics and muscle strength is less clear. The aim of this study was to examine the effect of isolated hip abductor strengthening and a functional motor control exercise on knee kinematics and hip abductor strength. This prospective, randomised, repeated measures design included 29 asymptomatic volunteers presenting with increase knee valgus and femoral internal rotation. Participants completed either isolated hip abductor strengthening or a functional motor control exercise for 5 weeks. Knee kinematics were measured using inertial sensors during 2 functional activities and hip abductor strength measured using a load cell during isometric hip abduction. There were no significant differences in dynamic knee valgus and internal rotation following the isolated hip abductor or functional motor control intervention, and no significant differences between the groups for knee angles. Despite this, the actual magnitude of reduction in valgus was 10° and 5° for the functional motor control group and strengthening group respectively. The actual magnitude of reduction in internal rotation was 9° and 18° for the functional motor control group and strengthening group respectively. Therefore there was a tendency towards clinically significant improvements in knee kinematics in both exercise groups. A statistically significant improvement in hip abductor strength was evident for the functional motor control group (27% increase; p = 0.008) and strengthening group (35% increase; p = 0.009) with no significant difference between the groups being identified (p = 0.475). Isolated hip strengthening and functional motor control exercises resulted in non-statistically significant changes in knee kinematics, however there was a clear trend towards clinically meaningful reductions in valgus and internal rotation. Both groups demonstrated similar significant gains in hip abductor strength suggesting either approach could be used to strengthen the hip abductors.

  1. Electrical stimulation and motor recovery.

    PubMed

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical stimulation (FES) has long been used to activate sacral nerves to treat bladder and pelvic dysfunction and to augment motor function. In theory, FES should facilitate synaptic formation and motor recovery after regenerative therapies. Upcoming clinical trials provide unique opportunities to test the theory.

  2. The effect of cerebellar transplantation and enforced physical activity on motor skills and spatial learning in adult Lurcher mutant mice.

    PubMed

    Cendelín, Jan; Korelusová, Ivana; Vozeh, Frantisek

    2009-03-01

    Lurcher mutant mice represent a model of olivocerebellar degeneration. They are used to investigate cerebellar functions, consequences of cerebellar degeneration and methods of therapy influencing them. The aim of the work was to assess the effect of foetal cerebellar graft transplantation, repeated enforced physical activity and the combination of both these types of treatment on motor skills, spontaneous motor activity and spatial learning ability in adult B6CBA Lurcher mice. Foetal cerebellar grafts were applied into the cerebellum of Lurchers in the form of solid tissue pieces. Enforced motor activity was realised through rotarod training. Motor functions were examined using bar, ladder and rotarod tests. Spatial learning was tested in the Morris water maze. Spontaneous motor activity in the open field was observed. The presence of the graft was examined histologically. Enforced physical activity led to moderate improvement of some motor skills and to a significant amelioration of spatial learning ability in Lurchers. The transplantation of cerebellar tissue did not influence motor functions significantly but led to an improvement of spatial learning ability. Mutual advancement of the effects of both types of treatment was not observed. Spontaneous motor activity was influenced neither by physical activity nor by the transplantation. Physical activity did not influence the graft survival and development. Because nerve sprouting and cell migration from the graft to the host cerebellum was poor, the functional effects of the graft should be explained with regard to its trophic influence rather than with any involvement of the grafted cells into neural circuitries.

  3. Review of the randomized clinical stroke rehabilitation trials in 2009

    PubMed Central

    Rabadi, Meheroz H.

    2011-01-01

    Summary Background Recent review of the available evidence on interventions for motor recovery after stroke, showed that improvements in recovery of arm function were seen for constraint-induced movement therapy, electromyographic biofeedback, mental practice with motor imagery, and robotics. Similar improvement in transfer ability or balance were seen with repetitive task training, biofeedback, and training with a moving platform. Walking speed was improved by physical fitness training, high-intensity physiotherapy and repetitive task training. However, most of these trials were small and had design limitations. Material/Methods In this article, randomized control trials (RCT’s) published in 2009 of rehabilitation therapies for acute (≤2 weeks), sub-acute (2 to 12 weeks) and chronic (≥12 weeks) stroke was reviewed. A Medline search was performed to identify all RCT’s in stroke rehabilitation in the year 2009. The search strategy that was used for PubMed is presented in the Appendix 1. The objective was to examine the effectiveness of these treatment modalities in stroke rehabilitation. Results This generated 35 RCT’s under 5 categories which were found and analyzed. The methodological quality was assessed by using the PEDro scale for external and internal validity. Conclusions These trials were primarily efficacy studies. Most of these studies enrolled small numbers of patient which precluded their clinical applicability (limited external validity). However, the constraint induced movement therapy (CIT), regularly used in chronic stroke patients did not improve affected arm-hand function when used in acute stroke patients at ≤4 weeks. Intensive CIT did not lead to motor improvement in arm-hand function. Robotic arm treatment helped decrease motor impairment and improved function in chronic stroke patients only. Therapist provided exercise programs (when self-administered by patients during their off-therapy time in a rehabilitation setting) did improve arm-hand function. Tai Chi exercises helped improve balance and weight bearing. Exercise programs for community dwelling stroke patient helped maintain and even improve their functional state. PMID:21278702

  4. Review of the randomized clinical stroke rehabilitation trials in 2009.

    PubMed

    Rabadi, Meheroz H

    2011-02-01

    Recent review of the available evidence on interventions for motor recovery after stroke, showed that improvements in recovery of arm function were seen for constraint-induced movement therapy, electromyographic biofeedback, mental practice with motor imagery, and robotics. Similar improvement in transfer ability or balance were seen with repetitive task training, biofeedback, and training with a moving platform. Walking speed was improved by physical fitness training, high-intensity physiotherapy and repetitive task training. However, most of these trials were small and had design limitations. In this article, randomized control trials (RCT's) published in 2009 of rehabilitation therapies for acute (≤ 2 weeks), sub-acute (2 to 12 weeks) and chronic (≥ 12 weeks) stroke was reviewed. A Medline search was performed to identify all RCT's in stroke rehabilitation in the year 2009. The search strategy that was used for PubMed is presented in the Appendix 1. The objective was to examine the effectiveness of these treatment modalities in stroke rehabilitation. This generated 35 RCT's under 5 categories which were found and analyzed. The methodological quality was assessed by using the PEDro scale for external and internal validity. These trials were primarily efficacy studies. Most of these studies enrolled small numbers of patient which precluded their clinical applicability (limited external validity). However, the constraint induced movement therapy (CIT), regularly used in chronic stroke patients did not improve affected arm-hand function when used in acute stroke patients at ≤ 4 weeks. Intensive CIT did not lead to motor improvement in arm-hand function. Robotic arm treatment helped decrease motor impairment and improved function in chronic stroke patients only. Therapist provided exercise programs (when self-administered by patients during their off-therapy time in a rehabilitation setting) did improve arm-hand function. Tai Chi exercises helped improve balance and weight bearing. Exercise programs for community dwelling stroke patient helped maintain and even improve their functional state.

  5. Treadmill training with partial body weight support compared with conventional gait training for low-functioning children and adolescents with nonspastic cerebral palsy: a two-period crossover study.

    PubMed

    Su, Ivan Y W; Chung, Kenny K Y; Chow, Daniel H K

    2013-12-01

    Partial body weight-supported treadmill training has been shown to be effective in gait training for patients with neurological disorders such as spinal cord injuries and stroke. Recent applications on children with cerebral palsy were reported, mostly on spastic cerebral palsy with single subject design. There is lack of evidence on the effectiveness of such training for nonspastic cerebral palsy, particularly those who are low functioning with limited intellectual capacity. This study evaluated the effectiveness of partial body weight-supported treadmill training for improving gross motor skills among these clients. A two-period randomized crossover design with repeated measures. A crossover design following an A-B versus a B-A pattern was adopted. The two training periods consisted of 12-week partial body weight-supported treadmill training (Training A) and 12-week conventional gait training (Training B) with a 10-week washout in between. Ten school-age participants with nonspastic cerebral palsy and severe mental retardation were recruited. The Gross Motor Function Measure-66 was administered immediately before and after each training period. Significant improvements in dimensions D and E of the Gross Motor Function Measure-66 and the Gross Motor Ability Estimator were obtained. Our findings revealed that the partial body weight-supported treadmill training was effective in improving gross motor skills for low-functioning children and adolescents with nonspastic cerebral palsy. .

  6. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, C.E.; Boothe, R.W.

    1994-02-15

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figures.

  7. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, C.E.; Boothe, R.W.

    1996-01-23

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figs.

  8. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, Charles E.; Boothe, Richard W.

    1996-01-01

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.

  9. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, Charles E.; Boothe, Richard W.

    1994-01-01

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.

  10. 42 CFR 483.136 - Evaluating whether an individual with intellectual disability requires specialized services...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., positioning, transfer skills, gross motor dexterity, visual motor perception, fine motor dexterity, eye-hand... improve the individual's functional capacity; (10) Social development, such as interpersonal skills, recreation-leisure skills, and relationships with others; (11) Academic/educational development, including...

  11. 42 CFR 483.136 - Evaluating whether an individual with intellectual disability requires specialized services...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., positioning, transfer skills, gross motor dexterity, visual motor perception, fine motor dexterity, eye-hand... improve the individual's functional capacity; (10) Social development, such as interpersonal skills, recreation-leisure skills, and relationships with others; (11) Academic/educational development, including...

  12. 42 CFR 483.136 - Evaluating whether an individual with intellectual disability requires specialized services...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., positioning, transfer skills, gross motor dexterity, visual motor perception, fine motor dexterity, eye-hand... improve the individual's functional capacity; (10) Social development, such as interpersonal skills, recreation-leisure skills, and relationships with others; (11) Academic/educational development, including...

  13. Applications of bioactive material from snakehead fish (Channa striata) for repairing of learning-memory capability and motoric activity: a case study of physiological aging and aging-caused oxidative stress in rats

    NASA Astrophysics Data System (ADS)

    Sunarno, Sunarno; Muflichatun Mardiati, Siti; Rahadian, Rully

    2018-05-01

    Physiological aging and aging due to oxidative stress are a major factor cause accelerated brain aging. Aging is characterized by a decrease of brain function of the hippocampus which is linked to the decline in the capability of learning-memory and motoric activity. The objective of this research is to obtain the important information about the mechanisms of brain antiaging associated with the improvement of hippocampus function, which includes aspects of learning-memory capability and motoric activity as well as mitochondrial ultrastructure profile of hippocampus cornu ammonis cells after treated by fish snakehead fish extract. Snakehead fish in Rawa Pening Semarang District allegedly holds the potential of endemic, which contains bioactive antiaging material that can prevent aging or improve the function of the hippocampus. This research has been conducted using a completely randomized design consisting of four treatments with five replications. The treatments were including rats with physiological aging or aging due to oxidative stress which was treated and without treated with meat extract of snakehead fish. The research was divided into two stages, i.e., determining of learning-memory capability, and determining motoric activity. The measured-parameters are time response to find feed, distance travel, time stereotypes, ambulatory time, and resting time. The result showed that the snakehead fish meat extract might improve function hippocampus, both in physiological aging or aging due to oxidative stress. The capability of learning and memory showed that the rats in both conditions of aging after getting treatment of meat extract of snakehead fish could get a feed in the fourth arm maze faster than rats untreated snakehead fish meat extract. Similarly, the measurement of the distance traveled, time stereotypes, ambulatory time, and resting time showed that rats which received treatment of meat extract of snakehead fish were better than the untreated rats. To conclude, the meat extract of snakehead fish can be used as antiaging material to improve the function of the hippocampus, to improve the capability of learning and memory, to improve motoric activity, and to prevent aging. These findings are expected to provide comprehensive information for the development of antiaging research as an effort to improve public health and to improve learning-memory capability and motoric activity.

  14. Transfer of training between distinct motor tasks after stroke: implications for task-specific approaches to upper-extremity neurorehabilitation.

    PubMed

    Schaefer, Sydney Y; Patterson, Chavelle B; Lang, Catherine E

    2013-09-01

    Although task-specific training is emerging as a viable approach for recovering motor function after stroke, there is little evidence for whether the effects of such training transfer to other functional motor tasks not directly practiced in therapy. The purpose of the current study was to test whether training on one motor task in individuals with chronic hemiparesis poststroke would transfer to untrained tasks that were either spatiotemporally similar or different. In all, 11 participants with chronic mild to moderate hemiparesis following stroke completed 5 days of supervised massed practice of a feeding task with their affected side. Performance on the feeding task, along with 2 other untrained functional upper-extremity motor tasks (sorting, dressing) was assessed before and after training. Performance of all 3 tasks improved significantly after training exclusively on 1 motor task. The amount of improvement in the untrained tasks was comparable and was not dependent on the degree of similarity to the trained task. Because the number and type of tasks that can be practiced are often limited within standard stroke rehabilitation, results from this study will be useful for designing task-specific training plans to maximize therapy benefits.

  15. Wii-based movement therapy to promote improved upper extremity function post-stroke: a pilot study.

    PubMed

    Mouawad, Marie R; Doust, Catherine G; Max, Madeleine D; McNulty, Penelope A

    2011-05-01

    Virtual-reality is increasingly used to improve rehabilitation outcomes. The Nintendo Wii offers an in-expensive alternative to more complex systems. To investigate the efficacy of Wii-based therapy for post-stroke rehabilitation. Seven patients (5 men, 2 women, aged 42-83 years; 1-38 months post-stroke, mean 15.3 months) and 5 healthy controls (3 men, 2 women, aged 41-71 years) undertook 1 h of therapy on 10 consecutive weekdays. Patients progressively increased home practice to 3 h per day. Functional ability improved for every patient. The mean performance time significantly decreased per Wolf Motor Function Test task, from 3.2 to 2.8 s, and Fugl-Meyer Assessment scores increased from 42.3 to 47.3. Upper extremity range-of-motion increased by 20.1º and 14.33º for passive and active movements, respectively. Mean Motor Activity Log (Quality of Movement scale) scores increased from 63.2 to 87.5, reflecting a transfer of functional recovery to everyday activities. Balance and dexterity did not improve significantly. No significant change was seen in any of these measures for healthy controls, despite improved skill levels for Wii games. An intensive 2-week protocol resulted in significant and clinically relevant improvements in functional motor ability post-stroke. These gains translated to improvement in activities of daily living.

  16. A Piano Training Program to Improve Manual Dexterity and Upper Extremity Function in Chronic Stroke Survivors

    PubMed Central

    Villeneuve, Myriam; Penhune, Virginia; Lamontagne, Anouk

    2014-01-01

    Objective: Music-supported therapy was shown to induce improvements in motor skills in stroke survivors. Whether all stroke individuals respond similarly to the intervention and whether gains can be maintained over time remain unknown. We estimated the immediate and retention effects of a piano training program on upper extremity function in persons with chronic stroke. Methods: Thirteen stroke participants engaged in a 3-week piano training comprising supervised sessions (9 × 60 min) and home practice. Fine and gross manual dexterity, movement coordination, and functional use of the upper extremity were assessed at baseline, pre-intervention, post-intervention, and at a 3-week follow-up. Results: Significant improvements were observed for all outcomes at post-intervention and follow-up compared to pre-intervention scores. Larger magnitudes of change in manual dexterity and functional use of the upper extremity were associated with higher initial levels of motor recovery. Conclusion: Piano training can result in sustainable improvements in upper extremity function in chronic stroke survivors. Individuals with a higher initial level of motor recovery at baseline appear to benefit the most from this intervention. PMID:25202258

  17. Neurophysiological substrates of stroke patients with motor imagery-based Brain-Computer Interface training.

    PubMed

    Li, Mingfen; Liu, Ye; Wu, Yi; Liu, Sirao; Jia, Jie; Zhang, Liqing

    2014-06-01

    We investigated the efficacy of motor imagery-based Brain Computer Interface (MI-based BCI) training for eight stroke patients with severe upper extremity paralysis using longitudinal clinical assessments. The results were compared with those of a control group (n = 7) that only received FES (Functional Electrical Stimulation) treatment besides conventional therapies. During rehabilitation training, changes in the motor function of the upper extremity and in the neurophysiologic electroencephalographic (EEG) were observed for two groups. After 8 weeks of training, a significant improvement in the motor function of the upper extremity for the BCI group was confirmed (p < 0.05 for ARAT), simultaneously with the activation of bilateral cerebral hemispheres. Additionally, event-related desynchronization (ERD) of the affected sensorimotor cortexes (SMCs) was significantly enhanced when compared to the pretraining course, which was only observed in the BCI group (p < 0.05). Furthermore, the activation of affected SMC and parietal lobe were determined to contribute to motor function recovery (p < 0.05). In brief, our findings demonstrate that MI-based BCI training can enhance the motor function of the upper extremity for stroke patients by inducing the optimal cerebral motor functional reorganization.

  18. Impacts of dance on non-motor symptoms, participation, and quality of life in Parkinson disease and healthy older adults.

    PubMed

    McNeely, M E; Duncan, R P; Earhart, G M

    2015-12-01

    Evidence indicates exercise is beneficial for motor and non-motor function in older adults and people with chronic diseases including Parkinson disease (PD). Dance may be a relevant form of exercise in PD and older adults due to social factors and accessibility. People with PD experience motor and non-motor symptoms, but treatments, interventions, and assessments often focus more on motor symptoms. Similar non-motor symptoms also occur in older adults. While it is well-known that dance may improve motor outcomes, it is less clear how dance affects non-motor symptoms. This review aims to describe the effects of dance interventions on non-motor symptoms in older adults and PD, highlights limitations of the literature, and identifies opportunities for future research. Overall, intervention parameters, study designs, and outcome measures differ widely, limiting comparisons across studies. Results are mixed in both populations, but evidence supports the potential for dance to improve mood, cognition, and quality of life in PD and healthy older adults. Participation and non-motor symptoms like sleep disturbances, pain, and fatigue have not been measured in older adults. Additional well-designed studies comparing dance and exercise interventions are needed to clarify the effects of dance on non-motor function and establish recommendations for these populations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Inhibition of myostatin does not ameliorate disease features of severe spinal muscular atrophy mice.

    PubMed

    Sumner, Charlotte J; Wee, Claribel D; Warsing, Leigh C; Choe, Dong W; Ng, Andrew S; Lutz, Cathleen; Wagner, Kathryn R

    2009-09-01

    There is currently no treatment for the inherited motor neuron disease, spinal muscular atrophy (SMA). Severe SMA causes lower motor neuron loss, impaired myofiber development, profound muscle weakness and early mortality. Myostatin is a transforming growth factor-beta family member that inhibits muscle growth. Loss or blockade of myostatin signaling increases muscle mass and improves muscle strength in mouse models of primary muscle disease and in the motor neuron disease, amyotrophic lateral sclerosis. In this study, we evaluated the effects of blocking myostatin signaling in severe SMA mice (hSMN2/delta7SMN/mSmn(-/-)) by two independent strategies: (i) transgenic overexpression of the myostatin inhibitor follistatin and (ii) post-natal administration of a soluble activin receptor IIB (ActRIIB-Fc). SMA mice overexpressing follistatin showed little increase in muscle mass and no improvement in motor function or survival. SMA mice treated with ActRIIB-Fc showed minimal improvement in motor function, and no extension of survival compared with vehicle-treated mice. Together these results suggest that inhibition of myostatin may not be a promising therapeutic strategy in severe forms of SMA.

  20. Psychosocial Modulators of Motor Learning in Parkinson’s Disease

    PubMed Central

    Zemankova, Petra; Lungu, Ovidiu; Bares, Martin

    2016-01-01

    Using the remarkable overlap between brain circuits affected in Parkinson’s disease (PD) and those underlying motor sequence learning, we may improve the effectiveness of motor rehabilitation interventions by identifying motor learning facilitators in PD. For instance, additional sensory stimulation and task cueing enhanced motor learning in people with PD, whereas exercising using musical rhythms or console computer games improved gait and balance, and reduced some motor symptoms, in addition to increasing task enjoyment. Yet, despite these advances, important knowledge gaps remain. Most studies investigating motor learning in PD used laboratory-specific tasks and equipment, with little resemblance to real life situations. Thus, it is unknown whether similar results could be achieved in more ecological setups and whether individual’s task engagement could further improve motor learning capacity. Moreover, the role of social interaction in motor skill learning process has not yet been investigated in PD and the role of mind-set and self-regulatory mechanisms have been sporadically examined. Here, we review evidence suggesting that these psychosocial factors may be important modulators of motor learning in PD. We propose their incorporation in future research, given that it could lead to development of improved non-pharmacological interventions aimed to preserve or restore motor function in PD. PMID:26973495

  1. Induction of cortical plasticity and improved motor performance following unilateral and bilateral transcranial direct current stimulation of the primary motor cortex.

    PubMed

    Kidgell, Dawson J; Goodwill, Alicia M; Frazer, Ashlyn K; Daly, Robin M

    2013-07-01

    Transcranial direct current stimulation (tDCS) is a non-invasive technique that modulates the excitability of neurons within the primary motor cortex (M1). Research shows that anodal-tDCS applied over the non-dominant M1 (i.e. unilateral stimulation) improves motor function of the non-dominant hand. Similarly, previous studies also show that applying cathodal tDCS over the dominant M1 improves motor function of the non-dominant hand, presumably by reducing interhemispheric inhibition. In the present study, one condition involved anodal-tDCS over the non-dominant M1 (unilateral stimulation) whilst a second condition involved applying cathodal-tDCS over the dominant M1 and anodal-tDCS over non-dominant M1 (bilateral stimulation) to determine if unilateral or bilateral stimulation differentially modulates motor function of the non-dominant hand. Using a randomized, cross-over design, 11 right-handed participants underwent three stimulation conditions: 1) unilateral stimulation, that involved anodal-tDCS applied over the non-dominant M1, 2) bilateral stimulation, whereby anodal-tDCS was applied over the non-dominant M1, and cathodal-tDCS over the dominant M1, and 3) sham stimulation. Transcranial magnetic stimulation (TMS) was performed before, immediately after, 30 and 60 minutes after stimulation to elucidate the neural mechanisms underlying any potential after-effects on motor performance. Motor function was evaluated by the Purdue pegboard test. There were significant improvements in motor function following unilateral and bilateral stimulation when compared to sham stimulation at all-time points (all P < 0.05); however there was no difference across time points between unilateral and bilateral stimulation. There was also a similar significant increase in corticomotor excitability with both unilateral and bilateral stimulation immediately post, 30 minutes and 60 minutes compared to sham stimulation (all P < 0.05). Unilateral and bilateral stimulation reduced short-interval intracortical inhibition (SICI) immediately post and at 30 minutes (all P < 0.05), but returned to baseline in both conditions at 60 minutes. There was no difference between unilateral and bilateral stimulation for SICI (P > 0.05). Furthermore, changes in corticomotor plasticity were not related to changes in motor performance. These results indicate that tDCS induced behavioural changes in the non-dominant hand as a consequence of mechanisms associated with use-dependant cortical plasticity that is independent of the electrode arrangement.

  2. Milk fat globule membrane supplementation with voluntary running exercise attenuates age-related motor dysfunction by suppressing neuromuscular junction abnormalities in mice.

    PubMed

    Yano, Michiko; Minegishi, Yoshihiko; Sugita, Satoshi; Ota, Noriyasu

    2017-10-15

    Age-related loss of skeletal muscle mass and function attenuates physical performance, and maintaining fine muscle innervation is known to play an important role in its prevention. We had previously shown that consumption of milk fat globule membrane (MFGM) with habitual exercise improves the muscle mass and motor function in humans and mice. Improvement of neuromuscular junction (NMJ) was suggested as one of the mechanisms underlying these effects. In this study, we evaluated the effect of MFGM intake combined with voluntary running (MFGM-VR) on morphological changes of NMJ and motor function in aging mice. Seven months following the intervention, the MFGM-VR group showed a significantly improved motor coordination in the rotarod test and muscle force in the grip strength test compared with the control group at 13 and 14months of age, respectively. In 14-month old control mice, the extensor digitorum longus muscle showed increased abnormal NMJs, such as fragmentation and denervation, compared with 6-month old young mice. However, such age-related deteriorations of NMJs were significantly suppressed in the MFGM-VR group. Increase in the expression of NMJ formation-related genes, such as agrin and LDL Receptor Related Protein 4 (LRP4), might contribute to this beneficial effect. Rotarod performance and grip strength showed significant negative correlation with the status of denervation and fragmentation of NMJs. These results suggest that MFGM intake with voluntary running exercise effectively suppresses age-related morphological deterioration of NMJ, thus contributing to improvement of motor function. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Axial diffusivity changes in the motor pathway above stroke foci and functional recovery after subcortical infarction.

    PubMed

    Liu, Gang; Peng, Kangqiang; Dang, Chao; Tan, Shuangquan; Chen, Hongbing; Xie, Chuanmiao; Xing, Shihui; Zeng, Jinsheng

    2018-01-01

    Secondary degeneration of the fiber tract of the motor pathway below infarct foci and functional recovery after stroke have been well demonstrated, but the role of the fiber tract above stroke foci remains unclear. This study aimed to investigate diffusion changes in motor fibers above the lesion and identify predictors of motor improvement within 12 weeks after subcortical infarction. Diffusion tensor imaging and the Fugl-Meyer (FM) scale were conducted 1, 4, and 12 weeks (W) after a subcortical infarct. Proportional recovery model residuals were used to assign patients to proportional recovery and poor recovery groups. Region of interest analysis was used to assess diffusion changes in the motor pathway above and below a stroke lesion. Multivariable linear regression was employed to identify predictors of motor improvement within 12 weeks after stroke. Axial diffusivity (AD) in the underlying white matter of the ipsilesional primary motor area (PMA) and cerebral peduncle (CP) in both proportional and poor recovery groups was lower at W1 compared to the controls and values in the contralesional PMA and CP (all P < 0.05). Subsequently, AD in the ipsilesional CP became relatively stable, while AD in the ipsilesional PMA significantly increased from W4 to W12 after stroke (P < 0.05). In all of the patients, changes in the FM scores were greater in those with higher changes in AD of the ipsilesional PMA. Only initial impairment or lesion volume was predictive of motor improvement within 12 weeks after stroke in patients with proportional or poor recovery. Increases of AD in the motor pathway above stroke foci may be associated with motor recovery after subcortical infarction. Early measurement of diffusion metrics in the ipsilesional non-ischemic motor pathway has limited value in predicting future motor improvement patterns (proportional or poor recovery).

  4. Postoperative impairment of motor function at train-of-four ratio ≥0.9 cannot be improved by sugammadex (1 mg kg-1).

    PubMed

    Baumüller, E; Schaller, S J; Chiquito Lama, Y; Frick, C G; Bauhofer, T; Eikermann, M; Fink, H; Blobner, M

    2015-05-01

    A train-of-four ratio (TOFR) ≥0.9 measured by quantitative neuromuscular monitoring is accepted as an indication of sufficient neuromuscular recovery for extubation, even though many postsynaptic acetylcholine receptors may still be inhibited. We investigated whether antagonism with sugammadex after spontaneous recovery to TOFR≥0.9 further improves muscle function or subjective well-being. Following recovery to TOFR≥0.9 and emergence from anaesthesia, 300 patients randomly received either sugammadex 1.0 mg kg(-1) or placebo. Fine motor function (Purdue Pegboard Test) and maximal voluntary grip strength were measured before and after surgery (before and after test drug administration). At discharge from the postanaesthesia care unit, well-being was assessed with numerical analogue scales and the Quality-of-Recovery Score 40 (QoR-40). Patients' fine motor function [6 (sd 4) vs 15 (3) pegs (30 s)(-1), P<0.05] and maximal voluntary grip strength (284 (126) vs 386 (125) N, P<0.05) were significantly lower after anaesthesia compared with the pre-anaesthesia baseline. After sugammadex or placebo, motor function was significantly improved in both groups but did not reach the preoperative level. There was no difference between groups at any time. Global well-being was unaffected (QoR-40: placebo, 174 vs 185; sugammadex, 175 vs 186, P>0.05). Antagonizing rocuronium at TOF≥0.9 with sugammadex 1.0 mg kg(-) (1) did not improve patients' motor function or well-being when compared with placebo. Our data support the view that TOFR≥0.9 measured by electromyography signifies sufficient recovery of neuromuscular function. The trial is registered at ClinicalTrials.gov (NCT01101139). © The Author 2014. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.

    PubMed

    Oza, Chintan S; Giszter, Simon F

    2015-05-06

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. Copyright © 2015 the authors 0270-6474/15/357174-16$15.00/0.

  6. Use of the challenge point framework to guide motor learning of stepping reactions for improved balance control in people with stroke: a case series.

    PubMed

    Pollock, Courtney L; Boyd, Lara A; Hunt, Michael A; Garland, S Jayne

    2014-04-01

    Stepping reactions are important for walking balance and community-level mobility. Stepping reactions of people with stroke are characterized by slow reaction times, poor coordination of motor responses, and low amplitude of movements, which may contribute to their decreased ability to recover their balance when challenged. An important aspect of rehabilitation of mobility after stroke is optimizing the motor learning associated with retraining effective stepping reactions. The Challenge Point Framework (CPF) is a model that can be used to promote motor learning through manipulation of conditions of practice to modify task difficulty, that is, the interaction of the skill of the learner and the difficulty of the task to be learned. This case series illustrates how the retraining of multidirectional stepping reactions may be informed by the CPF to improve balance function in people with stroke. Four people (53-68 years of age) with chronic stroke (>1 year) and mild to moderate motor recovery received 4 weeks of multidirectional stepping reaction retraining. Important tenets of motor learning were optimized for each person during retraining in accordance with the CPF. Participants demonstrated improved community-level walking balance, as determined with the Community Balance and Mobility Scale. These improvements were evident 1 year later. Aspects of balance-related self-efficacy and movement kinematics also showed improvements during the course of the intervention. The application of CPF motor learning principles in the retraining of stepping reactions to improve community-level walking balance in people with chronic stroke appears to be promising. The CPF provides a plausible theoretical framework for the progression of functional task training in neurorehabilitation.

  7. Effects of 8-week sensory electrical stimulation combined with motor training on EEG-EMG coherence and motor function in individuals with stroke.

    PubMed

    Pan, Li-Ling Hope; Yang, Wen-Wen; Kao, Chung-Lan; Tsai, Mei-Wun; Wei, Shun-Hwa; Fregni, Felipe; Chen, Vincent Chiun-Fan; Chou, Li-Wei

    2018-06-15

    The peripheral sensory system is critical to regulating motor plasticity and motor recovery. Peripheral electrical stimulation (ES) can generate constant and adequate sensory input to influence the excitability of the motor cortex. The aim of this proof of concept study was to assess whether ES prior to each hand function training session for eight weeks can better improve neuromuscular control and hand function in chronic stroke individuals and change electroencephalography-electromyography (EEG-EMG) coherence, as compared to the control (sham ES). We recruited twelve subjects and randomly assigned them into ES and control groups. Both groups received 20-minute hand function training twice a week, and the ES group received 40-minute ES on the median nerve of the affected side before each training session. The control group received sham ES. EEG, EMG and Fugl-Meyer Assessment (FMA) were collected at four different time points. The corticomuscular coherence (CMC) in the ES group at fourth weeks was significantly higher (p = 0.004) as compared to the control group. The notable increment of FMA at eight weeks and follow-up was found only in the ES group. The eight-week rehabilitation program that implemented peripheral ES sessions prior to function training has a potential to improve neuromuscular control and hand function in chronic stroke individuals.

  8. Effects of two distinct group motor skill interventions in psychological and motor skills of children with Developmental Coordination Disorder: A pilot study.

    PubMed

    Caçola, Priscila; Romero, Michael; Ibana, Melvin; Chuang, Jennifer

    2016-01-01

    Children with Developmental Coordination Disorder (DCD) have an increased risk for mental health difficulties. The present pilot study aimed to determine whether distinct group intervention programs improved several psychological variables (anxiety; adequacy and predilection for physical activity; participation, preferences, and enjoyment for activities) and motor skills from the perspective of a child with DCD as well as parental perceptions of motor skills, rate of function, and strengths and difficulties. Eleven children participated in Program A and thirteen in Program B. Both involved 10 sessions of 1 h each. Program A focused on task-oriented activities in a large group involving motor skill training and collaboration and cooperation among children, while Program B was composed of three groups with a direct goal-oriented approach for training of skills chosen by the children. Results indicated that children improved motor skills after both programs, but showed distinct results in regards to other variables - after Program A, children showed higher anxiety and lower levels of enjoyment, even though parents detected an improvement in rate of function and a decrease in peer problems. With Program B, children decreased anxiety levels, and parents noted a higher control of movement of their children. Regardless of the group approach, children were able to improve motor skills. However, it is possible that the differences between groups may have influenced parents' perception of their children's motor and psychological skills, as well as children's perception of anxiety. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Home-based nerve stimulation to enhance effects of motor training in patients in the chronic phase after stroke: a proof-of-principle study.

    PubMed

    Dos Santos-Fontes, Renata Laurenti; Ferreiro de Andrade, Karina Nocelo; Sterr, Annette; Conforto, Adriana Bastos

    2013-01-01

    Somatosensory stimulation in the form of repetitive peripheral nerve stimulation (RPSS) is a promising strategy to improve motor function of the upper limb in chronic stroke. Home-based RPSS may be an alternative to hospital-based RPSS. To investigate the feasibility and safety of an innovative program of home-based RPSS combined with motor training and to collect preliminary data on the efficacy of this program to enhance hand motor function in patients in the chronic phase after stroke. Twenty patients were randomized to either active or sham RPSS associated with daily motor training performed at home over 4 consecutive weeks. All the patients were able to perform tasks of the Jebsen-Taylor Test (JTT). The primary outcome measures were feasibility, evaluated by self-reported compliance with the intervention, and safety (adverse events). Secondary outcomes comprised improvements in hand function in the JTT after end of treatment and after a 4-month follow-up period. There were no relevant adverse events. Compliance with RPSS and motor training was significantly greater in the active group than in the sham group. Upper extremity performance improved significantly more in the active group compared with the sham group at the end of treatment. This difference remained significant 4 months later, even when differences in compliance with motor training were considered. Home-based active RPSS associated with motor training was feasible, was safe, and led to long-lasting enhancement of paretic arm performance in the chronic phase after stroke for those who can perform the JTT. These results point to the need for an efficacy trial.

  10. An Effective Oral Motor Intervention Protocol for Infants and Toddlers with Low Muscle Tone.

    ERIC Educational Resources Information Center

    Kumin, Libby; Von Hagel, Kimberly Chapman; Bahr, Diane Chapman

    2001-01-01

    Parents were trained to provide infants (n=4) with low muscle tone secondary to Down Syndrome with a home intervention oral motor training program. Four case studies indicate that all four children demonstrated improved oral motor function for eating, drinking, and speaking. (Contains references.) (DB)

  11. Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children.

    PubMed

    Beck, Mikkel M; Lind, Rune R; Geertsen, Svend S; Ritz, Christian; Lundbye-Jensen, Jesper; Wienecke, Jacob

    2016-01-01

    Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning activities. Thus, the aim of this study was to investigate whether fine or gross motor activity integrated into math lessons (i.e., motor-enrichment) could improve children's mathematical performance. Methods: A 6-week within school cluster-randomized intervention study investigated the effects of motor-enriched mathematical teaching in Danish preadolescent children ( n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical teaching enriched with fine and gross motor activity, respectively. The children were tested before (T0), immediately after (T1) and 8 weeks after the intervention (T2). A standardized mathematical test (50 tasks) was used to evaluate mathematical performance. Furthermore, it was investigated whether motor-enriched math was accompanied by different effects in low and normal math performers. Additionally, the study investigated the potential contribution of cognitive functions and motor skills on mathematical performance. Results: All groups improved their mathematical performance from T0 to T1. However, from T0 to T1, the improvement was significantly greater in GMM compared to FMM (1.87 ± 0.71 correct answers) ( p = 0.02). At T2 no significant differences in mathematical performance were observed. A subgroup analysis revealed that normal math-performers benefitted from GMM compared to both CON 1.78 ± 0.73 correct answers ( p = 0.04) and FMM 2.14 ± 0.72 correct answers ( p = 0.008). These effects were not observed in low math-performers. The effects were partly accounted for by visuo-spatial short-term memory and gross motor skills. Conclusion: The study demonstrates that motor enriched learning activities can improve mathematical performance. In normal math performers GMM led to larger improvements than FMM and CON. This was not the case for the low math performers. Future studies should further elucidate the neurophysiological mechanisms underlying the observed behavioral effects.

  12. Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children

    PubMed Central

    Beck, Mikkel M.; Lind, Rune R.; Geertsen, Svend S.; Ritz, Christian; Lundbye-Jensen, Jesper; Wienecke, Jacob

    2016-01-01

    Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning activities. Thus, the aim of this study was to investigate whether fine or gross motor activity integrated into math lessons (i.e., motor-enrichment) could improve children's mathematical performance. Methods: A 6-week within school cluster-randomized intervention study investigated the effects of motor-enriched mathematical teaching in Danish preadolescent children (n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical teaching enriched with fine and gross motor activity, respectively. The children were tested before (T0), immediately after (T1) and 8 weeks after the intervention (T2). A standardized mathematical test (50 tasks) was used to evaluate mathematical performance. Furthermore, it was investigated whether motor-enriched math was accompanied by different effects in low and normal math performers. Additionally, the study investigated the potential contribution of cognitive functions and motor skills on mathematical performance. Results: All groups improved their mathematical performance from T0 to T1. However, from T0 to T1, the improvement was significantly greater in GMM compared to FMM (1.87 ± 0.71 correct answers) (p = 0.02). At T2 no significant differences in mathematical performance were observed. A subgroup analysis revealed that normal math-performers benefitted from GMM compared to both CON 1.78 ± 0.73 correct answers (p = 0.04) and FMM 2.14 ± 0.72 correct answers (p = 0.008). These effects were not observed in low math-performers. The effects were partly accounted for by visuo-spatial short-term memory and gross motor skills. Conclusion: The study demonstrates that motor enriched learning activities can improve mathematical performance. In normal math performers GMM led to larger improvements than FMM and CON. This was not the case for the low math performers. Future studies should further elucidate the neurophysiological mechanisms underlying the observed behavioral effects. PMID:28066215

  13. Multifocal repetitive TMS for motor and mood symptoms of Parkinson disease: A randomized trial.

    PubMed

    Brys, Miroslaw; Fox, Michael D; Agarwal, Shashank; Biagioni, Milton; Dacpano, Geraldine; Kumar, Pawan; Pirraglia, Elizabeth; Chen, Robert; Wu, Allan; Fernandez, Hubert; Wagle Shukla, Aparna; Lou, Jau-Shin; Gray, Zachary; Simon, David K; Di Rocco, Alessandro; Pascual-Leone, Alvaro

    2016-11-01

    To assess whether multifocal, high-frequency repetitive transcranial magnetic stimulation (rTMS) of motor and prefrontal cortex benefits motor and mood symptoms in patients with Parkinson disease (PD). Patients with PD and depression were enrolled in this multicenter, double-blind, sham-controlled, parallel-group study of real or realistic (electric) sham rTMS. Patients were randomized to 1 of 4 groups: bilateral M1 ( + sham dorsolateral prefrontal cortex [DLPFC]), DLPFC ( + sham M1), M1 + DLPFC, or double sham. The TMS course consisted of 10 daily sessions of 2,000 stimuli for the left DLPFC and 1,000 stimuli for each M1 (50 × 4-second trains of 40 stimuli at 10 Hz). Patients were evaluated at baseline, at 1 week, and at 1, 3, and 6 months after treatment. Primary endpoints were changes in motor function assessed with the Unified Parkinson's Disease Rating Scale-III and in mood with the Hamilton Depression Rating Scale at 1 month. Of the 160 patients planned for recruitment, 85 were screened, 61 were randomized, and 50 completed all study visits. Real M1 rTMS resulted in greater improvement in motor function than sham at the primary endpoint (p < 0.05). There was no improvement in mood in the DLPFC group compared to the double-sham group, as well as no benefit to combining M1 and DLPFC stimulation for either motor or mood symptoms. In patients with PD with depression, M1 rTMS is an effective treatment of motor symptoms, while mood benefit after 2 weeks of DLPFC rTMS is not better than sham. Targeting both M1 and DLPFC in each rTMS session showed no evidence of synergistic effects. NCT01080794. This study provides Class I evidence that in patients with PD with depression, M1 rTMS leads to improvement in motor function while DLPFC rTMS does not lead to improvement in depression compared to sham rTMS. © 2016 American Academy of Neurology.

  14. Action observation has a positive impact on rehabilitation of motor deficits after stroke.

    PubMed

    Ertelt, Denis; Small, Steven; Solodkin, Ana; Dettmers, Christian; McNamara, Adam; Binkofski, Ferdinand; Buccino, Giovanni

    2007-01-01

    Evidence exists that the observation of actions activates the same cortical motor areas that are involved in the performance of the observed actions. The neural substrate for this is the mirror neuron system. We harness this neuronal system and its ability to re-enact stored motor representations as a means for rehabilitating motor control. We combined observation of daily actions with concomitant physical training of the observed actions in a new neurorehabilitative program (action observation therapy). Eight stroke patients with moderate, chronic motor deficit of the upper limb as a consequence of medial artery infarction participated. A significant improvement of motor functions in the course of a 4-week treatment, as compared to the stable pre-treatment baseline, and compared with a control group have been found. The improvement lasted for at least 8 weeks after the end of the intervention. Additionally, the effects of action observation therapy on the reorganization of the motor system were investigated by functional magnetic resonance imaging (fMRI), using an independent sensorimotor task consisting of object manipulation. The direct comparison of neural activations between experimental and control groups after training with those elicited by the same task before training yielded a significant rise in activity in the bilateral ventral premotor cortex, bilateral superior temporal gyrus, the supplementary motor area (SMA) and the contralateral supramarginal gyrus. Our results provide pieces of evidence that action observation has a positive additional impact on recovery of motor functions after stroke by reactivation of motor areas, which contain the action observation/action execution matching system.

  15. Outcomes for Students Receiving School-Based Physical Therapy as Measured by the School Function Assessment.

    PubMed

    Effgen, Susan K; McCoy, Sarah Westcott; Chiarello, Lisa A; Jeffries, Lynn M; Starnes, Catherine; Bush, Heather M

    2016-01-01

    To describe School Function Assessment (SFA) outcomes after 6 months of school-based physical therapy and the effects of age and gross motor function on outcomes. Within 28 states, 109 physical therapists and 296 of their students with disabilities, ages 5 to 12 years, participated. After training, therapists completed 10 SFA scales on students near the beginning and end of the school year. Criterion scores for many students remained stable (46%-59%) or improved (37%-51%) with the most students improving in Participation and Maintaining/Changing Positions. Students aged 5 to 7 years showed greater change than 8- to 12-year-olds on 5 scales. Students with higher gross motor function (Gross Motor Function Classification System levels I vs IV/V and II/III vs IV/V) showed greater change on 9 scales. Positive SFA change was recorded in students receiving school-based physical therapy; however, the SFA is less sensitive for older students and those with lower functional movement.

  16. Effect of hippotherapy on perceived self-competence and participation in a child with cerebral palsy.

    PubMed

    Frank, Alana; McCloskey, Sandra; Dole, Robin L

    2011-01-01

    This case report highlights changes in self-competence and social acceptance, along with changes in functional skills, after an 8-week program of hippotherapy. A 6-year-old girl with mild ataxic cerebral palsy, level I Gross Motor Functional Classification System, exhibited typical impairments in body systems and functions that affected her participation in age-appropriate functional and leisure activities. The child's performance on the Gross Motor Function Measure-66, the Pediatric Outcomes Data Collection Instrument, and the Pictorial Scale of Perceived Competence and Social Acceptance for Young Children were examined at baseline, after the 8-week intervention, and at a 2-month follow-up session. Data at 8 weeks demonstrated positive changes in all areas, with improvements continuing for 2 months after the program's completion. Hippotherapy not only may be an effective intervention to improve functional gross motor development but also may affect perceived self-competence and social acceptance, which may lead to increases in participation for children with mild cerebral palsy.

  17. Improving Motor Corticothalamic Communication After Stroke Using Real-Time fMRI Connectivity-Based Neurofeedback.

    PubMed

    Liew, Sook-Lei; Rana, Mohit; Cornelsen, Sonja; Fortunato de Barros Filho, Marcos; Birbaumer, Niels; Sitaram, Ranganatha; Cohen, Leonardo G; Soekadar, Surjo R

    2016-08-01

    Two thirds of stroke survivors experience motor impairment resulting in long-term disability. The anatomical substrate is often the disruption of cortico-subcortical pathways. It has been proposed that reestablishment of cortico-subcortical communication relates to functional recovery. In this study, we applied a novel training protocol to augment ipsilesional cortico-subcortical connectivity after stroke. Chronic stroke patients with severe motor impairment were provided online feedback of blood-oxygenation level dependent signal connectivity between cortical and subcortical regions critical for motor function using real-time functional magnetic resonance imaging neurofeedback. In this proof of principle study, 3 out of 4 patients learned to voluntarily modulate cortico-subcortical connectivity as intended. Our results document for the first time the feasibility and safety for patients with chronic stroke and severe motor impairment to self-regulate and augment ipsilesional cortico-subcortical connectivity through neurofeedback using real-time functional magnetic resonance imaging. © The Author(s) 2015.

  18. Effects of glycine on motor performance in rats after traumatic spinal cord injury.

    PubMed

    Gonzalez-Piña, Rigoberto; Nuño-Licona, Alberto

    2007-01-01

    It has been reported that glycine improves some functions lost after spinal cord injury (SCI). In order to assess the effects of glycine administration on motor performance after SCI, we used fifteen male Wistar rats distributed into three groups: sham (n = 3), spinal-cord injury (n = 6,) and spinal cord injury + glycine (n = 6). Motor performance was assessed using the beam-walking paradigm and footprint analysis. Results showed that for all animals with spinal-cord injury, scores in the beam-walking increased, which is an indication of increased motor deficit. In addition, footprint analysis showed a decrease in stride length and an increase in stride angle, additional indicators of motor deficit. These effects trended towards recovery after 8 weeks of recording and trended toward improvement by glycine administration; the effect was not significant. These results suggest that glycine replacement alone is not sufficient to improve the motor deficits that occur after SCI.

  19. Wii-Based Exercise Program to Improve Physical Fitness, Motor Proficiency and Functional Mobility in Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Silva, V.; Campos, C.; Sá, A.; Cavadas, M.; Pinto, J.; Simões, P.; Machado, S.; Murillo-Rodríguez, E.; Barbosa-Rocha, N.

    2017-01-01

    Background: People with Down syndrome (DS) usually display reduced physical fitness (aerobic capacity, muscle strength and abnormal body composition), motor proficiency impairments (balance and postural control) and physical functional limitations. Exergames can be an appealing alternative to enhance exercise engagement and compliance, whilst…

  20. [The influence of the LK-92 "Adeli" treatment loading suit on electro-neuro-myographic characteristics in patients with infantile cerebral paralysis].

    PubMed

    Semenova, K A; Antonova, L V

    1998-01-01

    Treatment-loading costume (LK-92 "Adely") was investigated in terms of its influence on functional state of neuromotor apparatus in 25 children with infantile cerebral paralysis in the form of spastic diplegia. Improvement of motor functions observed may be conditioned by a decrease of an amplitude of bioelectric activity in spastic muscles at physiologic rest and by an increase of an amplitude of agonists' biopotentials at arbitrary movements. Improvement of motor functions may be also caused by normalization of both the coefficients characterizing coordinated muscules' interactions and functional state of spinal motoneurons as well as of the mechanisms of their suprasegmental regulation. It is suggested that such effect may be, realized because of the afferentation normalization as well as by means of the influence of LK-92 "Adely" on both central and segmentary structures of motor analyzer including neuromediator systems.

  1. Neural and behavioural changes in male periadolescent mice after prolonged nicotine-MDMA treatment.

    PubMed

    Adeniyi, Philip A; Ishola, Azeez O; Laoye, Babafemi J; Olatunji, Babawale P; Bankole, Oluwamolakun O; Shallie, Philemon D; Ogundele, Olalekan M

    2016-02-01

    The interaction between MDMA and Nicotine affects multiple brain centres and neurotransmitter systems (serotonin, dopamine and glutamate) involved in motor coordination and cognition. In this study, we have elucidated the effect of prolonged (10 days) MDMA, Nicotine and a combined Nicotine-MDMA treatment on motor-cognitive neural functions. In addition, we have shown the correlation between the observed behavioural change and neural structural changes induced by these treatments in BALB/c mice. We observed that MDMA (2 mg/Kg body weight; subcutaneous) induced a decline in motor function, while Nicotine (2 mg/Kg body weight; subcutaneous) improved motor function in male periadolescent mice. In combined treatment, Nicotine reduced the motor function decline observed in MDMA treatment, thus no significant change in motor function for the combined treatment versus the control. Nicotine or MDMA treatment reduced memory function and altered hippocampal structure. Similarly, a combined Nicotine-MDMA treatment reduced memory function when compared with the control. Ultimately, the metabolic and structural changes in these neural systems were seen to vary for the various forms of treatment. It is noteworthy to mention that a combined treatment increased the rate of lipid peroxidation in brain tissue.

  2. The effects of a 5-week therapeutic horseback riding program on gross motor function in a child with cerebral palsy: a case study.

    PubMed

    Drnach, Mark; O'Brien, Patricia A; Kreger, Alison

    2010-09-01

    The purpose of this study was to determine the outcome of a short-term therapeutic horseback riding intervention on the gross motor function in a child with cerebral palsy. This study employed a repeated-measures design with a pretest, a post-test, and a post post-test conducted 5 weeks apart using the Gross Motor Function Measure (GMFM) as an outcome measure. The three sets of test scores from the GMFM were compared upon completion of the intervention. The subject participated in a 5-week therapeutic horseback riding program consisting of 1 hour of riding per week. Each riding session consisted of stretching, strengthening, and balance activities. The child's level of motor function was tested prior to the intervention, upon completion of the intervention, and 5 weeks postintervention. The GMFM, a criterion-referenced observational measure designed to measure change in the gross motor function in children with cerebral palsy, was chosen as the assessment tool. Upon completion of the 5-week intervention, the child was observed to have improved scores on the GMFM in two of the five dimensions measured and scored for a total of eight items. The post post-test was completed 5 weeks after the final riding session and the results demonstrated successful maintenance of the improved scores in seven of eight items. The result of this case study suggest that 5 weeks of therapeutic riding are sufficient to produce positive changes in the gross motor function of a child with cerebral palsy.

  3. Canoe game-based virtual reality training to improve trunk postural stability, balance, and upper limb motor function in subacute stroke patients: a randomized controlled pilot study.

    PubMed

    Lee, Myung-Mo; Shin, Doo-Chul; Song, Chang-Ho

    2016-07-01

    [Purpose] This study was aimed at investigating the preliminary therapeutic efficacy and usefulness of canoe game-based virtual reality training for stroke patients. [Subjects and Methods] Ten stroke patients were randomly assigned to an experimental group (EG; n=5) or a control group (CG; n=5). Patients in both groups participated in a conventional rehabilitation program, but those in the EG additionally participated in a 30-min canoe game-based virtual reality training program 3 days a week for 4 weeks. Therapeutic efficacy was assessed based on trunk postural stability, balance, and upper limb motor function. In addition, the usefulness of canoe game-based virtual reality training was assessed in the EG and therapist group (TG; n=20), which consisted of physical and occupational therapists, by using the System Usability Scale (SUS). [Results] Improvements in trunk postural stability, balance, and upper limb motor function were observed in the EG and CG, but were greater in the EG. The mean SUS scores in the EG and TG were 71 ± 5.2 and 74.2 ± 4.8, respectively. [Conclusion] Canoe game-based virtual reality training is an acceptable and effective intervention for improving trunk postural stability, balance, and upper limb motor function in stroke patients.

  4. Mirror therapy combined with biofeedback functional electrical stimulation for motor recovery of upper extremities after stroke: a pilot randomized controlled trial.

    PubMed

    Kim, Jung Hee; Lee, Byoung-Hee

    2015-06-01

    The objective of this study was to evaluate the effects of mirror therapy in combination with biofeedback functional electrical stimulation (BF-FES) on motor recovery of the upper extremities after stroke. Twenty-nine patients who suffered a stroke > 6 months prior participated in this study and were randomly allocated to three groups. The BF-FES + mirror therapy and FES + mirror therapy groups practiced training for 5 × 30 min sessions over a 4-week period. The control group received a conventional physical therapy program. The following clinical tools were used to assess motor recovery of the upper extremities: electrical muscle tester, electrogoniometer, dual-inclinometer, electrodynamometer, the Box and Block Test (BBT) and Jabsen Taylor Hand Function Test (JHFT), the Functional Independence Measure, the Modified Ashworth Scale, and the Stroke Specific Quality of Life (SSQOL) assessment. The BF-FES + mirror therapy group showed significant improvement in wrist extension as revealed by the Manual Muscle Test and Range of Motion (p < 0.05). The BF-FES + mirror therapy group showed significant improvement in the BBT, JTHT, and SSQOL compared with the FES + mirror therapy group and control group (p < 0.05). We found that BF-FES + mirror therapy induced motor recovery and improved quality of life. These results suggest that mirror therapy, in combination with BF-FES, is feasible and effective for motor recovery of the upper extremities after stroke. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Changes in Serial Optical Topography and TMS during Task Performance after Constraint-Induced Movement Therapy in Stroke: A Case Study

    PubMed Central

    Park, Si-Woon; Butler, Andrew J.; Cavalheiro, Vanessa; Alberts, Jay L.; Wolf, Steven L.

    2013-01-01

    The authors examined serial changes in optical topography in a stroke patient performing a functional task, as well as clinical and physiologic measures while undergoing constraint-induced therapy (CIT). A 73-year-old right hemiparetic patient, who had a subcortical stroke 4 months previously, received 2 weeks of CIT. During the therapy, daily optical topography imaging using near-infrared light was measured serially while the participant performed a functional key-turning task. Clinical outcome measures included the Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), and functional key grip test. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) were also used to map cortical areas and hemodynamic brain responses, respectively. Optical topography measurement showed an overall decrease in oxy-hemoglobin concentration in both hemispheres as therapy progressed and the laterality index increased toward the contralateral hemisphere. An increased TMS motor map area was observed in the contralateral cortex following treatment. Posttreatment fMRI showed bilateral primary motor cortex activation, although slightly greater in the contralateral hemisphere, during affected hand movement. Clinical scores revealed marked improvement in functional activities. In one patient who suffered a stroke, 2 weeks of CIT led to improved function and cortical reorganization in the hemisphere contralateral to the affected hand. PMID:15228805

  6. The effect of sensory-motor training on hand and upper extremity sensory and motor function in patients with idiopathic Parkinson disease.

    PubMed

    Taghizadeh, Ghorban; Azad, Akram; Kashefi, Sepiede; Fallah, Soheila; Daneshjoo, Fatemeh

    2017-11-14

    Blinded randomized controlled trial. Patients with Parkinson disease (PD) have sensory problems, but there is still no accurate understanding of the effects of sensory-motor interventions on PD. To investigate the effects of sensory-motor training (SMT) on hand and upper extremity sensory and motor function in patients with PD. Forty patients with PD were allocated to the SMT group or the control group (CG) (mean ages ± standard deviation: SMT, 61.05 ± 13.9 years; CG, 59.15 ± 11.26 years). The CG received the common rehabilitation therapies, whereas the SMT group received SMT. The SMT included discrimination of temperatures, weights, textures, shapes, and objects and was performed 5 times each week for 2 weeks. Significantly reducing the error rates in the haptic object recognition test (dominant hand [DH]: F = 15.36, P = .001, and effect size [ES] = 0.29; nondominant hand [NDH]: F = 9.33, P = .004, and ES = 0.21) and the error means in the wrist proprioception sensation test (DH: F = 9.11, P = .005, and ES = 0.19; NDH: F = 13.04, P = .001, and ES = 0.26) and increasing matched objects in the hand active sensation test (DH: F = 12.15, P = .001, and ES = 0.24; NDH: F = 5.03, P = .03, and ES = 0.12) founded in the SMT. Also, the DH (F = 6.65, P = .01, and ES = 0.15), both hands (F = 7.61, P = .009, and ES = 0.17), and assembly (F = 7.02, P = .01, and ES = 0.15) subtests of fine motor performance, as well as DH (F = 10.1, P = .003, and ES = 0.21) and NDH (F = 8.37, P = .006, and ES = 0.18) in upper extremity functional performance, were improved in the SMT. SMT improved hand and upper extremity sensory-motor function in patients with PD. The SMT group showed improved sensory and motor function. But these results were limited to levels 1 to 3 of the Hoehn and Yahr Scale. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  7. Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy.

    PubMed

    Fletcher, Emily V; Simon, Christian M; Pagiazitis, John G; Chalif, Joshua I; Vukojicic, Aleksandra; Drobac, Estelle; Wang, Xiaojian; Mentis, George Z

    2017-07-01

    Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contributions of their synaptic partners to disease process are largely unknown. Here we show that, in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission, we observed a decrease in the motor neuron firing that could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Chronically increasing neuronal activity pharmacologically in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease.

  8. Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy

    PubMed Central

    Fletcher, Emily V.; Simon, Christian M.; Pagiazitis, John G.; Chalif, Joshua I.; Vukojicic, Aleksandra; Drobac, Estelle; Wang, Xiaojian; Mentis, George Z.

    2017-01-01

    Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contribution of their synaptic partners to the disease process is largely unknown. Here, we show that in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission we observed a decrease in the motor neuron firing which could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Increasing neuronal activity pharmacologically by chronic exposure in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease. PMID:28504671

  9. Functional Impact of Sydenham's Chorea: A Case Report

    PubMed Central

    Gimeno, Hortensia; Barry, Sinead; Lin, Jean-Pierre; Gordon, Anne

    2013-01-01

    Background Sydenham's chorea (SC) is the most common type of acquired chorea in childhood. In some cases, symptoms (most commonly described in terms of neurological signs) last up to 2 years, and many cases relapse. This report describes the clinical course in terms of functional abilities following diagnosis of SC. Case report Standardized assessments across the domains of activity and participation were administered following diagnosis, prior to and following treatment with haloperidol to measure treatment response and identify occupational therapy intervention needs. SC was observed to significantly reduce the child's participation and independence in activities of daily living. In this case, the standardized assessments administered highlighted difficulties with both motor and process skills. At 1 week after commencing haloperidol, both motor and process skills had improved. Clinically significant changes in self-care and mobility were noted with less improvement with handwriting. At 9 weeks, most symptoms and functional difficulties had resolved. Discussion Given the process difficulties detected in this case, and the possibility of enduring symptoms, the use of functional assessments is advocated in the routine management of SC. These findings illustrate the potential for motor and non-motor sequelae in acute childhood movement disorders and related functional disabling consequences. PMID:23532819

  10. A Review on Locomotor Training after Spinal Cord Injury: Reorganization of Spinal Neuronal Circuits and Recovery of Motor Function

    PubMed Central

    2016-01-01

    Locomotor training is a classic rehabilitation approach utilized with the aim of improving sensorimotor function and walking ability in people with spinal cord injury (SCI). Recent studies have provided strong evidence that locomotor training of persons with clinically complete, motor complete, or motor incomplete SCI induces functional reorganization of spinal neuronal networks at multisegmental levels at rest and during assisted stepping. This neuronal reorganization coincides with improvements in motor function and decreased muscle cocontractions. In this review, we will discuss the manner in which spinal neuronal circuits are impaired and the evidence surrounding plasticity of neuronal activity after locomotor training in people with SCI. We conclude that we need to better understand the physiological changes underlying locomotor training, use physiological signals to probe recovery over the course of training, and utilize established and contemporary interventions simultaneously in larger scale research studies. Furthermore, the focus of our research questions needs to change from feasibility and efficacy to the following: what are the physiological mechanisms that make it work and for whom? The aforementioned will enable the scientific and clinical community to develop more effective rehabilitation protocols maximizing sensorimotor function recovery in people with SCI. PMID:27293901

  11. Protein Synthesis Inhibition in the Peri-Infarct Cortex Slows Motor Recovery in Rats.

    PubMed

    Schubring-Giese, Maximilian; Leemburg, Susan; Luft, Andreas Rüdiger; Hosp, Jonas Aurel

    2016-01-01

    Neuroplasticity and reorganization of brain motor networks are thought to enable recovery of motor function after ischemic stroke. Especially in the cortex surrounding the ischemic scar (i.e., peri-infarct cortex), evidence for lasting reorganization has been found at the level of neurons and networks. This reorganization depends on expression of specific genes and subsequent protein synthesis. To test the functional relevance of the peri-infarct cortex for recovery we assessed the effect of protein synthesis inhibition within this region after experimental stroke. Long-Evans rats were trained to perform a skilled-reaching task (SRT) until they reached plateau performance. A photothrombotic stroke was induced in the forelimb representation of the primary motor cortex (M1) contralateral to the trained paw. The SRT was re-trained after stroke while the protein synthesis inhibitor anisomycin (ANI) or saline were injected into the peri-infarct cortex through implanted cannulas. ANI injections reduced protein synthesis within the peri-infarct cortex by 69% and significantly impaired recovery of reaching performance through re-training. Improvement of motor performance within a single training session remained intact, while improvement between training sessions was impaired. ANI injections did not affect infarct size. Thus, protein synthesis inhibition within the peri-infarct cortex impairs recovery of motor deficits after ischemic stroke by interfering with consolidation of motor memory between training sessions but not short-term improvements within one session.

  12. Running exercise enhances motor functional recovery with inhibition of dendritic regression in the motor cortex after collagenase-induced intracerebral hemorrhage in rats.

    PubMed

    Takamatsu, Yasuyuki; Tamakoshi, Keigo; Waseda, Yuya; Ishida, Kazuto

    2016-03-01

    Rehabilitative approaches benefit motor functional recovery after stroke and relate to neuronal plasticity. We investigated the effects of a treadmill running exercise on the motor functional recovery and neuronal plasticity after collagenase-induced striatal intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with type IV collagenase into the left striatum to induce ICH. Sham-operated animals were injected with saline instead of collagenase. The animals were randomly assigned to the sham control (SC), the sham exercise (SE), the ICH control (IC), or the ICH exercise (IE) group. The exercise groups were forced to run on a treadmill at a speed of 9 m/min for 30 min/day between days 4 and 14 after surgery. Behavioral tests were performed using a motor deficit score, a beam-walking test and a cylinder test. At fifteen days after surgery, the animals were sacrificed, and their brains were removed. The motor function of the IE group significantly improved compared with the motor function of the IC group. No significant differences in cortical thickness were found between the groups. The IC group had fewer branches and shorter dendrite lengths compared with the sham groups. However, dendritic branches and lengths were not significantly different between the IE and the other groups. Tropomyosin-related kinase B (TrkB) expression levels increased in the IE compared with IC group, but no significant differences in other protein (brain-derived neurotrophic factor, BDNF; Nogo-A; Rho-A/Rho-associated protein kinase 2, ROCK2) expression levels were found between the groups. These results suggest that improved motor function after a treadmill running exercise after ICH may be related to the prevention of dendritic regression due to TrkB upregulation. Copyright © 2015. Published by Elsevier B.V.

  13. Electrical stimulation accelerates motor functional recovery in autograft-repaired 10 mm femoral nerve gap in rats.

    PubMed

    Huang, Jinghui; Hu, Xueyu; Lu, Lei; Ye, Zhengxu; Wang, Yuqing; Luo, Zhuojing

    2009-10-01

    Electrical stimulation has been shown to enhance peripheral nerve regeneration after nerve injury. However, the impact of electrical stimulation on motor functional recovery after nerve injuries, especially over long nerve gap lesions, has not been investigated in a comprehensive manner. In the present study, we aimed to determine whether electrical stimulation (1 h, 20 Hz) is beneficial for motor functional recovery after a 10 mm femoral nerve gap lesion in rats. The proximal nerve stump was electrically stimulated for 1 h at 20 Hz frequency prior to nerve repair with an autologous graft. The rate of motor functional recovery was evaluated by single frame motion analysis and electrophysiological studies, and the nerve regeneration was investigated by double labeling and histological analysis. We found that brief electrical stimulation significantly accelerated motor functional recovery and nerve regeneration. Although the final outcome, both in functional terms and morphological terms, was not improved by electrical stimulation, the observed acceleration of functional recovery and axon regeneration may be of therapeutic importance in clinical setting.

  14. Early Oral-Motor Interventions for Pediatric Feeding Problems: What, When and How

    ERIC Educational Resources Information Center

    Manno, Cecilia J.; Fox, Catherine; Eicher, Peggy S.; Kerwin, MaryLouise E.

    2005-01-01

    Children with developmental delays often have feeding difficulties resulting from oral-motor problems. Based on both clinical experience and a review of published studies, oral-motor interventions have been shown to be effective in improving the oral function of preterm infants and children with neuromotor disorders, such as cerebral palsy.…

  15. Music-supported therapy in the rehabilitation of subacute stroke patients: a randomized controlled trial.

    PubMed

    Grau-Sánchez, Jennifer; Duarte, Esther; Ramos-Escobar, Neus; Sierpowska, Joanna; Rueda, Nohora; Redón, Susana; Veciana de Las Heras, Misericordia; Pedro, Jordi; Särkämö, Teppo; Rodríguez-Fornells, Antoni

    2018-04-01

    The effect of music-supported therapy (MST) as a tool to restore hemiparesis of the upper extremity after a stroke has not been appropriately contrasted with conventional therapy. The aim of this trial was to test the effectiveness of adding MST to a standard rehabilitation program in subacute stroke patients. A randomized controlled trial was conducted in which patients were randomized to MST or conventional therapy in addition to the rehabilitation program. The intensity and duration of the interventions were equated in both groups. Before and after 4 weeks of treatment, motor and cognitive functions, mood, and quality of life (QoL) of participants were evaluated. A follow-up at 3 months was conducted to examine the retention of motor gains. Both groups significantly improved their motor function, and no differences between groups were found. The only difference between groups was observed in the language domain for QoL. Importantly, an association was encountered between the capacity to experience pleasure from music activities and the motor improvement in the MST group. MST as an add-on treatment showed no superiority to conventional therapies for motor recovery. Importantly, patient's intrinsic motivation to engage in musical activities was associated with better motor improvement. © 2018 New York Academy of Sciences.

  16. Engaging Cervical Spinal Cord Networks to Reenable Volitional Control of Hand Function in Tetraplegic Patients.

    PubMed

    Lu, Daniel C; Edgerton, V Reggie; Modaber, Morteza; AuYong, Nicholas; Morikawa, Erika; Zdunowski, Sharon; Sarino, Melanie E; Sarrafzadeh, Majid; Nuwer, Marc R; Roy, Roland R; Gerasimenko, Yury

    2016-11-01

    Paralysis of the upper limbs from spinal cord injury results in an enormous loss of independence in an individual's daily life. Meaningful improvement in hand function is rare after 1 year of tetraparesis. Therapeutic developments that result in even modest gains in hand volitional function will significantly affect the quality of life for patients afflicted with high cervical injury. The ability to neuromodulate the lumbosacral spinal circuitry via epidural stimulation in regaining postural function and volitional control of the legs has been recently shown. A key question is whether a similar neuromodulatory strategy can be used to improve volitional motor control of the upper limbs, that is, performance of motor tasks considered to be less "automatic" than posture and locomotion. In this study, the effects of cervical epidural stimulation on hand function are characterized in subjects with chronic cervical cord injury. Herein we show that epidural stimulation can be applied to the chronic injured human cervical spinal cord to promote volitional hand function. Two subjects implanted with a cervical epidural electrode array demonstrated improved hand strength (approximately 3-fold) and volitional hand control in the presence of epidural stimulation. The present data are sufficient to suggest that hand motor function in individuals with chronic tetraplegia can be improved with cervical cord neuromodulation and thus should be comprehensively explored as a possible clinical intervention. © The Author(s) 2016.

  17. Transfer of training between distinct motor tasks after stroke: Implications for task- specific approaches to upper extremity neurorehabilitation

    PubMed Central

    Schaefer, Sydney Y.; Patterson, Chavelle B.; Lang, Catherine E.

    2013-01-01

    Background Although task-specific training is emerging as a viable approach for recovering motor function after stroke, there is little evidence for whether the effects of such training transfer to other functional motor tasks not directly practiced in therapy. Objective The purpose of the current study was to test whether training on one motor task would transfer to untrained tasks that were either spatiotemporally similar or different in individuals with chronic hemiparesis post-stroke. Methods Eleven participants with chronic mild-to-moderate hemiparesis following stroke completed five days of supervised massed practice of a feeding task with their affected side. Performance on the feeding task, along with two other untrained functional upper extremity motor tasks (sorting, dressing) was assessed before and after training. Results Performance of all three tasks improved significantly after training exclusively on one motor task. The amount of improvement in the untrained tasks was comparable, and was not dependent on the degree of similarity to the trained task. Conclusions Because the number and type of tasks that can be practiced are often limited within standard stroke rehabilitation, results from this study will be useful for designing task-specific training plans to maximize therapy benefits. PMID:23549521

  18. Dance therapy improves motor and cognitive functions in patients with Parkinson's disease.

    PubMed

    de Natale, Edoardo Rosario; Paulus, Kai Stephan; Aiello, Elena; Sanna, Battistina; Manca, Andrea; Sotgiu, Giovanni; Leali, Paolo Tranquilli; Deriu, Franca

    2017-01-01

    To explore the effects of Dance Therapy (DT) and Traditional Rehabilitation (TR) on both motor and cognitive domains in Parkinson's Disease patients (PD) with postural instability. Sixteen PD patients with recent history of falls were divided in two groups (Dance Therapy, DT and Traditional Rehabilitation, TR); nine patients received 1-hour DT classes twice per week, completing 20 lessons within 10 weeks; seven patients received a similar cycle of 20 group sessions of 60 minutes TR. Motor (Berg Balance Scale - BBS, Gait Dynamic Index - GDI, Timed Up and Go Test - TUG, 4 Square-Step Test - 4SST, 6-Minute Walking Test - 6MWT) and cognitive measures (Frontal Assessment Battery - FAB, Trail Making Test A & B - TMT A&B, Stroop Test) were tested at baseline, after the treatment completion and after 8-week follow-up. In the DT group, but not in the TR group, motor and cognitive outcomes significantly improved after treatment and retained after follow-up. Significant changes were found for 6MWT (p = 0.028), TUG (p = 0.007), TMT-A (p = 0.014) and TMT-B (p = 0.036). DT is an unconventional physical therapy for PD patients which effectively impacts on motor (endurance and risk of falls) and non-motor functions (executive functions).

  19. Effectiveness of finger-equipped electrode (FEE)-triggered electrical stimulation improving chronic stroke patients with severe hemiplegia.

    PubMed

    Inobe, Jun-ichi; Kato, Takashi

    2013-01-01

    Electric stimulation (ES) has been recognized as an effective method to improve motor function to paralysed patients with stroke. It is important for ES to synchronize with voluntary movement. To enhance this co-ordination, the finger-equipped electrode (FEE) was developed. The purpose of this study was to evaluate FEE in improving motor function of upper extremities (UEs) in patients with chronic stroke. The study participants included four patients with chronic stroke who received FEE electronic stimulation (FEE-ES) plus passive and active training and three control patients who underwent training without FEE-ES. The patients were treated five times weekly for 4 weeks. UE motor function was evaluated before and after treatment using Fugl-Meyer Assessment (FMA) and Brunnstrom recovery staging. The mean age of patients in each group was 60-years and there was a mean of 49 months since the onset of symptoms. All patients had severe UE weakness. The patients receiving FEE-ES had greater improvement in UE function than control patients (total, proximal and distal FMA, p < 0.05; Brunnstrom staging of UE, p < 0.05). The results indicate that FEE-ES may be an effective treatment for patients with chronic stroke.

  20. High-Intensity Chronic Stroke Motor Imagery Neurofeedback Training at Home: Three Case Reports.

    PubMed

    Zich, Catharina; Debener, Stefan; Schweinitz, Clara; Sterr, Annette; Meekes, Joost; Kranczioch, Cornelia

    2017-11-01

    Motor imagery (MI) with neurofeedback has been suggested as promising for motor recovery after stroke. Evidence suggests that regular training facilitates compensatory plasticity, but frequent training is difficult to integrate into everyday life. Using a wireless electroencephalogram (EEG) system, we implemented a frequent and efficient neurofeedback training at the patients' home. Aiming to overcome maladaptive changes in cortical lateralization patterns we presented a visual feedback, representing the degree of contralateral sensorimotor cortical activity and the degree of sensorimotor cortex lateralization. Three stroke patients practiced every other day, over a period of 4 weeks. Training-related changes were evaluated on behavioral, functional, and structural levels. All 3 patients indicated that they enjoyed the training and were highly motivated throughout the entire training regime. EEG activity induced by MI of the affected hand became more lateralized over the course of training in all three patients. The patient with a significant functional change also showed increased white matter integrity as revealed by diffusion tensor imaging, and a substantial clinical improvement of upper limb motor functions. Our study provides evidence that regular, home-based practice of MI neurofeedback has the potential to facilitate cortical reorganization and may also increase associated improvements of upper limb motor function in chronic stroke patients.

  1. Effect of methylphenidate and/or levodopa coupled with physiotherapy on functional and motor recovery after stroke--a randomized, double-blind, placebo-controlled trial.

    PubMed

    Lokk, J; Salman Roghani, R; Delbari, A

    2011-04-01

    Amphetamine-like drugs are reported to enhance motor recovery and activities of daily living (ADL) in stroke rehabilitation, but results from trials with humans are inconclusive. This study is aimed at investigating whether levodopa (LD) and/or methylphenidate (MPH) in combination with physiotherapy could improve functional motor recovery and ADL in patients with stroke. A randomized, double-blind, placebo-controlled trial with ischemic stroke patients randomly allocated to one of four treatment groups of either MPH, LD or MPH+LD or placebo combined with physiotherapy was performed. Motor function, ADL, and stroke severity were assessed by Fugl-Meyer (FM), Barthel index (BI), and National Institute of Health Stroke Scale (NIHSS) at baseline, 15, 90, and 180 days respectively. All participants showed recovery of motor function and ADL during treatment and at 6-month follow-up. There were slightly but significant differences in BI and NIHSS compared to placebo at the 6-month follow-up. Ischemic chronic stroke patients having MPH and/or LD in combination with physiotherapy showed a slight ADL and stroke severity improvement over time. Future studies should address the issue of the optimal therapeutic window and dosage of medications to identify those patients who would benefit most. © 2010 John Wiley & Sons A/S.

  2. Effects of Mirror Therapy in Stroke Patients With Complex Regional Pain Syndrome Type 1: A Randomized Controlled Study.

    PubMed

    Pervane Vural, Secil; Nakipoglu Yuzer, Guldal Funda; Sezgin Ozcan, Didem; Demir Ozbudak, Sibel; Ozgirgin, Nese

    2016-04-01

    To investigate the effects of mirror therapy on upper limb motor functions, spasticity, and pain intensity in patients with hemiplegia accompanied by complex regional pain syndrome type 1. Randomized controlled trial. Training and research hospital. Adult patients with first-time stroke and simultaneous complex regional pain syndrome type 1 of the upper extremity at the dystrophic stage (N=30). Both groups received a patient-specific conventional stroke rehabilitation program for 4 weeks, 5 d/wk, for 2 to 4 h/d. The mirror therapy group received an additional mirror therapy program for 30 min/d. We evaluated the scores of the Brunnstrom recovery stages of the arm and hand for motor recovery, wrist and hand subsections of the Fugl-Meyer Assessment (FMA) and motor items of the FIM-motor for functional status, Modified Ashworth Scale (MAS) for spasticity, and visual analog scale (VAS) for pain severity. After 4 weeks of rehabilitation, both groups had significant improvements in the FIM-motor and VAS scores compared with baseline scores. However, the scores improved more in the mirror therapy group than the control group (P<.001 and P=.03, respectively). Besides, the patients in the mirror therapy arm showed significant improvement in the Brunnstrom recovery stages and FMA scores (P<.05). No significant difference was found for MAS scores. In patients with stroke and simultaneous complex regional pain syndrome type 1, addition of mirror therapy to a conventional stroke rehabilitation program provides more improvement in motor functions of the upper limb and pain perception than conventional therapy without mirror therapy. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. A randomized, double-blind, controlled trial of add-on therapy in moderate-to-severe Parkinson's disease.

    PubMed

    Zhao, Shifu; Cheng, Rongchuan; Zheng, Jian; Li, Qianning; Wang, Jingzhou; Fan, Wenhui; Zhang, Lili; Zhang, Yanling; Li, Hongzeng; Liu, Shuxiao

    2015-10-01

    The primary objective was to evaluate the efficacy and safety of droxidopa as add-on therapy in improving stiffness, tremors and other motor functions and activities of daily living for moderate-to-severe Parkinson's disease (PD). PD patients, above Hoehn-Yahr III (including Hoehn-Yahr III), were randomly assigned to drug therapy (droxidopa 600 mg/day for 8 weeks) or placebo. Efficacy indicators were the Unified Parkinson's Disease Rating Scale (UPDRS) part I, II, III subscale, Clinical Global Impression (CGI) rating score, and individual symptom scores (e.g. stiffness, tremors), to evaluate motor function and activities of daily life. There are 109 patients in the droxidopa group, and 110 in the placebo group, at baseline, there were no differences between the two groups for age, body weight, disease severity and previous drugs therapy. At days 14 and 57 of droxidopa add on treatment, UPDRS-II scores reflecting activities of daily life and UPDRS-III scores reflecting motor functions were significantly different compared to the pre-treatment baseline scores (P < 0.01), UPDRS- II and UPDRS-III scores at day 14 and day 57 were also significantly different (P < 0.01) between the two groups. Individual motor symptoms such as stiffness, resting tremor, and alternate hand motion were also significantly improved with droxidopa on days 14 and 57 of treatment (P < 0.01 vs placebo), showing that droxidopa is effective in improving rigidity, tremor and alternate motion of hand. Droxidopa was effective as symptomatic adjunct therapy, improved significantly motor function and activities of daily living, benefited patients with signs of tremor and Stiffness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effects of Ai Chi on balance, quality of life, functional mobility, and motor impairment in patients with Parkinson's disease.

    PubMed

    Kurt, Emine Eda; Büyükturan, Buket; Büyükturan, Öznur; Erdem, Hatice Rana; Tuncay, Figen

    2018-04-01

    In this study, we aimed to investigate effects of Ai Chi on balance, functional mobility, health-related quality of life, and motor impairment in patients with Parkinson's disease. This study was conducted as an open-label randomized controlled trial (ISRCTN26292510) with repeated measures. Forty patients with Parkinson's disease stages 2 to 3 according to the Hoehn and Yahr Scale were randomly allocated to either an Ai Chi exercise group or a land-based exercise control group for 5 weeks. Balance was measured using the Biodex-3,1 and the Berg Balance Scale. Functional mobility was evaluated using the Timed Up and Go Test. Additionally, health-related quality of life and motor activity were assessed with the Parkinson's Disease Questionnaire-39 and the Unified Parkinson's Disease Rating Scale-III. Although patients in both groups showed significant improvement in all outcome variables, improvement of dynamic balance was significantly greater in the Ai Chi group (p < 0.001), Berg Balance Scale (p < 0.001), Timed Up and Go Test (p = 0.002), Parkinson's Disease Questionnaire-39 (p < 0.001), Unified Parkinson's Disease Rating Scale-III (p < 0.001). Our results suggest that an Ai Chi exercise program improves balance, mobility, motor ability, and quality of life. In addition, Ai Chi exercise was more effective as an intervention than land-based exercise in patients with mild to moderate Parkinson's disease. Implications for rehabilitation Ai Chi exercises (aquatic exercises) may help improve balance, functional mobility, health-related quality of life, and motor ability in patients with mild to moderate Parkinson's disease more efficiently than similar land-based exercises. Ai Chi exercises should be considered as a rehabilitation option for treatment of patients with mild or moderate Parkinson's disease.

  5. The Use of Nintendo Wii in the Rehabilitation of Poststroke Patients: A Systematic Review.

    PubMed

    Dos Santos, Luan Rafael Aguiar; Carregosa, Adriani Andrade; Masruha, Marcelo Rodrigues; Dos Santos, Pietro Araújo; Da Silveira Coêlho, Marília Lira; Ferraz, Daniel Dominguez; Da Silva Ribeiro, Nildo Manoel

    2015-10-01

    To evaluate the effectiveness of the video game console Nintendo Wii (NW) in motor function, balance, and functional independence in the treatment of poststroke patients and to identify which games are commonly used in therapy. Randomized controlled trials were researched in MEDLINE, Cochrane Library, PEDro, CAPES Periodic, BIREME, and LILACS databases, covering publications up to March 31, 2014. The assessment of methodological quality was performed using the PEDro Scale as reference. The 5 studies included for analysis showed that NW can provide an improvement of motor function of the individual, but the data are unclear when it comes to the balance and functional independence. It was concluded that there is little evidence to ensure the effectiveness and support the inclusion of the treatment with NW in patients with sequelae caused by a stroke; however, some of the studies analyzed suggest that NW can provide improvement in motor function. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  6. Physical therapy for a child with sudden-onset choreoathetosis: a case report.

    PubMed

    Smith, Hilary J

    2014-01-01

    This case report describes the physical therapy examination, intervention, and outcomes for a 5-year-old girl who developed choreoathetosis following mitral valve repair. This child was admitted to an inpatient short-term rehabilitation program with marked choreoathetosis and dependence for all functional mobility. She received physical therapy twice a day for 5 weeks. Physical therapy intervention included therapeutic exercise emphasizing stabilization and closed chain exercises, aquatic therapy, and functional training to improve gross motor skills and mobility. Tests and measures included the Selective Control Assessment of the Lower Extremity, 66-item Gross Motor Function Measure, and Pediatric Evaluation of Disability Inventory. At discharge, this child demonstrated improvements in her Selective Control Assessment of the Lower Extremity, Gross Motor Function Measure, and Pediatric Evaluation of Disability Inventory scores. She was independent in all functional mobility tasks. This case study describes physical therapy tests and measures, intervention, and positive outcomes for a child with sudden-onset choreoathetosis.

  7. Benefits of music training are widespread and lifelong: a bibliographic review of their non-musical effects.

    PubMed

    Dawson, William J

    2014-06-01

    Recent publications indicate that musical training has effects on non-musical activities, some of which are lifelong. This study reviews recent publications collected from the Performing Arts Medicine Association bibliography. Music training, whether instrumental or vocal, produces beneficial and long-lasting changes in brain anatomy and function. Anatomic changes occur in brain areas devoted to hearing, speech, hand movements, and coordination between both sides of the brain. Functional benefits include improved sound processing and motor skills, especially in the upper extremities. Training benefits extend beyond music skills, resulting in higher IQs and school grades, greater specialized sensory and auditory memory/recall, better language memory and processing, heightened bilateral hand motor functioning, and improved integration and synchronization of sensory and motor functions. These changes last long after music training ends and can minimize or prevent age-related loss of brain cells and some mental functions. Early institution of music training and prolonged duration of training both appear to contribute to these positive changes.

  8. Recent trends in robot-assisted therapy environments to improve real-life functional performance after stroke.

    PubMed

    Johnson, Michelle J

    2006-12-18

    Upper and lower limb robotic tools for neuro-rehabilitation are effective in reducing motor impairment but they are limited in their ability to improve real world function. There is a need to improve functional outcomes after robot-assisted therapy. Improvements in the effectiveness of these environments may be achieved by incorporating into their design and control strategies important elements key to inducing motor learning and cerebral plasticity such as mass-practice, feedback, task-engagement, and complex problem solving. This special issue presents nine articles. Novel strategies covered in this issue encourage more natural movements through the use of virtual reality and real objects and faster motor learning through the use of error feedback to guide acquisition of natural movements that are salient to real activities. In addition, several articles describe novel systems and techniques that use of custom and commercial games combined with new low-cost robot systems and a humanoid robot to embody the " supervisory presence" of the therapy as possible solutions to exercise compliance in under-supervised environments such as the home.

  9. Recent trends in robot-assisted therapy environments to improve real-life functional performance after stroke

    PubMed Central

    Johnson, Michelle J

    2006-01-01

    Upper and lower limb robotic tools for neuro-rehabilitation are effective in reducing motor impairment but they are limited in their ability to improve real world function. There is a need to improve functional outcomes after robot-assisted therapy. Improvements in the effectiveness of these environments may be achieved by incorporating into their design and control strategies important elements key to inducing motor learning and cerebral plasticity such as mass-practice, feedback, task-engagement, and complex problem solving. This special issue presents nine articles. Novel strategies covered in this issue encourage more natural movements through the use of virtual reality and real objects and faster motor learning through the use of error feedback to guide acquisition of natural movements that are salient to real activities. In addition, several articles describe novel systems and techniques that use of custom and commercial games combined with new low-cost robot systems and a humanoid robot to embody the " supervisory presence" of the therapy as possible solutions to exercise compliance in under-supervised environments such as the home. PMID:17176474

  10. Evidence-based therapies for upper extremity dysfunction.

    PubMed

    Liepert, Joachim

    2010-12-01

    The diversity of interventions aimed at improving upper extremity dysfunction is increasing. This article reviews the effectiveness of different therapeutic approaches that have been published in 2009 and 2010. Evidence is based on randomized controlled trials, systematic reviews, and meta-analyses. Application of constraint-induced movement therapy in acute stroke patients was not more effective than a control intervention, and a more intense therapy may even be harmful. Botulinum toxin injections do not only reduce spasticity but, in children, also improve motor functions if combined with occupational therapy. Strength training improves arm function but not necessarily activities of daily living. Bilateral arm training is as effective as other interventions. Extrinsic feedback and sensory training may further improve motor functions. Mirror therapy was particularly effective for patients with initial hand plegia. For some interventions (e.g. constraint-induced movement therapy, botulinum toxin), efficacy is evident, for others (e.g. mental practice, virtual reality), well designed studies with sufficient numbers of patients are needed. The ultimate goal still is to develop evidence-based therapies for all different degrees of motor impairment.

  11. Effects of Subthalamic Stimulation on Olfactory Function in Parkinson Disease.

    PubMed

    Cury, Rubens Gisbert; Carvalho, Margarete de Jesus; Lasteros, Fernando Jeyson Lopez; Dias, Alice Estevo; Dos Santos Ghilardi, Maria Gabriela; Paiva, Anderson Rodrigues Brandão; Coutinho, Artur Martins; Buchpiguel, Carlos Alberto; Teixeira, Manoel J; Barbosa, Egberto Reis; Fonoff, Erich Talamoni

    2018-06-01

    Olfactory dysfunction is a nonmotor symptom of Parkinson disease (PD) associated with reduction in quality of life. There is no evidence on whether improvements in olfaction after subthalamic deep brain stimulation (STN-DBS) may be directly attributable to motor improvement or whether this reflects a direct effect of DBS on olfactory brain areas. The aim of the present study was to evaluate the effect of DBS on olfactory function in PD, as well as to explore the correlation between these changes and changes in motor symptoms and brain metabolism. Thirty-two patients with PD were screened for STN-DBS. Patients were evaluated before and 1 year after surgery. Primary outcome was the change in olfactory function (Sniffin' Sticks odor-identification test [SST]) after surgery among the patients with hyposmia at baseline. Secondary outcomes included the relationship between motor outcomes and olfactory changes and [ 18 F]fluorodeoxyglucose-positron emission tomography analysis between subgroups with improvement versus no improvement of smell. STN-DBS improved SST after surgery (preoperative SST, median 7.3 ± 2.4 vs. postoperative SST, median 8.2 ± 2.1; P = 0.045) in a subset of patients among 29 of 32 patients who presented with hyposmia at baseline. The improvement in SST was correlated with DBS response (r = 0.424; P = 0.035). There was also an increase in glucose metabolism in the midbrain, cerebellum, and right frontal lobe in patients with SST improvement (P < 0.001). STN-DBS improves odor identification in a subset of patients with PD. Motor improvement together with changes in the brain metabolism may be linked to this improvement. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. A retrospective outcomes study examining the effect of interactive metronome on hand function.

    PubMed

    Shank, Tracy M; Harron, Wendy

    2015-01-01

    Interactive Metronome (IM, The Interactive Metronome Company, Sunrise, Florida, USA) is a computer-based modality marketed to rehabilitation professionals who want to improve outcomes in areas of coordination, motor skills, self-regulation behaviors, and cognitive skills. This retrospective study examined the efficacy of IM training on improving timing skills, hand function, and parental report of self-regulatory behaviors. Forty eight children with mixed motor and cognitive diagnoses completed an average of 14 one-hour training sessions over an average of 8.5 weeks in an outpatient setting. Each child was assessed before and after training with the Interactive Metronome Long Form Assessment, the Jebsen Taylor Test of Hand Function, and a parent questionnaire. All three measures improved with statistical significance despite participants having no direct skill training. These results suggest an intimate relationship between cognition and motor skills that has potential therapeutic value. Level 4, Retrospective Case Series. Copyright © 2015 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  13. Short time sports exercise boosts motor imagery patterns: implications of mental practice in rehabilitation programs

    PubMed Central

    Wriessnegger, Selina C.; Steyrl, David; Koschutnig, Karl; Müller-Putz, Gernot R.

    2014-01-01

    Motor imagery (MI) is a commonly used paradigm for the study of motor learning or cognitive aspects of action control. The rationale for using MI training to promote the relearning of motor function arises from research on the functional correlates that MI shares with the execution of physical movements. While most of the previous studies investigating MI were based on simple movements in the present study a more attractive mental practice was used to investigate cortical activation during MI. We measured cerebral responses with functional magnetic resonance imaging (fMRI) in twenty three healthy volunteers as they imagined playing soccer or tennis before and after a short physical sports exercise. Our results demonstrated that only 10 min of training are enough to boost MI patterns in motor related brain regions including premotor cortex and supplementary motor area (SMA) but also fronto-parietal and subcortical structures. This supports previous findings that MI has beneficial effects especially in combination with motor execution when used in motor rehabilitation or motor learning processes. We conclude that sports MI combined with an interactive game environment could be a promising additional tool in future rehabilitation programs aiming to improve upper or lower limb functions or support neuroplasticity. PMID:25071505

  14. Motor learning in a complex balance task and associated neuroplasticity: a comparison between endurance athletes and nonathletes.

    PubMed

    Seidel, Oliver; Carius, Daniel; Kenville, Rouven; Ragert, Patrick

    2017-09-01

    Studies suggested that motor expertise is associated with functional and structural brain alterations, which positively affect sensorimotor performance and learning capabilities. The purpose of the present study was to unravel differences in motor skill learning and associated functional neuroplasticity between endurance athletes (EA) and nonathletes (NA). For this purpose, participants had to perform a multimodal balance task (MBT) training on 2 sessions, which were separated by 1 wk. Before and after MBT training, a static balance task (SBT) had to be performed. MBT-induced functional neuroplasticity and neuromuscular alterations were assessed by means of functional near-infrared spectroscopy (fNIRS) and electromyography (EMG) during SBT performance. We hypothesized that EA would showed superior initial SBT performance and stronger MBT-induced improvements in SBT learning rates compared with NA. On a cortical level, we hypothesized that MBT training would lead to differential learning-dependent functional changes in motor-related brain regions [such as primary motor cortex (M1)] during SBT performance. In fact, EA showed superior initial SBT performance, whereas learning rates did not differ between groups. On a cortical level, fNIRS recordings (time × group interaction) revealed a stronger MBT-induced decrease in left M1 and inferior parietal lobe (IPL) for deoxygenated hemoglobin in EA. Even more interesting, learning rates were correlated with fNIRS changes in right M1/IPL. On the basis of these findings, we provide novel evidence for superior MBT training-induced functional neuroplasticity in highly trained athletes. Future studies should investigate these effects in different sports disciplines to strengthen previous work on experience-dependent neuroplasticity. NEW & NOTEWORTHY Motor expertise is associated with functional/structural brain plasticity. How such neuroplastic reorganization translates into altered motor learning processes remains elusive. We investigated endurance athletes (EA) and nonathletes (NA) in a multimodal balance task (MBT). EA showed superior static balance performance (SBT), whereas MBT-induced SBT improvements did not differ between groups. Functional near-infrared spectroscopy recordings revealed a differential MBT training-induced decrease of deoxygenated hemoglobin in left primary motor cortex and inferior parietal lobe between groups. Copyright © 2017 the American Physiological Society.

  15. Effects of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper limb motor dysfunction in patients with subacute cerebral infarction.

    PubMed

    Li, Jiang; Meng, Xiang-Min; Li, Ru-Yi; Zhang, Ru; Zhang, Zheng; Du, Yi-Feng

    2016-10-01

    Studies have confirmed that low-frequency repetitive transcranial magnetic stimulation can decrease the activity of cortical neurons, and high-frequency repetitive transcranial magnetic stimulation can increase the excitability of cortical neurons. However, there are few studies concerning the use of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper-limb motor function after cerebral infarction. We hypothesized that different frequencies of repetitive transcranial magnetic stimulation in patients with cerebral infarction would produce different effects on the recovery of upper-limb motor function. This study enrolled 127 patients with upper-limb dysfunction during the subacute phase of cerebral infarction. These patients were randomly assigned to three groups. The low-frequency group comprised 42 patients who were treated with 1 Hz repetitive transcranial magnetic stimulation on the contralateral hemisphere primary motor cortex (M1). The high-frequency group comprised 43 patients who were treated with 10 Hz repetitive transcranial magnetic stimulation on ipsilateral M1. Finally, the sham group comprised 42 patients who were treated with 10 Hz of false stimulation on ipsilateral M1. A total of 135 seconds of stimulation was applied in the sham group and high-frequency group. At 2 weeks after treatment, cortical latency of motor-evoked potentials and central motor conduction time were significantly lower compared with before treatment. Moreover, motor function scores were significantly improved. The above indices for the low- and high-frequency groups were significantly different compared with the sham group. However, there was no significant difference between the low- and high-frequency groups. The results show that low- and high-frequency repetitive transcranial magnetic stimulation can similarly improve upper-limb motor function in patients with cerebral infarction.

  16. Quantitative Motor Performance and Sleep Benefit in Parkinson Disease

    PubMed Central

    van Gilst, Merel M.; van Mierlo, Petra; Bloem, Bastiaan R.; Overeem, Sebastiaan

    2015-01-01

    Study Objectives: Many people with Parkinson disease experience “sleep benefit”: temporarily improved mobility upon awakening. Here we used quantitative motor tasks to assess the influence of sleep on motor functioning in Parkinson disease. Design: Eighteen Parkinson patients with and 20 without subjective sleep benefit and 20 healthy controls participated. Before and directly after a regular night sleep and an afternoon nap, subjects performed the timed pegboard dexterity task and quantified finger tapping task. Subjective ratings of motor functioning and mood/vigilange were included. Sleep was monitored using polysomnography. Results: On both tasks, patients were overall slower than healthy controls (night: F2,55 = 16.938, P < 0.001; nap: F2,55 = 15.331, P < 0.001). On the pegboard task, there was a small overall effect of night sleep (F1,55 = 9.695, P = 0.003); both patients and controls were on average slightly slower in the morning. However, in both tasks there was no sleep*group interaction for nighttime sleep nor for afternoon nap. There was a modest correlation between the score on the pegboard task and self-rated motor symptoms among patients (rho = 0.233, P = 0.004). No correlations in task performance and mood/vigilance or sleep time/efficiency were found. Conclusions: A positive effect of sleep on motor function is commonly reported by Parkinson patients. Here we show that the subjective experience of sleep benefit is not paralleled by an actual improvement in motor functioning. Sleep benefit therefore appears to be a subjective phenomenon and not a Parkinson-specific reduction in symptoms. Citation: van Gilst MM, van Mierlo P, Bloem BR, Overeem S. Quantitative Motor Performance and Sleep Benefit in Parkinson Disease. SLEEP 2015;38(10):1567–1573. PMID:25902811

  17. Improved Arousal and Motor Function Using Zolpidem in a Patient With Space-Occupying Intracranial Lesions: A Case Report.

    PubMed

    Bomalaski, Martin Nicholas; Smith, Sean Robinson

    2017-08-01

    Patients with disorders of consciousness (DOC) have profound functional limitations with few treatment options for improving arousal and quality of life. Zolpidem is a nonbenzodiazepine hypnotic used to treat insomnia that has also been observed to paradoxically improve arousal in those with DOC, such as the vegetative or minimally conscious states. Little information exists on its use in patients with DOC who have intracranial space-occupying lesions. We present a case of a 24-year-old man in a minimally conscious state due to central nervous system lymphoma who was observed to have increased arousal and improved motor function after the administration of zolpidem. V. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  18. Piano training in youths with hand motor impairments after damage to the developing brain

    PubMed Central

    Lampe, Renée; Thienel, Anna; Mitternacht, Jürgen; Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana

    2015-01-01

    Damage to the developing brain may lead to impairment of the hand motor function and negatively impact on patients’ quality of life. Development of manual dexterity and finger and hand motor function may be promoted by learning to play the piano. The latter brings together music with the intensive training of hand coordination and fine finger mobility. We investigated if learning to play the piano helped to improve hand motor skills in 18 youths with hand motor disorders resulting from damage during early brain development. Participants trained 35–40 minutes twice a week for 18 months with a professional piano teacher. With the use of a Musical Instrument Digital Interface piano, the uniformity of finger strokes could be objectively assessed from the timing of keystrokes. The analysis showed a significant improvement in the uniformity of keystrokes during the training. Furthermore, the youths showed strong motivation and engagement during the study. This is nevertheless an open study, and further studies remain needed to exclude effects of growth and concomitant therapies on the improvements observed and clarify which patients will more likely benefit from learning to play the piano. PMID:26345312

  19. Piano training in youths with hand motor impairments after damage to the developing brain.

    PubMed

    Lampe, Renée; Thienel, Anna; Mitternacht, Jürgen; Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana

    2015-01-01

    Damage to the developing brain may lead to impairment of the hand motor function and negatively impact on patients' quality of life. Development of manual dexterity and finger and hand motor function may be promoted by learning to play the piano. The latter brings together music with the intensive training of hand coordination and fine finger mobility. We investigated if learning to play the piano helped to improve hand motor skills in 18 youths with hand motor disorders resulting from damage during early brain development. Participants trained 35-40 minutes twice a week for 18 months with a professional piano teacher. With the use of a Musical Instrument Digital Interface piano, the uniformity of finger strokes could be objectively assessed from the timing of keystrokes. The analysis showed a significant improvement in the uniformity of keystrokes during the training. Furthermore, the youths showed strong motivation and engagement during the study. This is nevertheless an open study, and further studies remain needed to exclude effects of growth and concomitant therapies on the improvements observed and clarify which patients will more likely benefit from learning to play the piano.

  20. Inhibition of myostatin does not ameliorate disease features of severe spinal muscular atrophy mice

    PubMed Central

    Sumner, Charlotte J.; Wee, Claribel D.; Warsing, Leigh C.; Choe, Dong W.; Ng, Andrew S.; Lutz, Cathleen; Wagner, Kathryn R.

    2009-01-01

    There is currently no treatment for the inherited motor neuron disease, spinal muscular atrophy (SMA). Severe SMA causes lower motor neuron loss, impaired myofiber development, profound muscle weakness and early mortality. Myostatin is a transforming growth factor-β family member that inhibits muscle growth. Loss or blockade of myostatin signaling increases muscle mass and improves muscle strength in mouse models of primary muscle disease and in the motor neuron disease, amyotrophic lateral sclerosis. In this study, we evaluated the effects of blocking myostatin signaling in severe SMA mice (hSMN2/delta7SMN/mSmn−/−) by two independent strategies: (i) transgenic overexpression of the myostatin inhibitor follistatin and (ii) post-natal administration of a soluble activin receptor IIB (ActRIIB-Fc). SMA mice overexpressing follistatin showed little increase in muscle mass and no improvement in motor function or survival. SMA mice treated with ActRIIB-Fc showed minimal improvement in motor function, and no extension of survival compared with vehicle-treated mice. Together these results suggest that inhibition of myostatin may not be a promising therapeutic strategy in severe forms of SMA. PMID:19477958

  1. Combined Cognitive-Motor Rehabilitation in Virtual Reality Improves Motor Outcomes in Chronic Stroke - A Pilot Study.

    PubMed

    Faria, Ana L; Cameirão, Mónica S; Couras, Joana F; Aguiar, Joana R O; Costa, Gabriel M; Bermúdez I Badia, Sergi

    2018-01-01

    Stroke is one of the most common causes of acquired disability, leaving numerous adults with cognitive and motor impairments, and affecting patients' capability to live independently. Virtual Reality (VR) based methods for stroke rehabilitation have mainly focused on motor rehabilitation but there is increasing interest toward the integration of cognitive training for providing more effective solutions. Here we investigate the feasibility for stroke recovery of a virtual cognitive-motor task, the Reh@Task, which combines adapted arm reaching, and attention and memory training. 24 participants in the chronic stage of stroke, with cognitive and motor deficits, were allocated to one of two groups (VR, Control). Both groups were enrolled in conventional occupational therapy, which mostly involves motor training. Additionally, the VR group underwent training with the Reh@Task and the control group performed time-matched conventional occupational therapy. Motor and cognitive competences were assessed at baseline, end of treatment (1 month) and at a 1-month follow-up through the Montreal Cognitive Assessment, Single Letter Cancelation, Digit Cancelation, Bells Test, Fugl-Meyer Assessment Test, Chedoke Arm and Hand Activity Inventory, Modified Ashworth Scale, and Barthel Index. Our results show that both groups improved in motor function over time, but the Reh@Task group displayed significantly higher between-group outcomes in the arm subpart of the Fugl-Meyer Assessment Test. Improvements in cognitive function were significant and similar in both groups. Overall, these results are supportive of the viability of VR tools that combine motor and cognitive training, such as the Reh@Task. Trial Registration: This trial was not registered because it is a small clinical study that addresses the feasibility of a prototype device.

  2. Combined Cognitive-Motor Rehabilitation in Virtual Reality Improves Motor Outcomes in Chronic Stroke – A Pilot Study

    PubMed Central

    Faria, Ana L.; Cameirão, Mónica S.; Couras, Joana F.; Aguiar, Joana R. O.; Costa, Gabriel M.; Bermúdez i Badia, Sergi

    2018-01-01

    Stroke is one of the most common causes of acquired disability, leaving numerous adults with cognitive and motor impairments, and affecting patients’ capability to live independently. Virtual Reality (VR) based methods for stroke rehabilitation have mainly focused on motor rehabilitation but there is increasing interest toward the integration of cognitive training for providing more effective solutions. Here we investigate the feasibility for stroke recovery of a virtual cognitive-motor task, the Reh@Task, which combines adapted arm reaching, and attention and memory training. 24 participants in the chronic stage of stroke, with cognitive and motor deficits, were allocated to one of two groups (VR, Control). Both groups were enrolled in conventional occupational therapy, which mostly involves motor training. Additionally, the VR group underwent training with the Reh@Task and the control group performed time-matched conventional occupational therapy. Motor and cognitive competences were assessed at baseline, end of treatment (1 month) and at a 1-month follow-up through the Montreal Cognitive Assessment, Single Letter Cancelation, Digit Cancelation, Bells Test, Fugl-Meyer Assessment Test, Chedoke Arm and Hand Activity Inventory, Modified Ashworth Scale, and Barthel Index. Our results show that both groups improved in motor function over time, but the Reh@Task group displayed significantly higher between-group outcomes in the arm subpart of the Fugl-Meyer Assessment Test. Improvements in cognitive function were significant and similar in both groups. Overall, these results are supportive of the viability of VR tools that combine motor and cognitive training, such as the Reh@Task. Trial Registration: This trial was not registered because it is a small clinical study that addresses the feasibility of a prototype device. PMID:29899719

  3. Enhancing motor performance improvement by personalizing non-invasive cortical stimulation with concurrent functional near-infrared spectroscopy and multi-modal motor measurements

    NASA Astrophysics Data System (ADS)

    Khan, Bilal; Hodics, Timea; Hervey, Nathan; Kondraske, George; Stowe, Ann; Alexandrakis, George

    2015-03-01

    Transcranial direct current stimulation (tDCS) is a non-invasive cortical stimulation technique that can facilitate task specific plasticity that can improve motor performance. Current tDCS interventions uniformly apply a chosen electrode montage to a subject population without personalizing electrode placement for optimal motor gains. We propose a novel perturbation tDCS (ptDCS) paradigm for determining a personalized electrode montage in which tDCS intervention yields maximal motor performance improvements during stimulation. PtDCS was applied to ten healthy adults and five stroke patients with upper hemiparesis as they performed an isometric wrist flexion task with their non-dominant arm. Simultaneous recordings of torque applied to a stationary handle, muscle activity by electromyography (EMG), and cortical activity by functional near-infrared spectroscopy (fNIRS) during ptDCS helped interpret how cortical activity perturbations by any given electrode montage related to changes in muscle activity and task performance quantified by a Reaction Time (RT) X Error product. PtDCS enabled quantifying the effect on task performance of 20 different electrode pair montages placed over the sensorimotor cortex. Interestingly, the electrode montage maximizing performance in all healthy adults did not match any of the ones being explored in current literature as a means of improving the motor performance of stroke patients. Furthermore, the optimal montage was found to be different in each stroke patient and the resulting motor gains were very significant during stimulation. This study supports the notion that task-specific ptDCS optimization can lend itself to personalizing the rehabilitation of patients with brain injury.

  4. A stem-cell based bioassay to critically assess the pathology of dysfunctional neuromuscular junctions.

    PubMed

    Chipman, Peter H; Zhang, Ying; Rafuse, Victor F

    2014-01-01

    Pluripotent stem cells can be directed to differentiate into motor neurons and assessed for functionality in vitro. An emerging application of this technique is to model genetically inherited diseases in differentiated motor neurons and to screen for new therapeutic targets. The neuromuscular junction (NMJ) is essential to the functionality of motor neurons and its dysfunction is a primary hallmark of motor neuron disease. However, mature NMJs that possess the functional and morphological characteristics of those formed in vivo have so far not been obtained in vitro. Here we describe the generation and analysis of mature NMJs formed between embryonic stem cell-derived motor neurons (ESCMNs) and primary myotubes. We compared the formation and maturation of NMJs generated by wild-type (NCAM+/+) ESCMNs to those generated by neural cell adhesion molecule null (NCAM-/-) ESCMNs in order to definitively test the sensitivity of this assay to identify synaptic pathology. We find that co-cultures using NCAM-/- ESCMNs replicate key in vivo NCAM-/- phenotypes and reveal that NCAM influences neuromuscular synaptogenesis by controlling the mode of synaptic vesicle endocytosis. Further, we could improve synapse formation and function in NCAM-/- co-cultures by chronic treatment with nifedipine, which blocks an immature synaptic vesicle recycling pathway. Together, our results demonstrate that this ESCMN/myofiber co-culture system is a highly sensitive bioassay for examining molecules postulated to regulate synaptic function and for screening therapeutics that will improve the function of compromised NMJs.

  5. Quantitative Motor Performance and Sleep Benefit in Parkinson Disease.

    PubMed

    van Gilst, Merel M; van Mierlo, Petra; Bloem, Bastiaan R; Overeem, Sebastiaan

    2015-10-01

    Many people with Parkinson disease experience "sleep benefit": temporarily improved mobility upon awakening. Here we used quantitative motor tasks to assess the influence of sleep on motor functioning in Parkinson disease. Eighteen Parkinson patients with and 20 without subjective sleep benefit and 20 healthy controls participated. Before and directly after a regular night sleep and an afternoon nap, subjects performed the timed pegboard dexterity task and quantified finger tapping task. Subjective ratings of motor functioning and mood/vigilange were included. Sleep was monitored using polysomnography. On both tasks, patients were overall slower than healthy controls (night: F2,55 = 16.938, P < 0.001; nap: F2,55 = 15.331, P < 0.001). On the pegboard task, there was a small overall effect of night sleep (F1,55 = 9.695, P = 0.003); both patients and controls were on average slightly slower in the morning. However, in both tasks there was no sleep*group interaction for nighttime sleep nor for afternoon nap. There was a modest correlation between the score on the pegboard task and self-rated motor symptoms among patients (rho = 0.233, P = 0.004). No correlations in task performance and mood/vigilance or sleep time/efficiency were found. A positive effect of sleep on motor function is commonly reported by Parkinson patients. Here we show that the subjective experience of sleep benefit is not paralleled by an actual improvement in motor functioning. Sleep benefit therefore appears to be a subjective phenomenon and not a Parkinson-specific reduction in symptoms. © 2015 Associated Professional Sleep Societies, LLC.

  6. Placebo effect of medication cost in Parkinson disease: a randomized double-blind study.

    PubMed

    Espay, Alberto J; Norris, Matthew M; Eliassen, James C; Dwivedi, Alok; Smith, Matthew S; Banks, Christi; Allendorfer, Jane B; Lang, Anthony E; Fleck, David E; Linke, Michael J; Szaflarski, Jerzy P

    2015-02-24

    To examine the effect of cost, a traditionally "inactive" trait of intervention, as contributor to the response to therapeutic interventions. We conducted a prospective double-blind study in 12 patients with moderate to severe Parkinson disease and motor fluctuations (mean age 62.4 ± 7.9 years; mean disease duration 11 ± 6 years) who were randomized to a "cheap" or "expensive" subcutaneous "novel injectable dopamine agonist" placebo (normal saline). Patients were crossed over to the alternate arm approximately 4 hours later. Blinded motor assessments in the "practically defined off" state, before and after each intervention, included the Unified Parkinson's Disease Rating Scale motor subscale, the Purdue Pegboard Test, and a tapping task. Measurements of brain activity were performed using a feedback-based visual-motor associative learning functional MRI task. Order effect was examined using stratified analysis. Although both placebos improved motor function, benefit was greater when patients were randomized first to expensive placebo, with a magnitude halfway between that of cheap placebo and levodopa. Brain activation was greater upon first-given cheap but not upon first-given expensive placebo or by levodopa. Regardless of order of administration, only cheap placebo increased activation in the left lateral sensorimotor cortex and other regions. Expensive placebo significantly improved motor function and decreased brain activation in a direction and magnitude comparable to, albeit less than, levodopa. Perceptions of cost are capable of altering the placebo response in clinical studies. This study provides Class III evidence that perception of cost is capable of influencing motor function and brain activation in Parkinson disease. © 2015 American Academy of Neurology.

  7. Effects of Computer-Aided Interlimb Force Coupling Training on Paretic Hand and Arm Motor Control following Chronic Stroke: A Randomized Controlled Trial

    PubMed Central

    Lin, Chueh-Ho; Chou, Li-Wei; Luo, Hong-Ji; Tsai, Po-Yi; Lieu, Fu-Kong; Chiang, Shang-Lin; Sung, Wen-Hsu

    2015-01-01

    Objective We investigated the training effects of interlimb force coupling training on paretic upper extremity outcomes in patients with chronic stroke and analyzed the relationship between motor recovery of the paretic hand, arm and functional performances on paretic upper limb. Design A randomized controlled trial with outcome assessment at baseline and after 4 weeks of intervention. Setting Taipei Veterans General Hospital, National Yang-Ming University. Participants Thirty-three subjects with chronic stroke were recruited and randomly assigned to training (n = 16) and control groups (n = 17). Interventions The computer-aided interlimb force coupling training task with visual feedback included different grip force generation methods on both hands. Main Outcome Measures The Barthel Index (BI), the upper extremity motor control Fugl-Meyer Assessment (FMA-UE), the Motor Assessment Score (MAS), and the Wolf Motor Function Test (WMFT). All assessments were executed by a blinded evaluator, and data management and statistical analysis were also conducted by a blinded researcher. Results The training group demonstrated greater improvement on the FMA-UE (p<.001), WMFT (p<.001), MAS (p = .004) and BI (p = .037) than the control group after 4 weeks of intervention. In addition, a moderate correlation was found between the improvement of scores for hand scales of the FMA and other portions of the FMA UE (r = .528, p = .018) or MAS (r = .596, p = .015) in the training group. Conclusion Computer-aided interlimb force coupling training improves the motor recovery of a paretic hand, and facilitates motor control and enhances functional performance in the paretic upper extremity of people with chronic stroke. Trial Registration ClinicalTrials.gov NCT02247674. PMID:26193492

  8. Constraint-Induced Movement Therapy Results in Increased Motor Map Area in Subjects 3 to 9 Months After Stroke

    PubMed Central

    Sawaki, Lumy; Butler, Andrew J.; Leng, Xiaoyan; Wassenaar, Peter A.; Mohammad, Yousef M.; Blanton, Sarah; Sathian, K.; Nichols-Larsen, Deborah S.; Wolf, Steven L.; Good, David C.; Wittenberg, George F.

    2010-01-01

    Background Constraint-induced movement therapy (CIMT) has received considerable attention as an intervention to enhance motor recovery and cortical reorganization after stroke. Objective The present study represents the first multicenter effort to measure cortical reorganization induced by CIMT in subjects who are in the subacute stage of recovery. Methods A total of 30 stroke subjects in the subacute phase (>3 and <9 months poststroke) were recruited and randomized into experimental (receiving CIMT immediately after baseline evaluation) and control (receiving CIMT after 4 months) groups. Each subject was evaluated using transcranial magnetic stimulation (TMS) at baseline, 2 weeks after baseline, and at 4-month follow-up (ie, after CIMT in the experimental groups and before CIMT in the control groups). The primary clinical outcome measure was the Wolf Motor Function Test. Results Both experimental and control groups demonstrated improved hand motor function 2 weeks after baseline. The experimental group showed significantly greater improvement in grip force after the intervention and at follow-up (P = .049). After adjusting for the baseline measures, the experimental group had an increase in the TMS motor map area compared with the control group over a 4-month period; this increase was of borderline significance (P = .053). Conclusions Among subjects who had a stroke within the previous 3 to 9 months, CIMT produced statistically significant and clinically relevant improvements in arm motor function that persisted for at least 4 months. The corresponding enlargement of TMS motor maps, similar to that found in earlier studies of chronic stroke subjects, appears to play an important role in CIMT-dependent plasticity. PMID:18780885

  9. Spotlight on rotigotine transdermal patch in Parkinson's disease.

    PubMed

    Sanford, Mark; Scott, Lesley J

    2011-12-01

    Rotigotine transdermal patch (Neupro(®)) [referred to here as rotigotine] is a non-ergolinic dopamine agonist that is available in the EU as monotherapy for the treatment of early Parkinson's disease and as combination therapy with levodopa throughout the course of the disease. Daily application of the rotigotine patch provided predictable release and absorption of rotigotine, with steady-state rotigotine concentrations reached within 1-2 days. In early Parkinson's disease, compared with placebo, rotigotine monotherapy produced significantly greater improvements in the Unified Parkinson's Disease Rating Scale summed motor and activities of daily living (ADL) scores (primary endpoint), as well as significantly higher response rates. In advanced Parkinson's disease, rotigotine in combination with levodopa reduced 'off' time (primary endpoint) and improved motor functioning and ADL significantly more than levodopa plus placebo. In patients with inadequate early morning motor control despite antiparkinsonian treatment, rotigotine improved morning motor functioning and reduced sleep disturbances, night-time motor symptoms, depressive symptoms, pain and functioning, and quality of life to a significantly greater extent than placebo. The efficacy of rotigotine relative to other treatments requires further evaluation, as there were inconsistent results in noninferiority analyses that compared rotigotine to other dopamine agonists. Rotigotine was generally well tolerated across the trials, with the most common treatment-emergent adverse events being application-site reactions, gastrointestinal disturbances, somnolence and headache. No unexpected adverse effects were observed in extension studies of up to 6 years. Thus, rotigotine offers a novel approach to the treatment of Parkinson's disease and, given its ease of administration, efficacy in reducing disabling motor and non-motor symptoms, and acceptable tolerability profile, it has the potential to be an attractive treatment option for this highly debilitating disease.

  10. Functional dependence and caregiver burden in Alzheimer's disease: a controlled trial on the benefits of motor intervention.

    PubMed

    Canonici, Ana Paula; Andrade, Larissa Pires de; Gobbi, Sebastião; Santos-Galduroz, Ruth Ferreira; Gobbi, Lílian Teresa Bucken; Stella, Florindo

    2012-09-01

    Cognitive decline has a negative impact on functional activities in Alzheimer's disease. Investigating the effects of motor intervention with the intent to reduce the decline in functionality is an expected target for patients and caregivers. The aim of this study was to verify if a 6-month motor intervention programme promoted functionality in Alzheimer's patients and attenuated caregivers' burden. The sample comprised 32 community patients with Alzheimer's disease and their 32 respective caregivers. Patients were divided into two groups: 16 participated in the motor intervention programme and 16 controls. Subjects performed 60 minutes of exercises, three times per week during the 6-month period, to improve flexibility, strength, agility and balance. Caregivers followed the procedures with their patients during this period. Functionality was evaluated by the Berg Functional Balance Scale and the Functional Independence Measure. Caregivers completed the Neuropsychiatric Inventory Caregiver Distress Scale and the Zarit Carer Burden Scale. Two-way ANOVA was used to verify the interaction between time (pre- and post-intervention) and the motor intervention program. While patients in the motor programme preserved their functionality, as assessed by the Functional Independence Measure, the controls suffered a relative decline (motor intervention group: from 109.6 to 108.4 vs controls: from 99.5 to 71.6; P= 0.01). Patients from motor intervention also had better scores than the controls on functional balance assessed by Berg scale (F: 22.2; P= 0.001). As assessed by the Neuropsychiatric Inventory and Zarit scale, burden was reduced among caregivers whose patients participated in the motor intervention programme compared with caregivers whose patients did not participate in this programme (Neuropsychiatric Inventory, caregiver's part: F: 9.37; P= 0.01; Zarit: F: 11.28; P= 0.01). Patients from the motor intervention group showed reduced functional decline compared to the controls, and there was an associated decrease in caregivers' burden. © 2012 The Authors. Psychogeriatrics © 2012 Japanese Psychogeriatric Society.

  11. Novel Food Supplement "CP1" Improves Motor Deficit, Cognitive Function, and Neurodegeneration in Animal Model of Parkinson's Disease.

    PubMed

    Wattanathorn, Jintanaporn; Sutalangka, Chatchada

    2016-08-01

    Based on pivotal roles of oxidative stress, dopaminergic and cholinergic systems on the pathophysiology of Parkinson's disease (PD), the searching for functional food for patients attacked with PD from Cyperus rotundus and Zingiber officinale, the substances possessing antioxidant activity, and the suppression effects on monoamine oxidase B (MAO-B) and acetylcholinesterase (AChE) have been considered. In this study, we aimed to determine the effect of the combined extract of C. rotundus and Z. officinale (CP1) to improve motor and memory deficits, neurodegeneration, oxidative stress, and functions of both cholinergic and dopaminergic systems in the animal model of PD induced by 6-hydroxydopamine hydrochloride (6-OHDA). Male Wistar rats, weighing 180-220 g, were induced unilateral lesion at right substantia nigra by 6-OHDA and were orally given CP1 at doses of 100, 200, and 300 mg/kg body weight for 14 days after 6-OHDA injection. The results showed that the 6-OHDA rats treated with CP1 increased spatial memory, but decreased neurodegeneration, malondialdehyde level, and AChE activity in hippocampus. The decreased motor disorder and neurodegeneration in substantia nigra together with the enhanced catalase activity, but decreased MAO-B activity in striatum, were also observed. The memory enhancing effect of CP1 might occur through the improved oxidative stress and the enhanced cholinergic function, whereas the effect to improve motor disorder of CP1 might occur through the enhanced dopaminergic function in striatum by decreasing the degeneration of dopaminergic neurons and the suppression of MAO-B. Therefore, CP1 is the potential functional food against PD. However, further researches in clinical trial and drug interactions are essential.

  12. Effectiveness of Neuromuscular Electrical Stimulation on Patients With Dysphagia With Medullary Infarction.

    PubMed

    Zhang, Ming; Tao, Tao; Zhang, Zhao-Bo; Zhu, Xiao; Fan, Wen-Guo; Pu, Li-Jun; Chu, Lei; Yue, Shou-Wei

    2016-03-01

    To evaluate and compare the effects of neuromuscular electrical stimulation (NMES) acting on the sensory input or motor muscle in treating patients with dysphagia with medullary infarction. Prospective randomized controlled study. Department of physical medicine and rehabilitation. Patients with dysphagia with medullary infarction (N=82). Participants were randomized over 3 intervention groups: traditional swallowing therapy, sensory approach combined with traditional swallowing therapy, and motor approach combined with traditional swallowing therapy. Electrical stimulation sessions were for 20 minutes, twice a day, for 5d/wk, over a 4-week period. Swallowing function was evaluated by the water swallow test and Standardized Swallowing Assessment, oral intake was evaluated by the Functional Oral Intake Scale, quality of life was evaluated by the Swallowing-Related Quality of Life (SWAL-QOL) Scale, and cognition was evaluated by the Mini-Mental State Examination (MMSE). There were no statistically significant differences between the groups in age, sex, duration, MMSE score, or severity of the swallowing disorder (P>.05). All groups showed improved swallowing function (P≤.01); the sensory approach combined with traditional swallowing therapy group showed significantly greater improvement than the other 2 groups, and the motor approach combined with traditional swallowing therapy group showed greater improvement than the traditional swallowing therapy group (P<.05). SWAL-QOL Scale scores increased more significantly in the sensory approach combined with traditional swallowing therapy and motor approach combined with traditional swallowing therapy groups than in the traditional swallowing therapy group, and the sensory approach combined with traditional swallowing therapy and motor approach combined with traditional swallowing therapy groups showed statistically significant differences (P=.04). NMES that targets either sensory input or motor muscle coupled with traditional therapy is conducive to recovery from dysphagia and improves quality of life for patients with dysphagia with medullary infarction. A sensory approach appears to be better than a motor approach. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. [Neuromotor assessment of patients with spastic cerebral palsy treated with orthopedic surgery at the National Rehabilitation Institute].

    PubMed

    Piana, A R; Viñals, C L; Del Valle, M C; Arellano, M S; Redón, A T; Peralta, S C; León, S L

    2010-01-01

    Cerebral palsy (CP) is a static neurologic condition resulting from a brain lesion occurring before the completion of brain development. The goal of management is not cure, but increasing patients' functionality and improving their capabilities and maintaining their locomotion, cognitive development, social interaction and independence. The best results are obtained with an early and intensive management that includes physical and occupational therapy, medical and surgical treatments, mechanical aids and the management of concomitant conditions. To assess the neuromotor improvement in patients with spastic CP after surgical treatment at the National Rehabilitation Institute. Patients with a diagnosis of spastic CP who presented at the Pediatric Rehabilitation outpatient service were referred to the Joint CP Clinic from January 2007 to January 2008, and underwent surgical treatment of the pelvic limbs. They were assessed 3 times and underwent neuromotor tests with gross motor function measure (GMFM), which was rated with the gross motor function classification system (GMFCS). Most of the patients had improvement in the muscle tone and contracture assessments as well as in the GMFM, and their self-mobility increased one level. Significant improvements were seen in the muscle tone and contractures after surgery; the GMFM and the self-mobility levels in the GMFCS also improved. Multiple level surgery together with a postoperative physical therapy program results in considerable improvements in the gross motor function measure of patients with spastic CP.

  14. The impact of Kinesio taping technique on children with cerebral palsy

    PubMed Central

    Shamsoddini, Alireza; Rasti, Zabihallah; Kalantari, Minoo; Hollisaz, Mohammad Taghi; Sobhani, Vahid; Dalvand, Hamid; Bakhshandeh-Bali, Mohammad Kazem

    2016-01-01

    Cerebral palsy (CP) is the most common movement disorder in children that is associated with life-long disability and multiple impairments. The clinical manifestations of CP vary among children. CP is accompanied by a wide range of problems and has a broad spectrum. Children with CP demonstrate poor fine and dross motor function due to psychomotor disturbances. Early rehabilitation programs are essential for children with CP and should be appropriate for the age and functional condition of the patients. Kinesio taping (KT) technique is a relatively new technique applied in rehabilitation programs of CP. This article reviews the effects of KT techniques on improving motor skills in children with CP. In this study, we used keywords "cerebral palsy, Kinesio Tape, KT and Taping" in the national and international electronic databases between 1999 and 2016. Out of the 43 articles obtained, 21 studies met the inclusion criteria. There are several different applications about KT technique in children with CP. Review of the literature demonstrated that the impact of this technique on gross and fine motor function and dynamic activities is more effective than postural and static activities. Also this technique has more effectiveness in the child at higher developmental and motor stages. The majority of consistent findings showed that KT technique as part of a multimodal therapy program can be effective in the rehabilitation of children with CP to improve motor function and dynamic activities especially in higher developmental and motor stages. PMID:28435631

  15. Fetal Cortical Transplants in Adult Rats Subjected to Experimental Brain Injury

    PubMed Central

    Soares, Holly; McIntosh, Tracy K.

    1991-01-01

    Fetal cortical tissue was injected into injured adult rat brains following concussive fluid percussion (FP) brain injury. Rats subjected to moderate FP injury received E16 cortex transplant injections into lesioned motor cortex 2 days, 1 week, 2 weeks, and 4 weeks post injury. Histological assessment of transplant survival and integration was based upon Nissl staining, glial fibrillary acidic protein (GFAP) immunocytochemistry, and staining for acetylcholinesterase. In addition to histological analysis, the ability of the transplants to attenuate neurological motor deficits associated with concussive FP brain injury was also tested. Three subgroups of rats receiving transplant 1 week, 2 weeks, and 4 weeks post injury Were chosen for evaluation of neurological motor function. Fetal cortical tissue injected into the injury site 4 weeks post injury failed to incorporate with injured host brain, did not affect glial scar formation, and exhibited extensive GFAP immunoreactivity. No improvement in neurological motor function was observed in animals receiving transplants 4 weeks post injury. Conversely, transplants injected 2 days, 1 week, or 2 weeks post injury survived, incorporated with host brain, exhibited little GFAP immunoreactivity, and successfully attenuated glial scarring. However, no significant improvement in motor function was observed at the one week or two week time points. The inability of the transplants to attenuate motor function may indicate inappropriate host/transplant interaction. Our results demonstrate that there exists a temporal window in which fetal cortical transplants can attenuate glial scarring as well as be successfully incorporated into host brains following FP injury. PMID:1782253

  16. Neurorehabilitation with new functional electrical stimulation for hemiparetic upper extremity in stroke patients.

    PubMed

    Hara, Yukihiro

    2008-02-01

    In recent years, our understanding of motor learning, neuroplasticity, and functional recovery after the occurrence of brain lesion has grown significantly. New findings in basic neuroscience have stimulated research in motor rehabilitation. Repeated motor practice and motor activity in a real-world environment have been identified in several prospective studies as favorable for motor recovery in stroke patients. Electrical stimulation can be applied in a variety of ways to the hemiparetic upper extremity following stroke. In this paper, an overview of current research into clinical and therapeutic applications of functional electrical stimulation (FES) is presented. In particular, electromyography (EMG)-initiated electrical muscle stimulation--but not electrical muscle stimulation alone--improves the motor function of the hemiparetic arm and hand. Triggered electrical stimulation is reported to be more effective than untriggered electrical stimulation in facilitating upper extremity motor recovery following stroke. Power-assisted FES induces greater muscle contraction by electrical stimulation in proportion to the voluntary integrated EMG signal picked up, which is regulated by a closed-loop control system. Power-assisted FES and motor point block for antagonist muscles have been applied with good results as a new hybrid FES therapy in an outpatient rehabilitation clinic for patients with stroke. Furthermore, a daily home program therapy with power-assisted FES using new equipment has been able to effectively improve wrist and finger extension and shoulder flexion. Proprioceptive sensory feedback might play an important role in power-assisted FES therapy. Although many physiotherapeutic modalities have been established, conclusive proof of their benefit and physiological models of their effects on neuronal structures and processes are still missing. A multichannel near-infrared spectroscopy study to noninvasively and dynamically measure hemoglobin levels in the brain during functional activity has shown that cerebral blood flow in the sensory-motor cortex on the injured side is higher during a power-assisted FES session than during simple active movement or simple electrical stimulation. Nevertheless, evidence-based strategies for motor rehabilitation are more easily available, particularly for patients with hemiparesis.

  17. Transplantation of motoneurons derived from MASH1-transfected mouse ES cells reconstitutes neural networks and improves motor function in hemiplegic mice.

    PubMed

    Ikeda, Ritsuko; Kurokawa, Manae S; Chiba, Shunmei; Yoshikawa, Hideshi; Hashimoto, Takuo; Tadokoro, Mamoru; Suzuki, Noboru

    2004-10-01

    Mouse embryonic stem (ES) cells were transfected with a MASH1 expression vector and G418-resistant cells were selected. The MASH1-transfected cells became neuron-like appearance and expressed betaIIItubulin and panNCAM. Glial fibrillary acidic protein (GFAP) and galactocerebroside (GalC)-expressing cells were rarely detected. Half of the neural cells differentiated into the Islet1+ motoneuron lineage. Thus, we obtained motoneuron lineage-enriched neuronal cells by transfection of ES cells with MASH1. A hemiplegic model of mice was developed by cryogenic injury of the motor cortex, and motoneuron lineage-enriched neuronal cells were transplanted underneath the injured motor cortex neighboring the periventricular region. The motor function of the recipients was assessed by a beam walking and rotarod tests, whereby the results gradually improved, but little improvement was observed in vehicle injected control mice. We found that the grafted cells not only remained close to the implantation site, but also exhibited substantial migration, penetrating into the damaged lesion in a directed manner up to the cortical region. Grafted neuronal cells that had migrated into the cortex were elongated axon-positive for neurofilament middle chain (NFM). Synaptophysin immunostaining showed a positive staining pattern around the graft, suggesting that the transplanted neurons interacted with the recipient neurons to form a neural network. Our study suggests that the motoneuron lineage can be induced from ES cells, and grafted cells adapt to the host environment and can reconstitute a neural network to improve motor function of a paralyzed limb.

  18. Brain plasticity in Parkinson's disease with freezing of gait induced by action observation training.

    PubMed

    Agosta, Federica; Gatti, Roberto; Sarasso, Elisabetta; Volonté, Maria Antonietta; Canu, Elisa; Meani, Alessandro; Sarro, Lidia; Copetti, Massimiliano; Cattrysse, Erik; Kerckhofs, Eric; Comi, Giancarlo; Falini, Andrea; Filippi, Massimo

    2017-01-01

    Gait disorders represent a therapeutic challenge in Parkinson's disease (PD). This study investigated the efficacy of 4-week action observation training (AOT) on disease severity, freezing of gait and motor abilities in PD, and evaluated treatment-related brain functional changes. 25 PD patients with freezing of gait were randomized into two groups: AOT (action observation combined with practicing the observed actions) and "Landscape" (same physical training combined with landscape-videos observation). At baseline and 4-week, patients underwent clinical evaluation and fMRI. Clinical assessment was repeated at 8-week. At 4-week, both groups showed reduced freezing of gait severity, improved walking speed and quality of life. Moreover, AOT was associated with reduced motor disability and improved balance. AOT group showed a sustained positive effect on motor disability, walking speed, balance and quality of life at 8-week, with a trend toward a persisting reduced freezing of gait severity. At 4-week vs. baseline, AOT group showed increased recruitment of fronto-parietal areas during fMRI tasks, while the Landscape group showed a reduced fMRI activity of the left postcentral and inferior parietal gyri and right rolandic operculum and supramarginal gyrus. In AOT group, functional brain changes were associated with clinical improvements at 4-week and predicted clinical evolution at 8-week. AOT has a more lasting effect in improving motor function, gait and quality of life in PD patients relative to physical therapy alone. AOT-related performance gains are associated with an increased recruitment of motor regions and fronto-parietal mirror neuron and attentional control areas.

  19. Upslope treadmill exercise enhances motor axon regeneration but not functional recovery following peripheral nerve injury

    PubMed Central

    Cannoy, Jill; Crowley, Sam; Jarratt, Allen; Werts, Kelly LeFevere; Osborne, Krista; Park, Sohee

    2016-01-01

    Following peripheral nerve injury, moderate daily exercise conducted on a level treadmill results in enhanced axon regeneration and modest improvements in functional recovery. If the exercise is conducted on an upwardly inclined treadmill, even more motor axons regenerate successfully and reinnervate muscle targets. Whether this increased motor axon regeneration also results in greater improvement in functional recovery from sciatic nerve injury was studied. Axon regeneration and muscle reinnervation were studied in Lewis rats over an 11 wk postinjury period using stimulus evoked electromyographic (EMG) responses in the soleus muscle of awake animals. Motor axon regeneration and muscle reinnervation were enhanced in slope-trained rats. Direct muscle (M) responses reappeared faster in slope-trained animals than in other groups and ultimately were larger than untreated animals. The amplitude of monosynaptic H reflexes recorded from slope-trained rats remained significantly smaller than all other groups of animals for the duration of the study. The restoration of the amplitude and pattern of locomotor EMG activity in soleus and tibialis anterior and of hindblimb kinematics was studied during treadmill walking on different slopes. Slope-trained rats did not recover the ability to modulate the intensity of locomotor EMG activity with slope. Patterned EMG activity in flexor and extensor muscles was not noted in slope-trained rats. Neither hindblimb length nor limb orientation during level, upslope, or downslope walking was restored in slope-trained rats. Slope training enhanced motor axon regeneration but did not improve functional recovery following sciatic nerve transection and repair. PMID:27466130

  20. Change in basic motor abilities, quality of movement and everyday activities following intensive, goal-directed, activity-focused physiotherapy in a group setting for children with cerebral palsy.

    PubMed

    Sorsdahl, Anne Brit; Moe-Nilssen, Rolf; Kaale, Helga K; Rieber, Jannike; Strand, Liv Inger

    2010-04-27

    The effects of intensive training for children with cerebral palsy (CP) remain uncertain. The aim of the study was to investigate the impact on motor function, quality of movements and everyday activities of three hours of goal-directed activity-focused physiotherapy in a group setting, five days a week for a period of three weeks. A repeated measures design was applied with three baseline and two follow up assessments; immediately and three weeks after intervention. Twenty-two children with hemiplegia (n = 7), diplegia (n = 11), quadriplegia (n = 2) and ataxia (n = 2) participated, age ranging 3-9 y. All levels of Gross Motor Function Classification System (GMFCS) and Manual Ability Classification System (MACS) were represented. Parents and professionals participated in goal setting and training. ANOVA was used to analyse change over repeated measures. A main effect of time was shown in the primary outcome measure; Gross Motor Function Measure-66 (GMFM-66), mean change being 4.5 (p < 0.01) from last baseline to last follow up assessment. An interaction between time and GMFCS-levels was found, implying that children classified to GMFCS-levels I-II improved more than children classified to levels III-V. There were no main or interaction effects of age or anti-spastic medication. Change scores in the Pediatric Evaluation of Disability Inventory (PEDI) ranged 2.0-6.7, p < 0.01 in the Self-care domain of the Functional Skills dimension, and the Self-care and Mobility domains of the Caregiver Assistance dimension. The children's individual goals were on average attained, Mean Goal Attainment Scaling (GAS) T-score being 51.3. Non-significant improved scores on the Gross Motor Performance Measure (GMPM) and the Quality of Upper Extremities Skills Test (QUEST) were demonstrated. Significant improvement in GMPM scores were found in improved items of the GMFM, not in items that maintained the same score. Basic motor abilities and self-care improved in young children with CP after goal-directed activity-focused physiotherapy with involvement of their local environment, and their need for caregiver assistance in self-care and mobility decreased. The individualized training within a group context during a limited period of time was feasible and well-tolerated. The coherence between acquisition of basic motor abilities and quality of movement should be further examined.

  1. The effects of music-supported therapy on motor, cognitive, and psychosocial functions in chronic stroke.

    PubMed

    Fujioka, Takako; Dawson, Deirdre R; Wright, Rebecca; Honjo, Kie; Chen, Joyce L; Chen, J Jean; Black, Sandra E; Stuss, Donald T; Ross, Bernhard

    2018-05-24

    Neuroplasticity accompanying learning is a key mediator of stroke rehabilitation. Training in playing music in healthy populations and patients with movement disorders requires resources within motor, sensory, cognitive, and affective systems, and coordination among these systems. We investigated effects of music-supported therapy (MST) in chronic stroke on motor, cognitive, and psychosocial functions compared to conventional physical training (GRASP). Twenty-eight adults with unilateral arm and hand impairment were randomly assigned to MST (n = 14) and GRASP (n = 14) and received 30 h of training over a 10-week period. The assessment was conducted at four time points: before intervention, after 5 weeks, after 10 weeks, and 3 months after training completion. As for two of our three primary outcome measures concerning motor function, all patients slightly improved in Chedoke-McMaster Stroke Assessment hand score, while the time to complete Action Research Arm Test became shorter in the MST group. The third primary outcome measure for well-being, Stroke Impact Scale, was improved for emotion and social communication earlier in MST and coincided with the improved executive function for task switching and music rhythm perception. The results confirmed previous findings and expanded the potential usage of MST for enhancing quality of life in community-dwelling chronic-stage survivors. © 2018 New York Academy of Sciences.

  2. Periconceptional Folic Acid Supplementation Benefit to Development of Early Sensory-Motor Function through Increase DNA Methylation in Rat Offspring

    PubMed Central

    Li, Wen; Li, Zhenshu; Li, Shou; Wang, Xinyan; Wilson, John X.; Huang, Guowei

    2018-01-01

    Periconceptional maternal folate levels may alter DNA methylation patterns and health outcomes in offspring. We hypothesized that maternal folic acid supplementation alters fetal neural development through DNA methylation in the fetal brain. Twenty-eight rats were randomly assigned to four groups: three groups of the female rats were fed folate-normal, folate-deficient or folate-supplemented diets from seven days before mating to delivery. In another group, folic acid supplementation diet short-period group was fed a folate-normal diet, except for 10 days (begin mating) when this group was fed a folate-supplemented diet. After delivery, the diets were changed to folate-normal diet for all four groups. The cliff avoidance and forelimb grip tests were used to assess sensory motor function of rat offspring. The results indicate that maternal folic acid supplementation improved the early development of sensory-motor function in offspring. Maternal folic acid supplementation increased the methylation potential, global DNA methylation (5-mC) and DNA methyltransferase expression and activity in the brains of the offspring. In conclusion, maternal folic acid supplementation increases DNA methylation pattern in offspring brain and improves the early development of sensory-motor function. PMID:29494536

  3. Motor unit recruitment by size does not provide functional advantages for motor performance

    PubMed Central

    Dideriksen, Jakob L; Farina, Dario

    2013-01-01

    It is commonly assumed that the orderly recruitment of motor units by size provides a functional advantage for the performance of movements compared with a random recruitment order. On the other hand, the excitability of a motor neuron depends on its size and this is intrinsically linked to its innervation number. A range of innervation numbers among motor neurons corresponds to a range of sizes and thus to a range of excitabilities ordered by size. Therefore, if the excitation drive is similar among motor neurons, the recruitment by size is inevitably due to the intrinsic properties of motor neurons and may not have arisen to meet functional demands. In this view, we tested the assumption that orderly recruitment is necessarily beneficial by determining if this type of recruitment produces optimal motor output. Using evolutionary algorithms and without any a priori assumptions, the parameters of neuromuscular models were optimized with respect to several criteria for motor performance. Interestingly, the optimized model parameters matched well known neuromuscular properties, but none of the optimization criteria determined a consistent recruitment order by size unless this was imposed by an association between motor neuron size and excitability. Further, when the association between size and excitability was imposed, the resultant model of recruitment did not improve the motor performance with respect to the absence of orderly recruitment. A consistent observation was that optimal solutions for a variety of criteria of motor performance always required a broad range of innervation numbers in the population of motor neurons, skewed towards the small values. These results indicate that orderly recruitment of motor units in itself does not provide substantial functional advantages for motor control. Rather, the reason for its near-universal presence in human movements is that motor functions are optimized by a broad range of innervation numbers. PMID:24144879

  4. Motor unit recruitment by size does not provide functional advantages for motor performance.

    PubMed

    Dideriksen, Jakob L; Farina, Dario

    2013-12-15

    It is commonly assumed that the orderly recruitment of motor units by size provides a functional advantage for the performance of movements compared with a random recruitment order. On the other hand, the excitability of a motor neuron depends on its size and this is intrinsically linked to its innervation number. A range of innervation numbers among motor neurons corresponds to a range of sizes and thus to a range of excitabilities ordered by size. Therefore, if the excitation drive is similar among motor neurons, the recruitment by size is inevitably due to the intrinsic properties of motor neurons and may not have arisen to meet functional demands. In this view, we tested the assumption that orderly recruitment is necessarily beneficial by determining if this type of recruitment produces optimal motor output. Using evolutionary algorithms and without any a priori assumptions, the parameters of neuromuscular models were optimized with respect to several criteria for motor performance. Interestingly, the optimized model parameters matched well known neuromuscular properties, but none of the optimization criteria determined a consistent recruitment order by size unless this was imposed by an association between motor neuron size and excitability. Further, when the association between size and excitability was imposed, the resultant model of recruitment did not improve the motor performance with respect to the absence of orderly recruitment. A consistent observation was that optimal solutions for a variety of criteria of motor performance always required a broad range of innervation numbers in the population of motor neurons, skewed towards the small values. These results indicate that orderly recruitment of motor units in itself does not provide substantial functional advantages for motor control. Rather, the reason for its near-universal presence in human movements is that motor functions are optimized by a broad range of innervation numbers.

  5. Comprehensive Hand Repetitive Intensive Strengthening Training (CHRIST)-induced morphological changes in muscle size and associated motor improvement in a child with cerebral palsy: an experimenter-blind study.

    PubMed

    Lee, Dong Ryul; You, Joshua H; Lee, Nam Gi; Oh, Jin Hwan; Cha, You Jin

    2009-01-01

    This case study was conducted to determine Comprehensive Hand Repetitive Intensive Strengthening Training (CHRIST)-induced morphological changes in the commonly affected extensor carpi radialis (ECR) and triceps brachii (TRI) muscle and associated muscle strength and motor performance in a child with hemiparetic cerebral palsy (CP) using standardized clinical tests and ultrasound imaging. A single case study with pre-/post-test. A 4.9-year-old female, diagnosed with hemiparetic CP. The child received a 5-week course of CHRIST course, comprising of 60-minute periods a day, five times a week. A real-time ultrasound imaging was performed to determine the CHRIST-induced changes in cross-sectional area (CSA) of the ECR and TRI. Clinical tests including the modified Wolf Motor function test (WMFT), the modified Jebsen-taylor hand function test (Jebsen hand) and the modified Pediatric Motor Activity Log (PMAL) questionnaire were used to compare the intervention-related changes in motor performance in upper extremity. Ultrasound imaging data showed that the CSAs of both ECR and TRI muscles of the affected upper limb at relaxation and contraction states were enhanced and these therapy-induced morphological changes were associated with enhanced muscle strength and gross motor performance in reaching and grasping skills. Our results suggest that the CHRIST is effective in treating muscle weakness and motor function in a child with hemiparetic CP. This is the first evidence in literature that might shed light on the therapeutic efficacy of our novel intervention on muscle size, associated muscle strength and motor improvement.

  6. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?

    PubMed

    Hummel, Friedhelm C; Cohen, Leonardo G

    2006-08-01

    Motor impairment resulting from chronic stroke can have extensive physical, psychological, financial, and social implications despite available neurorehabilitative treatments. Recent studies in animals showed that direct epidural stimulation of the primary motor cortex surrounding a small infarct in the lesioned hemisphere (M1(lesioned hemisphere)) elicits improvements in motor function. In human beings, proof of principle studies from different laboratories showed that non-invasive transcranial magnetic stimulation and direct current stimulation that upregulate excitability within M1(lesioned hemisphere) or downregulate excitability in the intact hemisphere (M1(intact hemisphere)) results in improvement in motor function in patients with stroke. Possible mechanisms mediating these effects can include the correction of abnormally persistent interhemispheric inhibitory drive from M1(intact hemisphere) to M1(lesioned hemisphere) in the process of generation of voluntary movements by the paretic hand, a disorder correlated with the magnitude of impairment. In this paper we review these mechanistically oriented interventional approaches. WHAT NEXT?: These findings suggest that transcranial magnetic stimulation and transcranial direct current stimulation could develop into useful adjuvant strategies in neurorehabilitation but have to be further assessed in multicentre clinical trials.

  7. Effect of cerebrolysin on gross motor function of children with cerebral palsy: a clinical trial.

    PubMed

    Nasiri, Jafar; Safavifar, Faezeh

    2017-06-01

    Gross motor dysfunction is considered as the most challenging problem in cerebral palsy (CP). It is proven that improvement of gross motor function could reduce CP-related disabilities and provide better quality of life in this group of patients. Therefore, the aim of this trial is to evaluate the effectiveness of cerebrolysin (CBL) on gross motor function of children with CP who are undergoing treatment. In this clinical trial study, paediatric patients aged 18-75 months with spastic diplegic or quadriplegic cerebral palsy, who were under rehabilitation therapy, were selected and randomly allocated in control and CBL groups. Patients in CBL group underwent treatment with standard rehabilitation therapy plus CBL. The latter was administrated intramuscularly as a single daily dose of 0.1 cc/kg for 10 days and then continued weekly for 4 months. Gross motor function of participants in the two studied groups, before and after trial, was evaluated and compared using the validated Persian version of gross motor function classification system-expanded and revised (GMFCS-E&R). During this trial, 108 patients with CP were evaluated for eligibility. From these, 50 patients were enrolled and randomly allocated in the CBL and control groups. Four months after trial, the mean level of GMFCS decreased significantly in the two groups (P < 0.05). However, it was significantly lower in the CBL group than in the control group (2.1 vs. 3.16, P < 0.05). The results of this trial indicated that CBL could improve gross motor function in patients with CP. This finding is consistent with neurotrophic and neuroprotective effects of CBL, which have been reported in various clinical trials in other neurological disorders. Further studies are recommended to establish the value of continued neuroprotection and to determine the pharmacokinetics/dynamics of CBL in this group of patients.

  8. Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle.

    PubMed

    Saposnik, Gustavo; Teasell, Robert; Mamdani, Muhammad; Hall, Judith; McIlroy, William; Cheung, Donna; Thorpe, Kevin E; Cohen, Leonardo G; Bayley, Mark

    2010-07-01

    Hemiparesis resulting in functional limitation of an upper extremity is common among stroke survivors. Although existing evidence suggests that increasing intensity of stroke rehabilitation therapy results in better motor recovery, limited evidence is available on the efficacy of virtual reality for stroke rehabilitation. In this pilot, randomized, single-blinded clinical trial with 2 parallel groups involving stroke patients within 2 months, we compared the feasibility, safety, and efficacy of virtual reality using the Nintendo Wii gaming system (VRWii) versus recreational therapy (playing cards, bingo, or "Jenga") among those receiving standard rehabilitation to evaluate arm motor improvement. The primary feasibility outcome was the total time receiving the intervention. The primary safety outcome was the proportion of patients experiencing intervention-related adverse events during the study period. Efficacy, a secondary outcome measure, was evaluated with the Wolf Motor Function Test, Box and Block Test, and Stroke Impact Scale at 4 weeks after intervention. Overall, 22 of 110 (20%) of screened patients were randomized. The mean age (range) was 61.3 (41 to 83) years. Two participants dropped out after a training session. The interventions were successfully delivered in 9 of 10 participants in the VRWii and 8 of 10 in the recreational therapy arm. The mean total session time was 388 minutes in the recreational therapy group compared with 364 minutes in the VRWii group (P=0.75). There were no serious adverse events in any group. Relative to the recreational therapy group, participants in the VRWii arm had a significant improvement in mean motor function of 7 seconds (Wolf Motor Function Test, 7.4 seconds; 95% CI, -14.5, -0.2) after adjustment for age, baseline functional status (Wolf Motor Function Test), and stroke severity. VRWii gaming technology represents a safe, feasible, and potentially effective alternative to facilitate rehabilitation therapy and promote motor recovery after stroke.

  9. Effectiveness of Virtual Reality Using Wii Gaming Technology in Stroke Rehabilitation

    PubMed Central

    Saposnik, Gustavo; Teasell, Robert; Mamdani, Muhammad; Hall, Judith; McIlroy, William; Cheung, Donna; Thorpe, Kevin E.; Cohen, Leonardo G.; Bayley, Mark

    2016-01-01

    Background and Purpose Hemiparesis resulting in functional limitation of an upper extremity is common among stroke survivors. Although existing evidence suggests that increasing intensity of stroke rehabilitation therapy results in better motor recovery, limited evidence is available on the efficacy of virtual reality for stroke rehabilitation. Methods In this pilot, randomized, single-blinded clinical trial with 2 parallel groups involving stroke patients within 2 months, we compared the feasibility, safety, and efficacy of virtual reality using the Nintendo Wii gaming system (VRWii) versus recreational therapy (playing cards, bingo, or “Jenga”) among those receiving standard rehabilitation to evaluate arm motor improvement. The primary feasibility outcome was the total time receiving the intervention. The primary safety outcome was the proportion of patients experiencing intervention-related adverse events during the study period. Efficacy, a secondary outcome measure, was evaluated with the Wolf Motor Function Test, Box and Block Test, and Stroke Impact Scale at 4 weeks after intervention. Results Overall, 22 of 110 (20%) of screened patients were randomized. The mean age (range) was 61.3 (41 to 83) years. Two participants dropped out after a training session. The interventions were successfully delivered in 9 of 10 participants in the VRWii and 8 of 10 in the recreational therapy arm. The mean total session time was 388 minutes in the recreational therapy group compared with 364 minutes in the VRWii group (P=0.75). There were no serious adverse events in any group. Relative to the recreational therapy group, participants in the VRWii arm had a significant improvement in mean motor function of 7 seconds (Wolf Motor Function Test, 7.4 seconds; 95% CI, −14.5, −0.2) after adjustment for age, baseline functional status (Wolf Motor Function Test), and stroke severity. Conclusions VRWii gaming technology represents a safe, feasible, and potentially effective alternative to facilitate rehabilitation therapy and promote motor recovery after stroke. PMID:20508185

  10. Musical training sharpens and bonds ears and tongue to hear speech better.

    PubMed

    Du, Yi; Zatorre, Robert J

    2017-12-19

    The idea that musical training improves speech perception in challenging listening environments is appealing and of clinical importance, yet the mechanisms of any such musician advantage are not well specified. Here, using functional magnetic resonance imaging (fMRI), we found that musicians outperformed nonmusicians in identifying syllables at varying signal-to-noise ratios (SNRs), which was associated with stronger activation of the left inferior frontal and right auditory regions in musicians compared with nonmusicians. Moreover, musicians showed greater specificity of phoneme representations in bilateral auditory and speech motor regions (e.g., premotor cortex) at higher SNRs and in the left speech motor regions at lower SNRs, as determined by multivoxel pattern analysis. Musical training also enhanced the intrahemispheric and interhemispheric functional connectivity between auditory and speech motor regions. Our findings suggest that improved speech in noise perception in musicians relies on stronger recruitment of, finer phonological representations in, and stronger functional connectivity between auditory and frontal speech motor cortices in both hemispheres, regions involved in bottom-up spectrotemporal analyses and top-down articulatory prediction and sensorimotor integration, respectively.

  11. Effects of strength training program on hip extensors and knee extensors strength of lower limb in children with spastic diplegic cerebral palsy.

    PubMed

    Aye, Thanda; Thein, Soe; Hlaing, Thaingi

    2016-01-01

    [Purpose] The purpose of this study was to determine whether strength training programs for hip extensors and knee extensors improve gross motor function of children with cerebral palsy in Myanmar. [Subjects and Methods] Forty children (25 boys and 15 girls, mean age: 6.07 ± 2.74 years) from National Rehabilitation Hospital, Yangon, Myanmar, who had been diagnosed with spastic diplegic cerebral palsy, Gross Motor Classification System I and II participated in a 6-week strength training program (45 minutes per day, 3 days per week) on hip and knee extensors. Assessment was made, before and after intervention, of the amount of training weight in pounds, as well as Gross Motor Function Measure (GMFM) dimensions D (standing) and E (walking, running, jumping). [Results] All scores had increased significantly after the strength-training program. [Conclusion] A simple method of strength-training program for hip and knee extensors might lead to improved muscle strength and gross motor function in children with spastic diplegic cerebral palsy.

  12. Effects of strength training program on hip extensors and knee extensors strength of lower limb in children with spastic diplegic cerebral palsy

    PubMed Central

    Aye, Thanda; Thein, Soe; Hlaing, Thaingi

    2016-01-01

    [Purpose] The purpose of this study was to determine whether strength training programs for hip extensors and knee extensors improve gross motor function of children with cerebral palsy in Myanmar. [Subjects and Methods] Forty children (25 boys and 15 girls, mean age: 6.07 ± 2.74 years) from National Rehabilitation Hospital, Yangon, Myanmar, who had been diagnosed with spastic diplegic cerebral palsy, Gross Motor Classification System I and II participated in a 6-week strength training program (45 minutes per day, 3 days per week) on hip and knee extensors. Assessment was made, before and after intervention, of the amount of training weight in pounds, as well as Gross Motor Function Measure (GMFM) dimensions D (standing) and E (walking, running, jumping). [Results] All scores had increased significantly after the strength-training program. [Conclusion] A simple method of strength-training program for hip and knee extensors might lead to improved muscle strength and gross motor function in children with spastic diplegic cerebral palsy. PMID:27065561

  13. Musical training sharpens and bonds ears and tongue to hear speech better

    PubMed Central

    Du, Yi; Zatorre, Robert J.

    2017-01-01

    The idea that musical training improves speech perception in challenging listening environments is appealing and of clinical importance, yet the mechanisms of any such musician advantage are not well specified. Here, using functional magnetic resonance imaging (fMRI), we found that musicians outperformed nonmusicians in identifying syllables at varying signal-to-noise ratios (SNRs), which was associated with stronger activation of the left inferior frontal and right auditory regions in musicians compared with nonmusicians. Moreover, musicians showed greater specificity of phoneme representations in bilateral auditory and speech motor regions (e.g., premotor cortex) at higher SNRs and in the left speech motor regions at lower SNRs, as determined by multivoxel pattern analysis. Musical training also enhanced the intrahemispheric and interhemispheric functional connectivity between auditory and speech motor regions. Our findings suggest that improved speech in noise perception in musicians relies on stronger recruitment of, finer phonological representations in, and stronger functional connectivity between auditory and frontal speech motor cortices in both hemispheres, regions involved in bottom-up spectrotemporal analyses and top-down articulatory prediction and sensorimotor integration, respectively. PMID:29203648

  14. The impacts of hinged and solid ankle-foot orthoses on standing and walking in children with spastic diplegia.

    PubMed

    Dalvand, Hamid; Dehghan, Leila; Feizi, Awat; Hosseini, Seyed Ali; Amirsalari, Susan

    2013-01-01

    The purpose of this study was to examine the impacts of hinged and solid anklefoot orthoses (AFOs) on standing and walking abilities in children with spastic diplegia. In a quasi-experimental design, 30 children with spastic diplegia, aged 4-6 years were recruited. They were matched in terms of age, IQ, and level of GMFCS E&R. Children were randomly assigned into 3 groups: a hinged AFO group (n=10) plus occupational therapy (OT), a solid AFO group (n=10) plus OT, a control group who used only OT for three months. Gross motor abilities were measured using Gross Motor Measure Function (GMFM). We obtained statistically significant differences in the values between baseline and after treatment in all groups. The groups were also significantly different in total GMFM after intervention. Furthermore, there were differences between hinged AFOs and solid AFOs groups, and between hinged AFOs and control groups. We concluded that gross motor function was improved in all groups; however, hinged AFOs group appears to improve the gross motor function better than solid AFOs and control groups.

  15. Effects of low-frequency repetitive transcranial magnetic stimulation and neuromuscular electrical stimulation on upper extremity motor recovery in the early period after stroke: a preliminary study.

    PubMed

    Tosun, Aliye; Türe, Sabiha; Askin, Ayhan; Yardimci, Engin Ugur; Demirdal, Secil Umit; Kurt Incesu, Tülay; Tosun, Ozgur; Kocyigit, Hikmet; Akhan, Galip; Gelal, Fazıl Mustafa

    2017-07-01

    To assess the efficacy of inhibitory repetitive transcranial magnetic stimulation (rTMS) and neuromuscular electrical stimulation (NMES) on upper extremity motor function in patients with acute/subacute ischemic stroke. Twenty-five ischemic acute/subacute stroke subjects were enrolled in this randomized controlled trial. Experimental group 1 received low frequency (LF) rTMS to the primary motor cortex of the unaffected side + physical therapy (PT) including activities to improve strength, flexibility, transfers, posture, balance, coordination, and activities of daily living, mainly focusing on upper limb movements; experimental group 2 received the same protocol combined with NMES to hand extensor muscles; and the control group received only PT. Functional magnetic resonance imaging (fMRI) scan was used to evaluate the activation or inhibition of the affected and unaffected primary motor cortex. No adverse effect was reported. Most of the clinical outcome scores improved significantly in all groups, however no statistically significant difference was found between groups due to the small sample sizes. The highest percent improvement scores were observed in TMS + NMES group (varying between 48 and 99.3%) and the lowest scores in control group (varying between 13.1 and 28.1%). Hand motor recovery was significant in both experimental groups while it did not change in control group. Some motor cortex excitability changes were also observed in fMRI. LF-rTMS with or without NMES seems to facilitate the motor recovery in the paretic hand of patients with acute/subacute ischemic stroke. TMS or the combination of TMS + NMES may be a promising additional therapy in upper limb motor training. Further studies with larger numbers of patients are needed to establish their effectiveness in upper limb motor rehabilitation of stroke.

  16. Multifocal repetitive TMS for motor and mood symptoms of Parkinson disease

    PubMed Central

    Brys, Miroslaw; Fox, Michael D.; Agarwal, Shashank; Biagioni, Milton; Dacpano, Geraldine; Kumar, Pawan; Pirraglia, Elizabeth; Chen, Robert; Wu, Allan; Fernandez, Hubert; Shukla, Aparna Wagle; Lou, Jau-Shin; Gray, Zachary; Simon, David K.; Di Rocco, Alessandro

    2016-01-01

    Objective: To assess whether multifocal, high-frequency repetitive transcranial magnetic stimulation (rTMS) of motor and prefrontal cortex benefits motor and mood symptoms in patients with Parkinson disease (PD). Methods: Patients with PD and depression were enrolled in this multicenter, double-blind, sham-controlled, parallel-group study of real or realistic (electric) sham rTMS. Patients were randomized to 1 of 4 groups: bilateral M1 ( + sham dorsolateral prefrontal cortex [DLPFC]), DLPFC ( + sham M1), M1 + DLPFC, or double sham. The TMS course consisted of 10 daily sessions of 2,000 stimuli for the left DLPFC and 1,000 stimuli for each M1 (50 × 4-second trains of 40 stimuli at 10 Hz). Patients were evaluated at baseline, at 1 week, and at 1, 3, and 6 months after treatment. Primary endpoints were changes in motor function assessed with the Unified Parkinson's Disease Rating Scale-III and in mood with the Hamilton Depression Rating Scale at 1 month. Results: Of the 160 patients planned for recruitment, 85 were screened, 61 were randomized, and 50 completed all study visits. Real M1 rTMS resulted in greater improvement in motor function than sham at the primary endpoint (p < 0.05). There was no improvement in mood in the DLPFC group compared to the double-sham group, as well as no benefit to combining M1 and DLPFC stimulation for either motor or mood symptoms. Conclusions: In patients with PD with depression, M1 rTMS is an effective treatment of motor symptoms, while mood benefit after 2 weeks of DLPFC rTMS is not better than sham. Targeting both M1 and DLPFC in each rTMS session showed no evidence of synergistic effects. ClinicalTrials.gov identifier: NCT01080794. Classification of evidence: This study provides Class I evidence that in patients with PD with depression, M1 rTMS leads to improvement in motor function while DLPFC rTMS does not lead to improvement in depression compared to sham rTMS. PMID:27708129

  17. Cycling induced by electrical stimulation improves muscle activation and symmetry during pedaling in hemiparetic patients.

    PubMed

    Ambrosini, Emilia; Ferrante, Simona; Ferrigno, Giancarlo; Molteni, Franco; Pedrocchi, Alessandra

    2012-05-01

    A randomized controlled trial, involving 35 post-acute hemiparetic patients, demonstrated that a four-week treatment of cycling induced by functional electrical stimulation (FES-cycling) promotes motor recovery. Analyzing additional data acquired during that study, the present work investigated whether these improvements were associated to changes in muscle strength and motor coordination. Participants were randomized to receive FES-cycling or placebo FES-cycling. Clinical outcome measures were: the Motricity Index (MI), the gait speed, the electromyography activation of the rectus femoris and biceps femoris, and the mechanical work produced by each leg during voluntary pedaling. To provide a comparison with normal values, healthy adults also carried out the pedaling test. Patients were evaluated before, after training, and at follow-up visits. A significant treatment effect in favor of FES-treated patients was found in terms of MI scores and unbalance in mechanical works, while differences in gait speed were not significant (ANCOVA). Significant improvements in the activation of the paretic muscles were highlighted in the FES group, while no significant change was found in the placebo group (Friedman test). Our findings suggested that improvements in motor functions induced by FES-cycling training were associated with a more symmetrical involvement of the two legs and an improved motor coordination.

  18. Engaging cervical spinal cord networks to re-enable volitional control of hand function in tetraplegic patients

    PubMed Central

    Lu, Daniel C.; Edgerton, V. Reggie; Modaber, Morteza; AuYong, Nicholas; Morikawa, Erika; Zdunowski, Sharon; Sarino, Melanie E.; Nuwer, Marc R.; Roy, Roland R.; Gerasimenko, Yury

    2016-01-01

    Background Paralysis of the upper-limbs from spinal cord injury results in an enormous loss of independence in an individual’s daily life. Meaningful improvement in hand function is rare after one year of tetraparesis. Therapeutic developments that result in even modest gains in hand volitional function will significantly impact the quality of life for patients afflicted with high cervical injury. The ability to neuromodulate the lumbosacral spinal circuitry via epidural stimulation in regaining postural function and volitional control of the legs has been recently shown. A key question is whether a similar neuromodulatory strategy can be used to improve volitional motor control of the upper-limbs, i.e., performance of motor tasks considered to be less “automatic” than posture and locomotion. In this study, the effects of cervical epidural stimulation on hand function are characterized in subjects with chronic cervical cord injury. Objective Herein we show that epidural stimulation can be applied to the chronic injured human cervical spinal cord to promote volitional hand function. Methods and results Two subjects implanted with an cervical epidural electrode array demonstrated improved hand strength (approximately three-fold) and volitional hand control in the presence of epidural stimulation. Conclusions The present data are sufficient to suggest that hand motor function in individuals with chronic tetraplegia can be improved with cervical cord neuromodulation and thus should be comprehensively explored as a possible clinical intervention. PMID:27198185

  19. Salvage of cervical motor radiculopathy using peripheral nerve transfer reconstruction.

    PubMed

    Afshari, Fardad T; Hossain, Taushaba; Miller, Caroline; Power, Dominic M

    2018-05-10

    Motor nerve transfer surgery involves re-innervation of important distal muscles using either an expendable motor branch or a fascicle from an adjacent functioning nerve. This technique is established as part of the reconstructive algorithm for traumatic brachial plexus injuries. The reproducible outcomes of motor nerve transfer surgery have resulted in exploration of the application of this technique to other paralysing conditions. The objective of this study is to report feasibility and increase awareness about nerve transfer as a method of improving upper limb function in patients with cervical motor radiculopathy of different aetiology. In this case series we report 3 cases with different modes of injury to the spinal nerve roots with significant and residual motor radiculopathy that have been successfully treated with nerve transfer surgery with good functional outcomes. The cases involved iatrogenic nerve root injury, tumour related root compression and degenerative root compression. Nerve transfer surgery may offer reliable reconstruction for paralysis when there has been no recovery following a period of conservative management. However the optimum timing of nerve transfer intervention is not yet identified for patients with motor radiculopathy.

  20. Endurance Exercise as an “Endogenous” Neuro-enhancement Strategy to Facilitate Motor Learning

    PubMed Central

    Taubert, Marco; Villringer, Arno; Lehmann, Nico

    2015-01-01

    Endurance exercise improves cardiovascular and musculoskeletal function and may also increase the information processing capacities of the brain. Animal and human research from the past decade demonstrated widespread exercise effects on brain structure and function at the systems-, cellular-, and molecular level of brain organization. These neurobiological mechanisms may explain the well-established positive influence of exercise on performance in various behavioral domains but also its contribution to improved skill learning and neuroplasticity. With respect to the latter, only few empirical and theoretical studies are available to date. The aim of this review is (i) to summarize the existing neurobiological and behavioral evidence arguing for endurance exercise-induced improvements in motor learning and (ii) to develop hypotheses about the mechanistic link between exercise and improved learning. We identify major knowledge gaps that need to be addressed by future research projects to advance our understanding of how exercise should be organized to optimize motor learning. PMID:26834602

  1. Varenicline improves motor and cognitive symptoms in early Huntington’s disease

    PubMed Central

    McGregor, Ailsa L; Dysart, Jo; Tingle, Malcolm D; Russell, Bruce R; Kydd, Rob R; Finucane, Gregory

    2016-01-01

    The aim of this study was to describe the effects of varenicline, a smoking cessation aid that acts as a nicotinic agonist, on cognitive function in patients with early clinical Huntington’s disease (HD) who were current smokers. Three gene-positive patients transitioning to symptomatic HD were evaluated using the Unified Huntington’s Disease Rating Scale part I and III (motor and behavioral subscales) at baseline and after 4 weeks of treatment. Cognitive function was assessed using a touch screen computer-based neurocognitive test battery (IntegNeuro®). Varenicline (1 mg twice daily) significantly improved performance in executive function and emotional recognition tasks. Our case reports describe no clinically significant adverse effects and suggest that varenicline improves aspects of cognitive function in patients with early HD. A randomized controlled study is now underway. PMID:27695336

  2. FY2012 Advanced Power Electronics and Electric Motors Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Susan A.

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  3. A treatment for a chronic stroke patient with a plegic hand combining CI therapy with conventional rehabilitation procedures: case report.

    PubMed

    Bowman, Mary H; Taub, Edward; Uswatte, Gitendra; Delgado, Adriana; Bryson, Camille; Morris, David M; McKay, Staci; Mark, Victor W

    2006-01-01

    Constraint-Induced Movement therapy (CI therapy) is a recognized rehabilitation approach for persons having stroke with mild to moderately severe motor upper extremity deficits. To date, no rehabilitation treatment protocol has been proven effective that addresses both motor performance and spontaneous upper extremity use in the life situation for chronic stroke participants having severe upper extremity impairment with no active finger extension or thumb abduction. This case report describes treatment of a chronic stroke participant with a plegic hand using a CI therapy protocol that combines CI therapy with selected occupational and physical therapy techniques. Treatment consisted of six sessions of adaptive equipment and upper extremity orthotics training followed by a three-week, six-hour daily intervention of CI therapy plus neurodevelopmental treatment. Outcome measures included the Motor Activity Log for very low functioning patients (Grade 5 MAL), upper extremity portion of the Fugl-Meyer Motor Assessment, Graded Wolf Motor Function Test - for very low functioning patients (gWMFT- Grade 5), and Modified Ashworth Scale. The participant showed improvement on each outcome measure with the largest improvement on the Grade 5 MAL. In follow-up, the participant had good retention of his gains in motor performance and use of his more affected arm for real world activities after 3 months; after a one-week brush-up at 3 months, and at one year post-treatment.

  4. How Kinesthetic Motor Imagery works: a predictive-processing theory of visualization in sports and motor expertise.

    PubMed

    Ridderinkhof, K Richard; Brass, Marcel

    2015-01-01

    Kinesthetic Motor Imagery (KMI) is an important technique to acquire and refine motor skills. KMI is widely used by professional athletes as an effective way to improve motor performance without overt motor output. Despite this obvious relevance, the functional mechanisms and neural circuits involved in KMI in sports are still poorly understood. In the present article, which aims at bridging the sport sciences and cognitive neurophysiology literatures, we give a brief overview of relevant research in the field of KMI. Furthermore, we develop a theoretical account that relates KMI to predictive motor control theories assuming that it is based on internal activation of anticipatory images of action effects. This mechanism allows improving motor performance solely based on internal emulation of action. In accordance with previous literature, we propose that this emulation mechanism is implemented in brain regions that partially overlap with brain areas involved in overt motor performance including the posterior parietal cortex, the cerebellum, the basal ganglia and the premotor cortex. Finally, we outline one way to test the heuristic value of our theoretical framework for KMI; we suggest that experience with motor performance improves the ability to correctly infer the goals of others, in particular in penalty blocking in soccer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Trihexyphenidyl improves motor function in children with dystonic cerebral palsy: a retrospective analysis.

    PubMed

    Ben-Pazi, Hilla

    2011-07-01

    There are conflicting reports regarding the efficacy of trihexyphenidyl, an anticholinergic drug, for treatment of dystonia in cerebral palsy. The author hypothesized that trihexyphenidyl may be more effective in specific subgroups and performed a retrospective analysis of 31 children (8.2 ± 5.8 years) with dystonia following treatment with high-dose trihexyphenidyl (>0.5 mg/kg/day). Main outcome measure was extent of motor improvement calculated according to the body areas affected. Most (21/31) caregivers reported improvement in 1 or more areas, mainly arm, hand, and oromotor function. Improvement was greater in children without spasticity (P = .02) and in those with higher cognitive function (P = .02). While a third of caregivers (10/31) reported tone reduction, and half (15/31) noted overall functional improvement. Side effects were transient, with the exception of hyperopia (n = 1), and occurred less frequently in children with a history of prematurity (P = .02). In summary, trihexyphenidyl is effective particularly in absence of spasticity and in children with higher cognitive abilities.

  6. A robot-aided visuo-motor training that improves proprioception and spatial accuracy of untrained movement.

    PubMed

    Elangovan, Naveen; Cappello, Leonardo; Masia, Lorenzo; Aman, Joshua; Konczak, Jürgen

    2017-12-06

    Proprioceptive function can become enhanced during motor learning. Yet, we have incomplete knowledge to what extent proprioceptive function is trainable and how a training that enhances proprioception may influence performance in untrained motor skills. To address this knowledge gap, healthy young adults (N = 14) trained in a visuomotor task that required learners to make increasingly accurate wrist movements. Using a robotic exoskeleton coupled with a virtual visual environment, participants tilted a virtual table through continuous wrist flexion/extension movements with the goal to position a rolling ball on table into a target. With learning progress, the level of difficulty increased by altering the virtual ball mechanics and the gain between joint movement and ball velocity. Before and after training, wrist position sense acuity and spatial movement accuracy in an untrained, discrete wrist-pointing task was assessed using the same robot. All participants showed evidence of proprioceptive-motor learning. Mean position sense discrimination threshold improved by 34%. Wrist movement accuracy in the untrained pointing task improved by 27% in 13/14 participants. This demonstrates that a short sensorimotor training challenging proprioception can a) effectively enhance proprioceptive acuity and b) improve the accuracy of untrained movement. These findings provide a scientific basis for applying such somatosensory-based motor training to clinical populations with known proprioceptive dysfunction to enhance sensorimotor performance.

  7. Effects of 2-day calorie restriction on cardiovascular autonomic response, mood, and cognitive and motor functions in obese young adult women.

    PubMed

    Solianik, Rima; Sujeta, Artūras; Čekanauskaitė, Agnė

    2018-06-02

    Although long-term energy restriction has been widely investigated and has consistently induced improvements in health and cognitive and motor functions, the responses to short-duration calorie restriction are not completely understood. The purpose of this study was to investigate the effects of a 2-day very low-calorie diet on evoked stress, mood, and cognitive and motor functions in obese women. Nine obese women (body fatness > 32%) aged 22-31 years were tested under two randomly allocated conditions: 2-day very low-calorie diet (511 kcal) and 2-day usual diet. The perceived stressfulness of the diet, cardiovascular autonomic response, and cognitive and motor performances were evaluated before and after each diet. The subjective stress rating of the calorie-restricted diet was 41.5 ± 23.3. Calorie restriction had no detectable effects on the heart rate variability indices, mood, grip strength, or psychomotor functions. By contrast, calorie restriction increased (p < 0.05) spatial processing and visuospatial working memory accuracy, and decreased (p < 0.05) accuracy of cognitive flexibility. In conclusion, our results demonstrate that although a 2-day calorie restriction evoked moderate stress in obese women, cardiovascular autonomic function was not affected. Calorie restriction had complex effects on cognition: it declined cognitive flexibility, and improved spatial processing and visuospatial working memory, but did not affect mood or motor behavior.

  8. Functional evaluation of peripheral nerve regeneration and target reinnervation in animal models: a critical overview.

    PubMed

    Navarro, Xavier

    2016-02-01

    Peripheral nerve injuries usually lead to severe loss of motor, sensory and autonomic functions in the patients. Due to the complex requirements for adequate axonal regeneration, functional recovery is often poorly achieved. Experimental models are useful to investigate the mechanisms related to axonal regeneration and tissue reinnervation, and to test new therapeutic strategies to improve functional recovery. Therefore, objective and reliable evaluation methods should be applied for the assessment of regeneration and function restitution after nerve injury in animal models. This review gives an overview of the most useful methods to assess nerve regeneration, target reinnervation and recovery of complex sensory and motor functions, their values and limitations. The selection of methods has to be adequate to the main objective of the research study, either enhancement of axonal regeneration, improving regeneration and reinnervation of target organs by different types of nerve fibres, or increasing recovery of complex sensory and motor functions. It is generally recommended to use more than one functional method for each purpose, and also to perform morphological studies of the injured nerve and the reinnervated targets. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke.

    PubMed

    Clarkson, Andrew N; Overman, Justine J; Zhong, Sheng; Mueller, Rudolf; Lynch, Gary; Carmichael, S Thomas

    2011-03-09

    Stroke is the leading cause of adult disability. Recovery after stroke shares similar molecular and cellular properties with learning and memory. A main component of learning-induced plasticity involves signaling through AMPA receptors (AMPARs). We systematically tested the role of AMPAR function in motor recovery in a mouse model of focal stroke. AMPAR function controls functional recovery beginning 5 d after the stroke. Positive allosteric modulators of AMPARs enhance recovery of limb control when administered after a delay from the stroke. Conversely, AMPAR antagonists impair motor recovery. The contributions of AMPARs to recovery are mediated by release of brain-derived neurotrophic factor (BDNF) in periinfarct cortex, as blocking local BDNF function in periinfarct cortex blocks AMPAR-mediated recovery and prevents the normal pattern of motor recovery. In contrast to a delayed AMPAR role in motor recovery, early administration of AMPAR agonists after stroke increases stroke damage. These findings indicate that the role of glutamate signaling through the AMPAR changes over time in stroke: early potentiation of AMPAR signaling worsens stroke damage, whereas later potentiation of the same signaling system improves functional recovery.

  10. The home stroke rehabilitation and monitoring system trial: a randomized controlled trial.

    PubMed

    Linder, Susan M; Rosenfeldt, Anson B; Reiss, Aimee; Buchanan, Sharon; Sahu, Komal; Bay, Curtis R; Wolf, Steven L; Alberts, Jay L

    2013-01-01

    Because many individuals poststroke lack access to the quality and intensity of rehabilitation to improve upper extremity motor function, a home-based robotic-assisted upper extremity rehabilitation device is being paired with an individualized home exercise program. The primary aim of this project is to determine the effectiveness of robotic-assisted home therapy compared with a home exercise program on upper extremity motor recovery and health-related quality of life for stroke survivors in rural and underserved locations. The secondary aim is to explore whether initial degree of motor function of the upper limb may be a factor in predicting the extent to which patients with stroke may be responsive to a home therapy approach. We hypothesize that the home exercise program intervention, when enhanced with robotic-assisted therapy, will result in significantly better outcomes in motor function and quality of life. A total of 96 participants within six-months of a single, unilateral ischemic, or hemorrhagic stroke will be recruited in this prospective, single-blind, multisite randomized clinical trial. The primary outcome is the change in upper extremity function using the Action Research Arm Test. Secondary outcomes include changes in: upper extremity function (Wolf Motor Function Test), upper extremity impairment (upper extremity portion of the Fugl-Meyer Test), self-reported quality of life (Stroke Impact Scale), and affect (Centers for Epidemiologic Studies Depression Scale). Similar or greater improvements in upper extremity function using the combined robotic home exercise program intervention compared with home exercise program alone will be interpreted as evidence that supports the introduction of in-home technology to augment the recovery of function poststroke. © 2012 The Authors. International Journal of Stroke © 2012 World Stroke Organization.

  11. Innovative strength training-induced neuroplasticity and increased muscle size and strength in children with spastic cerebral palsy: an experimenter-blind case study--three-month follow-up.

    PubMed

    Lee, Dong Ryul; Kim, Yun Hee; Kim, Dong A; Lee, Jung Ah; Hwang, Pil Woo; Lee, Min Jin; You, Sung Hyun

    2014-01-01

    In children with cerebral palsy (CP), the never-learned-to-use (NLTU) effect and underutilization suppress the normal development of cortical plasticity in the paretic limb, which further inhibits its functional use and increases associated muscle weakness. To highlight the effects of a novel comprehensive hand repetitive intensive strengthening training system on neuroplastic changes associated with upper extremity (UE) muscle strength and motor performance in children with spastic hemiplegic CP. Two children with spastic hemiplegic CP were recruited. Intervention with the comprehensive hand repetitive intensive strengthening training system was provided for 60 min a day, three times a week, for 10 weeks. Neuroplastic changes, muscle size, strength, and associated motor function were measured using functional magnetic resonance imaging (MRI), ultrasound imaging, and standardized motor tests, respectively. The functional MRI data showed that the comprehensive hand repetitive intensive strengthening training intervention produced measurable neuroplastic changes in the neural substrates associated with motor control and learning. These neuroplastic changes were associated with increased muscle size, strength and motor function. These results provide compelling evidence of neuroplastic changes and associated improvements in muscle size and motor function following innovative upper extremity strengthening exercise.

  12. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial.

    PubMed

    Weaver, Frances M; Follett, Kenneth; Stern, Matthew; Hur, Kwan; Harris, Crystal; Marks, William J; Rothlind, Johannes; Sagher, Oren; Reda, Domenic; Moy, Claudia S; Pahwa, Rajesh; Burchiel, Kim; Hogarth, Penelope; Lai, Eugene C; Duda, John E; Holloway, Kathryn; Samii, Ali; Horn, Stacy; Bronstein, Jeff; Stoner, Gatana; Heemskerk, Jill; Huang, Grant D

    2009-01-07

    Deep brain stimulation is an accepted treatment for advanced Parkinson disease (PD), although there are few randomized trials comparing treatments, and most studies exclude older patients. To compare 6-month outcomes for patients with PD who received deep brain stimulation or best medical therapy. Randomized controlled trial of patients who received either deep brain stimulation or best medical therapy, stratified by study site and patient age (< 70 years vs > or = 70 years) at 7 Veterans Affairs and 6 university hospitals between May 2002 and October 2005. A total of 255 patients with PD (Hoehn and Yahr stage > or = 2 while not taking medications) were enrolled; 25% were aged 70 years or older. The final 6-month follow-up visit occurred in May 2006. Bilateral deep brain stimulation of the subthalamic nucleus (n = 60) or globus pallidus (n = 61). Patients receiving best medical therapy (n = 134) were actively managed by movement disorder neurologists. The primary outcome was time spent in the "on" state (good motor control with unimpeded motor function) without troubling dyskinesia, using motor diaries. Other outcomes included motor function, quality of life, neurocognitive function, and adverse events. Patients who received deep brain stimulation gained a mean of 4.6 h/d of on time without troubling dyskinesia compared with 0 h/d for patients who received best medical therapy (between group mean difference, 4.5 h/d [95% CI, 3.7-5.4 h/d]; P < .001). Motor function improved significantly (P < .001) with deep brain stimulation vs best medical therapy, such that 71% of deep brain stimulation patients and 32% of best medical therapy patients experienced clinically meaningful motor function improvements (> or = 5 points). Compared with the best medical therapy group, the deep brain stimulation group experienced significant improvements in the summary measure of quality of life and on 7 of 8 PD quality-of-life scores (P < .001). Neurocognitive testing revealed small decrements in some areas of information processing for patients receiving deep brain stimulation vs best medical therapy. At least 1 serious adverse event occurred in 49 deep brain stimulation patients and 15 best medical therapy patients (P < .001), including 39 adverse events related to the surgical procedure and 1 death secondary to cerebral hemorrhage. In this randomized controlled trial of patients with advanced PD, deep brain stimulation was more effective than best medical therapy in improving on time without troubling dyskinesias, motor function, and quality of life at 6 months, but was associated with an increased risk of serious adverse events. clinicaltrials.gov Identifier: NCT00056563.

  13. Domiciliary VR-Based Therapy for Functional Recovery and Cortical Reorganization: Randomized Controlled Trial in Participants at the Chronic Stage Post Stroke.

    PubMed

    Ballester, Belén Rubio; Nirme, Jens; Camacho, Irene; Duarte, Esther; Rodríguez, Susana; Cuxart, Ampar; Duff, Armin; Verschure, Paul F M J

    2017-08-07

    Most stroke survivors continue to experience motor impairments even after hospital discharge. Virtual reality-based techniques have shown potential for rehabilitative training of these motor impairments. Here we assess the impact of at-home VR-based motor training on functional motor recovery, corticospinal excitability and cortical reorganization. The aim of this study was to identify the effects of home-based VR-based motor rehabilitation on (1) cortical reorganization, (2) corticospinal tract, and (3) functional recovery after stroke in comparison to home-based occupational therapy. We conducted a parallel-group, controlled trial to compare the effectiveness of domiciliary VR-based therapy with occupational therapy in inducing motor recovery of the upper extremities. A total of 35 participants with chronic stroke underwent 3 weeks of home-based treatment. A group of subjects was trained using a VR-based system for motor rehabilitation, while the control group followed a conventional therapy. Motor function was evaluated at baseline, after the intervention, and at 12-weeks follow-up. In a subgroup of subjects, we used Navigated Brain Stimulation (NBS) procedures to measure the effect of the interventions on corticospinal excitability and cortical reorganization. Results from the system's recordings and clinical evaluation showed significantly greater functional recovery for the experimental group when compared with the control group (1.53, SD 2.4 in Chedoke Arm and Hand Activity Inventory). However, functional improvements did not reach clinical significance. After the therapy, physiological measures obtained from a subgroup of subjects revealed an increased corticospinal excitability for distal muscles driven by the pathological hemisphere, that is, abductor pollicis brevis. We also observed a displacement of the centroid of the cortical map for each tested muscle in the damaged hemisphere, which strongly correlated with improvements in clinical scales. These findings suggest that, in chronic stages, remote delivery of customized VR-based motor training promotes functional gains that are accompanied by neuroplastic changes. International Standard Randomized Controlled Trial Number NCT02699398 (Archived by ClinicalTrials.gov at https://clinicaltrials.gov/ct2/show/NCT02699398?term=NCT02699398&rank=1). ©Belén Rubio Ballester, Jens Nirme, Irene Camacho, Esther Duarte, Susana Rodríguez, Ampar Cuxart, Armin Duff, Paul F.M.J. Verschure. Originally published in JMIR Serious Games (http://games.jmir.org), 07.08.2017.

  14. Functional aging impairs the role of feedback in motor learning.

    PubMed

    Liu, Yu; Cao, Chunmei; Yan, Jin H

    2013-10-01

    Optimal motor skill acquisition frequently requires augmented feedback or knowledge of results (KR). However, the effect of functional declines on the benefits of KR remains to be determined. The objective of this research was to examine how cognitive and motor deficits of older adults influence the use of KR for motor skill learning. A total of 57 older adults (mean 73.1 years; SD 4.2) received both cognitive and eye-hand coordination assessments, whereas 55 young controls (mean 25.8 years; SD 3.8) took only the eye-hand coordination test. All young and older participants learned a time-constrained arm movement through KR in three pre-KR and post-KR intervals. In the subsequent no-KR skill retests, absolute and variable time errors were not significantly reduced for the older learners who had KR during skill practice, especially for those with cognitive and motor dysfunctions. The finding suggests that KR results in no measureable improvement for older adults with cognitive and motor functional deficiencies. More importantly, for the older adults, longer post-KR intervals showed greater detrimental effects on feedback-based motor learning than shorter pauses after KR delivery. The findings support the hypothesis about the effects of cognitive and motor deficits on KR in motor skill learning of older adults. The dynamics of cognitive and motor aging, external feedback and internal control mechanisms collectively explain the deterioration in the sensory-motor learning of older adults. The theoretical implications and practical relevance of functional aging for motor skill learning are discussed. © 2013 Japan Geriatrics Society.

  15. Fate of combat nerve injury.

    PubMed

    Beltran, Michael J; Burns, Travis C; Eckel, Tobin T; Potter, Benjamin K; Wenke, Joseph C; Hsu, Joseph R

    2012-11-01

    Assess a cohort of combat-related type III open tibia fractures with peripheral nerve injury to determine the injury mechanism and likelihood for recovery or improvement in nerve function. Retrospective study. Three military medical centers. Out of a study cohort of 213 type III open tibia fractures, 32 fractures (in 32 patients) with a total of 43 peripheral nerve injuries (peroneal or tibial) distal to the popliteal fossa met inclusion criteria and were available for follow-up at an average of 20 months (range, 2-48 months). Clinical assessment of motor and sensory nerve improvement. There was a 22% incidence of peripheral nerve injury in the study cohort. At an average follow-up of 20 months (range, 2-48 months), 89% of injured motor nerves were functional, whereas the injured sensory nerves had function in 93%. Fifty percent and 27% of motor and sensory injuries demonstrated improvement, respectively (P = 0.043). With the numbers available, there was no difference in motor or sensory improvement based on mechanism of injury, fracture severity or location, soft tissue injury, or specific nerve injured. In the subset of patients with an initially impaired sensory examination, full improvement was related to fracture location (P = 0.0164). Type III open tibia fractures sustained in combat are associated with a 22% incidence of peripheral nerve injury, and the majority are due to multiple projectile penetrating injury. Despite the severe nature of these injuries, the vast majority of patients had a functional nerve status by an average of 2-year follow-up. Based on these findings, discussions regarding limb salvage and amputation should not be overly influenced by the patient's peripheral nerve status. Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence.

  16. Restoration of motor function following spinal cord injury via optimal control of intraspinal microstimulation: toward a next generation closed-loop neural prosthesis

    PubMed Central

    Grahn, Peter J.; Mallory, Grant W.; Berry, B. Michael; Hachmann, Jan T.; Lobel, Darlene A.; Lujan, J. Luis

    2014-01-01

    Movement is planned and coordinated by the brain and carried out by contracting muscles acting on specific joints. Motor commands initiated in the brain travel through descending pathways in the spinal cord to effector motor neurons before reaching target muscles. Damage to these pathways by spinal cord injury (SCI) can result in paralysis below the injury level. However, the planning and coordination centers of the brain, as well as peripheral nerves and the muscles that they act upon, remain functional. Neuroprosthetic devices can restore motor function following SCI by direct electrical stimulation of the neuromuscular system. Unfortunately, conventional neuroprosthetic techniques are limited by a myriad of factors that include, but are not limited to, a lack of characterization of non-linear input/output system dynamics, mechanical coupling, limited number of degrees of freedom, high power consumption, large device size, and rapid onset of muscle fatigue. Wireless multi-channel closed-loop neuroprostheses that integrate command signals from the brain with sensor-based feedback from the environment and the system's state offer the possibility of increasing device performance, ultimately improving quality of life for people with SCI. In this manuscript, we review neuroprosthetic technology for improving functional restoration following SCI and describe brain-machine interfaces suitable for control of neuroprosthetic systems with multiple degrees of freedom. Additionally, we discuss novel stimulation paradigms that can improve synergy with higher planning centers and improve fatigue-resistant activation of paralyzed muscles. In the near future, integration of these technologies will provide SCI survivors with versatile closed-loop neuroprosthetic systems for restoring function to paralyzed muscles. PMID:25278830

  17. Brain effective connectivity during motor-imagery and execution following stroke and rehabilitation.

    PubMed

    Bajaj, Sahil; Butler, Andrew J; Drake, Daniel; Dhamala, Mukesh

    2015-01-01

    Brain areas within the motor system interact directly or indirectly during motor-imagery and motor-execution tasks. These interactions and their functionality can change following stroke and recovery. How brain network interactions reorganize and recover their functionality during recovery and treatment following stroke are not well understood. To contribute to answering these questions, we recorded blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI) signals from 10 stroke survivors and evaluated dynamical causal modeling (DCM)-based effective connectivity among three motor areas: primary motor cortex (M1), pre-motor cortex (PMC) and supplementary motor area (SMA), during motor-imagery and motor-execution tasks. We compared the connectivity between affected and unaffected hemispheres before and after mental practice and combined mental practice and physical therapy as treatments. The treatment (intervention) period varied in length between 14 to 51 days but all patients received the same dose of 60 h of treatment. Using Bayesian model selection (BMS) approach in the DCM approach, we found that, after intervention, the same network dominated during motor-imagery and motor-execution tasks but modulatory parameters suggested a suppressive influence of SM A on M1 during the motor-imagery task whereas the influence of SM A on M1 was unrestricted during the motor-execution task. We found that the intervention caused a reorganization of the network during both tasks for unaffected as well as for the affected hemisphere. Using Bayesian model averaging (BMA) approach, we found that the intervention improved the regional connectivity among the motor areas during both the tasks. The connectivity between PMC and M1 was stronger in motor-imagery tasks whereas the connectivity from PMC to M1, SM A to M1 dominated in motor-execution tasks. There was significant behavioral improvement (p = 0.001) in sensation and motor movements because of the intervention as reflected by behavioral Fugl-Meyer (FMA) measures, which were significantly correlated (p = 0.05) with a subset of connectivity. These findings suggest that PMC and M1 play a crucial role during motor-imagery as well as during motor-execution task. In addition, M1 causes more exchange of causal information among motor areas during a motor-execution task than during a motor-imagery task due to its interaction with SM A. This study expands our understanding of motor network involved during two different tasks, which are commonly used during rehabilitation following stroke. A clear understanding of the effective connectivity networks leads to a better treatment in helping stroke survivors regain motor ability.

  18. Changes in cerebro-cerebellar interaction during response inhibition after performance improvement.

    PubMed

    Hirose, Satoshi; Jimura, Koji; Kunimatsu, Akira; Abe, Osamu; Ohtomo, Kuni; Miyashita, Yasushi; Konishi, Seiki

    2014-10-01

    It has been demonstrated that motor learning is supported by the cerebellum and the cerebro-cerebellar interaction. Response inhibition involves motor responses and the higher-order inhibition that controls the motor responses. In this functional MRI study, we measured the cerebro-cerebellar interaction during response inhibition in two separate days of task performance, and detected the changes in the interaction following performance improvement. Behaviorally, performance improved in the second day, compared to the first day. The psycho-physiological interaction (PPI) analysis revealed the interaction decrease from the right inferior frontal cortex (rIFC) to the cerebellum (lobule VII or VI). It was also revealed that the interaction increased from the same cerebellar region to the primary motor area. These results suggest the involvement of the cerebellum in response inhibition, and raise the possibility that the performance improvement was supported by the changes in the cerebro-cerebellar interaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Using non-invasive transcranial stimulation to improve motor and cognitive function in Parkinson's disease: a systematic review and meta-analysis.

    PubMed

    Goodwill, Alicia M; Lum, Jarrad A G; Hendy, Ashlee M; Muthalib, Makii; Johnson, Liam; Albein-Urios, Natalia; Teo, Wei-Peng

    2017-11-01

    Parkinson's disease (PD) is a neurodegenerative disorder affecting motor and cognitive abilities. There is no cure for PD, therefore identifying safe therapies to alleviate symptoms remains a priority. This meta-analysis quantified the effectiveness of repetitive transcranial magnetic stimulation (rTMS) and transcranial electrical stimulation (TES) to improve motor and cognitive dysfunction in PD. PubMed, EMBASE, Web of Science, Google Scholar, Scopus, Library of Congress and Cochrane library were searched. 24 rTMS and 9 TES studies (n = 33) with a sham control group were included for analyses. The Physiotherapy Evidence Database and Cochrane Risk of Bias showed high quality (7.5/10) and low bias with included studies respectively. Our results showed an overall positive effect in favour of rTMS (SMD = 0.394, CI [0.106-0.683], p = 0.007) and TES (SMD = 0.611, CI [0.188-1.035], p = 0.005) compared with sham stimulation on motor function, with no significant differences detected between rTMS and TES (Q [1] = 0.69, p = 0.406). Neither rTMS nor TES improved cognition. No effects for stimulation parameters on motor or cognitive function were observed. To enhance the clinical utility of non-invasive brain stimulation (NBS), individual prescription of stimulation parameters based upon symptomology and resting excitability state should be a priority of future research.

  20. Neural Patterns of Reorganization after Intensive Robot-Assisted Virtual Reality Therapy and Repetitive Task Practice in Patients with Chronic Stroke

    PubMed Central

    Saleh, Soha; Fluet, Gerard; Qiu, Qinyin; Merians, Alma; Adamovich, Sergei V.; Tunik, Eugene

    2017-01-01

    Several approaches to rehabilitation of the hand following a stroke have emerged over the last two decades. These treatments, including repetitive task practice (RTP), robotically assisted rehabilitation and virtual rehabilitation activities, produce improvements in hand function but have yet to reinstate function to pre-stroke levels—which likely depends on developing the therapies to impact cortical reorganization in a manner that favors or supports recovery. Understanding cortical reorganization that underlies the above interventions is therefore critical to inform how such therapies can be utilized and improved and is the focus of the current investigation. Specifically, we compare neural reorganization elicited in stroke patients participating in two interventions: a hybrid of robot-assisted virtual reality (RAVR) rehabilitation training and a program of RTP training. Ten chronic stroke subjects participated in eight 3-h sessions of RAVR therapy. Another group of nine stroke subjects participated in eight sessions of matched RTP therapy. Functional magnetic resonance imaging (fMRI) data were acquired during paretic hand movement, before and after training. We compared the difference between groups and sessions (before and after training) in terms of BOLD intensity, laterality index of activation in sensorimotor areas, and the effective connectivity between ipsilesional motor cortex (iMC), contralesional motor cortex, ipsilesional primary somatosensory cortex (iS1), ipsilesional ventral premotor area (iPMv), and ipsilesional supplementary motor area. Last, we analyzed the relationship between changes in fMRI data and functional improvement measured by the Jebsen Taylor Hand Function Test (JTHFT), in an attempt to identify how neurophysiological changes are related to motor improvement. Subjects in both groups demonstrated motor recovery after training, but fMRI data revealed RAVR-specific changes in neural reorganization patterns. First, BOLD signal in multiple regions of interest was reduced and re-lateralized to the ipsilesional side. Second, these changes correlated with improvement in JTHFT scores. Our findings suggest that RAVR training may lead to different neurophysiological changes when compared with traditional therapy. This effect may be attributed to the influence that augmented visual and haptic feedback during RAVR training exerts over higher-order somatosensory and visuomotor areas. PMID:28928708

  1. Effects of a 10-week multimodal exercise program on physical and cognitive function of nursing home residents: a psychomotor intervention pilot study.

    PubMed

    Pereira, Catarina; Rosado, Hugo; Cruz-Ferreira, Ana; Marmeleira, José

    2018-05-01

    Nursing home institutionalization tends to exacerbate loss of functioning. Examine the feasibility and the effect of a psychomotor intervention-a multimodal exercise program promoting simultaneous cognitive and motor stimulation-on the executive (planning ability and selective attention) and physical function of nursing home residents. Seventeen participants engaged in a 10-week multimodal exercise program and 17 maintained usual activities. Exercise group improved planning ability (25-32%), selective attention (19-67%), and physical function [aerobic endurance, lower body strength, agility, balance, gait, and mobility (19-41%)], corresponding to an effect size ranging from 0.29 (small) to 1.11 (high), p < 0.05. The multimodal exercise program was feasible and well tolerated. The program improved executive and physical functions of the nursing home residents, reverting the usual loss of both cognitive and motor functioning in older adult institutionalized. Multimodal exercise programs may help to maintain or improve nursing home residents' functioning.

  2. New quantitative method for evaluation of motor functions applicable to spinal muscular atrophy.

    PubMed

    Matsumaru, Naoki; Hattori, Ryo; Ichinomiya, Takashi; Tsukamoto, Katsura; Kato, Zenichiro

    2018-03-01

    The aim of this study was to develop and introduce new method to quantify motor functions of the upper extremity. The movement was recorded using a three-dimensional motion capture system, and the movement trajectory was analyzed using newly developed two indices, which measure precise repeatability and directional smoothness. Our target task was shoulder flexion repeated ten times. We applied our method to a healthy adult without and with a weight, simulating muscle impairment. We also applied our method to assess the efficacy of a drug therapy for amelioration of motor functions in a non-ambulatory patient with spinal muscular atrophy. Movement trajectories before and after thyrotropin-releasing hormone therapy were analyzed. In the healthy adult, we found the values of both indices increased significantly when holding a weight so that the weight-induced deterioration in motor function was successfully detected. From the efficacy assessment of drug therapy in the patient, the directional smoothness index successfully detected improvements in motor function, which were also clinically observed by the patient's doctors. We have developed a new quantitative evaluation method of motor functions of the upper extremity. Clinical usability of this method is also greatly enhanced by reducing the required number of body-attached markers to only one. This simple but universal approach to quantify motor functions will provide additional insights into the clinical phenotypes of various neuromuscular diseases and developmental disorders. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  3. Treadmill Training with Virtual Reality Improves Gait, Balance, and Muscle Strength in Children with Cerebral Palsy.

    PubMed

    Cho, Chunhee; Hwang, Wonjeong; Hwang, Sujin; Chung, Yijung

    2016-03-01

    Independent walking is an important goal of clinical and community-based rehabilitation for children with cerebral palsy (CP). Virtual reality-based rehabilitation therapy is effective in motivating children with CP. This study investigated the effects of treadmill training with virtual reality on gait, balance, muscular strength, and gross motor function in children with CP. Eighteen children with spastic CP were randomly divided into the virtual reality treadmill training (VRTT) group (9 subjects, mean age, 10.2 years) and treadmill training (TT) group (9 subjects, mean age, 9.4 years). The groups performed their respective programs as well as conventional physical therapy 3 times/week for 8 weeks. Muscle strength was assessed using a digitalized manual muscle tester. Gross motor function was assessed using the Gross Motor Functional Measure (GMFM). Balance was assessed using the Pediatric Balance Scale (PBS). Gait speed was assessed using the 10-meter walk test (10MWT), and gait endurance was assessed using the 2-minute walk test (2MWT). After training, gait and balance was improved in the VRTT compared to the TT group (P < 0.05). Muscular strength was significantly greater in the VRTT group than the TT group, except for right hamstring strength. The improvements in GMFM (standing) and PBS scores were greater in the VRTT group than the TT group (P < 0.05). Furthermore, the VRTT group showed the higher values of 10MWT and 2MWT compared to the TT group (P < 0.05). In conclusion, VRTT programs are effective for improving gait, balance, muscular strength, and gross motor function in children with CP.

  4. Effects of Using the Nintendo Wii Fit Plus Platform in the Sensorimotor Training of Gait Disorders in Parkinson’s Disease

    PubMed Central

    Gonçalves, Giovanna Barros; Leite, Marco Antônio A.; Orsini, Marco; Pereira, João Santos

    2014-01-01

    The use of the Nintendo Wii has been considered a good alternative in the motor rehabilitation of individuals with Parkinson’s disease (PD), requiring simultaneous interaction to develop strategies for physical, visual, auditory, cognitive, psychological and social activities in the performing of virtual activities, resulting in improvement in functional performance and gait. The aim of this study was to analyze the effect of virtual sensorimotor activity on gait disorders in people with PD. Fifteen subjects with a clinical diagnosis of PD were submitted to the Unified Parkinson’s Disease Rating Scale (UPDRS III), Schwab and England Activities of Daily Living Scale (SE), Functional Independence Measure (FIM), and biomechanical gait analysis using digital images taken with a video camera before and after the treatment program. The activities with the Nintendo Wii virtual platform were standardized into three categories: aerobics, balance and Wii plus exercises. Participants carried out separate virtual exercises for 40 min, twice a week, for a total of 14 sessions. The program improved sensorimotor performance in PD gait, with an increase in stride length and gait speed, in addition to a reduction in motor impairment, especially in items of rigidity and flexibility of the lower limbs evaluated by UPDRS III, and greater functional independence, as evidenced in the SE and FIM scales. Improvements in items related to locomotion and stair climbing were also observed. The training was effective in motor recovery in chronic neurodegenerative diseases, showing improvement in motor performance and functional independence in individuals with PD. PMID:24744845

  5. Effects of using the nintendo wii fit plus platform in the sensorimotor training of gait disorders in Parkinson's disease.

    PubMed

    Gonçalves, Giovanna Barros; Leite, Marco Antônio A; Orsini, Marco; Pereira, João Santos

    2014-01-17

    The use of the Nintendo Wii has been considered a good alternative in the motor rehabilitation of individuals with Parkinson's disease (PD), requiring simultaneous interaction to develop strategies for physical, visual, auditory, cognitive, psychological and social activities in the performing of virtual activities, resulting in improvement in functional performance and gait. The aim of this study was to analyze the effect of virtual sensorimotor activity on gait disorders in people with PD. Fifteen subjects with a clinical diagnosis of PD were submitted to the Unified Parkinson's Disease Rating Scale (UPDRS III), Schwab and England Activities of Daily Living Scale (SE), Functional Independence Measure (FIM), and biomechanical gait analysis using digital images taken with a video camera before and after the treatment program. The activities with the Nintendo Wii virtual platform were standardized into three categories: aerobics, balance and Wii plus exercises. Participants carried out separate virtual exercises for 40 min, twice a week, for a total of 14 sessions. The program improved sensorimotor performance in PD gait, with an increase in stride length and gait speed, in addition to a reduction in motor impairment, especially in items of rigidity and flexibility of the lower limbs evaluated by UPDRS III, and greater functional independence, as evidenced in the SE and FIM scales. Improvements in items related to locomotion and stair climbing were also observed. The training was effective in motor recovery in chronic neurodegenerative diseases, showing improvement in motor performance and functional independence in individuals with PD.

  6. Formation of cortical plasticity in older adults following tDCS and motor training

    PubMed Central

    Goodwill, Alicia M.; Reynolds, John; Daly, Robin M.; Kidgell, Dawson J.

    2013-01-01

    Neurodegeneration accompanies the process of natural aging, reducing the ability to perform functional daily activities. Transcranial direct current stimulation (tDCS) alters neuronal excitability and motor performance; however its beneficial effect on the induction of primary motor cortex (M1) plasticity in older adults is unclear. Moreover, little is known as to whether the tDCS electrode arrangement differentially affects M1 plasticity and motor performance in this population. In a double-blinded, cross-over trial, we compared unilateral, bilateral and sham tDCS combined with visuomotor tracking, on M1 plasticity and motor performance of the non-dominant upper limb, immediately post and 30 min following stimulation. We found (a) unilateral and bilateral tDCS decreased tracking error by 12–22% at both time points; with sham decreasing tracking error by 10% at 30 min only, (b) at both time points, motor evoked potentials (MEPs) were facilitated (38–54%) and short-interval intracortical inhibition was released (21–36%) for unilateral and bilateral conditions relative to sham, (c) there were no differences between unilateral and bilateral conditions for any measure. These findings suggest that tDCS modulated elements of M1 plasticity, which improved motor performance irrespective of the electrode arrangement. The results provide preliminary evidence indicating that tDCS is a safe non-invasive tool to preserve or improve neurological function and motor control in older adults. PMID:24367333

  7. Influence of continuous positive airway pressure on outcomes of rehabilitation in stroke patients with obstructive sleep apnea.

    PubMed

    Ryan, Clodagh M; Bayley, Mark; Green, Robin; Murray, Brian J; Bradley, T Douglas

    2011-04-01

    In stroke patients, obstructive sleep apnea (OSA) is associated with poorer functional outcomes than in those without OSA. We hypothesized that treatment of OSA by continuous positive airway pressure (CPAP) in stroke patients would enhance motor, functional, and neurocognitive recovery. This was a randomized, open label, parallel group trial with blind assessment of outcomes performed in stroke patients with OSA in a stroke rehabilitation unit. Patients were assigned to standard rehabilitation alone (control group) or to CPAP (CPAP group). The primary outcomes were the Canadian Neurological scale, the 6-minute walk test distance, sustained attention response test, and the digit or spatial span-backward. Secondary outcomes included Epworth Sleepiness scale, Stanford Sleepiness scale, Functional Independence measure, Chedoke McMaster Stroke assessment, neurocognitive function, and Beck depression inventory. Tests were performed at baseline and 1 month later. Patients assigned to CPAP (n=22) experienced no adverse events. Regarding primary outcomes, compared to the control group (n=22), the CPAP group experienced improvement in stroke-related impairment (Canadian Neurological scale score, P<0.001) but not in 6-minute walk test distance, sustained attention response test, or digit or spatial span-backward. Regarding secondary outcomes, the CPAP group experienced improvements in the Epworth Sleepiness scale (P<0.001), motor component of the Functional Independence measure (P=0.05), Chedoke-McMaster Stroke assessment of upper and lower limb motor recovery test of the leg (P=0.001), and the affective component of depression (P=0.006), but not neurocognitive function. Treatment of OSA by CPAP in stroke patients undergoing rehabilitation improved functional and motor, but not neurocognitive outcomes. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00221065.

  8. Resting-state functional magnetic resonance imaging of the subthalamic microlesion and stimulation effects in Parkinson's disease: Indications of a principal role of the brainstem

    PubMed Central

    Holiga, Štefan; Mueller, Karsten; Möller, Harald E.; Urgošík, Dušan; Růžička, Evžen; Schroeter, Matthias L.; Jech, Robert

    2015-01-01

    During implantation of deep-brain stimulation (DBS) electrodes in the target structure, neurosurgeons and neurologists commonly observe a “microlesion effect” (MLE), which occurs well before initiating subthalamic DBS. This phenomenon typically leads to a transitory improvement of motor symptoms of patients suffering from Parkinson's disease (PD). Mechanisms behind MLE remain poorly understood. In this work, we exploited the notion of ranking to assess spontaneous brain activity in PD patients examined by resting-state functional magnetic resonance imaging in response to penetration of DBS electrodes in the subthalamic nucleus. In particular, we employed a hypothesis-free method, eigenvector centrality (EC), to reveal motor-communication-hubs of the highest rank and their reorganization following the surgery; providing a unique opportunity to evaluate the direct impact of disrupting the PD motor circuitry in vivo without prior assumptions. Penetration of electrodes was associated with increased EC of functional connectivity in the brainstem. Changes in connectivity were quantitatively related to motor improvement, which further emphasizes the clinical importance of the functional integrity of the brainstem. Surprisingly, MLE and DBS were associated with anatomically different EC maps despite their similar clinical benefit on motor functions. The DBS solely caused an increase in connectivity of the left premotor region suggesting separate pathophysiological mechanisms of both interventions. While the DBS acts at the cortical level suggesting compensatory activation of less affected motor regions, the MLE affects more fundamental circuitry as the dysfunctional brainstem predominates in the beginning of PD. These findings invigorate the overlooked brainstem perspective in the understanding of PD and support the current trend towards its early diagnosis. PMID:26509113

  9. Resting-state functional magnetic resonance imaging of the subthalamic microlesion and stimulation effects in Parkinson's disease: Indications of a principal role of the brainstem.

    PubMed

    Holiga, Štefan; Mueller, Karsten; Möller, Harald E; Urgošík, Dušan; Růžička, Evžen; Schroeter, Matthias L; Jech, Robert

    2015-01-01

    During implantation of deep-brain stimulation (DBS) electrodes in the target structure, neurosurgeons and neurologists commonly observe a "microlesion effect" (MLE), which occurs well before initiating subthalamic DBS. This phenomenon typically leads to a transitory improvement of motor symptoms of patients suffering from Parkinson's disease (PD). Mechanisms behind MLE remain poorly understood. In this work, we exploited the notion of ranking to assess spontaneous brain activity in PD patients examined by resting-state functional magnetic resonance imaging in response to penetration of DBS electrodes in the subthalamic nucleus. In particular, we employed a hypothesis-free method, eigenvector centrality (EC), to reveal motor-communication-hubs of the highest rank and their reorganization following the surgery; providing a unique opportunity to evaluate the direct impact of disrupting the PD motor circuitry in vivo without prior assumptions. Penetration of electrodes was associated with increased EC of functional connectivity in the brainstem. Changes in connectivity were quantitatively related to motor improvement, which further emphasizes the clinical importance of the functional integrity of the brainstem. Surprisingly, MLE and DBS were associated with anatomically different EC maps despite their similar clinical benefit on motor functions. The DBS solely caused an increase in connectivity of the left premotor region suggesting separate pathophysiological mechanisms of both interventions. While the DBS acts at the cortical level suggesting compensatory activation of less affected motor regions, the MLE affects more fundamental circuitry as the dysfunctional brainstem predominates in the beginning of PD. These findings invigorate the overlooked brainstem perspective in the understanding of PD and support the current trend towards its early diagnosis.

  10. Mirror therapy enhances lower-extremity motor recovery and motor functioning after stroke: a randomized controlled trial.

    PubMed

    Sütbeyaz, Serap; Yavuzer, Gunes; Sezer, Nebahat; Koseoglu, B Füsun

    2007-05-01

    To evaluate the effects of mirror therapy, using motor imagery training, on lower-extremity motor recovery and motor functioning of patients with subacute stroke. Randomized, controlled, assessor-blinded, 4-week trial, with follow-up at 6 months. Rehabilitation education and research hospital. A total of 40 inpatients with stroke (mean age, 63.5 y), all within 12 months poststroke and without volitional ankle dorsiflexion. Thirty minutes per day of the mirror therapy program, consisting of nonparetic ankle dorsiflexion movements or sham therapy, in addition to a conventional stroke rehabilitation program, 5 days a week, 2 to 5 hours a day, for 4 weeks. The Brunnstrom stages of motor recovery, spasticity assessed by the Modified Ashworth Scale (MAS), walking ability (Functional Ambulation Categories [FAC]), and motor functioning (motor items of the FIM instrument). The mean change score and 95% confidence interval (CI) of the Brunnstrom stages (mean, 1.7; 95% CI, 1.2-2.1; vs mean, 0.8; 95% CI, 0.5-1.2; P=.002), as well as the FIM motor score (mean, 21.4; 95% CI, 18.2-24.7; vs mean, 12.5; 95% CI, 9.6-14.8; P=.001) showed significantly more improvement at follow-up in the mirror group compared with the control group. Neither MAS (mean, 0.8; 95% CI, 0.4-1.2; vs mean, 0.3; 95% CI, 0.1-0.7; P=.102) nor FAC (mean, 1.7; 95% CI, 1.2-2.1; vs mean, 1.5; 95% CI, 1.1-1.9; P=.610) showed a significant difference between the groups. Mirror therapy combined with a conventional stroke rehabilitation program enhances lower-extremity motor recovery and motor functioning in subacute stroke patients.

  11. Oropharyngeal dysphagia and gross motor skills in children with cerebral palsy.

    PubMed

    Benfer, Katherine A; Weir, Kelly A; Bell, Kristie L; Ware, Robert S; Davies, Peter S W; Boyd, Roslyn N

    2013-05-01

    To determine the prevalence of oropharyngeal dysphagia (OPD) and its subtypes (oral phase, pharyngeal phase, saliva control), and their relationship to gross motor functional skills in preschool children with cerebral palsy (CP). It was hypothesized that OPD would be present across all gross motor severity levels, and children with more severe gross motor function would have increased prevalence and severity of OPD. Children with a confirmed diagnosis of CP, 18 to 36 months corrected age, born in Queensland between 2006 and 2009, participated. Children with neurodegenerative conditions were excluded. This was a cross-sectional population-based study. Children were assessed by using 2 direct OPD measures (Schedule for Oral Motor Assessment; Dysphagia Disorders Survey), and observations of signs suggestive of pharyngeal phase impairment and impaired saliva control. Gross motor skills were described by using the Gross Motor Function Measure, Gross Motor Function Classification System (GMFCS), Manual Ability Classification System, and motor type/ distribution. OPD was prevalent in 85% of children with CP, and there was a stepwise relationship between OPD and GMFCS level. There was a significant increase in odds of having OPD, or a subtype, for children who were nonambulant (GMFCS V) compared with those who were ambulant (GMFCS I) (odds ratio = 17.9, P = .036). OPD was present across all levels of gross motor severity using direct assessments. This highlights the need for proactive screening of all young children with CP, even those with mild impairments, to improve growth and nutritional outcomes and respiratory health.

  12. Diffusion imaging and transcranial magnetic stimulation assessment of transcallosal pathways in chronic stroke.

    PubMed

    Mang, Cameron S; Borich, Michael R; Brodie, Sonia M; Brown, Katlyn E; Snow, Nicholas J; Wadden, Katie P; Boyd, Lara A

    2015-10-01

    To examine the relationship of transcallosal pathway microstructure and transcallosal inhibition (TCI) with motor function and impairment in chronic stroke. Diffusion-weighted magnetic resonance imaging and transcranial magnetic stimulation (TMS) data were collected from 24 participants with chronic stroke and 11 healthy older individuals. Post-stroke motor function (Wolf Motor Function Test) and level of motor impairment (Fugl-Meyer score) were evaluated. Fractional anisotropy (FA) of transcallosal tracts between prefrontal cortices and the mean amplitude decrease in muscle activity during the ipsilateral silent period evoked by TMS over the non-lesioned hemisphere (termed NL-iSPmean) were significantly associated with level of motor impairment and motor function after stroke (p<0.05). A regression model including age, post-stroke duration, lesion volume, lesioned corticospinal tract FA, transcallosal prefrontal tract FA and NL-iSPmean accounted for 84% of variance in motor impairment (p<0.01). Both transcallosal prefrontal tract FA (ΔR(2)=0.12, p=0.04) and NL-iSPmean (ΔR(2)=0.09, p=0.04) accounted for unique variance in motor impairment level. Prefrontal transcallosal tract microstructure and TCI are each uniquely associated with motor impairment in chronic stroke. Utilizing a multi-modal approach to assess transcallosal pathways may improve our capacity to identify important neural substrates of motor impairment in the chronic phase of stroke. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. A home-based program using patterned sensory enhancement improves resistance exercise effects for children with cerebral palsy: a randomized controlled trial.

    PubMed

    Wang, Tze-Hsuan; Peng, Yi-Chun; Chen, Yu-Ling; Lu, Tung-Wu; Liao, Hua-Fang; Tang, Pei-Fang; Shieh, Jeng-Yi

    2013-10-01

    Neurologic music therapy has demonstrated improved walking performance in persons with neurologic disease; however, little evidence supports the use of music with functional resistance exercise to improve motor capacity and daily functions for children with cerebral palsy. To investigate the effect of additional patterned sensory enhancement (PSE) music combined with exercise for children with spastic diplegia. An assessor-blind, randomized controlled trial with 6- and 12-week follow-ups was carried out. Thirty-six children with spastic diplegia, aged 5 to 13 years, were assigned to a PSE group (n = 18) or a no-music group (n = 18). Both groups received 6-week, home-based, loaded sit-to-stand exercise, but only the PSE group exercised with prerecorded PSE music. The primary outcome was Gross Motor Function Measure (GMFM). Secondary outcomes included Pediatric Evaluation of Disability Inventory (PEDI) mobility and self-care domains, 1-repetition maximum of sit-to-stand, and walking speeds. Three children did not complete the program. Intention-to-treat analysis showed both groups improved in GMFM D, E, and Goal dimensions; Functional Skills Scales of PEDI mobility domain; and 1-repetition maximum of sit-to-stand at posttest and follow-ups (P ≤ .005). The PSE group improved significantly greater than the no-music group in the GMFM D and Goal dimensions (P < .005) after training, and the improvement persisted for at least 6 or 12 weeks (P ≤ .013). No significant improvements in the rest PEDI scales and walking speeds were found. Adding neurologic music therapy to functional resistance exercise could induce greater improvements in gross motor capacity for children with cerebral palsy.

  14. Effectiveness of temporary deafferentation of the arm on somatosensory and motor functions following stroke: a systematic review.

    PubMed

    Opsommer, Emmanuelle; Zwissig, Camille; Korogod, Natalya; Weiss, Thomas

    2016-12-01

    After stroke, regaining functional use of the upper limb can be challenging. Temporary deafferentation (TD) is a novel approach used in neurorehabilitation to voluntarily reduce the somatosensory input in a body part by temporary anesthesia; which has been shown to improve sensorimotor functions in the affected limb. The primary objective of this systematic review was to present the best available evidence related to the effects of TD of the affected arm on the recovery of motor function and activity of the upper limb (arm and hand) following stroke. Further, this review aimed to assess the effects of TD on sensory function, activities of daily living (ADL) and quality of life following stroke, the acceptability and safety of the intervention as well as adverse events. Adult patients (18 years and older) with a clinical diagnosis of stroke, either hemorrhagic or ischemic. Reports of rehabilitation that included the use of a pneumatic tourniquet, regional anesthesia or nerve block to achieve TD of an arm, or the use of TD as a stand-alone intervention. Primary outcomes were motor function and activity of the upper limb using assessment scales, motor tests and global motor functions.Secondary outcomes included measures of sensory function, ADL, impact of stroke and quality of life and pain.Additional outcomes were neurophysiological changes as studied with functional magnetic resonance imaging, magnetoencephalography and/or transcranial magnetic stimulation.Acceptability and safety of the intervention as well as adverse events were also included. We included any experimental and epidemiological studies. There were no randomized controlled trials. We included non-randomized controlled trials, quasi-experimental, before and after studies and case-control studies. We searched for both published and unpublished studies in major databases and all reference lists of relevant articles in English, German or French languages. We included studies published from January 1980 to October 2015. Data were extracted from included studies using a standardized data extraction tool from the Joanna Briggs Institute. There was heterogeneity in the types of intervention and outcome measures, therefore statistical pooling of the findings was not appropriate. As such, the studies were grouped according to type of outcome where possible. Findings are presented in a narrative form. Eight studies met the eligibility criteria. All outcome parameters related to the primary outcome (motor function and activity of the more affected upper extremity) showed an improvement during or after TD. The sensory functions significantly improved during or after TD when measured either by the grating orienting task or the grating orientation accuracy, and slightly improved when measured using the von Frey hair testing during TD. There is evidence supporting the use of TD of the upper extremity in adults after stroke. Temporary deafferentation can be recommended (Grade B).

  15. Fine motor skills and executive function both contribute to kindergarten achievement

    PubMed Central

    Cameron, Claire E.; Brock, Laura L.; Murrah, William M.; Bell, Lindsay H.; Worzalla, Samantha L.; Grissmer, David; Morrison, Frederick J.

    2012-01-01

    This study examined the contribution of executive function (EF) and multiple aspects of fine motor skills to achievement on six standardized assessments in a sample of middle-SES kindergarteners. 3- and 4-year-olds’ (N=213) fine and gross motor skills were assessed in a home visit before kindergarten; EF was measured at fall of kindergarten; and Woodcock-Johnson III (WJ III) Tests of Academic Achievement were administered at fall and spring. Correlations indicated that EF and fine motor skills appeared distinct. Further, controlling for background variables, higher levels of both EF and fine motor skills, specifically design copy, predicted higher achievement on multiple subtests at kindergarten entry, as well as improvement from fall to spring. Implications for research on school readiness are discussed. PMID:22537276

  16. Effects of levodopa therapy in Parkinson's disease II. Measurement of behavioural changes

    PubMed Central

    Radbill, Ruth; Rosenberg, Gilbert; Schwartz, Arthur

    1974-01-01

    Forty-seven patients with Parkinson's disease were evaluated prior to and during levodopa treatment (at five weeks and at six months), to obtain quantitative measures of the effects of the disease and of levodopa on a variety of cognitive and psychomotor functions, by means of psychological tests and special apparatus. Analysis of the findings in relation to a comparable control group shows that before treatment patients had impaired performance of all motor tasks, but no differences in cognitive functioning were found. Most motor functions had improved after five weeks on levodopa and this improvement was maintained at the six-month follow-up, but cognitive functions remained largely unchanged. The relationship between patients' age, disability, duration of illness and drug tolerance is also discussed in relation to the functions measured. PMID:4434291

  17. FUNCTIONAL RECOVERY FOLLOWING MOTOR CORTEX LESIONS IN NON-HUMAN PRIMATES: EXPERIMENTAL IMPLICATIONS FOR HUMAN STROKE PATIENTS

    PubMed Central

    Darling, Warren G.; Pizzimenti, Marc A.; Morecraft, Robert J.

    2013-01-01

    This review discusses selected classical works and contemporary research on recovery of contralesional fine hand motor function following lesions to motor areas of the cerebral cortex in non-human primates. Findings from both the classical literature and contemporary studies show that lesions of cortical motor areas induce paresis initially, but are followed by remarkable recovery of fine hand/digit motor function that depends on lesion size and post-lesion training. Indeed, in recent work where considerable quantification of fine digit function associated with grasping and manipulating small objects has been observed, very favorable recovery is possible with minimal forced use of the contralesional limb. Studies of the mechanisms underlying recovery have shown that following small lesions of the digit areas of primary motor cortex (M1), there is expansion of the digit motor representations into areas of M1 that did not produce digit movements prior to the lesion. However, after larger lesions involving the elbow, wrist and digit areas of M1, no such expansion of the motor representation was observed, suggesting that recovery was due to other cortical or subcortical areas taking over control of hand/digit movements. Recently, we showed that one possible mechanism of recovery after lesion to the arm areas of M1 and lateral premotor cortex is enhancement of corticospinal projections from the medially located supplementary motor area (M2) to spinal cord laminae containing neurons which have lost substantial input from the lateral motor areas and play a critical role in reaching and digit movements. Because human stroke and brain injury patients show variable, and usually poorer, recovery of hand motor function than that of nonhuman primates after motor cortex damage, we conclude with a discussion of implications of this work for further experimentation to improve recovery of hand function in human stroke patients. PMID:21960307

  18. Pilot study of a robotic protocol to treat shoulder subluxation in patients with chronic stroke

    PubMed Central

    2013-01-01

    Background Shoulder subluxation is a frequent complication of motor impairment after stroke, leading to soft tissue damage, stretching of the joint capsule, rotator cuff injury, and in some cases pain, thus limiting use of the affected extremity beyond weakness. In this pilot study, we determined whether robotic treatment of chronic shoulder subluxation can lead to functional improvement and whether any improvement was robust. Methods 18 patients with chronic stroke (3.9 ± 2.9 years from acute stroke), completed 6 weeks of robotic training using the linear shoulder robot. Training was performed 3 times per week on alternate days. Each session consisted of 3 sets of 320 repetitions of the affected arm, and the robotic protocol alternated between training vertical arm movements, shoulder flexion and extension, in an anti-gravity plane, and training horizontal arm movements, scapular protraction and retraction, in a gravity eliminated plane. Results Training with the linear robot improved shoulder stability, motor power, and resulted in improved functional outcomes that were robust 3 months after training. Conclusion In this uncontrolled pilot study, the robotic protocol effectively treated shoulder subluxation in chronic stroke patients. Treatment of subluxation can lead to improved functional use of the affected arm, likely by increasing motor power in the trained muscles. PMID:23914834

  19. Pilot study of a robotic protocol to treat shoulder subluxation in patients with chronic stroke.

    PubMed

    Dohle, Carolin I; Rykman, Avrielle; Chang, Johanna; Volpe, Bruce T

    2013-08-05

    Shoulder subluxation is a frequent complication of motor impairment after stroke, leading to soft tissue damage, stretching of the joint capsule, rotator cuff injury, and in some cases pain, thus limiting use of the affected extremity beyond weakness. In this pilot study, we determined whether robotic treatment of chronic shoulder subluxation can lead to functional improvement and whether any improvement was robust. 18 patients with chronic stroke (3.9 ± 2.9 years from acute stroke), completed 6 weeks of robotic training using the linear shoulder robot. Training was performed 3 times per week on alternate days. Each session consisted of 3 sets of 320 repetitions of the affected arm, and the robotic protocol alternated between training vertical arm movements, shoulder flexion and extension, in an anti-gravity plane, and training horizontal arm movements, scapular protraction and retraction, in a gravity eliminated plane. Training with the linear robot improved shoulder stability, motor power, and resulted in improved functional outcomes that were robust 3 months after training. In this uncontrolled pilot study, the robotic protocol effectively treated shoulder subluxation in chronic stroke patients. Treatment of subluxation can lead to improved functional use of the affected arm, likely by increasing motor power in the trained muscles.

  20. Effiectiveness and safety of transcranial direct current stimulation in fibromyalgia: A systematic review and meta-analysis.

    PubMed

    Zhu, Chang-E; Yu, Bo; Zhang, Wen; Chen, Wen-Hua; Qi, Qi; Miao, Yun

    2017-01-19

    To evaluate the effectiveness and safety of transcranial direct current stimulation for fibro-myalgia. Databases, conference records and registered trials were searched for articles published from the date of establishment of the database through to October 2015. Six randomized controlled trials (n=192) of transcranial direct current stimulation for fibromyalgia were included in the current study. Two researchers independently screened the literature, assessed methodological quality using the Cochrane Collaboration's tool, and extracted data. Studies were divided into 3 groups for meta-analysis according to stimulation site and polarity. Significant improvement in pain and general fibromyalgia-related function was seen with anodal transcranial direct current stimulation over the primary motor cortex (p<0.05). However, the pressure pain threshold did not improve (p>0.05). Anodal transcranial direct current stimulation over the left dorsolateral prefrontal cortex did not significantly reduce pain or improve general fibromyalgia-related function compared with sham stimulation (p>0.05). Cathodal transcranial direct current stimulation over the primary motor cortex did not improve the pressure pain threshold compared with sham stimulation (p>0.05). No significant adverse effects were seen. Anodal transcranial direct current stimulation over the primary motor cortex is more likely than sham transcranial direct current stimulation to relieve pain and improve general fibromyalgia-related function.

  1. Intrastriatal Grafting of Chromospheres: Survival and Functional Effects in the 6-OHDA Rat Model of Parkinson's Disease

    PubMed Central

    Boronat-García, Alejandra; Palomero-Rivero, Marcela; Guerra-Crespo, Magdalena; Millán-Aldaco, Diana; Drucker-Colín, René

    2016-01-01

    Cell replacement therapy in Parkinson’s disease (PD) aims at re-establishing dopamine neurotransmission in the striatum by grafting dopamine-releasing cells. Chromaffin cell (CC) grafts produce some transitory improvements of functional motor deficits in PD animal models, and have the advantage of allowing autologous transplantation. However, CC grafts have exhibited low survival, poor functional effects and dopamine release compared to other cell types. Recently, chromaffin progenitor-like cells were isolated from bovine and human adult adrenal medulla. Under low-attachment conditions, these cells aggregate and grow as spheres, named chromospheres. Here, we found that bovine-derived chromosphere-cell cultures exhibit a greater fraction of cells with a dopaminergic phenotype and higher dopamine release than CC. Chromospheres grafted in a rat model of PD survived in 57% of the total grafted animals. Behavioral tests showed that surviving chromosphere cells induce a reduction in motor alterations for at least 3 months after grafting. Finally, we found that compared with CC, chromosphere grafts survive more and produce more robust and consistent motor improvements. However, further experiments would be necessary to determine whether the functional benefits induced by chromosphere grafts can be improved, and also to elucidate the mechanisms underlying the functional effects of the grafts. PMID:27525967

  2. Enhancing both motor and cognitive functioning in Parkinson's disease: Aerobic exercise as a rehabilitative intervention.

    PubMed

    Duchesne, C; Lungu, O; Nadeau, A; Robillard, M E; Boré, A; Bobeuf, F; Lafontaine, A L; Gheysen, F; Bherer, L; Doyon, J

    2015-10-01

    Aerobic exercise training (AET) has been shown to provide health benefits in individuals with Parkinson's disease (PD). However, it is yet unknown to what extent AET also improves cognitive and procedural learning capacities, which ensure an optimal daily functioning. In the current study, we assessed the effects of a 3-month AET program on executive functions (EF), implicit motor sequence learning (MSL) capacity, as well as on different health-related outcome indicators. Twenty healthy controls (HC) and 19 early PD individuals participated in a supervised, high-intensity, stationary recumbent bike-training program (3 times/week for 12 weeks). Exercise prescription started at 20 min (+5 min/week up to 40 min) based on participant's maximal aerobic power. Before and after AET, EF tests assessed participants' inhibition and flexibility functions, whereas implicit MSL capacity was evaluated using a version of the Serial Reaction Time Task. The AET program was effective as indicated by significant improvement in aerobic capacity in all participants. Most importantly, AET improved inhibition but not flexibility, and motor learning skill, in both groups. Our results suggest that AET can be a valuable non-pharmacological intervention to promote physical fitness in early PD, but also better cognitive and procedural functioning. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Neurofeedback training of alpha-band coherence enhances motor performance.

    PubMed

    Mottaz, Anais; Solcà, Marco; Magnin, Cécile; Corbet, Tiffany; Schnider, Armin; Guggisberg, Adrian G

    2015-09-01

    Neurofeedback training of motor cortex activations with brain-computer interface systems can enhance recovery in stroke patients. Here we propose a new approach which trains resting-state functional connectivity associated with motor performance instead of activations related to movements. Ten healthy subjects and one stroke patient trained alpha-band coherence between their hand motor area and the rest of the brain using neurofeedback with source functional connectivity analysis and visual feedback. Seven out of ten healthy subjects were able to increase alpha-band coherence between the hand motor cortex and the rest of the brain in a single session. The patient with chronic stroke learned to enhance alpha-band coherence of his affected primary motor cortex in 7 neurofeedback sessions applied over one month. Coherence increased specifically in the targeted motor cortex and in alpha frequencies. This increase was associated with clinically meaningful and lasting improvement of motor function after stroke. These results provide proof of concept that neurofeedback training of alpha-band coherence is feasible and behaviorally useful. The study presents evidence for a role of alpha-band coherence in motor learning and may lead to new strategies for rehabilitation. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Priming Hand Motor Training with Repetitive Stimulation of the Fingertips; Performance Gain and Functional Imaging of Training Effects.

    PubMed

    Lotze, Martin; Ladda, Aija Marie; Roschka, Sybille; Platz, Thomas; Dinse, Hubert R

    Application of repetitive electrical stimulation (rES) of the fingers has been shown to improve tactile perception and sensorimotor performance in healthy individuals. To increase motor performance by priming the effects of active motor training (arm ability training; AAT) using rES. We compared the performance gain for the training increase of the averaged AAT tasks of both hands in two groups of strongly right-handed healthy volunteers. Functional Magnetic Resonance Imaging (fMRI) before and after AAT was assessed using three tasks for each hand separately: finger sequence tapping, visually guided grip force modulation, and writing. Performance during fMRI was controlled for preciseness and frequency. A total of 30 participants underwent a two-week unilateral left hand AAT, 15 participants with 20 minutes of rES priming of all fingertips of the trained hand, and 15 participants without rES priming. rES-primed AAT improved the trained left-hand performance across all training tasks on average by 32.9%, non-primed AAT improved by 29.5%. This gain in AAT performance with rES priming was predominantly driven by an increased finger tapping velocity. Functional imaging showed comparable changes for both training groups over time. Across all participants, improved AAT performance was associated with a higher contralateral primary somatosensory cortex (S1) fMRI activation magnitude during the grip force modulation task. This study highlights the importance of S1 for hand motor training gain. In addition, it suggests the usage of rES of the fingertips for priming active hand motor training. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The Effects of a Motorized Aquatic Treadmill Exercise Program on Muscle Strength, Cardiorespiratory Fitness, and clinical function in Subacute Stroke Patients -- a Randomized Controlled Pilot Trial.

    PubMed

    Lee, So Young; Han, Eun Young; Kim, Bo Ryun; Im, Sang Hee

    2018-03-12

    The aim of this study was to assess the effects of a motorized aquatic treadmill exercise program improve the isometric strength of the knee muscles, cardiorespiratory fitness, arterial stiffness, motor function, balance, functional outcomes and quality of life in subacute stroke patients. Thirty-two patients were randomly assigned to 4-week training sessions of either aquatic therapy(n=19) or land-based aerobic exercise(n=18). Isometric strength was measured using an isokinetic dynamometer. Cardiopulmonary fitness was evaluated using a symptom-limited exercise tolerance test and by measuring brachial ankle pulse wave velocity. Moreover, motor function(Fugl-Meyer Assessment[FMA] and FMA-lower limb[FMA-LL]), balance(Berg Balance Scale[BBS]), Activities of daily living(Korean version of the Modified Barthel Index [K-MBI]), and Quality of life(EQ-5D index) were examined. There were no inter-group differences between demographic and clinical characteristics at baseline(p>0.05). The results shows significant improvements in peak oxygen consumption (p=0.02), maximal isometric strength of the bilateral knee extensors (p<0.01) and paretic knee flexors (p=0.01), FMA (p=0.03), FMA-LL (p=0.01), BBS (p=0.01), K-MBI (p<0.01), and EQ-5D index (p=0.04) after treatment in the aquatic therapy group. However, only significant improvements in maximal isometric strength in the knee extensors (p=0.03) and flexors (p=0.04) were found within the aquatic therapy group and control group. Water-based aerobic exercise performed on a motorized aquatic treadmill had beneficial effect on isometric muscle strength in the lower limb.

  6. Sensorless FOC Performance Improved with On-Line Speed and Rotor Resistance Estimator Based on an Artificial Neural Network for an Induction Motor Drive

    PubMed Central

    Gutierrez-Villalobos, Jose M.; Rodriguez-Resendiz, Juvenal; Rivas-Araiza, Edgar A.; Martínez-Hernández, Moisés A.

    2015-01-01

    Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor. PMID:26131677

  7. Sensorless FOC Performance Improved with On-Line Speed and Rotor Resistance Estimator Based on an Artificial Neural Network for an Induction Motor Drive.

    PubMed

    Gutierrez-Villalobos, Jose M; Rodriguez-Resendiz, Juvenal; Rivas-Araiza, Edgar A; Martínez-Hernández, Moisés A

    2015-06-29

    Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor.

  8. Mental workload and motor performance dynamics during practice of reaching movements under various levels of task difficulty.

    PubMed

    Shuggi, Isabelle M; Oh, Hyuk; Shewokis, Patricia A; Gentili, Rodolphe J

    2017-09-30

    The assessment of mental workload can inform attentional resource allocation during task performance that is essential for understanding the underlying principles of human cognitive-motor behavior. While many studies have focused on mental workload in relation to human performance, a modest body of work has examined it in a motor practice/learning context without considering individual variability. Thus, this work aimed to examine mental workload by employing the NASA TLX as well as the changes in motor performance resulting from the practice of a novel reaching task. Two groups of participants practiced a reaching task at a high and low nominal difficulty during which a group-level analysis assessed the mental workload, motor performance and motor improvement dynamics. A secondary cluster analysis was also conducted to identify specific individual patterns of cognitive-motor responses. Overall, both group- and cluster-level analyses revealed that: (i) all participants improved their performance throughout motor practice, and (ii) an increase in mental workload was associated with a reduction of the quality of motor performance along with a slower rate of motor improvement. The results are discussed in the context of the optimal challenge point framework and in particular it is proposed that under the experimental conditions employed here, functional task difficulty: (i) would possibly depend on an individuals' information processing capabilities, and (ii) could be indexed by the level of mental workload which, when excessively heightened can decrease the quality of performance and more generally result in delayed motor improvements. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Transfer of Short-Term Motor Learning across the Lower Limbs as a Function of Task Conception and Practice Order

    ERIC Educational Resources Information Center

    Stockel, Tino; Wang, Jinsung

    2011-01-01

    Interlimb transfer of motor learning, indicating an improvement in performance with one limb following training with the other, often occurs asymmetrically (i.e., from non-dominant to dominant limb or vice versa, but not both). In the present study, we examined whether interlimb transfer of the same motor task could occur asymmetrically and in…

  10. Rotigotine transdermal patch: a review of its use in the treatment of Parkinson's disease.

    PubMed

    Sanford, Mark; Scott, Lesley J

    2011-08-01

    A transdermal patch formulation of the non-ergolinic dopamine agonist rotigotine (Neupro®) is indicated as monotherapy for the treatment of early Parkinson's disease and as combination therapy with levodopa throughout the course of the disease. Daily application of the rotigotine transdermal patch (referred to here as rotigotine) provided predictable release and absorption of rotigotine, with steady-state rotigotine concentrations reached within 1-2 days. In six large, well designed clinical trials, rotigotine was an efficacious treatment for Parkinson's disease. In early Parkinson's disease, rotigotine initiated without levodopa produced significantly greater improvements than placebo in the Unified Parkinson's Disease Rating Scale (UPDRS) summed motor and activities of daily living (ADL) scores, as well as significantly higher response rates. In a comparison with oral ropinirole, rotigotine did not meet a prespecified response-rate noninferiority criterion, although this may reflect the dosages used, which may not have been directly comparable. In advanced Parkinson's disease, rotigotine in combination with levodopa reduced 'off' time and improved motor functioning and ADL significantly more than levodopa plus placebo. Rotigotine was noninferior to oral pramipexole in reducing 'off' time, although it did not meet a response-rate noninferiority criterion. A recent trial focused on both motor and non-motor endpoints in patients with inadequate early morning motor control despite antiparkinsonian treatment (most received levodopa). Rotigotine improved morning motor functioning and reduced sleep disturbances, night-time motor symptoms, depressive symptoms, pain and functioning, and quality of life to a significantly greater extent than placebo. Rotigotine was generally well tolerated across the trials and in longer-term extension studies, with the most common treatment-emergent adverse events being application-site reactions, gastrointestinal disturbances, somnolence and headache. Application-site reactions were generally mild to moderate in severity; where reported, up to 3% of patients had severe skin reactions. Thus, rotigotine offers a novel approach to the treatment of Parkinson's disease and, given its ease of administration, efficacy in reducing disabling motor and non-motor symptoms, and acceptable tolerability profile, it has the potential to be an attractive treatment option for this highly debilitating disease.

  11. Modulating Tone to Promote Motor Development Using a Neurofacilitation of Developmental Reaction (NFDR) Approach in Children with Neurodevelopmental Delay

    PubMed Central

    Batra, Vijay; Batra, Meenakshi; Pandey, Ravindra Mohan; Sharma, Vijai Prakash; Agarwal, Girdhar Gopal

    2015-01-01

    Objective To compare the efficacy of a Neurofacilitation of Developmental Reaction (NFDR) approach with that of a Conventional approach in the modulation of tone in children with neurodevelopmental delay. Methods Experimental control design. A total of 30 spastic children ranging in age from 4 to 7 years with neurodevelopmental delay were included. Baseline evaluations of muscle tone and gross motor functional performance abilities were performed. The children were allocated into two intervention groups of 15 subjects each. In groups A and B, the NFDR and conventional approaches were applied, respectively, for 3 months and were followed by subsequent re-evaluations. Results Between group analyses were performed using independent t test for tone and primitive reflex intensity and a Mann-Whitney U test for gross motor functional ability. For the within-group analyses, paired t tests were used for tone and primitive reflex intensity, and a Wilcoxon signed-rank test was used for gross motor functional ability. Conclusion The NFDR approach/technique prepares the muscle to undergo tonal modulation and thereby enhances motor development and improves the motor functional performance abilities of the children with neurodevelopmental delay. PMID:28239268

  12. Treatment of Cerebral Palsy with Stem Cells: A Report of 17 Cases.

    PubMed

    Abi Chahine, Nassim H; Wehbe, Tarek W; Hilal, Ramzi A; Zoghbi, Victoria V; Melki, Alia E; Habib, Emil B Bou

    2016-05-30

    Cerebral Palsy (CP) is a disabling condition that affects a child's life and his/her family irreversibly. It is usually a non-progressive condition but improvement over time is rarely seen. The condition can be due to prenatal hypoxia, metabolic, genetic, infectious, traumatic or other causes. It is therefore a heterogeneous group that results in functional motor disability associated with different degrees of cognitive abnormalities. There are no treatments that can cure or even improve CP and the best available approach aims at functional, social and nutritional supportive care and counseling. In this paper, we report 17 sequential patients with CP treated with intrathecal administration of Bone Marrow Mononuclear Cells (BMMC). All patients had an uneventful post-injection course with 73% of the evaluable patients treated having a good response using the Gross Motor Function Classification System (GMFCS). The average improvement was 1.3 levels on the GMFCS with cognitive improvements as well.

  13. Systematic Review of Parameters of Stimulation, Clinical Trial Design Characteristics, and Motor Outcomes in Non-Invasive Brain Stimulation in Stroke

    PubMed Central

    Adeyemo, Bamidele O.; Simis, Marcel; Macea, Debora Duarte; Fregni, Felipe

    2012-01-01

    Introduction/Objectives: Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation are two powerful non-invasive neuromodulatory therapies that have the potential to alter and evaluate the integrity of the corticospinal tract. Moreover, recent evidence has shown that brain stimulation might be beneficial in stroke recovery. Therefore, investigating and investing in innovative therapies that may improve neurorehabilitative stroke recovery are next steps in research and development. Participants/Materials and Methods: This article presents an up-to-date systematic review of the treatment effects of rTMS and tDCS on motor function. A literary search was conducted, utilizing search terms “stroke” and “transcranial stimulation.” Items were excluded if they failed to: (1) include stroke patients, (2) study motor outcomes, or (3) include rTMS/tDCS as treatments. Other exclusions included: (1) reviews, editorials, and letters, (2) animal or pediatric populations, (3) case reports or sample sizes ≤2 patients, and (4) primary outcomes of dysphagia, dysarthria, neglect, or swallowing. Results: Investigation of PubMed English Database prior to 01/01/2012 produced 695 applicable results. Studies were excluded based on the aforementioned criteria, resulting in 50 remaining studies. They included 1314 participants (1282 stroke patients and 32 healthy subjects) evaluated by motor function pre- and post-tDCS or rTMS. Heterogeneity among studies’ motor assessments was high and could not be accounted for by individual comparison. Pooled effect sizes for the impact of post-treatment improvement revealed consistently demonstrable improvements after tDCS and rTMS therapeutic stimulation. Most studies provided limited follow-up for long-term effects. Conclusion: It is apparent from the available studies that non-invasive stimulation may enhance motor recovery and may lead to clinically meaningful functional improvements in the stroke population. Only mild to no adverse events have been reported. Though results have been positive results, the large heterogeneity across articles precludes firm conclusions. PMID:23162477

  14. A Short and Distinct Time Window for Recovery of Arm Motor Control Early After Stroke Revealed With a Global Measure of Trajectory Kinematics.

    PubMed

    Cortes, Juan C; Goldsmith, Jeff; Harran, Michelle D; Xu, Jing; Kim, Nathan; Schambra, Heidi M; Luft, Andreas R; Celnik, Pablo; Krakauer, John W; Kitago, Tomoko

    2017-06-01

    Studies demonstrate that most arm motor recovery occurs within three months after stroke, when measured with standard clinical scales. Improvements on these measures, however, reflect a combination of recovery in motor control, increases in strength, and acquisition of compensatory strategies. To isolate and characterize the time course of recovery of arm motor control over the first year poststroke. Longitudinal study of 18 participants with acute ischemic stroke. Motor control was evaluated using a global kinematic measure derived from a 2-dimensional reaching task designed to minimize the need for antigravity strength and prevent compensation. Arm impairment was evaluated with the Fugl-Meyer Assessment of the upper extremity (FMA-UE), activity limitation with the Action Research Arm Test (ARAT), and strength with biceps dynamometry. Assessments were conducted at: 1.5, 5, 14, 27, and 54 weeks poststroke. Motor control in the paretic arm improved up to week 5, with no further improvement beyond this time point. In contrast, improvements in the FMA-UE, ARAT, and biceps dynamometry continued beyond 5 weeks, with a similar magnitude of improvement between weeks 5 and 54 as the one observed between weeks 1.5 and 5. Recovery after stroke plateaued much earlier for arm motor control, isolated with a global kinematic measure, compared to motor function assessed with clinical scales. This dissociation between the time courses of kinematic and clinical measures of recovery may be due to the contribution of strength improvement to the latter. Novel interventions, focused on the first month poststroke, will be required to exploit the narrower window of spontaneous recovery for motor control.

  15. Using Brain Oscillations and Corticospinal Excitability to Understand and Predict Post-Stroke Motor Function

    PubMed Central

    Thibaut, Aurore; Simis, Marcel; Battistella, Linamara Rizzo; Fanciullacci, Chiara; Bertolucci, Federica; Huerta-Gutierrez, Rodrigo; Chisari, Carmelo; Fregni, Felipe

    2017-01-01

    What determines motor recovery in stroke is still unknown and finding markers that could predict and improve stroke recovery is a challenge. In this study, we aimed at understanding the neural mechanisms of motor function recovery after stroke using neurophysiological markers by means of cortical excitability (transcranial magnetic stimulation—TMS) and brain oscillations (electroencephalography—EEG). In this cross-sectional study, 55 subjects with chronic stroke (62 ± 14 yo, 17 women, 32 ± 42 months post-stroke) were recruited in two sites. We analyzed TMS measures (i.e., motor threshold—MT—of the affected and unaffected sides) and EEG variables (i.e., power spectrum in different frequency bands and different brain regions of the affected and unaffected hemispheres) and their correlation with motor impairment as measured by Fugl-Meyer. Multiple univariate and multivariate linear regression analyses were performed to identify the predictors of good motor function. A significant interaction effect of MT in the affected hemisphere and power in beta bandwidth over the central region for both affected and unaffected hemispheres was found. We identified that motor function positively correlates with beta rhythm over the central region of the unaffected hemisphere, while it negatively correlates with beta rhythm in the affected hemisphere. Our results suggest that cortical activity in the affected and unaffected hemisphere measured by EEG provides new insights on the association between high-frequency rhythms and motor impairment, highlighting the role of an excess of beta in the affected central cortical region in poor motor function in stroke recovery. PMID:28539912

  16. Using Brain Oscillations and Corticospinal Excitability to Understand and Predict Post-Stroke Motor Function.

    PubMed

    Thibaut, Aurore; Simis, Marcel; Battistella, Linamara Rizzo; Fanciullacci, Chiara; Bertolucci, Federica; Huerta-Gutierrez, Rodrigo; Chisari, Carmelo; Fregni, Felipe

    2017-01-01

    What determines motor recovery in stroke is still unknown and finding markers that could predict and improve stroke recovery is a challenge. In this study, we aimed at understanding the neural mechanisms of motor function recovery after stroke using neurophysiological markers by means of cortical excitability (transcranial magnetic stimulation-TMS) and brain oscillations (electroencephalography-EEG). In this cross-sectional study, 55 subjects with chronic stroke (62 ± 14 yo, 17 women, 32 ± 42 months post-stroke) were recruited in two sites. We analyzed TMS measures (i.e., motor threshold-MT-of the affected and unaffected sides) and EEG variables (i.e., power spectrum in different frequency bands and different brain regions of the affected and unaffected hemispheres) and their correlation with motor impairment as measured by Fugl-Meyer. Multiple univariate and multivariate linear regression analyses were performed to identify the predictors of good motor function. A significant interaction effect of MT in the affected hemisphere and power in beta bandwidth over the central region for both affected and unaffected hemispheres was found. We identified that motor function positively correlates with beta rhythm over the central region of the unaffected hemisphere, while it negatively correlates with beta rhythm in the affected hemisphere. Our results suggest that cortical activity in the affected and unaffected hemisphere measured by EEG provides new insights on the association between high-frequency rhythms and motor impairment, highlighting the role of an excess of beta in the affected central cortical region in poor motor function in stroke recovery.

  17. Transcranial direct current stimulation (tDCS) of the primary motor cortex and robot-assisted arm training in chronic incomplete cervical spinal cord injury: A proof of concept sham-randomized clinical study.

    PubMed

    Yozbatiran, Nuray; Keser, Zafer; Davis, Matthew; Stampas, Argyrios; O'Malley, Marcia K; Cooper-Hay, Catherine; Frontera, Joel; Fregni, Felipe; Francisco, Gerard E

    2016-07-15

    After cervical spinal cord injury, current options for treatment of upper extremity motor functions have been limited to traditional approaches. However, there is a substantial need to explore more rigorous alternative treatments to facilitate motor recovery. To demonstrate whether anodal-primary motor cortex (M1) excitability enhancement (with cathodal-supra orbital area) (atDCS) combined with robot-assisted arm training (R-AAT) will provide greater improvement in contralateral arm and hand motor functions compared to sham stimulation (stDCS) and R-AAT in patients with chronic, incomplete cervical spinal cord injury (iCSCI). In this parallel-group, double-blinded, randomized and sham-controlled trial, nine participants with chronic iCSCI (AIS C and D level) were randomized to receive 10 sessions of atDCS or stDSC combined with R-AAT. Feasibility and tolerability was assessed with attrition rate and occurrence of adverse events, Changes in arm and hand function were assessed with Jebson Taylor Hand Function Test (JTHFT). Amount of Use Scale of Motor Activity Log (AOU-MAL), American Spinal Injury Association Upper Extremity Motor Score and Modified Ashworth Scale (MAS) at baseline, after treatment, and at two-month follow-up. None of the participants missed a treatment session or dropped-out due to adverse events related to the treatment protocol. Participants tended to perform better in JTHFT and AOU-MAL after treatment. Active group at post-treatment and two-month follow-up demonstrated better arm and hand performance compared to sham group. These preliminary findings support that modulating excitatory input of the corticospinal tracts on spinal circuits may be a promising strategy in improving arm and hand functions in persons with incomplete tetraplegia. Further study is needed to explore the underlying mechanisms of recovery.

  18. The involvement of audio-motor coupling in the music-supported therapy applied to stroke patients.

    PubMed

    Rodriguez-Fornells, Antoni; Rojo, Nuria; Amengual, Julià L; Ripollés, Pablo; Altenmüller, Eckart; Münte, Thomas F

    2012-04-01

    Music-supported therapy (MST) has been developed recently to improve the use of the affected upper extremity after stroke. MST uses musical instruments, an electronic piano and an electronic drum set emitting piano sounds, to retrain fine and gross movements of the paretic upper extremity. In this paper, we first describe the rationale underlying MST, and we review the previous studies conducted on acute and chronic stroke patients using this new neurorehabilitation approach. Second, we address the neural mechanisms involved in the motor movement improvements observed in acute and chronic stroke patients. Third, we provide some recent studies on the involvement of auditory-motor coupling in the MST in chronic stroke patients using functional neuroimaging. Finally, these ideas are discussed and focused on understanding the dynamics involved in the neural circuit underlying audio-motor coupling and how functional connectivity could help to explain the neuroplastic changes observed after therapy in stroke patients. © 2012 New York Academy of Sciences.

  19. Mirror therapy in complex regional pain syndrome type 1 of the upper limb in stroke patients.

    PubMed

    Cacchio, Angelo; De Blasis, Elisabetta; De Blasis, Vincenzo; Santilli, Valter; Spacca, Giorgio

    2009-10-01

    Complex regional pain syndrome type 1 (CRPSt1) of the upper limb is a painful and debilitating condition, frequent after stroke, and interferes with the rehabilitative process and outcome. However, treatments used for CRPSt1 of the upper limb are limited. . This randomized controlled study was conducted to compare the effectiveness on pain and upper limb function of mirror therapy on CRPSt1 of upper limb in patients with acute stroke. . Of 208 patients with first episode of unilateral stroke admitted to the authors' rehabilitation center, 48 patients with CRPSt1 of the affected upper limb were enrolled in a randomized controlled study, with a 6-month follow-up, and assigned to either a mirror therapy group or placebo control group. The primary end points were a reduction in the visual analogue scale score of pain at rest, on movement, and brush-induced tactile allodynia. The secondary end points were improvement in motor function as assessed by the Wolf Motor Function Test and Motor Activity Log. . The mean scores of both the primary and secondary end points significantly improved in the mirror group (P < .001). No statistically significant improvement was observed in any of the control group values (P > .001). Moreover, statistically significant differences after treatment (P < .001) and at the 6-month follow-up were found between the 2 groups. . The results indicate that mirror therapy effectively reduces pain and enhances upper limb motor function in stroke patients with upper limb CRPSt1.

  20. Paradoxical effect of dopamine medication on cognition in Parkinson's disease: relationship to side of motor onset.

    PubMed

    Hanna-Pladdy, Brenda; Pahwa, Rajesh; Lyons, Kelly E

    2015-04-01

    Parkinson's disease (PD) is characterized by asymmetric motor symptom onset attributed to greater degeneration of dopamine neurons contralateral to the affected side. However, whether motor asymmetries predict cognitive profiles in PD, and to what extent dopamine influences cognition remains controversial. This study evaluated cognitive variability in PD by measuring differential response to dopamine replacement therapy (DRT) based on hemispheric asymmetries. The influence of DRT on cognition was evaluated in mild PD patients (n = 36) with left or right motor onset symptoms. All subjects were evaluated on neuropsychological measures on and off DRT and compared to controls (n = 42). PD patients were impaired in executive, memory and motor domains irrespective of side of motor onset, although patients with left hemisphere deficit displayed greater cognitive impairment. Patients with right hemisphere deficit responded to DRT with significant improvement in sensorimotor deficits, and with corresponding improvement in attention and verbal memory functions. Conversely, patients with greater left hemisphere dopamine deficiency did not improve in attentional functions and declined in verbal memory recall following DRT. These findings support the presence of extensive mild cognitive deficits in early PD not fully explained by dopamine depletion alone. The paradoxical effects of levodopa on verbal memory were predicted by extent of fine motor impairment and sensorimotor response to levodopa, which reflects extent of dopamine depletion. The findings are discussed with respect to factors influencing variable cognitive profiles in early PD, including hemispheric asymmetries and differential response to levodopa based on dopamine levels predicting amelioration or overdosing.

  1. [An oral function improvement program utilizing health behavior theories ameliorates oral functions and oral hygienic conditions of pre-frail elderly persons].

    PubMed

    Sakaguchi, Hideo

    2014-06-01

    Oral function improvement programs utilizing health behavior theories are considered to be effective in preventing the need for long-term social care. In the present study, an oral function improvement program based upon health behavior theories was designed, and its utility was assessed in 102 pre-frail elderly persons (33 males, 69 females, mean age: 76.9 +/- 5.7) considered to be in potential need of long-term social care and attending a long-term care prevention class in Sayama City, Saitama Prefecture, Japan. The degree of improvement in oral functions (7 items) and oral hygienic conditions (3 items) was assessed by comparing oral health before and after participation in the program. The results showed statistically significant improvements in the following oral functions: (1) lip functions (oral diadochokinesis, measured by the regularity of the repetition of the syllable "Pa"), (2) tongue functions, (3) tongue root motor skills (oral diadochokinesis, measured by the regularity of the repetition of the syllables "Ta" and "Ka"), (4) tongue extension/retraction, (5) side-to-side tongue movement functions, (6) cheek motor skills, and (7) repetitive saliva swallowing test (RSST). The following measures of oral hygiene also showed a statistically significant improvement: (1) debris on dentures or teeth, (2) coated tongue, and (3) frequency of oral cleaning. These findings demonstrated that an improvement program informed by health behavior theories is useful in improving oral functions and oral hygiene conditions.

  2. Randomized, multicenter, comparative study of NEURO versus CIMT in poststroke patients with upper limb hemiparesis: the NEURO-VERIFY Study.

    PubMed

    Abo, Masahiro; Kakuda, Wataru; Momosaki, Ryo; Harashima, Hiroaki; Kojima, Miki; Watanabe, Shigeto; Sato, Toshihiro; Yokoi, Aki; Umemori, Takuma; Sasanuma, Jinichi

    2014-07-01

    Many poststroke patients suffer functional motor limitation of the affected upper limb, which is associated with diminished health-related quality of life. The aim of this study is to conduct a randomized, multicenter, comparative study of low-frequency repetitive transcranial magnetic stimulation combined with intensive occupational therapy, NEURO (NovEl intervention Using Repetitive TMS and intensive Occupational therapy) versus constraint-induced movement therapy in poststroke patients with upper limb hemiparesis. In this randomized controlled study of NEURO and constraint-induced movement therapy, 66 poststroke patients with upper limb hemiparesis were randomly assigned at 2:1 ratio to low-frequency repetitive transcranial magnetic stimulation plus occupational therapy (NEURO group) or constraint-induced movement therapy (constraint-induced movement therapy group) for 15 days. Fugl-Meyer Assessment and Wolf Motor Function Test and Functional Ability Score of Wolf Motor Function Test were used for assessment. No differences in patients' characteristics were found between the two groups at baseline. The Fugl-Meyer Assessment score was significantly higher in both groups after the 15-day treatment compared with the baseline. Changes in Fugl-Meyer Assessment scores and Functional Ability Score of Wolf Motor Function Test were significantly higher in the NEURO group than in the constraint-induced movement therapy group, whereas the decrease in the Wolf Motor Function Test log performance time was comparable between the two groups (changes in Fugl-Meyer Assessment score, NEURO: 5·39 ± 4·28, constraint-induced movement therapy: 3·09 ± 4·50 points; mean ± standard error of the mean; P < 0·05) (changes in Functional Ability Score of Wolf Motor Function Test, NEURO: 3·98 ± 2·99, constraint-induced movement therapy: 2·09 ± 2·96 points; P < 0·05). The results of the 15-day rehabilitative protocol showed the superiority of NEURO relative to constraint-induced movement therapy; NEURO improved the motion of the whole upper limb and resulted in functional improvement in activities of daily living. © 2013 The Authors. International Journal of Stroke © 2013 World Stroke Organization.

  3. Task-specific gross motor skills training for ambulant school-aged children with cerebral palsy: a systematic review.

    PubMed

    Toovey, Rachel; Bernie, Charmaine; Harvey, Adrienne R; McGinley, Jennifer L; Spittle, Alicia J

    2017-01-01

    The primary objective is to systematically evaluate the evidence for the effectiveness of task-specific training (TST) of gross motor skills for improving activity and/or participation outcomes in ambulant school-aged children with cerebral palsy (CP). The secondary objective is to identify motor learning strategies reported within TST and assess relationship to outcome. Systematic review. Relevant databases were searched for studies including: children with CP (mean age >4 years and >60% of the sample ambulant); TST targeting gross motor skills and activity (skill performance, gross motor function and functional skills) and/or participation-related outcomes. Quality of included studies was assessed using standardised tools for risk of bias, study design and quality of evidence across outcomes. Continuous data were summarised for each study using standardised mean difference (SMD) and 95% CIs. Thirteen studies met inclusion criteria: eight randomised controlled trials (RCTs), three comparative studies, one repeated-measures study and one single-subject design study. Risk of bias was moderate across studies. Components of TST varied and were often poorly reported. Within-group effects of TST were positive across all outcomes of interest in 11 studies. In RCTs, between-group effects were conflicting for skill performance and functional skills, positive for participation-related outcomes (one study: Life-HABITS performance SMD=1.19, 95% CI 0.3 to 2.07, p<0.001; Life-HABITS satisfaction SMD=1.29, 95% CI 0.40 to 2.18, p=0.001), while no difference or negative effects were found for gross motor function. The quality of evidence was low-to-moderate overall. Variability and poor reporting of motor learning strategies limited assessment of relationship to outcome. Limited evidence for TST for gross motor skills in ambulant children with CP exists for improving activity and participation-related outcomes and recommendations for use over other interventions are limited by poor study methodology and heterogeneous interventions. PROSPERO ID42016036727.

  4. Task-specific gross motor skills training for ambulant school-aged children with cerebral palsy: a systematic review

    PubMed Central

    Bernie, Charmaine; Harvey, Adrienne R; McGinley, Jennifer L; Spittle, Alicia J

    2017-01-01

    Objectives The primary objective is to systematically evaluate the evidence for the effectiveness of task-specific training (TST) of gross motor skills for improving activity and/or participation outcomes in ambulant school-aged children with cerebral palsy (CP). The secondary objective is to identify motor learning strategies reported within TST and assess relationship to outcome. Design Systematic review. Method Relevant databases were searched for studies including: children with CP (mean age >4 years and >60% of the sample ambulant); TST targeting gross motor skills and activity (skill performance, gross motor function and functional skills) and/or participation-related outcomes. Quality of included studies was assessed using standardised tools for risk of bias, study design and quality of evidence across outcomes. Continuous data were summarised for each study using standardised mean difference (SMD) and 95% CIs. Results Thirteen studies met inclusion criteria: eight randomised controlled trials (RCTs), three comparative studies, one repeated-measures study and one single-subject design study. Risk of bias was moderate across studies. Components of TST varied and were often poorly reported. Within-group effects of TST were positive across all outcomes of interest in 11 studies. In RCTs, between-group effects were conflicting for skill performance and functional skills, positive for participation-related outcomes (one study: Life-HABITS performance SMD=1.19, 95% CI 0.3 to 2.07, p<0.001; Life-HABITS satisfaction SMD=1.29, 95% CI 0.40 to 2.18, p=0.001), while no difference or negative effects were found for gross motor function. The quality of evidence was low-to-moderate overall. Variability and poor reporting of motor learning strategies limited assessment of relationship to outcome. Conclusions Limited evidence for TST for gross motor skills in ambulant children with CP exists for improving activity and participation-related outcomes and recommendations for use over other interventions are limited by poor study methodology and heterogeneous interventions. Registration PROSPERO ID42016036727 PMID:29637118

  5. FY2011 Advanced Power Electronics and Electric Motors Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Susan A.

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  6. Gross Motor Function Measure Evolution Ratio: Use as a Control for Natural Progression in Cerebral Palsy.

    PubMed

    Marois, Pierre; Marois, Mikael; Pouliot-Laforte, Annie; Vanasse, Michel; Lambert, Jean; Ballaz, Laurent

    2016-05-01

    To develop a new way to interpret Gross Motor Function Measure (GMFM-66) score improvement in studies conducted without control groups in children with cerebral palsy (CP). The curves, which describe the pattern of motor development according to the children's Gross Motor Function Classification System level, were used as historical control to define the GMFM-66 expected natural evolution in children with CP. These curves have been modeled and generalized to fit the curve to particular children characteristics. Research center. Not applicable. Not applicable. Not applicable. Assuming that the GMFM-66 score evolution followed the shape of the Rosenbaum curves, by taking into account the age and GMFM-66 score of children, the expected natural evolution of the GMFM-66 score was predicted for any group of children with CP who were <8 years old. Because the expected natural evolution could be predicted for a specific group of children with CP, the efficacy of a treatment could be determined by comparing the GMFM-66 score evolution measured before and after treatment with the expected natural evolution for the same period. A new index, the Gross Motor Function Measure Evolution Ratio, was defined as follows: Gross Motor Function Measure Evolution Ratio=measured GMFM-66 score change/expected natural evolution. For practical or ethical reasons, it is almost impossible to use control groups in studies evaluating effectiveness of many therapeutic modalities. The Gross Motor Function Measure Evolution Ratio gives the opportunity to take into account the expected natural evolution of the gross motor function of children with CP, which is essential to accurately interpret the therapy effect on the GMFM-66. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. [Long-term clinical course of sequelae in patients with neonatal anoxic encephalopathy resulting in profound mental retardation and motor disturbance].

    PubMed

    Ishizaki, A; Kubota, M; Fueki, N; Shinozaki, M; Kurata, K; Takei, M; Sakamoto, K

    1993-01-01

    A long-term observation has been made in 58 patients (30 males and 28 females) with severe sequelae of neonatal anoxic encephalopathy. They aged from 8 months to 65 years. All of them had motor disturbances and profound mental retardation. Motor function was improved in 4 patients with aging. In contrast, motor activity deteriorated in 11 cases, of which 4 showed a mental regression. Among them, patients who had originally better motor ability than sitting were likely to deteriorate by uncontrollable epilepsy and/or excessive administration of anticonvulsants. Regression of the patients with worse motor ability like bedridden appeared to attributable hypertonia of muscles and bodily deformation. Fifteen cases showed an exacerbation of general condition which originated predominantly to respiratory distress. Twelve patients died including 6 exacerbated cases. Exacerbation or death may have occurred frequently in specific periods of infancy, adolescence and youth with the patients who showed very low motor function such as bedridden and no locomotion.

  8. Panax ginseng Improves Functional Recovery after Contusive Spinal Cord Injury by Regulating the Inflammatory Response in Rats: An In Vivo Study

    PubMed Central

    Kim, Young Ock; Kim, Youngkyung; Lee, Koeun; Na, Sae Won; Hong, Seon Pyo; Valan Arasu, Mariadhas; Yoon, Young Wook; Kim, Junesun

    2015-01-01

    Spinal cord injury (SCI) results in permanent loss of motor function below the injured site. Neuroinflammatory reaction following SCI can aggravate neural injury and functional impairment. Ginseng is well known to possess anti-inflammatory effects. The present study investigated the neuroprotective effects of Panax ginseng C.A. Mayer (P. ginseng) after SCI. A spinal contusion was made at the T11-12 spinal cord in adult male Sprague-Dawley rats (n = 47) using the NYU impactor. Motor function was assessed using the Basso-Beattie-Bresnahan (BBB) score in P. ginseng (0.1, 0.5, 1, 3, and 5 mg/kg) or vehicle (saline) treated after SCI. We also assessed the protein expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) at the lesion site by western blot and then measured the cavity area using luxol fast blue/cresyl violet staining. P. ginseng treated group in SCI showed a significant improvement in locomotor function after the injury. The protein expression of COX-2 and iNOS at the lesion site and the cavity area were decreased following SCI by P. ginseng treatment. These results suggest that P. ginseng may improve the recovery of motor function after SCI which provides neuroprotection by alleviating posttraumatic inflammatory responses. PMID:26451158

  9. Neural reorganization accompanying upper limb motor rehabilitation from stroke with virtual reality-based gesture therapy.

    PubMed

    Orihuela-Espina, Felipe; Fernández del Castillo, Isabel; Palafox, Lorena; Pasaye, Erick; Sánchez-Villavicencio, Israel; Leder, Ronald; Franco, Jorge Hernández; Sucar, Luis Enrique

    2013-01-01

    Gesture Therapy is an upper limb virtual reality rehabilitation-based therapy for stroke survivors. It promotes motor rehabilitation by challenging patients with simple computer games representative of daily activities for self-support. This therapy has demonstrated clinical value, but the underlying functional neural reorganization changes associated with this therapy that are responsible for the behavioral improvements are not yet known. We sought to quantify the occurrence of neural reorganization strategies that underlie motor improvements as they occur during the practice of Gesture Therapy and to identify those strategies linked to a better prognosis. Functional magnetic resonance imaging (fMRI) neuroscans were longitudinally collected at 4 time points during Gesture Therapy administration to 8 patients. Behavioral improvements were monitored using the Fugl-Meyer scale and Motricity Index. Activation loci were anatomically labelled and translated to reorganization strategies. Strategies are quantified by counting the number of active clusters in brain regions tied to them. All patients demonstrated significant behavioral improvements (P < .05). Contralesional activation of the unaffected motor cortex, cerebellar recruitment, and compensatory prefrontal cortex activation were the most prominent strategies evoked. A strong and significant correlation between motor dexterity upon commencing therapy and total recruited activity was found (r2 = 0.80; P < .05), and overall brain activity during therapy was inversely related to normalized behavioral improvements (r2 = 0.64; P < .05). Prefrontal cortex and cerebellar activity are the driving forces of the recovery associated with Gesture Therapy. The relation between behavioral and brain changes suggests that those with stronger impairment benefit the most from this paradigm.

  10. Synaptic plasticity and sensory-motor improvement following fibrin sealant dorsal root reimplantation and mononuclear cell therapy

    PubMed Central

    Benitez, Suzana U.; Barbizan, Roberta; Spejo, Aline B.; Ferreira, Rui S.; Barraviera, Benedito; Góes, Alfredo M.; de Oliveira, Alexandre L. R.

    2014-01-01

    Root lesions may affect both dorsal and ventral roots. However, due to the possibility of generating further inflammation and neuropathic pain, surgical procedures do not prioritize the repair of the afferent component. The loss of such sensorial input directly disturbs the spinal circuits thus affecting the functionality of the injuried limb. The present study evaluated the motor and sensory improvement following dorsal root reimplantation with fibrin sealant (FS) plus bone marrow mononuclear cells (MC) after dorsal rhizotomy. MC were used to enhance the repair process. We also analyzed changes in the glial response and synaptic circuits within the spinal cord. Female Lewis rats (6–8 weeks old) were divided in three groups: rhizotomy (RZ group), rhizotomy repaired with FS (RZ+FS group) and rhizotomy repaired with FS and MC (RZ+FS+MC group). The behavioral tests electronic von-Frey and Walking track test were carried out. For immunohistochemistry we used markers to detect different synapse profiles as well as glial reaction. The behavioral results showed a significant decrease in sensory and motor function after lesion. The reimplantation decreased glial reaction and improved synaptic plasticity of afferent inputs. Cell therapy further enhanced the rewiring process. In addition, both reimplanted groups presented twice as much motor control compared to the non-treated group. In conclusion, the reimplantation with FS and MC is efficient and may be considered an approach to improve sensory-motor recovery following dorsal rhizotomy. PMID:25249946

  11. The discovery of human auditory-motor entrainment and its role in the development of neurologic music therapy.

    PubMed

    Thaut, Michael H

    2015-01-01

    The discovery of rhythmic auditory-motor entrainment in clinical populations was a historical breakthrough in demonstrating for the first time a neurological mechanism linking music to retraining brain and behavioral functions. Early pilot studies from this research center were followed up by a systematic line of research studying rhythmic auditory stimulation on motor therapies for stroke, Parkinson's disease, traumatic brain injury, cerebral palsy, and other movement disorders. The comprehensive effects on improving multiple aspects of motor control established the first neuroscience-based clinical method in music, which became the bedrock for the later development of neurologic music therapy. The discovery of entrainment fundamentally shifted and extended the view of the therapeutic properties of music from a psychosocially dominated view to a view using the structural elements of music to retrain motor control, speech and language function, and cognitive functions such as attention and memory. © 2015 Elsevier B.V. All rights reserved.

  12. Altered Connectivity and Action Model Formation in Autism Is Autism

    PubMed Central

    Mostofsky, Stewart H.; Ewen, Joshua B.

    2014-01-01

    Internal action models refer to sensory-motor programs that form the brain basis for a wide range of skilled behavior and for understanding others’ actions. Development of these action models, particularly those reliant on visual cues from the external world, depends on connectivity between distant brain regions. Studies of children with autism reveal anomalous patterns of motor learning and impaired execution of skilled motor gestures. These findings robustly correlate with measures of social and communicative function, suggesting that anomalous action model formation may contribute to impaired development of social and communicative (as well as motor) capacity in autism. Examination of the pattern of behavioral findings, as well as convergent data from neuroimaging techniques, further suggests that autism-associated action model formation may be related to abnormalities in neural connectivity, particularly decreased function of long-range connections. This line of study can lead to important advances in understanding the neural basis of autism and, more critically, can be used to guide effective therapies targeted at improving social, communicative, and motor function. PMID:21467306

  13. Effect of Obesity on Motor Functional Outcome of Rehabilitating Traumatic Brain Injury Patients.

    PubMed

    Le, David; Shafi, Shahid; Gwirtz, Patricia; Bennett, Monica; Reeves, Rustin; Callender, Librada; Dunklin, Cynthia; Cleveland, Samantha

    2015-08-01

    The aim of this study was to determine the association between obesity and functional motor outcome of patients undergoing inpatient rehabilitation after traumatic brain injury. This retrospective study at an urban acute inpatient rehabilitation center screened data from 761 subjects in the Traumatic Brain Injury Model System who were admitted from January 2010 to September 2013. Inclusion criteria consisted of age of 18 years or older and an abnormal Functional Independence Measure motor score. Body mass index was used to determine obesity in the study population. Patients with a body mass index of 30.0 kg/m or greater were considered obese. A total of 372 subjects met the criteria for inclusion in the study. Of these, 54 (13.2%) were obese. Both obese and nonobese patients showed similar improvement in Functional Independence Measure motor score (mean [SD], 30.4 [12.8] for the obese patients, P = 0.115, and 27.3 [13.1] for the nonobese patients). The mean (SD) Functional Independence Measure motor scores at discharge for the obese and nonobese patients were 63.0 (12.6) and 62.3 (10.1) (P = 0.6548), respectively. Obesity had no adverse impact on motor functional outcomes of the traumatic brain injury patients who underwent inpatient rehabilitation. Therefore, obesity should not be considered an obstacle in inpatient rehabilitation after traumatic brain injury, if patients are able to participate in necessary therapy.

  14. Acai fruit improves motor and cognitive function in aged rats

    USDA-ARS?s Scientific Manuscript database

    Aged rats show impaired performance on motor and cognitive tasks that require the use of spatial learning and memory. In previous studies, we have shown the beneficial effects of various berry fruits (blueberries, strawberries, and blackberries) in reversing age-related deficits in behavioral and ne...

  15. Dietary supplementation with coffee improves motor and cognitive performance in aged rats

    USDA-ARS?s Scientific Manuscript database

    Polyphenols found in fruits and nuts have anti-inflammatory properties that may provide protection against the decline of cognitive, motor and neuronal function in senescence. The presence of a number of bioactive compounds (e.g., polyphenols) implicates coffee as a potential nutritional therapeutic...

  16. The Feldenkrais Method: A Dynamic Approach to Changing Motor Behavior.

    ERIC Educational Resources Information Center

    Buchanan, Patricia A.; Ulrich, Beverly D.

    2001-01-01

    Describes the Feldenkrais Method of somatic education, noting parallels with a dynamic systems theory (DST) approach to motor behavior. Feldenkrais uses movement and perception to foster individualized improvement in function. DST explains that a human-environment system continually adapts to changing conditions and assembles behaviors…

  17. Fine motor skills and executive function both contribute to kindergarten achievement.

    PubMed

    Cameron, Claire E; Brock, Laura L; Murrah, William M; Bell, Lindsay H; Worzalla, Samantha L; Grissmer, David; Morrison, Frederick J

    2012-01-01

    This study examined the contribution of executive function (EF) and multiple aspects of fine motor skills to achievement on 6 standardized assessments in a sample of middle-socioeconomic status kindergarteners. Three- and 4-year-olds' (n=213) fine and gross motor skills were assessed in a home visit before kindergarten, EF was measured at fall of kindergarten, and Woodcock-Johnson III Tests of Academic Achievement were administered at fall and spring. Correlations indicated that EF and fine motor skills appeared distinct. Further, controlling for background variables, higher levels of both EF and fine motor skills, specifically design copy, predicted higher achievement on multiple subtests at kindergarten entry, as well as improvement from fall to spring. Implications for research on school readiness are discussed. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.

  18. Impact of one HF-rTMS session on fine motor function in right-handed healthy female subjects: a comparison of stimulation over the left versus the right dorsolateral prefrontal cortex.

    PubMed

    Baeken, C; Schrijvers, D L; Sabbe, B G C; Vanderhasselt, M A; De Raedt, R

    2012-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive tool to investigate neural conduction in motor processes. Most rTMS research has been conducted by targeting the primary motor cortex. Several studies have also found increased psychomotor speed after rTMS of the dorsolateral prefrontal cortex (DLPFC). However, these studies were mainly performed in psychiatric patients, only targeting the left DLPFC, and often without sham control. Moreover, psychomotor speed is mostly measured based on tasks that also require higher executive functions. Here, we examined the lateralized effect of one sham-controlled high-frequency rTMS session applied to the left or right DLPFC on fine motor function in 36 healthy right-handed females, using the Fitts' paradigm. We found a significant improvement in psychomotor speed only after actively stimulating the right DLPFC. Our results support the assumption of a right prefrontal neural network implicated in visuomotor behavior and performance processes, and that the improvement in psychomotor speed is not a secondary effect of decreased mood. Copyright © 2012 S. Karger AG, Basel.

  19. [Peripheral nerve repair: 30 centuries of scientific research].

    PubMed

    Desouches, C; Alluin, O; Mutaftschiev, N; Dousset, E; Magalon, G; Boucraut, J; Feron, F; Decherchi, P

    2005-11-01

    Nerve injury compromises sensory and motor functions. Techniques of peripheral nerve repair are based on our knowledge regarding regeneration. Microsurgical techniques introduced in the late 1950s and widely developed for the past 20 years have improved repairs. However, functional recovery following a peripheral mixed nerve injury is still incomplete. Good motor and sensory function after nerve injury depends on the reinnervation of the motor end plates and sensory receptors. Nerve regeneration does not begin if the cell body has not survived the initial injury or if it is unable to initiate regeneration. The regenerated axons must reach and reinnervate the appropriate target end-organs in a timely fashion. Recovery of motor function requires a critical number of motor axons reinnervating the muscle fibers. Sensory recovery is possible if the delay in reinnervation is short. Many additional factors influence the success of nerve repair or reconstruction. The timing of the repair, the level of injury, the extent of the zone of injury, the technical skill of the surgeon, and the method of repair and reconstruction contribute to the functional outcome after nerve injury. This review presents the recent advances in understanding of neural regeneration and their application to the management of primary repairs and nerve gaps.

  20. Effect of ankle-foot orthoses on gait, balance and gross motor function in children with cerebral palsy: a systematic review and meta-analysis.

    PubMed

    Lintanf, Mael; Bourseul, Jean-Sébastien; Houx, Laetitia; Lempereur, Mathieu; Brochard, Sylvain; Pons, Christelle

    2018-04-01

    To determine the effects of ankle-foot orthoses (AFOs) on gait, balance, gross motor function and activities of daily living in children with cerebral palsy. Five databases were searched (Pubmed, Psycinfo, Web of Science, Academic Search Premier and Cochrane Library) before January 2018. Studies of the effect of AFOs on gait, balance, gross motor function and activities of daily living in children with cerebral palsy were included. Articles with a modified PEDRO score ≥ 5/9 were selected. Data regarding population, AFO, interventions and outcomes were extracted. When possible, standardized mean differences (SMDs) were calculated from the outcomes. Thirty-two articles, corresponding to 56 studies (884 children) were included. Fifty-one studies included children with spastic cerebral palsy. AFOs increased stride length (SMD = 0.88, P < 0.001) and gait speed (SMD = 0.28, P < 0.001), and decreased cadence (SMD = -0.72, P < 0.001). Gross motor function scores improved (Gross Motor Function Measure (GMFM) D (SMD = 0.30, P = 0.004), E (SMD = 0.28, P = 0.02), Pediatric Evaluation of Disability Inventory (PEDI) (SMD = 0.57, P < 0.001)). Data relating to balance and activities of daily living were insufficient to conclude. Posterior AFOs (solid, hinged, supra-malleolar, dynamic) increased ankle dorsiflexion at initial contact (SMD = 1.65, P < 0.001) and during swing (SMD = 1.34, P < 0.001), and decreased ankle power generation in stance (SMD = -0.72, P < 0.001) in children with equinus gait. In children with spastic cerebral palsy, there is strong evidence that AFOs induce small improvements in gait speed and moderate evidence that AFOs have a small to moderate effect on gross motor function. In children with equinus gait, there is strong evidence that posterior AFOs induce large changes in distal kinematics.

  1. The effects of different combinations of perceptual-motor exercises, music, and vitamin D supplementation on the nerve growth factor in children with high-functioning autism.

    PubMed

    Moradi, Hadi; Sohrabi, Mehdi; Taheri, Hamidreza; Khodashenas, Ezzat; Movahedi, Ahmadreza

    2018-05-01

    The present study investigated the effects of different combinations of perceptual-motor exercises, music, and Vitamin D consumption on the nerve growth factor (NGF) in children with high-functioning autism. 48 children with autism, aged between six and nine years, were divided into four groups: Group A- perceptual-motor activities along with music (n = 12); Group B-Vitamin D supplementation (n = 12); Group C-perceptual-motor activities along with music and Vitamin D (n = 12); and Group D-control (n = 12). Participants' blood NGF level was measured before and after the intervention. The results showed a significant improvement in the NGF levels in Groups B and C due to the interventions. Also, in Group A, the NGF levels increased compared to Group D, although this increase was not significant. In addition, the intake of Vitamin D along with perceptual-motor exercises resulted in a significant increase in the levels of NGF compared to Groups A, B and D. These findings suggest that perceptual-motor exercises along with music as well as taking Vitamin D may provide two appropriate interventions for improving NGF in children with autism. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Talampanel improves the functional deficit after transient focal cerebral ischemia in rats. A 30-day follow up study.

    PubMed

    Erdo, Franciska; Berzsenyi, Pál; Német, László; Andrási, Ferenc

    2006-01-15

    The neuroprotective effect of talampanel, a negative allosteric modulator of alpha-amino-3-hydroxy-methyl-4-isoxazolyl-propionic acid (AMPA) receptors has been described previously. However, in these studies the histological changes and not the functional consequences of the brain damage were evaluated. The aim of present investigation was to analyze the sensorimotor function after stroke and to test the influence of talampanel (GYKI-53773, LY-300164) by 30-day monitoring in rats. After 1h middle cerebral artery occlusion (MCAO) general 'well-being', neurological status, spontaneous motor activity, rotation, motor coordination, balancing, muscle strength and reaction time were followed for 1 month. Talampanel (6 x 10 mg/kg i.p. given on the day of stroke) improved the motor coordination in rotarod (p < 0.01) and beam walking (p < 0.01) tests, reduced the number of stroke-induced rotations (p < 0.05), shortened the reflex time on the forelimb contralateral to brain ischemia and improved the survival rate comparing with vehicle treated control. After stroke, serious sensorimotor deficits appeared in rats but they showed partial spontaneous recovery after 30 days. Talampanel treatment enhanced the rate of functional improvement without changing the morphology at the end of the experiment. Our results indicate that modulation of AMPA receptors by talampanel can be a promising therapeutic approach to the treatment of stroke.

  3. Brain effective connectivity during motor-imagery and execution following stroke and rehabilitation

    PubMed Central

    Bajaj, Sahil; Butler, Andrew J.; Drake, Daniel; Dhamala, Mukesh

    2015-01-01

    Brain areas within the motor system interact directly or indirectly during motor-imagery and motor-execution tasks. These interactions and their functionality can change following stroke and recovery. How brain network interactions reorganize and recover their functionality during recovery and treatment following stroke are not well understood. To contribute to answering these questions, we recorded blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI) signals from 10 stroke survivors and evaluated dynamical causal modeling (DCM)-based effective connectivity among three motor areas: primary motor cortex (M1), pre-motor cortex (PMC) and supplementary motor area (SMA), during motor-imagery and motor-execution tasks. We compared the connectivity between affected and unaffected hemispheres before and after mental practice and combined mental practice and physical therapy as treatments. The treatment (intervention) period varied in length between 14 to 51 days but all patients received the same dose of 60 h of treatment. Using Bayesian model selection (BMS) approach in the DCM approach, we found that, after intervention, the same network dominated during motor-imagery and motor-execution tasks but modulatory parameters suggested a suppressive influence of SM A on M1 during the motor-imagery task whereas the influence of SM A on M1 was unrestricted during the motor-execution task. We found that the intervention caused a reorganization of the network during both tasks for unaffected as well as for the affected hemisphere. Using Bayesian model averaging (BMA) approach, we found that the intervention improved the regional connectivity among the motor areas during both the tasks. The connectivity between PMC and M1 was stronger in motor-imagery tasks whereas the connectivity from PMC to M1, SM A to M1 dominated in motor-execution tasks. There was significant behavioral improvement (p = 0.001) in sensation and motor movements because of the intervention as reflected by behavioral Fugl-Meyer (FMA) measures, which were significantly correlated (p = 0.05) with a subset of connectivity. These findings suggest that PMC and M1 play a crucial role during motor-imagery as well as during motor-execution task. In addition, M1 causes more exchange of causal information among motor areas during a motor-execution task than during a motor-imagery task due to its interaction with SM A. This study expands our understanding of motor network involved during two different tasks, which are commonly used during rehabilitation following stroke. A clear understanding of the effective connectivity networks leads to a better treatment in helping stroke survivors regain motor ability. PMID:26236627

  4. Virtual reality-augmented neurorehabilitation improves motor function and reduces neuropathic pain in patients with incomplete spinal cord injury.

    PubMed

    Villiger, Michael; Bohli, Dominik; Kiper, Daniel; Pyk, Pawel; Spillmann, Jeremy; Meilick, Bruno; Curt, Armin; Hepp-Reymond, Marie-Claude; Hotz-Boendermaker, Sabina; Eng, Kynan

    2013-10-01

    Neurorehabilitation interventions to improve lower limb function and neuropathic pain have had limited success in people with chronic, incomplete spinal cord injury (iSCI). We hypothesized that intense virtual reality (VR)-augmented training of observed and executed leg movements would improve limb function and neuropathic pain. Patients used a VR system with a first-person view of virtual lower limbs, controlled via movement sensors fitted to the patient's own shoes. Four tasks were used to deliver intensive training of individual muscles (tibialis anterior, quadriceps, leg ad-/abductors). The tasks engaged motivation through feedback of task success. Fourteen chronic iSCI patients were treated over 4 weeks in 16 to 20 sessions of 45 minutes. Outcome measures were 10 Meter Walking Test, Berg Balance Scale, Lower Extremity Motor Score, Spinal Cord Independence Measure, Locomotion and Neuropathic Pain Scale (NPS), obtained at the start and at 4 to 6 weeks before intervention. In addition to positive changes reported by the patients (Patients' Global Impression of Change), measures of walking capacity, balance, and strength revealed improvements in lower limb function. Intensity and unpleasantness of neuropathic pain in half of the affected participants were reduced on the NPS test. Overall findings remained stable 12 to 16 weeks after termination of the training. In a pretest/posttest, uncontrolled design, VR-augmented training was associated with improvements in motor function and neuropathic pain in persons with chronic iSCI, several of which reached the level of a minimal clinically important change. A controlled trial is needed to compare this intervention to active training alone or in combination.

  5. Practice guideline update summary: Corticosteroid treatment of Duchenne muscular dystrophy

    PubMed Central

    Gloss, David; Moxley, Richard T.; Ashwal, Stephen; Oskoui, Maryam

    2016-01-01

    Objective: To update the 2005 American Academy of Neurology (AAN) guideline on corticosteroid treatment of Duchenne muscular dystrophy (DMD). Methods: We systematically reviewed the literature from January 2004 to July 2014 using the AAN classification scheme for therapeutic articles and predicated recommendations on the strength of the evidence. Results: Thirty-four studies met inclusion criteria. Recommendations: In children with DMD, prednisone should be offered for improving strength (Level B) and pulmonary function (Level B). Prednisone may be offered for improving timed motor function (Level C), reducing the need for scoliosis surgery (Level C), and delaying cardiomyopathy onset by 18 years of age (Level C). Deflazacort may be offered for improving strength and timed motor function and delaying age at loss of ambulation by 1.4–2.5 years (Level C). Deflazacort may be offered for improving pulmonary function, reducing the need for scoliosis surgery, delaying cardiomyopathy onset, and increasing survival at 5–15 years of follow-up (Level C for each). Deflazacort and prednisone may be equivalent in improving motor function (Level C). Prednisone may be associated with greater weight gain in the first years of treatment than deflazacort (Level C). Deflazacort may be associated with a greater risk of cataracts than prednisone (Level C). The preferred dosing regimen of prednisone is 0.75 mg/kg/d (Level B). Over 12 months, prednisone 10 mg/kg/weekend is equally effective (Level B), with no long-term data available. Prednisone 0.75 mg/kg/d is associated with significant risk of weight gain, hirsutism, and cushingoid appearance (Level B). PMID:26833937

  6. An intensive virtual reality program improves functional balance and mobility of adolescents with cerebral palsy.

    PubMed

    Brien, Marie; Sveistrup, Heidi

    2011-01-01

    To examine functional balance and mobility in adolescents with cerebral palsy classified at Gross Motor Function Classification System (GMFCS) level I following an intensive short-duration virtual reality (VR) intervention. Single-subject, multiple-baseline design with 4 adolescents. Outcomes included the Community Balance and Mobility Scale (CB&M), the 6-Minute Walk Test (6MWT), the Timed Up and Down Stairs, and the Gross Motor Function Measure Dimension E. Assessments were recorded 3 to 6 times at baseline, 5 times during intervention, and 4 times at follow-up. Daily 90-minute VR intervention was completed for 5 consecutive days. Visual, statistical, and clinical significance analyses were used. Statistically significant improvements were shown in all adolescents on CB&M and 6MWT. True change was recorded in all for the CB&M and in 3 for the 6MWT. Functional balance and mobility in adolescents with cerebral palsy classified at GMFCS level I improve with intense, short duration VR intervention, and changes are maintained at 1-month posttraining.

  7. Amelioration of cognitive, motor and endogenous defense functions with silymarin, piracetam and protocatechuic acid in the cerebral global ischemic rat model.

    PubMed

    Muley, Milind M; Thakare, Vishnu N; Patil, Rajesh R; Bafna, Pallavi A; Naik, Suresh R

    2013-07-19

    The neuroprotective activities of silymarin, piracetam and protocatechuic acid ethyl ester (PCA) on cerebral global ischemic/reperfusion were evaluated in a rat model. A midline ventral incision was made in the throat region. The right and left common carotid arteries were located and a bilateral common carotid artery occlusion (BCCAO) was performed for 30min using atraumatic clamps followed by a 24h period of reperfusion. Neurological/behavioral functions (cognitive and motor), endogenous defense systems (lipid peroxidation, glutathione, catalase, and superoxide dismutase), reduced water content and infarct size and histopathological alterations were then studied. Silymarin and PCA treatments significantly improved cognitive, motor and endogenous defense functions, histopathological alterations, and, reduced both water content and infarct size compared to the vehicle-treated ischemic control group. Piracetam treatment improved neurological and histopathological alterations, reduced water content and infarct size, but failed to restore/prevent the impaired endogenous defense functions significantly. Silymarin showed better neuroprotection than piracetam and PCA in experimentally induced global ischemic/reperfusion and was able to facilitate mnemonic performance. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Influence of Aerobic Training and Combinations of Interventions on Cognition and Neuroplasticity after Stroke

    PubMed Central

    Constans, Annabelle; Pin-barre, Caroline; Temprado, Jean-Jacques; Decherchi, Patrick; Laurin, Jérôme

    2016-01-01

    Stroke often aggravated age-related cognitive impairments that strongly affect several aspects of quality of life. However, few studies are, to date, focused on rehabilitation strategies that could improve cognition. Among possible interventions, aerobic training is well known to enhance cardiovascular and motor functions but may also induce beneficial effects on cognitive functions. To assess the effectiveness of aerobic training on cognition, it seems necessary to know whether training promotes the neuroplasticity in brain areas involved in cognitive functions. In the present review, we first explore in both human and animal how aerobic training could improve cognition after stroke by highlighting the neuroplasticity mechanisms. Then, we address the potential effect of combinations between aerobic training with other interventions, including resistance exercises and pharmacological treatments. In addition, we postulate that classic recommendations for aerobic training need to be reconsidered to target both cognition and motor recovery because the current guidelines are only focused on cardiovascular and motor recovery. Finally, methodological limitations of training programs and cognitive function assessment are also developed in this review to clarify their effectiveness in stroke patients. PMID:27445801

  9. Cycling induced by electrical stimulation improves motor recovery in postacute hemiparetic patients: a randomized controlled trial.

    PubMed

    Ambrosini, Emilia; Ferrante, Simona; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Molteni, Franco

    2011-04-01

    This study assessed whether cycling induced by functional electrical stimulation (FES) was more effective than passive cycling with placebo stimulation in promoting motor recovery and walking ability in postacute hemiparetic patients. In a double-blind, randomized, controlled trial, 35 patients were included and randomized to receive FES-induced cycling training or placebo FES cycling. The 4-week treatment consisted of 20 sessions lasting 25 minutes each. Primary outcome measures included the leg subscale of the Motricity Index and gait speed during a 50-meter walking test. Secondary outcomes were the Trunk Control Test, the Upright Motor Control Test, the mean work produced by the paretic leg, and the unbalance in mechanical work between paretic and nonparetic legs during voluntary pedaling. Participants were evaluated before training, after training, and at 3- to 5-month follow-up visits. No significant differences were found between groups at baseline. Repeated-measures ANOVA (P<0.05) revealed significant increases in Motricity Index, Trunk Control Test, Upright Motor Control Test, gait speed, and mean work of the paretic leg after training and at follow-up assessments for FES-treated patients. No outcome measures demonstrated significant improvements after training in the placebo group. Both groups showed no significant differences between assessments after training and at follow-up. A main effect favoring FES-treated patients was demonstrated by repeated-measures ANCOVA for Motricity Index (P<0.001), Trunk Control Test (P=0.001), Upright Motor Control Test (P=0.005), and pedaling unbalance (P=0.038). The study demonstrated that 20 sessions of FES cycling training significantly improved lower extremity motor functions and accelerated the recovery of overground locomotion in postacute hemiparetic patients. Improvements were maintained at follow-up.

  10. Promoting Neuroplasticity for Motor Rehabilitation After Stroke: Considering the Effects of Aerobic Exercise and Genetic Variation on Brain-Derived Neurotrophic Factor

    PubMed Central

    Mang, Cameron S.; Campbell, Kristin L.; Ross, Colin J.D.

    2013-01-01

    Recovery of motor function after stroke involves relearning motor skills and is mediated by neuroplasticity. Recent research has focused on developing rehabilitation strategies that facilitate such neuroplasticity to maximize functional outcome poststroke. Although many molecular signaling pathways are involved, brain-derived neurotrophic factor (BDNF) has emerged as a key facilitator of neuroplasticity involved in motor learning and rehabilitation after stroke. Thus, rehabilitation strategies that optimize BDNF effects on neuroplasticity may be especially effective for improving motor function poststroke. Two potential poststroke rehabilitation strategies that consider the importance of BDNF are the use of aerobic exercise to enhance brain function and the incorporation of genetic information to individualize therapy. Converging evidence demonstrates that aerobic exercise increases BDNF production and consequently enhances learning and memory processes. Nevertheless, a common genetic variant reduces activity-dependent secretion of the BDNF protein. Thus, BDNF gene variation may affect response to motor rehabilitation training and potentially modulate the effects of aerobic exercise on neuroplasticity. This perspective article discusses evidence that aerobic exercise promotes neuroplasticity by increasing BDNF production and considers how aerobic exercise may facilitate the acquisition and retention of motor skills for poststroke rehabilitation. Next, the impact of the BDNF gene val66met polymorphism on motor learning and response to rehabilitation is explored. It is concluded that the effects of aerobic exercise on BDNF and motor learning may be better exploited if aerobic exercise is paired more closely in time with motor training. Additionally, information about BDNF genotype could provide insight into the type and magnitude of effects that aerobic exercise may have across individuals and potentially help guide an individualized prescription of aerobic exercise to enhance motor rehabilitation poststroke. PMID:23907078

  11. Postural Control in Children: Implications for Pediatric Practice

    ERIC Educational Resources Information Center

    Westcott, Sarah L.; Burtner, Patricia

    2004-01-01

    Based on a systems theory of motor control, reactive postural control (RPA) and anticipatory postural control (APA) in children are reviewed from several perspectives in order to develop an evidence-based intervention strategy for improving postural control in children with limitations in motor function. Research on development of postural…

  12. Psychomotor and Motor Speed in Power Athletes Self-Administering Testosterone and Anabolic Steroids.

    ERIC Educational Resources Information Center

    Era, Pertti; And Others

    1988-01-01

    Self-administered testosterone and anabolic steroids resulted in insignificant improvement in psychomotor and motor speed tests of power athletes. This study is part of a larger study on the effects of such drugs on endocrinology, metabolism and neuromuscular functions. Methodolgy and results are discussed. (Author/JL)

  13. Improving Lives through Evidence-Based Practice

    ERIC Educational Resources Information Center

    Young Exceptional Children, 2008

    2008-01-01

    Tess is a joyful eight-year old girl with epilepsy, frontal lobe dysfunction, and dyspraxia, as well as delays in language, fine motor, and gross motor skills. However, despite her disabilities, Tess happily embraces life. With assistance from a few support professionals, Tess currently functions successfully in a regular education second grade…

  14. [Arm Motor Function Recovery during Rehabilitation with the Use of Hand Exoskeleton Controlled by Brain-Computer Interface: a Patient with Severe Brain Damage].

    PubMed

    Biryukova, E V; Pavlova, O G; Kurganskaya, M E; Bobrov, P D; Turbina, L G; Frolov, A A; Davydov, V I; Sil'tchenko, A V; Mokienko, O A

    2016-01-01

    We studied the dynamics of motor function recovery in a patient with severe brain damage in the course of neurorehabilitation using hand exoskeleton controlled by brain-computer interface. For estimating the motor function of paretic arm, we used the biomechanical analysis of movements registered during the course of rehabilitation. After 15 weekly sessions of hand exoskeleton control, the following results were obtained: a) the velocity profile of goal-directed movements of paretic hand became bell-shaped, b) the patient began to extend and abduct the hand which was flexed and adducted in the beginning of rehabilitation, and c) the patient began to supinate the forearm which was pronated in the beginning of rehabilitation. The first result is an evidence of the general improvement of the quality of motor control, while the second and third results prove that the spasticity of paretic arm has decreased.

  15. Combining Upper Limb Robotic Rehabilitation with Other Therapeutic Approaches after Stroke: Current Status, Rationale, and Challenges

    PubMed Central

    Grosmaire, Anne Gaëlle; Battini, Elena

    2017-01-01

    A better understanding of the neural substrates that underlie motor recovery after stroke has led to the development of innovative rehabilitation strategies and tools that incorporate key elements of motor skill relearning, that is, intensive motor training involving goal-oriented repeated movements. Robotic devices for the upper limb are increasingly used in rehabilitation. Studies have demonstrated the effectiveness of these devices in reducing motor impairments, but less so for the improvement of upper limb function. Other studies have begun to investigate the benefits of combined approaches that target muscle function (functional electrical stimulation and botulinum toxin injections), modulate neural activity (noninvasive brain stimulation), and enhance motivation (virtual reality) in an attempt to potentialize the benefits of robot-mediated training. The aim of this paper is to overview the current status of such combined treatments and to analyze the rationale behind them. PMID:29057269

  16. Five-week sensory motor training program improves functional performance and postural control in young male soccer players - A blind randomized clinical trial.

    PubMed

    Heleno, Lucas Rafael; da Silva, Rubens A; Shigaki, Leonardo; Araújo, Cynthia Gobbi Alves; Coelho Candido, Cristiane Regina; Okazaki, Victor Hugo Alves; Frisseli, Ariobaldo; Macedo, Christiane de S Guerino

    2016-11-01

    Sensory motor training programs are used in the rehabilitation and prevention of injuries among soccer players. Inconsistencies are found in the literature regarding the duration of the protocols and the exercises and equipment used. To evaluate the benefits of a five-week sensory motor training program on the functional performance and postural control of young soccer players. The study sample comprised 22 young male soccer players who were evaluated using: the Figure-of-Eight Test (F8), Side Hop Test (SHT), Star Excursion Balance Test (SEBT), and a force platform. The players were randomly divided into a control group (N = 10), who continued their soccer practice sessions and an intervention group (N = 12), who continued their soccer practice sessions and were also enrolled in a supervised five-week sensory motor training program. After the five-week training program, the intervention group obtained significant results in the F8, SHT and SEBT, as well as in the following parameters: area of pressure of sway center (COP), mean velocity and mean frequency of COP. The five-week sensory motor training program, carried out with easily available and low cost equipment, was effective at improving functional performance and postural control in young soccer players. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Motor Skills Training Improves Sensorimotor Dysfunction and Increases Microtubule-Associated Protein 2 mRNA Expression in Rats with Intracerebral Hemorrhage.

    PubMed

    Tamakoshi, Keigo; Kawanaka, Kentaro; Onishi, Hideaki; Takamatsu, Yasuyuki; Ishida, Kazuto

    2016-08-01

    In this study, we examined the effects of motor skills training on the sensorimotor function and the expression of genes associated with synaptic plasticity after intracerebral hemorrhage (ICH) in rats. Male Wistar rats were subjected to ICH or sham operation. ICH was caused by the injection of collagenase into the left striatum. Rats were randomly assigned to no training, acrobatic training, and sham groups. The acrobatic group performed 5 types of acrobatic tasks from 4 to 28 days after surgery. The forelimb sensorimotor function was evaluated over time using forepaw grasping, forelimb placing, and postural instability tests. At 14 and 29 days after the lesion, we analyzed the mRNA expression levels of microtubule-associated protein 2 (MAP2), brain-derived neurotrophic factor, and growth-associated protein 43 in the bilateral sensorimotor cortex (forelimb area) by real-time reverse transcription-polymerase chain reaction. Motor skills training in ICH rats improved the sensorimotor dysfunction significantly from the early phase. The mRNA expression level of MAP2 was upregulated in the ipsilesional sensorimotor cortex by motor skills training at 29 days after the lesion. Our results suggest that sensorimotor functional recovery following motor skills training after ICH is promoted by dendritic growth in the ipsilesional sensorimotor cortex. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  18. From motor cortex to visual cortex: the application of noninvasive brain stimulation to amblyopia.

    PubMed

    Thompson, Benjamin; Mansouri, Behzad; Koski, Lisa; Hess, Robert F

    2012-04-01

    Noninvasive brain stimulation is a technique for inducing changes in the excitability of discrete neural populations in the human brain. A current model of the underlying pathological processes contributing to the loss of motor function after stroke has motivated a number of research groups to investigate the potential therapeutic application of brain stimulation to stroke rehabilitation. The loss of motor function is modeled as resulting from a combination of reduced excitability in the lesioned motor cortex and an increased inhibitory drive from the nonlesioned hemisphere over the lesioned hemisphere. This combination of impaired neural function and pathological suppression resonates with current views on the cause of the visual impairment in amblyopia. Here, we discuss how the rationale for using noninvasive brain stimulation in stroke rehabilitation can be applied to amblyopia, review a proof-of-principle study demonstrating that brain stimulation can temporarily improve amblyopic eye function, and propose future research avenues. Copyright © 2010 Wiley Periodicals, Inc.

  19. Cortical activation changes underlying stimulation-induced behavioural gains in chronic stroke

    PubMed Central

    Bachtiar, Velicia; O'Shea, Jacinta; Allman, Claire; Bosnell, Rosemary Ann; Kischka, Udo; Matthews, Paul McMahan; Johansen-Berg, Heidi

    2012-01-01

    Transcranial direct current stimulation, a form of non-invasive brain stimulation, is showing increasing promise as an adjunct therapy in rehabilitation following stroke. However, although significant behavioural improvements have been reported in proof-of-principle studies, the underlying mechanisms are poorly understood. The rationale for transcranial direct current stimulation as therapy for stroke is that therapeutic stimulation paradigms increase activity in ipsilesional motor cortical areas, but this has not previously been directly tested for conventional electrode placements. This study was performed to test directly whether increases in ipsilesional cortical activation with transcranial direct current stimulation are associated with behavioural improvements in chronic stroke patients. Patients at least 6 months post-first stroke participated in a behavioural experiment (n = 13) or a functional magnetic resonance imaging experiment (n = 11), each investigating the effects of three stimulation conditions in separate sessions: anodal stimulation to the ipsilesional hemisphere; cathodal stimulation to the contralesional hemisphere; and sham stimulation. Anodal (facilitatory) stimulation to the ipsilesional hemisphere led to significant improvements (5–10%) in response times with the affected hand in both experiments. This improvement was associated with an increase in movement-related cortical activity in the stimulated primary motor cortex and functionally interconnected regions. Cathodal (inhibitory) stimulation to the contralesional hemisphere led to a functional improvement only when compared with sham stimulation. We show for the first time that the significant behavioural improvements produced by anodal stimulation to the ipsilesional hemisphere are associated with a functionally relevant increase in activity within the ipsilesional primary motor cortex in patients with a wide range of disabilities following stroke. PMID:22155982

  20. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    PubMed Central

    Carmel, Jason B.; Martin, John H.

    2014-01-01

    The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay. PMID:24994971

  1. Shoulder tenotomies to improve passive motion and relieve pain in patients with spastic hemiplegia after upper motor neuron injury.

    PubMed

    Namdari, Surena; Alosh, Hassan; Baldwin, Keith; Mehta, Samir; Keenan, Mary Ann

    2011-07-01

    Shoulder adduction and internal rotation contractures commonly develop in patients with spastic hemiplegia after upper motor neuron (UMN) injury. Contractures are often painful, macerate skin, and impair axillary hygiene. We hypothesize that shoulder tenotomies are an effective means of pain relief and passive motion restoration in patients without active upper extremity motor function. A consecutive series of 36 adults (10 men, 26 women) with spastic hemiplegia from UMN injury, shoulder adduction, and internal rotation contractures, and no active movement, who underwent shoulder tenotomies of the pectoralis major, latissimus dorsi, teres major, and subscapularis were evaluated. Patients were an average age of 52.2 years. Pain, passive motion, and satisfaction were considered preoperatively and postoperatively. Average follow-up was 14.3 months. Preoperatively, all patients had limited passive motion that interfered with passive functions. Nineteen patients had pain. After surgery, passive extension, flexion, abduction, and external rotation improved from 50%, 27%, 27%, and 1% to 85%, 70%, 66%, and 56%, respectively, compared with the normal contralateral side (P < .001). All patients with preoperative pain had improved pain relief at follow-up, with 18 (95%) being pain-free. Thirty-five (97%) were satisfied with the outcome of surgery, and all patients reported improved axillary hygiene and skin care. Age, gender, etiology, and chronicity of UMN injury were not associated with improvement in motion. We observed improvements in passive ROM and high patient satisfaction with surgery at early follow-up. Patients who had pain with passive motion preoperatively had significant improvements in pain after shoulder tenotomy. Shoulder tenotomy to relieve spastic contractures resulting from UMN injury can be an effective means of pain relief and improved passive range of motion in patients without active motor function. Copyright © 2011 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  2. Visual Spatial Attention Training Improve Spatial Attention and Motor Control for Unilateral Neglect Patients.

    PubMed

    Wang, Wei; Ji, Xiangtong; Ni, Jun; Ye, Qian; Zhang, Sicong; Chen, Wenli; Bian, Rong; Yu, Cui; Zhang, Wenting; Shen, Guangyu; Machado, Sergio; Yuan, Tifei; Shan, Chunlei

    2015-01-01

    To compare the effect of visual spatial training on the spatial attention to that on motor control and to correlate the improvement of spatial attention to motor control progress after visual spatial training in subjects with unilateral spatial neglect (USN). 9 cases with USN after right cerebral stroke were randomly divided into Conventional treatment group + visual spatial attention and Conventional treatment group. The Conventional treatment group + visual spatial attention received conventional rehabilitation therapy (physical and occupational therapy) and visual spatial attention training (optokinetic stimulation and right half-field eye patching). The Conventional treatment group was only treated with conventional rehabilitation training (physical and occupational therapy). All patients were assessed by behavioral inattention test (BIT), Fugl-Meyer Assessment of motor function (FMA), equilibrium coordination test (ECT) and non-equilibrium coordination test (NCT) before and after 4 weeks treatment. Total scores in both groups (without visual spatial attention/with visual spatial attention) improved significantly (BIT: P=0.021/P=0.000, d=1.667/d=2.116, power=0.69/power=0.98, 95%CI[-0.8839,45.88]/95%CI=[16.96,92.64]; FMA: P=0.002/P=0.000, d=2.521/d=2.700, power=0.93/power=0.98, 95%CI[5.707,30.79]/95%CI=[16.06,53.94]; ECT: P=0.002/ P=0.000, d=2.031/d=1.354, power=0.90/power=0.17, 95%CI[3.380,42.61]/95%CI=[-1.478,39.08]; NCT: P=0.013/P=0.000, d=1.124/d=1.822, power=0.41/power=0.56, 95%CI[-7.980,37.48]/95%CI=[4.798,43.60],) after treatment. Among the 2 groups, the group with visual spatial attention significantly improved in BIT (P=0.003, d=3.103, power=1, 95%CI[15.68,48.92]), FMA of upper extremity (P=0.006, d=2.771, power=1, 95%CI[5.061,20.14]) and NCT (P=0.010, d=2.214, power=0.81-0.90, 95%CI[3.018,15.88]). Correlative analysis shows that the change of BIT scores is positively correlated to the change of FMA total score (r=0.77, P<;0.01), FMA of upper extremity (r=0.81, P<0.01), NCT (r=0.78, P<0.01). Four weeks visual spatial training could improve spatial attention as well as motor control functions in hemineglect patients. The improvement of motor function is positively correlated to the progresses of visual spatial functions after visual spatial attention training.

  3. A sensorimotor stimulation program for rehabilitation of chronic stroke patients.

    PubMed

    de Diego, Cristina; Puig, Silvia; Navarro, Xavier

    2013-01-01

    The hypothesis of this study is that intensive therapy by means of a sensory and motor stimulation program of the upper limb in patients with chronic hemiparesis and severe disability due to stroke increases mobility and sensibility, and improves the use of the affected limb in activities of daily living (ADL). The program consists of 16 sessions of sensory stimulation and functional activity training in the rehabilitation center, and daily sessions of tactile stimulation, mental imaginery and practice of ADL at home, during 8 weeks. An experimental group (EG) of 12 patients followed this program, compared with a control group (CG) of 9 patients under standard rehabilitation. The efficacy of the program was evaluated by Fugl Meyer Assessment (FMA), Motor Activity Log (MAL) and Stroke Impact Scale-16 (SIS-16) scores, and a battery of sensory tests. The results show that in both groups, the motor FMA and the SIS-16 improved during the 8 weeks, this improvement being higher in the EG. Significant improvements were observed for the sensory tests in the EG. The intensive sensorimotor stimulation program for the upper extremity may be an efficacious method for improving function and use of the affected limb in ADL in chronic stroke patients.

  4. No Overt Effects of a 6-Week Exergame Training on Sensorimotor and Cognitive Function in Older Adults. A Preliminary Investigation

    PubMed Central

    Ordnung, Madeleine; Hoff, Maike; Kaminski, Elisabeth; Villringer, Arno; Ragert, Patrick

    2017-01-01

    Several studies investigating the relationship between physical activity and cognition showed that exercise interventions might have beneficial effects on working memory, executive functions as well as motor fitness in old adults. Recently, movement based video games (exergames) have been introduced to have the capability to improve cognitive function in older adults. Healthy aging is associated with a loss of cognitive, as well as sensorimotor functions. During exergaming, participants are required to perform physical activities while being simultaneously surrounded by a cognitively challenging environment. However, only little is known about the impact of exergame training interventions on a broad range of motor, sensory, and cognitive skills. Therefore, the present study aims at investigating the effects of an exergame training over 6 weeks on cognitive, motor, and sensory functions in healthy old participants. For this purpose, 30 neurologically healthy older adults were randomly assigned to either an experimental (ETG, n = 15, 1 h training, twice a week) or a control group (NTG, n = 15, no training). Several cognitive tests were performed before and after exergaming in order to capture potential training-induced effects on processing speed as well as on executive functions. To measure the impact of exergaming on sensorimotor performance, a test battery consisting of pinch and grip force of the hand, tactile acuity, eye-hand coordination, flexibility, reaction time, coordination, and static balance were additionally performed. While we observed significant improvements in the trained exergame (mainly in tasks that required a high load of coordinative abilities), these gains did not result in differential performance improvements when comparing ETG and NTG. The only exergaming-induced difference was a superior behavioral gain in fine motor skills of the left hand in ETG compared to NTG. In an exploratory analysis, within-group comparison revealed improvements in sensorimotor and cognitive tasks (ETG) while NTG only showed an improvement in a static balance test. Taken together, the present study indicates that even though exergames might improve gaming performance, our behavioral assessment was probably not sensitive enough to capture exergaming-induced improvements. Hence, we suggest to use more tailored outcome measures in future studies to assess potential exergaming-induced changes. PMID:28420973

  5. Volumetric Effects of Motor Cortex Injury on Recovery of Ipsilesional Dexterous Movements

    PubMed Central

    Darling, Warren G.; Pizzimenti, Marc A.; Hynes, Stephanie M.; Rotella, Diane L.; Headley, Grant; Ge, Jizhi; Stilwell-Morecraft, Kimberly S.; McNeal, David W.; Solon-Cline, Kathryn M.; Morecraft, Robert J.

    2011-01-01

    Damage to the motor cortex of one hemisphere has classically been associated with contralateral upper limb paresis, but recent patient studies have identified deficits in both upper limbs. In non-human primates, we tested the hypothesis that the severity of ipsilesional upper limb motor impairment in the early post-injury phase depends on the volume of gray and white matter damage of the motor areas of the frontal lobe. We also postulated that substantial recovery would accompany minimal task practice and that ipsilesional limb recovery would be correlated with recovery of the contralesional limb. Gross (reaching) and fine hand motor functions were assessed for 3-12 months post-injury using two motor tests. Volumes of white and gray matter lesions were assessed using quantitative histology. Early changes in post-lesion motor performance were inversely correlated with white matter lesion volume indicating that larger lesions produced greater decreases in ipsilesional hand movement control. All monkeys showed improvements in ipsilesional hand motor skill during the post-lesion period, with reaching skill improvements being positively correlated with total lesion volume indicating larger lesions were associate with greater ipsilesional motor skill recovery. We suggest that reduced trans-callosal inhibition from the lesioned hemisphere may play a role in the observed skill improvements. Our findings show that significant ipsilesional hand motor recovery is likely to accompany injury limited to frontal motor areas. In humans, more pronounced ipsilesional motor deficits that invariably develop after stroke may, in part, be a consequence of more extensive subcortical white and gray matter damage. PMID:21703261

  6. Effect of Increased Intensity of Physiotherapy on Patient Outcomes After Stroke: An Evidence-Based Analysis

    PubMed Central

    Sehatzadeh, S

    2015-01-01

    Background After stroke, impairment of the upper and lower limb can limit patients’ motor function and ability to perform activities of daily living (ADL). Physiotherapy (PT) is an established clinical practice for stroke patients, playing an important role in improving limb function. Recently, several randomized trials have evaluated the effect of higher-intensity physiotherapy (increased duration and/or frequency) on patients’ functional ability. Objectives Our objective is to investigate whether an increased intensity of PT after stroke results in better outcomes for patients. Data Sources A literature search was performed on June 7, 2013, for English-language randomized controlled trials published from January 1, 2003, to June 7, 2013. Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid Embase, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), and EBM Reviews were searched. Review Methods We reviewed the full text of articles that compared 2 or more levels of PT intensity. Outcomes of interest included motor function, ADL, and quality of life (QOL). Results High-quality evidence showed that higher-intensity upper-limb PT and higher-intensity lower-limb PT both resulted in significantly greater improvements in motor function. Moderate-quality evidence showed that higher-intensity general PT did not. Moderate-quality evidence showed a significant improvement in ADL performance with higher-intensity upper-limb PT, but no improvement with higher-intensity general PT; no studies reported on ADL outcomes on lower-limb PT specifically. According to moderate-quality evidence, patient QOL did not change significantly after increased intensity of upper-limb, lower-limb, or general PT. When considering the results, one difference should be noted: Compared with the studies examining upper- and lower-limb PT, the studies examining general PT looked at a smaller increase—2 hours or less of additional therapy per week. Limitations This analysis is limited to the earlier post-stroke phase and is not equipped to comment on expected outcomes of later-stage PT. Conclusions Overall, this analysis found support for the use of more intensive PT to improve motor function and ability to perform ADL after stroke. PMID:26356355

  7. Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis.

    PubMed

    Cervera, María A; Soekadar, Surjo R; Ushiba, Junichi; Millán, José Del R; Liu, Meigen; Birbaumer, Niels; Garipelli, Gangadhar

    2018-05-01

    Brain-computer interfaces (BCIs) can provide sensory feedback of ongoing brain oscillations, enabling stroke survivors to modulate their sensorimotor rhythms purposefully. A number of recent clinical studies indicate that repeated use of such BCIs might trigger neurological recovery and hence improvement in motor function. Here, we provide a first meta-analysis evaluating the clinical effectiveness of BCI-based post-stroke motor rehabilitation. Trials were identified using MEDLINE, CENTRAL, PEDro and by inspection of references in several review articles. We selected randomized controlled trials that used BCIs for post-stroke motor rehabilitation and provided motor impairment scores before and after the intervention. A random-effects inverse variance method was used to calculate the summary effect size. We initially identified 524 articles and, after removing duplicates, we screened titles and abstracts of 473 articles. We found 26 articles corresponding to BCI clinical trials, of these, there were nine studies that involved a total of 235 post-stroke survivors that fulfilled the inclusion criterion (randomized controlled trials that examined motor performance as an outcome measure) for the meta-analysis. Motor improvements, mostly quantified by the upper limb Fugl-Meyer Assessment (FMA-UE), exceeded the minimal clinically important difference (MCID=5.25) in six BCI studies, while such improvement was reached only in three control groups. Overall, the BCI training was associated with a standardized mean difference of 0.79 (95% CI: 0.37 to 1.20) in FMA-UE compared to control conditions, which is in the range of medium to large summary effect size. In addition, several studies indicated BCI-induced functional and structural neuroplasticity at a subclinical level. This suggests that BCI technology could be an effective intervention for post-stroke upper limb rehabilitation. However, more studies with larger sample size are required to increase the reliability of these results.

  8. Transcranial direct current stimulation (tDCS) Paired with massed practice training to promote adaptive plasticity and motor recovery in chronic incomplete tetraplegia: a pilot study.

    PubMed

    Potter-Baker, Kelsey A; Janini, Daniel P; Lin, Yin-Liang; Sankarasubramanian, Vishwanath; Cunningham, David A; Varnerin, Nicole M; Chabra, Patrick; Kilgore, Kevin L; Richmond, Mary Ann; Frost, Frederick S; Plow, Ela B

    2017-08-07

    Objective Our goal was to determine if pairing transcranial direct current stimulation (tDCS) with rehabilitation for two weeks could augment adaptive plasticity offered by these residual pathways to elicit longer-lasting improvements in motor function in incomplete spinal cord injury (iSCI). Design Longitudinal, randomized, controlled, double-blinded cohort study. Setting Cleveland Clinic Foundation, Cleveland, Ohio, USA. Participants Eight male subjects with chronic incomplete motor tetraplegia. Interventions Massed practice (MP) training with or without tDCS for 2 hrs, 5 times a week. Outcome Measures We assessed neurophysiologic and functional outcomes before, after and three months following intervention. Neurophysiologic measures were collected with transcranial magnetic stimulation (TMS). TMS measures included excitability, representational volume, area and distribution of a weaker and stronger muscle motor map. Functional assessments included a manual muscle test (MMT), upper extremity motor score (UEMS), action research arm test (ARAT) and nine hole peg test (NHPT). Results We observed that subjects receiving training paired with tDCS had more increased strength of weak proximal (15% vs 10%), wrist (22% vs 10%) and hand (39% vs. 16%) muscles immediately and three months after intervention compared to the sham group. Our observed changes in muscle strength were related to decreases in strong muscle map volume (r=0.851), reduced weak muscle excitability (r=0.808), a more focused weak muscle motor map (r=0.675) and movement of weak muscle motor map (r=0.935). Conclusion Overall, our results encourage the establishment of larger clinical trials to confirm the potential benefit of pairing tDCS with training to improve the effectiveness of rehabilitation interventions for individuals with SCI. Trial Registration NCT01539109.

  9. Subthalamic nucleus deep brain stimulation improves somatosensory function in Parkinson's disease.

    PubMed

    Aman, Joshua E; Abosch, Aviva; Bebler, Maggie; Lu, Chia-Hao; Konczak, Jürgen

    2014-02-01

    An established treatment for the motor symptoms of Parkinson's disease (PD) is deep brain stimulation (DBS) of the subthalamic nucleus (STN). Mounting evidence suggests that PD is also associated with somatosensory deficits, yet the effect of STN-DBS on somatosensory processing is largely unknown. This study investigated whether STN-DBS affects somatosensory processing, specifically the processing of tactile and proprioceptive cues, by systematically examining the accuracy of haptic perception of object size. (Haptic perception refers to one's ability to extract object features such as shape and size by active touch.) Without vision, 13 PD patients with implanted STN-DBS and 13 healthy controls haptically explored the heights of 2 successively presented 3-dimensional (3D) blocks using a precision grip. Participants verbally indicated which block was taller and then used their nonprobing hand to motorically match the perceived size of the comparison block. Patients were tested during ON and OFF stimulation, following a 12-hour medication washout period. First, when compared to controls, the PD group's haptic discrimination threshold during OFF stimulation was elevated by 192% and mean hand aperture error was increased by 105%. Second, DBS lowered the haptic discrimination threshold by 26% and aperture error decreased by 20%. Third, during DBS ON, probing with the motorically more affected hand decreased haptic precision compared to probing with the less affected hand. This study offers the first evidence that STN-DBS improves haptic precision, further indicating that somatosensory function is improved by STN-DBS. We conclude that DBS-related improvements are not explained by improvements in motor function alone, but rather by enhanced somatosensory processing. © 2013 Movement Disorder Society.

  10. The effect of long-term conventional physical therapy and independent predictive factors analysis in children with cerebral palsy.

    PubMed

    Chen, Yi-Nien; Liao, Su-Fen; Su, Li-Fei; Huang, Hsin-Ya; Lin, Chung-Che; Wei, Ta-Sen

    2013-10-01

    This study evaluated the effect of long-term conventional physical therapy (PT) on cerebral palsy (CP) children and to identify the predictors of therapy's response. We performed a retrospective review of CP children treated with PT, and their motor function was assessed every 3 months between 2008 and 2011. Fifty-six children with a mean age of 4.2 ± 2.8 years, gross motor function classification system (GMFCS) levels were level I (n = 14), level II (n = 20), level III (n = 5), level IV (n = 8), and level V (n = 9). In the generalized estimating equations model, there was a significant improvement in the Gross Motor Function Measure (GMFM-66) score (p < 0.001); the improvement was different in five GMFCS levels (p < 0.001) and GMFCS level II had faster progression. The younger CP children had better PT efficacy, and the GMFM-66 score continued improving until 8.4 years old in the older group. The long-term conventional PT is effective even in older CP children, and PT was most efficient in younger children and GMFCS level II.

  11. Combined treatment of botulinumtoxin and robot-assisted rehabilitation therapy on poststroke, upper limb spasticity

    PubMed Central

    Lee, So Young; Jeon, Young Tae; Kim, Bo Ryun; Han, Eun Young

    2017-01-01

    Abstract Rationale: Spasticity is a major complication after stroke, and botulinumtoxin A (BoNT-A) injection is commonly used to manage focal spasticity. However, it is uncertain whether BoNT-A can improve voluntary motor control or activities of daily living function of paretic upper limbs. This study investigated whether BoNT-A injection combined with robot-assisted upper limb therapy improves voluntary motor control or functions of upper limbs after stroke. Patient concerns: Two subacute stroke patients were transferred to the Department of Rehabilitation. Diagnoses: Patients demonstrated spasticity in the upper extremity on the affected side. Interventions: BoNT-A was injected into the paretic muscles of the shoulder, arm, and forearm of the 2 patients at the subacute stage. Conventional rehabilitation therapy and robot-assisted upper limb training were performed during the rehabilitation period. Outcomes: Manual dexterity, grip strength, muscle tone, and activities of daily living function were improved after multidisciplinary rehabilitation treatment. Lessons: BoNT-A injection in combination with multidisciplinary rehabilitation treatment, including robot-assisted arm training, should be recommended for subacute spastic stroke patients to enhance appropriate motor recovery. PMID:29390585

  12. Development of fine motor skills in preterm infants.

    PubMed

    Bos, Arend F; Van Braeckel, Koenraad N J A; Hitzert, Marrit M; Tanis, Jozien C; Roze, Elise

    2013-11-01

    Fine motor skills are related to functioning in daily life and at school. We reviewed the status of knowledge, in preterm children, on the development of fine motor skills, the relation with gross motor skills, and risk factors for impaired fine motor skills. We searched the past 15 years in PubMed, using ['motor skills' or 'fine motor function' and 'preterm infant'] as the search string. Impaired gross and fine motor skills are among the most frequently occurring problems encountered by preterm children who do not develop cerebral palsy. The prevalence is around 40% for mild to moderate impairment and 20% for moderate impairment. Fine motor skill scores on the Movement Assessment Battery for Children are about 0.62 of a standard deviation lower compared with term children. Risk factors for fine motor impairments include moderately preterm birth (odds ratio [OR] 2.0) and, among very preterm children (<32 wk gestation), intra-uterine growth restriction (ORs 2-3), inflammatory conditions (late-onset sepsis and necrotizing enterocolitis, ORs 3-5), and dexamethasone therapy for bronchopulmonary dysplasia (OR 2.7). A better understanding of factors that play a role in the development of and recovery from brain injury could guide future intervention attempts aimed at improving fine motor skills of preterm children. © The Authors. Developmental Medicine & Child Neurology © 2013 Mac Keith Press.

  13. Non-invasive stimulation of the vibrissal pad improves recovery of whisking function after simultaneous lesion of the facial and infraorbital nerves in rats.

    PubMed

    Bendella, H; Pavlov, S P; Grosheva, M; Irintchev, A; Angelova, S K; Merkel, D; Sinis, N; Kaidoglou, K; Skouras, E; Dunlop, S A; Angelov, Doychin N

    2011-07-01

    We have recently shown that manual stimulation of target muscles promotes functional recovery after transection and surgical repair to pure motor nerves (facial: whisking and blink reflex; hypoglossal: tongue position). However, following facial nerve repair, manual stimulation is detrimental if sensory afferent input is eliminated by, e.g., infraorbital nerve extirpation. To further understand the interplay between sensory input and motor recovery, we performed simultaneous cut-and-suture lesions on both the facial and the infraorbital nerves and examined whether stimulation of the sensory afferents from the vibrissae by a forced use would improve motor recovery. The efficacy of 3 treatment paradigms was assessed: removal of the contralateral vibrissae to ensure a maximal use of the ipsilateral ones (vibrissal stimulation; Group 2), manual stimulation of the ipsilateral vibrissal muscles (Group 3), and vibrissal stimulation followed by manual stimulation (Group 4). Data were compared to controls which underwent surgery but did not receive any treatment (Group 1). Four months after surgery, all three treatments significantly improved the amplitude of vibrissal whisking to 30° versus 11° in the controls of Group 1. The three treatments also reduced the degree of polyneuronal innervation of target muscle fibers to 37% versus 58% in Group 1. These findings indicate that forced vibrissal use and manual stimulation, either alone or sequentially, reduce target muscle polyinnervation and improve recovery of whisking function when both the sensory and the motor components of the trigemino-facial system regenerate.

  14. Diffusion tensor imaging of the corticospinal tract before and after mass resection as correlated with clinical motor findings: preliminary data.

    PubMed

    Laundre, Bryan J; Jellison, Brian J; Badie, Behnam; Alexander, Andrew L; Field, Aaron S

    2005-04-01

    The role of diffusion tensor imaging (DTI) in neurosurgical planning and follow-up is currently being defined and needs clinical validation. To that end, we sought correlations between preoperative and postoperative DTI and clinical motor deficits in patients with space-occupying lesions involving the corticospinal tract (CST). DTI findings in four patients with masses near the CST and not involving motor cortex were retrospectively reviewed and compared with contralateral motor strength. CST involvement was determined from anisotropy and eigenvector directional color maps. The CST was considered involved if it was substantially deviated or had decreased anisotropy. Interpretations of the DTIs were blinded to assessments of motor strength, and vice versa. Of the four patients with potential CST involvement before surgery, DTI confirmed CST involvement in three, all of whom had preoperative motor deficits. The patient without CST involvement on DTI had no motor deficit. After surgery, DTI showed CST preservation and normalization of the position and/or anisotropy in two of the three patients with preoperative deficits, and both of those patients had improvement in motor strength. The other patient with preoperative deficits had evidence of wallerian degeneration on DTI and had only equivocal clinical improvement. Preoperative CST involvement, as determined on DTI, was predictive of the presence or absence of motor deficits, and postoperative CST normalization on DTI was predictive of clinical improvement. Further study is warranted to define the role of DTI in planning tumor resections and predicting postoperative motor function.

  15. The effect of electroacupuncture on proteomic changes in the motor cortex of 6-OHDA Parkinsonian rats.

    PubMed

    Li, Min; Li, Lijuan; Wang, Ke; Su, Wenting; Jia, Jun; Wang, Xiaomin

    2017-10-15

    Electroacupuncture (EA) has been reported to alleviate motor deficits in Parkinson's disease (PD) patients, and PD animal models. However, the mechanisms by which EA improves motor function have not been investigated. We have employed a 6-hydroxydopamine (6-OHDA) unilateral injection induced PD model to investigate whether EA alters protein expression in the motor cortex. We found that 4weeks of EA treatment significantly improved spontaneous floor plane locomotion and rotarod performance. High-throughput proteomic analysis in the motor cortex was employed. The expression of 54 proteins were altered in the unlesioned motor cortex, and 102 protein expressions were altered in the lesioned motor cortex of 6-OHDA rats compared to sham rats. Compared to non-treatment PD control, EA treatment reversed 6 proteins in unlesioned and 19 proteins in lesioned motor cortex. The present study demonstrated that PD induces proteomic changes in the motor cortex, some of which are rescued by EA treatment. These targeted proteins were mainly involved in increasing autophagy, mRNA processing and ATP binding and maintaining the balance of neurotransmitters. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Sport simulation as a form of implicit motor training in a geriatric athlete after stroke: a case report.

    PubMed

    Young, Sonia N; VanWye, William R; Wallmann, Harvey W

    2018-06-25

    To describe the use of sport simulation activities as a form of implicit motor learning training with a geriatric former athlete following a stroke. An active 76-year-old former professional male softball player presented to outpatient physical therapy with medical history of right stroke with left hemiparesis 2 weeks following onset of symptoms of impaired balance, coordination, gait, and motor planning. Initial physical therapy included gait, balance, and coordination training. Additional sport-related balance and coordination activities were later added to the treatment plan. After approximately 3 weeks of treatment, the patient was able to return to work and had dramatically improved balance, coordination, and gait with sport simulation activities. Implicit motor learning techniques were incorporated through sport and job task simulation activities along with task-oriented neuromuscular reeducation. The patient demonstrated improvements with gait, balance, gross motor function, and decreased fall risk.

  17. Improvement of motor function in early Parkinson disease by safinamide.

    PubMed

    Stocchi, F; Arnold, G; Onofrj, M; Kwiecinski, H; Szczudlik, A; Thomas, A; Bonuccelli, U; Van Dijk, A; Cattaneo, C; Sala, P; Fariello, R G

    2004-08-24

    A median safinamide (SAF) dose of 70 mg/day (range 40 to 90 mg/day) increased the percentage of parkinsonian patients improving their motor scores by > or =30% from baseline (responders) after 3 months from 21.4% (placebo) to 37.5% (p < 0.05, calculated by logistic regression analysis). In a subgroup of 101 patients under stable treatment with a single dopamine agonist, addition of SAF magnified the response (47.1% responders, mean 4.7-point motor score decrease; p > or = 0.05). These results suggest that doses of SAF exerting ion channel block and glutamate release inhibition add to its symptomatic effect and warrant exploration of higher doses.

  18. Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial.

    PubMed

    Frolov, Alexander A; Mokienko, Olesya; Lyukmanov, Roman; Biryukova, Elena; Kotov, Sergey; Turbina, Lydia; Nadareyshvily, Georgy; Bushkova, Yulia

    2017-01-01

    Repeated use of brain-computer interfaces (BCIs) providing contingent sensory feedback of brain activity was recently proposed as a rehabilitation approach to restore motor function after stroke or spinal cord lesions. However, there are only a few clinical studies that investigate feasibility and effectiveness of such an approach. Here we report on a placebo-controlled, multicenter clinical trial that investigated whether stroke survivors with severe upper limb (UL) paralysis benefit from 10 BCI training sessions each lasting up to 40 min. A total of 74 patients participated: median time since stroke is 8 months, 25 and 75% quartiles [3.0; 13.0]; median severity of UL paralysis is 4.5 points [0.0; 30.0] as measured by the Action Research Arm Test, ARAT, and 19.5 points [11.0; 40.0] as measured by the Fugl-Meyer Motor Assessment, FMMA. Patients in the BCI group ( n = 55) performed motor imagery of opening their affected hand. Motor imagery-related brain electroencephalographic activity was translated into contingent hand exoskeleton-driven opening movements of the affected hand. In a control group ( n = 19), hand exoskeleton-driven opening movements of the affected hand were independent of brain electroencephalographic activity. Evaluation of the UL clinical assessments indicated that both groups improved, but only the BCI group showed an improvement in the ARAT's grasp score from 0 [0.0; 14.0] to 3.0 [0.0; 15.0] points ( p < 0.01) and pinch scores from 0.0 [0.0; 7.0] to 1.0 [0.0; 12.0] points ( p < 0.01). Upon training completion, 21.8% and 36.4% of the patients in the BCI group improved their ARAT and FMMA scores respectively. The corresponding numbers for the control group were 5.1% (ARAT) and 15.8% (FMMA). These results suggests that adding BCI control to exoskeleton-assisted physical therapy can improve post-stroke rehabilitation outcomes. Both maximum and mean values of the percentage of successfully decoded imagery-related EEG activity, were higher than chance level. A correlation between the classification accuracy and the improvement in the upper extremity function was found. An improvement of motor function was found for patients with different duration, severity and location of the stroke.

  19. Randomized controlled comparative study on effect of training to improve lower limb motor paralysis in convalescent patients with post-stroke hemiplegia

    PubMed Central

    Kawakami, Kenji; Miyasaka, Hiroyuki; Nonoyama, Sayaka; Hayashi, Kazuya; Tonogai, Yusuke; Tanino, Genichi; Wada, Yosuke; Narukawa, Akihisa; Okuyama, Yuko; Tomita, Yutaka; Sonoda, Shigeru

    2015-01-01

    [Purpose] The motor paralysis-improving effect on the hemiplegic lower limb was compared among mirror therapy, integrated volitional-control electrical stimulation, therapeutic electrical stimulation, repetitive facilitative exercises, and the standard training method in post-stroke hemiplegia patients. [Subjects and Methods] Eighty one stroke patients admitted to a convalescent rehabilitation ward were randomly allocated to the above 5 treatment groups. Each patient performed functional training of the paralytic lower limb for 20 minutes a day for 4 weeks, and changes in the lower limb function were investigated using the Stroke Impairment Assessment Set. [Results] The hip and knee joint functions did not significantly improve in the standard training control group, but significant improvements were observed after 4 weeks in the other intervention groups. Significant improvement was noted in the ankle joint function in all groups. [Conclusion] Although the results were influenced by spontaneous recovery and the standard training in the control group, the hip and knee joints were more markedly improved by the interventions in the other 4 groups of patients with moderate paralysis, compared to the control group. PMID:26504331

  20. Intraoperative Functional Mapping and Monitoring during Glioma Surgery

    PubMed Central

    SAITO, Taiichi; MURAGAKI, Yoshihiro; MARUYAMA, Takashi; TAMURA, Manabu; NITTA, Masayuki; OKADA, Yoshikazu

    2015-01-01

    Glioma surgery represents a significant advance with respect to improving resection rates using new surgical techniques, including intraoperative functional mapping, monitoring, and imaging. Functional mapping under awake craniotomy can be used to detect individual eloquent tissues of speech and/or motor functions in order to prevent unexpected deficits and promote extensive resection. In addition, monitoring the patient’s neurological findings during resection is also very useful for maximizing the removal rate and minimizing deficits by alarming that the touched area is close to eloquent regions and fibers. Assessing several types of evoked potentials, including motor evoked potentials (MEPs), sensory evoked potentials (SEPs) and visual evoked potentials (VEPs), is also helpful for performing surgical monitoring in patients under general anesthesia (GA). We herein review the utility of intraoperative mapping and monitoring the assessment of neurological findings, with a particular focus on speech and the motor function, in patients undergoing glioma surgery. PMID:25744346

  1. Effect of a new treatment protocol called Functional Chewing Training on chewing function in children with cerebral palsy: a double-blind randomised controlled trial.

    PubMed

    Serel Arslan, S; Demir, N; Karaduman, A A

    2017-01-01

    Cerebral palsy (CP) is a group of permanent sensorimotor impairments. Children with CP have various feeding difficulties including chewing disorder, which may affect their nutritional status. Functional Chewing Training (FuCT) was designed as a holistic approach to improve chewing function by providing postural alignment, sensory and motor training, and food and environmental adjustments. This study aimed to investigate the effect of FuCT on chewing function in children with CP. This study was designed as a double-blind, randomised controlled trial. Eighty CP children with chewing disorder were randomised and split between the FuCT group (31 males, 19 females; mean age 3·5 ± 1·9 years) and the control group (16 males, 14 females; 3·4 ± 2·3 years) receiving traditional oral motor exercises. Each group received the training programme for 12 weeks with weekly follow-up and with two evaluations at baseline and end of 12 weeks. Chewing function was evaluated by analysing video recordings and scored with the Karaduman Chewing Performance Scale (KCPS). The Behavioral Pediatrics Feeding Assessment Scale (BPFAS) was used to evaluate feeding behaviours of children. A significant improvement was observed in KCPS scores at 12 weeks after training in the FuCT group (P < 0·001), but no change was found in the control group (P = 0·07). A significant improvement was detected in all parameters of BPFAS at 12 weeks after training in the FuCT group (P < 0·001) and in four parameters of BPFAS in the control group (P = 0·02, P = 0·02). FuCT is an effective method to improve chewing function compared with traditional oral motor exercises. © 2016 John Wiley & Sons Ltd.

  2. Elastomers in mud motors for oil field applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrik, J.

    1997-08-01

    Mud motors, the most frequently used downhole drilling motors in modern drilling systems, are described in their application and function. The elastomeric liner in a mud motor acts as a huge continuous seal. Important properties of elastomers such as chemical resistance, fatigue resistance, mechanical strength, abrasion resistance, bonding to steel and processability are discussed. Advantages and disadvantages of NBR, HNBR, FKM, TFEP, and EPDM elastomers for mud motor applications are briefly described. The importance of drilling fluids and their physical and chemical impact on motor elastomers are described. Drilling fluids are categorized in: oil based-, synthetic-, and water based. Resultsmore » of compatibility tests in the different drilling muds of the presented categories demonstrate the complexity of elastomer development. Elastomers with an equally good performance in all drilling muds are not available. Future developments and improvements are directed towards higher chemical resistance at higher service temperatures. This will be possible only with improved elastomer-to-metal bonding, increased mechanical and better dynamic properties.« less

  3. Using nerve transfer to restore prehension and grasp 12 years following spinal cord injury: a case report.

    PubMed

    Fox, Ida K; Novak, Christine B; Kahn, Lorna C; Mackinnon, Susan E; Ruvinskaya, Rimma; Juknis, Neringa

    2018-01-01

    Nerve transfers are used routinely for reconstruction of hand function following lower motor neuron lesions. In people with cervical spinal cord injury (SCI), this novel and alternate reconstruction option may be useful to restore prehension and grasp, and improve hand function. A 34-year-old male presented 12 years post-mid-cervical SCI. Pre-operative electrodiagnostic studies revealed intact lower motor neurons below the SCI level. He elected to undergo nerve transfer surgery to restore hand function. Intraoperative evaluation led to the transfer of a brachialis nerve to several median nerve recipient branches. Post surgery, he was discharged home and resumed activities of daily living. He achieved independent thumb and finger flexion function and continued to exhibit functional improvement at 4 years post surgery. These results should prompt referral for consideration of nerve transfer surgery-an exciting alternative to tendon transfer and neuroprostheses.

  4. Exercise Training and Cognitive Rehabilitation: A Symbiotic Approach for Rehabilitating Walking and Cognitive Functions in Multiple Sclerosis?

    PubMed

    Motl, Robert W; Sandroff, Brian M; DeLuca, John

    2016-07-01

    The current review develops a rationale and framework for examining the independent and combined effects of exercise training and cognitive rehabilitation on walking and cognitive functions in persons with multiple sclerosis (MS). To do so, we first review evidence for improvements in walking and cognitive outcomes with exercise training and cognitive rehabilitation in MS. We then review evidence regarding cognitive-motor coupling and possible cross-modality transfer effects of exercise training and cognitive rehabilitation. We lastly present a macro-level framework for considering mechanisms that might explain improvements in walking and cognitive dysfunction with exercise and cognitive rehabilitation individually and combined in MS. We conclude that researchers should consider examining the effects of exercise training and cognitive rehabilitation on walking, cognition, and cognitive-motor interactions in MS and the possible physiological and central mechanisms for improving these functions. © The Author(s) 2015.

  5. Diet-Induced Ketosis Improves Cognitive Performance in Aged Rats

    PubMed Central

    Xu, Kui; Sun, Xiaoyan; Eroku, Bernadette O.; Tsipis, Constantinos P.; Puchowicz, Michelle A.; LaManna, Joseph C.

    2010-01-01

    Aging is associated with increased susceptibility to hypoxic/ischemic insult and declines in behavioral function which may be due to attenuated adaptive/defense responses. We investigated if diet-induced ketosis would improve behavioral performance in the aged rats. Fischer 344 rats (3- and 22-month-old) were fed standard (STD) or ketogenic (KG) diet for 3 weeks and then exposed to hypobaric hypoxia. Cognitive function was measured using the T-maze and object recognition tests. Motor function was measured using the inclined-screen test. Results showed that KG diet significantly increased blood ketone levels in both young and old rats. In the aged rats, the KG diet improved cognitive performance under normoxic and hypoxic conditions; while motor performance remained unchanged. Capillary density and HIF-1α levels were elevated in the aged ketotic group independent of hypoxic challenge. These data suggest that diet-induced ketosis may be beneficial in the treatment of neurodegenerative conditions. PMID:20204773

  6. Vagus nerve stimulation during rehabilitative training improves forelimb strength following ischemic stroke.

    PubMed

    Khodaparast, N; Hays, S A; Sloan, A M; Hulsey, D R; Ruiz, A; Pantoja, M; Rennaker, R L; Kilgard, M P

    2013-12-01

    Upper limb impairment is a common debilitating consequence of ischemic stroke. Physical rehabilitation after stroke enhances neuroplasticity and improves limb function, but does not typically restore normal movement. We have recently developed a novel method that uses vagus nerve stimulation (VNS) paired with forelimb movements to drive specific, long-lasting map plasticity in rat primary motor cortex. Here we report that VNS paired with rehabilitative training can enhance recovery of forelimb force generation following infarction of primary motor cortex in rats. Quantitative measures of forelimb function returned to pre-lesion levels when VNS was delivered during rehab training. Intensive rehab training without VNS failed to restore function back to pre-lesion levels. Animals that received VNS during rehab improved twice as much as rats that received the same rehabilitation without VNS. VNS delivered during physical rehabilitation represents a novel method that may provide long-lasting benefits towards stroke recovery. © 2013.

  7. Sensory stimulation augments the effects of massed practice training in persons with tetraplegia.

    PubMed

    Beekhuizen, Kristina S; Field-Fote, Edelle C

    2008-04-01

    To compare functional changes and cortical neuroplasticity associated with hand and upper extremity use after massed (repetitive task-oriented practice) training, somatosensory stimulation, massed practice training combined with somatosensory stimulation, or no intervention, in persons with chronic incomplete tetraplegia. Participants were randomly assigned to 1 of 4 groups: massed practice training combined with somatosensory peripheral nerve stimulation (MP+SS), somatosensory peripheral nerve stimulation only (SS), massed practice training only (MP), and no intervention (control). University medical school setting. Twenty-four subjects with chronic incomplete tetraplegia. Intervention sessions were 2 hours per session, 5 days a week for 3 weeks. Massed practice training consisted of repetitive practice of functional tasks requiring skilled hand and upper-extremity use. Somatosensory stimulation consisted of median nerve stimulation with intensity set below motor threshold. Pre- and post-testing assessed changes in functional hand use (Jebsen-Taylor Hand Function Test), functional upper-extremity use (Wolf Motor Function Test), pinch grip strength (key pinch force), sensory function (monofilament testing), and changes in cortical excitation (motor evoked potential threshold). The 3 groups showed significant improvements in hand function after training. The MP+SS and SS groups had significant improvements in upper-extremity function and pinch strength compared with the control group, but only the MP+SS group had a significant change in sensory scores compared with the control group. The MP+SS and MP groups had greater change in threshold measures of cortical excitability. People with chronic incomplete tetraplegia obtain functional benefits from massed practice of task-oriented skills. Somatosensory stimulation appears to be a valuable adjunct to training programs designed to improve hand and upper-extremity function in these subjects.

  8. Cobalamin supplementation improves motor development and regurgitations in infants: results from a randomized intervention study.

    PubMed

    Torsvik, Ingrid; Ueland, Per Magne; Markestad, Trond; Bjørke-Monsen, Anne-Lise

    2013-11-01

    During infancy, minor developmental delays and gastrointestinal complaints are common, as is a biochemical profile indicative of impaired cobalamin status. We investigated whether cobalamin supplementation can improve development or symptoms in infants with biochemical signs of impaired cobalamin function and developmental delay or feeding difficulties. Infants <8 mo of age (n = 105) who were referred for feeding difficulties, subtle neurologic symptoms, or delayed psychomotor development were assessed for cobalamin status [by the measurement of serum cobalamin, plasma total homocysteine (tHcy), and plasma methylmalonic acid (MMA)]. Infants with biochemical signs of impaired cobalamin function, defined as a plasma tHcy concentration ≥6.5 μmol/L (n = 79), were enrolled in a double-blind, randomized controlled trial to receive 400 μg hydroxycobalamin intramuscularly (n = 42) or a sham injection (n = 37). Motor function [Alberta Infants Motor Scale (AIMS)] and clinical symptoms (parental questionnaire) were recorded at entry and after 1 mo. During follow-up, cobalamin supplementation changed all markers of impaired cobalamin status (ie, plasma tHcy decreased by 54%, and MMA decreased by 84%), whereas no significant changes were seen in the placebo group (P < 0.001). The median (IQR) increase in the AIMS score was higher in the cobalamin group than in the placebo group [7.0 (5.0, 9.0) compared with 4.5 (3.3, 6.0); P = 0.003], and a higher proportion showed improvements in regurgitations (69% compared with 29%, respectively; P = 0.003). In infants with biochemical signs of impaired cobalamin function, 1 intramuscular injection of cobalamin resulted in biochemical evidence of cobalamin repletion and improvement in motor function and regurgitations, which suggest that an adequate cobalamin status is important for a rapidly developing nervous system. This trial was registered at clinicaltrials.gov as NCT00710359 and NCT00710138.

  9. Synergistic effect of combined transcranial direct current stimulation/constraint-induced movement therapy in children and young adults with hemiparesis: study protocol.

    PubMed

    Gillick, Bernadette; Menk, Jeremiah; Mueller, Bryon; Meekins, Gregg; Krach, Linda E; Feyma, Timothy; Rudser, Kyle

    2015-11-12

    Perinatal stroke occurs in more than 1 in 2,500 live births and resultant congenital hemiparesis necessitates investigation into interventions which may improve long-term function and decreased burden of care beyond current therapies ( http://www.cdc.gov/ncbddd/cp/data.html ). Constraint-Induced Movement Therapy (CIMT) is recognized as an effective hemiparesis rehabilitation intervention. Transcranial direct current stimulation as an adjunct treatment to CIMT may potentiate neuroplastic responses and improve motor function. The methodology of a clinical trial in children designed as a placebo-controlled, serial -session, non-invasive brain stimulation trial incorporating CIMT is described here. The primary hypotheses are 1) that no serious adverse events will occur in children receiving non-invasive brain stimulation and 2) that children in the stimulation intervention group will show significant improvements in hand motor function compared to children in the placebo stimulation control group. A randomized, controlled, double-blinded clinical trial. Twenty children and/or young adults (ages 8-21) with congenital hemiparesis, will be enrolled. The intervention group will receive ten 2-hour sessions of transcranial direct current stimulation combined with constraint-induced movement therapy and the control group will receive sham stimulation with CIMT. The primary outcome measure is safety assessment of transcranial direct current stimulation by physician evaluation, vital sign monitoring and symptom reports. Additionally, hand function will be evaluated using the Assisting Hand Assessment, grip strength and assessment of goals using the Canadian Occupational Performance Measure. Neuroimaging will confirm diagnoses, corticospinal tract integrity and cortical activation. Motor cortical excitability will also be examined using transcranial magnetic stimulation techniques. Combining non-invasive brain stimulation and CIMT interventions has the potential to improve motor function in children with congenital hemiparesis beyond each intervention independently. Such a combined intervention has the potential to benefit an individual throughout their lifetime. Clinicaltrials.gov, NCT02250092 Registered 18 September 2014.

  10. Modelling and Simulation of Single-Phase Series Active Compensator for Power Quality Improvement

    NASA Astrophysics Data System (ADS)

    Verma, Arun Kumar; Mathuria, Kirti; Singh, Bhim; Bhuvaneshwari, G.

    2017-10-01

    A single-phase active series compensator is proposed in this work to reduce harmonic currents at the ac mains and to regulate the dc link voltage of a diode bridge rectifier (DBR) that acts as the front end converter for a voltage source inverter feeding an ac motor. This ac motor drive is used in any of the domestic, commercial or industrial appliances. Under fluctuating ac mains voltages, the dc link voltage of the DBR depicts wide variations and hence the ac motor is used at reduced rating as compared to its name-plate rating. The active series compensator proposed here provides dual functions of improving the power quality at the ac mains and regulating the dc link voltage thus averting the need for derating of the ac motor.

  11. Optimization of brushless direct current motor design using an intelligent technique.

    PubMed

    Shabanian, Alireza; Tousiwas, Armin Amini Poustchi; Pourmandi, Massoud; Khormali, Aminollah; Ataei, Abdolhay

    2015-07-01

    This paper presents a method for the optimal design of a slotless permanent magnet brushless DC (BLDC) motor with surface mounted magnets using an improved bee algorithm (IBA). The characteristics of the motor are expressed as functions of motor geometries. The objective function is a combination of losses, volume and cost to be minimized simultaneously. This method is based on the capability of swarm-based algorithms in finding the optimal solution. One sample case is used to illustrate the performance of the design approach and optimization technique. The IBA has a better performance and speed of convergence compared with bee algorithm (BA). Simulation results show that the proposed method has a very high/efficient performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  12. A Novel Mobility Device to Improve Walking for a Child With Cerebral Palsy.

    PubMed

    Fergus, Andrea

    2017-10-01

    To describe the use and outcomes associated with the Upsee in conjunction with Kinesiotape for a child with cerebral palsy. The Upsee and Kinesiotaping were implemented for 24 weeks with a 31-month-old child with cerebral palsy, Gross Motor Function Classification System level III. She progressed from walking with maximal assistance and extensive gait deviations to walking with supervision with a walker on level surfaces with improved gait. Genu recurvatum, heel strike, scissoring, hip extension, foot placement, step length, and stiff knee in swing improved on the basis of videotaped analyses. The Gross Motor Function Measure-66 improved by 11.4. The Upsee is a clinically feasible approach for gait impairments in children through providing increased opportunities for walking while supporting biomechanical alignment. Upsee effectiveness with and without taping is an area for future study.

  13. A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES.

    PubMed

    Milot, Marie-Hélène; Spencer, Steven J; Chan, Vicky; Allington, James P; Klein, Julius; Chou, Cathy; Bobrow, James E; Cramer, Steven C; Reinkensmeyer, David J

    2013-12-19

    To date, the limited degrees of freedom (DOF) of most robotic training devices hinders them from providing functional training following stroke. We developed a 6-DOF exoskeleton ("BONES") that allows movement of the upper limb to assist in rehabilitation. The objectives of this pilot study were to evaluate the impact of training with BONES on function of the affected upper limb, and to assess whether multijoint functional robotic training would translate into greater gains in arm function than single joint robotic training also conducted with BONES. Twenty subjects with mild to moderate chronic stroke participated in this crossover study. Each subject experienced multijoint functional training and single joint training three sessions per week, for four weeks, with the order of presentation randomized. The primary outcome measure was the change in Box and Block Test (BBT). The secondary outcome measures were the changes in Fugl-Meyer Arm Motor Scale (FMA), Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), and quantitative measures of strength and speed of reaching. These measures were assessed at baseline, after each training period, and at a 3-month follow-up evaluation session. Training with the robotic exoskeleton resulted in significant improvements in the BBT, FMA, WMFT, MAL, shoulder and elbow strength, and reaching speed (p < 0.05); these improvements were sustained at the 3 month follow-up. When comparing the effect of type of training on the gains obtained, no significant difference was noted between multijoint functional and single joint robotic training programs. However, for the BBT, WMFT and MAL, inequality of carryover effects were noted; subsequent analysis on the change in score between the baseline and first period of training again revealed no difference in the gains obtained between the types of training. Training with the 6 DOF arm exoskeleton improved motor function after chronic stroke, challenging the idea that robotic therapy is only useful for impairment reduction. The pilot results presented here also suggest that multijoint functional robotic training is not decisively superior to single joint robotic training. This challenges the idea that functionally-oriented games during training is a key element for improving behavioral outcomes. NCT01050231.

  14. Rewiring of regenerated axons by combining treadmill training with semaphorin3A inhibition

    PubMed Central

    2014-01-01

    Background Rats exhibit extremely limited motor function recovery after total transection of the spinal cord (SCT). We previously reported that SM-216289, a semaphorin3A inhibitor, enhanced axon regeneration and motor function recovery in SCT adult rats. However, these effects were limited because most regenerated axons likely do not connect to the right targets. Thus, rebuilding the appropriate connections for regenerated axons may enhance recovery. In this study, we combined semaphorin3A inhibitor treatment with extensive treadmill training to determine whether combined treatment would further enhance the “rewiring” of regenerated axons. In this study, which aimed for clinical applicability, we administered a newly developed, potent semaphorin3A inhibitor, SM-345431 (Vinaxanthone), using a novel drug delivery system that enables continuous drug delivery over the period of the experiment. Results Treatment with SM-345431 using this delivery system enhanced axon regeneration and produced significant, but limited, hindlimb motor function recovery. Although extensive treadmill training combined with SM-345431 administration did not further improve axon regeneration, hindlimb motor performance was restored, as evidenced by the significant improvement in the execution of plantar steps on a treadmill. In contrast, control SCT rats could not execute plantar steps at any point during the experimental period. Further analyses suggested that this strategy reinforced the wiring of central pattern generators in lumbar spinal circuits, which, in turn, led to enhanced motor function recovery (especially in extensor muscles). Conclusions This study highlights the importance of combining treatments that promote axon regeneration with specific and appropriate rehabilitations that promote rewiring for the treatment of spinal cord injury. PMID:24618249

  15. The Time Course of Task-Specific Memory Consolidation Effects in Resting State Networks

    PubMed Central

    Sami, Saber; Robertson, Edwin M.

    2014-01-01

    Previous studies have reported functionally localized changes in resting-state brain activity following a short period of motor learning, but their relationship with memory consolidation and their dependence on the form of learning is unclear. We investigate these questions with implicit or explicit variants of the serial reaction time task (SRTT). fMRI resting-state functional connectivity was measured in human subjects before the tasks, and 0.1, 0.5, and 6 h after learning. There was significant improvement in procedural skill in both groups, with the group learning under explicit conditions showing stronger initial acquisition, and greater improvement at the 6 h retest. Immediately following acquisition, this group showed enhanced functional connectivity in networks including frontal and cerebellar areas and in the visual cortex. Thirty minutes later, enhanced connectivity was observed between cerebellar nuclei, thalamus, and basal ganglia, whereas at 6 h there was enhanced connectivity in a sensory-motor cortical network. In contrast, immediately after acquisition under implicit conditions, there was increased connectivity in a network including precentral and sensory-motor areas, whereas after 30 min a similar cerebello-thalamo-basal ganglionic network was seen as in explicit learning. Finally, 6 h after implicit learning, we found increased connectivity in medial temporal cortex, but reduction in precentral and sensory-motor areas. Our findings are consistent with predictions that two variants of the SRTT task engage dissociable functional networks, although there are also networks in common. We also show a converging and diverging pattern of flux between prefrontal, sensory-motor, and parietal areas, and subcortical circuits across a 6 h consolidation period. PMID:24623776

  16. High vs. Low Frequency Stimulation Effects on Fine Motor Control in Chronic Hemiplegia: A Pilot Study

    PubMed Central

    Doucet, Barbara M.; Griffin, Lisa

    2014-01-01

    Introduction The optimal parameters of neuromuscular electrical stimulation (NMES) for recovery of hand function following stroke are not known. This clinical pilot study examined whether higher or lower frequencies are more effective for improving fine motor control of the hand in a chronic post-stroke population. Methods A one-month, 4x/week in-home regimen of either a high frequency (40Hz) or low frequency (20Hz) NMES program was applied to the hemiplegic thenar muscles of 16 persons with chronic stroke. Participants were identified a priori as having a low level of function (LF) or a high level of function (HF). Outcome measures of strength, dexterity, and endurance were measured before and after participation in the regimen. Results LF subjects showed no significant changes with either the high or the low frequency NMES regimen. HF subjects showed significant changes in strength, dexterity and endurance. Within this group, higher frequencies of stimulation yielded strength gains and increased motor activation; lower frequencies impacted dexterity and endurance. Conclusions The results suggest that higher frequencies of stimulation could be more effective in improving strength and motor activation properties and that lower frequencies may impact coordination and endurance changes; results also indicate that persons with a higher functional level of recovery may respond more favorably to NMES regimens, but further study with larger patient groups is warranted. PMID:23893829

  17. Effects of virtual reality intervention on upper limb motor function and activity of daily living in patients with lesions in different regions of the brain

    PubMed Central

    Jung, Sang-Mi; Choi, Won-Ho

    2017-01-01

    [Purpose] This study aimed to investigate whether a virtual reality (VR) intervention has an influence in improving the motor function and activities of daily living (ADLs) in patients with lesions in different regions of the brain. [Subjects and Methods] Eleven subjects with hemiplegic stroke were recruited in this study, which was conducted from January to February, 2017. They received a VR intervention once a day for 30 min, 5 times a week for 4 weeks. The Fugl-Meyer Assessment (FMA) and the Korean version of the Modified Barthel Index (K-MBI) were used to assess the post-stroke patients’ motor function and ADLs, respectively. [Results] There were significant differences in pre- and post-test outcomes of the Arm and Coordination and Speed (CS) in the FMA and K-MBI in the middle cerebral artery group (MCAG). Moreover, there were significant differences in all sub-tests of FMA and K-MBI in the Basal ganglia group (BGG). In addition, there were significant differences in the pre-test outcomes of Arm and pre- and post-test outcomes of Hand in the FMA between the two groups. [Conclusion] This study revealed that VR intervention improved the upper limb motor function and ADLs of post-stroke patients, especially those in the BGG. PMID:29643584

  18. A specialized rehabilitation approach improves mobility in children with osteogenesis imperfecta.

    PubMed

    Hoyer-Kuhn, H; Semler, O; Stark, C; Struebing, N; Goebel, O; Schoenau, E

    2014-12-01

    Osteogenesis imperfecta (OI) is a rare disease leading to recurrent fractures, hyperlaxicity of ligaments, short stature and muscular weakness. Physiotherapy is one important treatment approach. The objective of our analysis was to evaluate the effect of a new physiotherapy approach including side alternating whole body vibration on motor function in children with OI. In a retrospective analysis data of 53 children were analyzed. The 12 months approach included 6 months of side alternating whole body vibration training, concomitant physiotherapy, resistance training, treadmill training and 6 months follow up. Primary outcome parameter was the Gross Motor Function Measure after 12 months (M12). 53 children (male: 32; age (mean±SEM): 9.1±0.61, range 2.54-24.81 years) participated in the treatment approach. A significant increase of motor function (GMFM-66 score 55.47±2.45 to 58.67±2.83; p=0.001) and walking distance (47.04 m±6.52 to 63.36±8.25 m (p<0.01) between M0 and M12 was seen. Total body without head bone mineral density increased significantly at M12 (p=0.0189). In the cohort of OI children which participated in the specialized treatment approach improvements of motor function were observed. Therefore this program should be considered as additional therapeutic approach for children with severe OI.

  19. Oil palm phenolics confer neuroprotective effects involving cognitive and motor functions in mice

    PubMed Central

    Leow, Soon-Sen; Sekaran, Shamala Devi; Tan, YewAi; Sundram, Kalyana; Sambanthamurthi, Ravigadevi

    2013-01-01

    Objectives Phenolics are important phytochemicals which have positive effects on chronic diseases, including neurodegenerative ailments. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics. This study was carried out to discover the effects of administering oil palm phenolics (OPP) to mice, with the aim of identifying whether these compounds possess significant neuroprotective properties. Methods OPP was given to BALB/c mice on a normal diet as fluids for 6 weeks while the controls were given distilled water. These animals were tested in a water maze and on a rotarod weekly to assess the effects of OPP on cognitive and motor functions, respectively. Using Illumina microarrays, we further explored the brain gene expression changes caused by OPP in order to determine the molecular mechanisms involved. Real-time quantitative reverse transcription-polymerase chain reaction experiments were then carried out to validate the microarray data. Results We found that mice given OPP showed better cognitive function and spatial learning when tested in a water maze, and their performance also improved when tested on a rotarod, possibly due to better motor function and balance. Microarray gene expression analysis showed that these compounds up-regulated genes involved in brain development and activity, such as those under the regulation of the brain-derived neurotrophic factor. OPP also down-regulated genes involved in inflammation. Discussion These results suggest that the improvement of mouse cognitive and motor functions by OPP is caused by the neuroprotective and anti-inflammatory effects of the extract. PMID:23433062

  20. Case report: Physical therapy management of axial dystonia.

    PubMed

    Voos, Mariana Callil; Oliveira, Tatiana de Paula; Piemonte, Maria Elisa Pimentel; Barbosa, Egberto Reis

    2014-01-01

    Few studies have described physical therapy approaches to provide functional independence and reduce pain in individuals with dystonia. This report describes the physical therapy treatment of a 46-year-old woman diagnosed with idiopathic segmental axial dystonia. For two years, the patient was treated with kinesiotherapy (active and resisted movements and stretching of neck and trunk muscles), abdominal taping (kinesiotaping techniques), functional training, and sensory tricks. She was assessed with parts I, II and III of Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS-I, TWSTRS-II and TWSTRS-III), Berg Balance Scale (BBS), Six-Minute Walk Test (6-MWT), and the motor domain of Functional Independence Measure (FIM-motor) before and after the two-year treatment and after the one year follow-up. Postural control and symmetry improved (TWSTRS-I: from 30 to 18), functional independence increased (TWSTRS-II: from 27 to 15; BBS: from 36 to 46; 6-MWT: from 0 to 480 meters (m); FIM-motor: from 59 to 81), and the pain diminished (TWSTRS-III: from 12 to 5). The functional improvement was retained after one year (TWSTRS-I: 14/35; TWRTRS-II: 12/30; TWRTRS-III: 5/20; BBS: 48/56; 6-MWT: 450 m; FIM-motor: 81/91). This program showed efficacy on providing a better control of the dystonic muscles and thus the doses of botulinum toxin needed to treat them could be reduced. Outcomes support the therapeutic strategies used to deal with this type of dystonia.

  1. What is the role of brain mechanisms underlying arousal in recovery of motor function after structural brain injuries?

    PubMed Central

    Schiff, Nicholas D.

    2013-01-01

    Purpose of review Standard neurorehabilitation approaches have limited impact on motor recovery in patients with severe injuries. Consideration of the contributions of impaired arousal offers a novel approach to understand and enhance recovery. Recent findings Animal and human neuroimaging studies are elucidating the neuroanatomical bases of arousal and of arousal regulation, the process by which the cerebrum mobilizes resources. Studies of patients with disorders of consciousness have revealed that recovery of these processes is associated with marked improvements in motor performance. Recent studies have also demonstrated that patients with less severe brain injuries also have impaired arousal, manifesting as diminished sustained attention, fatigue and apathy. In these less severely injured patients it is difficult to connect disorders of arousal with motor recovery due to a lack of measures of arousal independent of motor function. Summary Arousal impairment is common after brain injury and likely plays a significant role in recovery of motor function. A more detailed understanding of this connection will help to develop new therapeutic strategies applicable for a wide range of patients. This requires new tools that continuously and objectively measure arousal in patients with brain injury, to correlate with detailed measures of motor performance and recovery. PMID:22002078

  2. Effectiveness of Functional Electrical Stimulation in Improving Clinical Outcomes in the Upper Arm following Stroke: A Systematic Review and Meta-Analysis

    PubMed Central

    Vafadar, Amir K.; Côté, Julie N.; Archambault, Philippe S.

    2015-01-01

    Background. Different therapeutic methods are being used to prevent or decrease long-term impairments of the upper arm in stroke patients. Functional electrical stimulation (FES) is one of these methods, which aims to stimulate the nerves of the weakened muscles so that the resulting muscle contractions resemble those of a functional task. Objectives. The objective of this study was to review the evidence for the effect of FES on (1) shoulder subluxation, (2) pain, and (3) upper arm motor function in stroke patients, when added to conventional therapy. Methods. From the 727 retrieved articles, 10 (9 RCTs, 1 quasi-RCT) were selected for final analysis and were rated based on the PEDro (Physiotherapy Evidence Database) scores and the Sackett's levels of evidence. A meta-analysis was performed for all three considered outcomes. Results. The results of the meta-analyses showed a significant difference in shoulder subluxation in experimental groups compared to control groups, only if FES was applied early after stroke. No effects were found on pain or motor function outcomes. Conclusion. FES can be used to prevent or reduce shoulder subluxation early after stroke. However, it should not be used to reduce pain or improve upper arm motor function after stroke. PMID:25685805

  3. Modeling task-specific neuronal ensembles improves decoding of grasp

    NASA Astrophysics Data System (ADS)

    Smith, Ryan J.; Soares, Alcimar B.; Rouse, Adam G.; Schieber, Marc H.; Thakor, Nitish V.

    2018-06-01

    Objective. Dexterous movement involves the activation and coordination of networks of neuronal populations across multiple cortical regions. Attempts to model firing of individual neurons commonly treat the firing rate as directly modulating with motor behavior. However, motor behavior may additionally be associated with modulations in the activity and functional connectivity of neurons in a broader ensemble. Accounting for variations in neural ensemble connectivity may provide additional information about the behavior being performed. Approach. In this study, we examined neural ensemble activity in primary motor cortex (M1) and premotor cortex (PM) of two male rhesus monkeys during performance of a center-out reach, grasp and manipulate task. We constructed point process encoding models of neuronal firing that incorporated task-specific variations in the baseline firing rate as well as variations in functional connectivity with the neural ensemble. Models were evaluated both in terms of their encoding capabilities and their ability to properly classify the grasp being performed. Main results. Task-specific ensemble models correctly predicted the performed grasp with over 95% accuracy and were shown to outperform models of neuronal activity that assume only a variable baseline firing rate. Task-specific ensemble models exhibited superior decoding performance in 82% of units in both monkeys (p  <  0.01). Inclusion of ensemble activity also broadly improved the ability of models to describe observed spiking. Encoding performance of task-specific ensemble models, measured by spike timing predictability, improved upon baseline models in 62% of units. Significance. These results suggest that additional discriminative information about motor behavior found in the variations in functional connectivity of neuronal ensembles located in motor-related cortical regions is relevant to decode complex tasks such as grasping objects, and may serve the basis for more reliable and accurate neural prosthesis.

  4. Treatment of Cerebral Palsy with Stem Cells: A Report of 17 Cases

    PubMed Central

    Abi Chahine, Nassim H.; Wehbe, Tarek W.; Hilal, Ramzi A.; Zoghbi, Victoria V.; Melki, Alia E.; Bou Habib, Emil B.

    2016-01-01

    Cerebral Palsy (CP) is a disabling condition that affects a child’s life and his/her family irreversibly. It is usually a non-progressive condition but improvement over time is rarely seen. The condition can be due to prenatal hypoxia, metabolic, genetic, infectious, traumatic or other causes. It is therefore a heterogeneous group that results in functional motor disability associated with different degrees of cognitive abnormalities. There are no treatments that can cure or even improve CP and the best available approach aims at functional, social and nutritional supportive care and counseling. In this paper, we report 17 sequential patients with CP treated with intrathecal administration of Bone Marrow Mononuclear Cells (BMMC). All patients had an uneventful post-injection course with 73% of the evaluable patients treated having a good response using the Gross Motor Function Classification System (GMFCS). The average improvement was 1.3 levels on the GMFCS with cognitive improvements as well. PMID:27426090

  5. Effect of task-oriented training and high-variability practice on gross motor performance and activities of daily living in children with spastic diplegia.

    PubMed

    Kwon, Hae-Yeon; Ahn, So-Yoon

    2016-10-01

    [Purpose] This study investigates how a task-oriented training and high-variability practice program can affect the gross motor performance and activities of daily living for children with spastic diplegia and provides an effective and reliable clinical database for future improvement of motor performances skills. [Subjects and Methods] This study randomly assigned seven children with spastic diplegia to each intervention group including that of a control group, task-oriented training group, and a high-variability practice group. The control group only received neurodevelopmental treatment for 40 minutes, while the other two intervention groups additionally implemented a task-oriented training and high-variability practice program for 8 weeks (twice a week, 60 min per session). To compare intra and inter-relationships of the three intervention groups, this study measured gross motor performance measure (GMPM) and functional independence measure for children (WeeFIM) before and after 8 weeks of training. [Results] There were statistically significant differences in the amount of change before and after the training among the three intervention groups for the gross motor performance measure and functional independence measure. [Conclusion] Applying high-variability practice in a task-oriented training course may be considered an efficient intervention method to improve motor performance skills that can tune to movement necessary for daily livelihood through motor experience and learning of new skills as well as change of tasks learned in a complex environment or similar situations to high-variability practice.

  6. Deficits in motor abilities and developmental fractionation of imitation performance in high-functioning autism spectrum disorders.

    PubMed

    Biscaldi, Monica; Rauh, Reinhold; Irion, Lisa; Jung, Nikolai H; Mall, Volker; Fleischhaker, Christian; Klein, Christoph

    2014-07-01

    The co-occurrence of motor and imitation disabilities often characterises the spectrum of deficits seen in patients with autism spectrum disorders (ASD). Whether these seemingly separate deficits are inter-related and whether, in particular, motor deficits contribute to the expression of imitation deficits is the topic of the present study and was investigated by comparing these deficits' cross-sectional developmental trajectories. To that end, different components of motor performance assessed in the Zurich Neuromotor Assessment and imitation abilities for facial movements and non-meaningful gestures were tested in 70 subjects (aged 6-29 years), including 36 patients with high-functioning ASD and 34 age-matched typically developed (TD) participants. The results show robust deficits in probands with ASD in timed motor performance and in the quality of movement, which are all independent of age, with one exception. Only diadochokinesis improves moderately with increasing age in ASD probands. Imitation of facial movements and of non-meaningful hand, finger, hand finger gestures not related to social context or tool use is also impaired in ASD subjects, but in contrast to motor performance this deficit overall improves with age. A general imitation factor, extracted from the highly inter-correlated imitation tests, is differentially correlated with components of neuromotor performance in ASD and TD participants. By developmentally fractionating developmentally stable motor deficits from developmentally dynamic imitation deficits, we infer that imitation deficits are primarily cognitive in nature.

  7. Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior

    PubMed Central

    Mallet, Luc; Schüpbach, Michael; N'Diaye, Karim; Remy, Philippe; Bardinet, Eric; Czernecki, Virginie; Welter, Marie-Laure; Pelissolo, Antoine; Ruberg, Merle; Agid, Yves; Yelnik, Jérôme

    2007-01-01

    Two parkinsonian patients who experienced transient hypomanic states when the subthalamic nucleus (STN) was stimulated during postoperative adjustment of the electrical parameters for antiparkinsonian therapy agreed to have the mood disorder reproduced, in conjunction with motor, cognitive, and behavioral evaluations and concomitant functional neuroimaging. During the experiment, STN stimulation again induced a hypomanic state concomitant with activation of cortical and thalamic regions known to process limbic and associative information. This observation suggests that the STN plays a role in the control of a complex behavior that includes emotional as well as cognitive and motor components. The localization of the four contacts of the quadripolar electrode was determined precisely with an interactive brain atlas. The results showed that (i) the hypomanic state was caused only by stimulation through one contact localized in the anteromedial STN; (ii) both this contact and the contact immediately dorsal to it improved the parkinsonian motor state; (iii) the most dorsal and ventral contacts, located at the boundaries of the STN, neither induced the behavioral disorder nor improved motor performance. Detailed analysis of these data led us to consider a model in which the three functional modalities, emotional, cognitive, and motor, are not processed in a segregated manner but can be subtly combined in the small volume of the STN. This nucleus would thus serve as a nexus that integrates the motor, cognitive, and emotional components of behavior and might consequently be an effective target for the treatment of behavioral disorders that combine emotional, cognitive, and motor impairment. PMID:17556546

  8. Poststroke motor dysfunction and spasticity: novel pharmacological and physical treatment strategies.

    PubMed

    Hesse, Stefan; Werner, Cordula

    2003-01-01

    Following stroke, approximately 90% of patients experience persistent neurological motor deficits that lead to disability and handicap. Both pharmacological and physical treatment strategies for motor rehabilitation may be considered. In terms of pharmacological treatment, drugs that may potentially promote motor recovery when added to a regimen of physical therapy include the stimulants amphetamine and methylphenidate, as well as levodopa and fluoxetine. Botulinum toxin A has proven effective and well tolerated in several placebo-controlled trials for the treatment of focal upper and lower limb spasticity, although it has not been shown to improve motor function. The focal injection of botulinum toxin A inhibits the release of acetylcholine into the synaptic cleft, resulting in a reversible paresis of the muscles relevant for the spastic deformity. Other drugs, such as benzodiazepines, antiepileptic drugs and antipsychotics, may have detrimental effects on motor function and should be avoided, if possible. With respect to physical strategies, modern concepts of motor learning favour a task-specific repetitive approach that induces skill-acquisition relevant to the patient's daily life. Constrained-induced movement therapy based on the concept of learned non-use, electromyography-triggered electrical stimulation of the wrist muscles, robot-assisted motor rehabilitation to increase therapy intensity and bilateral practice to facilitate the movement of the paretic extremity are examples in upper limb rehabilitation. Lower limb rehabilitation has been enriched by treadmill training with partial bodyweight support, enabling the practice of up to 1000 steps per session; automated gait rehabilitation to relieve the strenuous effort required of the therapist; and rhythmic auditory stimulation, applying individually adjusted music to improve walking speed and symmetry.

  9. Practice guideline update summary: Corticosteroid treatment of Duchenne muscular dystrophy: Report of the Guideline Development Subcommittee of the American Academy of Neurology.

    PubMed

    Gloss, David; Moxley, Richard T; Ashwal, Stephen; Oskoui, Maryam

    2016-02-02

    To update the 2005 American Academy of Neurology (AAN) guideline on corticosteroid treatment of Duchenne muscular dystrophy (DMD). We systematically reviewed the literature from January 2004 to July 2014 using the AAN classification scheme for therapeutic articles and predicated recommendations on the strength of the evidence. Thirty-four studies met inclusion criteria. In children with DMD, prednisone should be offered for improving strength (Level B) and pulmonary function (Level B). Prednisone may be offered for improving timed motor function (Level C), reducing the need for scoliosis surgery (Level C), and delaying cardiomyopathy onset by 18 years of age (Level C). Deflazacort may be offered for improving strength and timed motor function and delaying age at loss of ambulation by 1.4-2.5 years (Level C). Deflazacort may be offered for improving pulmonary function, reducing the need for scoliosis surgery, delaying cardiomyopathy onset, and increasing survival at 5-15 years of follow-up (Level C for each). Deflazacort and prednisone may be equivalent in improving motor function (Level C). Prednisone may be associated with greater weight gain in the first years of treatment than deflazacort (Level C). Deflazacort may be associated with a greater risk of cataracts than prednisone (Level C). The preferred dosing regimen of prednisone is 0.75 mg/kg/d (Level B). Over 12 months, prednisone 10 mg/kg/weekend is equally effective (Level B), with no long-term data available. Prednisone 0.75 mg/kg/d is associated with significant risk of weight gain, hirsutism, and cushingoid appearance (Level B). © 2016 American Academy of Neurology.

  10. Regaining motor control in musician's dystonia by restoring sensorimotor organisation

    PubMed Central

    Rosenkranz, Karin; Butler, Katherine; Williamon, Aaron; Rothwell, John C.

    2010-01-01

    Professional musicians are an excellent human model of long term effects of skilled motor training on the structure and function of the motor system. However, such effects are accompanied by an increased risk of developing motor abnormalities, in particular musician's dystonia. Previously we found that there was an expanded spatial integration of proprioceptive input into the hand area of motor cortex (sensorimotor organisation, SMO) in healthy musicians as tested with a transcranial magnetic stimulation (TMS) paradigm. In musician's dystonia, this expansion was even larger, resulting in a complete lack of somatotopic organisation. We hypothesised that the disordered motor control in musician's dystonia is a consequence of the disordered SMO. In the present paper we test this idea by giving pianists with musician's dystonia 15 min experience of a modified proprioceptive training task. This restored SMO towards that seen in healthy pianists. Crucially, motor control of the affected task improved significantly and objectively as measured with a MIDI piano, and the amount of behavioural improvement was significantly correlated to the degree of sensorimotor re-organisation. In healthy pianists and non-musicians, the SMO and motor performance remained essentially unchanged. These findings suggest a link between the differentiation of SMO in the hand motor cortex and the degree of motor control of intensively practiced tasks in highly skilled individuals. PMID:19923295

  11. Neutralization of Nogo-A Enhances Synaptic Plasticity in the Rodent Motor Cortex and Improves Motor Learning in Vivo

    PubMed Central

    Weinmann, Oliver; Kellner, Yves; Yu, Xinzhu; Vicente, Raul; Gullo, Miriam; Kasper, Hansjörg; Lussi, Karin; Ristic, Zorica; Luft, Andreas R.; Rioult-Pedotti, Mengia; Zuo, Yi; Zagrebelsky, Marta; Schwab, Martin E.

    2014-01-01

    The membrane protein Nogo-A is known as an inhibitor of axonal outgrowth and regeneration in the CNS. However, its physiological functions in the normal adult CNS remain incompletely understood. Here, we investigated the role of Nogo-A in cortical synaptic plasticity and motor learning in the uninjured adult rodent motor cortex. Nogo-A and its receptor NgR1 are present at cortical synapses. Acute treatment of slices with function-blocking antibodies (Abs) against Nogo-A or against NgR1 increased long-term potentiation (LTP) induced by stimulation of layer 2/3 horizontal fibers. Furthermore, anti-Nogo-A Ab treatment increased LTP saturation levels, whereas long-term depression remained unchanged, thus leading to an enlarged synaptic modification range. In vivo, intrathecal application of Nogo-A-blocking Abs resulted in a higher dendritic spine density at cortical pyramidal neurons due to an increase in spine formation as revealed by in vivo two-photon microscopy. To investigate whether these changes in synaptic plasticity correlate with motor learning, we trained rats to learn a skilled forelimb-reaching task while receiving anti-Nogo-A Abs. Learning of this cortically controlled precision movement was improved upon anti-Nogo-A Ab treatment. Our results identify Nogo-A as an influential molecular modulator of synaptic plasticity and as a regulator for learning of skilled movements in the motor cortex. PMID:24966370

  12. Ebselen protects mitochondrial function and oxidative stress while inhibiting the mitochondrial apoptosis pathway after acute spinal cord injury.

    PubMed

    Jia, Zhi-Qiang; Li, San-Qiang; Qiao, Wei-Qiang; Xu, Wen-Zhong; Xing, Jian-Wu; Liu, Jian-Tao; Song, Hui; Gao, Zhong-Yang; Xing, Bing-Wen; He, Xi-Jing

    2018-05-04

    Ebselen is a fat-soluble small molecule and organic selenium compound that regulates the activity of glutathione peroxidase to alleviate mitochondrial oxidative stress and improve mitochondrial function. In the present study, we aimed to investigate the effects of ebselen on mitochondrial oxidative stress response, mitochondrial apotosis, and motor behaviors after spinal cord injury (SCI). We found that ebselen significantly increased the BBB score in motor behavior, thus suggesting a rescue effect of ebselen on motor function after SCI in rats. Meanwhile, we revealed that ebselen can increase glutathione (GSH) content as well as superoxide dismutase (SOD) and catalase (CAT) activities after SCI-this suggests ebselen has an antioxidant effect. Furthermore, the ATP content and Na + -K + -ATPase activity in mitochondria were increased by ebselen after SCI, while the mitochondrial membrane potential (MMP) was decreased by ebselen. The Cytochrome C and Smac release from mitochondria were reduced by ebselen after SCI, thus indicating improved membrane permeability by ebselen. Moreover, the alterations in caspase-3, Bax and Bcl-2 protein expression, as well as the proportion of cell apoptosis were improved by ebselen treatment, which together suggested that ebselen has an inhibitory effect on mitochondrial apotosis pathways after SCI. Taken together, our results suggest that ebselen can inhibit secondary damage caused by spinal cord injury. Indeed it plays a neuroprotective role in spinal cord injury perhaps by improving mitochondrial function and inhibiting the mitochondrial apoptosis pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Self-Reported Executive Functioning in Everyday Life in Parkinson's Disease after Three Months of Subthalamic Deep Brain Stimulation.

    PubMed

    Pham, Uyen Ha Gia; Andersson, Stein; Toft, Mathias; Pripp, Are Hugo; Konglund, Ane Eidahl; Dietrichs, Espen; Malt, Ulrik Fredrik; Skogseid, Inger Marie; Haraldsen, Ira Ronit Hebolt; Solbakk, Anne-Kristin

    2015-01-01

    Objective. Studies on the effect of subthalamic deep brain stimulation (STN-DBS) on executive functioning in Parkinson's disease (PD) are still controversial. In this study we compared self-reported daily executive functioning in PD patients before and after three months of STN-DBS. We also examined whether executive functioning in everyday life was associated with motor symptoms, apathy, and psychiatric symptoms. Method. 40 PD patients were examined with the Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A), the Symptom Checklist 90-Revised (SCL-90-R), and the Apathy Evaluation Scale (AES-S). Results. PD patients reported significant improvement in daily life executive functioning after 3 months of STN-DBS. Anxiety scores significantly declined, while other psychiatric symptoms remained unchanged. The improvement of self-reported executive functioning did not correlate with motor improvement after STN-DBS. Apathy scores remained unchanged after surgery. Only preoperative depressed mood had predictive value to the improvement of executive function and appears to prevent potentially favorable outcomes from STN-DBS on some aspects of executive function. Conclusion. PD patients being screened for STN-DBS surgery should be evaluated with regard to self-reported executive functioning. Depressive symptoms in presurgical PD patients should be treated. Complementary information about daily life executive functioning in PD patients might enhance further treatment planning of STN-DBS.

  14. Comparison of the Effect of Sensory-Level and Conventional Motor-Level Neuromuscular Electrical Stimulations on Quadriceps Strength After Total Knee Arthroplasty: A Prospective Randomized Single-Blind Trial.

    PubMed

    Yoshida, Yosuke; Ikuno, Koki; Shomoto, Koji

    2017-12-01

    To compare sensory-level neuromuscular electrical stimulation (NMES) and conventional motor-level NMES in patients after total knee arthroplasty. Prospective randomized single-blind trial. Hospital total arthroplasty center: inpatients. Patients with osteoarthritis (N=66; mean age, 73.5±6.3y; 85% women) were randomized to receive either sensory-level NMES applied to the quadriceps (the sensory-level NMES group), motor-level NMES (the motor-level NMES group), or no stimulation (the control group) in addition to a standard rehabilitation program. Each type of NMES was applied in 45-minute sessions, 5d/wk, for 2 weeks. Data for the quadriceps maximum voluntary isometric contraction, the leg skeletal muscle mass determined using multiple-frequency bioelectrical impedance analysis, the timed Up and Go test, the 2-minute walk test, the visual analog scale, and the range of motion of the knee were measured preoperatively and at 2 and 4 weeks after total knee arthroplasty. The motor-level NMES (P=.001) and sensory-level NMES (P=.028) groups achieved better maximum voluntary isometric contraction results than did the control group. The motor-level NMES (P=.003) and sensory-level NMES (P=.046) groups achieved better 2-minute walk test results than did the control group. Some patients in the motor-level NMES group dropped out of the experiment because of discomfort. Motor-level NMES significantly improved muscle strength and functional performance more than did the standard program alone. Motor-level NMES was uncomfortable for some patients. Sensory-level NMES was comfortable and improved muscle strength and functional performance more than did the standard program alone. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. Motor trajectories from birth to 5 years of children born at less than 30 weeks' gestation: early predictors and functional implications. Protocol for a prospective cohort study.

    PubMed

    Spittle, Alicia J; McGinley, Jennifer L; Thompson, Deanne; Clark, Ross; FitzGerald, Tara L; Mentiplay, Benjamin F; Lee, Katherine J; Olsen, Joy E; Burnett, Alice; Treyvaud, Karli; Josev, Elisha; Alexander, Bonnie; Kelly, Claire E; Doyle, Lex W; Anderson, Peter J; Cheong, Jeanie Ly

    2016-10-01

    Motor impairments are one of the most frequently reported adverse neurodevelopmental consequences in children born < 30 weeks' gestation. Up to 15% of children born at < 30 weeks have cerebral palsy and an additional 50% have mild to severe motor impairment at school age. The first 5 years of life are critical for the development of fundamental motor skills. These skills form the basis for more complex skills that are required to competently and confidently participate in schooling, sporting and recreational activities. In children born at < 30 weeks' gestation, the trajectory of motor development from birth to 5 years is not fully understood. The neural alterations that underpin motor impairments in these children are also unclear. It is essential to determine if early clinical evaluations and neuroimaging biomarkers can predict later motor impairment and associated functional problems at 5 years of age. This will help to identify children who will benefit the most from early intervention and improve functional outcomes at school age. The primary aim of this study is to compare the prevalence of motor impairment from birth to 5 years of age between children born at < 30 weeks and term-born controls, and to determine whether persistent abnormal motor assessments in the newborn period in those born at < 30 weeks predict abnormal motor functioning at 5 years of age. Secondary aims for children born at < 30 weeks and term-born children are: 1) to determine whether novel early magnetic resonance imaging-based structural or functional biomarkers that can predict motor impairments at 5 years are detectable in the neonatal period; 2) to investigate the association between motor impairments and concurrent deficits in body structure and function at 5 years of age; and 3) to explore how motor impairments at 5 years (including abnormalities of gait, postural control and strength) are associated with concurrent functional outcomes, including physical activity, cognitive ability, learning ability, and behavioural and emotional problems. Prospective longitudinal cohort study. 150 preterm children (born at < 30 weeks' gestation) and 151 term-born children (born at > 36 completed weeks' gestation and weighing > 2499g) admitted to the Royal Women's Hospital, Melbourne, were recruited at birth and will be invited to participate in a 5-year follow-up study. This study will examine previously collected data (from birth to 2 years) that comprise detailed motor assessments, and structural and functional brain MRI images. At 5 years, preterm and term, children will be examined using comprehensive motor assessments, including: the Movement Assessment Battery for Children (2nd edition) and measures of gait function through spatiotemporal (assessed with the GAITRite® Walkway) and dynamic postural control (assessed with Microsoft Kinect) variables; and hand grip strength (assessed with a dynamometer); and measures of physical activity (assessed using accelerometry), cognitive development (assessed with Wechsler Preschool and Primary Scale of Intelligence), and emotional and behavioural status (assessed with the Strengths and Difficulties Questionnaire and the Developmental and Wellbeing Assessment). At the 5-year assessment, parents/caregivers will be asked to complete questionnaires on demographics, physical activity, activities of daily living, behaviour, additional therapy (eg, physiotherapy and occupational therapy), and motor function (assessed with Pediatric Evaluation of Disability Inventory, Pediatric Quality of Life Questionnaire, the Little Developmental Co-ordination Questionnaire and an activity diary). For the primary aim, the prevalence of motor impairment from birth to 5 years will be compared between children born at < 30 weeks and at term, using the proportion of children classified as abnormal at each of the time points (term age, 1, 2 and 5 years). Persistent motor impairments during the neonatal period will be assessed as a predictor of severity of motor impairment at 5 years of age in children born < 30 weeks using linear regression. Models will be fitted using generalised estimating equations to allow for the clustering of multiple births. Analysis will be repeated with adjustment for predictors of motor outcome, including additional therapy, sex, brain injury and chronic lung disease. Understanding the developmental precursors of motor impairment in children born before 30 weeks is essential for limiting disruption to skill development, and potential secondary impacts on physical activity, participation, academic achievement, self-esteem and associated outcomes (such as obesity, poor physical fitness and social isolation). An improved understanding of motor skill development will enable targeting of interventions and streamlining of services to children at highest risk of motor impairments. Copyright © 2016 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  16. Spinal cord injury rehabilitation in Riyadh, Saudi Arabia: Time to rehabilitation admission, length of stay and functional independence

    PubMed Central

    Mahmoud, Husam; Qannam, Hazem; Mortenson, Ben

    2017-01-01

    Objectives 1) To describe functional status, length of stay (LOS), and time to rehabilitation admission trends. 2) To identify independent predictors of motor function following rehabilitation for traumatic and nontraumatic spinal cord injury (SCI). Participants Adult patients with SCI discharged from inpatient rehabilitation between 2009–2014. Design Retrospective cohort study. Setting Spinal injury rehabilitation unit at the King Fahad Medical City, Riyadh, Saudi Arabia. Methods From retrospective chart reviews of 312 traumatic and 106 nontraumatic SCI, we extracted information on time from injury to rehabilitation admission, rehabilitation LOS, and Functional Independence Measure (FIM) score (admission and discharge). Additionally we collected information on SCI patients’ demographics and injury characteristics. Hierarchical regression was employed to investigate variables associated with FIM motor score at discharge for traumatic SCI and nontraumatic SCI. Outcome measures FIM motor score measured at discharge. Results Mean and median days from injury to rehabilitation admission were not significantly different for traumatic SCI (377±855, 150) and nontraumatic SCI (288±403, 176). Mean and median days for rehabilitation LOS were significantly longer for traumatic SCI (85±60, 70) compared to nontraumatic SCI (64±59, 49) (p=…..). FIM scores improved significantly from admission to discharge in both groups. For individuals with traumatic SCI, after accounting for admission FIM motor score, tetraplegia and time from injury to rehabilitation, admission had a significant but small negative association with discharge FIM motor score. For individuals with nontraumatic SCI, increasing age and AIS score of A or B had a significant negative association with discharge FIM motor score. LOS in rehabilitation was not a significant contributor for either model. Conclusions Decreasing the time from injury to rehabilitation admission may improve outcomes for those with traumatic SCI. Since time spent in rehabilitation was shorter than most other countries, a change in practice in this area may be warranted. Developing new strategies to improve outcomes for older patients with nontraumatic SCI would also be beneficial. PMID:28139661

  17. tDCS over the motor cortex improves lexical retrieval of action words in poststroke aphasia.

    PubMed

    Branscheidt, Meret; Hoppe, Julia; Zwitserlood, Pienie; Liuzzi, Gianpiero

    2018-02-01

    One-third of stroke survivors worldwide suffer from aphasia. Speech and language therapy (SLT) is considered effective in treating aphasia, but because of time constraints, improvements are often limited. Noninvasive brain stimulation is a promising adjuvant strategy to facilitate SLT. However, stroke might render "classical" language regions ineffective as stimulation sites. Recent work showed the effectiveness of motor cortex stimulation together with intensive naming therapy to improve outcomes in aphasia (Meinzer et al. 2016). Although that study highlights the involvement of the motor cortex, the functional aspects by which it influences language remain unclear. In the present study, we focus on the role of motor cortex in language, investigating its functional involvement in access to specific lexico-semantic (object vs. action relatedness) information in poststroke aphasia. To this end, we tested effects of anodal transcranial direct current stimulation (tDCS) to the left motor cortex on lexical retrieval in 16 patients with poststroke aphasia in a sham-controlled, double-blind study design. Critical stimuli were action and object words, and pseudowords. Participants performed a lexical decision task, deciding whether stimuli were words or pseudowords. Anodal tDCS improved accuracy in lexical decision, especially for words with action-related content and for pseudowords with an "action-like" ending ( t 15  = 2.65, P = 0.036), but not for words with object-related content and pseudowords with "object-like" characteristics. We show as a proof-of-principle that the motor cortex may play a specific role in access to lexico-semantic content. Thus motor-cortex stimulation may strengthen content-specific word-to-semantic concept associations during language treatment in poststroke aphasia. NEW & NOTEWORTHY The role of motor cortex (MC) in language processing has been debated in both health and disease. Recent work has suggested that MC stimulation together with speech and language therapy enhances outcomes in aphasia. We show that MC stimulation has a differential effect on object- and action-word processing in poststroke aphasia. We propose that MC stimulation may specifically strengthen word-to-semantic concept association in aphasia. Our results potentially provide a way to tailor therapies for language rehabilitation.

  18. Practice Parameter: treatment of Parkinson disease with motor fluctuations and dyskinesia (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology.

    PubMed

    Pahwa, R; Factor, S A; Lyons, K E; Ondo, W G; Gronseth, G; Bronte-Stewart, H; Hallett, M; Miyasaki, J; Stevens, J; Weiner, W J

    2006-04-11

    To make evidence-based treatment recommendations for the medical and surgical treatment of patients with Parkinson disease (PD) with levodopa-induced motor fluctuations and dyskinesia. To that end, five questions were addressed. 1. Which medications reduce off time? 2. What is the relative efficacy of medications in reducing off time? 3. Which medications reduce dyskinesia? 4. Does deep brain stimulation (DBS) of the subthalamic nucleus (STN), globus pallidus interna (GPi), or ventral intermediate (VIM) nucleus of the thalamus reduce off time, dyskinesia, and antiparkinsonian medication usage and improve motor function? 5. Which factors predict improvement after DBS? A 10-member committee including movement disorder specialists and general neurologists evaluated the available evidence based on a structured literature review including MEDLINE, EMBASE, and Ovid databases from 1965 through June 2004. 1. Entacapone and rasagiline should be offered to reduce off time (Level A). Pergolide, pramipexole, ropinirole, and tolcapone should be considered to reduce off time (Level B). Apomorphine, cabergoline, and selegiline may be considered to reduce off time (Level C). 2. The available evidence does not establish superiority of one medicine over another in reducing off time (Level B). Sustained release carbidopa/levodopa and bromocriptine may be disregarded to reduce off time (Level C). 3. Amantadine may be considered to reduce dyskinesia (Level C). 4. Deep brain stimulation of the STN may be considered to improve motor function and reduce off time, dyskinesia, and medication usage (Level C). There is insufficient evidence to support or refute the efficacy of DBS of the GPi or VIM nucleus of the thalamus in reducing off time, dyskinesia, or medication usage, or to improve motor function. 5. Preoperative response to levodopa predicts better outcome after DBS of the STN (Level B).

  19. Modified Ride-On Cars and Young Children with Disabilities: Effects of Combining Mobility and Social Training.

    PubMed

    Huang, Hsiang-Han; Chen, Yi-Mei; Huang, Hsuan-Wen; Shih, Ming-Ke; Hsieh, Yu-Hsin; Chen, Chia-Ling

    2017-01-01

    Research has shown that the use of power mobility devices is safe and beneficial for motor and cognitive development in children with motor disabilities; nevertheless, strong evidence of the benefits for social skill development is limited. This study aimed to examine the effects of combining ride-on car training with an adult-directed, social interaction program in a hospital-based environment on mobility and social functions in young children with motor disabilities. This study used a prospective, nonequivalent pretest-posttest control group design. Twenty-nine young children with motor disabilities, aged between 1 and 3 years, were recruited from local hospitals in Taiwan. The treatment group ( n  = 15) underwent 2-h ride-on car training sessions twice per week for a total of 9 weeks in the hospital environment. The control group ( n  = 14) underwent a 9-week home education program (mean: 200 min/week) focusing on mobility and social skills training. The Chinese version of the Pediatric Evaluation of Disability Inventory, Parenting Stress Index, and Goal Attainment Scaling were administered to all participants before and after the intervention, and at the end of the 9-week follow-up phase. Mobility and social functions significantly improved in both groups after the 9-week intervention, but this improvement was not maintained at the follow-up phase. The treatment group showed significantly better improvement in social function, parenting stress levels, and goal achievement than the control group at posttest. This two-group design study showed the benefits of combining a ride-on car use with a family-centered, structured, social interaction program for positive impacts on mobility, social function, and parenting stress levels. The combination of a modified ride-on car and a social training program has the potential to enhance socialization in young children with motor disabilities. www.ClinicalTrials.gov, identifier NCT02527499.

  20. Motor-cognitive dual-task deficits in individuals with early-mid stage Huntington disease.

    PubMed

    Fritz, Nora E; Hamana, Katy; Kelson, Mark; Rosser, Anne; Busse, Monica; Quinn, Lori

    2016-09-01

    Huntington disease (HD) results in a range of cognitive and motor impairments that progress throughout the disease stages; however, little research has evaluated specific dual-task abilities in this population, and the degree to which they may be related to functional ability. The purpose of this study was to a) examine simple and complex motor-cognitive dual-task performance in individuals with HD, b) determine relationships between dual-task walking ability and disease-specific measures of motor, cognitive and functional ability, and c) examine the relationship of dual-task measures to falls in individuals with HD. Thirty-two individuals with HD were evaluated for simple and complex dual-task ability using the Walking While Talking Test. Demographics and disease-specific measures of motor, cognitive and functional ability were also obtained. Individuals with HD had impairments in simple and complex dual-task ability. Simple dual-task walking was correlated to disease-specific motor scores as well as cognitive performance, but complex dual-task walking was correlated with total functional capacity, as well as a range of cognitive measures. Number of prospective falls was moderately-strongly correlated to dual-task measures. Our results suggest that individuals with HD have impairments in cognitive-motor dual-task ability that are related to disease progression and specifically functional ability. Dual-task measures appear to evaluate a unique construct in individuals with early to mid-stage HD, and may have value in improving the prediction of falls risk in this population. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Improvement in Stroke-induced Motor Dysfunction by Music-supported Therapy: A Systematic Review and Meta-analysis

    PubMed Central

    Zhang, Yingshi; Cai, Jiayi; Zhang, Yaqiong; Ren, Tianshu; Zhao, Mingyi; Zhao, Qingchun

    2016-01-01

    To conduct a meta-analysis of clinical trials that examined the effect of music-supported therapy on stroke-induced motor dysfunction, comprehensive literature searches of PubMed, Embase and the Cochrane Library from their inception to April 2016 were performed. A total of 10 studies (13 analyses, 358 subjects) were included; all had acceptable quality according to PEDro scale score. The baseline differences between the two groups were confirmed to be comparable. Compared with the control group, the standardized mean difference of 9-Hole Peg Test was 0.28 (−0.01, 0.57), 0.64 (0.31, 0.97) in Box and Block Test, 0.47 (0.08, 0.87) in Arm Paresis Score and 0.35 (−0.04, 0.75) in Action Research Arm Test for upper-limb motor function, 0.11 (−0.24, 0.46) in Berg Balance Scale score, 0.09 (−0.36, 0.54) in Fugl-Meyer Assessment score, 0.30 (−0.15, 0.74) in Wolf Motor Function Test, 0.30 (−0.15, 0.74) in Wolf Motor Function time, 0.65 (0.14, 1.16) in Stride length and 0.62 (0.01, 1.24) in Gait Velocity for total motor function, and 1.75 (0.94, 2.56) in Frontal Assessment Battery score for executive function. There was evidence of a positive effect of music-supported therapy, supporting its use for the treatment of stroke-induced motor dysfunction. This study was registered at PRESPERO (CRD42016037106). PMID:27917945

  2. Acute hyperglycemia produces transient improvement in glucose transporter type 1 deficiency.

    PubMed

    Akman, Cigdem I; Engelstad, Kristin; Hinton, Veronica J; Ullner, Paivi; Koenigsberger, Dorcas; Leary, Linda; Wang, Dong; De Vivo, Darryl C

    2010-01-01

    Glucose transporter type 1 deficiency syndrome (Glut1-DS) is characterized clinically by acquired microcephaly, infantile-onset seizures, psychomotor retardation, choreoathetosis, dystonia, and ataxia. The laboratory signature is hypoglycorrhachia. The 5-hour oral glucose tolerance test (OGTT) was performed to assess cerebral function and systemic carbohydrate homeostasis during acute hyperglycemia, in the knowledge that GLUT1 is constitutively expressed ubiquitously and upregulated in the brain. Thirteen Glut1-DS patients completed a 5-hour OGTT. Six patients had prolonged electroencephalographic (EEG)/video monitoring, 10 patients had plasma glucose and serum insulin measurements, and 5 patients had repeated measures of attention, memory, fine motor coordination, and well-being. All patients had a full neuropsychological battery prior to OGTT. The glycemic profile and insulin response during the OGTT were normal. Following the glucose load, transient improvement of clinical seizures and EEG findings were observed, with the most significant improvement beginning within the first 30 minutes and continuing for 180 minutes. Thereafter, clinical seizures returned, and EEG findings worsened. Additionally, transient improvement in attention, fine motor coordination, and reported well-being were observed without any change in memory performance. This study documents transient neurological improvement in Glut1-DS patients following acute hyperglycemia, associated with improved fine motor coordination and attention. Also, systemic carbohydrate homeostasis was normal, despite GLUT1 haploinsufficiency, confirming the specific role of GLUT1 as the transporter of metabolic fuel across the blood-brain barrier. The transient improvement in brain function underscores the rate-limiting role of glucose transport and the critical minute-to-minute dependence of cerebral function on fuel availability for energy metabolism.

  3. The effects of combined repetitive transcranial magnetic stimulation and transcranial direct current stimulation on motor function in patients with stroke.

    PubMed

    Kwon, Tae Gun; Park, Eunhee; Kang, Chung; Chang, Won Hyuk; Kim, Yun-Hee

    2016-11-22

    Both transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), when provided to stroke patients in combination with motor training, enhance therapeutic efficacy and motor function. However, the majority of previous studies have only examined a single treatment modality. The authors investigated the modulating influence of combination dual-mode brain stimulation upon bihemispheric stimulation with motor training in stroke patients. Twenty stroke patients with hemiparesis underwent five randomly arranged sessions of diverse combinations of rTMS and tDCS. We applied cathodal or anodal tDCS over the contralesional primary motor cortex (cM1) and 10 Hz rTMS over the ipsilesional primary motor cortex (iM1) in a simultaneous or preconditioning method including sham stimulation. Immediately after dual-mode stimulation, sequential hand motor training was performed for 5 minutes. The total pulses of rTMS and the duration of tDCS and motor training were the same for all sessions. Cortical excitability and sequential motor performance were evaluated before and after each session. Motor function and corticomotor excitability following simultaneous stimulation via cathodal tDCS over the cM1 combined with 10 Hz rTMS over the iM1 were significantly increased after the intervention, with significantly greater motor improvement than seen with other treatment conditions (P < 0.05). For the combination of bihemispheric rTMS and tDCS, simultaneous stimulation of cathodal tDCS and 10 Hz rTMS results in better motor performance in stroke patients than other combination methods. This result seemed to be related to effective modulation of interhemispheric imbalance of cortical excitability by dual-mode stimulation.

  4. Subthalamic nucleus stimulation-induced regional blood flow responses correlate with improvement of motor signs in Parkinson disease.

    PubMed

    Karimi, M; Golchin, N; Tabbal, S D; Hershey, T; Videen, T O; Wu, J; Usche, J W M; Revilla, F J; Hartlein, J M; Wernle, A R; Mink, J W; Perlmutter, J S

    2008-10-01

    Deep brain stimulation of the subthalamic nucleus (STN DBS) improves motor symptoms in idiopathic Parkinson's disease, yet the mechanism of action remains unclear. Previous studies indicate that STN DBS increases regional cerebral blood flow (rCBF) in immediate downstream targets but does not reveal which brain regions may have functional changes associated with improved motor manifestations. We studied 48 patients with STN DBS who withheld medication overnight and underwent PET scans to measure rCBF responses to bilateral STN DBS. PET scans were performed with bilateral DBS OFF and ON in a counterbalanced order followed by clinical ratings of motor manifestations using Unified Parkinson Disease Rating Scale 3 (UPDRS 3). We investigated whether improvement in UPDRS 3 scores in rigidity, bradykinesia, postural stability and gait correlate with rCBF responses in a priori determined regions. These regions were selected based on a previous study showing significant STN DBS-induced rCBF change in the thalamus, midbrain and supplementary motor area (SMA). We also chose the pedunculopontine nucleus region (PPN) due to mounting evidence of its involvement in locomotion. In the current study, bilateral STN DBS improved rigidity (62%), bradykinesia (44%), gait (49%) and postural stability (56%) (paired t-tests: P < 0.001). As expected, bilateral STN DBS also increased rCBF in the bilateral thalami, right midbrain, and decreased rCBF in the right premotor cortex (P < 0.05, corrected). There were significant correlations between improvement of rigidity and decreased rCBF in the SMA (r(s) = -0.4, P < 0.02) and between improvement in bradykinesia and increased rCBF in the thalamus (r(s) = 0.31, P < 0.05). In addition, improved postural reflexes correlated with decreased rCBF in the PPN (r(s) = -0.38, P < 0.03). These modest correlations between selective motor manifestations and rCBF in specific regions suggest possible regional selectivity for improvement of different motor signs of Parkinson's disease.

  5. Subthalamic nucleus stimulation-induced regional blood flow responses correlate with improvement of motor signs in Parkinson disease

    PubMed Central

    Karimi, M.; Golchin, N.; Tabbal, S. D.; Hershey, T.; Videen, T. O.; Wu, J.; Usche, J. W. M.; Revilla, F. J.; Hartlein, J. M.; Wernle, A. R.; Mink, J. W.

    2008-01-01

    Deep brain stimulation of the subthalamic nucleus (STN DBS) improves motor symptoms in idiopathic Parkinson's disease, yet the mechanism of action remains unclear. Previous studies indicate that STN DBS increases regional cerebral blood flow (rCBF) in immediate downstream targets but does not reveal which brain regions may have functional changes associated with improved motor manifestations. We studied 48 patients with STN DBS who withheld medication overnight and underwent PET scans to measure rCBF responses to bilateral STN DBS. PET scans were performed with bilateral DBS OFF and ON in a counterbalanced order followed by clinical ratings of motor manifestations using Unified Parkinson Disease Rating Scale 3 (UPDRS 3). We investigated whether improvement in UPDRS 3 scores in rigidity, bradykinesia, postural stability and gait correlate with rCBF responses in a priori determined regions. These regions were selected based on a previous study showing significant STN DBS-induced rCBF change in the thalamus, midbrain and supplementary motor area (SMA). We also chose the pedunculopontine nucleus region (PPN) due to mounting evidence of its involvement in locomotion. In the current study, bilateral STN DBS improved rigidity (62%), bradykinesia (44%), gait (49%) and postural stability (56%) (paired t-tests: P < 0.001). As expected, bilateral STN DBS also increased rCBF in the bilateral thalami, right midbrain, and decreased rCBF in the right premotor cortex (P < 0.05, corrected). There were significant correlations between improvement of rigidity and decreased rCBF in the SMA (rs = –0.4, P < 0.02) and between improvement in bradykinesia and increased rCBF in the thalamus (rs = 0.31, P < 0.05). In addition, improved postural reflexes correlated with decreased rCBF in the PPN (rs = –0.38, P < 0.03). These modest correlations between selective motor manifestations and rCBF in specific regions suggest possible regional selectivity for improvement of different motor signs of Parkinson's disease. PMID:18697909

  6. Mild cognitive impairment affects motor control and skill learning.

    PubMed

    Wu, Qiaofeng; Chan, John S Y; Yan, Jin H

    2016-02-01

    Mild cognitive impairment (MCI) is a transitional phase between normal cognitive aging and dementia. As the world population is aging rapidly, more MCI patients will be identified, posing significant problems to society. Normal aging is associated with cognitive and motor decline, and MCI brings additional impairments. Compared to healthy older adults, MCI patients show poorer motor control in a variety of tasks. Efficient motor control and skill learning are essential for occupational and leisure purposes; degradation of motor behaviors in MCI patients often adversely affects their health and quality of life. In this article, we first define MCI and describe its pathology and neural correlates. After this, we review cognitive changes and motor control and skill learning in normal aging. This section is followed by a discussion of MCI-related degradation of motor behaviors. Finally, we propose that multicomponent interventions targeting both cognitive and motor domains can improve MCI patients' motor functions. Future research directions are also raised.

  7. Enriched environment promotes remyelination and motor function recovery through modulation of HDAC1/2 in mice.

    PubMed

    Zheng, Jian; Ding, Weijun; Li, Baoming; Yang, Youjun

    2017-08-10

    Brain structure and functions are significantly affected by enriched environment (EE). Rodent and rhesus monkeys raised in EE will increase myelination in development, and these increase correlate with improved cognitive functions on learning and memory. However, whether and how EE influences remyelination in the adult remained undefined. Here, we used a cuprizone-induced demyelination mouse model demonstrate that EE significantly enhances remyelination. This EE-regulated remyelination is associated with improved motor skills. We found that histone deacetylases 1/2 (HDAC1/2) were drastically increased in EE. EE act mechanistically by inhibition of Wnt signaling pathway during remyelination through promotion of HDAC1/2. Moreover, pharmacological inhibition of HDACs promoted Wnt signaling activation and impaired remyelination in EE. These results suggested that the effect of EE is likely to be mediated, at least in part, by elevating HDAC1/2 expression and inhibiting Wnt signal pathway, which initiates 'rewiring' of the neural network and accelerates remyelination. These findings highlighted the potential of EE as a promising noninvasive strategy to accelerate remyelination and to restore motor functions for demyelination related disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The Extract of Roots of Sophora flavescens Enhances the Recovery of Motor Function by Axonal Growth in Mice with a Spinal Cord Injury.

    PubMed

    Tanabe, Norio; Kuboyama, Tomoharu; Kazuma, Kohei; Konno, Katsuhiro; Tohda, Chihiro

    2015-01-01

    Although axonal extension to reconstruct spinal tracts should be effective for restoring function after spinal cord injury (SCI), chondroitin sulfate proteoglycan (CSPG) levels increase at spinal cord lesion sites, and inhibit axonal regrowth. In this study, we found that the water extract of roots of Sophora flavescens extended the axons of mouse cortical neurons, even on a CSPG-coated surface. Consecutive oral administrations of S. flavescens extract to SCI mice for 31 days increased the density of 5-HT-positive axons at the lesion site and improved the motor function. Further, the active constituents in the S. flavescens extract were identified. The water and alkaloid fractions of the S. flavescens extract each exhibited axonal extension activity in vitro. LC/MS analysis revealed that these fractions mainly contain matrine and/or oxymatrine, which are well-known major compounds in S. flavescens. Matrine and oxymatrine promoted axonal extension on the CSPG-coated surface. This study is the first to demonstrate that S. flavescens extract, matrine, and oxymatrine enhance axonal growth in vitro, even on a CSPG-coated surface, and that S. flavescens extract improves motor function and increases axonal density in SCI mice.

  9. Effects of dopaminergic and subthalamic stimulation on musical performance.

    PubMed

    van Vugt, Floris T; Schüpbach, Michael; Altenmüller, Eckart; Bardinet, Eric; Yelnik, Jérôme; Hälbig, Thomas D

    2013-05-01

    Although subthalamic-deep brain stimulation (STN-DBS) is an efficient treatment for Parkinson's disease (PD), its effects on fine motor functions are not clear. We present the case of a professional violinist with PD treated with STN-DBS. DBS improved musical articulation, intonation and emotional expression and worsened timing relative to a timekeeper (metronome). The same effects were found for dopaminergic treatment. These results suggest that STN-DBS, mimicking the effects of dopaminergic stimulation, improves fine-tuned motor behaviour whilst impairing timing precision.

  10. [Complex program for the recovery of the vertebral column motor function].

    PubMed

    Kukareko, V P; Furmanov, A G

    2011-01-01

    This paper addresses the problems pertinent to the improvement of the efficacy of restoration of the vertebral column motor function based on the implementation of a comprehensive therapeutic program including massage, thermal procedures, and physical exercises. The program was realized in three phases, viz. preparatory, basic, and consolidating. The results of integral estimation of the whole body and vertebral column condition were taken into consideration. The experiment lasted 6 months and confirmed high efficiency of the comprehensive program.

  11. Combined rTMS and virtual reality brain-computer interface training for motor recovery after stroke

    NASA Astrophysics Data System (ADS)

    Johnson, N. N.; Carey, J.; Edelman, B. J.; Doud, A.; Grande, A.; Lakshminarayan, K.; He, B.

    2018-02-01

    Objective. Combining repetitive transcranial magnetic stimulation (rTMS) with brain-computer interface (BCI) training can address motor impairment after stroke by down-regulating exaggerated inhibition from the contralesional hemisphere and encouraging ipsilesional activation. The objective was to evaluate the efficacy of combined rTMS  +  BCI, compared to sham rTMS  +  BCI, on motor recovery after stroke in subjects with lasting motor paresis. Approach. Three stroke subjects approximately one year post-stroke participated in three weeks of combined rTMS (real or sham) and BCI, followed by three weeks of BCI alone. Behavioral and electrophysiological differences were evaluated at baseline, after three weeks, and after six weeks of treatment. Main results. Motor improvements were observed in both real rTMS  +  BCI and sham groups, but only the former showed significant alterations in inter-hemispheric inhibition in the desired direction and increased relative ipsilesional cortical activation from fMRI. In addition, significant improvements in BCI performance over time and adequate control of the virtual reality BCI paradigm were observed only in the former group. Significance. When combined, the results highlight the feasibility and efficacy of combined rTMS  +  BCI for motor recovery, demonstrated by increased ipsilesional motor activity and improvements in behavioral function for the real rTMS  +  BCI condition in particular. Our findings also demonstrate the utility of BCI training alone, as shown by behavioral improvements for the sham rTMS  +  BCI condition. This study is the first to evaluate combined rTMS and BCI training for motor rehabilitation and provides a foundation for continued work to evaluate the potential of both rTMS and virtual reality BCI training for motor recovery after stroke.

  12. Esophageal motor disorders: recent advances.

    PubMed

    Dogan, Ibrahim; Mittal, Ravinder K

    2006-07-01

    The aim of this article is to highlight literature published during the last year in the context of previous knowledge. A number of novel techniques - high-resolution manometry, esophageal electrical impedance and intra-luminal ultrasound imaging - have improved our understanding of esophageal function in health and disease. Several studies address the function of longitudinal muscle layer of the esophagus in normal subjects and patients with motor disorders of the esophagus. Esophageal electrical impedance recordings reveal abnormal transit in patients with diffuse esophageal spasm, achalasia and patients with normal manometry. Loss of the mammalian Sprouty2 gene leads to enteric neuronal hyperplasia and esophageal achalasia. Several studies showed excellent long-term results of medical and surgical treatment of achalasia of the esophagus. For the first time, mechanisms of gastroesophageal reflux in critically ill mechanically ventilated patients are reported. Novel pharmacologic strategies in the treatment of reflux disease are highlighted. Several novel techniques, perfected during recent years, have improved our understanding of esophageal function and dysfunction. A number of important observations, reviewed here, provide important insight into the pathogenesis of esophageal motor disorders and treatment of gastroesophageal reflux disease.

  13. Elbow functional compensation using a lightweight magnetorheological clutch.

    PubMed

    Clemente, Alejandro Martín; Caballero, Antonio Flores; Rojas, Dolores Blanco; Copaci, Dorin-Sabin; Lorente, Luis Moreno

    2011-01-01

    There are many applications for which a patient needs functional compensation due to motor disorders in daily activities. Classic research has focused on robotics solutions in terms of actuators or motors, but the point of this paper is to analyze new solutions combining both biological and artificial structures, in order to improve standard developments. Nowadays wearable Robots are taking an important role in rehabilitation purposes, due to this issue lots of new designs are emerging, but most of them are not still prepared to be used in terms of autonomy, weight, etc. Under the Hybrid Neuroprosthetic and Neurorobotic devices for Functional Compensation and Rehabilitation (HYPER) project, new actuator technologies have been developed in order to improve the adaptability and portability of rehabilitation devices. The designed device is based on a lightweight magnetorheological (MR) clutch which is able to transmit torque from a motor to the injured joint. Though it is intended to work in human upper limb (elbow mainly), other future designs will also be studied for other human joints. Simulation results using Simulink®, MSC Adams®and MSMS®are reported to illustrate the viability of the proposed device.

  14. Statistical Signal Processing and the Motor Cortex

    PubMed Central

    Brockwell, A.E.; Kass, R.E.; Schwartz, A.B.

    2011-01-01

    Over the past few decades, developments in technology have significantly improved the ability to measure activity in the brain. This has spurred a great deal of research into brain function and its relation to external stimuli, and has important implications in medicine and other fields. As a result of improved understanding of brain function, it is now possible to build devices that provide direct interfaces between the brain and the external world. We describe some of the current understanding of function of the motor cortex region. We then discuss a typical likelihood-based state-space model and filtering based approach to address the problems associated with building a motor cortical-controlled cursor or robotic prosthetic device. As a variation on previous work using this approach, we introduce the idea of using Markov chain Monte Carlo methods for parameter estimation in this context. By doing this instead of performing maximum likelihood estimation, it is possible to expand the range of possible models that can be explored, at a cost in terms of computational load. We demonstrate results obtained applying this methodology to experimental data gathered from a monkey. PMID:21765538

  15. AAV-mediated netrin-1 overexpression increases peri-infarct blood vessel density and improves motor function recovery after experimental stroke.

    PubMed

    Sun, Hui; Le, Thang; Chang, Tiffany T J; Habib, Aisha; Wu, Steven; Shen, Fanxia; Young, William L; Su, Hua; Liu, Jialing

    2011-10-01

    Apart from its role in axon guidance, netrin-1 is also known to be pro-angiogenic. The aim of this study is to determine whether adeno-associated viral (AAV) mediated overexpression of netrin-1 improves post-stroke neurovascular structure and recovery of function. AAV-Netrin-1 or AAV-LacZ of 1×10(10) genome copies each was injected medial and posterior to ischemic lesion at one hour following reperfusion using the distal middle cerebral artery occlusion (MCAO) method. Quantitative RT-PCR revealed that the expression of netrin-1 transgene began as early as one day and increased dramatically about 3 weeks following vector injection. Western blot analysis and confocal microscopy suggested that both the endogenous and transduced netrin-1 were expressed in the neurons of the peri-infarct cortex after MCAO. AAV-mediated netrin-1 overexpression significantly increased vascular density in the peri-infarct cortex and promoted the migration of immature neurons into the peri-infarct white matter, but it did not significantly reduce infarct size. Netrin-1 overexpression also enhanced post-stroke locomotor activity, improved exploratory behavior, and reduced ischemia-induced motor asymmetry in forelimb usage. However, it had little effect on post-stroke spatial learning and memory. Our results suggest that AAV mediated netrin-1 overexpression improves peri-infarct vascular density and post stroke motor function. Published by Elsevier Inc.

  16. Effect of ghrelin on the motor deficit caused by the ablation of nigrostriatal dopaminergic cells or the inhibition of striatal dopamine receptors.

    PubMed

    Suda, Yukari; Kuzumaki, Naoko; Narita, Michiko; Hamada, Yusuke; Shibasaki, Masahiro; Tanaka, Kenichi; Tamura, Hideki; Kawamura, Takashi; Kondo, Takashige; Yamanaka, Akihiro; Narita, Minoru

    2018-02-19

    Ghrelin plays roles in a wide range of central functions by activating the growth hormone secretagogue receptor (GHSR). This receptor has recently been found in the substantia nigra (SN) to control dopamine (DA)-related physiological functions. The dysregulation of DA neurons in the SN pars compacta (SNc) and the consequent depletion of striatal DA are known to underlie the motor deficits observed in Parkinson's disease (PD). In the present study, we further investigated the role of the SN-ghrelin system in motor function under the stereotaxic injection of AAV-CMV-FLEX-diphtheria toxin A (DTA) into the SN of dopamine transporter (DAT)-Cre (DAT SN ::DTA) mice to expunge DA neurons of the SNc. First, we confirmed the dominant expression of GHSR1a, which is a functional GHSR, in tyrosine hydroxylase (TH)-positive DA neurons in the SNc of control mice. In DAT SN ::DTA mice, we clearly observed motor dysfunction using several behavioral tests. An immunohistochemical study revealed a dramatic loss of TH-positive DA neurons in the SNc and DAT-labeled axon terminals in the striatum, and an absence of mRNAs for TH and DAT in the SN of DAT SN ::DTA mice. The mRNA level of GHSR1a was drastically decreased in the SN of these mice. In normal mice, we also found the mRNA expression of GHSR1a within GABAergic neurons in the SN pars reticulata (SNr). Under these conditions, a single injection of ghrelin into the SN failed to improve the motor deficits caused by ablation of the nigrostriatal DA network using DAT SN ::DTA mice, whereas intra-SN injection of ghrelin suppressed the motor dysfunction caused by the administration of haloperidol, which is associated with the transient inhibition of DA transmission. These findings suggest that phasic activation of the SNc-ghrelin system could improve the dysregulation of nigrostriatal DA transmission related to the initial stage of PD, but not the motor deficits under the depletion of nigrostriatal DA. Although GHSRs are found in non-DA cells of the SNr, GHSRs on DA neurons in the SNc may play a crucial role in motor function. Copyright © 2018. Published by Elsevier Inc.

  17. New generation emerging technologies for neurorehabilitation and motor assistance.

    PubMed

    Frisoli, Antonio; Solazzi, Massimiliano; Loconsole, Claudio; Barsotti, Michele

    2016-12-01

    This paper illustrates the application of emerging technologies and human-machine interfaces to the neurorehabilitation and motor assistance fields. The contribution focuses on wearable technologies and in particular on robotic exoskeleton as tools for increasing freedom to move and performing Activities of Daily Living (ADLs). This would result in a deep improvement in quality of life, also in terms of improved function of internal organs and general health status. Furthermore, the integration of these robotic systems with advanced bio-signal driven human-machine interface can increase the degree of participation of patient in robotic training allowing to recognize user's intention and assisting the patient in rehabilitation tasks, thus representing a fundamental aspect to elicit motor learning.

  18. Computer game-based upper extremity training in the home environment in stroke persons: a single subject design.

    PubMed

    Slijper, Angelique; Svensson, Karin E; Backlund, Per; Engström, Henrik; Sunnerhagen, Katharina Stibrant

    2014-03-13

    The objective of the present study was to assess whether computer game-based training in the home setting in the late phase after stroke could improve upper extremity motor function. Twelve subjects with prior stroke were recruited; 11 completed the study. The study had a single subject design; there was a baseline test (A1), a during intervention test (B) once a week, a post-test (A2) measured directly after the treatment phase, plus a follow-up (C) 16-18 weeks after the treatment phase. Information on motor function (Fugl-Meyer), grip force (GrippitR) and arm function in activity (ARAT, ABILHAND) was gathered at A1, A2 and C. During B, only Fugl-Meyer and ARAT were measured. The intervention comprised five weeks of game-based computer training in the home environment. All games were designed to be controlled by either the affected arm alone or by both arms. Conventional formulae were used to calculate the mean, median and standard deviations. Wilcoxon's signed rank test was used for tests of dependent samples. Continuous data were analyzed by methods for repeated measures and ordinal data were analyzed by methods for ordered multinomial data using cumulative logistic models. A p-value of < 0.05 was considered statistically significant. Six females and five males, participated in the study with an average age of 58 years (range 26-66). FMA-UE A-D (motor function), ARAT, the maximal grip force and the mean grip force on the affected side show significant improvements at post-test and follow-up compared to baseline. No significant correlation was found between the amount of game time and changes in the outcomes investigated in this study. The results indicate that computer game-based training could be a promising approach to improve upper extremity function in the late phase after stroke, since in this study, changes were achieved in motor function and activity capacity.

  19. Efficacy of Mirror Therapy Containing Functional Tasks in Poststroke Patients

    PubMed Central

    2016-01-01

    Objective To investigate the effect of mirror therapy containing functional tasks on upper extremity function and activities of daily living in patients with subacute stroke. Methods The subjects were randomly divided into two groups: the mirror therapy group (30 patients) and the sham therapy group (30 patients). The mirror therapy group underwent a mirror therapy program together with conventional therapy for 20 minutes per day on 5 days per week for 4 weeks. The control group received a sham conventional therapy program under the same schedule as the mirror therapy group. The Fugl-Meyer Motor Function Assessment (FMA), Brunnstrom motor recovery stage, and Modified Barthel Index (MBI) were evaluated 4 weeks after the treatment. Results The upper extremity function on the affected side and ability to perform daily life activities after the intervention were significantly improved in both groups. After 4 weeks of intervention, improvements in the FMA (p=0.027) and MBI (p=0.041) were significantly greater in the mirror therapy group than the sham therapy group. Conclusion In this study, we found that the mirror therapy containing functional task was effective in terms of improving the upper extremity functions and activities of daily living in patients with subacute stroke. PMID:27606269

  20. Efficacy of Mirror Therapy Containing Functional Tasks in Poststroke Patients.

    PubMed

    Lim, Kil-Byung; Lee, Hong-Jae; Yoo, Jeehyun; Yun, Hyun-Ju; Hwang, Hye-Jung

    2016-08-01

    To investigate the effect of mirror therapy containing functional tasks on upper extremity function and activities of daily living in patients with subacute stroke. The subjects were randomly divided into two groups: the mirror therapy group (30 patients) and the sham therapy group (30 patients). The mirror therapy group underwent a mirror therapy program together with conventional therapy for 20 minutes per day on 5 days per week for 4 weeks. The control group received a sham conventional therapy program under the same schedule as the mirror therapy group. The Fugl-Meyer Motor Function Assessment (FMA), Brunnstrom motor recovery stage, and Modified Barthel Index (MBI) were evaluated 4 weeks after the treatment. The upper extremity function on the affected side and ability to perform daily life activities after the intervention were significantly improved in both groups. After 4 weeks of intervention, improvements in the FMA (p=0.027) and MBI (p=0.041) were significantly greater in the mirror therapy group than the sham therapy group. In this study, we found that the mirror therapy containing functional task was effective in terms of improving the upper extremity functions and activities of daily living in patients with subacute stroke.

  1. Intensive training of motor function and functional skills among young children with cerebral palsy: a systematic review and meta-analysis.

    PubMed

    Tinderholt Myrhaug, Hilde; Østensjø, Sigrid; Larun, Lillebeth; Odgaard-Jensen, Jan; Jahnsen, Reidun

    2014-12-05

    Young children with cerebral palsy (CP) receive a variety of interventions to prevent and/or reduce activity limitations and participation restrictions. Some of these interventions are intensive, and it is a challenge to identify the optimal intensity. Therefore, the objective of this systematic review was to describe and categorise intensive motor function and functional skills training among young children with CP, to summarise the effects of these interventions, and to examine characteristics that may contribute to explain the variations in these effects. Ten databases were searched for controlled studies that included young children (mean age less than seven years old) with CP and assessments of the effects of intensive motor function and functional skills training. The studies were critically assessed by the Risk of bias tool (RoB) and categorised for intensity and contexts of interventions. Standardised mean difference were computed for outcomes, and summarised descriptively or in meta-analyses. Thirty-eight studies were included. Studies that targeted gross motor function were fewer, older and with lower frequency of training sessions over longer training periods than studies that targeted hand function. Home training was most common in studies on hand function and functional skills, and often increased the amount of training. The effects of constraint induced movement therapy (CIMT) on hand function and functional skills were summarised in six meta-analyses, which supported the existing evidence of CIMT. In a majority of the included studies, equal improvements were identified between intensive intervention and conventional therapy or between two different intensive interventions. Different types of training, different intensities and different contexts between studies that targeted gross and fine motor function might explain some of the observed effect variations. Home training may increase the amount of training, but are less controllable. These factors may have contributed to the observed variations in the effectiveness of CIMT. Rigorous research on intensive gross motor training is needed. CRD42013004023.

  2. Effectiveness of music-based interventions on motricity or cognitive functioning in neurological populations: a systematic review.

    PubMed

    Moumdjian, Lousin; Sarkamo, Teppo; Leone, Carmela; Leman, Marc; Feys, Peter

    2017-06-01

    Motor and cognitive symptoms are frequent in persons with neurological disorders and often require extensive long-term rehabilitation. Recently, a variety of music-based interventions have been introduced into neurological rehabilitation as training tools. This review aims to 1) describe and define music-based intervention modalities and content which are applied in experimental studies; and 2) describe the effects of these interventions on motor and/or cognitive symptoms in the neurological population. The databases PubMed and Web of Science were searched. Cited references of included articles where screened for potential inclusion. A systematic literature search up to 20th of June 2016 was conducted to include controlled trials and cohort studies that have used music-based interventions for ≥3 weeks in the neurological population (in- and outpatients) targeting motor and/or cognitive symptoms. No limitations to publication date was set. EVIDENCE SYNTHESISː Nineteen articles comprising thirteen randomized controlled trials (total participants Nexp=241, Nctrl=269), four controlled trials (Nexp=59, Nctrl=53) and two cohort studies (N.=27) were included. Fourteen studies were conducted in stroke, three in Parkinson's disease, and two in multiple sclerosis population. Modalities of music-based interventions were clustered into four groups: instrument-based, listening-based, rhythm-based, and multicomponent-based music interventions. Overall, studies consistently showed that music-based interventions had similar or larger effects than conventional rehabilitation on upper limb function (N.=16; fine motricity, hand and arm capacity, finger and hand tapping velocity/variability), mobility (N.=7; gait parameters), and cognition (N.=4; verbal memory and focused attention). CONCLUSIONSː Variety of modalities using music-based interventions has been identified and grouped into four clusters. Effects of interventions demonstrate an improvement in the domains assessed. Evidence is most available for improving motricity in stroke. More studies are warranted to investigate cognition as well as motor and cognition dysfunctions in combination. Instrument-based music interventions can improve fine motor dexterity and gross motor functions in stroke. Rhythm-based music interventions can improve gait parameters of velocity and cadence in stroke, Parkinson's disease and multiple sclerosis. Cognition in the domains of verbal memory and focused attention can improve after listening-based music interventions in stroke.

  3. [REHABILITATION OF MOBILITY AND MOTOR FUNCTION IN NURSING HOME RESIDENTS WITH DEMENTIA].

    PubMed

    Aizen, Efraim; Lubosky, Enna; Sobeh, Saleh; Ibrahim, Rasha; Pressburger, Dina; Oliven, Roni

    2018-04-01

    Few clinical trials have evaluated exercise programs developed specifically for patients with dementia in nursing home settings. To determine if a training program tailored for demented patients, can be implemented in a nursing home setting in order to improve motor performances in patients with dementia who suffered functional decline. The present intervention was conducted in wards of patients suffering from dementia in three nursing homes. Patients suffering from dementia and hospitalized in a rehabilitation hospital were the control arm. Eligible patients in the wards assigned to the intervention group (NH; n = 24) received exercise training specifically designed for patients with dementia. Patients in the rehabilitation hospital were observed as a control group (RH; n = 50) and received usual care treatment. Primary endpoints were changes in Functional Independence Measure (FIM), 5X Sit-to-Stand Test, Timed up and go test and ADL. Basic parameters were examined as predictors of positive training response. Both the nursing home residents and rehabilitation hospital patients improved significantly in both primary endpoints (change: in Functional Independence Measure, NH: +119.2 ± 30.8 % versus RH: +83.3 ± 41.9%, p < 0.001; ADL, NH: +143.5 ± 102.6% versus RH: +59.0 ± 90.2%, p < 0.001). Age was found to be a predictor of positive training response. This functional training program tailored for demented patients can be implemented in a nursing home setting to improve motor performances in patients with dementia. Such interventions should be further evaluated in larger randomized controlled trials.

  4. Effect of robotic-assisted three-dimensional repetitive motion to improve hand motor function and control in children with handwriting deficits: a nonrandomized phase 2 device trial.

    PubMed

    Palsbo, Susan E; Hood-Szivek, Pamela

    2012-01-01

    We explored the efficacy of robotic technology in improving handwriting in children with impaired motor skills. Eighteen participants had impairments arising from cerebral palsy (CP), autism spectrum disorder (ASD), attention deficit disorder (ADD), attention deficit hyperactivity disorder (ADHD), or other disorders. The intervention was robotic-guided three-dimensional repetitive motion in 15-20 daily sessions of 25-30 min each over 4-8 wk. Fine motor control improved for the children with learning disabilities and those ages 9 or older but not for those with CP or under age 9. All children with ASD or ADHD referred for slow writing speed were able to increase speed while maintaining legibility. Three-dimensional, robot-assisted, repetitive motion training improved handwriting fluidity in children with mild to moderate fine motor deficits associated with ASD or ADHD within 10 hr of training. This dosage may not be sufficient for children with CP. Copyright © 2012 by the American Occupational Therapy Association, Inc.

  5. The Effects of Rhythm and Robotic Interventions on the Imitation/Praxis, Interpersonal Synchrony, and Motor Performance of Children with Autism Spectrum Disorder (ASD): A Pilot Randomized Controlled Trial

    PubMed Central

    Srinivasan, Sudha M.; Kaur, Maninderjit; Park, Isabel K.; Gifford, Timothy D.; Marsh, Kerry L.; Bhat, Anjana N.

    2015-01-01

    We assessed the effects of three interventions, rhythm, robotic, and standard-of-care, on the imitation/praxis, interpersonal synchrony, and overall motor performance of 36 children with Autism Spectrum Disorder (ASD) between 5 and 12 years of age. Children were matched on age, level of functioning, and services received, prior to random assignment to one of the three groups. Training was provided for 8 weeks with 4 sessions provided each week. We assessed generalized changes in motor skills from the pretest to the posttest using a standardized test of motor performance, the Bruininks-Oseretsky Test of Motor Proficiency, 2nd edition (BOT-2). We also assessed training-specific changes in imitation/praxis and interpersonal synchrony during an early and a late session. Consistent with the training activities practiced, the rhythm and robot groups improved on the body coordination composite of the BOT-2, whereas the comparison group improved on the fine manual control composite of the BOT-2. All three groups demonstrated improvements in imitation/praxis. The rhythm and robot groups also showed improved interpersonal synchrony performance from the early to the late session. Overall, socially embedded movement-based contexts are valuable in promoting imitation/praxis, interpersonal synchrony, and motor performance and should be included within the standard-of-care treatment for children with ASD. PMID:26793394

  6. Priming With 1-Hz Repetitive Transcranial Magnetic Stimulation Over Contralesional Leg Motor Cortex Does Not Increase the Rate of Regaining Ambulation Within 3 Months of Stroke: A Randomized Controlled Trial.

    PubMed

    Huang, Ying-Zu; Lin, Li-Fong; Chang, Kwang-Hwa; Hu, Chaur-Jong; Liou, Tsan-Hon; Lin, Yen-Nung

    2018-05-01

    The potential benefits of repetitive transcranial magnetic stimulation (rTMS), applied either alone or as a combination treatment, on recovery of lower limbs after stroke have been insufficiently studied. The aim of the study was to evaluate the effect of priming with 1-Hz repetitive transcranial magnetic stimulation over contralesional leg motor area with a double-cone coil before physical therapy on regaining ambulation. Thirty-eight subacute stroke patients with significant leg disabilities were randomly assigned into the experimental group or control group to receive a 15-min real or sham 1-Hz repetitive transcranial magnetic stimulation, respectively, over the contralesional motor cortex representing the quadriceps muscle followed by 45-min physical therapy for 15 sessions for 3 wks. Functional measures, motor evoked potentials, and quality of life were assessed. There was no significant difference between experimental group and control group regarding the recovery in ambulation, balance, motor functions, and activity of daily living. No significant difference was found in other functional measures and the quality of life. Only the control group displayed significantly increased cortical excitability of the contralesional hemisphere after the intervention. The present study found that insufficient evidence that contralesional priming with 1-Hz repetitive transcranial magnetic stimulation improves ambulatory and other motor functions among patients with a severe leg dysfunction in subacute stroke.

  7. Effects of Virtual Reality Training using Xbox Kinect on Motor Function in Stroke Survivors: A Preliminary Study.

    PubMed

    Park, Dae-Sung; Lee, Do-Gyun; Lee, Kyeongbong; Lee, GyuChang

    2017-10-01

    Although the Kinect gaming system (Microsoft Corp, Redmond, WA) has been shown to be of therapeutic benefit in rehabilitation, the applicability of Kinect-based virtual reality (VR) training to improve motor function following a stroke has not been investigated. This study aimed to investigate the effects of VR training, using the Xbox Kinect-based game system, on the motor recovery of patients with chronic hemiplegic stroke. This was a randomized controlled trial. Twenty patients with hemiplegic stroke were randomly assigned to either the intervention group or the control group. Participants in the intervention group (n = 10) received 30 minutes of conventional physical therapy plus 30 minutes of VR training using Xbox Kinect-based games, and those in the control group (n = 10) received 30 minutes of conventional physical therapy only. All interventions consisted of daily sessions for a 6-week period. All measurements using Fugl-Meyer Assessment (FMA-LE), the Berg Balance Scale (BBS), the Timed Up and Go test (TUG), and the 10-meter Walk Test (10mWT) were performed at baseline and at the end of the 6 weeks. The scores on the FMA-LE, BBS, TUG, and 10mWT improved significantly from baseline to post intervention in both the intervention and the control groups after training. The pre-to-post difference scores on BBS, TUG, and 10mWT for the intervention group were significantly more improved than those for the control group (P <.05). Evidence from the present study supports the use of additional VR training with the Xbox Kinect gaming system as an effective therapeutic approach for improving motor function during stroke rehabilitation. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  8. Radiotherapy of metastatic spinal cord compression in very elderly patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rades, Dirk; Hoskin, Peter J.; Karstens, Johann H.

    2007-01-01

    Purpose: Owing to the aging of the population, the proportion of elderly patients receiving cancer treatment has increased. This study investigated the results of radiotherapy (RT) for metastatic spinal cord compression (MSCC) in the very elderly, because few data are available for these patients. Methods and Materials: The data from 308 patients aged {>=}75 years who received short-course (treatment time 1-5 days) or long-course RT (2-4 weeks) for MSCC were retrospectively analyzed for functional outcome, local control, and survival. Furthermore, nine potential prognostic factors were investigated: gender, performance status, interval from tumor diagnosis to MSCC, tumor type, number of involvedmore » vertebrae, other bone or visceral metastases, ambulatory status, and speed at which motor deficits developed. Results: Improvement of motor deficits occurred in 25% of patients, with no further progression of MSCC in an additional 59%. The 1-year local control and survival rate was 92% and 43%, respectively. Improved functional outcomes were associated with ambulatory status and slower developing motor deficits. Improved local control resulted from long-course RT. Improved survival was associated with a longer interval from tumor diagnosis to MSCC, tumor type (breast/prostate cancer, myeloma/lymphoma), lack of visceral or other bone metastases, ambulatory status, and a slower development of motor deficits. Conclusion: Short- and long-course RT are similarly effective in patients aged {>=}75 years regarding functional outcome and survival. Long-course RT provided better local control. Patients with better expected survival should receive long-course RT and others short-course RT. The criteria for selection of an appropriate regimen for MSCC in very elderly patients should be the same as for younger individuals.« less

  9. A prospective study on the impact of heart rate control achieved with metoprolol on cardiac performance, motor function and quality of life in Chinese chronic heart failure patients.

    PubMed

    Meng, Yong; Liu, Xuelu; Liu, Juan; Cheng, Xianliang

    2017-01-15

    To prospectively evaluate the impact of metoprolol achieved heart rate (HR) on cardiac-motor function and quality of life (QoL) in chronic heart failure (CHF) patients. Between February 2013 to April 2016, association of HR reduction with haemodynamic indices, motor function and QoL in CHF patients with HR>80bpm receiving metoprolol 23.75mg or 47.5mgq.d was studied. Overall, 154 patients (median age, 66.39years; males, n=101; females, n=53) were enrolled, whose average resting HR decreased significantly from baseline value of 82.72±6.73 to 69.38±3.57, 67.72±2.61, 66.50±3.14 and 64.86±3.21bpm in the 1st, 3rd, 6th and 12th months post metoprolol intervention, respectively (P<0.0001). Similarly, the ejection fraction (r=-0.6461, P<0.0001), cardiac output (r=-0.5238, P<0.0001), cardiac index (r=-0.5378, P<0.0001) and veterans specific activity questionnaire scores (r=-0.4088, P<0.0001) were significantly associated with the reduction in HR after 12months. The improvement in 6-min walk test was independent of HR reduction (P=0.005). Similarly, QoL as measured by short form-8 questionnaire (SF-8) but not Minnesota Living with Heart Failure was significantly improved at the 12th-month. However, this was not associated with the reductions in HR. Metoprolol achieved HR control was associated with improvement in cardiac performance and motor function but not QoL in patients with CHF. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Recent developments in biofeedback for neuromotor rehabilitation

    PubMed Central

    Huang, He; Wolf, Steven L; He, Jiping

    2006-01-01

    The original use of biofeedback to train single muscle activity in static positions or movement unrelated to function did not correlate well to motor function improvements in patients with central nervous system injuries. The concept of task-oriented repetitive training suggests that biofeedback therapy should be delivered during functionally related dynamic movement to optimize motor function improvement. Current, advanced technologies facilitate the design of novel biofeedback systems that possess diverse parameters, advanced cue display, and sophisticated control systems for use in task-oriented biofeedback. In light of these advancements, this article: (1) reviews early biofeedback studies and their conclusions; (2) presents recent developments in biofeedback technologies and their applications to task-oriented biofeedback interventions; and (3) discusses considerations regarding the therapeutic system design and the clinical application of task-oriented biofeedback therapy. This review should provide a framework to further broaden the application of task-oriented biofeedback therapy in neuromotor rehabilitation. PMID:16790060

  11. Pallidal stimulation in children: comparison between cerebral palsy and DYT1 dystonia.

    PubMed

    Marks, Warren; Bailey, Laurie; Reed, Maryann; Pomykal, Angela; Mercer, Mary; Macomber, David; Acosta, Fernando; Honeycutt, John

    2013-07-01

    The authors compared the outcomes of 17 children aged 7 to 15 years with DYT1 dystonia or cerebral palsy following deep brain stimulation. While patients with cerebral palsy presented with significantly greater motor disability than the DYT1 cohort at baseline, both groups demonstrated improvement at 1 year (cerebral palsy = 24%; DYT1 = 6%). The group as a whole demonstrated significant improvement on the Barry-Albright Dystonia Scale across time. Gains in motor function were apparent in both axial and appendicular distributions involving both upper and lower extremities. Gains achieved by 6 months were sustained in the cerebral palsy group, whereas the DYT1 group demonstrated continued improvement with ongoing pallidal stimulation beyond 18 months. Young patients with dystonia due to cerebral palsy responded comparably to patients with DYT1 dystonia. The severity of motor impairment in patients with cerebral palsy at baseline and follow-up raises the issue of even earlier intervention with neuromodulation in this population to limit long-term motor impairments due to dystonia.

  12. Increasing cardiopulmonary aerobic activity improves motor cognitive response time: An inference from preliminary one-group pretest-posttest quasi-experimental study.

    PubMed

    Mishra, Rajnee; Dasgupta, Aurodeep; Mohan, Vivek; Aranha, Vencita Priyanka; Samuel, Asir John

    Motor cognitive response time (MCRT) is the time elapsed between presenting a stimulus and the time taken by that individual to respond to that stimulus through a motor performance. After completing aerobic exercise, there are various changes that takes place, one of which might be change in cognitive function. Whether cardiopulmonary aerobic activity/capacity has an impact on MCRT is not explored yet. Copyright © 2017. Published by Elsevier B.V.

  13. Long-term outcomes five years after selective dorsal rhizotomy

    PubMed Central

    Nordmark, Eva; Josenby, Annika Lundkvist; Lagergren, Jan; Andersson, Gert; Strömblad, Lars-Göran; Westbom, Lena

    2008-01-01

    Background Selective dorsal rhizotomy (SDR) is a well accepted neurosurgical procedure performed for the relief of spasticity interfering with motor function in children with spastic cerebral palsy (CP). The goal is to improve function, but long-term outcome studies are rare. The aims of this study were to evaluate long-term functional outcomes, safety and side effects during five postoperative years in all children with diplegia undergoing SDR combined with physiotherapy. Methods This study group consisted of 35 children, consecutively operated, with spastic diplegia, of which 26 were Gross Motor Function Classification System (GMFCS) levels III–V. Mean age was 4.5 years (range 2.5–6.6). They were all assessed by the same multidisciplinary team at pre- and at 6, 12, 18 months, 3 and 5 years postoperatively. Clinical and demographic data, complications and number of rootlets cut were prospectively registered. Deep tendon reflexes and muscle tone were examined, the latter graded with the modified Ashworth scale. Passive range of motion (PROM) was measured with a goniometer. Motor function was classified according to the GMFCS and measured with the Gross Motor Function Measure (GMFM-88) and derived into GMFM-66. Parent's opinions about the children's performance of skills and activities and the amount of caregiver assistance were measured with Pediatric Evaluation Disability Inventory (PEDI). Results The mean proportion of rootlets cut in S2-L2 was 40%. Muscle tone was immediately reduced in adductors, hamstrings and dorsiflexors (p < 0.001) with no recurrence of spasticity over the 5 years. For GMFCS-subgroups I–II, III and IV–V significant improvements during the five years were seen in PROM for hip abduction, popliteal angle and ankle dorsiflexion (p = 0.001), capacity of gross motor function (GMFM) (p = 0.001), performance of functional skills and independence in self-care and mobility (PEDI) (p = 0.001). Conclusion SDR is a safe and effective method for reducing spasticity permanently without major negative side effects. In combination with physiotherapy, in a group of carefully selected and systematically followed young children with spastic diplegia, it provides lasting functional benefits over a period of at least five years postoperatively. PMID:19077294

  14. Are there critical periods for brain growth in children born preterm?

    PubMed

    Cooke, R W I

    2006-01-01

    Children born very preterm who attend mainstream schools have a high prevalence of minor motor, behavioural, and learning disorders. These appear to be associated with reduced postnatal growth, particularly of the head. It is unclear when this poor growth occurs and whether growth restriction during different periods has different effects on later function. To identify periods during early development, in children born preterm, when impaired head growth may influence minor motor and cognitive function. A geographically defined cohort of 194 infants born in Merseyside during 1980-81 and weighing less than 1500 g. Measurements of head circumference (occipitofrontal circumference (OFC)) were available at birth, hospital discharge, 4 years, and 15 years of age. Assessments of intelligence (intelligence quotient (IQ)) and minor motor impairment (test of motor impairment (TOMI)) were made at 8 years of age. Clinical, social, and demographic variables were obtained from the clinical record and maternal interviews. IQ correlated significantly with OFC at 4 and 15 years of age after correction for growth restriction at birth (intrauterine growth restriction (IUGR)) and social class. TOMI scores correlated significantly with OFC at all four times, but especially with OFC at discharge and with change in OFC between birth and discharge. They were not affected by correction for social class or IUGR. Although both IQ and minor motor impairments correlate strongly with each other at school age in very low birthweight children, the factors determining them and their timing of operation are different. Interventions designed to improve IQ in this population would need to reduce IUGR and improve later childhood growth. Those aimed to improve motor ability need to be targeted more at brain protection during the neonatal period.

  15. Effects of a trampoline exercise intervention on motor performance and balance ability of children with intellectual disabilities.

    PubMed

    Giagazoglou, Paraskevi; Kokaridas, Dimitrios; Sidiropoulou, Maria; Patsiaouras, Asterios; Karra, Chrisanthi; Neofotistou, Konstantina

    2013-09-01

    Balance and motor impairments are most evident among inactive individuals with ID that might be particularly susceptible to a loss of basic functioning and further limit the person's autonomy in activities of daily living. The aim of the study was to assess the effect of a 12-week trampoline exercise intervention program on motor and balance ability of school aged children with intellectual disability (ID). Eighteen healthy schools aged children (mean age=10.3 ± 1.6 years) with moderate ID were assigned either to an experimental group (n=9) or a control group (n=9). The experiment group attended a 12 weeks trampoline training intervention program consisting of daily individualized 20-min sessions, while the control group followed the regular school schedule. Balance was assessed using three tasks of increased difficulty (double-leg stance with eyes opened or closed, and one-leg stance with eyes opened) performed while standing on an electronic pressure platform (EPS). Motor performance of all participants was tested using sit and reach test and long and vertical jump tests all derived from the Eurofit Test Battery of physical fitness. Trampoline intervention resulted in significant improvements of participants' performance in all motor and balance tests. In conclusion, trampoline training can be an effective intervention for improving functional outcomes and can be recommended as an alternative mode of physical activity programming for improving balance and motor performance. Furthermore, it also supports the idea that individuals with ID require enjoyable and interesting intervention programs such as the trampoline program used in this study so as to remain active and consequently to facilitate their overall development and promote a more active and healthier way of life. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Enhanced motor skill acquisition in the non-dominant upper extremity using intermittent theta burst stimulation and transcranial direct current stimulation.

    PubMed

    Butts, Raymond J; Kolar, Melissa B; Newman-Norlund, Roger D

    2014-01-01

    Individuals suffering from motor impairments often require physical therapy (PT) to help improve their level of function. Previous investigations suggest that both intermittent theta burst stimulation (iTBS) and bihemispheric transcranial direct current stimulation (tDCS) may increase the speed and extent of motor learning/relearning. The purpose of the current study was to explore the feasibility and effectiveness of a novel, non-invasive brain stimulation approach that combined an iTBS primer, and bihemispheric stimulation coupled with motor training. We hypothesized that individuals exposed to this novel treatment would make greater functional improvements than individuals undergoing sham stimulation when tested immediately following, 24-h, and 7-days post-training. A total of 26 right-handed, healthy young adults were randomly assigned to either a treatment (n = 15) or control group (n = 12). iTBS (20 trains of 10 pulse triplets each delivered at 80% active motor threshold (AMT) / 50 Hz over 191.84 s) and bihemispheric tDCS (1.0 ma for 20 min) were used as a primer to, and in conjunction with, 20 min of motor training, respectively. Our primary outcome measure was performance on the Jebsen-Taylor Hand Function (JTHF) test. Participants tolerated the combined iTBS/bihemispheric stimulation treatment without complaint. While performance gains in the sham and stimulation group were not significant immediately after training, they were nearly significant 24-h post training (p = 0.055), and were significant at 7-days post training (p < 0.05). These results suggest that the combined iTBS/bihemispheric stimulation protocol is both feasible and effective. Future research should examine the mechanistic explanation of this approach as well as the potential of using this approach in clinical populations.

  17. Disruption to functional networks in neonates with perinatal brain injury predicts motor skills at 8 months.

    PubMed

    Linke, Annika C; Wild, Conor; Zubiaurre-Elorza, Leire; Herzmann, Charlotte; Duffy, Hester; Han, Victor K; Lee, David S C; Cusack, Rhodri

    2018-01-01

    Functional connectivity magnetic resonance imaging (fcMRI) of neonates with perinatal brain injury could improve prediction of motor impairment before symptoms manifest, and establish how early brain organization relates to subsequent development. This cohort study is the first to describe and quantitatively assess functional brain networks and their relation to later motor skills in neonates with a diverse range of perinatal brain injuries. Infants ( n  = 65, included in final analyses: n  = 53) were recruited from the neonatal intensive care unit (NICU) and were stratified based on their age at birth (premature vs. term), and on whether neuropathology was diagnosed from structural MRI. Functional brain networks and a measure of disruption to functional connectivity were obtained from 14 min of fcMRI acquired during natural sleep at term-equivalent age. Disruption to connectivity of the somatomotor and frontoparietal executive networks predicted motor impairment at 4 and 8 months. This disruption in functional connectivity was not found to be driven by differences between clinical groups, or by any of the specific measures we captured to describe the clinical course. fcMRI was predictive over and above other clinical measures available at discharge from the NICU, including structural MRI. Motor learning was affected by disruption to somatomotor networks, but also frontoparietal executive networks, which supports the functional importance of these networks in early development. Disruption to these two networks might be best addressed by distinct intervention strategies.

  18. Feasibility of using the Sony PlayStation 2 gaming platform for an individual poststroke: a case report.

    PubMed

    Flynn, Sheryl; Palma, Phyllis; Bender, Anneke

    2007-12-01

    Many Americans live with physical functional limitations stemming from stroke. These functional limitations can be reduced by task-specific training that is repetitive, motivating, and augmented with feedback. Virtual reality (VR) is reported to offer an engaging environment that is repetitive, safe, motivating, and gives task-specific feedback. The purpose of this case report was to explore the use of a low-cost VR device [Sony PlayStation 2 (PS2) EyeToy] for an individual in the chronic phase of stroke recovery. An individual two years poststroke with residual sensorimotor deficits completed 20 one-hour sessions using the PS2 EyeToy. The game's task requirements included target-based motion, dynamic balance, and motor planning. The feasibility of using the gaming platform was explored and a broad selection of outcomes was used to assess change in performance. Device use was feasible. Clinically relevant improvements were found on the Dynamic Gait Index and trends toward improvement on the Fugl-Meyer Assessment, Berg Balance Scale, UE Functional Index, Motor Activity Log, and Beck Depression Inventory. A low-cost VR system was easily used in the home. In the future it may be used to improve sensory/motor recovery following stroke as an adjunct to standard care physical therapy.

  19. The value of adding mirror therapy for upper limb motor recovery of subacute stroke patients: a randomized controlled trial.

    PubMed

    Invernizzi, M; Negrini, S; Carda, S; Lanzotti, L; Cisari, C; Baricich, A

    2013-06-01

    Upper limb paresis remains a relevant challenge in stroke rehabilitation. To evaluate if adding mirror therapy (MT) to conventional therapy (CT) can improve motor recovery of the upper limb in subacute stroke patients. Prospective, single-center, single-blind, randomised, controlled trial. Subacute stroke patients referred to a Physical and Rehabilitation Medicine Unit between October 2009 and August 2011. Twenty-six subacute stroke patients (time from stroke <4 weeks) with upper limb paresis (Motricity Index ≤ 77). Patients were randomly allocated to the MT (N.=13) or to the CT group (N.=13). Both followed a comprehensive rehabilitative treatment. In addition, MT Group had 30 minutes of MT while the CT group had 30 minutes of sham therapy. Action Research Arm Test (ARAT) was the primary outcome measures. Motricity Index (MI) and the Functional Independence Measure (FIM) were the secondary outcome measures. After one month of treatment patients of both groups showed statistically significant improvements in all the variables measured (P<0.05). Moreover patients of the MT group had greater improvements in the ARAT, MI and FIM values compared to CT group (P<0.01, Glass's Δ Effect Size: 1.18). No relevant adverse event was recorded during the study. MT is a promising and easy method to improve motor recovery of the upper limb in subacute stroke patients. While MT use has been advocated for acute patients with no or negligible motor function, it can be usefully extended to patients who show partial motor recovery. The easiness of implementation, the low cost and the acceptability makes this therapy an useful tool in stroke rehabilitation.

  20. Sensitization of the Nociceptive System in Complex Regional Pain Syndrome

    PubMed Central

    Diedrichs, Carolina; Baron, Ralf; Gierthmühlen, Janne

    2016-01-01

    Background Complex regional pain syndrome type I (CRPS-I) is characterized by sensory, motor and autonomic abnormalities without electrophysiological evidence of a nerve lesion. Objective Aims were to investigate how sensory, autonomic and motor function change in the course of the disease. Methods 19 CRPS-I patients (17 with acute, 2 with chronic CRPS, mean duration of disease 5.7±8.3, range 1–33 months) were examined with questionnaires (LANSS, NPS, MPI, Quick DASH, multiple choice list of descriptors for sensory, motor, autonomic symptoms), motor and autonomic tests as well as quantitative sensory testing according to the German Research Network on Neuropathic Pain at two visits (baseline and 36±10.6, range 16–53 months later). Results CRPS-I patients had an improvement of sudomotor and vasomotor function, but still a great impairment of sensory and motor function upon follow-up. Although pain and mechanical detection improved upon follow-up, thermal and mechanical pain sensitivity increased, including the contralateral side. Increase in mechanical pain sensitivity and loss of mechanical detection were associated with presence of ongoing pain. Conclusions The results demonstrate that patients with CRPS-I show a sensitization of the nociceptive system in the course of the disease, for which ongoing pain seems to be the most important trigger. They further suggest that measured loss of function in CRPS-I is due to pain-induced hypoesthesia rather than a minimal nerve lesion. In conclusion, this article gives evidence for a pronociceptive pain modulation profile developing in the course of CRPS and thus helps to assess underlying mechanisms of CRPS that contribute to the maintenance of patients’ pain and disability. PMID:27149519

  1. Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial

    PubMed Central

    2013-01-01

    Background Recent evidence has demonstrated the efficacy of Virtual Reality (VR) for stroke rehabilitation nonetheless its benefits and limitations in large population of patients have not yet been studied. Objectives To evaluate the effectiveness of non-immersive VR treatment for the restoration of the upper limb motor function and its impact on the activities of daily living capacities in post-stroke patients. Methods A pragmatic clinical trial was conducted among post-stroke patients admitted to our rehabilitation hospital. We enrolled 376 subjects who had a motor arm subscore on the Italian version of the National Institutes of Health Stroke Scale (It-NIHSS) between 1 and 3 and without severe neuropsychological impairments interfering with recovery. Patients were allocated to two treatments groups, receiving combined VR and upper limb conventional (ULC) therapy or ULC therapy alone. The treatment programs consisted of 2 hours of daily therapy, delivered 5 days per week, for 4 weeks. The outcome measures were the Fugl-Meyer Upper Extremity (F-M UE) and Functional Independence Measure (FIM) scales. Results Both treatments significantly improved F-M UE and FIM scores, but the improvement obtained with VR rehabilitation was significantly greater than that achieved with ULC therapy alone. The estimated effect size of the minimal difference between groups in F-M UE and FIM scores was 2.5 ± 0.5 (P < 0.001) pts and 3.2 ± 1.2 (P = 0.007) pts, respectively. Conclusions VR rehabilitation in post-stroke patients seems more effective than conventional interventions in restoring upper limb motor impairments and motor related functional abilities. Trial registration Italian Ministry of Health IRCCS Research Programme 2590412 PMID:23914733

  2. Cognition and bimanual performance in children with unilateral cerebral palsy: protocol for a multicentre, cross-sectional study.

    PubMed

    Hoare, Brian; Ditchfield, Michael; Thorley, Megan; Wallen, Margaret; Bracken, Jenny; Harvey, Adrienne; Elliott, Catherine; Novak, Iona; Crichton, Ali

    2018-05-08

    Motor outcomes of children with unilateral cerebral palsy are clearly documented and well understood, yet few studies describe the cognitive functioning in this population, and the associations between the two is poorly understood. Using two hands together in daily life involves complex motor and cognitive processes. Impairment in either domain may contribute to difficulties with bimanual performance. Research is yet to derive whether, and how, cognition affects a child's ability to use their two hands to perform bimanual tasks. This study will use a prospective, cross-sectional multi-centre observational design. Children (aged 6-12 years) with unilateral cerebral palsy will be recruited from one of five Australian treatment centres. We will examine associations between cognition, bimanual performance and brain neuropathology (lesion type and severity) in a sample of 131 children. The primary outcomes are: Motor - the Assisting Hand Assessment; Cognitive - Executive Function; and Brain - lesion location on structural MRI. Secondary data collected will include: Motor - Box and Blocks, ABILHAND- Kids, Sword Test; Cognitive - standard neuropsychological measures of intelligence. We will use generalized linear modelling and structural equation modelling techniques to investigate relationships between bimanual performance, executive function and brain lesion location. This large multi-centre study will examine how cognition affects bimanual performance in children with unilateral cerebral palsy. First, it is anticipated that distinct relationships between bimanual performance and cognition (executive function) will be identified. Second, it is anticipated that interrelationships between bimanual performance and cognition will be associated with common underlying neuropathology. Findings have the potential to improve the specificity of existing upper limb interventions by providing more targeted treatments and influence the development of novel methods to improve both cognitive and motor outcomes in children with unilateral cerebral palsy. ACTRN12614000631606 ; Date of retrospective registration 29/05/2014.

  3. Effect of mirror therapy combined with somatosensory stimulation on motor recovery and daily function in stroke patients: A pilot study.

    PubMed

    Lin, Keh-Chung; Chen, Yu-Ting; Huang, Pai-Chuan; Wu, Ching-Yi; Huang, Wen-Ling; Yang, Hsiu-Wen; Lai, Hui-Tsz; Lu, Hung-Ju

    2014-07-01

    Mirror therapy (MT) has been recommended as a simple, inexpensive approach to treat motor dysfunction. The use of a mesh glove (MG) was suggested to normalize muscle tone that ameliorates motor impairment. Combining two efficient treatment protocols might maximize the benefits from training. This study investigated the effects of MT combined with MG (MG + MT) versus MT alone on motor performance and daily function after stroke. Sixteen patients with chronic unilateral stroke were recruited. A randomized two-group pretest and posttest design was used to randomly assign participants to MG + MT or MT groups. MT involves repetitive bimanual, symmetrical movement practice in which the individual moves the affected limb as much as she/he could while watching the reflective illusion of the unaffected limb's movements from a mirror. The MG + MT group wore a MG on the affected hand during the MT. The Modified Ashworth scale of muscle spasticity (MAS), Action Research Arm Test (ARAT), Box and Block Test (BBT), and Functional Independence Measure (FIM) were administered to evaluate spasticity, and motor and daily function. The results for the BBT (p = 0.013), total scores (p = 0.031), grasping subscales (p = 0.036) of ARAT, and FIM transfer scores (p = 0.013) presented significantly large effects in favor of the MG + MT group. Combining MG with MT significantly improves manual dexterity, grasping, and transfer performance. Adding the MG component into the MT likely increased the richness of sensory input and improved the movement performance more than MT alone. Copyright © 2012. Published by Elsevier B.V.

  4. Performance-based Outcomes of Inpatient Rehabilitation Facilities Treating Hip Fracture Patients in the United States

    PubMed Central

    Baernholdt, Marianne; Anderson, Ruth A.; Merwin, Elizabeth I.

    2015-01-01

    Objective To examine the influence of facility and aggregate patient characteristics of inpatient rehabilitation facilities (IRFs) on performance-based rehabilitation outcomes in a national sample of IRFs treating Medicare beneficiaries with hip fracture. Design Secondary data analysis. Setting U.S. Medicare-certified IRFs (N=983). Participants 983 US Medicare-certified IRFs. Data included 34,364 patient records of Medicare beneficiaries admitted in 2009 for rehabilitation after hip fracture. Main Outcome Measures Performance-based outcomes included mean motor function on discharge, mean motor change (mean motor score on discharge minus mean motor score on admission) and percentage discharged to the community. Results Higher mean motor function on discharge was explained by aggregate characteristics of hip fracture patients (lower age [p=0.009], lower percentage of Blacks [p<0.001] and Hispanics [p<0.001], higher percentage of females [p<0.030], higher motor function on admission [p<0.001], longer length of stay [p<0.001]) and facility characteristics (freestanding [p<0.001], rural [p<0.001], for-profit [p=0.048], and smaller IRFs [p=0.041]). The findings were similar for motor change, but motor change was also associated with lower mean cognitive function on admission (0.008). Higher percentage discharged to the community was associated with aggregate patient characteristics (lower age [p<0.001], lower percentage of Hispanics [p=0.009], higher percentage of patients living with others [p<0.001], and higher motor function on admission [p<0.001]). No facility characteristics were associated with percentage discharged to the community. Conclusion Performance-based measurement offers health policymakers, administrators, clinicians, and consumers a major opportunity for securing health system improvement by benchmarking or comparing their outcomes to other similar facilities. These results might serve as the basis for benchmarking and quality-based reimbursement to IRFs for one impairment group: hip fracture. PMID:25596000

  5. The influence of functional electrical stimulation on hand motor recovery in stroke patients: a review.

    PubMed

    Quandt, Fanny; Hummel, Friedhelm C

    2014-01-01

    Neuromuscular stimulation has been used as one potential rehabilitative treatment option to restore motor function and improve recovery in patients with paresis. Especially stroke patients who often regain only limited hand function would greatly benefit from a therapy that enhances recovery and restores movement. Multiple studies investigated the effect of functional electrical stimulation on hand paresis, the results however are inconsistent. Here we review the current literature on functional electrical stimulation on hand motor recovery in stroke patients. We discuss the impact of different parameters such as stage after stoke, degree of impairment, spasticity and treatment protocols on the functional outcome. Importantly, we outline the results from recent studies investigating the cortical effects elicited by functional electrical stimulation giving insights into the underlying mechanisms responsible for long-term treatment effects. Bringing together the findings from present research it becomes clear that both, treatment outcomes as well as the neurophysiologic mechanisms causing functional recovery, vary depending on patient characteristics. In order to develop unified treatment guidelines it is essential to conduct homogenous studies assessing the impact of different parameters on rehabilitative success.

  6. The influence of functional electrical stimulation on hand motor recovery in stroke patients: a review

    PubMed Central

    2014-01-01

    Neuromuscular stimulation has been used as one potential rehabilitative treatment option to restore motor function and improve recovery in patients with paresis. Especially stroke patients who often regain only limited hand function would greatly benefit from a therapy that enhances recovery and restores movement. Multiple studies investigated the effect of functional electrical stimulation on hand paresis, the results however are inconsistent. Here we review the current literature on functional electrical stimulation on hand motor recovery in stroke patients. We discuss the impact of different parameters such as stage after stoke, degree of impairment, spasticity and treatment protocols on the functional outcome. Importantly, we outline the results from recent studies investigating the cortical effects elicited by functional electrical stimulation giving insights into the underlying mechanisms responsible for long-term treatment effects. Bringing together the findings from present research it becomes clear that both, treatment outcomes as well as the neurophysiologic mechanisms causing functional recovery, vary depending on patient characteristics. In order to develop unified treatment guidelines it is essential to conduct homogenous studies assessing the impact of different parameters on rehabilitative success. PMID:25276333

  7. Randomized controlled trial of web-based multimodal therapy for children with acquired brain injury to improve gross motor capacity and performance.

    PubMed

    Baque, Emmah; Barber, Lee; Sakzewski, Leanne; Boyd, Roslyn N

    2017-06-01

    To compare efficacy of a web-based multimodal training programme, 'Move it to improve it' (Mitii TM ), to usual care on gross motor capacity and performance for children with an acquired brain injury. Randomized waitlist controlled trial. Home environment. A total of 60 independently ambulant children (30 in each group), minimum 12 months post-acquired brain injury were recruited and randomly allocated to receive either 20 weeks of Mitii TM training (30 minutes/day, six days/week, total 60 hours) immediately, or waitlisted (usual care control group) for 20 weeks. A total of 58 children completed baseline assessments (32 males; age 11 years 11 months ± 2 years 6 months; Gross Motor Function Classification System equivalent I = 29, II = 29). The Mitii TM program comprised of gross motor, upper limb and visual perception/cognitive activities. The primary outcome was 30-second, repetition maximum functional strength tests for the lower limb (sit-to-stand, step-ups, half-kneel to stand). Secondary outcomes were the 6-minute walk test, High-level Mobility Assessment Tool, Timed Up and Go Test and habitual physical activity as captured by four-day accelerometry. Groups were equivalent at baseline on demographic and clinical measures. The Mitii TM group demonstrated significantly greater improvements on combined score of functional strength tests (mean difference 10.19 repetitions; 95% confidence interval, 3.26-17.11; p = 0.006) compared with the control group. There were no other between-group differences on secondary outcomes. Although the Mitii TM programme demonstrated statistically significant improvements in the functional strength tests of the lower limb, results did not exceed the minimum detectable change and cannot be considered clinically relevant for children with an acquired brain injury. Australian New Zealand Clinical Trials Registration Number, ANZCTR12613000403730.

  8. Pediatric endurance and limb strengthening (PEDALS) for children with cerebral palsy using stationary cycling: a randomized controlled trial.

    PubMed

    Fowler, Eileen G; Knutson, Loretta M; Demuth, Sharon K; Siebert, Kara L; Simms, Victoria D; Sugi, Mia H; Souza, Richard B; Karim, Roksana; Azen, Stanley P

    2010-03-01

    Effective interventions to improve and maintain strength (force-generating capacity) and endurance are needed for children with cerebral palsy (CP). This study was performed to examine the effects of a stationary cycling intervention on muscle strength, locomotor endurance, preferred walking speed, and gross motor function in children with spastic diplegic CP. This was a phase I randomized controlled trial with single blinding. The interventions were performed in community-based outpatient physical therapy clinics. Outcome assessments were performed in university laboratories. Sixty-two ambulatory children aged 7 to 18 years with spastic diplegic CP and Gross Motor Function Classification System levels I to III participated in this study. Participants were randomly assigned to cycling or control (no-intervention) groups. Thirty intervention sessions occurred over 12 weeks. Primary outcomes were peak knee extensor and flexor moments, the 600-Yard Walk-Run Test, the Thirty-Second Walk Test, and the Gross Motor Function Measure sections D and E (GMFM-66). Significant baseline-postintervention improvements were found for the 600-Yard Walk-Run Test, the GMFM-66, peak knee extensor moments at 120 degrees /s, and peak knee flexor moments at 30 degrees /s for the cycling group. Improved peak knee flexor moments at 120 degrees/s were found for the control group only, although not all participants could complete this speed of testing. Significant differences between the cycling and control groups based on change scores were not found for any outcomes. Limitations Heterogeneity of the patient population and intrasubject variability were limitations of the study. Significant improvements in locomotor endurance, gross motor function, and some measures of strength were found for the cycling group but not the control group, providing preliminary support for this intervention. As statistical differences were not found in baseline-postintervention change scores between the 2 groups; the results did not demonstrate that stationary cycling was more effective than no intervention. The results of this phase I study provide guidance for future research.

  9. Comparative study of ipsilesional and contralesional repetitive transcranial magnetic stimulations for acute infarction.

    PubMed

    Watanabe, Kosuke; Kudo, Yosuke; Sugawara, Eriko; Nakamizo, Tomoki; Amari, Kazumitsu; Takahashi, Koji; Tanaka, Osamu; Endo, Miho; Hayakawa, Yuko; Johkura, Ken

    2018-01-15

    Repetitive transcranial magnetic stimulation (rTMS) is reported to improve chronic post-stoke hemiparesis. However, application of rTMS during the acute phase of post-stroke has not fully been investigated. We investigated the safety and the efficacy of intermittent theta-burst stimulation (iTBS) of the affected motor cortex and 1-Hz stimulation of the unaffected hemisphere during the acute phase in patients with hemiparesis due to capsular infarction. Twenty one patients who met the study criteria were randomly assigned to receive, starting within 7days after stroke onset and for a period of 10days, iTBS of the affected motor cortex hand area (n=8), 1-Hz stimulation of the unaffected motor cortex hand area (n=7), or sham stimulation (n=6). Upper limb motor function was evaluated before rTMS and 12weeks after onset of the stroke. Evaluation was based on the Fugl-Meyer Assessment (FMA), Stroke Impairment Assessment Set (SIAS), Modified Ashworth Scale (MAS), grip strength, and motor evoked potential (MEP) amplitude in the first dorsal interosseous (FDI) muscle. Both iTBS applied to the affected motor cortex hand area and 1-Hz stimulation applied to the unaffected motor cortex hand area enhanced motor recovery. In comparison to sham stimulation, iTBS increased the SIAS finger-function test score, and 1-Hz stimulation decreased the MAS wrist and finger score. Ipsilesional iTBS and contralesional 1-Hz stimulation applied during the acute phase of stroke have different effects: ipsilesional iTBS improves movement of the affected limb, whereas contralesional 1-Hz stimulation reduces spasticity of the affected limb. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. ''Playstation eyetoy games'' improve upper extremity-related motor functioning in subacute stroke: a randomized controlled clinical trial.

    PubMed

    Yavuzer, G; Senel, A; Atay, M B; Stam, H J

    2008-09-01

    To evaluate the effects of ''Playstation EyeToy Games'' on upper extremity motor recovery and upper extremity-related motor functioning of patients with subacute stroke. The authors designed a randomized, controlled, assessor-blinded, 4-week trial, with follow-up at 3 months. A total of 20 hemiparetic inpatients (mean age 61.1 years), all within 12 months post-stroke, received 30 minutes of treatment with ''Playstation EyeToy Games'' per day, consisting of flexion and extension of the paretic shoulder, elbow and wrist as well as abduction of the paretic shoulder or placebo therapy (watching the games for the same duration without physical involvement into the games) in addition to conventional program, 5 days a week, 2-5 hours/day for 4 weeks. Brunnstrom's staging and self-care sub-items of the functional independence measure (FIM) were performed at 0 month (baseline), 4 weeks (post-treatment), and 3 months (follow-up) after the treatment. The mean change score (95% confidence interval) of the FIM self-care score (5.5 [2.9-8.0] vs 1.8 [0.1-3.7], P=0.018) showed significantly more improvement in the EyeToy group compared to the control group. No significant differences were found between the groups for the Brunnstrom stages for hand and upper extremity. ''Playstation EyeToy Games'' combined with a conventional stroke rehabilitation program have a potential to enhance upper extremity-related motor functioning in subacute stroke patients.

  11. Physical exercise increases involvement of motor networks as a compensatory mechanism during a cognitively challenging task.

    PubMed

    Ji, Lanxin; Pearlson, Godfrey D; Zhang, Xue; Steffens, David C; Ji, Xiaoqing; Guo, Hua; Wang, Lihong

    2018-05-31

    Neuroimaging studies suggest that older adults may compensate for declines in cognitive function through neural compensation and reorganization of neural resources. While neural compensation as a key component of cognitive reserve is an important factor that mediates cognitive decline, the field lacks a quantitative measure of neural compensatory ability, and little is known about factors that may modify compensation, such as physical exercise. Twenty-five healthy older adults participated in a 6-week dance training exercise program. Gait speed, cognitive function, and functional magnetic resonance imaging during a challenging memory task were measured before and after the exercise program. In this study, we used a newly proposed data-driven independent component analysis approach to measure neural compensatory ability and tested the effect of physical exercise on neural compensation through a longitudinal study. After the exercise program, participants showed significantly improved memory performance in Logical Memory Test (WMS(LM)) (P < .001) and Rey Auditory Verbal Learning Test (P = .001) and increased gait speed measured by the 6-minute walking test (P = .01). Among all identified neural networks, only the motor cortices and cerebellum showed greater involvement during the memory task after exercise. Importantly, subjects who activated the motor network only after exercise (but not before exercise) showed WMS(LM) increases. We conclude that physical exercise improved gait speed, cognitive function, and compensatory ability through increased involvement of motor-related networks. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Technology-assisted rehabilitation interventions following pediatric brain injury.

    PubMed

    Wade, Shari L; Narad, Megan E; Shultz, Emily L; Kurowski, Brad G; Miley, Aimee E; Aguilar, Jessica M; Adlam, Anna-Lynne R

    2018-04-01

    Following traumatic brain injury (TBI), children experience a variety of physical, motor, speech, and cognitive deficits that can have a long-term detrimental impact. The emergence and popularity of new technologies has led to research into the development of various apps, gaming systems, websites, and robotics that might be applied to rehabilitation. The objective of this narrative review was to describe the current literature regarding technologically-assisted interventions for the rehabilitation of motor, neurocognitive, behavioral, and family impairments following pediatric TBI. We conducted a series of searches for peer-reviewed manuscripts published between 2000 and 2017 that included a technology-assisted component in the domains of motor, language/communication, cognition, behavior, social competence/functioning, family, and academic/school-based functioning. Findings suggested several benefits of utilizing technology in TBI rehabilitation including facilitating engagement/adherence, increasing access to therapies, and improving generalizability across settings. There is fairly robust evidence regarding the efficacy of online family problem-solving therapy in improving behavior problems, executive functioning, and family functioning. There was less compelling, but still promising, evidence regarding the efficacy other technology for motor deficits, apps for social skills, and computerized programs for cognitive skills. Overall, many studies were limited in the rigor of their methodology due to small heterogeneous samples and lack of control groups. Technology-assisted interventions have the potential to enhance pediatric rehabilitation after TBI. Future research is needed to further support their efficacy with larger controlled trials and to identify characteristics of children who are most likely to benefit.

  13. Sequencing bilateral and unilateral task-oriented training versus task oriented training alone to improve arm function in individuals with chronic stroke.

    PubMed

    McCombe Waller, Sandy; Whitall, Jill; Jenkins, Toye; Magder, Laurence S; Hanley, Daniel F; Goldberg, Andrew; Luft, Andreas R

    2014-12-14

    Recovering useful hand function after stroke is a major scientific challenge for patients with limited motor recovery. We hypothesized that sequential training beginning with proximal bilateral followed by unilateral task oriented training is superior to time-matched unilateral training alone. Proximal bilateral training could optimally prepare the motor system to respond to the more challenging task-oriented training. Twenty-six participants with moderate severity hemiparesis Intervention: PARTICIPANTS received either 6-weeks of bilateral proximal training followed sequentially by 6-weeks unilateral task-oriented training (COMBO) or 12-weeks of unilateral task-oriented training alone (SAEBO). A subset of 8 COMB0 and 9 SAEBO participants underwent three functional magnetic resonance imaging (fMRI) scans of hand and elbow movement every 6 weeks. Fugl-Meyer Upper extremity scale, Modified Wolf Motor Function Test, University of Maryland Arm Questionnaire for Stroke, Motor cortex activation (fMRI). The COMBO group demonstrated significantly greater gains between baseline and 12-weeks over all outcome measures (p = .018 based on a MANOVA test) and specifically in the Modified Wolf Motor Function test (time). Both groups demonstrated within-group gains on the Fugl-Meyer Upper Extremity test (impairment) and University of Maryland Arm Questionnaire for Stroke (functional use). fMRI subset analyses showed motor cortex (primary and premotor) activation during hand movement was significantly increased by sequential combination training but not by task-oriented training alone. Sequentially combining a proximal bilateral before a unilateral task-oriented training may be an effective way to facilitate gains in arm and hand function in those with moderate to severe paresis post-stroke compared to unilateral task oriented training alone.

  14. Therapy induces widespread reorganization of motor cortex after complete spinal transection that supports motor recovery.

    PubMed

    Ganzer, Patrick D; Manohar, Anitha; Shumsky, Jed S; Moxon, Karen A

    2016-05-01

    Reorganization of the somatosensory system and its relationship to functional recovery after spinal cord injury (SCI) has been well studied. However, little is known about the impact of SCI on organization of the motor system. Recent studies suggest that step-training paradigms in combination with spinal stimulation, either electrically or through pharmacology, are more effective than step training alone at inducing recovery and that reorganization of descending corticospinal circuits is necessary. However, simpler, passive exercise combined with pharmacotherapy has also shown functional improvement after SCI and reorganization of, at least, the sensory cortex. In this study we assessed the effect of passive exercise and serotonergic (5-HT) pharmacological therapies on behavioral recovery and organization of the motor cortex. We compared the effects of passive hindlimb bike exercise to bike exercise combined with daily injections of 5-HT agonists in a rat model of complete mid-thoracic transection. 5-HT pharmacotherapy combined with bike exercise allowed the animals to achieve unassisted weight support in the open field. This combination of therapies also produced extensive expansion of the axial trunk motor cortex into the deafferented hindlimb motor cortex and, surprisingly, reorganization within the caudal and even the rostral forelimb motor cortex areas. The extent of the axial trunk expansion was correlated to improvement in behavioral recovery of hindlimbs during open field locomotion, including weight support. From a translational perspective, these data suggest a rationale for developing and optimizing cost-effective, non-invasive, pharmacological and passive exercise regimes to promote plasticity that supports restoration of movement after spinal cord injury. Copyright © 2016. Published by Elsevier Inc.

  15. [The use of prokinetics for the correction of motor and tonic digestive disorders].

    PubMed

    Maev, I V; Samsonov, A A; Karmanova, E A; Ivanchenko, E A

    2009-01-01

    Abnormal tonic-motor activity is a key component in pathogenesis of many digestive disorders. Secondary disturbance of tonic-motor activity of digestive organs and the accompanying symptoms are known to develop in conjunction with diseases of other organs and systems, diabetes mellitus, Parkinson's disease, myotonic muscular dystrophy, amyloidosis, hyper- and hypothyroidism, hypoparathyroidism, etc. Disturbed motor activity in the gastro-duodenal region most frequently underlies functional dyspepsia, i.e. a group of symptoms unrelated to organic, systemic and metabolic diseases. Prokinetics are an important class of medicinal products for the treatment of all clinical forms of dyspepsia. One of the new ones is itopride hdrochloride having combined mechanism of action. Clinical studies of this drug revealed its high efficiency in patients with functional dyspepsia, chronic gastritis, and diabetic gastroparesis. It is well tolerated by the patients and produces no serious side effects. Inclusion of this drug in therapy improves the outcome of the treatment of disturbed motor activity of the gastrointestinal tract.

  16. Multistage degradation modeling for BLDC motor based on Wiener process

    NASA Astrophysics Data System (ADS)

    Yuan, Qingyang; Li, Xiaogang; Gao, Yuankai

    2018-05-01

    Brushless DC motors are widely used, and their working temperatures, regarding as degradation processes, are nonlinear and multistage. It is necessary to establish a nonlinear degradation model. In this research, our study was based on accelerated degradation data of motors, which are their working temperatures. A multistage Wiener model was established by using the transition function to modify linear model. The normal weighted average filter (Gauss filter) was used to improve the results of estimation for the model parameters. Then, to maximize likelihood function for parameter estimation, we used numerical optimization method- the simplex method for cycle calculation. Finally, the modeling results show that the degradation mechanism changes during the degradation of the motor with high speed. The effectiveness and rationality of model are verified by comparison of the life distribution with widely used nonlinear Wiener model, as well as a comparison of QQ plots for residual. Finally, predictions for motor life are gained by life distributions in different times calculated by multistage model.

  17. The effects of electromyography-controlled functional electrical stimulation on upper extremity function and cortical perfusion in stroke patients.

    PubMed

    Hara, Yukihiro; Obayashi, Shigeru; Tsujiuchi, Kazuhito; Muraoka, Yoshihiro

    2013-10-01

    The relation was investigated between hemiparetic arm function improvement and brain cortical perfusion (BCP) change during voluntary muscle contraction (VOL), EMG-controlled FES (EMG-FES) and simple electrical muscle stimulation (ES) before and after EMG-FES therapy in chronic stroke patients. Sixteen chronic stroke patients with moderate residual hemiparesis underwent 5 months of task-orientated EMG-FES therapy of the paretic arm once or twice a week. Before and after treatment, arm function was clinically evaluated and BCP during VOL, ES and EMG-FES were assessed using multi-channel near-infrared spectroscopy. BCP in the ipsilesional sensory-motor cortex (SMC) was greater during EMG-FES than during VOL or ES; therefore, EMG-FES caused a shift in the dominant BCP from the contralesional to ipsilesional SMC. After EMG-FES therapy, arm function improved in most patients, with some individual variability, and there was significant improvement in Fugl-Meyer (FM) score and maximal grip strength (GS). Clinical improvement was accompanied by an increase in ipsilesional SMC activation during VOL and EMG-FES condition. The EMG-FES may have more influence on ipsilesional BCP than VOL or ES alone. The sensory motor integration during EMG-FES therapy might facilitate BCP of the ipsilesional SMC and result in functional improvement of hemiparetic upper extremity. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. The Relationship of Motor Coordination, Visual Perception, and Executive Function to the Development of 4–6-Year-Old Chinese Preschoolers' Visual Motor Integration Skills

    PubMed Central

    Fang, Ying; Zhang, Ying

    2017-01-01

    Visual motor integration (VMI) is a vital ability in childhood development, which is associated with the performance of many functional skills. By using the Beery Developmental Test Package and Executive Function Tasks, the present study explored the VMI development and its factors (visual perception, motor coordination, and executive function) among 151 Chinese preschoolers from 4 to 6 years. Results indicated that the VMI skills of children increased quickly at 4 years and peaked at 5 years and decreased at around 5 to 6 years. Motor coordination and cognitive flexibility were related to the VMI development of children from 4 to 6 years. Visual perception was associated with the VMI development at early 4 years and inhibitory control was also associated with it among 4-year-old and the beginning of 5-year-old children. Working memory had no impact on the VMI. In conclusion, the development of VMI skills among children in preschool was not stable but changed dynamically in this study. Meanwhile the factors of the VMI worked in different age range for preschoolers. These findings may give some guidance to researchers or health professionals on improving children's VMI skills in their early childhood. PMID:29457030

  19. Progranulin promotes peripheral nerve regeneration and reinnervation: role of notch signaling.

    PubMed

    Altmann, Christine; Vasic, Verica; Hardt, Stefanie; Heidler, Juliana; Häussler, Annett; Wittig, Ilka; Schmidt, Mirko H H; Tegeder, Irmgard

    2016-10-22

    Peripheral nerve injury is a frequent cause of lasting motor deficits and chronic pain. Although peripheral nerves are capable of regrowth they often fail to re-innervate target tissues. Using newly generated transgenic mice with inducible neuronal progranulin overexpression we show that progranulin accelerates axonal regrowth, restoration of neuromuscular synapses and recovery of sensory and motor functions after injury of the sciatic nerve. Oppositely, progranulin deficient mice have long-lasting deficits in motor function tests after nerve injury due to enhanced losses of motor neurons and stronger microglia activation in the ventral horn of the spinal cord. Deep proteome and gene ontology (GO) enrichment analysis revealed that the proteins upregulated in progranulin overexpressing mice were involved in 'regulation of transcription' and 'response to insulin' (GO terms). Transcription factor prediction pointed to activation of Notch signaling and indeed, co-immunoprecipitation studies revealed that progranulin bound to the extracellular domain of Notch receptors, and this was functionally associated with higher expression of Notch target genes in the dorsal root ganglia of transgenic mice with neuronal progranulin overexpression. Functionally, these transgenic mice recovered normal gait and running, which was not achieved by controls and was stronger impaired in progranulin deficient mice. We infer that progranulin activates Notch signaling pathways, enhancing thereby the regenerative capacity of partially injured neurons, which leads to improved motor function recovery.

  20. Understanding and enhancing motor recovery after stroke using transcranial magnetic stimulation

    PubMed Central

    Hoyer, Erik H.; Celnik, Pablo A.

    2013-01-01

    Stroke is the leading cause of long-term disability. Understanding how people recover from stroke and other brain lesions remain one of the biggest conundrums in neuroscience. As a result, concerted efforts in recent years have focused on investigating the neurophysiological changes that occur in the brain after stroke, and in developing novel strategies to enhance motor recovery. In particular, transcranial magnetic stimulation (TMS) is a non-invasive tool that has been used to investigate the brain plasticity changes resulting from stroke and as a therapeutic modality to safely improve motor function. In this review, we discuss the contributions of TMS to understand how different motor areas, such as the ipsilesional hemisphere, secondary motor areas, and contralesional hemisphere are involved in motor recovery. We also consider recent studies using repetitive TMS (rTMS) in stroke patients to enhance upper extremity function. Although further studies are needed, these investigations provide an important starting point to understand the stimulation parameters and patient characteristics that may influence the optimal response to non-invasive brain stimulation. Future directions of rTMS are discussed in the context of post-stroke motor recovery. PMID:22124033

  1. Effect of Transcranial Direct Current Stimulation on Severely Affected Arm-Hand Motor Function in Patients After an Acute Ischemic Stroke: A Pilot Randomized Control Trial.

    PubMed

    Rabadi, Meheroz H; Aston, Christopher E

    2017-10-01

    The aim of this article was to determine whether cathodal transcranial direct current stimulation (c-tDCS) to unaffected primary motor cortex (PMC) plus conventional occupational therapy (OT) improves functional motor recovery of the affected arm hand in patients after an acute ischemic stroke compared with sham transcranial direct current stimulation plus conventional OT. In this prospective, randomized, double-blinded, sham-controlled trial of 16 severe, acute ischemic stroke patients with severe arm-hand weakness were randomly assigned to either experimental (c-tDCS plus OT; n = 8) or control (sham transcranial direct current stimulation plus OT; n = 8) groups. All patients received a standard 3-hr in-patient rehabilitation therapy, plus an additional ten 30-min sessions of tDCS. During each session, 1 mA of cathodal stimulation to the unaffected PMC is performed followed by the patient's scheduled OT. The primary outcome measure was change in Action Research Arm Test (ARAT) total and subscores on discharge. Application of c-tDCS to unaffected PMC resulted in a clinically relevant 10-point improvement in the affected arm-hand function based on ARAT total score compared with a 2-point improvement in the control group. Application of 30-min of c-tDCS to the unaffected PMC showed a 10-point improvement in the ARAT score. This corresponds to a large effect size in improvement of affected arm-hand function in patients with severe, acute ischemic stroke. Although not statistically significant, this suggests that larger studies, enrolling at least 25 patients in each group, and with a longer follow-up are warranted.

  2. Long-term effect of botulinum toxin (A) in the management of calf spasticity in children with diplegic cerebral palsy.

    PubMed

    Hawamdeh, Z M; Ibrahim, A I; Al-Qudah, A A

    2007-09-01

    The aim of this study was to determine possible long-term effects of multi-injections of botulinum toxin A (BT-A) on muscle tone and functional abilities in children with cerebral palsy. A randomized, single blind study was carried out. Sixty patients with spastic diplegia were enrolled; 40 received 3 successive doses of BT-A to the calf muscle bilaterally at intervals of 3 to 4 months; 20 received no injections and were considered the control group. Evaluation included measurement of muscle tone, passive ankle dorsiflexion range of motion, and gross motor function. The children in the study group were assessed at entry into the study, at 3 months, and at 18 months after the last injection. An identical assessment protocol was applied to the control group, with measurements taken at entry into the study, at 12 to 15 months, and then at 27 to 30 months, roughly corresponding to the time periods set for the study group. Muscle tone and passive ankle dorsiflexion range showed clinically and statistically significant improvement following BT-A injection at 3 months (P=0.000, P=0.04, respectively) and at 18 months (P=0.005, P=0.007, respectively) compared to the control group, but gross motor function showed significant improvement only at 18 months (P=0.02). Comparison between the first and second evaluations after the last injection in the study group showed a significant improvement in gross motor function and ankle dorsiflexion range (P=0.000 for both parameters); however, muscle tone was significantly increased (P=0.002). This study gives support to a possible prolonged effect of intramuscular BT-A as an adjunct to conventional physiotherapy to reduce spasticity and improve functional mobility in children with spastic diplegic cerebral palsy.

  3. Functional consequences of hemispherectomy.

    PubMed

    van Empelen, R; Jennekens-Schinkel, A; Buskens, E; Helders, P J M; van Nieuwenhuizen, O

    2004-09-01

    Using the International Classification of Functioning Disability and Health (ICF) (WHO, 2001), impairments, activities and social participation are reported in 12 children (mean age at surgery 5.9 years) who were investigated before and three times over a 2-year period after hemispherectomy. Impairments were assessed (i) in terms of seizure frequency (Engel classification) and seizure severity (HASS) and (ii) with respect to muscle strength (MRC), range of motion (JAM score) and muscle tone (modified Ashworth scale). Activities were assessed in terms of gross motor functioning (GMFM) and self-care, mobility and social function (PEDI). Participation was assessed in terms of epilepsy-related restrictions and quantified by means of the Hague Restrictions in Childhood Epilepsy Scale (HARCES). Nine out of 12 children could be classified as free of seizures (Engel class I), and in the remaining three seizure frequency was Engel class III. HASS scores showed maximum improvement in 10 out of 12 children and near-maximum improvement in the two remaining children. Muscle strength and muscle tone on the side of the body contralateral to the hemispherectomy, which were already decreased preoperatively, decreased even further in the first 6 months after surgery, but returned to the presurgical baseline thereafter, except for the distal part of the arm. Range of motion was abnormal prior to operation and remained so after operation. Mean GMFM increase was 20% after 2 years (95% confidence interval 10-33); all five dimensions improved statistically significantly (P < 0.05). Mean PEDI increase was more than 20 scale points (95% confidence interval 10-35); again, all domains improved significantly (P < 0.05). In nearly all children, HARCES scores had normalized 2 years after surgery. In conclusion, decrease of seizure frequency and severity widens the scope of motor and social functioning, which overrides the effects of remaining motor impairments.

  4. Acupuncture for cerebral palsy: A meta-analysis of randomized controlled trials.

    PubMed

    Li, Ling-Xin; Zhang, Ming-Ming; Zhang, Yin; He, Jing

    2018-06-01

    To evaluate the efficacy and safety of acupuncture therapy for children with cerebral palsy. We conducted electronic searches of PUBMED (1950/2017), EMBASE (1974/2017), ScienceDirect (1986/2017), Academic Source Premier (1887/2017), the Cochrane Library (Issue 4, April 2017), Science Citation Index Expanded (1900/2017), China National Knowledge Infrastructure (1915/2017), China Biological Medicine (1990/2017-04), WanFang (1980/2017), VIP (1989/2017), and Chinese Science Citation Database (1989/2017). We included randomized controlled trials that aimed to compare the effect of acupuncture plus rehabilitation training versus rehabilitation training alone. Data about functional motor abilities, daily activity/social participation, effective rate, intellectual development, and adverse effects were included. We used Revman 5.2 software for statistical analysis. The primary outcomes included functional motor abilities, daily activity, and effective rate. The secondary outcomes included intellectual development and adverse effects. Twenty-one studies with a total of 1718 participants met the inclusion criteria. The effect size of gross motor function (SMD = 0.64, 95% CI: 0.52 to 0.76, P < 0.00001; I 2 = 0%, P = 0.69; in 13 studies with 1144 patients) and the total effective rate (RR = 1.28, 95% CI: 1.20 to 1.37, P < 0.00001; I 2 = 18%, P = 0.27; in 12 studies with 1106 patients) suggested that acupuncture plus rehabilitation produced a significant improvement in gross motor function and a high total effective rate. The pooled fine motor function (SMD = 3.48, 95% CI: 2.62 to 4.34, P < 0.00001; I 2 = 64%, P = 0.10; in 2 studies with 193 patients), modified Ashworth scale scores (SMD = -0.31, 95% CI: -0.52 to -0.11, P = 0.003; I 2 = 74%, P = 0.004; in 5 studies with 363 patients) and activities of daily living (SMD = 1.45, 95% CI: 1.20 to 1.71, P < 0.00001; I 2 = 78%, P = 0.004; in 4 studies with 313 patients) also indicated improvements in children with cerebral palsy. Publication bias was not observed. Only mild adverse events related to acupuncture were reported. Acupuncture plus rehabilitation training improved gross motor function, reduced muscle spasms, and enhanced daily life activities in children with cerebral palsy. However, this conclusion should be interpreted with caution due to the small number of randomized controlled trials available and the small sample sizes. More high-quality and large-scale studies are needed.

  5. Unilateral versus bilateral robot-assisted rehabilitation on arm-trunk control and functions post stroke: a randomized controlled trial.

    PubMed

    Wu, Ching-Yi; Yang, Chieh-Ling; Chen, Ming-de; Lin, Keh-Chung; Wu, Li-Ling

    2013-04-12

    Although the effects of robot-assisted arm training after stroke are promising, the relative effects of unilateral (URT) vs. bilateral (BRT) robot-assisted arm training remain uncertain. This study compared the effects of URT vs. BRT on upper extremity (UE) control, trunk compensation, and function in patients with chronic stroke. This was a single-blinded, randomized controlled trial. The intervention was implemented at 4 hospitals. Fifty-three patients with stroke were randomly assigned to URT, BRT, or control treatment (CT). Each group received UE training for 90 to 105 min/day, 5 days/week, for 4 weeks. The kinematic variables for arm motor control and trunk compensation included normalized movement time, normalized movement units, and the arm-trunk contribution slope in unilateral and bilateral tasks. Motor function and daily function were measured by the Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), and ABILHAND Questionnaire. The BRT and CT groups elicited significantly larger slope values (i.e., less trunk compensation) at the start of bilateral reaching than the URT group. URT led to significantly better effects on WMFT-Time than BRT. Differences in arm control kinematics and performance on the MAL and ABILHAND among the 3 groups were not significant. BRT and URT resulted in differential improvements in specific UE/trunk performance in patients with stroke. BRT elicited larger benefits than URT on reducing compensatory trunk movements at the beginning of reaching. In contrast, URT produced better improvements in UE temporal efficiency. These relative effects on movement kinematics, however, did not translate into differential benefits in daily functions. ClinicalTrials.gov: NCT00917605.

  6. Neuromuscular training based on whole body vibration in children with spina bifida: a retrospective analysis of a new physiotherapy treatment program.

    PubMed

    Stark, C; Hoyer-Kuhn, H-K; Semler, O; Hoebing, L; Duran, I; Cremer, R; Schoenau, E

    2015-02-01

    Spina bifida is the most common congenital cause of spinal cord lesions resulting in paralysis and secondary conditions like osteoporosis due to immobilization. Physiotherapy is performed for optimizing muscle function and prevention of secondary conditions. Therefore, training of the musculoskeletal system is one of the major aims in the rehabilitation of children with spinal cord lesions. The neuromuscular physiotherapy treatment program Auf die Beine combines 6 months of home-based whole body vibration (WBV) with interval blocks at the rehabilitation center: 13 days of intensive therapy at the beginning and 6 days after 3 months. Measurements are taken at the beginning (M0), after 6 months of training (M6), and after a 6-month follow-up period (M12). Gait parameters are assessed by ground reaction force and motor function by the Gross Motor Function Measurement (GMFM-66). Sixty children (mean age 8.71 ± 4.7 years) who participated in the program until February 2014 were retrospectively analyzed. Walking velocity improved significantly by 0.11 m/s (p = 0.0026) and mobility (GMFM-66) by 2.54 points (p = 0.001) after the training. All changes at follow-up were not significant, but significant changes were observed after the training period. Decreased contractures were observed with increased muscle function. Significant improvements in motor function were observed after the active training period of the new neuromuscular training concept. This first analysis of the new neuromuscular rehabilitation concept Auf die Beine showed encouraging results for a safe and efficient physiotherapy treatment program which increases motor function in children with spina bifida.

  7. Amblyopia and Binocular Vision

    PubMed Central

    Birch, Eileen E.

    2012-01-01

    Amblyopia is the most common cause of monocular visual loss in children, affecting 1.3% to 3.6% of children. Current treatments are effective in reducing the visual acuity deficit but many amblyopic individuals are left with residual visual acuity deficits, ocular motor abnormalities, deficient fine motor skills, and risk for recurrent amblyopia. Using a combination of psychophysical, electrophysiological, imaging, risk factor analysis, and fine motor skill assessment, the primary role of binocular dysfunction in the genesis of amblyopia and the constellation of visual and motor deficits that accompany the visual acuity deficit has been identified. These findings motivated us to evaluate a new, binocular approach to amblyopia treatment with the goals of reducing or eliminating residual and recurrent amblyopia and of improving the deficient ocular motor function and fine motor skills that accompany amblyopia. PMID:23201436

  8. EEG-based Brain-Computer Interface to support post-stroke motor rehabilitation of the upper limb.

    PubMed

    Cincotti, F; Pichiorri, F; Aricò, P; Aloise, F; Leotta, F; de Vico Fallani, F; Millán, J del R; Molinari, M; Mattia, D

    2012-01-01

    Brain-Computer Interfaces (BCIs) process brain activity in real time, and mediate non-muscular interaction between and individual and the environment. The subserving algorithms can be used to provide a quantitative measurement of physiological or pathological cognitive processes - such as Motor Imagery (MI) - and feed it back the user. In this paper we propose the clinical application of a BCI-based rehabilitation device, to promote motor recovery after stroke. The BCI-based device and the therapy exploiting its use follow the same principles that drive classical neuromotor rehabilitation, and (i) provides the physical therapist with a monitoring instrument, to assess the patient's participation in the rehabilitative cognitive exercise; (ii) assists the patient in the practice of MI. The device was installed in the ward of a rehabilitation hospital and a group of 29 patients were involved in its testing. Among them, eight have already undergone a one-month training with the device, as an add-on to the regular therapy. An improved system, which includes analysis of Electromyographic (EMG) patterns and Functional Electrical Stimulation (FES) of the arm muscles, is also under clinical evaluation. We found that the rehabilitation exercise based on BCI-mediated neurofeedback mechanisms enables a better engagement of motor areas with respect to motor imagery alone and thus it can promote neuroplasticity in brain regions affected by a cerebrovascular accident. Preliminary results also suggest that the functional outcome of motor rehabilitation may be improved by the use of the proposed device.

  9. Robotics and gaming to improve ankle strength, motor control, and function in children with cerebral palsy--a case study series.

    PubMed

    Burdea, Grigore C; Cioi, Daniel; Kale, Angad; Janes, William E; Ross, Sandy A; Engsberg, Jack R

    2013-03-01

    The objective of this study was to investigate the feasibility of game-based robotic training of the ankle in children with cerebral palsy (CP). The design was a case study, 12 weeks intervention, with no follow-up. The setting was a university research laboratory. The participants were a referred sample of three children with cerebral palsy, age 7-12, all male. All completed the intervention. Participants trained on the Rutgers Ankle CP system for 36 rehabilitation sessions (12 weeks, three times/week), playing two custom virtual reality games. The games were played while participants were seated, and trained one ankle at-a-time for strength, motor control, and coordination. The primary study outcome measures were for impairment (DF/PF torques, DF initial contact angle and gait speed), function (GMFM), and quality of life (Peds QL). Secondary outcome measures relate to game performance (game scores as reflective of ankle motor control and endurance). Gait function improved substantially in ankle kinematics, speed and endurance. Overall function (GMFM) indicated improvements that were typical of other ankle strength training programs. Quality of life increased beyond what would be considered a minimal clinical important difference. Game performance improved in both games during the intervention. This feasibility study supports the assumption that game-based robotic training of the ankle benefits gait in children with CP. Game technology is appropriate for the age group and was well accepted by the participants. Additional studies are needed however, to quantify the level of benefit and compare the approach presented here to traditional methods of therapy.

  10. Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury

    PubMed Central

    McPherson, Jacob G.; Miller, Robert R.; Perlmutter, Steve I.

    2015-01-01

    Use-dependent movement therapies can lead to partial recovery of motor function after neurological injury. We attempted to improve recovery by developing a neuroprosthetic intervention that enhances movement therapy by directing spike timing-dependent plasticity in spared motor pathways. Using a recurrent neural–computer interface in rats with a cervical contusion of the spinal cord, we synchronized intraspinal microstimulation below the injury with the arrival of functionally related volitional motor commands signaled by muscle activity in the impaired forelimb. Stimulation was delivered during physical retraining of a forelimb behavior and throughout the day for 3 mo. Rats receiving this targeted, activity-dependent spinal stimulation (TADSS) exhibited markedly enhanced recovery compared with animals receiving targeted but open-loop spinal stimulation and rats receiving physical retraining alone. On a forelimb reach and grasp task, TADSS animals recovered 63% of their preinjury ability, more than two times the performance level achieved by the other therapy groups. Therapeutic gains were maintained for 3 additional wk without stimulation. The results suggest that activity-dependent spinal stimulation can induce neural plasticity that improves behavioral recovery after spinal cord injury. PMID:26371306

  11. Impact of newer pharmacological treatments on quality of life in patients with Parkinson's disease.

    PubMed

    Gallagher, David A; Schrag, Anette

    2008-01-01

    Parkinson's disease is a common progressive neurodegenerative condition with multiple motor and nonmotor features contributing to impairment of health-related quality of life (HR-QOL). Pharmacological treatments have been directed primarily at dopamine replacement with levodopa and agents to improve its bioavailability, including DOPA decarboxylase inhibitors, catechol-O-methyltransferase (COMT) inhibitors and monoamine oxidase B (MAO-B) inhibitors, as well as synthetic dopamine agonists. These treatments to restore motor function are often very successful in early Parkinson's disease, with objective improvement and concomitant improvement in subjective HR-QOL scores. However, as the disease progresses, motor complications and nonmotor symptoms predominate and are often refractory to therapeutic interventions. Antiparkinsonian medications have been shown to improve motor severity and motor complications of advancing disease, and there is increasing evidence that this can be translated into subjective improvement of HR-QOL from a patient's point of view. However, the degree of improvement is less marked on HR-QOL scores than on motor scores, and some studies do not show improvement of HR-QOL in parallel to motor improvements. A number of explanations are possible, including limitations of the scales used, trial designs and lack of clinical improvement from the patients' point of view. This review concentrates on clinical trials with an index of HR-QOL as an outcome measure, with particular emphasis on well designed, randomized, double-blind, placebo-controlled or active comparator-controlled methodology. Drugs that have been more recently added to the armamentarium of Parkinson's disease, including the oral (pramipexole, ropinirole and piribedil) and transdermal (rotigotine) non-ergotamine-derived dopamine agonists, the novel MAO-B inhibitor rasagiline and the COMT inhibitors tolcapone and entacapone, were included. The effect of each of these agents on overall HR-QOL and depression, a factor that has been shown to significantly contribute to HR-QOL in several multivariate analyses, is discussed.Overall, the literature search revealed 14 double-blind, placebo- or active comparator-controlled trials with an index of HR-QOL as an outcome measure. Entacapone resulted in HR-QOL improvement in nonfluctuating patients (one study) but not clearly in those with motor fluctuations (two studies). Tolcapone was only tested in patients with motor fluctuations and resulted in significant improvement in two of four studies using HR-QOL as an outcome measure. Rasagiline improved HR-QOL as monotherapy in early Parkinson's disease (one study), but not clearly in more advanced disease (one study). Rotigotine improved HR-QOL in both early Parkinson's disease (one study) and more advanced disease with motor fluctuations (one study). The impact of ropinirole and pramipexole on HR-QOL as monotherapy in early Parkinson's disease versus placebo has not been assessed, but both agents have resulted in improved HR-QOL in patients with motor fluctuations (ropinirole one study, pramipexole one study). The evidence for antidepressant efficacy of antiparkinsonian medications is limited.

  12. The Role of Endogenous Neurogenesis in Functional Recovery and Motor Map Reorganization Induced by Rehabilitative Therapy after Stroke in Rats.

    PubMed

    Shiromoto, Takashi; Okabe, Naohiko; Lu, Feng; Maruyama-Nakamura, Emi; Himi, Naoyuki; Narita, Kazuhiko; Yagita, Yoshiki; Kimura, Kazumi; Miyamoto, Osamu

    2017-02-01

    Endogenous neurogenesis is associated with functional recovery after stroke, but the roles it plays in such recovery processes are unknown. This study aims to clarify the roles of endogenous neurogenesis in functional recovery and motor map reorganization induced by rehabilitative therapy after stroke by using a rat model of cerebral ischemia (CI). Ischemia was induced via photothrombosis in the caudal forelimb area of the rat cortex. First, we examined the effect of rehabilitative therapy on functional recovery and motor map reorganization, using the skilled forelimb reaching test and intracortical microstimulation. Next, using the same approaches, we examined how motor map reorganization changed when endogenous neurogenesis after stroke was inhibited by cytosine-β-d-arabinofuranoside (Ara-C). Rehabilitative therapy for 4 weeks after the induction of stroke significantly improved functional recovery and expanded the rostral forelimb area (RFA). Intraventricular Ara-C administration for 4-10 days after stroke significantly suppressed endogenous neurogenesis compared to vehicle, but did not appear to influence non-neural cells (e.g., microglia, astrocytes, and vascular endothelial cells). Suppressing endogenous neurogenesis via Ara-C administration significantly inhibited (~50% less than vehicle) functional recovery and RFA expansion (~33% of vehicle) induced by rehabilitative therapy after CI. After CI, inhibition of endogenous neurogenesis suppressed both the functional and anatomical markers of rehabilitative therapy. These results suggest that endogenous neurogenesis contributes to functional recovery after CI related to rehabilitative therapy, possibly through its promotion of motor map reorganization, although other additional roles cannot be ruled out. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  13. Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1α) improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis

    PubMed Central

    2011-01-01

    Background Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that affects spinal cord and cortical motor neurons. An increasing amount of evidence suggests that mitochondrial dysfunction contributes to motor neuron death in ALS. Peroxisome proliferator-activated receptor gamma co-activator-1α (PGC-1α) is a principal regulator of mitochondrial biogenesis and oxidative metabolism. Results In this study, we examined whether PGC-1α plays a protective role in ALS by using a double transgenic mouse model where PGC-1α is over-expressed in an SOD1 transgenic mouse (TgSOD1-G93A/PGC-1α). Our results indicate that PGC-1α significantly improves motor function and survival of SOD1-G93A mice. The behavioral improvements were accompanied by reduced blood glucose level and by protection of motor neuron loss, restoration of mitochondrial electron transport chain activities and inhibition of stress signaling in the spinal cord. Conclusion Our results demonstrate that PGC-1α plays a beneficial role in a mouse model of ALS, suggesting that PGC-1α may be a potential therapeutic target for ALS therapy. PMID:21771318

  14. Electrical stimulation or MK-801 in the inferior colliculus improve motor deficits in MPTP-treated mice.

    PubMed

    Melo-Thomas, L; Gil-Martínez, A L; Cuenca, L; Estrada, C; Gonzalez-Cuello, A; Schwarting, R K; Herrero, M T

    2018-03-01

    The inferior colliculus (IC) is an important midbrain relay station for the integration of descending and ascending auditory information. Additionally, the IC has been implicated in processing sensorimotor responses. Glutamatergic and GABAergic manipulations in the IC can improve motor deficits as demonstrated by the animal model of haloperidol-induced catalepsy. However, how the IC influences motor function remains unclear. We investigated the effects of either intracollicular deep brain stimulation (DBS) or microinjection of the glutamatergic antagonist MK-801 or the agonist NMDA in C57BL/6J mice chronically treated with saline or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). After DBS or microinjections, the mice were submitted to rotarod and open field tests, respectively. DBS in the IC was effective to increase the time spent on the rotarod in MPTP-treated mice. After unilateral microinjection of MK-801, but not NMDA, MPTP-treated mice increased the distance travelled in the open field (p < 0.05). In conclusion, intracollicular DBS or MK-801 microinjection can improve motor performance in parkinsonian mice suggesting the IC as a new and non-conventional therapeutic target in motor impairment. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Cognitive Functioning in Children with Pantothenate-Kinase-Associated Neurodegeneration Undergoing Deep Brain Stimulation

    ERIC Educational Resources Information Center

    Mahoney, Rachel; Selway, Richard; Lin, Jean-Pierre

    2011-01-01

    Aim: To examine the cognitive functioning of young people with pantothenate-kinase-associated neurodegeneration (PKAN) after pallidal deep brain stimulation (DBS). PKAN is characterized by progressive generalized dystonia and has historically been associated with cognitive decline. With growing evidence that DBS can improve motor function in…

  16. Which Factors Influence Functional Patients Improvements During Rehabilitation?

    PubMed Central

    Gabriele, Messina; Lorena, Rasimelli; Chiara, Bonavita; Emma, Ceriale; Cecilia, Quercioli; Nicola, Nante

    2014-01-01

    Background: Rehabilitation in patients with disabilities is an important aspect of tertiary prevention. Severity of disability, evaluated by global measures of autonomy, is essential for functional outcome evaluation. Aim: To determine the effectiveness of a rehabilitation programme in terms of percentage functional improvement (PFI); to verify the role of gender, age and length of stay (LOS), by motor and cognitive domains, on PFI. Design: Longitudinal study. Setting: An intensive rehabilitation hospital. Population: 305 inpatients. Methods: The disability has been investigated using the Functional Independence Measure (FIM). Percentage differences between discharge and admission were calculated for FIM score. Wilcoxon matched pair test for the six areas and the two domains of the FIM score were calculated. The effect of LOS, gender and age on PFI were studied with Robust regression. Results: Neurological and Orthopaedic patients had improvements on Motor and Cognitive domains. The greatest gains were in the Self Care, Sphintere Control, Transfer and Locomotion Areas (p=<0.001). LOS was associated (p<0.001) with PFI while age resulted borderline significant (p=0.049) in the cognitive domain in Neurological patients. Conclusion: The rehabilitation improved the overall conditions of neurological and orthopaedic patients. LOS emerged as the most important determinant in PFI. PMID:24762348

  17. Functional connectivity in the resting-state motor networks influences the kinematic processes during motor sequence learning

    PubMed Central

    Bonzano, Laura; Palmaro, Eleonora; Teodorescu, Roxana; Fleysher, Lazar; Inglese, Matilde; Bove, Marco

    2014-01-01

    Neuroimaging studies support the involvement of the cerebello-cortical and striato-cortical motor loops in motor sequence learning. Here, we investigated whether the gain of motor sequence learning could depend on a priori resting-state functional connectivity (rsFC) between motor areas and structures belonging to these circuits. Fourteen healthy subjects underwent a resting-state fMRI session. Afterward, they were asked to reproduce a verbally-learned sequence of finger opposition movements as fast and accurate as possible. All subjects increased their movement rate with practice, by reducing touch duration and/or inter tapping interval. The rsFC analysis showed that at rest left and right M1 and left and right supplementary motor cortex (SMA) were mainly connected with other motor areas. The covariate analysis taking into account the different kinematic parameters indicated that the subjects achieving greater movement rate increase were those showing stronger rsFC of the left M1 and SMA with the right lobule VIII of the cerebellum. Notably, the subjects with greater inter tapping interval reduction showed stronger rsFC of the left M1 and SMA with the association nuclei of the thalamus. Conversely, the regression analysis with the right M1 and SMA seeds showed only few significant clusters for the different covariates not located in the cerebellum and thalamus. No common clusters were found between right M1 and SMA. All these findings indicate important functional connections at rest of those neural circuits responsible of motor learning improvement, involving the motor areas related to the hemisphere directly controlling the finger movements, the thalamus and the cerebellum. PMID:25328043

  18. Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: stroke rehabilitation.

    PubMed

    Ockenfeld, Corinna; Tong, Raymond K Y; Susanto, Evan A; Ho, Sze-Kit; Hu, Xiao-ling

    2013-06-01

    Background and Purpose. Stroke survivors often show a limited recovery in the hand function to perform delicate motions, such as full hand grasping, finger pinching and individual finger movement. The purpose of this study is to describe the implementation of an exoskeleton robotic hand together with fine finger motor skill training on 2 chronic stroke patients. Case Descriptions. Two post-stroke patients participated in a 20-session training program by integrating 10 minutes physical therapy, 20 minutes robotic hand training and 15 minutes functional training tasks with delicate objects(card, pen and coin). These two patients (A and B) had cerebrovascular accident at 6 months and 11 months respectively when enrolled in this study. Outcomes. The results showed that both patients had improvements in Fugl-Meyer assessment (FM), Action Research Arm Test (ARAT). Patients had better isolation of the individual finger flexion and extension based on the reduced muscle co-contraction from the electromyographic(EMG) signals and finger extension force after 20 sessions of training. Discussion. This preliminary study showed that by focusing on the fine finger motor skills together with the exoskeleton robotic hand, it could improve the motor recovery of the upper extremity in the fingers and hand function, which were showed in the ARAT. Future randomized controlled trials are needed to evaluate the clinical effectiveness.

  19. Cyclic Parameter Refinement of 4S-10 Hybrid Flux-Switching Motor for Lightweight Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Rani, J. Abd; Sulaiman, E.; Kumar, R.

    2017-08-01

    A great deal of attention has been given to the reduction of lighting the vehicle because the lighter the vehicle the energy consumption is comparatively low. Hence, the lightweight electric vehicle was introduced for lower carbon footprint and the sizing of the vehicle itself. One of the components to reduce the weight of the vehicle is the propulsion system which comprised of electric motor functioning as the source of torque to drive the propulsion system of the machine. This paper presents the refinement methodology for the optimized design of the 4S-10P E-Core hybrid excitation flux switching motor. The purpose of the refinement methodology is to improve the torque production of the optimized motor. The result of the successful improvement of the torque production is justifiable for a lightweight electric vehicle to drive the propulsion system.

  20. A systematic review of common physiotherapy interventions in school-aged children with cerebral palsy.

    PubMed

    Martin, Liz; Baker, Richard; Harvey, Adrienne

    2010-11-01

    This systematic review focused on the common conventional physiotherapy interventions used with children with cerebral palsy (CP), aged 4 to 18 years, and critically appraised the recent evidence of each of these interventions using the Oxford Centre for Evidence-Based Medicine Levels of Evidence. The search strategy yielded 34 articles after inclusion and exclusion criteria were applied. The investigated physiotherapy interventions included strength and functional training, weight-supported treadmill training (WBSTT), and neurodevelopmental treatment (NDT). A category of treatment dosage was also included. Strength training was the most studied intervention with significant improvements found in the strength of selected muscle groups using dynamometry, with fewer studies showing significant improvement in function. Functional training showed improvements in gross motor function, endurance, and temperospatial measures, such as gait speed and stride length. Nonsignificant trends of improvement on the Gross Motor Function Measure (GMFM) and gait velocity were found for WBSTT by a few studies with low levels of evidence (case series). Of three studies that evaluated NDT, one high-level evidence study, i.e., randomized controlled trial (RCT) found significant improvements on the GMFM. All studies reviewing treatment dosage had high levels of evidence (RCTs), yet found no significant differences for different intensities of treatment. These results indicate that the levels of evidence for physiotherapy interventions, particularly strengthening and to a lesser extent functional training, in school-aged children with CP has improved; however, further high-level evidence is needed for other interventions.

Top