Mentis, George Z.; Blivis, Dvir; Liu, Wenfang; Drobac, Estelle; Crowder, Melissa E.; Kong, Lingling; Alvarez, Francisco J.; Sumner, Charlotte J.; O'Donovan, Michael J.
2011-01-01
SUMMARY To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes illustrating the reversibility of these synaptic defects. De-afferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention. PMID:21315257
Thornton, Siobhan; Bray, Signe; Langevin, Lisa Marie; Dewey, Deborah
2018-06-01
Motor impairment is associated with developmental coordination disorder (DCD), and to a lesser extent with attention-deficit/hyperactivity disorder (ADHD). Previous functional imaging studies investigated children with DCD or ADHD only; however, these two disorders co-occur in up to 50% of cases, suggesting that similar neural correlates are associated with these disorders. This study compared functional brain activation in children and adolescents (age range 8-17, M = 11.73, SD = 2.88) with DCD (n = 9), ADHD (n = 20), co-occurring DCD and ADHD (n = 18) and typically developing (TD) controls (n = 20). When compared to TD controls, children with co-occurring DCD/ADHD showed decreased activation during response inhibition in primary motor and sensory cortices. These findings suggest that children with co-occurring DCD and ADHD display significant functional changes in brain activation that could interfere with inhibition of erroneous motor responses. In contrast to previous studies, significant alterations in brain activation relative to TD controls, were not found in children with isolated DCD or ADHD. These findings highlight the importance of considering co-occurring disorders when investigating brain function in children with neurodevelopmental disorders. Copyright © 2018 Elsevier B.V. All rights reserved.
Aasvang, Eske Kvanner; Jørgensen, Christoffer Calov; Laursen, Mogens Berg; Madsen, Jacob; Solgaard, Søren; Krøigaard, Mogens; Kjærsgaard-Andersen, Per; Mandøe, Hans; Hansen, Torben Bæk; Nielsen, Jørgen Ulrich; Krarup, Niels; Skøtt, Annette Elisabeth; Kehlet, Henrik
2017-06-01
Postanesthesia care unit (PACU) discharge without observation of lower limb motor function after spinal anesthesia has been suggested to significantly reduce PACU stay and enhance resource optimization and early rehabilitation but without enough data to allow clinical recommendations. A multicenter, semiblinded, noninferiority randomized controlled trial of discharge from the PACU with or without assessment of lower limb motor function after elective total hip or knee arthroplasty under spinal anesthesia was undertaken. The primary outcome was frequency of a successful fast-track course (length of stay 4 days or less and no 30-day readmission). Noninferiority would be declared if the odds ratio (OR) for a successful fast-track course was no worse for those patients receiving no motor function assessment versus those patients receiving motor function assessment by OR = 0.68. A total of 1,359 patients (98.8% follow-up) were available for analysis (93% American Society of Anesthesiologists class 1 to 2). The primary outcome occurred in 92.2% and 92.0%, corresponding to no motor function assessment being noninferior to motor function assessment with OR 0.97 (95% CI, 0.70 to 1.35). Adverse events in the ward during the first 24 h occurred in 5.8% versus 7.4% with or without motor function assessment, respectively (OR, 0.77; 95% CI, 0.5 to 1.19, P = 0.24). PACU discharge without assessment of lower limb motor function after spinal anesthesia for total hip or knee arthroplasty was noninferior to motor function assessment in achieving length of stay 4 days or less or 30-day readmissions. Because a nonsignificant tendency toward increased adverse events during the first 24 h in the ward was discovered, further safety data are needed in patients without assessment of lower limb motor function before PACU discharge.
ERIC Educational Resources Information Center
Stockel, Tino; Wang, Jinsung
2011-01-01
Interlimb transfer of motor learning, indicating an improvement in performance with one limb following training with the other, often occurs asymmetrically (i.e., from non-dominant to dominant limb or vice versa, but not both). In the present study, we examined whether interlimb transfer of the same motor task could occur asymmetrically and in…
Comani, Silvia; Schinaia, Lorenzo; Tamburro, Gabriella; Velluto, Lucia; Sorbi, Sandro; Conforto, Silvia; Guarnieri, Biancamaria
2015-01-01
One post-stroke patient underwent neuro-motor rehabilitation of one upper limb with a novel system combining a passive robotic device, Virtual Reality training applications and high resolution electroencephalography (HR-EEG). The outcome of the clinical tests and the evaluation of the kinematic parameters recorded with the robotic device concurred to highlight an improved motor recovery of the impaired limb despite the age of the patient, his compromised motor function, and the start of rehabilitation at the 3rd week post stroke. The time frequency and functional source analysis of the HR-EEG signals permitted to quantify the functional changes occurring in the brain in association with the rehabilitation motor tasks, and to highlight the recovery of the neuro-motor function.
Santin, Joseph M; Hartzler, Lynn K
2017-04-01
Semiaquatic frogs may not breathe air for several months because they overwinter in ice-covered ponds. In contrast to many vertebrates that experience decreased motor performance after inactivity, bullfrogs, Lithobates catesbeianus , retain functional respiratory motor processes following cold-submergence. Unlike mammalian hibernators with unloaded limb muscles and inactive locomotor systems, respiratory mechanics of frogs counterintuitively allow for ventilatory maneuvers when submerged. Thus, we hypothesized that bullfrogs generate respiratory motor patterns during cold-submergence to avoid disuse and preserve motor performance. Accordingly, we measured activity of respiratory muscles (buccal floor compressor and glottal dilator) via electromyography in freely behaving bullfrogs at 20 and 2°C. Although we confirm that ventilation cycles occur underwater at 20°C, bullfrogs did not activate either respiratory muscle when submerged acutely or chronically at 2°C. We conclude that cold-submerged bullfrogs endure respiratory motor inactivity, implying that other mechanisms, excluding underwater muscle activation, maintain a functional respiratory motor system throughout overwintering. © 2017. Published by The Company of Biologists Ltd.
Plasticity of the postural function to sport and/or motor experience.
Paillard, Thierry
2017-01-01
This review addresses the possible structural and functional adaptations of the postural function to motor experience. Evidence suggests that postural performance and strategy evolve after training in inactive subjects. In trained subjects, postural adaptations could also occur, since elite athletes exhibit better postural performance than, and different postural strategy to sub-elite athletes. The postural adaptations induced are specific to the context in which the physical activity is practiced. They appear to be so specific that there would be no or only a very slight effect of transfer to non-experienced motor tasks (apart from in subjects presenting low initial levels of postural performance, such as aged subjects). Yet adaptations could occur as part of the interlimb relationship, particularly when the two legs do not display the same motor experience. Mechanistic explanations as well as conceptual models are proposed to explain how postural adaptations operate according to the nature of physical activities and the context in which they are practiced as well as the level of motor expertise of individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Sukhodolsky, Denis G.; Landeros-Weisenberger, Angeli; Scahill, Lawrence; Leckman, James F.; Schultz, Robert T.
2010-01-01
Objective: Neuropsychological functioning in children with Tourette syndrome (TS) has been characterized by subtle deficits in response inhibition, visual-motor integration, and fine-motor coordination. The association of these deficits with the tics of the TS versus co-occurring attention-deficit/hyperactivity disorder (ADHD) has not been well…
Motor functions and adaptive behaviour in children with childhood apraxia of speech.
Tükel, Şermin; Björelius, Helena; Henningsson, Gunilla; McAllister, Anita; Eliasson, Ann Christin
2015-01-01
Undiagnosed motor and behavioural problems have been reported for children with childhood apraxia of speech (CAS). This study aims to understand the extent of these problems by determining the profile of and relationships between speech/non-speech oral, manual and overall body motor functions and adaptive behaviours in CAS. Eighteen children (five girls and 13 boys) with CAS, 4 years 4 months to 10 years 6 months old, participated in this study. The assessments used were the Verbal Motor Production Assessment for Children (VMPAC), Bruininks-Oseretsky Test of Motor Proficiency (BOT-2) and Adaptive Behaviour Assessment System (ABAS-II). Median result of speech/non-speech oral motor function was between -1 and -2 SD of the mean VMPAC norms. For BOT-2 and ABAS-II, the median result was between the mean and -1 SD of test norms. However, on an individual level, many children had co-occurring difficulties (below -1 SD of the mean) in overall and manual motor functions and in adaptive behaviour, despite few correlations between sub-tests. In addition to the impaired speech motor output, children displayed heterogeneous motor problems suggesting the presence of a global motor deficit. The complex relationship between motor functions and behaviour may partly explain the undiagnosed developmental difficulties in CAS.
Shin, Sung Yul; Kim, Jung Yoon; Lee, Sanghyeop; Lee, Junwon; Kim, Seung-Jong; Kim, ChangHwan
2013-06-01
The purpose of this paper is to propose a new assessment method for evaluating motor function of the patients who are suffering from physical weakness after stroke, incomplete spinal cord injury (iSCI) or other diseases. In this work, we use a robotic device to obtain the information of interaction occur between patient and robot, and use it as a measure for assessing the patients. The Intentional Movement Performance Ability (IMPA) is defined by the root mean square of the interactive torque, while the subject performs given periodic movement with the robot. IMPA is proposed to quantitatively determine the level of subject's impaired motor function. The method is indirectly tested by asking the healthy subjects to lift a barbell to disturb their motor function. The experimental result shows that the IMPA has a potential for providing a proper information of the subject's motor function level.
Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li
2012-01-01
Background Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. Methodology/Principal Findings Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. Conclusions/Significance These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that the potential value of MI learning in motor function rehabilitation and motor skill learning deserves more attention and further investigation. PMID:22629308
NASA Astrophysics Data System (ADS)
Nudo, Randolph J.; Wise, Birute M.; Sifuentes, Frank; Milliken, Garrett W.
1996-06-01
Substantial functional reorganization takes place in the motor cortex of adult primates after a focal ischemic infarct, as might occur in stroke. A subtotal lesion confined to a small portion of the representation of one hand was previously shown to result in a further loss of hand territory in the adjacent, undamaged cortex of adult squirrel monkeys. In the present study, retraining of skilled hand use after similar infarcts resulted in prevention of the loss of hand territory adjacent to the infarct. In some instances, the hand representations expanded into regions formerly occupied by representations of the elbow and shoulder. Functional reorganization in the undamaged motor cortex was accompanied by behavioral recovery of skilled hand function. These results suggest that, after local damage to the motor cortex, rehabilitative training can shape subsequent reorganization in the adjacent intact cortex, and that the undamaged motor cortex may play an important role in motor recovery.
Wadden, Katie P.; Woodward, Todd S.; Metzak, Paul D.; Lavigne, Katie M.; Lakhani, Bimal; Auriat, Angela M.; Boyd, Lara A.
2015-01-01
Following stroke, functional networks reorganize and the brain demonstrates widespread alterations in cortical activity. Implicit motor learning is preserved after stroke. However the manner in which brain reorganization occurs, and how it supports behaviour within the damaged brain remains unclear. In this functional magnetic resonance imaging (fMRI) study, we evaluated whole brain patterns of functional connectivity during the performance of an implicit tracking task at baseline and retention, following 5 days of practice. Following motor practice, a significant difference in connectivity within a motor network, consisting of bihemispheric activation of the sensory and motor cortices, parietal lobules, cerebellar and occipital lobules, was observed at retention. Healthy subjects demonstrated greater activity within this motor network during sequence learning compared to random practice. The stroke group did not show the same level of functional network integration, presumably due to the heterogeneity of functional reorganization following stroke. In a secondary analysis, a binary mask of the functional network activated from the aforementioned whole brain analyses was created to assess within-network connectivity, decreasing the spatial distribution and large variability of activation that exists within the lesioned brain. The stroke group demonstrated reduced clusters of connectivity within the masked brain regions as compared to the whole brain approach. Connectivity within this smaller motor network correlated with repeated sequence performance on the retention test. Increased functional integration within the motor network may be an important neurophysiological predictor of motor learning-related change in individuals with stroke. PMID:25757996
Geldof, Christiaan J A; van Hus, Janeline W P; Jeukens-Visser, Martine; Nollet, Frans; Kok, Joke H; Oosterlaan, Jaap; van Wassenaer-Leemhuis, Aleid G
2016-01-01
To extend understanding of impaired motor functioning of very preterm (VP)/very low birth weight (VLBW) children by investigating its relationship with visual attention, visual and visual-motor functioning. Motor functioning (Movement Assessment Battery for Children, MABC-2; Manual Dexterity, Aiming & Catching, and Balance component), as well as visual attention (attention network and visual search tests), vision (oculomotor, visual sensory and perceptive functioning), visual-motor integration (Beery Visual Motor Integration), and neurological status (Touwen examination) were comprehensively assessed in a sample of 106 5.5-year-old VP/VLBW children. Stepwise linear regression analyses were conducted to investigate multivariate associations between deficits in visual attention, oculomotor, visual sensory, perceptive and visual-motor integration functioning, abnormal neurological status, neonatal risk factors, and MABC-2 scores. Abnormal MABC-2 Total or component scores occurred in 23-36% of VP/VLBW children. Visual and visual-motor functioning accounted for 9-11% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Visual perceptive deficits only were associated with Aiming & Catching. Abnormal neurological status accounted for an additional 19-30% of variance in MABC-2 Total, Manual Dexterity and Balance scores, and 5% of variance in Aiming & Catching, and neonatal risk factors for 3-6% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Motor functioning is weakly associated with visual and visual-motor integration deficits and moderately associated with abnormal neurological status, indicating that motor performance reflects long term vulnerability following very preterm birth, and that visual deficits are of minor importance in understanding motor functioning of VP/VLBW children. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fluet, Gerard G.; Patel, Jigna; Qiu, Qinyin; Yarossi, Matthew; Massood, Supriya; Adamovich, Sergei V.; Tunik, Eugene; Merians, Alma S.
2016-01-01
Purpose The complexity of upper extremity (UE) behavior requires recovery of near normal neuromuscular function to minimize residual disability following a stroke. This requirement places a premium on spontaneous recovery and neuroplastic adaptation to rehabilitation by the lesioned hemisphere. Motor skill learning is frequently cited as a requirement for neuroplasticity. Studies examining the links between training, motor learning, neuroplasticity, and improvements in hand motor function are indicated. Methods This case study describes a patient with slow recovering hand and finger movement (Total Upper Extremity Fugl–Meyer examination score = 25/66, Wrist and Hand items = 2/24 on poststroke day 37) following a stroke. The patient received an intensive eight-session intervention utilizing simulated activities that focused on the recovery of finger extension, finger individuation, and pinch-grasp force modulation. Results Over the eight sessions, the patient demonstrated improvements on untrained transfer tasks, which suggest that motor learning had occurred, as well a dramatic increase in hand function and corresponding expansion of the cortical motor map area representing several key muscles of the paretic hand. Recovery of hand function and motor map expansion continued after discharge through the three-month retention testing. Conclusion This case study describes a neuroplasticity based intervention for UE hemiparesis and a model for examining the relationship between training, motor skill acquisition, neuroplasticity, and motor function changes. PMID:27669997
Knight, Emily J.; Testini, Paola; Min, Hoon-Ki; Gibson, William S.; Gorny, Krzysztof R.; Favazza, Christopher P.; Felmlee, Joel P.; Kim, Inyong; Welker, Kirk M.; Clayton, Daniel A.; Klassen, Bryan T.; Chang, Su-youne; Lee, Kendall H.
2015-01-01
Objective To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with PD would affect the activity of both motor and non-motor networks, we applied intraoperative fMRI to patients receiving DBS. Patients and Methods Ten patients receiving STN DBS for PD underwent intraoperative 1.5T fMRI during high frequency stimulation delivered via an external pulse generator. The study was conducted between the dates of January 1, 2013 and September 30, 2014. Results We observed blood oxygen level dependent (BOLD) signal changes (FDR<.001) in the motor circuitry, including primary motor, premotor, and supplementary motor cortices, thalamus, pedunculopontine nucleus (PPN), and cerebellum, as well as in the limbic circuitry, including cingulate and insular cortices. Activation of the motor network was observed also after applying a Bonferroni correction (p<.001) to our dataset, suggesting that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. Conclusions These findings support the modulatory role of STN DBS on the activity of motor and non-motor networks, and suggest complex mechanisms at the basis of the efficacy of this treatment modality. Furthermore, these results suggest that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. With further studies combining the use of real time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning, but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. PMID:26046412
Morrison, Sarah A; Lorenz, Douglas; Eskay, Carol P; Forrest, Gail F; Basso, D Michele
2018-03-01
To determine the impact of long-term, body weight-supported locomotor training after chronic, incomplete spinal cord injury (SCI), and to estimate the health care costs related to lost recovery potential and preventable secondary complications that may have occurred because of visit limits imposed by insurers. Prospective observational cohort with longitudinal follow-up. Eight outpatient rehabilitation centers that participate in the Christopher & Dana Reeve Foundation NeuroRecovery Network (NRN). Individuals with motor incomplete chronic SCI (American Spinal Injury Association Impairment Scale C or D; N=69; 0.1-45y after SCI) who completed at least 120 NRN physical therapy sessions. Manually assisted locomotor training (LT) in a body weight-supported treadmill environment, overground standing and stepping activities, and community integration tasks. International Standards for Neurological Classification of Spinal Cord Injury motor and sensory scores, orthostatic hypotension, bowel/bladder/sexual function, Spinal Cord Injury Functional Ambulation Inventory (SCI-FAI), Berg Balance Scale, Modified Functional Reach, 10-m walk test, and 6-minute walk test. Longitudinal outcome measure collection occurred every 20 treatments and at 6- to 12-month follow-up after discharge from therapy. Significant improvement occurred for upper and lower motor strength, functional activities, psychological arousal, sensation of bowel movement, and SCI-FAI community ambulation. Extended training enabled minimal detectable changes at 60, 80, 100, and 120 sessions. After detectable change occurred, it was sustained through 120 sessions and continued 6 to 12 months after treatment. Delivering at least 120 sessions of LT improves recovery from incomplete chronic SCI. Because walking reduces rehospitalization, LT delivered beyond the average 20-session insurance limit can reduce rehospitalizations and long-term health costs. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
When pliers become fingers in the monkey motor system
Umiltà, M. A.; Escola, L.; Intskirveli, I.; Grammont, F.; Rochat, M.; Caruana, F.; Jezzini, A.; Gallese, V.; Rizzolatti, G.
2008-01-01
The capacity to use tools is a fundamental evolutionary achievement. Its essence stands in the capacity to transfer a proximal goal (grasp a tool) to a distal goal (e.g., grasp food). Where and how does this goal transfer occur? Here, we show that, in monkeys trained to use tools, cortical motor neurons, active during hand grasping, also become active during grasping with pliers, as if the pliers were now the hand fingers. This motor embodiment occurs both for normal pliers and for “reverse pliers,” an implement that requires finger opening, instead of their closing, to grasp an object. We conclude that the capacity to use tools is based on an inherently goal-centered functional organization of primate cortical motor areas. PMID:18238904
Effect of sensory and motor connectivity on hand function in pediatric hemiplegia.
Gupta, Disha; Barachant, Alexandre; Gordon, Andrew M; Ferre, Claudio; Kuo, Hsing-Ching; Carmel, Jason B; Friel, Kathleen M
2017-11-01
We tested the hypothesis that somatosensory system injury would more strongly affect movement than motor system injury in children with unilateral cerebral palsy (USCP). This hypothesis was based on how somatosensory and corticospinal circuits adapt to injury during development; whereas the motor system can maintain connections to the impaired hand from the uninjured hemisphere, this does not occur in the somatosensory system. As a corollary, cortical injury strongly impairs sensory function, so we hypothesized that cortical lesions would impair hand function more than subcortical lesions. Twenty-four children with unilateral cerebral palsy had physiological and anatomical measures of the motor and somatosensory systems and lesion classification. Motor physiology was performed with transcranial magnetic stimulation and somatosensory physiology with vibration-evoked electroencephalographic potentials. Tractography of the corticospinal tract and the medial lemniscus was performed with diffusion tensor imaging, and lesions were classified by magnetic resonance imaging. Anatomical and physiological results were correlated with measures of hand function using 2 independent statistical methods. Children with disruptions in the somatosensory connectivity and cortical lesions had the most severe upper extremity impairments, particularly somatosensory function. Motor system connectivity was significantly correlated with bimanual function, but not unimanual function or somatosensory function. Both sensory and motor connectivity impact hand function in children with USCP. Somatosensory connectivity could be an important target for recovery of hand function in children with USCP. Ann Neurol 2017;82:766-780. © 2017 American Neurological Association.
Upper gastrointestinal sensory-motor dysfunction in diabetes mellitus
Zhao, Jing-Bo; Frøkjær, Jens Brøndum; Drewes, Asbjørn Mohr; Ejskjaer, Niels
2006-01-01
Gastrointestinal (GI) sensory-motor abnormalities are common in patients with diabetes mellitus and may involve any part of the GI tract. Abnormalities are frequently sub-clinical, and fortunately only rarely do severe and life-threatening problems occur. The pathogenesis of abnormal upper GI sensory-motor function in diabetes is incompletely understood and is most likely multi-factorial of origin. Diabetic autonomic neuropathy as well as acute suboptimal control of diabetes has been shown to impair GI motor and sensory function. Morphological and biomechanical remodeling of the GI wall develops during the duration of diabetes, and may contribute to motor and sensory dysfunction. In this review sensory and motility disorders of the upper GI tract in diabetes is discussed; and the morphological changes and biomechanical remodeling related to the sensory-motor dysfunction is also addressed. PMID:16718808
Kiper, Pawel; Szczudlik, Andrzej; Venneri, Annalena; Stozek, Joanna; Luque-Moreno, Carlos; Opara, Jozef; Baba, Alfonc; Agostini, Michela; Turolla, Andrea
2016-10-15
Computational approaches for modelling the central nervous system (CNS) aim to develop theories on processes occurring in the brain that allow the transformation of all information needed for the execution of motor acts. Computational models have been proposed in several fields, to interpret not only the CNS functioning, but also its efferent behaviour. Computational model theories can provide insights into neuromuscular and brain function allowing us to reach a deeper understanding of neuroplasticity. Neuroplasticity is the process occurring in the CNS that is able to permanently change both structure and function due to interaction with the external environment. To understand such a complex process several paradigms related to motor learning and computational modeling have been put forward. These paradigms have been explained through several internal model concepts, and supported by neurophysiological and neuroimaging studies. Therefore, it has been possible to make theories about the basis of different learning paradigms according to known computational models. Here we review the computational models and motor learning paradigms used to describe the CNS and neuromuscular functions, as well as their role in the recovery process. These theories have the potential to provide a way to rigorously explain all the potential of CNS learning, providing a basis for future clinical studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G.; Villani, Flavio; Ghielmetti, Francesco
2018-01-01
Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the greater the chances were of maintaining elementary motor functions after adult surgery. In particular, DTI-tractography and quantification of FA-maps were useful to assess the lateralization of motor network. In these cases reorganization of motor connectivity continued for long time periods after surgery. PMID:29922216
Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G; Villani, Flavio; Ghielmetti, Francesco
2018-01-01
Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the greater the chances were of maintaining elementary motor functions after adult surgery. In particular, DTI-tractography and quantification of FA-maps were useful to assess the lateralization of motor network. In these cases reorganization of motor connectivity continued for long time periods after surgery.
Fluet, Gerard G; Patel, Jigna; Qiu, Qinyin; Yarossi, Matthew; Massood, Supriya; Adamovich, Sergei V; Tunik, Eugene; Merians, Alma S
2017-07-01
The complexity of upper extremity (UE) behavior requires recovery of near normal neuromuscular function to minimize residual disability following a stroke. This requirement places a premium on spontaneous recovery and neuroplastic adaptation to rehabilitation by the lesioned hemisphere. Motor skill learning is frequently cited as a requirement for neuroplasticity. Studies examining the links between training, motor learning, neuroplasticity, and improvements in hand motor function are indicated. This case study describes a patient with slow recovering hand and finger movement (Total Upper Extremity Fugl-Meyer examination score = 25/66, Wrist and Hand items = 2/24 on poststroke day 37) following a stroke. The patient received an intensive eight-session intervention utilizing simulated activities that focused on the recovery of finger extension, finger individuation, and pinch-grasp force modulation. Over the eight sessions, the patient demonstrated improvements on untrained transfer tasks, which suggest that motor learning had occurred, as well a dramatic increase in hand function and corresponding expansion of the cortical motor map area representing several key muscles of the paretic hand. Recovery of hand function and motor map expansion continued after discharge through the three-month retention testing. This case study describes a neuroplasticity based intervention for UE hemiparesis and a model for examining the relationship between training, motor skill acquisition, neuroplasticity, and motor function changes. Implications for rehabilitation Intensive hand and finger rehabilitation activities can be added to an in-patient rehabilitation program for persons with subacute stroke. Targeted training of the thumb may have an impact on activity level function in persons with upper extremity hemiparesis. Untrained transfer tasks can be utilized to confirm that training tasks have elicited motor learning. Changes in cortical motor maps can be used to document changes in brain function which can be used to evaluate changes in motor behavior persons with subacute stroke.
In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience.
Monfils, Marie-H; Plautz, Erik J; Kleim, Jeffrey A
2005-10-01
Motor skill acquisition occurs through modification and organization of muscle synergies into effective movement sequences. The learning process is reflected neurophysiologically as a reorganization of movement representations within the primary motor cortex, suggesting that the motor map is a motor engram. However, the specific neural mechanisms underlying map plasticity are unknown. Here the authors review evidence that 1) motor map topography reflects the capacity for skilled movement, 2) motor skill learning induces reorganization of motor maps in a manner that reflects the kinematics of acquired skilled movement, 3) map plasticity is supported by a reorganization of cortical microcircuitry involving changes in synaptic efficacy, and 4) motor map integrity and topography are influenced by various neurochemical signals that coordinate changes in cortical circuitry to encode motor experience. Finally, the role of motor map plasticity in recovery of motor function after brain damage is discussed.
Rasagiline for dysexecutive symptoms during wearing-off in Parkinson's disease: a pilot study.
Rinaldi, Domiziana; Assogna, Francesca; Sforza, Michela; Tagliente, Stefania; Pontieri, Francesco E
2018-01-01
Wearing-off refers to the predictable worsening of motor and sometimes non-motor symptoms of Parkinson's disease occurring at the end of levodopa dose that improves with the next drug dose. Here, we investigated the efficacy of rasagiline on executive functions at the end of levodopa dose in patients displaying symptoms of wearing-off. Rasagiline was well-tolerated and produced a significant improvement at the Frontal Assessment Battery, together with improvement of motor symptoms at the end of levodopa dose. These results suggest that treatment of motor symptoms of wearing-off with rasagiline may be accompanied by improvement of executive functions, and further support the need for optimizing dopamine replacement therapy in fluctuating Parkinson's disease patients.
Ishizaki, A; Kubota, M; Fueki, N; Shinozaki, M; Kurata, K; Takei, M; Sakamoto, K
1993-01-01
A long-term observation has been made in 58 patients (30 males and 28 females) with severe sequelae of neonatal anoxic encephalopathy. They aged from 8 months to 65 years. All of them had motor disturbances and profound mental retardation. Motor function was improved in 4 patients with aging. In contrast, motor activity deteriorated in 11 cases, of which 4 showed a mental regression. Among them, patients who had originally better motor ability than sitting were likely to deteriorate by uncontrollable epilepsy and/or excessive administration of anticonvulsants. Regression of the patients with worse motor ability like bedridden appeared to attributable hypertonia of muscles and bodily deformation. Fifteen cases showed an exacerbation of general condition which originated predominantly to respiratory distress. Twelve patients died including 6 exacerbated cases. Exacerbation or death may have occurred frequently in specific periods of infancy, adolescence and youth with the patients who showed very low motor function such as bedridden and no locomotion.
NASA Astrophysics Data System (ADS)
Tamaoki, Toshifumi; Takanezawa, Makoto; Kimoto, Masanori; Morita, Noboru; Hoshino, Takeo; Hashizume, Kenji
The torsional vibration between metal rolling rolls and a rolling mill motor, may occur in recent days, as a result of higher speed response adjustment for variable speed rolling mill motor drive system. Issues in this paper are focused on excess acceleration value, in tangential direction of the mill motor rotor, which is caused by the motor shaft torsional resonance at the white noise signal superposition to the speed reference signal of the motor drive system for the online transfer function analysis. As a result of the acceleration analysis, the acceleration values in “G” (Relative acceleration value on the basis of Gravity) can be plotted on “Bode-Diagram”, which is namely frequency response for the speed signal amplitude transmission ratio. In addition, relation between the white noise amplitude reduction and the transfer function analysis accuracy deterioration is also examined, in this paper. As the amplitude of the white noise decreases, the analysis error increases because of the reduction in the resolution when the amplitude of the white noise signal is small.
McLeod, Kevin R.; Langevin, Lisa Marie; Goodyear, Bradley G.; Dewey, Deborah
2014-01-01
Developmental coordination disorder (DCD) and attention deficit/hyperactivity disorder (ADHD) are prevalent childhood disorders that frequently co-occur. Evidence from neuroimaging research suggests that children with these disorders exhibit disruptions in motor circuitry, which could account for the high rate of co-occurrence. The primary objective of this study was to investigate the functional connections of the motor network in children with DCD and/or ADHD compared to typically developing controls, with the aim of identifying common neurophysiological substrates. Resting-state fMRI was performed on seven children with DCD, 21 with ADHD, 18 with DCD + ADHD and 23 controls. Resting-state connectivity of the primary motor cortex was compared between each group and controls, using age as a co-factor. Relative to controls, children with DCD and/or ADHD exhibited similar reductions in functional connectivity between the primary motor cortex and the bilateral inferior frontal gyri, right supramarginal gyrus, angular gyri, insular cortices, amygdala, putamen, and pallidum. In addition, children with DCD and/or ADHD exhibited different age-related patterns of connectivity, compared to controls. These findings suggest that children with DCD and/or ADHD exhibit disruptions in motor circuitry, which may contribute to problems with motor functioning and attention. Our results support the existence of common neurophysiological substrates underlying both motor and attention problems. PMID:24818082
Fong, Ted C T; Ho, Rainbow T H; Wan, Adrian H Y; Au-Yeung, Friendly S W
2017-03-01
Neurological soft signs (NSS) in motor coordination and sequencing occur in schizophrenia patients and are an intrinsic sign of the underlying neural dysfunctions. The present longitudinal study explored the relationships among NSS, psychiatric symptoms, and functional outcomes in 151 Chinese patients with chronic schizophrenia across a 6-month period. The participants completed neurological assessments at baseline (Time 1), psychiatric interviews at Time 1 and 3-month follow-up (Time 2), and self-report measures on daily functioning at 6-month follow-up (Time 3). Two possible (combined and cascading) path models were examined on predicting the functional outcomes. Direct and indirect effects of Time 1 NSS on Time 3 functional outcomes via Time 2 psychiatric symptoms were evaluated using path analysis under bootstrapping. Motor coordination and sequencing NSS did not have significant direct effects on functional outcomes. Motor coordination NSS exerted significant and negative indirect effects on functional outcomes via psychiatric symptoms. These results contribute to a better understanding of the determinants of functional outcomes by showing significant indirect pathways from motor coordination NSS to functional outcomes via psychiatric symptoms. That motor sequencing NSS did not affect functional outcomes either directly or indirectly may be explained by their trait marking features. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, Kevin D., E-mail: kevin.welch@ars.usda.gov; Pfister, James A.; Lima, Flavia G.
2013-02-01
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscularmore » paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. -- Highlights: ► Mice treated with nAChR agonists and antagonists have a loss in motor function. ► These deficits are temporary as near normal motor function returns within 10 min. ► There are compound-specific differences in the effects on motor function.« less
Intraluminal pressure patterns in the human colon assessed by high-resolution manometry
Chen, Ji-Hong; Yu, Yuanjie; Yang, Zixian; Yu, Wen-Zhen; Chen, Wu Lan; Yu, Hui; Kim, Marie Jeong-Min; Huang, Min; Tan, Shiyun; Luo, Hesheng; Chen, Jianfeng; Chen, Jiande D. Z.; Huizinga, Jan D.
2017-01-01
Assessment of colonic motor dysfunction is rarely done because of inadequate methodology and lack of knowledge about normal motor patterns. Here we report on elucidation of intraluminal pressure patterns using High Resolution Colonic Manometry during a baseline period and in response to a meal, in 15 patients with constipation, chronically dependent on laxatives, 5 healthy volunteers and 9 patients with minor, transient, IBS-like symptoms but no sign of constipation. Simultaneous pressure waves (SPWs) were the most prominent propulsive motor pattern, associated with gas expulsion and anal sphincter relaxation, inferred to be associated with fast propagating contractions. Isolated pressure transients occurred in most sensors, ranging in amplitude from 5–230 mmHg. Rhythmic haustral boundary pressure transients occurred at sensors about 4–5 cm apart. Synchronized haustral pressure waves, covering 3–5 cm of the colon occurred to create a characteristic intrahaustral cyclic motor pattern at 3–6 cycles/min, propagating in mixed direction. This activity abruptly alternated with erratic patterns resembling the segmentation motor pattern of the small intestine. High amplitude propagating pressure waves (HAPWs) were too rare to contribute to function assessment in most subjects. Most patients, dependent on laxatives for defecation, were able to generate normal motor patterns in response to a meal. PMID:28216670
Development and use of the incremental twitch subtraction MUNE method in mice.
Hegedus, Janka; Jones, Kelvin E; Gordon, Tessa
2009-01-01
We have used a technique to estimate the number of functioning motor units (MUNE) innervating a muscle in mice based on twitch tension. The MUNE technique was verified by modeling twitch tensions from isolated ventral root stimulation. Analysis by twitch tensions allowed us to identify motor unit fiber types. The MUNE technique was used to compare normal mice with transgenic superoxide dismutase-1 mutation (G94A) mice to assess the time course of motor unit loss with respect to fiber type. Motor unit loss was found to occur well in advance of behavioral changes and the degree of reinnervation is dependent upon motor unit fiber types.
Kodama, Takayuki; Nakano, Hideki; Ohsugi, Hironori; Murata, Shin
2016-01-01
[Purpose] This study evaluated the influence of vibratory stimulation-induced kinesthetic illusion on brain function after stroke. [Subjects] Twelve healthy individuals and 13 stroke patients without motor or sensory loss participated. [Methods] Electroencephalograms were taken at rest and during vibratory stimulation. As a neurophysiological index of brain function, we measured the μ-rhythm, which is present mainly in the kinesthetic cortex and is attenuated by movement or motor imagery and compared the data using source localization analyses in the Standardized Low Resolution Brain Electromagnetic Tomography (sLORETA) program. [Results] At rest, μ-rhythms appeared in the sensorimotor and supplementary motor cortices in both healthy controls and stroke patients. Under vibratory stimulation, no μ-rhythm appeared in the sensorimotor cortex of either group. Moreover, in the supplementary motor area, which stores the motor imagery required for kinesthetic illusions, the μ-rhythms of patients were significantly stronger than those of the controls, although the μ-rhythms of both groups were reduced. Thus, differences in neural activity in the supplementary motor area were apparent between the subject groups. [Conclusion] Kinesthetic illusions do occur in patients with motor deficits due to stroke. The neural basis of the supplementary motor area in stroke patients may be functionally different from that found in healthy controls.
Kodama, Takayuki; Nakano, Hideki; Ohsugi, Hironori; Murata, Shin
2016-01-01
[Purpose] This study evaluated the influence of vibratory stimulation-induced kinesthetic illusion on brain function after stroke. [Subjects] Twelve healthy individuals and 13 stroke patients without motor or sensory loss participated. [Methods] Electroencephalograms were taken at rest and during vibratory stimulation. As a neurophysiological index of brain function, we measured the μ-rhythm, which is present mainly in the kinesthetic cortex and is attenuated by movement or motor imagery and compared the data using source localization analyses in the Standardized Low Resolution Brain Electromagnetic Tomography (sLORETA) program. [Results] At rest, μ-rhythms appeared in the sensorimotor and supplementary motor cortices in both healthy controls and stroke patients. Under vibratory stimulation, no μ-rhythm appeared in the sensorimotor cortex of either group. Moreover, in the supplementary motor area, which stores the motor imagery required for kinesthetic illusions, the μ-rhythms of patients were significantly stronger than those of the controls, although the μ-rhythms of both groups were reduced. Thus, differences in neural activity in the supplementary motor area were apparent between the subject groups. [Conclusion] Kinesthetic illusions do occur in patients with motor deficits due to stroke. The neural basis of the supplementary motor area in stroke patients may be functionally different from that found in healthy controls. PMID:27065525
Furlan, Leonardo; Conforto, Adriana Bastos; Cohen, Leonardo G.; Sterr, Annette
2016-01-01
Advances in our understanding of the neural plasticity that occurs after hemiparetic stroke have contributed to the formulation of theories of poststroke motor recovery. These theories, in turn, have underpinned contemporary motor rehabilitation strategies for treating motor deficits after stroke, such as upper limb hemiparesis. However, a relative drawback has been that, in general, these strategies are most compatible with the recovery profiles of relatively high-functioning stroke survivors and therefore do not easily translate into benefit to those individuals sustaining low-functioning upper limb hemiparesis, who otherwise have poorer residual function. For these individuals, alternative motor rehabilitation strategies are currently needed. In this paper, we will review upper limb immobilisation studies that have been conducted with healthy adult humans and animals. Then, we will discuss how the findings from these studies could inspire the creation of a neural plasticity model that is likely to be of particular relevance to the context of motor rehabilitation after stroke. For instance, as will be elaborated, such model could contribute to the development of alternative motor rehabilitation strategies for treating poststroke upper limb hemiparesis. The implications of the findings from those immobilisation studies for contemporary motor rehabilitation strategies will also be discussed and perspectives for future research in this arena will be provided as well. PMID:26843992
Sielaff, Hendrik; Martin, James; Singh, Dhirendra; Biuković, Goran; Grüber, Gerhard; Frasch, Wayne D.
2016-01-01
The angular velocities of ATPase-dependent power strokes as a function of the rotational position for the A-type molecular motor A3B3DF, from the Methanosarcina mazei Gö1 A-ATP synthase, and the thermophilic motor α3β3γ, from Geobacillus stearothermophilus (formerly known as Bacillus PS3) F-ATP synthase, are resolved at 5 μs resolution for the first time. Unexpectedly, the angular velocity profile of the A-type was closely similar in the angular positions of accelerations and decelerations to the profiles of the evolutionarily distant F-type motors of thermophilic and mesophilic origins, and they differ only in the magnitude of their velocities. M. mazei A3B3DF power strokes occurred in 120° steps at saturating ATP concentrations like the F-type motors. However, because ATP-binding dwells did not interrupt the 120° steps at limiting ATP, ATP binding to A3B3DF must occur during the catalytic dwell. Elevated concentrations of ADP did not increase dwells occurring 40° after the catalytic dwell. In F-type motors, elevated ADP induces dwells 40° after the catalytic dwell and slows the overall velocity. The similarities in these power stroke profiles are consistent with a common rotational mechanism for A-type and F-type rotary motors, in which the angular velocity is limited by the rotary position at which ATP binding occurs and by the drag imposed on the axle as it rotates within the ring of stator subunits. PMID:27729450
Characteristics of dysphagia in children with cerebral palsy, related to gross motor function.
Kim, Joon-Sung; Han, Zee-A; Song, Dae Heon; Oh, Hyun-Mi; Chung, Myung Eun
2013-10-01
The aim of this study was to report the characteristics of dysphagia in children with cerebral palsy (CP), related to gross motor function. Videofluoroscopic swallow study was performed in 29 children with CP, according to the manual of Logemann. Five questions about oromotor dysfunction were answered. Gross motor function level was classified by the Gross Motor Function Classification System Expanded and Revised. The results of the videofluoroscopic swallowing studies showed that reduced lip closure, inadequate bolus formation, residue in the oral cavity, delayed triggering of pharyngeal swallow, reduced larynx elevation, coating on the pharyngeal wall, delayed pharyngeal transit time, multiple swallow, and aspiration were significantly more common in the severe group (Gross Motor Function Classification System Expanded and Revised IV or V). As for aspiration, 50% of the children with severe CP had problems, but only 14.3% of them with moderate (Gross Motor Function Classification System Expanded and Revised III) CP and none of them with mild CP had abnormalities. In addition, five of the seven aspiration cases occurred silently. This study shows that dysphagia is closely related to gross motor function in children with CP. Silent aspiration was observed in the moderate to severe CP groups. Aspiration is an important cause of medical problems such as acute and chronic lung disease, and associated respiratory complications contribute significantly in increasing morbidity and mortality in these patient groups. Therefore, the authors suggest that early dysphagia evaluation including videofluoroscopic swallow study is necessary in managing feeding problems and may prevent chronic aspiration, malnutrition, and infections.
McNeely, ME; Duncan, RP; Earhart, GM
2015-01-01
Evidence indicates exercise is beneficial for motor and non-motor function in older adults and people with chronic diseases including Parkinson disease (PD). Dance may be a relevant form of exercise in PD and older adults due to social factors and accessibility. People with PD experience motor and non-motor symptoms, but treatments, interventions, and assessments often focus more on motor symptoms. Similar non-motor symptoms also occur in older adults. While it is well-known that dance may improve motor outcomes, it is less clear how dance affects non-motor symptoms. This review aims to describe the effects of dance interventions on non-motor symptoms in older adults and PD, highlights limitations of the literature, and identifies opportunities for future research. Overall, intervention parameters, study designs, and outcome measures differ widely, limiting comparisons across studies. Results are mixed in both populations, but evidence supports the potential for dance to improve mood, cognition, and quality of life in PD and healthy older adults. Participation and non-motor symptoms like sleep disturbances, pain, and fatigue have not been measured in older adults. Additional well-designed studies comparing dance and exercise interventions are needed to clarify the effects of dance on non-motor function and establish recommendations for these populations. PMID:26318265
Wang, Jinsung; D'Amato, Arthur; Bambrough, Jennifer; Swartz, Ann M; Miller, Nora E
2016-11-01
Physical activity (PA) is well known to have general health benefits for older adults, but it is unclear whether it can also positively affect brain function involved in motor control and learning. We have previously shown that interlimb transfer of visuomotor adaptation occurs asymmetrically in young adults, while that occurs symmetrically in older adults, which suggests that the lateralized function of each hemisphere during motor tasks is diminished with aging. Here, we investigated the association between the level of PA and hemispheric motor lateralization by comparing the pattern of interlimb transfer following visuomotor adaptation between physically active and inactive older adults. Subjects were divided into two groups based on their PA level (active, inactive). They were further divided into two groups, such that a half of the subjects in each group adapted to a 30° rotation during targeted reaching movements with the left arm first, then with the right arm; and the other half with the right arm first, then with the left arm. Results indicated asymmetrical transfer (from left to right only) in the active subjects, whereas symmetrical transfer (from left to right, and vice versa) was observed in the inactive subjects. These findings suggest that older adults who maintain active lifestyle have a central nervous system that is more intact in terms of its lateralized motor function as compared with those who are inactive. Copyright © 2016 Elsevier B.V. All rights reserved.
CHRISTENSEN, DEBORAH; VAN NAARDEN BRAUN, KIM; DOERNBERG, NANCY S; MAENNER, MATTHEW J; ARNESON, CARRIE L; DURKIN, MAUREEN S; BENEDICT, RUTH E; KIRBY, RUSSELL S; WINGATE, MARTHA S; FITZGERALD, ROBERT; YEARGIN-ALLSOPP, MARSHALYN
2014-01-01
AIM The aim of this study was to report the prevalence and characteristics of children with cerebral palsy (CP). METHOD Children with CP (n=451) were ascertained by the Autism and Developmental Disabilities Monitoring (ADDM) Network, a population-based, record-review surveillance system monitoring CP in four areas of the USA. Prevalence was calculated as the number of children with CP among all 8-year-old children residing in these areas in 2008. Motor function was categorized by Gross Motor Function Classification System level and walking ability. Co-occurring autism spectrum disorders (ASD) and epilepsy were ascertained using ADDM Network surveillance methodology. RESULTS The period prevalence of CP for 2008 was 3.1 per 1000 8-year-old children (95% confidence interval 2.8–3.4). Approximately 58% of children walked independently. Co-occurring ASD frequency was 6.9% and was higher (18.4%) among children with non-spastic CP, particularly hypotonic CP. Co-occurring epilepsy frequency was 41% overall, did not differ by ASD status or CP subtype, and was highest (67%) among children with limited or no walking ability. INTERPRETATION The prevalence of CP in childhood from US surveillance data has remained relatively constant, in the range of 3.1 to 3.6 per 1000, since 1996. The higher frequency of ASD in non-spastic than in spastic subtypes of CP calls for closer examination. PMID:24117446
Llansola, Marta; Montoliu, Carmina; Agusti, Ana; Hernandez-Rabaza, Vicente; Cabrera-Pastor, Andrea; Gomez-Gimenez, Belen; Malaguarnera, Michele; Dadsetan, Sherry; Belghiti, Majedeline; Garcia-Garcia, Raquel; Balzano, Tiziano; Taoro, Lucas; Felipo, Vicente
2015-09-01
The cognitive and motor alterations in hepatic encephalopathy (HE) are the final result of altered neurotransmission and communication between neurons in neuronal networks and circuits. Different neurotransmitter systems cooperate to modulate cognitive and motor function, with a main role for glutamatergic and GABAergic neurotransmission in different brain areas and neuronal circuits. There is an interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in HE. This interplay may occur: (a) in different brain areas involved in specific neuronal circuits; (b) in the same brain area through cross-modulation of glutamatergic and GABAergic neurotransmission. We will summarize some examples of the (1) interplay between glutamatergic and GABAergic neurotransmission alterations in different areas in the basal ganglia-thalamus-cortex circuit in the motor alterations in minimal hepatic encephalopathy (MHE); (2) interplay between glutamatergic and GABAergic neurotransmission alterations in cerebellum in the impairment of cognitive function in MHE through altered function of the glutamate-nitric oxide-cGMP pathway. We will also comment the therapeutic implications of the above studies and the utility of modulators of glutamate and GABA receptors to restore cognitive and motor function in rats with hyperammonemia and hepatic encephalopathy. Copyright © 2014 Elsevier Ltd. All rights reserved.
Development of fine motor skills in preterm infants.
Bos, Arend F; Van Braeckel, Koenraad N J A; Hitzert, Marrit M; Tanis, Jozien C; Roze, Elise
2013-11-01
Fine motor skills are related to functioning in daily life and at school. We reviewed the status of knowledge, in preterm children, on the development of fine motor skills, the relation with gross motor skills, and risk factors for impaired fine motor skills. We searched the past 15 years in PubMed, using ['motor skills' or 'fine motor function' and 'preterm infant'] as the search string. Impaired gross and fine motor skills are among the most frequently occurring problems encountered by preterm children who do not develop cerebral palsy. The prevalence is around 40% for mild to moderate impairment and 20% for moderate impairment. Fine motor skill scores on the Movement Assessment Battery for Children are about 0.62 of a standard deviation lower compared with term children. Risk factors for fine motor impairments include moderately preterm birth (odds ratio [OR] 2.0) and, among very preterm children (<32 wk gestation), intra-uterine growth restriction (ORs 2-3), inflammatory conditions (late-onset sepsis and necrotizing enterocolitis, ORs 3-5), and dexamethasone therapy for bronchopulmonary dysplasia (OR 2.7). A better understanding of factors that play a role in the development of and recovery from brain injury could guide future intervention attempts aimed at improving fine motor skills of preterm children. © The Authors. Developmental Medicine & Child Neurology © 2013 Mac Keith Press.
Zhong, Jidan; Nantes, Julia C; Holmes, Scott A; Gallant, Serge; Narayanan, Sridar; Koski, Lisa
2016-12-01
Functional reorganization and structural damage occur in the brains of people with multiple sclerosis (MS) throughout the disease course. However, the relationship between resting-state functional connectivity (FC) reorganization in the sensorimotor network and motor disability in MS is not well understood. This study used resting-state fMRI, T1-weighted and T2-weighted, and magnetization transfer (MT) imaging to investigate the relationship between abnormal FC in the sensorimotor network and upper limb motor disability in people with MS, as well as the impact of disease-related structural abnormalities within this network. Specifically, the differences in FC of the left hemisphere hand motor region between MS participants with preserved (n = 17) and impaired (n = 26) right hand function, compared with healthy controls (n = 20) was investigated. Differences in brain atrophy and MT ratio measured at the global and regional levels were also investigated between the three groups. Motor preserved MS participants had stronger FC in structurally intact visual information processing regions relative to motor impaired MS participants. Motor impaired MS participants showed weaker FC in the sensorimotor and somatosensory association cortices and more severe structural damage throughout the brain compared with the other groups. Logistic regression analysis showed that regional MTR predicted motor disability beyond the impact of global atrophy whereas regional grey matter volume did not. More importantly, as the first multimodal analysis combining resting-state fMRI, T1-weighted, T2-weighted and MTR images in MS, we demonstrate how a combination of structural and functional changes may contribute to motor impairment or preservation in MS. Hum Brain Mapp 37:4262-4275, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Stoppel, Christian Michael; Vielhaber, Stefan; Eckart, Cindy; Machts, Judith; Kaufmann, Jörn; Heinze, Hans-Jochen; Kollewe, Katja; Petri, Susanne; Dengler, Reinhard; Hopf, Jens-Max; Schoenfeld, Mircea Ariel
2014-01-01
Previous studies have shown that in amyotrophic lateral sclerosis (ALS) multiple motor and extra-motor regions display structural and functional alterations. However, their temporal dynamics during disease-progression are unknown. To address this question we employed a longitudinal design assessing motor- and novelty-related brain activity in two fMRI sessions separated by a 3-month interval. In each session, patients and controls executed a Go/NoGo-task, in which additional presentation of novel stimuli served to elicit hippocampal activity. We observed a decline in the patients' movement-related activity during the 3-month interval. Importantly, in comparison to controls, the patients' motor activations were higher during the initial measurement. Thus, the relative decrease seems to reflect a breakdown of compensatory mechanisms due to progressive neural loss within the motor-system. In contrast, the patients' novelty-evoked hippocampal activity increased across 3 months, most likely reflecting the build-up of compensatory processes typically observed at the beginning of lesions. Consistent with a stage-dependent emergence of hippocampal and motor-system lesions, we observed a positive correlation between the ALSFRS-R or MRC-Megascores and the decline in motor activity, but a negative one with the hippocampal activation-increase. Finally, to determine whether the observed functional changes co-occur with structural alterations, we performed voxel-based volumetric analyses on magnetization transfer images in a separate patient cohort studied cross-sectionally at another scanning site. Therein, we observed a close overlap between the structural changes in this cohort, and the functional alterations in the other. Thus, our results provide important insights into the temporal dynamics of functional alterations during disease-progression, and provide support for an anatomical relationship between functional and structural cerebral changes in ALS. PMID:25161894
Intention Understanding in Autism
Boria, Sonia; Fabbri-Destro, Maddalena; Cattaneo, Luigi; Sparaci, Laura; Sinigaglia, Corrado; Santelli, Erica; Cossu, Giuseppe; Rizzolatti, Giacomo
2009-01-01
When we observe a motor act (e.g. grasping a cup) done by another individual, we extract, according to how the motor act is performed and its context, two types of information: the goal (grasping) and the intention underlying it (e.g. grasping for drinking). Here we examined whether children with autistic spectrum disorder (ASD) are able to understand these two aspects of motor acts. Two experiments were carried out. In the first, one group of high-functioning children with ASD and one of typically developing (TD) children were presented with pictures showing hand-object interactions and asked what the individual was doing and why. In half of the “why” trials the observed grip was congruent with the function of the object (“why-use” trials), in the other half it corresponded to the grip typically used to move that object (“why-place” trials). The results showed that children with ASD have no difficulties in reporting the goals of individual motor acts. In contrast they made several errors in the why task with all errors occurring in the “why-place” trials. In the second experiment the same two groups of children saw pictures showing a hand-grip congruent with the object use, but within a context suggesting either the use of the object or its placement into a container. Here children with ASD performed as TD children, correctly indicating the agent's intention. In conclusion, our data show that understanding others' intentions can occur in two ways: by relying on motor information derived from the hand-object interaction, and by using functional information derived from the object's standard use. Children with ASD have no deficit in the second type of understanding, while they have difficulties in understanding others' intentions when they have to rely exclusively on motor cues. PMID:19440332
Eisner-Janowicz, Ines; Barbay, Scott; Hoover, Erica; Stowe, Ann M; Frost, Shawn B; Plautz, Erik J; Nudo, Randolph J
2008-09-01
Neuroimaging studies in stroke survivors have suggested that adaptive plasticity occurs following stroke. However, the complex temporal dynamics of neural reorganization after injury make the interpretation of functional imaging studies equivocal. In the present study in adult squirrel monkeys, intracortical microstimulation (ICMS) techniques were used to monitor changes in representational maps of the distal forelimb in the supplementary motor area (SMA) after a unilateral ischemic infarct of primary motor (M1) and premotor distal forelimb representations (DFLs). In each animal, ICMS maps were derived at early (3 wk) and late (13 wk) postinfarct stages. Lesions resulted in severe deficits in motor abilities on a reach and retrieval task. Limited behavioral recovery occurred and plateaued at 3 wk postinfarct. At both early and late postinfarct stages, distal forelimb movements could still be evoked by ICMS in SMA at low current levels. However, the size of the SMA DFL changed after the infarct. In particular, wrist-forearm representations enlarged significantly between early and late stages, attaining a size substantially larger than the preinfarct area. At the late postinfarct stage, the expansion in the SMA DFL area was directly proportional to the absolute size of the lesion. The motor performance scores were positively correlated to the absolute size of the SMA DFL at the late postinfarct stage. Together, these data suggest that, at least in squirrel monkeys, descending output from M1 and dorsal and ventral premotor cortices is not necessary for SMA representations to be maintained and that SMA motor output maps undergo delayed increases in representational area after damage to other motor areas. Finally, the role of SMA in recovery of function after such lesions remains unclear because behavioral recovery appears to precede neurophysiological map changes.
McPhail, Steven M; Varghese, Paul N; Kuys, Suzanne S
2014-01-01
This study investigated cognitive functioning among older adults with physical debility not attributable to an acute injury or neurological condition who were receiving subacute inpatient physical rehabilitation. A cohort investigation with assessments at admission and discharge. Three geriatric rehabilitation hospital wards. Consecutive rehabilitation admissions (n = 814) following acute hospitalization (study criteria excluded orthopaedic, neurological, or amputation admissions). Usual rehabilitation care. The Functional Independence Measure (FIM) Cognitive and Motor items. A total of 704 (86.5%) participants (mean age = 76.5 years) completed both assessments. Significant improvement in FIM Cognitive items (Z-score range 3.93-8.74, all P < 0.001) and FIM Cognitive total score (Z-score = 9.12, P < 0.001) occurred, in addition to improvement in FIM Motor performance. A moderate positive correlation existed between change in Motor and Cognitive scores (Spearman's rho = 0.41). Generalized linear modelling indicated that better cognition at admission (coefficient = 0.398, P < 0.001) and younger age (coefficient = -0.280, P < 0.001) were predictive of improvement in Motor performance. Younger age (coefficient = -0.049, P < 0.001) was predictive of improvement in FIM Cognitive score. Improvement in cognitive functioning was observed in addition to motor function improvement among this population. Causal links cannot be drawn without further research.
Sielaff, Hendrik; Martin, James; Singh, Dhirendra; Biuković, Goran; Grüber, Gerhard; Frasch, Wayne D
2016-12-02
The angular velocities of ATPase-dependent power strokes as a function of the rotational position for the A-type molecular motor A 3 B 3 DF, from the Methanosarcina mazei Gö1 A-ATP synthase, and the thermophilic motor α 3 β 3 γ, from Geobacillus stearothermophilus (formerly known as Bacillus PS3) F-ATP synthase, are resolved at 5 μs resolution for the first time. Unexpectedly, the angular velocity profile of the A-type was closely similar in the angular positions of accelerations and decelerations to the profiles of the evolutionarily distant F-type motors of thermophilic and mesophilic origins, and they differ only in the magnitude of their velocities. M. mazei A 3 B 3 DF power strokes occurred in 120° steps at saturating ATP concentrations like the F-type motors. However, because ATP-binding dwells did not interrupt the 120° steps at limiting ATP, ATP binding to A 3 B 3 DF must occur during the catalytic dwell. Elevated concentrations of ADP did not increase dwells occurring 40° after the catalytic dwell. In F-type motors, elevated ADP induces dwells 40° after the catalytic dwell and slows the overall velocity. The similarities in these power stroke profiles are consistent with a common rotational mechanism for A-type and F-type rotary motors, in which the angular velocity is limited by the rotary position at which ATP binding occurs and by the drag imposed on the axle as it rotates within the ring of stator subunits. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Tao, Zhongping; Zhang, Mu
2014-01-01
Abstract Functional imaging studies have indicated hemispheric asymmetry of activation in bilateral supplementary motor area (SMA) during unimanual motor tasks. However, the hemispherically special roles of bilateral SMAs on primary motor cortex (M1) in the effective connectivity networks (ECN) during lateralized tasks remain unclear. Aiming to study the differential contribution of bilateral SMAs during the motor execution and motor imagery tasks, and the hemispherically asymmetric patterns of ECN among regions involved, the present study used dynamic causal modeling to analyze the functional magnetic resonance imaging data of the unimanual motor execution/imagery tasks in 12 right-handed subjects. Our results demonstrated that distributions of network parameters underlying motor execution and motor imagery were significantly different. The variation was mainly induced by task condition modulations of intrinsic coupling. Particularly, regardless of the performing hand, the task input modulations of intrinsic coupling from the contralateral SMA to contralateral M1 were positive during motor execution, while varied to be negative during motor imagery. The results suggested that the inhibitive modulation suppressed the overt movement during motor imagery. In addition, the left SMA also helped accomplishing left hand tasks through task input modulation of left SMA→right SMA connection, implying that hemispheric recruitment occurred when performing nondominant hand tasks. The results specified differential and altered contributions of bilateral SMAs to the ECN during unimanual motor execution and motor imagery, and highlighted the contributions induced by the task input of motor execution/imagery. PMID:24606178
Wattanathorn, Jintanaporn; Sutalangka, Chatchada
2016-08-01
Based on pivotal roles of oxidative stress, dopaminergic and cholinergic systems on the pathophysiology of Parkinson's disease (PD), the searching for functional food for patients attacked with PD from Cyperus rotundus and Zingiber officinale, the substances possessing antioxidant activity, and the suppression effects on monoamine oxidase B (MAO-B) and acetylcholinesterase (AChE) have been considered. In this study, we aimed to determine the effect of the combined extract of C. rotundus and Z. officinale (CP1) to improve motor and memory deficits, neurodegeneration, oxidative stress, and functions of both cholinergic and dopaminergic systems in the animal model of PD induced by 6-hydroxydopamine hydrochloride (6-OHDA). Male Wistar rats, weighing 180-220 g, were induced unilateral lesion at right substantia nigra by 6-OHDA and were orally given CP1 at doses of 100, 200, and 300 mg/kg body weight for 14 days after 6-OHDA injection. The results showed that the 6-OHDA rats treated with CP1 increased spatial memory, but decreased neurodegeneration, malondialdehyde level, and AChE activity in hippocampus. The decreased motor disorder and neurodegeneration in substantia nigra together with the enhanced catalase activity, but decreased MAO-B activity in striatum, were also observed. The memory enhancing effect of CP1 might occur through the improved oxidative stress and the enhanced cholinergic function, whereas the effect to improve motor disorder of CP1 might occur through the enhanced dopaminergic function in striatum by decreasing the degeneration of dopaminergic neurons and the suppression of MAO-B. Therefore, CP1 is the potential functional food against PD. However, further researches in clinical trial and drug interactions are essential.
McNeely, M E; Duncan, R P; Earhart, G M
2015-12-01
Evidence indicates exercise is beneficial for motor and non-motor function in older adults and people with chronic diseases including Parkinson disease (PD). Dance may be a relevant form of exercise in PD and older adults due to social factors and accessibility. People with PD experience motor and non-motor symptoms, but treatments, interventions, and assessments often focus more on motor symptoms. Similar non-motor symptoms also occur in older adults. While it is well-known that dance may improve motor outcomes, it is less clear how dance affects non-motor symptoms. This review aims to describe the effects of dance interventions on non-motor symptoms in older adults and PD, highlights limitations of the literature, and identifies opportunities for future research. Overall, intervention parameters, study designs, and outcome measures differ widely, limiting comparisons across studies. Results are mixed in both populations, but evidence supports the potential for dance to improve mood, cognition, and quality of life in PD and healthy older adults. Participation and non-motor symptoms like sleep disturbances, pain, and fatigue have not been measured in older adults. Additional well-designed studies comparing dance and exercise interventions are needed to clarify the effects of dance on non-motor function and establish recommendations for these populations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
[Early results of proximal femoral fractures treated with FENIX modular hemiarthroplasty].
Görski, Radosław; Górecki, Andrzej; Olszewski, Paweł; Biedrzycki, Jerzy; Skowronek, Paweł
2010-01-01
The article discusses preliminary clinical results in patients with proximal femoral fractures treated with hemiarthroplasty using a FENIX implant. The study group comprised 41 subjects aged 69 to 97 (median age 82.3 year). The follow-up study provided data on 26 subjects (63.4%), among which 15 attended the check-up, 5 subjects refused to visit at the Department and 6 subjects were reported as deceased. Median follow-up period amounted to 6.8 month (1 to 22 months). General hospitalization-related complications occurred in 8 patients (19.5%). During hospitalization no deaths occurred, in the deceased group 3 patients died within 12 months after surgery, while another 3 died after the twelve-month postoperative period (median of 13.3%). According to Merle d'Aubigne-Postel score favorable long-term results were observed in 9 patients (59.9%), 13 patients regained the level of motor function similar to the functional ability prior to fracture. The need to postpone the surgery due to general health status and impaired pre-operative motor function are significant negative prognostic factors. The results obtained were compared with previous efficacy studies on femoral fracture treatment using an Austin-Moore implant. Functional ability and self-reliance was higher in the FENIX group. FENIX arthroplasty effectively helps patients regain self-reliance and motor function thanks to its modular characteristics and anatmoical construction.
Insights from the supplementary motor area syndrome in balancing movement initiation and inhibition
Potgieser, A. R. E.; de Jong, B. M.; Wagemakers, M.; Hoving, E. W.; Groen, R. J. M.
2014-01-01
The supplementary motor area (SMA) syndrome is a characteristic neurosurgical syndrome that can occur after unilateral resection of the SMA. Clinical symptoms may vary from none to a global akinesia, predominantly on the contralateral side, with preserved muscle strength and mutism. A remarkable feature is that these symptoms completely resolve within weeks to months, leaving only a disturbance in alternating bimanual movements. In this review we give an overview of the old and new insights from the SMA syndrome and extrapolate these findings to seemingly unrelated diseases and symptoms such as Parkinson’s disease (PD) and tics. Furthermore, we integrate findings from lesion, stimulation and functional imaging studies to provide insight in the motor function of the SMA. PMID:25506324
Transcranial magnetic stimulation--may be useful as a preoperative screen of motor tract function.
Galloway, Gloria M; Dias, Brennan R; Brown, Judy L; Henry, Christina M; Brooks, David A; Buggie, Ed W
2013-08-01
Transcranial motor stimulation with noninvasive cortical surface stimulation, using a high-intensity magnetic field referred to as transcranial magnetic stimulation generally, is considered a nonpainful technique. In contrast, transcranial electric stimulation of the motor tracts typically cannot be done in unanesthesized patients. Intraoperative monitoring of motor tract function with transcranial electric stimulation is considered a standard practice in many institutions for patients during surgical procedures in which there is potential risk of motor tract impairment so that the risk of paraplegia or paraparesis can be reduced. Because transcranial electric stimulation cannot be typically done in the outpatient setting, transcranial magnetic stimulation may be able to provide a well-tolerated method for evaluation of the corticospinal motor tracts before surgery. One hundred fifty-five patients aged 5 to 20 years were evaluated preoperatively with single-stimulation nonrepetitive transcranial magnetic stimulation for preoperative assessment. The presence of responses to transcranial magnetic stimulation reliably predicted the presence of responses to transcranial electric stimulation intraoperatively. No complications occurred during the testing, and findings were correlated to the clinical history and used in the setup of the surgical monitoring.
Dawson, William J
2014-06-01
Recent publications indicate that musical training has effects on non-musical activities, some of which are lifelong. This study reviews recent publications collected from the Performing Arts Medicine Association bibliography. Music training, whether instrumental or vocal, produces beneficial and long-lasting changes in brain anatomy and function. Anatomic changes occur in brain areas devoted to hearing, speech, hand movements, and coordination between both sides of the brain. Functional benefits include improved sound processing and motor skills, especially in the upper extremities. Training benefits extend beyond music skills, resulting in higher IQs and school grades, greater specialized sensory and auditory memory/recall, better language memory and processing, heightened bilateral hand motor functioning, and improved integration and synchronization of sensory and motor functions. These changes last long after music training ends and can minimize or prevent age-related loss of brain cells and some mental functions. Early institution of music training and prolonged duration of training both appear to contribute to these positive changes.
Understanding and enhancing motor recovery after stroke using transcranial magnetic stimulation
Hoyer, Erik H.; Celnik, Pablo A.
2013-01-01
Stroke is the leading cause of long-term disability. Understanding how people recover from stroke and other brain lesions remain one of the biggest conundrums in neuroscience. As a result, concerted efforts in recent years have focused on investigating the neurophysiological changes that occur in the brain after stroke, and in developing novel strategies to enhance motor recovery. In particular, transcranial magnetic stimulation (TMS) is a non-invasive tool that has been used to investigate the brain plasticity changes resulting from stroke and as a therapeutic modality to safely improve motor function. In this review, we discuss the contributions of TMS to understand how different motor areas, such as the ipsilesional hemisphere, secondary motor areas, and contralesional hemisphere are involved in motor recovery. We also consider recent studies using repetitive TMS (rTMS) in stroke patients to enhance upper extremity function. Although further studies are needed, these investigations provide an important starting point to understand the stimulation parameters and patient characteristics that may influence the optimal response to non-invasive brain stimulation. Future directions of rTMS are discussed in the context of post-stroke motor recovery. PMID:22124033
EEG beta-power changes reflect motor involvement in abstract action language processing.
Schaller, Franziska; Weiss, Sabine; Müller, Horst M
2017-05-01
Brain oscillations in the α- and β-range become suppressed during motor processing and motor imagery. It has recently been discussed that such power changes also occur during action language processing. In our study, we compared β 2 -oscillations (16-25Hz) during the observation of prototypical arm movements (revealed via motion tracking) as well as during semantic processing of concrete and abstract sentences containing arm-related action verbs. Whereas we did find a strong desynchronization in the β 2 -range during action observation, the processing of action sentences evoked a rather weak desynchronization. However, this desynchronization occurred for action verbs in both concrete and abstract contexts. These results might indicate a tendency for abstract action language to be processed similar to concrete action language rather than abstract sentences. The oscillation patterns reflect the close relationship between language comprehension and motor functions - one of the core claims of current theories on embodied cognition. Copyright © 2017 Elsevier Inc. All rights reserved.
Physiology of the motor cortex in polio survivors.
Lupu, Vitalie D; Danielian, Laura; Johnsen, Jacqueline A; Vasconcelos, Olavo M; Prokhorenko, Olga A; Jabbari, Bahman; Campbell, William W; Floeter, Mary Kay
2008-02-01
We hypothesized that the corticospinal system undergoes functional changes in long-term polio survivors. Central motor conduction times (CMCTs) to the four limbs were measured in 24 polio survivors using transcranial magnetic stimulation (TMS). Resting motor thresholds and CMCTs were normal. In 17 subjects whose legs were affected by polio and 13 healthy controls, single- and paired-pulse TMS was used to assess motor cortex excitability while recording from tibialis anterior (TA) muscles at rest and following maximal contraction until fatigue. In polio survivors the slope of the recruitment curve was normal, but maximal motor evoked potentials (MEPs) were larger than in controls. MEPs were depressed after fatiguing exercise. Three patients with central fatigue by twitch interpolation had a trend toward slower recovery. There was no association with symptoms of post-polio syndrome. These changes occurring after polio may allow the motor cortex to activate a greater proportion of the motor neurons innervating affected muscles.
Neural correlates of motor recovery after stroke: a longitudinal fMRI study
Ward, N. S.; Brown, M. M.; Thompson, A. J.; Frackowiak, R. S. J.
2013-01-01
Summary Recovery of motor function after stroke may occur over weeks or months and is often attributed to cerebral reorganization. We have investigated the longitudinal relationship between recovery after stroke and task-related brain activation during a motor task as measured using functional MRI (fMRI). Eight first-ever stroke patients presenting with hemiparesis resulting from cerebral infarction sparing the primary motor cortex, and four control subjects were recruited. Subjects were scanned on a number of occasions whilst performing an isometric dynamic visually paced hand grip task. Recovery in the patient group was assessed using a battery of outcome measures at each time point. Task-related brain activations decreased over sessions as a function of recovery in a number of primary and non-primary motor regions in all patients, but no session effects were seen in the controls. Furthermore, consistent decreases across sessions correlating with recovery were seen across the whole patient group independent of rate of recovery or initial severity, in primary motor cortex, premotor and prefrontal cortex, supplementary motor areas, cingulate sulcus, temporal lobe, striate cortex, cerebellum, thalamus and basal ganglia. Although recovery-related increases were seen in different brain regions in four patients, there were no consistent effects across the group. These results further our understanding of the recovery process by demonstrating for the first time a clear temporal relationship between recovery and task-related activation of the motor system after stroke. PMID:12937084
Performance on a functional motor task is enhanced by sleep in middle-aged and older adults.
Al-Sharman, Alham; Siengsukon, Catherine F
2014-07-01
Although sleep has been shown to enhance motor skill learning, it remains unclear whether sleep enhances learning of a functional motor task in middle-aged and older individuals. The purpose of this study was to examine whether sleep enhances motor learning of a functional motor task in middle-aged and older adults. Twenty middle-aged and 20 older individuals were randomly assigned to either the sleep condition or the no-sleep condition. Participants in the sleep condition practiced a novel walking task in the evening, and returned the following morning for retesting. Participants in the no-sleep condition practiced the walking task in the morning and returned the same day in the evening for a retest. Outcome measures included time around the walking path and spatiotemporal gait parameters. Only the middle-aged and older adults in the sleep condition demonstrated significant off-line improvement in performance, measured as a decline in time to walk around the novel path and improvement in spatiotemporal gait parameters. The middle-aged and older adults in the no-sleep condition failed to demonstrate off-line improvements in performance of this functional task. This is the first study to provide evidence that sleep facilitates learning a clinically relevant functional motor task in middle-aged and older adults. Because many neurologic conditions occur in the middle-aged and older adults and sleep issues are very prevalent in many neurologic conditions, it is imperative that physical therapists consider sleep as a factor that may impact motor learning and recovery in these individuals. (See Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A73) for more insights from the authors.
EFFECTS OF SENSORI-MOTOR LEARNING ON MELODY PROCESSING ACROSS DEVELOPMENT
WAKEFIELD, Elizabeth M.; JAMES, Karin H.
2014-01-01
Actions influence perceptions, but how this occurs may change across the lifespan. Studies have investigated how object-directed actions (e.g., learning about objects through manipulation) affect subsequent perception, but how abstract actions affect perception, and how this may change across development, have not been well studied. In the present study, we address this question, teaching children (4–7 year-olds) and adults sung melodies, with or without an abstract motor component, and using functional Magnetic Resonance Imaging (fMRI) to determine how these melodies are subsequently processed. Results demonstrated developmental change in the motor cortices and Middle Temporal Gyrus. Results have implications for understanding sensori-motor integration in the developing brain, and may provide insight into motor learning use in some music education techniques. PMID:25653926
Postnatal development under conditions of simulated weightlessness and space flight
NASA Technical Reports Server (NTRS)
Walton, K.
1998-01-01
The adaptability of the developing nervous system to environmental influences and the mechanisms underlying this plasticity has recently become a subject of interest in space neuroscience. Ground studies on neonatal rats using the tail suspension model of weightlessness have shown that the force of gravity clearly influences the events underlying the postnatal development of motor function. These effects depend on the age of the animal, duration of the perturbation and the motor function studied. A nine-day flight study has shown that a dam and neonates can develop under conditions of space flight. The motor function of the flight animals after landing was consistent with that seen in the tail suspension studies, being marked by limb joint extension. However, there were expected differences due to: (1) the unloading of the vestibular system in flight, which did not occur in the ground-based experiments; (2) differences between flight and suspension durations; and (3) the inability to evaluate motor function during the flight. The next step is to conduct experiments in space with the flexibility and rigor that is now limited to ground studies: an opportunity offered by the International Space Station. Copyright 1998 Published by Elsevier Science B.V.
Functional mobility in a divided attention task in older adults with cognitive impairment.
Borges, Sheila de Melo; Radanovic, Márcia; Forlenza, Orestes Vicente
2015-01-01
Motor disorders may occur in mild cognitive impairment (MCI) and at early stages of Alzheimer's disease (AD), particularly under divided attention conditions. We examined functional mobility in 104 older adults (42 with MCI, 26 with mild AD, and 36 cognitively healthy) using the Timed Up and Go test (TUG) under 4 experimental conditions: TUG single task, TUG plus a cognitive task, TUG plus a manual task, and TUG plus a cognitive and a manual task. Statistically significant differences in mean time of execution were found in all four experimental conditions when comparing MCI and controls (p < .001), and when comparing MCI and AD patients (p < .05). Receiver-operating characteristic curve analyses showed that all four testing conditions could differentiate the three groups (area under the curve > .8, p < .001 for MCI vs. controls; area under the curve > .7, p < .001 for MCI vs. AD). The authors conclude that functional motor deficits occurring in MCI can be assessed by the TUG test, in single or dual task modality.
Weaver, Frances M; Follett, Kenneth; Stern, Matthew; Hur, Kwan; Harris, Crystal; Marks, William J; Rothlind, Johannes; Sagher, Oren; Reda, Domenic; Moy, Claudia S; Pahwa, Rajesh; Burchiel, Kim; Hogarth, Penelope; Lai, Eugene C; Duda, John E; Holloway, Kathryn; Samii, Ali; Horn, Stacy; Bronstein, Jeff; Stoner, Gatana; Heemskerk, Jill; Huang, Grant D
2009-01-07
Deep brain stimulation is an accepted treatment for advanced Parkinson disease (PD), although there are few randomized trials comparing treatments, and most studies exclude older patients. To compare 6-month outcomes for patients with PD who received deep brain stimulation or best medical therapy. Randomized controlled trial of patients who received either deep brain stimulation or best medical therapy, stratified by study site and patient age (< 70 years vs > or = 70 years) at 7 Veterans Affairs and 6 university hospitals between May 2002 and October 2005. A total of 255 patients with PD (Hoehn and Yahr stage > or = 2 while not taking medications) were enrolled; 25% were aged 70 years or older. The final 6-month follow-up visit occurred in May 2006. Bilateral deep brain stimulation of the subthalamic nucleus (n = 60) or globus pallidus (n = 61). Patients receiving best medical therapy (n = 134) were actively managed by movement disorder neurologists. The primary outcome was time spent in the "on" state (good motor control with unimpeded motor function) without troubling dyskinesia, using motor diaries. Other outcomes included motor function, quality of life, neurocognitive function, and adverse events. Patients who received deep brain stimulation gained a mean of 4.6 h/d of on time without troubling dyskinesia compared with 0 h/d for patients who received best medical therapy (between group mean difference, 4.5 h/d [95% CI, 3.7-5.4 h/d]; P < .001). Motor function improved significantly (P < .001) with deep brain stimulation vs best medical therapy, such that 71% of deep brain stimulation patients and 32% of best medical therapy patients experienced clinically meaningful motor function improvements (> or = 5 points). Compared with the best medical therapy group, the deep brain stimulation group experienced significant improvements in the summary measure of quality of life and on 7 of 8 PD quality-of-life scores (P < .001). Neurocognitive testing revealed small decrements in some areas of information processing for patients receiving deep brain stimulation vs best medical therapy. At least 1 serious adverse event occurred in 49 deep brain stimulation patients and 15 best medical therapy patients (P < .001), including 39 adverse events related to the surgical procedure and 1 death secondary to cerebral hemorrhage. In this randomized controlled trial of patients with advanced PD, deep brain stimulation was more effective than best medical therapy in improving on time without troubling dyskinesias, motor function, and quality of life at 6 months, but was associated with an increased risk of serious adverse events. clinicaltrials.gov Identifier: NCT00056563.
Underlying neural mechanisms of mirror therapy: Implications for motor rehabilitation in stroke.
Arya, Kamal Narayan
2016-01-01
Mirror therapy (MT) is a valuable method for enhancing motor recovery in poststroke hemiparesis. The technique utilizes the mirror-illusion created by the movement of sound limb that is perceived as the paretic limb. MT is a simple and economical technique than can stimulate the brain noninvasively. The intervention unquestionably has neural foundation. But the underlying neural mechanisms inducing motor recovery are still unclear. In this review, the neural-modulation due to MT has been explored. Multiple areas of the brain such as the occipital lobe, dorsal frontal area and corpus callosum are involved during the simple MT regime. Bilateral premotor cortex, primary motor cortex, primary somatosensory cortex, and cerebellum also get reorganized to enhance the function of the damaged brain. The motor areas of the lesioned hemisphere receive visuo-motor processing information through the parieto-occipital lobe. The damaged motor cortex responds variably to the MT and may augment true motor recovery. Mirror neurons may also play a possible role in the cortico-stimulatory mechanisms occurring due to the MT.
Effect of α₇ nicotinic acetylcholine receptor agonists and antagonists on motor function in mice.
Welch, Kevin D; Pfister, James A; Lima, Flavia G; Green, Benedict T; Gardner, Dale R
2013-02-01
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscular paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. Published by Elsevier Inc.
The effects of microgravity on the development of surface righting in rats
Walton, Kerry D; Harding, Shannon; Anschel, David; Harris, Ya'el Tobi; Llinás, Rodolfo
2005-01-01
The active interaction of neonatal animals with their environment has been shown to be a decisive factor in the postnatal development of sensory systems, which demonstrates a critical period in their maturation. The direct demonstration of such a dependence on the rearing environment has not been demonstrated for motor system function. Nor has the role of gravity in mammalian motor system development been investigated. Here we report the results of two space flight missions examining the effect of removing gravity on the development of surface righting. Since the essential stimulus that drives this synergy, gravitation, was missing, righting did not occur while the animals were in the microgravity environment. We hypothesize that this absence of contextual motor experience arrested the maturation of the motor tactics for surface righting. Such effects were permanent in rats spending 16 days (from postnatal day (P), P14 to P30), but were transient in animals spending nine days (from P15 to P24) in microgravity. Thus, active, contextual interaction with the environment during a critical period of development is necessary for the postnatal maturation of motor tactics as exemplified by surface righting, and such events must occur within a particular time period. Further, Earth's gravitational field is not assumed by the developing motor system. Rather, postnatal motor system development is appropriate to the gravitational field in which the animal is reared. PMID:15774538
Effects of glycine on motor performance in rats after traumatic spinal cord injury.
Gonzalez-Piña, Rigoberto; Nuño-Licona, Alberto
2007-01-01
It has been reported that glycine improves some functions lost after spinal cord injury (SCI). In order to assess the effects of glycine administration on motor performance after SCI, we used fifteen male Wistar rats distributed into three groups: sham (n = 3), spinal-cord injury (n = 6,) and spinal cord injury + glycine (n = 6). Motor performance was assessed using the beam-walking paradigm and footprint analysis. Results showed that for all animals with spinal-cord injury, scores in the beam-walking increased, which is an indication of increased motor deficit. In addition, footprint analysis showed a decrease in stride length and an increase in stride angle, additional indicators of motor deficit. These effects trended towards recovery after 8 weeks of recording and trended toward improvement by glycine administration; the effect was not significant. These results suggest that glycine replacement alone is not sufficient to improve the motor deficits that occur after SCI.
A comparative study of primary and secondary stereotypies.
Ghosh, Debabrata; Rajan, Prashant V; Erenberg, Gerald
2013-12-01
This study compares primary stereotypies (repetitive, self-stimulating, and seemingly nonsensical movements that can occur within typically developing children) and secondary stereotypies (those occurring within autistic or mentally retarded children). Utilizing a retrospective chart review from 1995 to 2010, the current study compares primary and secondary stereotypies by the application of a classification system that organizes the movement by its type (motor only, phonic only, mixed) and complexity. In addition, it investigates other parameters associated with the movements such as duration, frequency, age, functional impairment, and progression. The sample group consisted of 28 primary and 28 secondary cases. Primary stereotypies were predominantly motor, simple, of shorter duration, and of less frequency, whereas secondary stereotypies had more vocalization, complexity, longer durations, and higher frequencies. Moreover, functional impairment due to stereotypies was noted in 3 primary and 7 secondary cases, and worsening of stereotypies was noted in 70% of primary versus 44% of secondary cases.
Arizono, Naoki; Ohmura, Yuji; Yano, Shiro; Kondo, Toshiyuki
2016-01-01
The self-identification, which is called sense of ownership, has been researched through methodology of rubber hand illusion (RHI) because of its simple setup. Although studies with neuroimaging technique, such as fMRI, revealed that several brain areas are associated with the sense of ownership, near-infrared spectroscopy (NIRS) has not yet been utilized. Here we introduced an automated setup to induce RHI, measured the brain activity during the RHI with NIRS, and analyzed the functional connectivity so as to understand dynamical brain relationship regarding the sense of ownership. The connectivity was evaluated by multivariate Granger causality. In this experiment, the peaks of oxy-Hb on right frontal and right motor related areas during the illusion were significantly higher compared with those during the nonillusion. Furthermore, by analyzing the NIRS recordings, we found a reliable connectivity from the frontal to the motor related areas during the illusion. This finding suggests that frontal cortex and motor related areas communicate with each other when the sense of ownership is induced. The result suggests that the sense of ownership is related to neural mechanism underlying human motor control, and it would be determining whether motor learning (i.e., neural plasticity) will occur. Thus RHI with the functional connectivity analysis will become an appropriate biomarker for neurorehabilitation.
Knight, Emily J; Testini, Paola; Min, Hoon-Ki; Gibson, William S; Gorny, Krzysztof R; Favazza, Christopher P; Felmlee, Joel P; Kim, Inyong; Welker, Kirk M; Clayton, Daniel A; Klassen, Bryan T; Chang, Su-youne; Lee, Kendall H
2015-06-01
To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with Parkinson disease would affect the activity of motor and nonmotor networks, we applied intraoperative functional magnetic resonance imaging (fMRI) to patients receiving DBS. Ten patients receiving STN DBS for Parkinson disease underwent intraoperative 1.5-T fMRI during high-frequency stimulation delivered via an external pulse generator. The study was conducted between January 1, 2013, and September 30, 2014. We observed blood oxygen level-dependent (BOLD) signal changes (false discovery rate <0.001) in the motor circuitry (including the primary motor, premotor, and supplementary motor cortices; thalamus; pedunculopontine nucleus; and cerebellum) and in the limbic circuitry (including the cingulate and insular cortices). Activation of the motor network was observed also after applying a Bonferroni correction (P<.001) to the data set, suggesting that across patients, BOLD changes in the motor circuitry are more consistent compared with those occurring in the nonmotor network. These findings support the modulatory role of STN DBS on the activity of motor and nonmotor networks and suggest complex mechanisms as the basis of the efficacy of this treatment modality. Furthermore, these results suggest that across patients, BOLD changes in the motor circuitry are more consistent than those in the nonmotor network. With further studies combining the use of real-time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. clinicaltrials.gov Identifier: NCT01809613. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Hockenberry, Marilyn J; Krull, Kevin R; Insel, Kathleen C; Harris, Lynnette L; Gundy, Patricia M; Adkins, Kristin B; Pasvogel, Alice E; Taylor, Olga A; Koerner, Kari M; Montgomery, David W; Ross, Adam K; Hill, Adam; Moore, Ida M
2015-09-01
To examine associations among oxidative stress, fine and visual-motor abilities, and behavioral adjustment in children receiving chemotherapy for acute lymphoblastic leukemia (ALL) . A prospective, repeated-measures design . Two pediatric oncology settings in the southwestern United States. 89 children with ALL were followed from diagnosis to the end of chemotherapy. Serial cerebrospinal fluid samples were collected during scheduled lumbar punctures and analyzed for oxidative stress biomarkers. Children completed fine motor dexterity, visual processing speed, and visual-motor integration measures at three time points. Parents completed child behavior ratings at the same times. Oxidative stress, fine motor dexterity, visual processing, visual-motor integration, and behavioral adjustment . Children with ALL had below-average fine motor dexterity, visual processing speed, and visual-motor integration following the induction phase of ALL therapy. By end of therapy, visual processing speed normalized, and fine motor dexterity and visual-motor integration remained below average. Oxidative stress measures correlated with fine motor dexterity and visual-motor integration. Decreased motor functioning was associated with increased hyperactivity and anxiety . Oxidative stress occurs following chemo-therapy for childhood ALL and is related to impaired fine motor skills and visual symptoms . Early intervention should be considered to prevent fine motor and visual-spatial deficits, as well as behavioral problems.
Functional Plasticity in Somatosensory Cortex Supports Motor Learning by Observing.
McGregor, Heather R; Cashaback, Joshua G A; Gribble, Paul L
2016-04-04
An influential idea in neuroscience is that the sensory-motor system is activated when observing the actions of others [1, 2]. This idea has recently been extended to motor learning, in which observation results in sensory-motor plasticity and behavioral changes in both motor and somatosensory domains [3-9]. However, it is unclear how the brain maps visual information onto motor circuits for learning. Here we test the idea that the somatosensory system, and specifically primary somatosensory cortex (S1), plays a role in motor learning by observing. In experiment 1, we applied stimulation to the median nerve to occupy the somatosensory system with unrelated inputs while participants observed a tutor learning to reach in a force field. Stimulation disrupted motor learning by observing in a limb-specific manner. Stimulation delivered to the right arm (the same arm used by the tutor) disrupted learning, whereas left arm stimulation did not. This is consistent with the idea that a somatosensory representation of the observed effector must be available during observation for learning to occur. In experiment 2, we assessed S1 cortical processing before and after observation by measuring somatosensory evoked potentials (SEPs) associated with median nerve stimulation. SEP amplitudes increased only for participants who observed learning. Moreover, SEPs increased more for participants who exhibited greater motor learning following observation. Taken together, these findings support the idea that motor learning by observing relies on functional plasticity in S1. We propose that visual signals about the movements of others are mapped onto motor circuits for learning via the somatosensory system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Azpurua, Jorge; Mahoney, Rebekah E; Eaton, Benjamin A
2018-04-01
The neuromuscular junction (NMJ) is responsible for transforming nervous system signals into motor behavior and locomotion. In the fruit fly Drosophila melanogaster, an age-dependent decline in motor function occurs, analogous to the decline experienced in mice, humans, and other mammals. The molecular and cellular underpinnings of this decline are still poorly understood. By specifically profiling the transcriptome of Drosophila motor neurons across age using custom microarrays, we found that the expression of the matrix metalloproteinase 1 (dMMP1) gene reproducibly increased in motor neurons in an age-dependent manner. Modulation of physiological aging also altered the rate of dMMP1 expression, validating dMMP1 expression as a bona fide aging biomarker for motor neurons. Temporally controlled overexpression of dMMP1 specifically in motor neurons was sufficient to induce deficits in climbing behavior and cause a decrease in neurotransmitter release at neuromuscular synapses. These deficits were reversible if the dMMP1 expression was shut off again immediately after the onset of motor dysfunction. Additionally, repression of dMMP1 enzymatic activity via overexpression of a tissue inhibitor of metalloproteinases delayed the onset of age-dependent motor dysfunction. MMPs are required for proper tissue architecture during development. Our results support the idea that matrix metalloproteinase 1 is acting as a downstream effector of antagonistic pleiotropy in motor neurons and is necessary for proper development, but deleterious when reactivated at an advanced age. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Functional Diversification of Motor Neuron-specific Isl1 Enhancers during Evolution
Kim, Namhee; Park, Chungoo; Jeong, Yongsu; Song, Mi-Ryoung
2015-01-01
Functional diversification of motor neurons has occurred in order to selectively control the movements of different body parts including head, trunk and limbs. Here we report that transcription of Isl1, a major gene necessary for motor neuron identity, is controlled by two enhancers, CREST1 (E1) and CREST2 (E2) that allow selective gene expression of Isl1 in motor neurons. Introduction of GFP reporters into the chick neural tube revealed that E1 is active in hindbrain motor neurons and spinal cord motor neurons, whereas E2 is active in the lateral motor column (LMC) of the spinal cord, which controls the limb muscles. Genome-wide ChIP-Seq analysis combined with reporter assays showed that Phox2 and the Isl1-Lhx3 complex bind to E1 and drive hindbrain and spinal cord-specific expression of Isl1, respectively. Interestingly, Lhx3 alone was sufficient to activate E1, and this may contribute to the initiation of Isl1 expression when progenitors have just developed into motor neurons. E2 was induced by onecut 1 (OC-1) factor that permits Isl1 expression in LMCm neurons. Interestingly, the core region of E1 has been conserved in evolution, even in the lamprey, a jawless vertebrate with primitive motor neurons. All E1 sequences from lamprey to mouse responded equally well to Phox2a and the Isl1-Lhx3 complex. Conversely, E2, the enhancer for limb-innervating motor neurons, was only found in tetrapod animals. This suggests that evolutionarily-conserved enhancers permit the diversification of motor neurons. PMID:26447474
Functional Diversification of Motor Neuron-specific Isl1 Enhancers during Evolution.
Kim, Namhee; Park, Chungoo; Jeong, Yongsu; Song, Mi-Ryoung
2015-10-01
Functional diversification of motor neurons has occurred in order to selectively control the movements of different body parts including head, trunk and limbs. Here we report that transcription of Isl1, a major gene necessary for motor neuron identity, is controlled by two enhancers, CREST1 (E1) and CREST2 (E2) that allow selective gene expression of Isl1 in motor neurons. Introduction of GFP reporters into the chick neural tube revealed that E1 is active in hindbrain motor neurons and spinal cord motor neurons, whereas E2 is active in the lateral motor column (LMC) of the spinal cord, which controls the limb muscles. Genome-wide ChIP-Seq analysis combined with reporter assays showed that Phox2 and the Isl1-Lhx3 complex bind to E1 and drive hindbrain and spinal cord-specific expression of Isl1, respectively. Interestingly, Lhx3 alone was sufficient to activate E1, and this may contribute to the initiation of Isl1 expression when progenitors have just developed into motor neurons. E2 was induced by onecut 1 (OC-1) factor that permits Isl1 expression in LMCm neurons. Interestingly, the core region of E1 has been conserved in evolution, even in the lamprey, a jawless vertebrate with primitive motor neurons. All E1 sequences from lamprey to mouse responded equally well to Phox2a and the Isl1-Lhx3 complex. Conversely, E2, the enhancer for limb-innervating motor neurons, was only found in tetrapod animals. This suggests that evolutionarily-conserved enhancers permit the diversification of motor neurons.
Holiga, Štefan; Mueller, Karsten; Möller, Harald E.; Urgošík, Dušan; Růžička, Evžen; Schroeter, Matthias L.; Jech, Robert
2015-01-01
During implantation of deep-brain stimulation (DBS) electrodes in the target structure, neurosurgeons and neurologists commonly observe a “microlesion effect” (MLE), which occurs well before initiating subthalamic DBS. This phenomenon typically leads to a transitory improvement of motor symptoms of patients suffering from Parkinson's disease (PD). Mechanisms behind MLE remain poorly understood. In this work, we exploited the notion of ranking to assess spontaneous brain activity in PD patients examined by resting-state functional magnetic resonance imaging in response to penetration of DBS electrodes in the subthalamic nucleus. In particular, we employed a hypothesis-free method, eigenvector centrality (EC), to reveal motor-communication-hubs of the highest rank and their reorganization following the surgery; providing a unique opportunity to evaluate the direct impact of disrupting the PD motor circuitry in vivo without prior assumptions. Penetration of electrodes was associated with increased EC of functional connectivity in the brainstem. Changes in connectivity were quantitatively related to motor improvement, which further emphasizes the clinical importance of the functional integrity of the brainstem. Surprisingly, MLE and DBS were associated with anatomically different EC maps despite their similar clinical benefit on motor functions. The DBS solely caused an increase in connectivity of the left premotor region suggesting separate pathophysiological mechanisms of both interventions. While the DBS acts at the cortical level suggesting compensatory activation of less affected motor regions, the MLE affects more fundamental circuitry as the dysfunctional brainstem predominates in the beginning of PD. These findings invigorate the overlooked brainstem perspective in the understanding of PD and support the current trend towards its early diagnosis. PMID:26509113
Holiga, Štefan; Mueller, Karsten; Möller, Harald E; Urgošík, Dušan; Růžička, Evžen; Schroeter, Matthias L; Jech, Robert
2015-01-01
During implantation of deep-brain stimulation (DBS) electrodes in the target structure, neurosurgeons and neurologists commonly observe a "microlesion effect" (MLE), which occurs well before initiating subthalamic DBS. This phenomenon typically leads to a transitory improvement of motor symptoms of patients suffering from Parkinson's disease (PD). Mechanisms behind MLE remain poorly understood. In this work, we exploited the notion of ranking to assess spontaneous brain activity in PD patients examined by resting-state functional magnetic resonance imaging in response to penetration of DBS electrodes in the subthalamic nucleus. In particular, we employed a hypothesis-free method, eigenvector centrality (EC), to reveal motor-communication-hubs of the highest rank and their reorganization following the surgery; providing a unique opportunity to evaluate the direct impact of disrupting the PD motor circuitry in vivo without prior assumptions. Penetration of electrodes was associated with increased EC of functional connectivity in the brainstem. Changes in connectivity were quantitatively related to motor improvement, which further emphasizes the clinical importance of the functional integrity of the brainstem. Surprisingly, MLE and DBS were associated with anatomically different EC maps despite their similar clinical benefit on motor functions. The DBS solely caused an increase in connectivity of the left premotor region suggesting separate pathophysiological mechanisms of both interventions. While the DBS acts at the cortical level suggesting compensatory activation of less affected motor regions, the MLE affects more fundamental circuitry as the dysfunctional brainstem predominates in the beginning of PD. These findings invigorate the overlooked brainstem perspective in the understanding of PD and support the current trend towards its early diagnosis.
Fitzgerald, Patrick; Mandel, Arkady; Bolton, Anthony E; Sullivan, Aideen M; Nolan, Yvonne
2008-12-22
Failure of the ubiquitin-proteasome system to degrade abnormal proteins may underlie the accumulation of alpha-synuclein and dopaminergic neuronal degeneration that occurs in Parkinson's disease. Consequently, a reduction of functional proteasome activity has been implicated in Parkinson's disease. VP025 (Vasogen Inc.) is a preparation of phospholipid nanoparticles incorporating phosphatidylglycerol that has been shown to have neuroprotective effects. We show that VP025 prevents the deficits in motor coordination and dopamine observed in a proteasome inhibitor rat model of PD. Thus, VP025 may have a therapeutic effect on the impairment of dopaminergic-mediated motor activity induced by proteasome inhibition.
Brunner, Iris C; Skouen, Jan Sture; Ersland, Lars; Grüner, Renate
2014-01-01
Action observation has been suggested as a possible gateway to retraining arm motor function post stroke. However, it is unclear if the neuronal response to action observation is affected by stroke and if it changes during the course of recovery. To examine longitudinal changes in neuronal activity in a group of patients with subacute stroke when observing and executing a bimanual movement task. Eighteen patients were examined twice using 3-T functional magnetic resonance imaging; 1 to 2 weeks and 3 months post stroke symptom onset. Eighteen control participants were examined once. Image time series were analyzed (SPM8) and correlated with clinical motor function scores. During action observation and execution, an overlap of neuronal activation was observed in the superior and inferior parietal lobe, precentral gyrus, insula, and inferior temporal gyrus in both control participants and patients (P < .05; false discovery rate corrected). The neuronal response in the observation task increased from 1 to 2 weeks to 3 months after stroke. Most activated clusters were observed in the inferior temporal gyrus, the thalamus and movement-related areas, such as the premotor, supplementary and motor cortex (BA4, BA6). Increased activation of cerebellum and premotor area correlated with improved arm motor function. Most patients had regained full movement ability. Plastic changes in neurons responding to action observation and action execution occurred in accordance with clinical recovery. The involvement of motor areas when observing actions early and later after stroke may constitute a possible access to the motor system. © The Author(s) 2014.
The effect of Functional Electric Stimulation in stroke patients' motor control - a case report
NASA Astrophysics Data System (ADS)
Pripas, Denise; Rogers Venditi Beas, Allan; Fioramonte, Caroline; Gonsales de Castro, Pedro Claudio; Goroso, Daniel Gustavo; Cecília dos Santos Moreira, Maria
2011-12-01
Functional Electric Stimulation (FES) has been studied as a therapeutic resource to reduce spasticity in hemiplegic patients, however there are no studies about the effects of FES in motor control of these patients during functional tasks like balance maintenance. Muscular activation of gastrocnemius medialis and semitendinosus was investigated in both limbs of a hemiparetic patient during self-disturbed quiet stance before and after FES on tibialis anterior, by surface electromyography. The instant of maximum activation peak of GM and ST were calculated immediately after a motor self-disturbance, in order to observe muscular synergy between these two muscles, and possible balance strategies used (ankle or hip strategy). At the preserved limb there occurred distal-proximal synergy (GM followed by ST), expected for small perturbations; however, at spastic limb there was inversion of this synergy (proximal-distal) after FES. It is possible that intervention of electricity had inhibited synergical pathways due to antidromic effect, making it difficult to use ankle strategy in the spastic limb.
Function of Proline Residues of MotA in Torque Generation by the Flagellar Motor of Escherichia coli
Braun, Timothy F.; Poulson, Susan; Gully, Jonathan B.; Empey, J. Courtney; Van Way, Susan; Putnam, Angélica; Blair, David F.
1999-01-01
Bacterial flagellar motors obtain energy for rotation from the membrane gradient of protons or, in some species, sodium ions. The molecular mechanism of flagellar rotation is not understood. MotA and MotB are integral membrane proteins that function in proton conduction and are believed to form the stator of the motor. Previous mutational studies identified two conserved proline residues in MotA (Pro 173 and Pro 222 in the protein from Escherichia coli) and a conserved aspartic acid residue in MotB (Asp 32) that are important for function. Asp 32 of MotB probably forms part of the proton path through the motor. To learn more about the roles of the conserved proline residues of MotA, we examined motor function in Pro 173 and Pro 222 mutants, making measurements of torque at high load, speed at low and intermediate loads, and solvent-isotope effects (D2O versus H2O). Proton conduction by wild-type and mutant MotA-MotB channels was also assayed, by a growth defect that occurs upon overexpression. Several different mutations of Pro 173 reduced the torque of the motor under high load, and a few prevented motor rotation but still allowed proton flow through the MotA-MotB channels. These and other properties of the mutants suggest that Pro 173 has a pivotal role in coupling proton flow to motor rotation and is positioned in the channel near Asp 32 of MotB. Replacements of Pro 222 abolished function in all assays and were strongly dominant. Certain Pro 222 mutant proteins prevented swimming almost completely when expressed at moderate levels in wild-type cells. This dominance might be caused by rotor-stator jamming, because it was weaker when FliG carried a mutation believed to increase rotor-stator clearance. We propose a mechanism for torque generation, in which specific functions are suggested for the proline residues of MotA and Asp32 of MotB. PMID:10348868
Gillick, Bernadette; Menk, Jeremiah; Mueller, Bryon; Meekins, Gregg; Krach, Linda E; Feyma, Timothy; Rudser, Kyle
2015-11-12
Perinatal stroke occurs in more than 1 in 2,500 live births and resultant congenital hemiparesis necessitates investigation into interventions which may improve long-term function and decreased burden of care beyond current therapies ( http://www.cdc.gov/ncbddd/cp/data.html ). Constraint-Induced Movement Therapy (CIMT) is recognized as an effective hemiparesis rehabilitation intervention. Transcranial direct current stimulation as an adjunct treatment to CIMT may potentiate neuroplastic responses and improve motor function. The methodology of a clinical trial in children designed as a placebo-controlled, serial -session, non-invasive brain stimulation trial incorporating CIMT is described here. The primary hypotheses are 1) that no serious adverse events will occur in children receiving non-invasive brain stimulation and 2) that children in the stimulation intervention group will show significant improvements in hand motor function compared to children in the placebo stimulation control group. A randomized, controlled, double-blinded clinical trial. Twenty children and/or young adults (ages 8-21) with congenital hemiparesis, will be enrolled. The intervention group will receive ten 2-hour sessions of transcranial direct current stimulation combined with constraint-induced movement therapy and the control group will receive sham stimulation with CIMT. The primary outcome measure is safety assessment of transcranial direct current stimulation by physician evaluation, vital sign monitoring and symptom reports. Additionally, hand function will be evaluated using the Assisting Hand Assessment, grip strength and assessment of goals using the Canadian Occupational Performance Measure. Neuroimaging will confirm diagnoses, corticospinal tract integrity and cortical activation. Motor cortical excitability will also be examined using transcranial magnetic stimulation techniques. Combining non-invasive brain stimulation and CIMT interventions has the potential to improve motor function in children with congenital hemiparesis beyond each intervention independently. Such a combined intervention has the potential to benefit an individual throughout their lifetime. Clinicaltrials.gov, NCT02250092 Registered 18 September 2014.
tDCS polarity effects in motor and cognitive domains: a meta-analytical review.
Jacobson, Liron; Koslowsky, Meni; Lavidor, Michal
2012-01-01
In vivo effects of transcranial direct current stimulation (tDCS) have attracted much attention nowadays as this area of research spreads to both the motor and cognitive domains. The common assumption is that the anode electrode causes an enhancement of cortical excitability during stimulation, which then lasts for a few minutes thereafter, while the cathode electrode generates the opposite effect, i.e., anodal-excitation and cathodal-inhibition effects (AeCi). Yet, this dual-polarity effect has not been observed in all tDCS studies. Here, we conducted a meta-analytical review aimed to investigate the homogeneity/heterogeneity of the effect sizes of the AeCi dichotomy in both motor and cognitive functions. The AeCi effect was found to occur quite commonly with motor investigations and rarely in cognitive studies. When the anode electrode is applied over a non-motor area, in most cases, it will cause an excitation as measured by a relevant cognitive or perceptual task; however, the cathode electrode rarely causes an inhibition. We found homogeneity in motor studies and heterogeneity in cognitive studies with the electrode's polarity serving as a moderator that can explain the source of heterogeneity in cognitive studies. The lack of inhibitory cathodal effects might reflect compensation processes as cognitive functions are typically supported by rich brain networks. Further insights as to the polarity and domain interaction are offered, including subdivision to different classes of cognitive functions according to their likelihood of being affected by stimulation.
The Functional Organization and Cortical Connections of Motor Cortex in Squirrels
Cooke, Dylan F.; Padberg, Jeffrey; Zahner, Tony
2012-01-01
Despite extraordinary diversity in the rodent order, studies of motor cortex have been limited to only 2 species, rats and mice. Here, we examine the topographic organization of motor cortex in the Eastern gray squirrel (Sciurus carolinensis) and cortical connections of motor cortex in the California ground squirrel (Spermophilus beecheyi). We distinguish a primary motor area, M1, based on intracortical microstimulation (ICMS), myeloarchitecture, and patterns of connectivity. A sensorimotor area between M1 and the primary somatosensory area, S1, was also distinguished based on connections, functional organization, and myeloarchitecture. We term this field 3a based on similarities with area 3a in nonrodent mammals. Movements are evoked with ICMS in both M1 and 3a in a roughly somatotopic pattern. Connections of 3a and M1 are distinct and suggest the presence of a third far rostral field, termed “F,” possibly involved in motor processing based on its connections. We hypothesize that 3a is homologous to the dysgranular zone (DZ) in S1 of rats and mice. Our results demonstrate that squirrels have both similar and unique features of M1 organization compared with those described in rats and mice, and that changes in 3a/DZ borders appear to have occurred in both lineages. PMID:22021916
Concurrent silent strokes impair motor function by limiting behavioral compensation.
Faraji, Jamshid; Kurio, Kristyn; Metz, Gerlinde A
2012-08-01
Silent strokes occur more frequently than classic strokes; however, symptoms may go unreported in spite of lasting tissue damage. A silent stroke may indicate elevated susceptibility to recurrent stroke, which may eventually result in apparent and lasting impairments. Here we investigated if multiple silent strokes to the motor system challenge the compensatory capacity of the brain to cumulatively result in permanent functional deficits. Adult male rats with focal ischemia received single focal ischemic mini-lesions in the sensorimotor cortex (SMC) or the dorsolateral striatum (DLS), or multiple lesions affecting both SMC and DLS. The time course and outcome of motor compensation and recovery were determined by quantitative and qualitative assessment of skilled reaching and skilled walking. Rats with SMC or DLS lesion alone did not show behavioral deficits in either task. However, the combination of focal ischemic lesions in SMC and DLS perturbed skilled reaching accuracy and disrupted forelimb placement in the ladder rung walking task. These observations suggest that multiple focal infarcts, each resembling a silent stroke, gradually compromise the plastic capacity of the motor system to cause permanent motor deficits. Moreover, these findings support the notion that cortical and subcortical motor systems cooperate when adopting beneficial compensatory movement strategies. Copyright © 2012 Elsevier Inc. All rights reserved.
Brain activation associated with eccentric movement: A narrative review of the literature.
Perrey, Stéphane
2018-02-01
The movement occurring when a muscle exerts tension while lengthening is known as eccentric muscle action. Literature contains limited evidence on how our brain controls eccentric movement. However, how the cortical regions in the motor network are activated during eccentric muscle actions may be critical for understanding the underlying control mechanism of eccentric movements encountered in daily tasks. This is a novel topic that has only recently begun to be investigated through advancements in neuroimaging methods (electroencephalography, EEG; functional magnetic resonance imaging, fMRI). This review summarizes a selection of seven studies indicating mainly: longer time and higher cortical signal amplitude (EEG) for eccentric movement preparation and execution, greater magnitude of cortical signals with wider activated brain area (EEG, fMRI), and weaker brain functional connectivity (fMRI) between primary motor cortex (M1) and other cortical areas involved in the motor network during eccentric muscle actions. Only some differences among studies due to the forms of movement with overload were observed in the contralateral (to the active hand) M1 activity during eccentric movement. Altogether, the findings indicate an important challenge to the brain for controlling the eccentric movement. However, our understanding remains limited regarding the acute effects of eccentric exercise on cortical regions and their cooperation as functional networks that support motor functions. Further analysis and standardized protocols will provide deeper insights into how different cortical regions of the underlying motor network interplay with each other in increasingly demanding muscle exertions in eccentric mode.
The ALS gene FUS regulates synaptic transmission at the Drosophila neuromuscular junction
Machamer, James B.; Collins, Sarah E.; Lloyd, Thomas E.
2014-01-01
Mutations in the RNA binding protein Fused in sarcoma (FUS) are estimated to account for 5–10% of all inherited cases of amyotrophic lateral sclerosis (ALS), but the function of FUS in motor neurons is poorly understood. Here, we investigate the early functional consequences of overexpressing wild-type or ALS-associated mutant FUS proteins in Drosophila motor neurons, and compare them to phenotypes arising from loss of the Drosophila homolog of FUS, Cabeza (Caz). We find that lethality and locomotor phenotypes correlate with levels of FUS transgene expression, indicating that toxicity in developing motor neurons is largely independent of ALS-linked mutations. At the neuromuscular junction (NMJ), overexpression of either wild-type or mutant FUS results in decreased number of presynaptic active zones and altered postsynaptic glutamate receptor subunit composition, coinciding with a reduction in synaptic transmission as a result of both reduced quantal size and quantal content. Interestingly, expression of human FUS downregulates endogenous Caz levels, demonstrating that FUS autoregulation occurs in motor neurons in vivo. However, loss of Caz from motor neurons increases synaptic transmission as a result of increased quantal size, suggesting that the loss of Caz in animals expressing FUS does not contribute to motor deficits. These data demonstrate that FUS/Caz regulates NMJ development and plays an evolutionarily conserved role in modulating the strength of synaptic transmission in motor neurons. PMID:24569165
Turner, Bradley J; Alfazema, Neza; Sheean, Rebecca K; Sleigh, James N; Davies, Kay E; Horne, Malcolm K; Talbot, Kevin
2014-04-01
Spinal muscular atrophy results from diminished levels of survival motor neuron (SMN) protein in spinal motor neurons. Low levels of SMN also occur in models of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1) and genetic reduction of SMN levels exacerbates the phenotype of transgenic SOD1(G93A) mice. Here, we demonstrate that SMN protein is significantly reduced in the spinal cords of patients with sporadic ALS. To test the potential of SMN as a modifier of ALS, we overexpressed SMN in 2 different strains of SOD1(G93A) mice. Neuronal overexpression of SMN significantly preserved locomotor function, rescued motor neurons, and attenuated astrogliosis in spinal cords of SOD1(G93A) mice. Despite this, survival was not prolonged, most likely resulting from SMN mislocalization and depletion of gems in motor neurons of symptomatic mice. Our results reveal that SMN upregulation slows locomotor deficit onset and motor neuron loss in this mouse model of ALS. However, disruption of SMN nuclear complexes by high levels of mutant SOD1, even in the presence of SMN overexpression, might limit its survival promoting effects in this specific mouse model. Studies in emerging mouse models of ALS are therefore warranted to further explore the potential of SMN as a modifier of ALS. Copyright © 2014 Elsevier Inc. All rights reserved.
Abe, Yasunori; Kato, Chiho; Uchima Koecklin, Karin Harumi; Okihara, Hidemasa; Ishida, Takayoshi; Fujita, Koichi; Yabushita, Tadachika; Kokai, Satoshi; Ono, Takashi
2017-06-01
Postnatal growth is influenced by genetic and environmental factors. Nasal obstruction during growth alters the electromyographic activity of orofacial muscles. The facial primary motor area represents muscles of the tongue and jaw, which are essential in regulating orofacial motor functions, including chewing and jaw opening. This study aimed to evaluate the effect of chronic unilateral nasal obstruction during growth on the motor representations within the face primary motor cortex (M1). Seventy-two 6-day-old male Wistar rats were randomly divided into control ( n = 36) and experimental ( n = 36) groups. Rats in the experimental group underwent unilateral nasal obstruction after cauterization of the external nostril at 8 days of age. Intracortical microstimulation (ICMS) mapping was performed when the rats were 5, 7, 9, and 11 wk old in control and experimental groups ( n = 9 per group per time point). Repeated-measures multivariate ANOVA was used for intergroup and intragroup statistical comparisons. In the control and experimental groups, the total number of positive ICMS sites for the genioglossus and anterior digastric muscles was significantly higher at 5, 7, and 9 wk, but there was no significant difference between 9 and 11 wk of age. Moreover, the total number of positive ICMS sites was significantly smaller in the experimental group than in the control at each age. It is possible that nasal obstruction induced the initial changes in orofacial motor behavior in response to the altered respiratory pattern, which eventually contributed to face-M1 neuroplasticity. NEW & NOTEWORTHY Unilateral nasal obstruction in rats during growth periods induced changes in arterial oxygen saturation (SpO 2 ) and altered development of the motor representation within the face primary cortex. Unilateral nasal obstruction occurring during growth periods may greatly affect not only respiratory function but also craniofacial function in rats. Nasal obstruction should be treated as soon as possible to avoid adverse effects on normal growth, development, and physiological functions. Copyright © 2017 the American Physiological Society.
Cilia/Ift protein and motor -related bone diseases and mouse models.
Yuan, Xue; Yang, Shuying
2015-01-01
Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways.
Brain-wide neuronal dynamics during motor adaptation in zebrafish.
Ahrens, Misha B; Li, Jennifer M; Orger, Michael B; Robson, Drew N; Schier, Alexander F; Engert, Florian; Portugues, Ruben
2012-05-09
A fundamental question in neuroscience is how entire neural circuits generate behaviour and adapt it to changes in sensory feedback. Here we use two-photon calcium imaging to record the activity of large populations of neurons at the cellular level, throughout the brain of larval zebrafish expressing a genetically encoded calcium sensor, while the paralysed animals interact fictively with a virtual environment and rapidly adapt their motor output to changes in visual feedback. We decompose the network dynamics involved in adaptive locomotion into four types of neuronal response properties, and provide anatomical maps of the corresponding sites. A subset of these signals occurred during behavioural adjustments and are candidates for the functional elements that drive motor learning. Lesions to the inferior olive indicate a specific functional role for olivocerebellar circuitry in adaptive locomotion. This study enables the analysis of brain-wide dynamics at single-cell resolution during behaviour.
Brain-wide neuronal dynamics during motor adaptation in zebrafish
Ahrens, Misha B; Li, Jennifer M; Orger, Michael B; Robson, Drew N; Schier, Alexander F; Engert, Florian; Portugues, Ruben
2013-01-01
A fundamental question in neuroscience is how entire neural circuits generate behavior and adapt it to changes in sensory feedback. Here we use two-photon calcium imaging to record activity of large populations of neurons at the cellular level throughout the brain of larval zebrafish expressing a genetically-encoded calcium sensor, while the paralyzed animals interact fictively with a virtual environment and rapidly adapt their motor output to changes in visual feedback. We decompose the network dynamics involved in adaptive locomotion into four types of neural response properties, and provide anatomical maps of the corresponding sites. A subset of these signals occurred during behavioral adjustments and are candidates for the functional elements that drive motor learning. Lesions to the inferior olive indicate a specific functional role for olivocerebellar circuitry in adaptive locomotion. This study enables the analysis of brain-wide dynamics at single-cell resolution during behavior. PMID:22622571
Late onset seizures, hemiparesis and blindness in hemolytic uremic syndrome.
Bennett, B; Booth, T; Quan, A
2003-03-01
Neurologic complications of hemolytic uremic syndrome, including seizures, usually occur early during the acute phase of the illness. We report a3-year-old girl with classic diarrhea-associated hemolytic uremic syndrome who developed late onset seizures, hemiparesis and transient blindness on the 17th hospital day, at which time her recovery was characterized by improvement in her blood pressure, serum electrolytes, renal function, hematocrit and platelet count. A CT and MR revealed brainstem and posterior parietal and occipital infarct/edema. The association of these radiologic findings within the posterior distribution along with visual loss and seizures are unique to posterior reversible encephalopathy syndrome. Within 7 days, she regained motor function and vision and had no further seizure activity. At 6 months follow-up, physical examination revealed normal motor function and vision and a repeat MR showed near resolution of the previous findings with minimal occipital lobe gliosis. This case report describes the uncommon finding of late onset seizures occurring during the recovery phase of hemolytic uremic syndrome with MR findings consistent with posterior reversible encephalopathy syndrome.
Bell, Kristie L; Boyd, Roslyn N; Tweedy, Sean M; Weir, Kelly A; Stevenson, Richard D; Davies, Peter S W
2010-04-06
Cerebral palsy is the most common cause of physical disability in childhood, occurring in one in 500 children. It is caused by a static brain lesion in the neonatal period leading to a range of activity limitations. Oral motor and swallowing dysfunction, poor nutritional status and poor growth are reported frequently in young children with cerebral palsy and may impact detrimentally on physical and cognitive development, health care utilisation, participation and quality of life in later childhood. The impact of modifiable factors (dietary intake and physical activity) on growth, nutritional status, and body composition (taking into account motor severity) in this population is poorly understood. This study aims to investigate the relationship between a range of factors - linear growth, body composition, oral motor and feeding dysfunction, dietary intake, and time spent sedentary (adjusting for motor severity) - and health outcomes, health care utilisation, participation and quality of life in young children with cerebral palsy (from corrected age of 18 months to 5 years). This prospective, longitudinal, population-based study aims to recruit a total of 240 young children with cerebral palsy born in Queensland, Australia between 1st September 2006 and 31st December 2009 (80 from each birth year). Data collection will occur at three time points for each child: 17 - 25 months corrected age, 36 +/- 1 months and 60 +/- 1 months. Outcomes to be assessed include linear growth, body weight, body composition, dietary intake, oral motor function and feeding ability, time spent sedentary, participation, medical resource use and quality of life. This protocol describes a study that will provide the first longitudinal description of the relationship between functional attainment and modifiable lifestyle factors (dietary intake and habitual time spent sedentary) and their impact on the growth, body composition and nutritional status of young children with cerebral palsy across all levels of functional ability.
2010-01-01
Background Cerebral palsy is the most common cause of physical disability in childhood, occurring in one in 500 children. It is caused by a static brain lesion in the neonatal period leading to a range of activity limitations. Oral motor and swallowing dysfunction, poor nutritional status and poor growth are reported frequently in young children with cerebral palsy and may impact detrimentally on physical and cognitive development, health care utilisation, participation and quality of life in later childhood. The impact of modifiable factors (dietary intake and physical activity) on growth, nutritional status, and body composition (taking into account motor severity) in this population is poorly understood. This study aims to investigate the relationship between a range of factors - linear growth, body composition, oral motor and feeding dysfunction, dietary intake, and time spent sedentary (adjusting for motor severity) - and health outcomes, health care utilisation, participation and quality of life in young children with cerebral palsy (from corrected age of 18 months to 5 years). Design/Methods This prospective, longitudinal, population-based study aims to recruit a total of 240 young children with cerebral palsy born in Queensland, Australia between 1st September 2006 and 31st December 2009 (80 from each birth year). Data collection will occur at three time points for each child: 17 - 25 months corrected age, 36 ± 1 months and 60 ± 1 months. Outcomes to be assessed include linear growth, body weight, body composition, dietary intake, oral motor function and feeding ability, time spent sedentary, participation, medical resource use and quality of life. Discussion This protocol describes a study that will provide the first longitudinal description of the relationship between functional attainment and modifiable lifestyle factors (dietary intake and habitual time spent sedentary) and their impact on the growth, body composition and nutritional status of young children with cerebral palsy across all levels of functional ability. PMID:20370929
Cerebellar Plasticity and Motor Learning Deficits in a Copy Number Variation Mouse Model of Autism
Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian
2014-01-01
A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behavior and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behavior deficits. We find that in patDp/+ mice delay eyeblink conditioning—a form of cerebellum-dependent motor learning—is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fiber-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibers—a model for activity-dependent synaptic pruning—is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism. PMID:25418414
Robotic Characterization of Ipsilesional Motor Function in Subacute Stroke.
Semrau, Jennifer A; Herter, Troy M; Kenzie, Jeffrey M; Findlater, Sonja E; Scott, Stephen H; Dukelow, Sean P
2017-06-01
Poststroke impairments of the ipsilesional arm are often discussed, but rarely receive focused rehabilitation. Ipsilesional deficits may affect daily function and although many studies have investigated them in chronic stroke, few characterizations have been made in the subacute phase. Furthermore, most studies have quantified ipsilesional deficits using clinical measures that can fail to detect subtle, but important deficits in motor function. We aimed to quantify reaching deficits of the contra- and ipsilesional limbs in the subacute phase poststroke. A total of 227 subjects with first-time, unilateral stroke completed a unilateral assessment of motor function (visually guided reaching) using a KINARM robot. Subjects completed the task with both the ipsi- and contralesional arms. Subjects were assessed on a variety of traditional clinical measures (Functional Independence Measure, Chedoke-McMaster Stroke Assessment, Purdue Pegboard, Behavioral Inattention Test) to compare with robotic measures of motor function. Ipsilesional deficits were common and occurred in 37% (n = 84) of subjects. Impairments of the ipsilesional and contralesional arm were weakly to moderately correlated on robotic measures. Magnitude of impairment of the contralesional arm was similar for subjects with and without ipsilesional deficits. Furthermore, we found that a higher percentage of subjects with right-hemisphere stroke had ipsilesional deficits and more subjects with left-hemisphere subcortical strokes did not have ipsilesional deficits. Magnitude of contralesional impairment and lesion location may be poor predictors of individuals with ipsilesional impairments after stroke. Careful characterization of ipsilesional deficits could identify individuals who may benefit from rehabilitation of the less affected arm.
Arizono, Naoki
2016-01-01
The self-identification, which is called sense of ownership, has been researched through methodology of rubber hand illusion (RHI) because of its simple setup. Although studies with neuroimaging technique, such as fMRI, revealed that several brain areas are associated with the sense of ownership, near-infrared spectroscopy (NIRS) has not yet been utilized. Here we introduced an automated setup to induce RHI, measured the brain activity during the RHI with NIRS, and analyzed the functional connectivity so as to understand dynamical brain relationship regarding the sense of ownership. The connectivity was evaluated by multivariate Granger causality. In this experiment, the peaks of oxy-Hb on right frontal and right motor related areas during the illusion were significantly higher compared with those during the nonillusion. Furthermore, by analyzing the NIRS recordings, we found a reliable connectivity from the frontal to the motor related areas during the illusion. This finding suggests that frontal cortex and motor related areas communicate with each other when the sense of ownership is induced. The result suggests that the sense of ownership is related to neural mechanism underlying human motor control, and it would be determining whether motor learning (i.e., neural plasticity) will occur. Thus RHI with the functional connectivity analysis will become an appropriate biomarker for neurorehabilitation. PMID:27413556
Alterations in the small intestinal wall and motor function after repeated cisplatin in rat.
Uranga, J A; García-Martínez, J M; García-Jiménez, C; Vera, G; Martín-Fontelles, M I; Abalo, R
2017-07-01
Gastrointestinal adverse effects occurring during cancer chemotherapy are well known and feared; those persisting once treatment has finished are relatively unknown. We characterized the alterations occurring in the rat small intestine, after repeated treatment with cisplatin. Male Wistar rats received saline or cisplatin (2 mg kg -1 week -1 , for 5 weeks, ip). Gastric motor function was studied non-invasively throughout treatment (W1-W5) and 1 week after treatment finalization (W6). During W6, upper gastrointestinal motility was also invasively studied and small intestinal samples were collected for histopathological and molecular studies. Structural alterations in the small intestinal wall, mucosa, submucosa, muscle layers, and lymphocytic nodules were histologically studied. Periodic acid-Schiff staining and immunohistochemistry for Ki-67, chromogranin A, and neuronal-specific enolase were used to detect secretory, proliferating, endocrine and neural cells, respectively. The expression of different markers in the tunica muscularis was analyzed by RT/qPCR. Repeated cisplatin induced motility alterations during and after treatment. After treatment (W6), the small intestinal wall showed histopathological alterations in most parameters measured, including a reduction in the thickness of circular and longitudinal muscle layers. Expression of c-KIT (for interstitial cells of Cajal), nNOS (for inhibitory motor neurons), pChAT, and cChAT (for excitatory motor neurons) increased significantly (although both ChATs to a lesser extent). Repeated cisplatin induces relatively long-lasting gut dysmotility in rat associated with important histopathological and molecular alterations in the small intestinal wall. In cancer survivors, the possible chemotherapy-induced histopathological, molecular, and functional intestinal sequelae should be evaluated. © 2017 John Wiley & Sons Ltd.
Au, Ngan Pan Bennett; Kumar, Gajendra; Asthana, Pallavi; Tin, Chung; Mak, Yim Ling; Chan, Leo Lai; Lam, Paul Kwan Sing; Ma, Chi Him Eddie
2016-05-27
Ciguatera fish poisoning (CFP) results from consumption of tropical reef fish containing ciguatoxins (CTXs). Pacific (P)-CTX-1 is among the most potent known CTXs and the predominant source of CFP in the endemic region responsible for the majority of neurological symptoms in patients. Chronic and persistent neurological symptoms occur in some CFP patients, which often result in incomplete functional recovery for years. However, the direct effects of exposure to CTXs remain largely unknown. In present study, we exposed mice to CTX purified from ciguatera fish sourced from the Pacific region. P-CTX-1 was detected in peripheral nerves within hours and persisted for two months after exposure. P-CTX-1 inhibited axonal regrowth from axotomized peripheral neurons in culture. P-CTX-1 exposure reduced motor function in mice within the first two weeks of exposure before returning to baseline levels. These pre-exposed animals exhibited delayed sensory and motor functional recovery, and irreversible motor deficits after peripheral nerve injury in which formation of functional synapses was impaired. These findings are consistent with reduced muscle function, as assessed by electromyography recordings. Our study provides strong evidence that the persistence of P-CTX-1 in peripheral nerves reduces the intrinsic growth capacity of peripheral neurons, resulting in delayed functional recovery after injury.
Paralysis recovery in humans and model systems
NASA Technical Reports Server (NTRS)
Edgerton, V. Reggie; Roy, Roland R.
2002-01-01
Considerable evidence now demonstrates that extensive functional and anatomical reorganization following spinal cord injury occurs in centers of the brain that have some input into spinal motor pools. This is very encouraging, given the accumulating evidence that new connections formed across spinal lesions may not be initially functionally useful. The second area of advancement in the field of paralysis recovery is in the development of effective interventions to counter axonal growth inhibition. A third area of significant progress is the development of robotic devices to quantify the performance level of motor tasks following spinal cord injury and to 'teach' the spinal cord to step and stand. Advances are being made with robotic devices for mice, rats and humans.
Papadopoulos, Nicole; McGinley, Jennifer; Tonge, Bruce; Bradshaw, John; Saunders, Kerryn; Murphy, Anna; Rinehart, Nicole
2012-11-01
The relationship of motor proficiency with emotional/behavioural disturbance, autistic symptoms and communication disturbance was investigated in children diagnosed with autism and Asperger's disorder (AD). The Movement Assessment Battery for Children was used as a measure of motor impairment, and the Developmental Behavioural Checklist was used as a measure of emotional/behavioural disturbance in the following groups: AD (n = 22), high functioning autism (HFA) (n = 23), LFA (n = 8) and typically developing children (n = 20). The HFA group had more difficulty with motor items, such as ball skills and balance, than did the AD group. There were significant positive correlations between impairments in motor proficiency (in particular ball skills and balance) and emotional/behavioural disturbance, autistic symptoms and communication disturbance. These findings are consistent with the hypothesis that there are qualitative and quantitative differences in the motor profile between autism and AD. In addition, the association between motor proficiency impairment and emotional/behavioural disturbance in autism and AD emphasizes the importance for screening of co-occurring emotional/behavioural symptoms in individuals with motor difficulties. These findings have implications for the potential use of adjunct motor measures in the diagnosis and definition of autism spectrum disorders.
Frontal lobe dementia and motor neuron disease.
Neary, D; Snowden, J S; Mann, D M; Northen, B; Goulding, P J; Macdermott, N
1990-01-01
Four patients are described, in whom a profound and rapidly progressive dementia occurred in association with clinical features of motor neuron disease. The pattern of dementia indicated impaired frontal lobe function, confirmed by reduced tracer uptake in the frontal lobes on single photon emission computed tomography (SPECT). Pathological examination of the brains of two patients revealed frontal-lobe atrophy, with mild gliosis and spongiform change. The spinal cord changes were consistent with motor neuron disease. The clinical picture and pathological findings resembled those of dementia of frontal-lobe type and were distinct from those of Alzheimer's disease. The findings have implications for the understanding of the spectrum of non-Alzheimer forms of primary degenerative dementia. Images PMID:2303828
Gu, Zirong; Serradj, Najet; Ueno, Masaki; Liang, Mishi; Li, Jie; Baccei, Mark L.; Martin, John H.; Yoshida, Yutaka
2017-01-01
Early postnatal mammals, including human babies, can perform only basic motor tasks. The acquisition of skilled behaviors occurs later, requiring anatomical changes in neural circuitry to support the development of coordinated activation or suppression of functionally related muscle groups. How this circuit reorganization occurs during postnatal development remains poorly understood. Here we explore the connectivity between corticospinal (CS) neurons in the motor cortex and muscles in mice. Using trans-synaptic viral and electrophysiological assays, we identify the early postnatal reorganization of CS circuitry for antagonistic muscle pairs. We further show that this synaptic rearrangement requires the activity-dependent, non-apoptotic Bax/Bak-caspase signaling cascade. Adult Bax/Bak mutant mice exhibit aberrant co-activation of antagonistic muscle pairs and skilled grasping deficits but normal reaching and retrieval behaviors. Our findings reveal key cellular and molecular mechanisms driving postnatal motor circuit reorganization and the resulting impacts on muscle activation patterns and the execution of skilled movements. PMID:28472660
Chipman, Peter H.; Schachner, Melitta
2014-01-01
The function of neural cell adhesion molecule (NCAM) expression in motor neurons during axonal sprouting and compensatory reinnervation was explored by partially denervating soleus muscles in mice lacking presynaptic NCAM (Hb9creNCAMflx). In agreement with previous studies, the contractile force of muscles in wild-type (NCAM+/+) mice recovered completely 2 weeks after 75% of the motor innervation was removed because motor unit size increased by 2.5 times. In contrast, similarly denervated muscles in Hb9creNCAMflx mice failed to recover the force lost due to the partial denervation because motor unit size did not change. Anatomical analysis indicated that 50% of soleus end plates were completely denervated 1–4 weeks post-partial denervation in Hb9creNCAMflx mice, while another 25% were partially reinnervated. Synaptic vesicles (SVs) remained at extrasynaptic regions in Hb9creNCAMflx mice rather than being distributed, as occurs normally, to newly reinnervated neuromuscular junctions (NMJs). Electrophysiological analysis revealed two populations of NMJs in partially denervated Hb9creNCAMflx soleus muscles, one with high (mature) quantal content, and another with low (immature) quantal content. Extrasynaptic SVs in Hb9creNCAMflx sprouts were associated with L-type voltage-dependent calcium channel (L-VDCC) immunoreactivity and maintained an immature, L-VDCC-dependent recycling phenotype. Moreover, acute nifedipine treatment potentiated neurotransmission at newly sprouted NMJs, while chronic intraperitoneal treatment with nifedipine during a period of synaptic consolidation enhanced functional motor unit expansion in the absence of presynaptic NCAM. We propose that presynaptic NCAM bridges a critical link between the SV cycle and the functional expansion of synaptic territory through the regulation of L-VDCCs. PMID:25100585
Gastric motor dysfunctions in Parkinson's disease: Current pre-clinical evidence.
Pellegrini, Carolina; Antonioli, Luca; Colucci, Rocchina; Ballabeni, Vigilio; Barocelli, Elisabetta; Bernardini, Nunzia; Blandizzi, Corrado; Fornai, Matteo
2015-12-01
Parkinson's disease (PD) is associated with several non-motor symptoms, such as behavioral changes, urinary dysfunction, sleep disorders, fatigue and, above all, gastrointestinal (GI) dysfunction, including gastric dysmotility, constipation and anorectal dysfunction. Delayed gastric emptying, progressing to gastroparesis, is reported in up to 100% of patients with PD, and it occurs at all stages of the disease with severe consequences to the patient's quality of life. The presence of α-synuclein (α-syn) aggregates in myenteric neurons throughout the digestive tract, as well as morpho-functional alterations of the enteric nervous system (ENS), have been documented in PD. In particular, gastric dysmotility in PD has been associated with an impairment of the brain-gut axis, involving the efferent fibers of the vagal pathway projecting directly to the gastric myenteric plexus. The present review intends to provide an integrated overview of available knowledge on the possible role played by the ENS, considered as a semi-autonomous nervous network, in the pathophysiology of gastric dysmotility in PD. Particular attention has been paid review how translational evidence in humans and studies in pre-clinical models are allowing a better understanding of the functional, neurochemical and molecular alterations likely underlying gastric motor abnormalities occurring in PD. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rades, Dirk, E-mail: Rades.Dirk@gmx.net; Huttenlocher, Stefan; Bajrovic, Amira
Purpose: Despite a previously published randomized trial, controversy exists regarding the benefit of adding surgery to radiotherapy for metastatic spinal cord compression (MSCC). It is thought that patients with MSCC from relatively radioresistant tumors or tumors associated with poor functional outcome after radiotherapy alone may benefit from surgery. This study focuses on these tumors. Methods and Materials: Data from 67 patients receiving surgery plus radiotherapy (S+RT) were matched to 134 patients (1:2) receiving radiotherapy alone (RT). Groups were matched for 10 factors and compared for motor function, ambulatory status, local control, and survival. Additional separate matched-pair analyses were performed formore » patients receiving direct decompressive surgery plus stabilization of involved vertebrae (DDSS) and patients receiving laminectomy (LE). Results: Improvement of motor function occurred in 22% of patients after S+RT and 16% after RT (p = 0.25). Posttreatment ambulatory rates were 67% and 61%, respectively (p = 0.68). Of nonambulatory patients, 29% and 19% (p = 0.53) regained ambulatory status. One-year local control rates were 85% and 89% (p = 0.87). One-year survival rates were 38% and 24% (p = 0.20). The matched-pair analysis of patients receiving LE showed no significant differences between both therapies. In the matched-pair analysis of patients receiving DDSS, improvement of motor function occurred more often after DDSS+RT than RT (28% vs. 19%, p = 0.024). Posttreatment ambulatory rates were 86% and 67% (p = 0.30); 45% and 18% of patients regained ambulatory status (p = 0.29). Conclusions: Patients with MSCC from an unfavorable primary tumor appeared to benefit from DDSS but not LE when added to radiotherapy in terms of improved functional outcome.« less
Nelson, Lindsey; Lapsiwala, Samir; Haughton, Victor M; Noyes, Jane; Sadrzadeh, Amir H; Moritz, Chad H; Meyerand, M Elizabeth; Badie, Behnam
2002-11-01
Injury to the supplementary motor area (SMA) is thought to be responsible for transient motor and speech deficits following resection of tumors involving the medial frontal lobe. Because direct intraoperative localization of SMA is difficult, the authors hypothesized that functional magnetic resonance (fMR) imaging might be useful in predicting the risk of postoperative deficits in patients who undergo resection of tumors in this region. Twelve patients who had undergone fMR imaging mapping while performing speech and motor tasks prior to excision of their tumor, that is, based on anatomical landmarks involving the SMA, were included in this study. The distance between the edge of the tumor and the center of SMA activation was measured and was correlated with the risk of incurring postoperative neurological deficits. In every patient, SMA activation was noted in the superior frontal gyrus on preoperative fMR imaging. Two speech and two motor deficits typical of SMA injury were observed in three of the 12 patients. The two speech deficits occurred in patients with tumors involving the dominant hemisphere, whereas one of the motor deficits occurred in a patient with a tumor in the nondominant hemisphere. The risk of developing a postoperative speech or motor deficit was 100% when the distance between the SMA and the tumor was 5 mm or less. When the distance between SMA activation and the lesion was greater than 5 mm, the risk of developing a motor or a speech deficit was 0% (p = 0.0007). Early data from this study indicated that fMR imaging might be useful in localizing the SMA and in determining the risk of postoperative deficits in patients who undergo resection of tumors located in the medial frontal lobe.
Behavioral toxicology, risk assessment, and chlorinated hydrocarbons.
Evangelista de Duffard, A M; Duffard, R
1996-01-01
Behavioral end points are being used with greater frequency in neurotoxicology to detect and characterize the adverse effects of chemicals on the nervous system. Behavioral measures are particularly important for neurotoxicity risk assessment since many known neurotoxicants do not result in neuropathology. The chlorinated hydrocarbon class consists of a wide variety of chemicals including polychlorinated biphenyls, clioquinol, trichloroethylene, hexachlorophene, organochlorine insecticides (DDT, dicofol, chlordecone,dieldrin, and lindane), and phenoxyherbicides. Each of these chemicals has effects on motor, sensory, or cognitive function that are detectable using functional measures such as behavior. Furthermore, there is evidence that if exposure occurs during critical periods of development, many of the chlorinated hydrocarbons are developmental neurotoxicants. Developmental neurotoxicity is frequently expressed as alterations in motor function or cognitive abilities or changes in the ontogeny of sensorimotor reflexes. Neurotoxicity risk assessment should include assessments of the full range of possible neurotoxicological effects, including both structural and functional indicators of neurotoxicity. PMID:9182042
Insights into the mechanisms underlying colonic motor patterns
Dinning, Phil G.; Brookes, Simon J.; Costa, Marcello
2016-01-01
Abstract In recent years there have been significant technical and methodological advances in our ability to record the movements of the gastrointestinal tract. This has led to significant changes in our understanding of the different types of motor patterns that exist in the gastrointestinal tract (particularly the large intestine) and in our understanding of the mechanisms underlying their generation. Compared with other tubular smooth muscle organs, a rich variety of motor patterns occurs in the large intestine. This reflects a relatively autonomous nervous system in the gut wall, which has its own unique population of sensory neurons. Although the enteric nervous system can function independently of central neural inputs, under physiological conditions bowel motility is influenced by the CNS: if spinal pathways are disrupted, deficits in motility occur. The combination of high resolution manometry and video imaging has improved our knowledge of the range of motor patterns and provided some insight into the neural and mechanical factors underlying propulsion of contents. The neural circuits responsible for the generation of peristalsis and colonic migrating motor complexes have now been identified to lie within the myenteric plexus and do not require inputs from the mucosa or submucosal ganglia for their generation, but can be modified by their activity. This review will discuss the recent advances in our understanding of the different patterns of propagating motor activity in the large intestine of mammals and how latest technologies have led to major changes in our understanding of the mechanisms underlying their generation. PMID:26990133
An autonomous chemically fuelled small-molecule motor
NASA Astrophysics Data System (ADS)
Wilson, Miriam R.; Solà, Jordi; Carlone, Armando; Goldup, Stephen M.; Lebrasseur, Nathalie; Leigh, David A.
2016-06-01
Molecular machines are among the most complex of all functional molecules and lie at the heart of nearly every biological process. A number of synthetic small-molecule machines have been developed, including molecular muscles, synthesizers, pumps, walkers, transporters and light-driven and electrically driven rotary motors. However, although biological molecular motors are powered by chemical gradients or the hydrolysis of adenosine triphosphate (ATP), so far there are no synthetic small-molecule motors that can operate autonomously using chemical energy (that is, the components move with net directionality as long as a chemical fuel is present). Here we describe a system in which a small molecular ring (macrocycle) is continuously transported directionally around a cyclic molecular track when powered by irreversible reactions of a chemical fuel, 9-fluorenylmethoxycarbonyl chloride. Key to the design is that the rate of reaction of this fuel with reactive sites on the cyclic track is faster when the macrocycle is far from the reactive site than when it is near to it. We find that a bulky pyridine-based catalyst promotes carbonate-forming reactions that ratchet the displacement of the macrocycle away from the reactive sites on the track. Under reaction conditions where both attachment and cleavage of the 9-fluorenylmethoxycarbonyl groups occur through different processes, and the cleavage reaction occurs at a rate independent of macrocycle location, net directional rotation of the molecular motor continues for as long as unreacted fuel remains. We anticipate that autonomous chemically fuelled molecular motors will find application as engines in molecular nanotechnology.
A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition.
Statton, Matthew A; Encarnacion, Marysol; Celnik, Pablo; Bastian, Amy J
2015-01-01
Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise-resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation programs.
A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition
Statton, Matthew A.; Encarnacion, Marysol; Celnik, Pablo; Bastian, Amy J.
2015-01-01
Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise–resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation programs. PMID:26506413
Kalderon, N; Xu, S; Koutcher, J A; Fuks, Z
2001-06-22
Previous studies suggest that motor recovery does not occur after spinal cord injury because reactive glia abort the natural repair processes. A permanent wound gap is left in the cord and the brain-cord circuitry consequently remains broken. Single-dose x-irradiation destroys reactive glia at the damage site in transected adult rat spinal cord. The wound then heals naturally, and a partially functional brain-cord circuitry is reconstructed. Timing is crucial; cell ablation is beneficial only within the third week after injury. Data presented here point to the possibility of translating these observations into a clinical therapy for preventing the paralysis following spinal cord injury in the human. The lesion site (at low thoracic level) in severed adult rat spinal cord was treated daily, over the third week postinjury, with protocols of fractionated radiation similar to those for treating human spinal cord tumors. This resulted, as with the single-dose protocol, in wound healing and restoration of some hindquarter motor function; in addition, the beneficial outcome was augmented. Of the restored hindlimb motor functions, weight-support and posture in stance was the only obvious one. Recovery of this motor function was partial to substantial and its incidence was 100% instead of about 50% obtained with the single-dose treatment. None of the hindlimbs, however, regained frequent stepping or any weight-bearing locomotion. These data indicate that the therapeutic outcome may be further augmented by tuning the radiation parameters within the critical time-window after injury. These data also indicate that dose-fractionation is an effective strategy and better than the single-dose treatment for targeting of reactive cells that abort the natural repair, suggesting that radiation therapy could be developed into a therapeutic procedure for repairing injured spinal cord.
Motoring through: the role of kinesin superfamily proteins in female meiosis.
Camlin, Nicole J; McLaughlin, Eileen A; Holt, Janet E
2017-07-01
The kinesin motor protein family consists of 14 distinct subclasses and 45 kinesin proteins in humans. A large number of these proteins, or their orthologues, have been shown to possess essential function(s) in both the mitotic and the meiotic cell cycle. Kinesins have important roles in chromosome separation, microtubule dynamics, spindle formation, cytokinesis and cell cycle progression. This article contains a review of the literature with respect to the role of kinesin motor proteins in female meiosis in model species. Throughout, we discuss the function of each class of kinesin proteins during oocyte meiosis, and where such data are not available their role in mitosis is considered. Finally, the review highlights the potential clinical importance of this family of proteins for human oocyte quality. To examine the role of kinesin motor proteins in oocyte meiosis. A search was performed on the Pubmed database for journal articles published between January 1970 and February 2017. Search terms included 'oocyte kinesin' and 'meiosis kinesin' in addition to individual kinesin names with the terms oocyte or meiosis. Within human cells 45 kinesin motor proteins have been discovered, with the role of only 13 of these proteins, or their orthologues, investigated in female meiosis. Furthermore, of these kinesins only half have been examined in mammalian oocytes, despite alterations occurring in gene transcripts or protein expression with maternal ageing, cryopreservation or behavioral conditions, such as binge drinking, for many of them. Kinesin motor proteins have distinct and important roles throughout oocyte meiosis in many non-mammalian model species. However, the functions these proteins have in mammalian meiosis, particularly in humans, are less clear owing to lack of research. This review brings to light the need for more experimental investigation of kinesin motor proteins, particularly those associated with maternal ageing, cryopreservation or exposure to environmental toxicants. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Motor neuron mitochondrial dysfunction in spinal muscular atrophy
Miller, Nimrod; Shi, Han; Zelikovich, Aaron S.; Ma, Yong-Chao
2016-01-01
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, predominantly affects high metabolic tissues including motor neurons, skeletal muscles and the heart. Although the genetic cause of SMA has been identified, mechanisms underlying tissue-specific vulnerability are not well understood. To study these mechanisms, we carried out a deep sequencing analysis of the transcriptome of spinal motor neurons in an SMA mouse model, in which we unexpectedly found changes in many genes associated with mitochondrial bioenergetics. Importantly, functional measurement of mitochondrial activities showed decreased basal and maximal mitochondrial respiration in motor neurons from SMA mice. Using a reduction-oxidation sensitive GFP and fluorescence sensors specifically targeted to mitochondria, we found increased oxidative stress level and impaired mitochondrial membrane potential in motor neurons affected by SMA. In addition, mitochondrial mobility was impaired in SMA disease conditions, with decreased retrograde transport but no effect on anterograde transport. We also found significantly increased fragmentation of the mitochondrial network in primary motor neurons from SMA mice, with no change in mitochondria density. Electron microscopy study of SMA mouse spinal cord revealed mitochondria fragmentation, edema and concentric lamellar inclusions in motor neurons affected by the disease. Intriguingly, these functional and structural deficiencies in the SMA mouse model occur during the presymptomatic stage of disease, suggesting a role in initiating SMA. Altogether, our findings reveal a critical role for mitochondrial defects in SMA pathogenesis and suggest a novel target for improving tissue health in the disease. PMID:27488123
BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB
NASA Technical Reports Server (NTRS)
Hu, Peter; Kalb, Robert G.; Walton, K. D. (Principal Investigator)
2003-01-01
The survival promoting and neuroprotective actions of brain-derived neurotrophic factor (BDNF) are well known but under certain circumstances this growth factor can also exacerbate excitotoxic insults to neurons. Prior exploration of the receptor through which BDNF exerts this action on motor neurons deflects attention away from p75. Here we investigated the possibility that BDNF acts through the receptor tyrosine kinase, TrkB, to confer on motor neurons sensitivity to excitotoxic challenge. We blocked BDNF activation of TrkB using a dominant negative TrkB mutant or a TrkB function blocking antibody, and found that this protected motor neurons against excitotoxic insult in cultures of mixed spinal cord neurons. Addition of a function blocking antibody to BDNF to mixed spinal cord neuron cultures is also neuroprotective indicating that endogenously produced BDNF participates in vulnerability to excitotoxicity. We next examined the intracellular signaling cascades that are engaged upon TrkB activation. Previously we found that inhibition of the phosphatidylinositide-3'-kinase (PI3'K) pathway blocks BDNF-induced excitotoxic sensitivity. Here we show that expression of a constitutively active catalytic subunit of PI3'K, p110, confers excitotoxic sensitivity (ES) upon motor neurons not incubated with BDNF. Parallel studies with purified motor neurons confirm that these events are likely to be occuring specifically within motor neurons. The abrogation of BDNF's capacity to accentuate excitotoxic insults may make it a more attractive neuroprotective agent.
Neurodevelopmental movement disorders - an update on childhood motor stereotypies.
Barry, Sinéad; Baird, Gillian; Lascelles, Karine; Bunton, Penny; Hedderly, Tammy
2011-11-01
The term 'stereotypies' encompasses a diverse range of movements, behaviours, and/or vocalizations that are repetitive, lack clear function, and sometimes appear to have a negative impact upon an individual's life. This review aims to describe motor stereotypies. This study reviewed the current literature on the nature, aetiology, and treatment of motor stereotypies. Motor stereotypies occur commonly but not exclusively in autistic spectrum disorders. Similar movements are also found in otherwise healthy children and those suffering sensory impairment, social isolation, or severe intellectual disabilities; they may be persistent over time. Although often difficult, it is possible to define and differentiate stereotypies from other movement disorders such as tics through features of the history, such as earlier onset and examination, together with the presence or absence of associated neurological impairment or developmental difficulties. Co-occurrence with other disorders affecting frontostriatal brain systems, including attention-deficit-hyperactivity disorder, obsessive-compulsive disorder, and tic disorders, is common. The underlying function of motor stereotypies remains unclear but may include the maintenance of arousal levels. A neurogenetic aetiology is proposed but requires further study. When treatment is sought, there are both pharmacological and behavioural options. Behavioural treatments for motor stereotypies may in time be shown to be most effective; however, they are difficult to implement in children younger than 7 years old. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.
Park, Eun-Young; Kim, Won-Ho
2013-05-01
Physical therapy intervention for children with cerebral palsy (CP) is focused on reducing neurological impairments, improving strength, and preventing the development of secondary impairments in order to improve functional outcomes. However, relationship between motor impairments and functional outcome has not been proved definitely. This study confirmed the construct of motor impairment and performed structural equation modeling (SEM) between motor impairment, gross motor function, and functional outcomes of regarding activities of daily living in children with CP. 98 children (59 boys, 39 girls) with CP participated in this cross-sectional study. Mean age was 11 y 5 mo (SD 1 y 9 mo). The Manual Muscle Test (MMT), the Modified Ashworth Scale (MAS), range of motion (ROM) measurement, and the selective motor control (SMC) scale were used to assess motor impairments. Gross motor function and functional outcomes were measured using the Gross Motor Function Measure (GMFM) and the Functional Skills domain of the Pediatric Evaluation of Disability Inventory (PEDI) respectively. Measurement of motor impairment was consisted of strength, spasticity, ROM, and SMC. The construct of motor impairment was confirmed though an examination of a measurement model. The proposed SEM model showed good fit indices. Motor impairment effected gross motor function (β=-.0869). Gross motor function and motor impairment affected functional outcomes directly (β=0.890) and indirectly (β=-0.773) respectively. We confirmed that the construct of motor impairment consist of strength, spasticity, ROM, and SMC and it was identified through measurement model analysis. Functional outcomes are best predicted by gross motor function and motor impairments have indirect effects on functional outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rimbawati; Azis Hutasuhut, Abdul; Irsan Pasaribu, Faisal; Cholish; Muharnif
2017-09-01
There is an electric machine that can operate as a generator either single-phase or three-phase in almost every household and industry today. This electric engine cannot be labeled as a generator but can be functioned as a generator. The machine that is mentioned is “squirrel cage motors” or it is well-known as induction motor that can be found in water pumps, washing machines, fans, blowers and other industrial machines. The induction motor can be functioned as a generator when the rotational speed of the rotor is made larger than the speed of the rotary field. In this regard, this study aims to modify the remains of 3-phase induction motor to be a permanent generator. Data of research based conducted on the river flow of Rumah Sumbul Village, STM Hulu district of Deli Serdang. The method of this research is by changing rotor and stator winding on a 3 phase induction motor, so it can produce a generator with rotation speed of 500 rpm. Based on the research, it can be concluded that the output voltage generator has occurred a voltage drop 10% between before and after loading for Star circuit and 2% for Delta circuit.
Chemistry in motion: tiny synthetic motors.
Colberg, Peter H; Reigh, Shang Yik; Robertson, Bryan; Kapral, Raymond
2014-12-16
CONSPECTUS: Diffusion is the principal transport mechanism that controls the motion of solute molecules and other species in solution; however, the random walk process that underlies diffusion is slow and often nonspecific. Although diffusion is an essential mechanism for transport in the biological realm, biological systems have devised more efficient transport mechanisms using molecular motors. Most biological motors utilize some form of chemical energy derived from their surroundings to induce conformational changes in order to carry out specific functions. These small molecular motors operate in the presence of strong thermal fluctuations and in the regime of low Reynolds numbers, where viscous forces dominate inertial forces. Thus, their dynamical behavior is fundamentally different from that of macroscopic motors, and different mechanisms are responsible for the production of useful mechanical motion. There is no reason why our interest should be confined to the small motors that occur naturally in biological systems. Recently, micron and nanoscale motors that use chemical energy to produce directed motion by a number of different mechanisms have been made in the laboratory. These small synthetic motors also experience strong thermal fluctuations and operate in regimes where viscous forces dominate. Potentially, these motors could be directed to perform different transport tasks, analogous to those of biological motors, for both in vivo and in vitro applications. Although some synthetic motors execute conformational changes to effect motion, the majority do not, and, instead, they use other mechanisms to convert chemical energy into directed motion. In this Account, we describe how synthetic motors that operate by self-diffusiophoresis make use of a self-generated concentration gradient to drive motor motion. A description of propulsion by self-diffusiophoresis is presented for Janus particle motors comprising catalytic and noncatalytic faces. The properties of the dynamics of chemically powered motors are illustrated by presenting the results of particle-based simulations of sphere-dimer motors constructed from linked catalytic and noncatalytic spheres. The geometries of both Janus and sphere-dimer motors with asymmetric catalytic activity support the formation of concentration gradients around the motors. Because directed motion can occur only when the system is not in equilibrium, the nature of the environment and the role it plays in motor dynamics are described. Rotational Brownian motion also acts to limit directed motion, and it has especially strong effects for very small motors. We address the following question: how small can motors be and still exhibit effects due to propulsion, even if only to enhance diffusion? Synthetic motors have the potential to transform the manner in which chemical dynamical processes are carried out for a wide range of applications.
McGregor, Heather R; Gribble, Paul L
2015-07-01
Motor learning occurs not only through direct first-hand experience but also through observation (Mattar AA, Gribble PL. Neuron 46: 153-160, 2005). When observing the actions of others, we activate many of the same brain regions involved in performing those actions ourselves (Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL. J Cogn Neurosci 22: 1493-1503, 2010). Links between neural systems for vision and action have been reported in neurophysiological (Strafella AP, Paus T. Neuroreport 11: 2289-2292, 2000; Watkins KE, Strafella AP, Paus T. Neuropsychologia 41: 989-994, 2003), brain imaging (Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ. Eur J Neurosci 13: 400-404, 2001; Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Science 286: 2526-2528, 1999), and eye tracking (Flanagan JR, Johansson RS. Nature 424: 769-771, 2003) studies. Here we used a force field learning paradigm coupled with resting-state fMRI to investigate the brain areas involved in motor learning by observing. We examined changes in resting-state functional connectivity (FC) after an observational learning task and found a network consisting of V5/MT, cerebellum, and primary motor and somatosensory cortices in which changes in FC were correlated with the amount of motor learning achieved through observation, as assessed behaviorally after resting-state fMRI scans. The observed FC changes in this network are not due to visual attention to motion or observation of movement errors but rather are specifically linked to motor learning. These results support the idea that brain networks linking action observation and motor control also facilitate motor learning. Copyright © 2015 the American Physiological Society.
McGregor, Heather R.
2015-01-01
Motor learning occurs not only through direct first-hand experience but also through observation (Mattar AA, Gribble PL. Neuron 46: 153–160, 2005). When observing the actions of others, we activate many of the same brain regions involved in performing those actions ourselves (Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL. J Cogn Neurosci 22: 1493–1503, 2010). Links between neural systems for vision and action have been reported in neurophysiological (Strafella AP, Paus T. Neuroreport 11: 2289–2292, 2000; Watkins KE, Strafella AP, Paus T. Neuropsychologia 41: 989–994, 2003), brain imaging (Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ. Eur J Neurosci 13: 400–404, 2001; Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Science 286: 2526–2528, 1999), and eye tracking (Flanagan JR, Johansson RS. Nature 424: 769–771, 2003) studies. Here we used a force field learning paradigm coupled with resting-state fMRI to investigate the brain areas involved in motor learning by observing. We examined changes in resting-state functional connectivity (FC) after an observational learning task and found a network consisting of V5/MT, cerebellum, and primary motor and somatosensory cortices in which changes in FC were correlated with the amount of motor learning achieved through observation, as assessed behaviorally after resting-state fMRI scans. The observed FC changes in this network are not due to visual attention to motion or observation of movement errors but rather are specifically linked to motor learning. These results support the idea that brain networks linking action observation and motor control also facilitate motor learning. PMID:25995349
Food for thought: what Jim Joseph taught me about aging and nutrition
USDA-ARS?s Scientific Manuscript database
Motor and cognitive behavioral deficits occur in senescence, and in cases of severe deficits, hospitalization and/or custodial care would be a likely outcome. Unless some way is found to reduce these age-related decrements in neuronal function, health care costs will continue to rise exponentially. ...
Panarese, Alessandro; Alia, Claudia; Micera, Silvestro; Caleo, Matteo; Di Garbo, Angelo
2016-01-01
Purpose Limited restoration of function is known to occur spontaneously after an ischemic injury to the primary motor cortex. Evidence suggests that Pre-Motor Areas (PMAs) may “take over” control of the disrupted functions. However, little is known about functional reorganizations in PMAs. Forelimb movements in mice can be driven by two cortical regions, Caudal and Rostral Forelimb Areas (CFA and RFA), generally accepted as primary motor and pre-motor cortex, respectively. Here, we examined longitudinal changes in functional coupling between the two RFAs following unilateral photothrombotic stroke in CFA (mm from Bregma: +0.5 anterior, +1.25 lateral). Methods Local field potentials (LFPs) were recorded from the RFAs of both hemispheres in freely moving injured and naïve mice. Neural signals were acquired at 9, 16 and 23 days after surgery (sub-acute period in stroke animals) through one bipolar electrode per hemisphere placed in the center of RFA, with a ground screw over the occipital bone. LFPs were pre-processed through an efficient method of artifact removal and analysed through: spectral,cross-correlation, mutual information and Granger causality analysis. Results Spectral analysis demonstrated an early decrease (day 9) in the alpha band power in both the RFAs. In the late sub-acute period (days 16 and 23), inter-hemispheric functional coupling was reduced in ischemic animals, as shown by a decrease in the cross-correlation and mutual information measures. Within the gamma and delta bands, correlation measures were already reduced at day 9. Granger analysis, used as a measure of the symmetry of the inter-hemispheric causal connectivity, showed a less balanced activity in the two RFAs after stroke, with more frequent oscillations of hemispheric dominance. Conclusions These results indicate robust electrophysiological changes in PMAs after stroke. Specifically, we found alterations in transcallosal connectivity, with reduced inter-hemispheric functional coupling and a fluctuating dominance pattern. These reorganizations may underlie vicariation of lost functions following stroke. PMID:26752066
Vallone, Fabio; Lai, Stefano; Spalletti, Cristina; Panarese, Alessandro; Alia, Claudia; Micera, Silvestro; Caleo, Matteo; Di Garbo, Angelo
2016-01-01
Limited restoration of function is known to occur spontaneously after an ischemic injury to the primary motor cortex. Evidence suggests that Pre-Motor Areas (PMAs) may "take over" control of the disrupted functions. However, little is known about functional reorganizations in PMAs. Forelimb movements in mice can be driven by two cortical regions, Caudal and Rostral Forelimb Areas (CFA and RFA), generally accepted as primary motor and pre-motor cortex, respectively. Here, we examined longitudinal changes in functional coupling between the two RFAs following unilateral photothrombotic stroke in CFA (mm from Bregma: +0.5 anterior, +1.25 lateral). Local field potentials (LFPs) were recorded from the RFAs of both hemispheres in freely moving injured and naïve mice. Neural signals were acquired at 9, 16 and 23 days after surgery (sub-acute period in stroke animals) through one bipolar electrode per hemisphere placed in the center of RFA, with a ground screw over the occipital bone. LFPs were pre-processed through an efficient method of artifact removal and analysed through: spectral,cross-correlation, mutual information and Granger causality analysis. Spectral analysis demonstrated an early decrease (day 9) in the alpha band power in both the RFAs. In the late sub-acute period (days 16 and 23), inter-hemispheric functional coupling was reduced in ischemic animals, as shown by a decrease in the cross-correlation and mutual information measures. Within the gamma and delta bands, correlation measures were already reduced at day 9. Granger analysis, used as a measure of the symmetry of the inter-hemispheric causal connectivity, showed a less balanced activity in the two RFAs after stroke, with more frequent oscillations of hemispheric dominance. These results indicate robust electrophysiological changes in PMAs after stroke. Specifically, we found alterations in transcallosal connectivity, with reduced inter-hemispheric functional coupling and a fluctuating dominance pattern. These reorganizations may underlie vicariation of lost functions following stroke.
Responses of primate frontal cortex neurons during natural vocal communication.
Miller, Cory T; Thomas, A Wren; Nummela, Samuel U; de la Mothe, Lisa A
2015-08-01
The role of primate frontal cortex in vocal communication and its significance in language evolution have a controversial history. While evidence indicates that vocalization processing occurs in ventrolateral prefrontal cortex neurons, vocal-motor activity has been conjectured to be primarily subcortical and suggestive of a distinctly different neural architecture from humans. Direct evidence of neural activity during natural vocal communication is limited, as previous studies were performed in chair-restrained animals. Here we recorded the activity of single neurons across multiple regions of prefrontal and premotor cortex while freely moving marmosets engaged in a natural vocal behavior known as antiphonal calling. Our aim was to test whether neurons in marmoset frontal cortex exhibited responses during vocal-signal processing and/or vocal-motor production in the context of active, natural communication. We observed motor-related changes in single neuron activity during vocal production, but relatively weak sensory responses for vocalization processing during this natural behavior. Vocal-motor responses occurred both prior to and during call production and were typically coupled to the timing of each vocalization pulse. Despite the relatively weak sensory responses a population classifier was able to distinguish between neural activity that occurred during presentations of vocalization stimuli that elicited an antiphonal response and those that did not. These findings are suggestive of the role that nonhuman primate frontal cortex neurons play in natural communication and provide an important foundation for more explicit tests of the functional contributions of these neocortical areas during vocal behaviors. Copyright © 2015 the American Physiological Society.
Responses of primate frontal cortex neurons during natural vocal communication
Thomas, A. Wren; Nummela, Samuel U.; de la Mothe, Lisa A.
2015-01-01
The role of primate frontal cortex in vocal communication and its significance in language evolution have a controversial history. While evidence indicates that vocalization processing occurs in ventrolateral prefrontal cortex neurons, vocal-motor activity has been conjectured to be primarily subcortical and suggestive of a distinctly different neural architecture from humans. Direct evidence of neural activity during natural vocal communication is limited, as previous studies were performed in chair-restrained animals. Here we recorded the activity of single neurons across multiple regions of prefrontal and premotor cortex while freely moving marmosets engaged in a natural vocal behavior known as antiphonal calling. Our aim was to test whether neurons in marmoset frontal cortex exhibited responses during vocal-signal processing and/or vocal-motor production in the context of active, natural communication. We observed motor-related changes in single neuron activity during vocal production, but relatively weak sensory responses for vocalization processing during this natural behavior. Vocal-motor responses occurred both prior to and during call production and were typically coupled to the timing of each vocalization pulse. Despite the relatively weak sensory responses a population classifier was able to distinguish between neural activity that occurred during presentations of vocalization stimuli that elicited an antiphonal response and those that did not. These findings are suggestive of the role that nonhuman primate frontal cortex neurons play in natural communication and provide an important foundation for more explicit tests of the functional contributions of these neocortical areas during vocal behaviors. PMID:26084912
Frequency and function in the basal ganglia: the origins of beta and gamma band activity.
Blenkinsop, Alexander; Anderson, Sean; Gurney, Kevin
2017-07-01
Neuronal oscillations in the basal ganglia have been observed to correlate with behaviours, although the causal mechanisms and functional significance of these oscillations remain unknown. We present a novel computational model of the healthy basal ganglia, constrained by single unit recordings from non-human primates. When the model is run using inputs that might be expected during performance of a motor task, the network shows emergent phenomena: it functions as a selection mechanism and shows spectral properties that match those seen in vivo. Beta frequency oscillations are shown to require pallido-striatal feedback, and occur with behaviourally relevant cortical input. Gamma oscillations arise in the subthalamic-globus pallidus feedback loop, and occur during movement. The model provides a coherent framework for the study of spectral, temporal and functional analyses of the basal ganglia and lays the foundation for an integrated approach to study basal ganglia pathologies such as Parkinson's disease in silico. Neural oscillations in the basal ganglia (BG) are well studied yet remain poorly understood. Behavioural correlates of spectral activity are well described, yet a quantitative hypothesis linking time domain dynamics and spectral properties to BG function has been lacking. We show, for the first time, that a unified description is possible by interpreting previously ignored structure in data describing globus pallidus interna responses to cortical stimulation. These data were used to expose a pair of distinctive neuronal responses to the stimulation. This observation formed the basis for a new mathematical model of the BG, quantitatively fitted to the data, which describes the dynamics in the data, and is validated against other stimulus protocol experiments. A key new result is that when the model is run using inputs hypothesised to occur during the performance of a motor task, beta and gamma frequency oscillations emerge naturally during static-force and movement, respectively, consistent with experimental local field potentials. This new model predicts that the pallido-striatum connection has a key role in the generation of beta band activity, and that the gamma band activity associated with motor task performance has its origins in the pallido-subthalamic feedback loop. The network's functionality as a selection mechanism also occurs as an emergent property, and closer fits to the data gave better selection properties. The model provides a coherent framework for the study of spectral, temporal and functional analyses of the BG and therefore lays the foundation for an integrated approach to study BG pathologies such as Parkinson's disease in silico. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Vasquez-Vivar, Jeannette; Shi, Zhongjie; Luo, Kehuan; Thirugnanam, Karthikeyan; Tan, Sidhartha
2017-10-01
Antenatal brain hypoxia-ischemia, which occurs in cerebral palsy, is considered a significant cause of motor impairments in children. The mechanisms by which antenatal hypoxia-ischemia causes brain injury and motor deficits still need to be elucidated. Tetrahydrobiopterin is an important enzyme cofactor that is necessary to produce neurotransmitters and to maintain the redox status of the brain. A genetic deficiency of this cofactor from mutations of biosynthetic or recycling enzymes is a well-recognized factor in the development of childhood neurological disorders characterized by motor impairments, developmental delay, and encephalopathy. Experimental hypoxia-ischemia causes a decline in the availability of tetrahydrobiopterin in the immature brain. This decline coincides with the loss of brain function, suggesting this occurrence contributes to neuronal dysfunction and motor impairments. One possible mechanism linking tetrahydrobiopterin deficiency, hypoxia-ischemia, and neuronal injury is oxidative injury. Evidence of the central role of the developmental biology of tetrahydrobiopterin in response to hypoxic ischemic brain injury, especially the development of motor deficits, is discussed. Copyright © 2017. Published by Elsevier B.V.
Hilderley, Alicia J; Fehlings, Darcy; Lee, Gloria W; Wright, F Virginia
2016-01-01
Enhancement of functional ambulation is a key goal of rehabilitation for children with cerebral palsy (CP) who experience gross motor impairment. Physiotherapy (PT) approaches often involve overground and treadmill-based gait training to promote motor learning, typically as free walking or with body-weight support. Robotic-assisted gait training (RAGT), using a device such as the Lokomat ® Pro, may permit longer training duration, faster and more variable gait speeds, and support walking pattern guidance more than overground/treadmill training to further capitalize on motor learning principles. Single group pre-/post-test studies have demonstrated an association between RAGT and moderate to large improvements in gross motor skills, gait velocity and endurance. A single published randomized controlled trial (RCT) comparing RAGT to a PT-only intervention showed no difference in gait kinematics. However, gross motor function and walking endurance were not evaluated and conclusions were limited by a large PT group drop-out rate. In this two-group cross-over RCT, children are randomly allocated to the RAGT or PT arm (each with twice weekly sessions for eight weeks), with cross-over to the other intervention arm following a six-week break. Both interventions are grounded in motor learning principles with incorporation of individualized mobility-based goals. Sessions are fully operationalized through manualized, menu-based protocols and post-session documentation to enhance internal and external validity. Assessments occur pre/post each intervention arm (four time points total) by an independent assessor. The co-primary outcomes are gross motor functional ability (Gross Motor Function Measure (GMFM-66) and 6-minute walk test), with secondary outcome measures assessing: (a) individualized goals; (b) gait variables and daily walking amounts; and (c) functional abilities, participation and quality of life. Investigators and statisticians are blinded to study group allocation in the analyses, and assessors are blinded to treatment group. The primary analysis will be the pre- to post-test differences (change scores) of the GMFM-66 and 6MWT between RAGT and PT groups. This study is the first RCT comparing RAGT to an active gait-related PT intervention in paediatric CP that addresses gait-related gross motor, participation and individualized outcomes, and as such, is expected to provide comprehensive information as to the potential role of RAGT in clinical practice. Trial registration ClinicalTrials.gov NCT02196298.
Sensory and motor neuropathy in a Border Collie.
Harkin, Kenneth R; Cash, Walter C; Shelton, G Diane
2005-10-15
A 5-month-old female Border Collie was evaluated because of progressive hind limb ataxia. The predominant clinical findings suggested a sensory neuropathy. Sensory nerve conduction velocity was absent in the tibial, common peroneal, and radial nerves and was decreased in the ulnar nerve; motor nerve conduction velocity was decreased in the tibial, common peroneal, and ulnar nerves. Histologic examination of nerve biopsy specimens revealed considerable nerve fiber depletion; some tissue sections had myelin ovoids, foamy macrophages, and axonal degeneration in remaining fibers. Marked depletion of most myelinated fibers within the peroneal nerve (a mixed sensory and motor nerve) supported the electrodiagnostic findings indicative of sensorimotor neuropathy. Progressive deterioration in motor function occurred over the following 19 months until the dog was euthanatized. A hereditary link was not established, but a littermate was similarly affected. The hereditary characteristic of this disease requires further investigation.
New concepts of the reinnervated motor unit revealed by vaccine-associated poliomyelitis.
Wiechers, D O
1988-04-01
A late onset of slowly progressive muscle weakness 30-40 years after acute polio is well known. Previous studies by the author and others have demonstrated transmission abnormalities within the reinnervated motor unit. These transmission abnormalities shown by motor unit action potential (MUAP) instability in size and shape with repetitive discharges occurs in postpolio patients who are and who are not complaining of progressive muscle weakness. Although some reinnervated MUAPs do seem to stabilize their neuromuscular transmission with time in mildly affected muscles, the question arises as to whether or not some MUAPs ever stabilize after polio. Two cases of acute polio personally followed by the author, one over a 9 1/2 year period, are presented. In both cases, in muscles where there are more deinnervated muscle fibers than could possibly be reinnervated, the MUAPs have remained unstable. New concepts of function in the reinnervated motor unit following polio are presented.
Wolpe, Noham; Ingram, James N.; Tsvetanov, Kamen A.; Geerligs, Linda; Kievit, Rogier A.; Henson, Richard N.; Wolpert, Daniel M.; Tyler, Lorraine K.; Brayne, Carol; Bullmore, Edward; Calder, Andrew; Cusack, Rhodri; Dalgleish, Tim; Duncan, John; Matthews, Fiona E.; Marslen-Wilson, William; Shafto, Meredith A.; Campbell, Karen; Cheung, Teresa; Davis, Simon; McCarrey, Anna; Mustafa, Abdur; Price, Darren; Samu, David; Taylor, Jason R.; Treder, Matthias; van Belle, Janna; Williams, Nitin; Bates, Lauren; Emery, Tina; Erzinçlioglu, Sharon; Gadie, Andrew; Gerbase, Sofia; Georgieva, Stanimira; Hanley, Claire; Parkin, Beth; Troy, David; Auer, Tibor; Correia, Marta; Gao, Lu; Green, Emma; Henriques, Rafael; Allen, Jodie; Amery, Gillian; Amunts, Liana; Barcroft, Anne; Castle, Amanda; Dias, Cheryl; Dowrick, Jonathan; Fair, Melissa; Fisher, Hayley; Goulding, Anna; Grewal, Adarsh; Hale, Geoff; Hilton, Andrew; Johnson, Frances; Johnston, Patricia; Kavanagh-Williamson, Thea; Kwasniewska, Magdalena; McMinn, Alison; Norman, Kim; Penrose, Jessica; Roby, Fiona; Rowland, Diane; Sargeant, John; Squire, Maggie; Stevens, Beth; Stoddart, Aldabra; Stone, Cheryl; Thompson, Tracy; Yazlik, Ozlem; Barnes, Dan; Dixon, Marie; Hillman, Jaya; Mitchell, Joanne; Villis, Laura; Rowe, James B.
2016-01-01
The control of voluntary movement changes markedly with age. A critical component of motor control is the integration of sensory information with predictions of the consequences of action, arising from internal models of movement. This leads to sensorimotor attenuation—a reduction in the perceived intensity of sensations from self-generated compared with external actions. Here we show that sensorimotor attenuation occurs in 98% of adults in a population-based cohort (n=325; 18–88 years; the Cambridge Centre for Ageing and Neuroscience). Importantly, attenuation increases with age, in proportion to reduced sensory sensitivity. This effect is associated with differences in the structure and functional connectivity of the pre-supplementary motor area (pre-SMA), assessed with magnetic resonance imaging. The results suggest that ageing alters the balance between the sensorium and predictive models, mediated by the pre-SMA and its connectivity in frontostriatal circuits. This shift may contribute to the motor and cognitive changes observed with age. PMID:27694879
Wolpe, Noham; Ingram, James N; Tsvetanov, Kamen A; Geerligs, Linda; Kievit, Rogier A; Henson, Richard N; Wolpert, Daniel M; Rowe, James B
2016-10-03
The control of voluntary movement changes markedly with age. A critical component of motor control is the integration of sensory information with predictions of the consequences of action, arising from internal models of movement. This leads to sensorimotor attenuation-a reduction in the perceived intensity of sensations from self-generated compared with external actions. Here we show that sensorimotor attenuation occurs in 98% of adults in a population-based cohort (n=325; 18-88 years; the Cambridge Centre for Ageing and Neuroscience). Importantly, attenuation increases with age, in proportion to reduced sensory sensitivity. This effect is associated with differences in the structure and functional connectivity of the pre-supplementary motor area (pre-SMA), assessed with magnetic resonance imaging. The results suggest that ageing alters the balance between the sensorium and predictive models, mediated by the pre-SMA and its connectivity in frontostriatal circuits. This shift may contribute to the motor and cognitive changes observed with age.
Park, Myoung-Ok
2017-02-01
[Purpose] The purpose of this study was to determine effects of Gross Motor Function Classification System and Manual Ability Classification System levels on performance-based motor skills of children with spastic cerebral palsy. [Subjects and Methods] Twenty-three children with cerebral palsy were included. The Assessment of Motor and Process Skills was used to evaluate performance-based motor skills in daily life. Gross motor function was assessed using Gross Motor Function Classification Systems, and manual function was measured using the Manual Ability Classification System. [Results] Motor skills in daily activities were significantly different on Gross Motor Function Classification System level and Manual Ability Classification System level. According to the results of multiple regression analysis, children categorized as Gross Motor Function Classification System level III scored lower in terms of performance based motor skills than Gross Motor Function Classification System level I children. Also, when analyzed with respect to Manual Ability Classification System level, level II was lower than level I, and level III was lower than level II in terms of performance based motor skills. [Conclusion] The results of this study indicate that performance-based motor skills differ among children categorized based on Gross Motor Function Classification System and Manual Ability Classification System levels of cerebral palsy.
NASA Astrophysics Data System (ADS)
Zhang, Hang; Yao, Li; Long, Zhiying
2011-03-01
Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.
Prolonged monitoring of esophageal motor function in healthy children.
Chitkara, Denesh K; Fortunato, Christine; Nurko, Samuel
2004-02-01
To describe diurnal variations of esophageal motor function in children using combined ambulatory 24-hour esophageal manometry and continuous intraluminal pH measurement (MP24). Medical records of all patients referred for the performance of MP24 from 1995 to 2002 at a tertiary care center were reviewed. Patients were selected retrospectively for this study using the following inclusion criteria: (1) no dysphagia, (2) normal upper gastrointestinal barium radiograph, (3) normal esophagogastroduodenoscopy and biopsies, (4) normal stationary esophageal manometry, (5) normal esophageal pH probe, and (6) no gastrointestinal pathology appearing after long-term follow-up. Data from the MP24 of these children were retrospectively analyzed for differences between meal, upright, and supine periods using nonparametric univariate analysis. One hundred twenty-three children had MP24 during the study period. Eleven met the criteria for normality and were included. Their mean age was 12.4 +/- 1.5 years. The number of contractions/minute in the upper, middle, and lower esophageal body differed significantly during meals and in the upright and supine periods (P < 0.01). A significant increase in motor activity occurred during meals (P < 0.01). There was less motor activity observed in the supine position than in the upright position (P < 0.01). There were significant differences in effective (P < 0.05) and total propagated peristalsis among the meal, upright, and supine periods (P < 0.01), with the largest percentage of propagated contractions observed during meals. This study provides the first information on prolonged esophageal motor activity in pediatric patients without esophageal disease. MP24 in children demonstrates significant diurnal variations in esophageal motor function that is similar to the findings in studies of healthy adults.
DNA Walkers as Transport Vehicles of Nanoparticles Along a Carbon Nanotube Track.
Pan, Jing; Cha, Tae-Gon; Chen, Haorong; Li, Feiran; Choi, Jong Hyun
2017-01-01
DNA-based molecular motors are synthetic analogs of naturally occurring protein motors. Typical DNA walkers are constructed from synthetic short DNA strands and are powered by various free energy changes during hybridization reactions. Due to the constraints set by their small physical dimension and slow kinetics, most DNA walkers are characterized by ensemble measurements that result in averaged kinetics data. Here we present a synthetic DNA walker system that exploits the extraordinary physicochemical properties of nanomaterials and the functionalities of DNA molecules, which enables real-time control and monitoring of single-DNA walkers over an extended period.
Isometric contractions of motor units in a fast twitch muscle of the cat
Bagust, J.; Knott, Sarah; Lewis, D. M.; Luck, J. C.; Westerman, R. A.
1973-01-01
1. Isosmetric contractions of cat flexor digitorum longus whole muscles and of functionally isolated motor units have been measured under conditions similar to those used by Buller & Lewis (1965a). 2. Motor unit twitch time to peak was inversely related to axonal conduction velocity. The logarithm of tetanic tension was directly related to conduction velocity. These relationships suggest that each motoneurone has an influence on the muscle fibres which it innervates. 3. The ratio of twitch to tetanic tension was directly related to the time to peak of the motor unit. This fact might be explained by variation between motor units of the duration of `active state'. 4. The muscle length at which tension was maximal varied between motor units and the optima were found over the range of muscle lengths which could occur in the body. Slow motor units had longer optimal lengths. 5. The sample of motor units was considered to be unbiased because the distribution of axon conduction velocities was compatible with reported motor fibre diameter spectra of the muscle nerve. The mean motor unit tetanic tension gave a reasonable estimate of the number of α-motor axons in the muscle nerve. Twitch tensions gave a value that was 40% higher. 6. Motor unit and whole muscle data were in good agreement for length-tetanus tension curves, for times to peak and for twitch-tetanus ratios at long muscle lengths. PMID:4715372
Banerjee, Soumya; Toral, Marcus; Siefert, Matthew; Conway, David; Dorr, Meredith; Fernandes, Joyce
2016-12-01
The Drosophila larval nervous system is radically restructured during metamorphosis to produce adult specific neural circuits and behaviors. Genesis of new neurons, death of larval neurons and remodeling of those neurons that persistent collectively act to shape the adult nervous system. Here, we examine the fate of a subset of larval motor neurons during this restructuring process. We used a dHb9 reporter, in combination with the FLP/FRT system to individually identify abdominal motor neurons in the larval to adult transition using a combination of relative cell body location, axonal position, and muscle targets. We found that segment specific cell death of some dHb9 expressing motor neurons occurs throughout the metamorphosis period and continues into the post-eclosion period. Many dHb9 > GFP expressing neurons however persist in the two anterior hemisegments, A1 and A2, which have segment specific muscles required for eclosion while a smaller proportion also persist in A2-A5. Consistent with a functional requirement for these neurons, ablating them during the pupal period produces defects in adult eclosion. In adults, subsequent to the execution of eclosion behaviors, the NMJs of some of these neurons were found to be dismantled and their muscle targets degenerate. Our studies demonstrate a critical continuity of some larval motor neurons into adults and reveal that multiple aspects of motor neuron remodeling and plasticity that are essential for adult motor behaviors. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1387-1416, 2016. © 2016 Wiley Periodicals, Inc.
Adaptation, perceptual learning, and plasticity of brain functions.
Horton, Jonathan C; Fahle, Manfred; Mulder, Theo; Trauzettel-Klosinski, Susanne
2017-03-01
The capacity for functional restitution after brain damage is quite different in the sensory and motor systems. This series of presentations highlights the potential for adaptation, plasticity, and perceptual learning from an interdisciplinary perspective. The chances for restitution in the primary visual cortex are limited. Some patterns of visual field loss and recovery after stroke are common, whereas others are impossible, which can be explained by the arrangement and plasticity of the cortical map. On the other hand, compensatory mechanisms are effective, can occur spontaneously, and can be enhanced by training. In contrast to the human visual system, the motor system is highly flexible. This is based on special relationships between perception and action and between cognition and action. In addition, the healthy adult brain can learn new functions, e.g. increasing resolution above the retinal one. The significance of these studies for rehabilitation after brain damage will be discussed.
The effects of nutrition on cognition and motor function in aging
USDA-ARS?s Scientific Manuscript database
Average lifespans have increased dramatically over the last century and by the year 2050 fully 30% of the total population will be over 65 years of age. There is a high probability that these people will be exhibiting the most common behavioral changes that occur in “normal” aging - impaired mobilit...
Muñoz-Quiles, Cintia; Santos-Benito, Fernando F.; Llamusí, M. Beatriz; Ramón-Cueto, Almudena
2009-01-01
Olfactory bulb ensheathing glia (OB-OEG) promote repair of spinal cord injury (SCI) in rats after transplantation at acute or subacute (up to 45 days) stages. The most relevant clinical scenario in humans, however, is chronic SCI, in which no more major cellular or molecular changes occur at the injury site; this occurs after the third month in rodents. Whether adult OB-OEG grafts promote repair of severe chronic SCI has not been previously addressed. Rats with complete SCI that were transplanted with OB-OEG 4 months after injury exhibited progressive improvement in motor function and axonal regeneration from different brainstem nuclei across and beyond the SCI site. A positive correlation between motor outcome and axonal regeneration suggested a role for brainstem neurons in the recovery. Functional and histological outcomes did not differ at subacute or chronic stages. Thus, autologous transplantation is a feasible approach as there is time for patient stabilization and OEG preparation in human chronic SCI; the healing effects of OB-OEG on established injuries may offer new therapeutic opportunities for chronic SCI patients. PMID:19915486
Premotor and non-motor features of Parkinson’s disease
Goldman, Jennifer G.; Postuma, Ron
2014-01-01
Purpose of review This review highlights recent advances in premotor and non-motor features in Parkinson’s disease, focusing on these issues in the context of prodromal and early stage Parkinson’s disease. Recent findings While Parkinson’s disease patients experience a wide range of non-motor symptoms throughout the disease course, studies demonstrate that non-motor features are not solely a late manifestation. Indeed, disturbances of smell, sleep, mood, and gastrointestinal function may herald Parkinson’s disease or related synucleinopathies and precede these neurodegenerative conditions by 5 or more years. In addition, other non-motor symptoms such as cognitive impairment are now recognized in incident or de novo Parkinson’s disease cohorts. Many of these non-motor features reflect disturbances in non-dopaminergic systems and early involvement of peripheral and central nervous systems including olfactory, enteric, and brainstem neurons as in Braak’s proposed pathological staging of Parkinson’s disease. Current research focuses on identifying potential biomarkers that may detect persons at risk for Parkinson’s disease and permit early intervention with neuroprotective or disease-modifying therapeutics. Summary Recent studies provide new insights on the frequency, pathophysiology, and importance of non-motor features in Parkinson’s disease as well as the recognition that these non-motor symptoms occur in premotor, early, and later phases of Parkinson’s disease. PMID:24978368
Ontogenetic Development of Vestibulo-Ocular Reflexes in Amphibians
Branoner, Francisco; Chagnaud, Boris P.; Straka, Hans
2016-01-01
Vestibulo-ocular reflexes (VOR) ensure gaze stability during locomotion and passively induced head/body movements. In precocial vertebrates such as amphibians, vestibular reflexes are required very early at the onset of locomotor activity. While the formation of inner ears and the assembly of sensory-motor pathways is largely completed soon after hatching, angular and translational/tilt VOR display differential functional onsets and mature with different time courses. Otolith-derived eye movements appear immediately after hatching, whereas the appearance and progressive amelioration of semicircular canal-evoked eye movements is delayed and dependent on the acquisition of sufficiently large semicircular canal diameters. Moreover, semicircular canal functionality is also required to tune the initially omnidirectional otolith-derived VOR. The tuning is due to a reinforcement of those vestibulo-ocular connections that are co-activated by semicircular canal and otolith inputs during natural head/body motion. This suggests that molecular mechanisms initially guide the basic ontogenetic wiring, whereas semicircular canal-dependent activity is required to establish the spatio-temporal specificity of the reflex. While a robust VOR is activated during passive head/body movements, locomotor efference copies provide the major source for compensatory eye movements during tail- and limb-based swimming of larval and adult frogs. The integration of active/passive motion-related signals for gaze stabilization occurs in central vestibular neurons that are arranged as segmentally iterated functional groups along rhombomere 1–8. However, at variance with the topographic maps of most other sensory systems, the sensory-motor transformation of motion-related signals occurs in segmentally specific neuronal groups defined by the extraocular motor output targets. PMID:27877114
Bjerkefors, Anna; Squair, Jordan W; Chua, Romeo; Lam, Tania; Chen, Zhen; Carpenter, Mark G
2015-02-01
To use transcranial magnetic stimulation and electromyography to assess the potential for preserved function in the abdominal muscles in individuals classified with motor-complete spinal cord injury above T6. Five individuals with spinal cord injury (C5-T3) and 5 able-bodied individuals. Transcranial magnetic stimulation was delivered over the abdominal region of primary motor cortex during resting and sub-maximal (or attempted) contractions. Surface electromyography was used to record motor-evoked potentials as well as maximal voluntary (or attempted) contractions in the abdominal muscles and the diaphragm. Responses to transcranial magnetic stimulation in the abdominal muscles occurred in all spinal cord injury subjects. Latencies of muscle response onsets were similar in both groups; however, peak-to-peak amplitudes were smaller in the spinal cord injury group. During maximal voluntary (or attempted) contractions all spinal cord injury subjects were able to elicit electromyography activity above resting levels in more than one abdominal muscle across tasks. Individuals with motor-complete spinal cord injury above T6 were able to activate abdominal muscles in response to transcranial magnetic stimulation and during maximal voluntary (or attempted) contractions. The activation was induced directly through corticospinal pathways, and not indirectly by stretch reflex activations of the diaphragm. Transcranial magnetic stimulation and electromyography measurements provide a useful method to assess motor preservation of abdominal muscles in persons with spinal cord injury.
ERIC Educational Resources Information Center
Kirby, Russell S.; Wingate, Martha S.; Van Naarden Braun, Kim; Doernberg, Nancy S.; Arneson, Carrie L.; Benedict, Ruth E.; Mulvihill, Beverly; Durkin, Maureen S.; Fitzgerald, Robert T.; Maenner, Matthew J.; Patz, Jean A.; Yeargin-Allsopp, Marshalyn
2011-01-01
Aim: To estimate the prevalence of cerebral palsy (CP) and the frequency of co-occurring developmental disabilities (DDs), gross motor function (GMF), and walking ability using the largest surveillance DD database in the US. Methods: We conducted population-based surveillance of 8-year-old children in 2006 (N = 142,338), in areas of Alabama,…
Motor features in posterior cortical atrophy and their imaging correlates☆
Ryan, Natalie S.; Shakespeare, Timothy J.; Lehmann, Manja; Keihaninejad, Shiva; Nicholas, Jennifer M.; Leung, Kelvin K.; Fox, Nick C.; Crutch, Sebastian J.
2014-01-01
Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by impaired higher visual processing skills; however, motor features more commonly associated with corticobasal syndrome may also occur. We investigated the frequency and clinical characteristics of motor features in 44 PCA patients and, with 30 controls, conducted voxel-based morphometry, cortical thickness, and subcortical volumetric analyses of their magnetic resonance imaging. Prominent limb rigidity was used to define a PCA-motor subgroup. A total of 30% (13) had PCA-motor; all demonstrating asymmetrical left upper limb rigidity. Limb apraxia was more frequent and asymmetrical in PCA-motor, as was myoclonus. Tremor and alien limb phenomena only occurred in this subgroup. The subgroups did not differ in neuropsychological test performance or apolipoprotein E4 allele frequency. Greater asymmetry of atrophy occurred in PCA-motor, particularly involving right frontoparietal and peri-rolandic cortices, putamen, and thalamus. The 9 patients (including 4 PCA-motor) with pathology or cerebrospinal fluid all showed evidence of Alzheimer's disease. Our data suggest that PCA patients with motor features have greater atrophy of contralateral sensorimotor areas but are still likely to have underlying Alzheimer's disease. PMID:25086839
Expertise-related deactivation of the right temporoparietal junction during musical improvisation.
Berkowitz, Aaron L; Ansari, Daniel
2010-01-01
Musical training has been associated with structural changes in the brain as well as functional differences in brain activity when musicians are compared to nonmusicians on both perceptual and motor tasks. Previous neuroimaging comparisons of musicians and nonmusicians in the motor domain have used tasks involving prelearned motor sequences or synchronization with an auditorily presented sequence during the experiment. Here we use functional magnetic resonance imaging (fMRI) to examine expertise-related differences in brain activity between musicians and nonmusicians during improvisation--the generation of novel musical-motor sequences--using a paradigm that we previously used in musicians alone. Despite behaviorally matched performance, the two groups showed significant differences in functional brain activity during improvisation. Specifically, musicians deactivated the right temporoparietal junction (rTPJ) during melodic improvisation, while nonmusicians showed no change in activity in this region. The rTPJ is thought to be part of a ventral attentional network for bottom-up stimulus-driven processing, and it has been postulated that deactivation of this region occurs in order to inhibit attentional shifts toward task-irrelevant stimuli during top-down, goal-driven behavior. We propose that the musicians' deactivation of the rTPJ during melodic improvisation may represent a training-induced shift toward inhibition of stimulus-driven attention, allowing for a more goal-directed performance state that aids in creative thought.
Neurophysiological detection of impending spinal cord injury during scoliosis surgery.
Schwartz, Daniel M; Auerbach, Joshua D; Dormans, John P; Flynn, John; Drummond, Denis S; Bowe, J Andrew; Laufer, Samuel; Shah, Suken A; Bowen, J Richard; Pizzutillo, Peter D; Jones, Kristofer J; Drummond, Denis S
2007-11-01
Despite the many reports attesting to the efficacy of intraoperative somatosensory evoked potential monitoring in reducing the prevalence of iatrogenic spinal cord injury during corrective scoliosis surgery, these afferent neurophysiological signals can provide only indirect evidence of injury to the motor tracts since they monitor posterior column function. Early reports on the use of transcranial electric motor evoked potentials to monitor the corticospinal motor tracts directly suggested that the method holds great promise for improving detection of emerging spinal cord injury. We sought to compare the efficacy of these two methods of monitoring to detect impending iatrogenic neural injury during scoliosis surgery. We reviewed the intraoperative neurophysiological monitoring records of 1121 consecutive patients (834 female and 287 male) with adolescent idiopathic scoliosis (mean age, 13.9 years) treated between 2000 and 2004 at four pediatric spine centers. The same group of experienced surgical neurophysiologists monitored spinal cord function in all patients with use of a standardized multimodality technique with the patient under total intravenous anesthesia. A relevant neurophysiological change (an alert) was defined as a reduction in amplitude (unilateral or bilateral) of at least 50% for somatosensory evoked potentials and at least 65% for transcranial electric motor evoked potentials compared with baseline. Thirty-eight (3.4%) of the 1121 patients had recordings that met the criteria for a relevant signal change (i.e., an alert). Of those thirty-eight patients, seventeen showed suppression of the amplitude of transcranial electric motor evoked potentials in excess of 65% without any evidence of changes in somatosensory evoked potentials. In nine of the thirty-eight patients, the signal change was related to hypotension and was corrected with augmentation of the blood pressure. The remaining twenty-nine patients had an alert that was related directly to a surgical maneuver. Three alerts occurred following segmental vessel clamping, and the remaining twenty-six were related to posterior instrumentation and correction. Nine (35%) of these twenty-six patients with an instrumentation-related alert, or 0.8% of the cohort, awoke with a transient motor and/or sensory deficit. Seven of these nine patients presented solely with a motor deficit, which was detected by intraoperative monitoring of transcranial electric motor evoked potentials in all cases, and two patients had only sensory symptoms. Somatosensory evoked potential monitoring failed to identify a motor deficit in four of the seven patients with a confirmed motor deficit. Furthermore, when changes in somatosensory evoked potentials occurred, they lagged behind the changes in transcranial electric motor evoked potentials by an average of approximately five minutes. With an appropriate response to the alert, the motor or sensory deficit resolved in all nine patients within one to ninety days. This study underscores the advantage of monitoring the spinal cord motor tracts directly by recording transcranial electric motor evoked potentials in addition to somatosensory evoked potentials. Transcranial electric motor evoked potentials are exquisitely sensitive to altered spinal cord blood flow due to either hypotension or a vascular insult. Moreover, changes in transcranial electric motor evoked potentials are detected earlier than are changes in somatosensory evoked potentials, thereby facilitating more rapid identification of impending spinal cord injury.
People With Cerebral Palsy: Effects of and Perspectives for Therapy
Mayston, Margaret J.
2001-01-01
The movement disorder of cerebral palsy (CP) is expressed in a variety of ways and to varying degrees in each individual. The condition has become more complex over the last 20 years with the increasing survival of children born at less than 28 to 30 weeks gestationai age. Impairments present in children with CP as a direct result of the brain injury or occurring indirectly to compensate for underlying problems include abnormal muscle tone; weakness and lack of fitness; limited variety of muscle synergies; contracture and altered biomechanics, the net result being limited functional ability. Other contributors to the motor disorder include sensory, cognitive and perceptual impairments. In recent years understanding of the motor problem has increased, but less is known about effects of therapy. Evidence suggests that therapy can improve functional possibilities for children with cerebral palsy but is inconclusive as to which approach might be most beneficial. The therapist requires an understanding of the interaction of all systems, cognitive/perceptual, motor, musculoskeletal, sensory and behavioral, in the context of the development and plasticity of the CNS. It is necessary to understand the limitations of the damaged immature nervous system, but important to optimize the child's functional possibilities. PMID:11530888
Motor unit activity after eccentric exercise and muscle damage in humans.
Semmler, J G
2014-04-01
It is well known that unaccustomed eccentric exercise leads to muscle damage and soreness, which can produce long-lasting effects on muscle function. How this muscle damage influences muscle activation is poorly understood. The purpose of this brief review is to highlight the effect of eccentric exercise on the activation of muscle by the nervous system, by examining the change in motor unit activity obtained from surface electromyography (EMG) and intramuscular recordings. Previous research shows that eccentric exercise produces unusual changes in the EMG–force relation that influences motor performance during isometric, shortening and lengthening muscle contractions and during fatiguing tasks. When examining the effect of eccentric exercise at the single motor unit level, there are substantial changes in recruitment thresholds, discharge rates, motor unit conduction velocities and synchronization, which can last for up to 1 week after eccentric exercise. Examining the time course of these changes suggests that the increased submaximal EMG after eccentric exercise most likely occurs through a decrease in motor unit conduction velocity and an increase in motor unit activity related to antagonist muscle coactivation and low-frequency fatigue. Furthermore, there is a commonly held view that eccentric exercise produces preferential damage to high-threshold motor units, but the evidence for this in humans is limited. Further research is needed to establish whether there is preferential damage to high-threshold motor units after eccentric exercise in humans, preferably by linking changes in motor unit activity with estimates of motor unit size using selective intramuscular recording techniques.
Ben-Pazi, Hilla
2011-07-01
There are conflicting reports regarding the efficacy of trihexyphenidyl, an anticholinergic drug, for treatment of dystonia in cerebral palsy. The author hypothesized that trihexyphenidyl may be more effective in specific subgroups and performed a retrospective analysis of 31 children (8.2 ± 5.8 years) with dystonia following treatment with high-dose trihexyphenidyl (>0.5 mg/kg/day). Main outcome measure was extent of motor improvement calculated according to the body areas affected. Most (21/31) caregivers reported improvement in 1 or more areas, mainly arm, hand, and oromotor function. Improvement was greater in children without spasticity (P = .02) and in those with higher cognitive function (P = .02). While a third of caregivers (10/31) reported tone reduction, and half (15/31) noted overall functional improvement. Side effects were transient, with the exception of hyperopia (n = 1), and occurred less frequently in children with a history of prematurity (P = .02). In summary, trihexyphenidyl is effective particularly in absence of spasticity and in children with higher cognitive abilities.
Neural Contributions to Muscle Fatigue: From the Brain to the Muscle and Back Again
Taylor, Janet L.; Amann, Markus; Duchateau, Jacques; Meeusen, Romain; Rice, Charles L.
2016-01-01
During exercise, there is a progressive reduction in the ability to produce muscle forces. Processes within the nervous system, as well as within the muscles contribute to this fatigue. In addition to impaired function of the motor system, sensations associated with fatigue, and impairment of homeostasis can contribute to impairment of performance during exercise. This review discusses some of the neural changes that accompany exercise and the development of fatigue. The role of brain monoaminergic neurotransmitter systems in whole-body endurance performance is discussed, particularly with regard to exercise in hot environments. Next, fatigue-related alterations in the neuromuscular pathway are discussed in terms of changes in motor unit firing, motoneuron excitability and motor cortical excitability. These changes have mostly been investigated during single-limb isometric contractions. Finally, the small-diameter muscle afferents that increase firing with exercise and fatigue are discussed. These afferents have roles in cardiovascular and respiratory responses to exercise, and in impairment of exercise performance through interaction with the motor pathway, as well as providing sensations of muscle discomfort. Thus, changes at all levels of the nervous system including the brain, spinal cord, motor output, sensory input and autonomic function occur during exercise and fatigue. The mix of influences and the importance of their contribution varies with the type of exercise being performed. PMID:27003703
Derosiere, Gerard; Zénon, Alexandre; Alamia, Andrea; Duque, Julie
2017-02-01
In the present study, we investigated the functional contribution of the human primary motor cortex (M1) to motor decisions. Continuous theta burst stimulation (cTBS) was used to alter M1 activity while participants performed a decision-making task in which the reward associated with the subjects' responses (right hand finger movements) depended on explicit and implicit value-based rules. Subjects performed the task over two consecutive days and cTBS occurred in the middle of Day 2, once the subjects were just about to implement implicit rules, in addition to the explicit instructions, to choose their responses, as evident in the control group (cTBS over the right somatosensory cortex). Interestingly, cTBS over the left M1 prevented subjects from implementing the implicit value-based rule while its implementation was enhanced in the group receiving cTBS over the right M1. Hence, cTBS had opposite effects depending on whether it was applied on the contralateral or ipsilateral M1. The use of the explicit value-based rule was unaffected by cTBS in the three groups of subject. Overall, the present study provides evidence for a functional contribution of M1 to the implementation of freshly acquired implicit rules, possibly through its involvement in a cortico-subcortical network controlling value-based motor decisions. Copyright © 2016 Elsevier Inc. All rights reserved.
Solianik, Rima; Sujeta, Artūras
2018-02-15
The physiological, cognitive state, and motor behavior changes that occur during acute fasting are not completely understood. Thus, the aim of this study was to estimate the effect of 2-day total fasting on evoked stress, mood, brain activity, and cognitive, psychomotor, and motor function in overweight women. Eleven overweight women (body mass index above 25kg/m 2 ) aged 20-30 years were tested under two conditions allocated randomly: 2-day zero-calorie diet with water provided ad libitum and 2-day usual diet. One week before the experiment, aerobic fitness was evaluated. Subjective stress ratings in relation to the diet, autonomic function, prefrontal cortex activity, cognitive performance, psychomotor coordination, and grip strength were evaluated before and after each diet. The study demonstrated that fasting decreased log-transformed high-frequency (HF) power, without affecting heart rate. The relative maximum oxygen uptake was negatively correlated with subjective stress rating and changes in log-transformed HF. Fasting did not affect mood, brain activity, and cognitive, motor, and psychomotor performance. Thus, 2-day total fasting evoked moderate stress with a shift of the autonomic nervous system balance toward sympathetic activity in overweight women. Better aerobic endurance is likely to facilitate the capacity for dealing with acute fasting. Regardless of the evoked stress, cognitive state and motor behavior remained intact. Copyright © 2017 Elsevier B.V. All rights reserved.
Scholtens, Rikie M; van Munster, Barbara C; Adamis, Dimitrios; de Jonghe, Annemarieke; Meagher, David J; de Rooij, Sophia E J A
2017-02-01
To examine changes in motor subtype profile in individuals with delirium. Observational, longitudinal study; substudy of a multicenter, randomized controlled trial. Departments of surgery and orthopedics, Academic Medical Center and Tergooi Hospital, the Netherlands. Elderly adults acutely admitted for hip fracture surgery who developed delirium according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, for 2 days or longer (n = 76, aged 86.4 ± 6.1, 68.4% female). Delirium Motor Subtype Scale (DMSS), Delirium Rating Scale R98 (DRS-R98), comorbidity, and function. Median delirium duration was 3 days (interquartile range 2.0 days). At first assessment, the hyperactive motor subtype was most common (44.7%), followed by hypoactive motor subtype (28.9%), mixed motor subtype (19.7%), and no motor subtype (6.6%). Participants with no motor subtype had lower DRS-R98 scores than those with the other subtypes (P < .001). The DMSS-defined motor subtype of 47 (61.8%) participants changed over time. Katz Index of Activities of Daily Living, Charlson Comorbidity Index, cognitive impairment, age, sex, and delirium duration or severity were not associated with change in motor subtype. Motor subtype profile was variable in the majority of participants, although changes that occurred were often related to changes from or to no motor subtype, suggesting evolving or resolving delirium. Changes appeared not be associated with demographic or clinical characteristics, suggesting that evidence from cross-sectional studies of motor subtypes could be applied to many individuals with delirium. Further longitudinal studies should be performed to clarify the stability of motor subtypes in different clinical populations. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.
Motor Speech Disorders Associated with Primary Progressive Aphasia
Duffy, Joseph R.; Strand, Edythe A.; Josephs, Keith A.
2014-01-01
Background Primary progressive aphasia (PPA) and conditions that overlap with it can be accompanied by motor speech disorders. Recognition and understanding of motor speech disorders can contribute to a fuller clinical understanding of PPA and its management as well as its localization and underlying pathology. Aims To review the types of motor speech disorders that may occur with PPA, its primary variants, and its overlap syndromes (progressive supranuclear palsy syndrome, corticobasal syndrome, motor neuron disease), as well as with primary progressive apraxia of speech. Main Contribution The review should assist clinicians' and researchers' understanding of the relationship between motor speech disorders and PPA and its major variants. It also highlights the importance of recognizing neurodegenerative apraxia of speech as a condition that can occur with little or no evidence of aphasia. Conclusion Motor speech disorders can occur with PPA. Their recognition can contribute to clinical diagnosis and management of PPA and to understanding and predicting the localization and pathology associated with PPA variants and conditions that can overlap with them. PMID:25309017
The effect of modifying response and performance feedback parameters on the CNV in humans
NASA Technical Reports Server (NTRS)
Otto, D. A.; Leifer, L. J.
1972-01-01
The effect on the CNV of sustained and delayed motor response with the dominant and nondominant hand in the presence and absence of visual performance feedback, was studied in 15 male adults. Monopolar scalp recordings were obtained at Fz, Cz, Pz, and bilaterally over the motor hand area. Results indicated that the magnitude of the CNV was greater in the delayed than sustained response task, greater in the presence than absence of feedback, and greater over the motor hand area contralateral to movement. Frontal CNV habituated in the sustained, but not the delayed response task, suggested that frontal negative variations in the former case signify an orienting response to novelty or uncertainty. The absence of habituation in the delay condition was interpreted in terms of the motor inhibitory function of frontal association cortex. Performance feedback appeared to enhance CNV indirectly by increasing the motivation of subjects. A multiprocess conception of CNV was proposed in which vortex-negative slow potentials reflect a multiplicity of psychophysiological processes occurring at a variety of cortical and subcortical locations in the brain preparatory to a motor or mental action.
Martínez-Vázquez, Pablo; Gail, Alexander
2018-01-01
Abstract Goal-directed behavior requires cognitive control of action, putatively by means of frontal-lobe impact on posterior brain areas. We investigated frontoparietal directed interaction (DI) in monkeys during memory-guided rule-based reaches, to test if DI supports motor-goal selection or working memory (WM) processes. We computed DI between the parietal reach region (PRR) and dorsal premotor cortex (PMd) with a Granger-causality measure of intracortical local field potentials (LFP). LFP mostly in the beta (12–32 Hz) and low-frequency (f≤10Hz) ranges contributed to DI. During movement withholding, beta-band activity in PRR had a Granger-causal effect on PMd independent of WM content. Complementary, low-frequency PMd activity had a transient Granger-causing effect on PRR specifically during WM retrieval of spatial motor goals, while no DI was associated with preliminary motor-goal selection. Our results support the idea that premotor and posterior parietal cortices interact functionally to achieve cognitive control during goal-directed behavior, in particular, that frontal-to-parietal interaction occurs during retrieval of motor-goal information from spatial WM. PMID:29481586
Martínez-Vázquez, Pablo; Gail, Alexander
2018-05-01
Goal-directed behavior requires cognitive control of action, putatively by means of frontal-lobe impact on posterior brain areas. We investigated frontoparietal directed interaction (DI) in monkeys during memory-guided rule-based reaches, to test if DI supports motor-goal selection or working memory (WM) processes. We computed DI between the parietal reach region (PRR) and dorsal premotor cortex (PMd) with a Granger-causality measure of intracortical local field potentials (LFP). LFP mostly in the beta (12-32 Hz) and low-frequency (f≤10Hz) ranges contributed to DI. During movement withholding, beta-band activity in PRR had a Granger-causal effect on PMd independent of WM content. Complementary, low-frequency PMd activity had a transient Granger-causing effect on PRR specifically during WM retrieval of spatial motor goals, while no DI was associated with preliminary motor-goal selection. Our results support the idea that premotor and posterior parietal cortices interact functionally to achieve cognitive control during goal-directed behavior, in particular, that frontal-to-parietal interaction occurs during retrieval of motor-goal information from spatial WM.
Cognitive-motor dual-task interference: A systematic review of neural correlates.
Leone, Carmela; Feys, Peter; Moumdjian, Lousin; D'Amico, Emanuele; Zappia, Mario; Patti, Francesco
2017-04-01
Cognitive-motor interference refers to dual-tasking (DT) interference (DTi) occurring when the simultaneous performance of a cognitive and a motor task leads to a percentage change in one or both tasks. Several theories exist to explain DTi in humans: the capacity-sharing, the bottleneck and the cross-talk theories. Numerous studies investigating whether a specific brain locus is associated with cognitive-motor DTi have been conducted, but not systematically reviewed. We aimed to review the evidences on brain activity associated with the cognitive-motor DT, in order to better understand the neurological basis of the CMi. Results were reported according to the technique used to assess brain activity. Twenty-three articles met the inclusion criteria. Out of them, nine studies used functional magnetic resonance imaging to show an additive, under-additive, over- additive, or a mixed activation pattern of the brain. Seven studies used near-infrared spectroscopy, and seven neurophysiological instruments. Yet a specific DT locus in the brain cannot be concluded from the overall current literature. Future studies are warranted to overcome the shortcomings identified. Copyright © 2017 Elsevier Ltd. All rights reserved.
Motor features in posterior cortical atrophy and their imaging correlates.
Ryan, Natalie S; Shakespeare, Timothy J; Lehmann, Manja; Keihaninejad, Shiva; Nicholas, Jennifer M; Leung, Kelvin K; Fox, Nick C; Crutch, Sebastian J
2014-12-01
Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by impaired higher visual processing skills; however, motor features more commonly associated with corticobasal syndrome may also occur. We investigated the frequency and clinical characteristics of motor features in 44 PCA patients and, with 30 controls, conducted voxel-based morphometry, cortical thickness, and subcortical volumetric analyses of their magnetic resonance imaging. Prominent limb rigidity was used to define a PCA-motor subgroup. A total of 30% (13) had PCA-motor; all demonstrating asymmetrical left upper limb rigidity. Limb apraxia was more frequent and asymmetrical in PCA-motor, as was myoclonus. Tremor and alien limb phenomena only occurred in this subgroup. The subgroups did not differ in neuropsychological test performance or apolipoprotein E4 allele frequency. Greater asymmetry of atrophy occurred in PCA-motor, particularly involving right frontoparietal and peri-rolandic cortices, putamen, and thalamus. The 9 patients (including 4 PCA-motor) with pathology or cerebrospinal fluid all showed evidence of Alzheimer's disease. Our data suggest that PCA patients with motor features have greater atrophy of contralateral sensorimotor areas but are still likely to have underlying Alzheimer's disease. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Motor unit number estimation and quantitative needle electromyography in stroke patients.
Kouzi, Ioanna; Trachani, Eftichia; Anagnostou, Evangelos; Rapidi, Christina-Anastasia; Ellul, John; Sakellaropoulos, George C; Chroni, Elisabeth
2014-12-01
To evaluate the effect of upper motor neuron damage upon motor units' function by means of two separate and supplementary electrophysiological methods. The abductor digiti minimi muscle of the non-paretic and the paretic side was studied in forty-six stroke patients with (a) motor unit number estimation (MUNE) - adapted multiple point stimulation method and (b) computerized quantitative needle electromyography (EMG) assessing the configuration of voluntary recruited motor unit potentials. Main outcome comparisons were focused on differences between non-paretic and paretic side. On the affected hands mean MUNE value was significantly lower and mean area of the surface recorded single motor unit potentials was significantly larger than the corresponding ones on the non-paretic hands. EMG findings did not reveal remarkable differences between the two sides. Neither severity nor chronicity of stroke was related to MUNE or EMG parameters. MUNE results, which suggested reduced motor unit numbers in stroke patients, in conjunction with the normal EMG features in these same muscles has given rise to different interpretations. In a clinical setting, reinnervation type changes in the EMG similar to that occurring in neuronopathies or axonal neuropathies should not be expected in muscles with central neurogenic lesion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Roalf, David R; Rupert, Petra; Mechanic-Hamilton, Dawn; Brennan, Laura; Duda, John E; Weintraub, Daniel; Trojanowski, John Q; Wolk, David; Moberg, Paul J
2018-06-01
Fine motor impairments are common in neurodegenerative disorders, yet standardized, quantitative measurements of motor abilities are uncommonly used in neurological practice. Thus, understanding and comparing fine motor abilities across disorders have been limited. The current study compared differences in finger tapping, inter-tap interval, and variability in Alzheimer's disease (AD), Parkinson's disease (PD), mild cognitive impairment (MCI), and healthy older adults (HOA). Finger tapping was measured using a highly sensitive light-diode finger tapper. Total number of finger taps, inter-tap interval, and intra-individual variability (IIV) of finger tapping was measured and compared in AD (n = 131), PD (n = 63), MCI (n = 46), and HOA (n = 62), controlling for age and sex. All patient groups had fine motor impairments relative to HOA. AD and MCI groups produced fewer taps with longer inter-tap interval and higher IIV compared to HOA. The PD group, however, produced more taps with shorter inter-tap interval and higher IIV compared to HOA. Disease-specific changes in fine motor function occur in the most common neurodegenerative diseases. The findings suggest that alterations in finger tapping patterns are common in AD, MCI, and PD. In addition, the present results underscore the importance of motor dysfunction even in neurodegenerative disorders without primary motor symptoms.
Cerebral correlates of the "Kohnstamm phenomenon": an fMRI study.
Duclos, C; Roll, R; Kavounoudias, A; Roll, J-P
2007-01-15
This paper addresses the issue of the central correlates of the "Kohnstamm phenomenon", i.e. the long-lasting involuntary muscle contraction which develops after a prolonged isometric voluntary contraction. Although this phenomenon was described as early as 1915, the mechanisms underlying these post-effects are not yet understood. It was therefore proposed to investigate whether specific brain areas may be involved in the motor post-effects induced by either wrist muscle contraction or vibration using the fMRI method. For this purpose, experiments were carried out on the right wrist of 11 healthy subjects. Muscle activity (EMG) and regional cerebral blood flow were recorded during isometric voluntary muscle contraction and muscle vibration, as well as during the subsequent involuntary contractions (the post-effects) which occurred under both conditions. Brain activations were found to occur during the post-contraction and post-vibration periods, which were very similar under both conditions. Brain activation involved motor-related areas usually responsible for voluntary motor command (primary sensory and motor cortices, premotor cortex, anterior and posterior cingulate gyrus) and sensorimotor integration structures such as the posterior parietal cortex. Comparisons between the patterns of brain activation associated with the involuntary post-effects and those accompanying voluntary contraction showed that cerebellar vermis was activated during the post-effect periods whereas the supplementary motor area was activated only during the induction periods. Although post-effects originate from asymmetric proprioceptive inputs, they might also involve a central network where the motor and somatosensory areas and the cerebellum play a key role. In functional terms, they might result from the adaptive recalibration of the postural reference frame altered by the sustained proprioceptive inputs elicited by muscle contraction and vibration.
Oakley, Christopher; Mahone, E Mark; Morris-Berry, Christina; Kline, Tina; Singer, Harvey S
2015-04-01
Complex motor stereotypies are rhythmic, repetitive, fixed, and purposeless movements that stop with distraction. Once believed to occur only in children with autism spectrum or other developmental disorders, their presence in otherwise typically developing children (primary) has been well-established. In primary complex motor stereotypies, little information is available about the long-term outcome of these movements or existing comorbidities. Forty-nine healthy participants (31 boys), ages 9 to 20 years with primary complex motor stereotypies who were previously diagnosed at a pediatric movements disorder clinic, were identified from medical records. Parents or the young adult (if older than age 18), completed a telephone interview evaluating family history, outcome, and comorbidities including attention-deficit hyperactivity disorder, obsessive compulsive disorder, anxiety, and tics/Tourette syndrome. Standardized questionnaires assessing attention-deficit hyperactivity, obsessive compulsive disorder, and anxiety were used to validate parent report of comorbidities. Stereotypy onset occurred before age 3 years in 98%. In all but one individual, stereotypies persisted at the time of phone follow-up (follow-up range: 6.8-20.3 years). Positive family history of complex motor stereotypies was identified in 39%. Most participants (92%) had concern for at least one comorbid disorder, including parent-/patient-reported clinically elevated levels of anxiety (73%), attention-deficit hyperactivity (63%), obsessive compulsive disorder (35%), and tics/Tourette syndrome (22%). Primary motor stereotypies typically begin in early childhood and, although reduced in frequency and duration, persist at least through the teenage years. Repetitive movements are associated with a variety of comorbidities that often have a greater functional impact than the stereotypic behavior. Copyright © 2015 Elsevier Inc. All rights reserved.
Relation between hand function and gross motor function in full term infants aged 4 to 8 months.
Nogueira, Solange F; Figueiredo, Elyonara M; Gonçalves, Rejane V; Mancini, Marisa C
2015-01-01
In children, reaching emerges around four months of age, which is followed by rapid changes in hand function and concomitant changes in gross motor function, including the acquisition of independent sitting. Although there is a close functional relationship between these domains, to date they have been investigated separately. To investigate the longitudinal profile of changes and the relationship between the development of hand function (i.e. reaching for and manipulating an object) and gross motor function in 13 normally developing children born at term who were evaluated every 15 days from 4 to 8 months of age. The number of reaches and the period (i.e. time) of manipulation to an object were extracted from video synchronized with the Qualisys(r) movement analysis system. Gross motor function was measured using the Alberta Infant Motor Scale. ANOVA for repeated measures was used to test the effect of age on the number of reaches, the time of manipulation and gross motor function. Hierarchical regression models were used to test the associations of reaching and manipulation with gross motor function. RESULTS revealed a significant increase in the number of reaches (p<0.001), the time of manipulation (p<0.001) and gross motor function (p<0.001) over time, as well as associations between reaching and gross motor function (R2=0.84; p<0.001) and manipulation and gross motor function (R2=0.13; p=0.02) from 4 to 6 months of age. Associations from 6 to 8 months of age were not significant. The relationship between hand function and gross motor function was not constant, and the age span from 4 to 6 months was a critical period of interdependency of hand function and gross motor function development.
Motor-based bodily self is selectively impaired in eating disorders.
Campione, Giovanna Cristina; Mansi, Gianluigi; Fumagalli, Alessandra; Fumagalli, Beatrice; Sottocornola, Simona; Molteni, Massimo; Micali, Nadia
2017-01-01
Body representation disturbances in body schema (i.e. unconscious sensorimotor body representations for action) have been frequently reported in eating disorders. Recently, it has been proposed that body schema relies on adequate functioning of the motor system, which is strongly implicated in discriminating between one's own and someone else's body. The present study aimed to investigate the motor-based bodily self in eating disorders and controls, in order to examine the role of the motor system in body representation disturbances at the body schema level. Female outpatients diagnosed with eating disorders (N = 15), and healthy controls (N = 18) underwent a hand laterality task, in which their own (self-stimuli) and someone else's hands (other-stimuli) were displayed at different orientations. Participants had to mentally rotate their own hand in order to provide a laterality judgement. Group differences in motor-based bodily self-recognition-i.e. whether a general advantage occurred when implicitly processing self- vs. other-stimuli - were evaluated, by analyzing response times and accuracy by means of mixed ANOVAs. Patients with eating disorders did not show a temporal advantage when mentally rotating self-stimuli compared to other-stimuli, as opposed to controls (F(1, 31) = 5.6, p = 0.02; eating disorders-other = 1092 ±256 msec, eating disorders-self = 1097±254 msec; healthy controls-other = 1239±233 msec, healthy controls -self = 1192±232 msec). This study provides initial indication that high-level motor functions might be compromised as part of body schema disturbances in eating disorders. Further larger investigations are required to test motor system abnormalities in the context of body schema disturbance in eating disorders.
Deecke, L
1987-01-01
Topographical studies in humans of the Bereitschaftspotential (BP, or readiness potential, as averaged from the electroencephalogram) and the Bereitschaftsmagnetfeld (BM, or readiness magnetic field, as averaged from the magnetoencephalogram) revealed a widespread distribution of motor preparation over both hemispheres even before unilateral movement. This indicates the existence of several generators responsible for the BP, including generators in the ipsilateral hemisphere, which is in agreement with measurements of regional cerebral blood flow or regional cerebral energy metabolism. Nevertheless, two principal generators seem to prevail: (1) An early generator, starting its activity 1s or more before the motor act, with its maximum at the vertex. For this and other reasons, early BP generation probably stems from cortical tissue representing or including the supplementary motor area (SMA). (2) A later generator, starting its activity about 0.5s before the onset of movement and biased towards the contralateral hemisphere (contralateral preponderance of negativity, CPN). For unilateral finger movements the CPN succeeds the BP's initial bilateral symmetry in the later preparation period. Thus, this lateralized BP component probably stems from the primary motor area, MI (area 4, hand representation). While regional cerebral blood flow or regional cerebral energy metabolism show that the SMA is active in conjunction with motor acts, these data do not permit the conclusion that SMA activity precedes motor acts. This can only be shown by the Bereitschaftspotential, which proves that SMA activity occurs before the onset of movement and, what is more, before the onset of MI activity. This important order of events (first SMA, then MI activation) has been elucidated by our BP studies. It gives the SMA an important functional role: the initiation of voluntary movement. The recording of movement-related potentials associated with manual hand-tracking and motor learning points to the SMA and frontal cortex having an important role in these functions.
Maze, Ian S; Wright, Geraldine A; Mustard, Julie A
2006-01-01
Ethanol consumption produces characteristic behavioral states in animals that include sedation, disorientation, and disruption of motor function. Using individual honey bees, we assessed the effects of ethanol ingestion on motor function via continuous observations of their behavior. Consumption of 1 M sucrose solutions containing a range of ethanol doses led to hemolymph ethanol levels of approximately 40-100 mM. Using ethanol doses in this range, we observed time and dose-dependent effects of ethanol on the percent of time our subjects spent walking, stopped, or upside down, and on the duration and frequency of bouts of behavior. The effects on grooming and flying behavior were more complex. Behavioral recovery from ethanol treatment was both time and ethanol dose dependent, occurring between 12 and 24 h post-ingestion for low doses and at 24-48 h for higher doses. Furthermore, the amount of ethanol measured in honey bee hemolymph appeared to correlate with recovery. We predict that the honey bee will prove to be an excellent model system for studying the influence of ethanol on the neural mechanisms underlying behavior.
DeVaughn, S; Müller-Oehring, E M; Markey, B; Brontë-Stewart, H M; Schulte, T
2015-12-01
Recent advances in highly active anti-retroviral therapy (HAART) in their various combinations have dramatically increased the life expectancies of HIV-infected persons. People diagnosed with HIV are living beyond the age of 50 but are experiencing the cumulative effects of HIV infection and aging on brain function. In HIV-infected aging individuals, the potential synergy between immunosenescence and HIV viral loads increases susceptibility to HIV-related brain injury and functional brain network degradation similar to that seen in Parkinson's disease (PD), the second most common neurodegenerative disorder in the aging population. Although there are clear diagnostic differences in the primary pathology of both diseases, i.e., death of dopamine-generating cells in the substantia nigra in PD and neuroinflammation in HIV, neurotoxicity to dopaminergic terminals in the basal ganglia (BG) has been implied in the pathogenesis of HIV and neuroinflammation in the pathogenesis of PD. Similar to PD, HIV infection affects structures of the BG, which are part of interconnected circuits including mesocorticolimbic pathways linking brainstem nuclei to BG and cortices subserving attention, cognitive control, and motor functions. The present review discusses the combined effects of aging and neuroinflammation in HIV individuals on cognition and motor function in comparison with age-related neurodegenerative processes in PD. Despite the many challenges, some HIV patients manage to age successfully, most likely by redistribution of neural network resources to enhance function, as occurs in healthy elderly; such compensation could be curtailed by emerging PD.
Central Topography of Cranial Motor Nuclei Controlled by Differential Cadherin Expression
Astick, Marc; Tubby, Kristina; Mubarak, Waleed M.; Guthrie, Sarah; Price, Stephen R.
2014-01-01
Summary Neuronal nuclei are prominent, evolutionarily conserved features of vertebrate central nervous system (CNS) organization [1]. Nuclei are clusters of soma of functionally related neurons and are located in highly stereotyped positions. Establishment of this CNS topography is critical to neural circuit assembly. However, little is known of either the cellular or molecular mechanisms that drive nucleus formation during development, a process termed nucleogenesis [2–5]. Brainstem motor neurons, which contribute axons to distinct cranial nerves and whose functions are essential to vertebrate survival, are organized exclusively as nuclei. Cranial motor nuclei are composed of two main classes, termed branchiomotor/visceromotor and somatomotor [6]. Each of these classes innervates evolutionarily distinct structures, for example, the branchial arches and eyes, respectively. Additionally, each class is generated by distinct progenitor cell populations and is defined by differential transcription factor expression [7, 8]; for example, Hb9 distinguishes somatomotor from branchiomotor neurons. We characterized the time course of cranial motornucleogenesis, finding that despite differences in cellular origin, segregation of branchiomotor and somatomotor nuclei occurs actively, passing through a phase of each being intermingled. We also found that differential expression of cadherin cell adhesion family members uniquely defines each motor nucleus. We show that cadherin expression is critical to nucleogenesis as its perturbation degrades nucleus topography predictably. PMID:25308074
Imaging seizure activity: a combined EEG/EMG-fMRI study in reading epilepsy.
Salek-Haddadi, Afraim; Mayer, Thomas; Hamandi, Khalid; Symms, Mark; Josephs, Oliver; Fluegel, Dominique; Woermann, Friedrich; Richardson, Mark P; Noppeney, Uta; Wolf, Peter; Koepp, Matthias J
2009-02-01
To characterize the spatial relationship between activations related to language-induced seizure activity, language processing, and motor control in patients with reading epilepsy. We recorded and simultaneously monitored several physiological parameters [voice-recording, electromyography (EMG), electrocardiography (ECG), electroencephalography (EEG)] during blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in nine patients with reading epilepsy. Individually tailored language paradigms were used to induce and record habitual seizures inside the MRI scanner. Voxel-based morphometry (VBM) was used for structural brain analysis. Reading-induced seizures occurred in six out of nine patients. One patient experienced abundant orofacial reflex myocloni during silent reading in association with bilateral frontal or generalized epileptiform discharges. In a further five patients, symptoms were only elicited while reading aloud with self-indicated events. Consistent activation patterns in response to reading-induced myoclonic seizures were observed within left motor and premotor areas in five of these six patients, in the left striatum (n = 4), in mesiotemporal/limbic areas (n = 4), in Brodmann area 47 (n = 3), and thalamus (n = 2). These BOLD activations were overlapping or adjacent to areas physiologically activated during language and facial motor tasks. No subtle structural abnormalities common to all patients were identified using VBM, but one patient had a left temporal ischemic lesion. Based on the findings, we hypothesize that reflex seizures occur in reading epilepsy when a critical mass of neurons are activated through a provoking stimulus within corticoreticular and corticocortical circuitry subserving normal functions.
The Motor Subsystem as a Predictor of Success in Young Football Talents: A Person-Oriented Study
Zibung, Marc; Zuber, Claudia; Conzelmann, Achim
2016-01-01
Motor tests play a key role in talent selection in football. However, individual motor tests only focus on specific areas of a player’s complex performance. To evaluate his or her overall performance during a game, the current study takes a holistic perspective and uses a person-oriented approach. In this approach, several factors are viewed together as a system, whose state is analysed longitudinally. Based on this idea, six motor tests were aggregated to form the Motor Function subsystem. 104 young, top-level, male football talents were tested three times (2011, 2012, 2013; Mage, t2011 = 12.26, SD = 0.29), and their overall level of performance was determined one year later (2014). The data were analysed using the LICUR method, a pattern-analytical procedure for person-oriented approaches. At all three measuring points, four patterns could be identified, which remained stable over time. One of the patterns found at the third measuring point identified more subsequently successful players than random selection would. This pattern is characterised by above-average, but not necessarily the best, performance on the tests. Developmental paths along structurally stable patterns that occur more often than predicted by chance indicate that the Motor Function subsystem is a viable means of forecasting in the age range of 12–15 years. Above-average, though not necessary outstanding, performance both on fitness and technical tests appears to be particularly promising. These findings underscore the view that a holistic perspective may be profitable in talent selection. PMID:27508929
Biochemical and bioinformatic analysis of the MYO19 motor domain
Adikes, Rebecca C.; Unrath, William C.; Yengo, Christopher M.; Quintero, Omar A.
2014-01-01
Mitochondrial dynamics are dependent on both the microtubule and actin cytoskeletal systems. Evidence for the involvement of myosin motors has been described in many systems, and until recently a candidate mitochondrial transport motor had not been described in vertebrates. Myosin-XIX (MYO19) was predicted to represent a novel class of myosin and had previously been shown to bind to mitochondria and increase mitochondrial network dynamics when ectopically expressed. Our analyses comparing ∼40 MYO19 orthologs to ∼2000 other myosin motor domain sequences identified instances of homology well-conserved within class XIX myosins that were not found in other myosin classes, suggesting MYO19-specific mechanochemistry. Steady-state biochemical analyses of the MYO19 motor domain indicate that Homo sapiens MYO19 is a functional motor. Insect cell-expressed constructs bound calmodulin as a light chain at the predicted stoichiometry and displayed actin-activated ATPase activity. MYO19 constructs demonstrated high actin affinity in the presence of ATP in actin-cosedimentation assays, and translocated actin filaments in gliding assays. Expression of GFP-MYO19 containing a mutation impairing ATPase activity did not enhance mitochondrial network dynamics, as occurs with wild-type MYO19, indicating that myosin motor activity is required for mitochondrial motility. The measured biochemical properties of MYO19 suggest it is a high-duty ratio motor that could serve to transport mitochondria or anchor mitochondria, depending upon the cellular microenvironment. PMID:23568824
Boyer, Justin G.; Ferrier, Andrew; Kothary, Rashmi
2013-01-01
Spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), and spinal-bulbar muscular atrophy (SBMA) are devastating diseases characterized by the degeneration of motor neurons. Although the molecular causes underlying these diseases differ, recent findings have highlighted the contribution of intrinsic skeletal muscle defects in motor neuron diseases. The use of cell culture and animal models has led to the important finding that muscle defects occur prior to and independently of motor neuron degeneration in motor neuron diseases. In SMA for instance, the muscle specific requirements of the SMA disease-causing gene have been demonstrated by a series of genetic rescue experiments in SMA models. Conditional ALS mouse models expressing a muscle specific mutant SOD1 gene develop atrophy and muscle degeneration in the absence of motor neuron pathology. Treating SBMA mice by over-expressing IGF-1 in a skeletal muscle-specific manner attenuates disease severity and improves motor neuron pathology. In the present review, we provide an in depth description of muscle intrinsic defects, and discuss how they impact muscle function in these diseases. Furthermore, we discuss muscle-specific therapeutic strategies used to treat animal models of SMA, ALS, and SBMA. The study of intrinsic skeletal muscle defects is crucial for the understanding of the pathophysiology of these diseases and will open new therapeutic options for the treatment of motor neuron diseases. PMID:24391590
Molecular motors and their functions in plants
NASA Technical Reports Server (NTRS)
Reddy, A. S.
2001-01-01
Molecular motors that hydrolyze ATP and use the derived energy to generate force are involved in a variety of diverse cellular functions. Genetic, biochemical, and cellular localization data have implicated motors in a variety of functions such as vesicle and organelle transport, cytoskeleton dynamics, morphogenesis, polarized growth, cell movements, spindle formation, chromosome movement, nuclear fusion, and signal transduction. In non-plant systems three families of molecular motors (kinesins, dyneins, and myosins) have been well characterized. These motors use microtubules (in the case of kinesines and dyneins) or actin filaments (in the case of myosins) as tracks to transport cargo materials intracellularly. During the last decade tremendous progress has been made in understanding the structure and function of various motors in animals. These studies are yielding interesting insights into the functions of molecular motors and the origin of different families of motors. Furthermore, the paradigm that motors bind cargo and move along cytoskeletal tracks does not explain the functions of some of the motors. Relatively little is known about the molecular motors and their roles in plants. In recent years, by using biochemical, cell biological, molecular, and genetic approaches a few molecular motors have been isolated and characterized from plants. These studies indicate that some of the motors in plants have novel features and regulatory mechanisms. The role of molecular motors in plant cell division, cell expansion, cytoplasmic streaming, cell-to-cell communication, membrane trafficking, and morphogenesis is beginning to be understood. Analyses of the Arabidopsis genome sequence database (51% of genome) with conserved motor domains of kinesin and myosin families indicates the presence of a large number (about 40) of molecular motors and the functions of many of these motors remain to be discovered. It is likely that many more motors with novel regulatory mechanisms that perform plant-specific functions are yet to be discovered. Although the identification of motors in plants, especially in Arabidopsis, is progressing at a rapid pace because of the ongoing plant genome sequencing projects, only a few plant motors have been characterized in any detail. Elucidation of function and regulation of this multitude of motors in a given species is going to be a challenging and exciting area of research in plant cell biology. Structural features of some plant motors suggest calcium, through calmodulin, is likely to play a key role in regulating the function of both microtubule- and actin-based motors in plants.
Oliver, Caitlin J; Softley, Samantha; Williamson, Sally M; Stevenson, Philip C; Wright, Geraldine A
2015-01-01
Sodium channels, found ubiquitously in animal muscle cells and neurons, are one of the main target sites of many naturally-occurring, insecticidal plant compounds and agricultural pesticides. Pyrethroids, derived from compounds found only in the Asteraceae, are particularly toxic to insects and have been successfully used as pesticides including on flowering crops that are visited by pollinators. Pyrethrins, from which they were derived, occur naturally in the nectar of some flowering plant species. We know relatively little about how such compounds--i.e., compounds that target sodium channels--influence pollinators at low or sub-lethal doses. Here, we exposed individual adult forager honeybees to several compounds that bind to sodium channels to identify whether these compounds affect motor function. Using an assay previously developed to identify the effect of drugs and toxins on individual bees, we investigated how acute exposure to 10 ng doses (1 ppm) of the pyrethroid insecticides (cyfluthrin, tau-fluvalinate, allethrin and permethrin) and the nectar toxins (aconitine and grayanotoxin I) affected honeybee locomotion, grooming and wing fanning behaviour. Bees exposed to these compounds spent more time upside down and fanning their wings. They also had longer bouts of standing still. Bees exposed to the nectar toxin, aconitine, and the pyrethroid, allethrin, also spent less time grooming their antennae. We also found that the concentration of the nectar toxin, grayanotoxin I (GTX), fed to bees affected the time spent upside down (i.e., failure to perform the righting reflex). Our data show that low doses of pyrethroids and other nectar toxins that target sodium channels mainly influence motor function through their effect on the righting reflex of adult worker honeybees.
Visually cued motor synchronization: modulation of fMRI activation patterns by baseline condition.
Cerasa, Antonio; Hagberg, Gisela E; Bianciardi, Marta; Sabatini, Umberto
2005-01-03
A well-known issue in functional neuroimaging studies, regarding motor synchronization, is to design suitable control tasks able to discriminate between the brain structures involved in primary time-keeper functions and those related to other processes such as attentional effort. The aim of this work was to investigate how the predictability of stimulus onsets in the baseline condition modulates the activity in brain structures related to processes involved in time-keeper functions during the performance of a visually cued motor synchronization task (VM). The rational behind this choice derives from the notion that using different stimulus predictability can vary the subject's attention and the consequently neural activity. For this purpose, baseline levels of BOLD activity were obtained from 12 subjects during a conventional-baseline condition: maintained fixation of the visual rhythmic stimuli presented in the VM task, and a random-baseline condition: maintained fixation of visual stimuli occurring randomly. fMRI analysis demonstrated that while brain areas with a documented role in basic time processing are detected independent of the baseline condition (right cerebellum, bilateral putamen, left thalamus, left superior temporal gyrus, left sensorimotor cortex, left dorsal premotor cortex and supplementary motor area), the ventral premotor cortex, caudate nucleus, insula and inferior frontal gyrus exhibited a baseline-dependent activation. We conclude that maintained fixation of unpredictable visual stimuli can be employed in order to reduce or eliminate neural activity related to attentional components present in the synchronization task.
Cerebral palsy in Victoria: motor types, topography and gross motor function.
Howard, Jason; Soo, Brendan; Graham, H Kerr; Boyd, Roslyn N; Reid, Sue; Lanigan, Anna; Wolfe, Rory; Reddihough, Dinah S
2005-01-01
To study the relationships between motor type, topographical distribution and gross motor function in a large, population-based cohort of children with cerebral palsy (CP), from the State of Victoria, and compare this cohort to similar cohorts from other countries. An inception cohort was generated from the Victorian Cerebral Palsy Register (VCPR) for the birth years 1990-1992. Demographic information, motor types and topographical distribution were obtained from the register and supplemented by grading gross motor function according to the Gross Motor Function Classification System (GMFCS). Complete data were obtained on 323 (86%) of 374 children in the cohort. Gross motor function varied from GMFCS level I (35%) to GMFCS level V (18%) and was similar in distribution to a contemporaneous Swedish cohort. There was a fairly even distribution across the topographical distributions of hemiplegia (35%), diplegia (28%) and quadriplegia (37%) with a large majority of young people having the spastic motor type (86%). The VCPR is ideal for population-based studies of gross motor function in children with CP. Gross motor function is similar in populations of children with CP in developed countries but the comparison of motor types and topographical distribution is difficult because of lack of consensus with classification systems. Use of the GMFCS provides a valid and reproducible method for clinicians to describe gross motor function in children with CP using a universal language.
Characteristics and Outcomes of Out-of-Hospital Cardiac Arrest Occurring While in a Motor Vehicle.
Sado, Junya; Kiyohara, Kosuke; Hayashida, Sumito; Matsuyama, Tasuku; Katayama, Yusuke; Hirose, Tomoya; Kiguchi, Takeyuki; Nishiyama, Chika; Iwami, Taku; Kitamura, Yuri; Sobue, Tomotaka; Kitamura, Tetsuhisa
2018-06-01
This study aimed to investigate the incidence, patient characteristics, and outcomes of out-of-hospital cardiac arrest (OHCA) occurring while in a motor vehicle in Osaka City, Japan (with a population of 2.6 million), from 2009 to 2015. The OHCA data used in this study were obtained from the population-based Utstein-style registry in Osaka City. Patients who had OHCA occurring while in a motor vehicle were included. The primary end point was 1-month survival with favorable neurologic outcome after OHCA. During the study period, 18,458 OHCAs were observed, and 264 of them (1.4%) occurred while on or in a motor vehicle (drivers, n = 179; nondrivers, n = 85). The overall incidence rate of OHCAs occurring while in a motor vehicle was 14.0 per million population per year (drivers, 9.5; nondrivers, 4.5). In the drivers with OHCAs, 78 (43.6%) and 101 (56.4%) cases were of medical origin and traffic injuries, respectively. Approximately half of OHCAs with a medical origin in drivers presumably occurred while driving (46.2%, 36 of 78). The overall proportion of 1-month survival with favorable neurologic outcome after OHCA was 6.4% (17 of 264). In the drivers, the proportion of OHCAs with a medical origin and because of traffic injuries were 11.5% (9 of 78) and 2.0% (2 of 101) (p = 0.008), respectively. In conclusion, although OHCAs occurring while in a motor vehicle represented a small subset of the overall OHCA burden, a relatively large number of cardiac arrests with a medical origin occurred in drivers. Copyright © 2018 Elsevier Inc. All rights reserved.
Nurko, Samuel; Rosen, Rachel; Furuta, Glenn T
2009-12-01
The pathophysiology of dysphagia in patients with eosinophilic esophagitis (EoE) is unknown but may be related to abnormal esophageal motor function. Symptoms rarely occur during stationary esophageal manometry, so it has been difficult to establish an association between symptoms and motor events. Our aim was to evaluate esophageal motor function in children with EoE with the use of stationary manometry and ambulatory prolonged esophageal manometry and pH-metry (PEMP). PEMP was performed in children with EoE and compared with controls and children with gastroesophageal reflux disease (GERD). Peristalsis was considered effective when the esophageal contractions had a normal amplitude and propagation. Results are expressed as mean+/-s.e. Seventeen patients with EoE, 13 with GERD, and 11 controls were studied. Values are expressed as mean+/-s.e. Stationary manometry identified abnormal peristalsis in 41% of children with EoE. During PEMP, children with EoE had an increased number of isolated (16.7+/-3.8 vs. 9.5+/-1.6 vs. 6.5+/-1.1; P<0.03) and high-amplitude contractions (4.1+/-1.2 vs. 1.8+/-0.8 vs. 0.1+/-0.1; P<0.03), and higher percentage ineffective peristalsis both during fasting (70.5%+/-2.5 vs. 57.8%+/-3.0 vs. 53.8%+/-1.9; P<0.05) and during meals (68.4+/-3.4 vs. 55.3+/-2.8 vs. 48.1+/-2.8; P<0.05) when compared with children with GERD and controls. Thirteen patients with EoE experienced 21 episodes of dysphagia, and all correlated with simultaneous abnormal motor function. PEMP allowed the detection of ineffective peristalsis in children with EoE. Symptoms observed in children with EoE may be related to esophageal motor dysfunction.
Age at spinal cord injury determines muscle strength
Thomas, Christine K.; Grumbles, Robert M.
2014-01-01
As individuals with spinal cord injury (SCI) age they report noticeable deficits in muscle strength, endurance and functional capacity when performing everyday tasks. These changes begin at ~45 years. Here we present a cross-sectional analysis of paralyzed thenar muscle and motor unit contractile properties in two datasets obtained from different subjects who sustained a cervical SCI at different ages (≤46 years) in relation to data from uninjured age-matched individuals. First, completely paralyzed thenar muscles were weaker when C6 SCI occurred at an older age. Muscles were also significantly weaker if the injury was closer to the thenar motor pools (C6 vs. C4). More muscles were strong (>50% uninjured) in those injured at a younger (≤25 years) vs. young age (>25 years), irrespective of SCI level. There was a reduction in motor unit numbers in all muscles tested. In each C6 SCI, only ~30 units survived vs. 144 units in uninjured subjects. Since intact axons only sprout 4–6 fold, the limits for muscle reinnervation have largely been met in these young individuals. Thus, any further reduction in motor unit numbers with time after these injuries will likely result in chronic denervation, and may explain the late-onset muscle weakness routinely described by people with SCI. In a second dataset, paralyzed thenar motor units were more fatigable than uninjured units. This gap widened with age and will reduce functional reserve. Force declines were not due to electromyographic decrements in either group so the site of failure was beyond excitation of the muscle membrane. Together, these results suggest that age at SCI is an important determinant of long-term muscle strength, and fatigability, both of which influence functional capacity. PMID:24478643
Oliveira, Aline Nascimento; Pinheiro, Alana Miranda; Belém-Filho, Ivaldo Jesus Almeida; Fernandes, Luanna Melo Pereira; Cartágenes, Sabrina Carvalho; Ribera, Paula Cardoso; Fontes-Júnior, Enéas Andrade; Crespo-Lopez, Maria Elena; Monteiro, Marta Chagas; Lima, Marcelo Oliveira; Maia, Cristiane Socorro Ferraz
2018-05-24
Methylmercury (MeHg) is a hazardous environmental pollutant, affecting Amazon basin communities by anthropogenic activities. The exact safe level of MeHg exposure is unclear, despite the efforts of health international societies to avoid mercury (Hg) poisoning. Central nervous system is severely impacted by Hg intoxication, reflecting on motor impairment. In addition, alcohol has been associated to an overall brain damage. According to lifestyle of Amazon riverside communities, alcohol intake occurs frequently. Thus, we investigated if continuous MeHg exposure at low doses during adolescence displays motor deficits (experiment 1). In the experiment 2, we examine if the co-intoxication (i.e. MeHg plus ethanol exposure) during adolescence intensify motor damage. In the experiment 1, Wistar adolescent rats (31 days old) received chronic exposure to low dose (CELD) of MeHg (40 μg/kg/day) for 35 days. For the experiment 2, five sessions of alcohol binge drinking paradigm (3ON-4OFF; 3.0 g/kg/day) were employed associated to MeHg intoxication. Motor behaviour was evaluated by the open field, pole test, beam walking and rotarod paradigms. CELDS of MeHg display motor function damage, related to hypoactivity, bradykinesia-like behaviour, coordination deficits and motor learning impairment. Co-intoxication of MeHg plus ethanol reduced cerebellar Hg content, however also resulted in motor behavioural impairment, as well as additive effects on bradykinesia and fine motor evaluation.
Vincristine and fine motor function of children with acute lymphoblastic leukemia
Sabarre, Cheryl L; Rassekh, Shahrad R; Zwicker, Jill G
2014-10-01
Children with acute lymphoblastic leukemia receive vincristine, a chemotherapy drug known to cause peripheral neuropathy. Yet, few studies have examined the association of vincristine to fine motor function. This study will describe the fine motor skills and function of children with acute lymphoblastic leukemia on maintenance vincristine. A prospective case series design assessed manual dexterity and parent-reported fine motor dysfunction of 15 children with acute lymphoblastic leukemia in relation to cumulative vincristine exposure. Almost half of the participants had below-average fine motor skills compared to age-related norms, and 57% of parents observed functional motor problems in their children. No significant associations were found between vincristine, manual dexterity, and functional motor skills. Early detection and intervention for fine motor difficulties is suggested. Research with a larger sample is necessary to further explore the association of vincristine and fine motor function in this clinical population.
Holloway, Jamie M; Long, Toby M; Biasini, Fred
2018-05-02
The purpose of this study was to examine the relationship between gross motor skills and social function in young boys with autism spectrum disorder. Twenty-one children with autism spectrum disorder participated in the study. The Peabody Developmental Motor Scales Second Edition and the Miller Function and Participation Scales were used to assess gross motor skills. The Social Skills Improvement System Rating Scales was used to assess social function. Moderately high correlations were found between overall gross motor and social skills (r = 0.644) and between the core stability motor subtest and overall social skills (r = -0.672). Specific motor impairments in stability, motor accuracy, and object manipulation scores were predictive of social function. This study suggests that motor skills and social function are related in young boys with autism. Implications for physical therapy intervention are also discussed.
Luz, Carolina Lundberg; Moura, Maria Clara Drummond Soares de; Becker, Karine Kyomi; Teixeira, Rosani Aparecida Antunes; Voos, Mariana Callil; Hasue, Renata Hydee
2017-08-01
Motor function, cognition, functional independence and quality of life have been described in myelomeningocele patients, but no study has investigated their relationships. We aimed to investigate the relationships between motor function, cognition, functional independence, quality of life, age, and lesion level in myelomeningocele patients, and investigate the influence of hydrocephalus on these variables. We assessed 47 patients with the Gross Motor Function Measure (motor function), Raven's Colored Progressive Matrices (cognition), Pediatric Evaluation of Disability Inventory (functional independence) and the Autoquestionnaire Qualité de vie Enfant Imagé (quality of life). Spearman's correlation tests determined relationships between the variables. The Friedman ANOVAs determined the influence of hydrocephalus. Motor function was strongly related to mobility and lesion level, and moderately related to cognition, self-care and social function. Cognition and quality of life were moderately related to functional independence. Age correlated moderately with functional independence and quality of life. Hydrocephalus resulted in poorer motor/cognitive outcomes and lower functional independence.
Genetically identified spinal interneurons integrating tactile afferents for motor control
Panek, Izabela; Farah, Carl
2015-01-01
Our movements are shaped by our perception of the world as communicated by our senses. Perception of sensory information has been largely attributed to cortical activity. However, a prior level of sensory processing occurs in the spinal cord. Indeed, sensory inputs directly project to many spinal circuits, some of which communicate with motor circuits within the spinal cord. Therefore, the processing of sensory information for the purpose of ensuring proper movements is distributed between spinal and supraspinal circuits. The mechanisms underlying the integration of sensory information for motor control at the level of the spinal cord have yet to be fully described. Recent research has led to the characterization of spinal neuron populations that share common molecular identities. Identification of molecular markers that define specific populations of spinal neurons is a prerequisite to the application of genetic techniques devised to both delineate the function of these spinal neurons and their connectivity. This strategy has been used in the study of spinal neurons that receive tactile inputs from sensory neurons innervating the skin. As a result, the circuits that include these spinal neurons have been revealed to play important roles in specific aspects of motor function. We describe these genetically identified spinal neurons that integrate tactile information and the contribution of these studies to our understanding of how tactile information shapes motor output. Furthermore, we describe future opportunities that these circuits present for shedding light on the neural mechanisms of tactile processing. PMID:26445867
Drosophila FoxP Mutants Are Deficient in Operant Self-Learning
Mendoza, Ezequiel; Colomb, Julien; Rybak, Jürgen; Pflüger, Hans-Joachim; Zars, Troy
2014-01-01
Intact function of the Forkhead Box P2 (FOXP2) gene is necessary for normal development of speech and language. This important role has recently been extended, first to other forms of vocal learning in animals and then also to other forms of motor learning. The homology in structure and in function among the FoxP gene members raises the possibility that the ancestral FoxP gene may have evolved as a crucial component of the neural circuitry mediating motor learning. Here we report that genetic manipulations of the single Drosophila orthologue, dFoxP, disrupt operant self-learning, a form of motor learning sharing several conceptually analogous features with language acquisition. Structural alterations of the dFoxP locus uncovered the role of dFoxP in operant self-learning and habit formation, as well as the dispensability of dFoxP for operant world-learning, in which no motor learning occurs. These manipulations also led to subtle alterations in the brain anatomy, including a reduced volume of the optic glomeruli. RNAi-mediated interference with dFoxP expression levels copied the behavioral phenotype of the mutant flies, even in the absence of mRNA degradation. Our results provide evidence that motor learning and language acquisition share a common ancestral trait still present in extant invertebrates, manifest in operant self-learning. This ‘deep’ homology probably traces back to before the split between vertebrate and invertebrate animals. PMID:24964149
Physiologic and biochemical aspects of skeletal muscle denervation and reinnervation
NASA Technical Reports Server (NTRS)
Max, S. R.; Mayer, R. F.
1984-01-01
Some of the physiologic and biochemical changes that occur in mammalian skeletal muscle following denervation and reinnervation are considered and some comparisons are made with changes observed following altered motor function. The nature of the trophic influence by which nerves control muscle properties are discussed, including the effects of choline acetyltransferase and acetylcholinesterase and the role of the acetylcholine receptor.
Corticospinal activation confounds cerebellar effects of posterior fossa stimuli.
Fisher, Karen M; Lai, H Ming; Baker, Mark R; Baker, Stuart N
2009-12-01
To investigate the efficacy of magnetic stimulation over the posterior fossa (PF) as a non-invasive assessment of cerebellar function in man. We replicated a previously reported conditioning-test paradigm in 11 healthy subjects. Transcranial magnetic stimulation (TMS) at varying intensities was applied to the PF and motor cortex with a 3, 5 or 7 ms interstimulus interval (ISI), chosen randomly for each trial. Surface electromyogram (EMG) activity was recorded from two intrinsic hand muscles and two forearm muscles. Responses were averaged and rectified, and MEP amplitudes were compared to assess whether suppression of the motor output occurred as a result of the PF conditioning pulse. Cortical MEPs were suppressed following conditioning-test ISIs of 5 or 7 ms. No suppression occurred with an ISI of 3 ms. PF stimuli alone also produced EMG responses, suggesting direct activation of the corticospinal tract (CST). CST collaterals are known to contact cortical inhibitory interneurones; antidromic CST activation could therefore contribute to the observed suppression of cortical MEPs. PF stimulation probably activates multiple pathways; even at low intensities it should not be regarded as a selective assessment of cerebellar function unless stringent controls can confirm the absence of confounding activity in other pathways.
Relation between hand function and gross motor function in full term infants aged 4 to 8 months
Nogueira, Solange F.; Figueiredo, Elyonara M.; Gonçalves, Rejane V.; Mancini, Marisa C.
2015-01-01
Background: In children, reaching emerges around four months of age, which is followed by rapid changes in hand function and concomitant changes in gross motor function, including the acquisition of independent sitting. Although there is a close functional relationship between these domains, to date they have been investigated separately. Objective: To investigate the longitudinal profile of changes and the relationship between the development of hand function (i.e. reaching for and manipulating an object) and gross motor function in 13 normally developing children born at term who were evaluated every 15 days from 4 to 8 months of age. Method: The number of reaches and the period (i.e. time) of manipulation to an object were extracted from video synchronized with the Qualisys(r) movement analysis system. Gross motor function was measured using the Alberta Infant Motor Scale. ANOVA for repeated measures was used to test the effect of age on the number of reaches, the time of manipulation and gross motor function. Hierarchical regression models were used to test the associations of reaching and manipulation with gross motor function. Results: Results revealed a significant increase in the number of reaches (p<0.001), the time of manipulation (p<0.001) and gross motor function (p<0.001) over time, as well as associations between reaching and gross motor function (R2=0.84; p<0.001) and manipulation and gross motor function (R2=0.13; p=0.02) from 4 to 6 months of age. Associations from 6 to 8 months of age were not significant. Conclusion: The relationship between hand function and gross motor function was not constant, and the age span from 4 to 6 months was a critical period of interdependency of hand function and gross motor function development. PMID:25714437
Piana, A R; Viñals, C L; Del Valle, M C; Arellano, M S; Redón, A T; Peralta, S C; León, S L
2010-01-01
Cerebral palsy (CP) is a static neurologic condition resulting from a brain lesion occurring before the completion of brain development. The goal of management is not cure, but increasing patients' functionality and improving their capabilities and maintaining their locomotion, cognitive development, social interaction and independence. The best results are obtained with an early and intensive management that includes physical and occupational therapy, medical and surgical treatments, mechanical aids and the management of concomitant conditions. To assess the neuromotor improvement in patients with spastic CP after surgical treatment at the National Rehabilitation Institute. Patients with a diagnosis of spastic CP who presented at the Pediatric Rehabilitation outpatient service were referred to the Joint CP Clinic from January 2007 to January 2008, and underwent surgical treatment of the pelvic limbs. They were assessed 3 times and underwent neuromotor tests with gross motor function measure (GMFM), which was rated with the gross motor function classification system (GMFCS). Most of the patients had improvement in the muscle tone and contracture assessments as well as in the GMFM, and their self-mobility increased one level. Significant improvements were seen in the muscle tone and contractures after surgery; the GMFM and the self-mobility levels in the GMFCS also improved. Multiple level surgery together with a postoperative physical therapy program results in considerable improvements in the gross motor function measure of patients with spastic CP.
Lakatos, Anita; Goldberg, Natalie R S; Blurton-Jones, Mathew
2017-03-10
We previously demonstrated that transplantation of murine neural stem cells (NSCs) can improve motor and cognitive function in a transgenic model of Dementia with Lewy Bodies (DLB). These benefits occurred without changes in human α-synuclein pathology and were mediated in part by stem cell-induced elevation of brain-derived neurotrophic factor (BDNF). However, instrastriatal NSC transplantation likely alters the brain microenvironment via multiple mechanisms that may synergize to promote cognitive and motor recovery. The underlying neurobiology that mediates such restoration no doubt involves numerous genes acting in concert to modulate signaling within and between host brain cells and transplanted NSCs. In order to identify functionally connected gene networks and additional mechanisms that may contribute to stem cell-induced benefits, we performed weighted gene co-expression network analysis (WGCNA) on striatal tissue isolated from NSC- and vehicle-injected wild-type and DLB mice. Combining continuous behavioral and biochemical data with genome wide expression via network analysis proved to be a powerful approach; revealing significant alterations in immune response, neurotransmission, and mitochondria function. Taken together, these data shed further light on the gene network and biological processes that underlie the therapeutic effects of NSC transplantation on α-synuclein induced cognitive and motor impairments, thereby highlighting additional therapeutic targets for synucleinopathies.
Kirschner, J; Schorling, D; Hauschke, D; Rensing-Zimmermann, C; Wein, U; Grieben, U; Schottmann, G; Schara, U; Konrad, K; Müller-Felber, W; Thiele, S; Wilichowski, E; Hobbiebrunken, E; Stettner, G M; Korinthenberg, R
2014-02-01
In preclinical studies growth hormone and its primary mediator IGF-1 have shown potential to increase muscle mass and strength. A single patient with spinal muscular atrophy reported benefit after compassionate use of growth hormone. Therefore we evaluated the efficacy and safety of growth hormone treatment for spinal muscular atrophy in a multicenter, randomised, double-blind, placebo-controlled, crossover pilot trial. Patients (n = 19) with type II/III spinal muscular atrophy were randomised to receive either somatropin (0.03 mg/kg/day) or placebo subcutaneously for 3 months, followed by a 2-month wash-out phase before 3 months of treatment with the contrary remedy. Changes in upper limb muscle strength (megascore for elbow flexion and hand-grip in Newton) were assessed by hand-held myometry as the primary measure of outcome. Secondary outcome measures included lower limb muscle strength, motor function using the Hammersmith Functional Motor Scale and other functional tests for motor function and pulmonary function. Somatropin treatment did not significantly affect upper limb muscle strength (point estimate mean: 0.08 N, 95% confidence interval (CI:-3.79;3.95, p = 0.965), lower limb muscle strength (point estimate mean: 2.23 N, CI:-2.19;6.63, p = 0.302) or muscle and pulmonary function. Side effects occurring during somatropin treatment corresponded with well-known side effects of growth hormone substitution in patients with growth hormone deficiency. In this pilot study, growth hormone treatment did not improve muscle strength or function in patients with spinal muscular atrophy type II/III. Copyright © 2013 Elsevier B.V. All rights reserved.
Hassan, Atiq; Arnold, Breanna M; Caine, Sally; Toosi, Behzad M; Verge, Valerie M K; Muir, Gillian D
2018-01-01
One of the most promising approaches to improve recovery after spinal cord injury (SCI) is the augmentation of spontaneously occurring plasticity in uninjured neural pathways. Acute intermittent hypoxia (AIH, brief exposures to reduced O2 levels alternating with normal O2 levels) initiates plasticity in respiratory systems and has been shown to improve recovery in respiratory and non-respiratory spinal systems after SCI in experimental animals and humans. Although the mechanism by which AIH elicits its effects after SCI are not well understood, AIH is known to alter protein expression in spinal neurons in uninjured animals. Here, we examine hypoxia- and plasticity-related protein expression using immunofluorescence in spinal neurons in SCI rats that were treated with AIH combined with motor training, a protocol which has been demonstrated to improve recovery of forelimb function in this lesion model. Specifically, we assessed protein expression in spinal neurons from animals with incomplete cervical SCI which were exposed to AIH treatment + motor training either for 1 or 7 days. AIH treatment consisted of 10 episodes of AIH: (5 min 11% O2: 5 min 21% O2) for 7 days beginning at 4 weeks post-SCI. Both 1 or 7 days of AIH treatment + motor training resulted in significantly increased expression of the transcription factor hypoxia-inducible factor-1α (HIF-1α) relative to normoxia-treated controls, in neurons both proximal (cervical) and remote (lumbar) to the SCI. All other markers examined were significantly elevated in the 7 day AIH + motor training group only, at both cervical and lumbar levels. These markers included vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and phosphorylated and nonphosphorylated forms of the BDNF receptor tropomyosin-related kinase B (TrkB). In summary, AIH induces plasticity at the cellular level after SCI by altering the expression of major plasticity- and hypoxia-related proteins at spinal regions proximal and remote to the SCI. These changes occur under the same AIH protocol which resulted in recovery of limb function in this animal model. Thus AIH, which induces plasticity in spinal circuitry, could also be an effective therapy to restore motor function after nervous system injury.
Motor function domains in alternating hemiplegia of childhood.
Masoud, Melanie; Gordon, Kelly; Hall, Amanda; Jasien, Joan; Lardinois, Kara; Uchitel, Julie; Mclean, Melissa; Prange, Lyndsey; Wuchich, Jeffrey; Mikati, Mohamad A
2017-08-01
To characterize motor function profiles in alternating hemiplegia of childhood, and to investigate interrelationships between these domains and with age. We studied a cohort of 23 patients (9 males, 14 females; mean age 9y 4mo, range 4mo-43y) who underwent standardized tests to assess gross motor, upper extremity motor control, motor speech, and dysphagia functions. Gross Motor Function Classification System (GMFCS), Gross Motor Function Measure-88 (GMFM-88), Manual Ability Classification System (MACS), and Revised Melbourne Assessment (MA2) scales manifested predominantly mild impairments; motor speech, moderate to severe; Modified Dysphagia Outcome and Severity Scale (M-DOSS), mild-to moderate deficits. GMFCS correlated with GMFM-88 scores (Pearson's correlation, p=0.002), MACS (p=0.038), and MA2 fluency (p=0.005) and accuracy (p=0.038) scores. GMFCS did not correlate with motor speech (p=0.399), MA2 dexterity (p=0.247), range of motion (p=0.063), or M-DOSS (p=0.856). Motor speech was more severely impaired than the GMFCS (p<0.013). There was no correlation between any of the assessment tools and age (p=0.210-0.798). Our data establish a detailed profile of motor function in alternating hemiplegia of childhood, argue against the presence of worse motor function in older patients, identify tools helpful in evaluating this population, and identify oropharyngeal function as the more severely affected domain, suggesting that brain areas controlling this function are more affected than others. © 2017 Mac Keith Press.
Longitudinal evaluation of fine motor skills in children with leukemia.
Hockenberry, Marilyn; Krull, Kevin; Moore, Ki; Gregurich, Mary Ann; Casey, Marissa E; Kaemingk, Kris
2007-08-01
Improved survival for children with acute lymphocytic leukemia (ALL) has allowed investigators to focus on the adverse or side effects of treatment and to develop interventions that promote cure while decreasing the long-term effects of therapy. Although much attention has been given to the significant neurocognitive sequelae that can occur after ALL therapy, limited investigation is found addressing fine motor function in these children and motor function that may contribute to neurocognitive deficits in ALL survivors. Fine motor and sensory-perceptual performances were examined in 82 children with ALL within 6-months of diagnosis and annually for 2 years (year 1 and year 2, respectively) during therapy. Purdue Pegboard assessments indicated significant slowing of fine motor speed and dexterity for the dominant hand, nondominant hand, and both hands simultaneously for children in this study. Mean Visual-Motor Integration (VMI) scores for children with low-risk and high-risk ALL decreased from the first evaluation to year 1 and again at year 2. Mean VMI scores for children with standard risk ALL increased from the first evaluation to year 1 and then decreased at year 2. Significant positive correlations were found between the Purdue and the VMI at both year 1 and year 2, suggesting that the Pegboard performance consistently predicts the later decline in visual-motor integration. Significant correlations were found between the Purdue Pegboard at baseline and the Performance IQ during year 1, though less consistently during year 2. A similar pattern was also observed between the baseline Pegboard performance and performance on the Coding and Symbol Search subtests during year 1 and year 2. In this study, children with ALL experienced significant and persistent visual-motor problems throughout therapy. These problems continued during the first and second years of treatment. These basic processing skills are necessary to the development of higher-level cognitive abilities, including nonverbal intelligence and academic achievement, particularly in arithmetic and written language.
Ramsey, Lenny; Rengachary, Jennifer; Zinn, Kristi; Siegel, Joshua S.; Metcalf, Nicholas V.; Strube, Michael J.; Snyder, Abraham Z.; Corbetta, Maurizio; Shulman, Gordon L.
2016-01-01
Strokes often cause multiple behavioural deficits that are correlated at the population level. Here, we show that motor and attention deficits are selectively associated with abnormal patterns of resting state functional connectivity in the dorsal attention and motor networks. We measured attention and motor deficits in 44 right hemisphere-damaged patients with a first-time stroke at 1–2 weeks post-onset. The motor battery included tests that evaluated deficits in both upper and lower extremities. The attention battery assessed both spatial and non-spatial attention deficits. Summary measures for motor and attention deficits were identified through principal component analyses on the raw behavioural scores. Functional connectivity in structurally normal cortex was estimated based on the temporal correlation of blood oxygenation level-dependent signals measured at rest with functional magnetic resonance imaging. Any correlation between motor and attention deficits and between functional connectivity in the dorsal attention network and motor networks that might spuriously affect the relationship between each deficit and functional connectivity was statistically removed. We report a double dissociation between abnormal functional connectivity patterns and attention and motor deficits, respectively. Attention deficits were significantly more correlated with abnormal interhemispheric functional connectivity within the dorsal attention network than motor networks, while motor deficits were significantly more correlated with abnormal interhemispheric functional connectivity patterns within the motor networks than dorsal attention network. These findings indicate that functional connectivity patterns in structurally normal cortex following a stroke link abnormal physiology in brain networks to the corresponding behavioural deficits. PMID:27225794
Yu, Changshen; Wang, Wanjun; Zhang, Yue; Wang, Yizhao; Hou, Weijia; Liu, Shoufeng; Gao, Chunlin; Wang, Chen; Mo, Lidong; Wu, Jialing
2017-01-01
Background : Constraint-induced movement therapy (CIMT) promotes upper extremity recovery post stroke, however, it is difficult to implement clinically due to its high resource demand and safety of the restraint. Therefore, we propose that modified CIMT (mCIMT) be used to treat individuals with acute subcortical infarction. Objective : To evaluate the therapeutic effects of mCIMT in patients with acute subcortical infarction, and investigate the possible mechanisms underlying the effect. Methods : The role of mCIMT was investigated in 26 individuals experiencing subcortical infarction in the preceding 14 days. Patients were randomly assigned to either mCIMT or standard therapy. mCIMT group was treated daily for 3 h over 10 consecutive working days, using a mitt on the unaffected arm for up to 30% of waking hours. The control group was treated with an equal dose of occupational therapy and physical therapy. During the 3-month follow-up, the motor functions of the affected limb were assessed by the Wolf Motor Function Test (WMFT) and Motor Activity Log (MAL). Altered cortical excitability was assessed via transcranial magnetic stimulation (TMS). Results : Treatment significantly improved the movement in the mCIMT group compared with the control group. The mean WMF score was significantly higher in the mCIMT group compared with the control group. Further, the appearance of motor-evoked potentials (MEPs) were significantly higher in the mCIMT group compared with the baseline data. A significant change in ipsilesional silent period (SP) occurred in the mCIMT group compared with the control group. However, we found no difference between two groups in motor function or electrophysiological parameters after 3 months of follow-up. Conclusions : mCIMT resulted in significant functional changes in timed movement immediately following treatment in patients with acute subcortical infarction. Further, early mCIMT improved ipsilesional cortical excitability. However, no long-term effects were seen.
George, Joanne M; Boyd, Roslyn N; Colditz, Paul B; Rose, Stephen E; Pannek, Kerstin; Fripp, Jurgen; Lingwood, Barbara E; Lai, Melissa M; Kong, Annice H T; Ware, Robert S; Coulthard, Alan; Finn, Christine M; Bandaranayake, Sasaka E
2015-09-16
More than 50 percent of all infants born very preterm will experience significant motor and cognitive impairment. Provision of early intervention is dependent upon accurate, early identification of infants at risk of adverse outcomes. Magnetic resonance imaging at term equivalent age combined with General Movements assessment at 12 weeks corrected age is currently the most accurate method for early prediction of cerebral palsy at 12 months corrected age. To date no studies have compared the use of earlier magnetic resonance imaging combined with neuromotor and neurobehavioural assessments (at 30 weeks postmenstrual age) to predict later motor and neurodevelopmental outcomes including cerebral palsy (at 12-24 months corrected age). This study aims to investigate i) the relationship between earlier brain imaging and neuromotor/neurobehavioural assessments at 30 and 40 weeks postmenstrual age, and ii) their ability to predict motor and neurodevelopmental outcomes at 3 and 12 months corrected age. This prospective cohort study will recruit 80 preterm infants born ≤ 30 week's gestation and a reference group of 20 healthy term born infants from the Royal Brisbane & Women's Hospital in Brisbane, Australia. Infants will undergo brain magnetic resonance imaging at approximately 30 and 40 weeks postmenstrual age to develop our understanding of very early brain structure at 30 weeks and maturation that occurs between 30 and 40 weeks postmenstrual age. A combination of neurological (Hammersmith Neonatal Neurologic Examination), neuromotor (General Movements, Test of Infant Motor Performance), neurobehavioural (NICU Network Neurobehavioural Scale, Premie-Neuro) and visual assessments will be performed at 30 and 40 weeks postmenstrual age to improve our understanding of the relationship between brain structure and function. These data will be compared to motor assessments at 12 weeks corrected age and motor and neurodevelopmental outcomes at 12 months corrected age (neurological assessment by paediatrician, Bayley scales of Infant and Toddler Development, Alberta Infant Motor Scale, Neurosensory Motor Developmental Assessment) to differentiate atypical development (including cerebral palsy and/or motor delay). Earlier identification of those very preterm infants at risk of adverse neurodevelopmental and motor outcomes provides an additional period for intervention to optimise outcomes. Australian New Zealand Clinical Trials Registry ACTRN12613000280707. Registered 8 March 2013.
Basal Ganglia Beta Oscillations Accompany Cue Utilization
Leventhal, Daniel K.; Gage, Gregory J.; Schmidt, Robert; Pettibone, Jeffrey R.; Case, Alaina C.; Berke, Joshua D.
2012-01-01
SUMMARY Beta oscillations in cortical-basal ganglia (BG) circuits have been implicated in normal movement suppression and motor impairment in Parkinson’s disease. To dissect the functional correlates of these rhythms we compared neural activity during four distinct variants of a cued choice task in rats. Brief beta (~20 Hz) oscillations occurred simultaneously throughout the cortical-BG network, both spontaneously and at precise moments of task performance. Beta phase was rapidly reset in response to salient cues, yet increases in beta power were not rigidly linked to cues, movements, or movement suppression. Rather, beta power was enhanced after cues were used to determine motor output. We suggest that beta oscillations reflect a postdecision stabilized state of cortical-BG networks, which normally reduces interference from alternative potential actions. The abnormally strong beta seen in Parkinson’s Disease may reflect overstabilization of these networks, producing pathological persistence of the current motor state. PMID:22325204
A matter of motion or an emotional matter? Management of depression in Parkinson's disease.
Lagopoulos, Jim; Malhi, Gin S; Ivanovski, Belinda; Cahill, Catherine M; Morris, John G L
2005-11-01
Depression is one of the most frequent comorbidities occurring in Parkinson's disease, affecting up to 50% of patients. Depression is associated with severe negative symptoms and has been shown to contribute to an increased rate of decline of both cognitive and motor function, profoundly impacting on the patient's quality of life. The symptoms of depression overlap with the motor features of Parkinson's disease, making detection difficult. Moreover, the lack of specialized screening tools means that depression remains undiagnosed and untreated in a high percentage of patients. However, depression in Parkinson's disease, when identified early, can be effectively treated with a variety of antidepressant medications, improving quality of life and preserving daily function. The focus of this review is to provide an overview of current knowledge regarding depression in Parkinson's disease, followed by a practical discussion addressing the issues of the detection, diagnosis and treatment.
The influence of vitamins E and C and exercise on brain aging.
Mock, J Thomas; Chaudhari, Kiran; Sidhu, Akram; Sumien, Nathalie
2017-08-01
Age-related declines in motor and cognitive function have been associated with increases in oxidative stress. Accordingly, interventions capable of reducing the oxidative burden would be capable of preventing or reducing functional declines occurring during aging. Popular interventions such as antioxidant intake and moderate exercise are often recommended to attain healthy aging and have the capacity to alter redox burden. This review is intended to summarize the outcomes of antioxidant supplementation (more specifically of vitamins C and E) and exercise training on motor and cognitive declines during aging, and on measures of oxidative stress. Additionally, we will address whether co-implementation of these two types of interventions can potentially further their individual benefits. Together, these studies highlight the importance of using translationally-relevant parameters for interventions and to study their combined outcomes on healthy brain aging. Copyright © 2016 Elsevier Inc. All rights reserved.
Dynamic Increase in Corticomuscular Coherence during Bilateral, Cyclical Ankle Movements
Yoshida, Takashi; Masani, Kei; Zabjek, Karl; Chen, Robert; Popovic, Milos R.
2017-01-01
In humans, the midline primary motor cortex is active during walking. However, the exact role of such cortical participation is unknown. To delineate the role of the primary motor cortex in walking, we examined whether the primary motor cortex would activate leg muscles during movements that retained specific requirements of walking (i.e., locomotive actions). We recorded electroencephalographic and electromyographic signals from 15 healthy, young men while they sat and performed bilateral, cyclical ankle movements. During dorsiflexion, near-20-Hz coherence increased cyclically between the midline primary motor cortex and the co-contracting antagonistic pair (i.e., tibialis anterior and medial gastrocnemius muscles) in both legs. Thus, we have shown that dynamic increase in corticomuscular coherence, which has been observed during walking, also occurs during simple bilateral cyclical movements of the feet. A possible mechanism for such coherence is corticomuscular communication, in which the primary motor cortex participates in the control of movement. Furthermore, because our experimental task isolated certain locomotive actions, the observed coherence suggests that the human primary motor cortex may participate in these actions (i.e., maintaining a specified movement frequency, bilaterally coordinating the feet, and stabilizing the posture of the feet). Additional studies are needed to identify the exact cortical and subcortical interactions that cause corticomuscular coherence and to further delineate the functional role of the primary motor cortex during bilateral cyclical movements such as walking. PMID:28420971
Abnormal functional motor lateralization in healthy siblings of patients with schizophrenia.
Altamura, Mario; Fazio, Leonardo; De Salvia, Michela; Petito, Annamaria; Blasi, Giuseppe; Taurisano, Paolo; Romano, Raffaella; Gelao, Barbara; Bellomo, Antonello; Bertolino, Alessandro
2012-07-30
Earlier neuroimaging studies of motor function in schizophrenia have demonstrated reduced functional lateralization in the motor network during motor tasks. Here, we used event-related functional magnetic resonance imaging during a visually guided motor task in 18 clinically unaffected siblings of patients with schizophrenia and 24 matched controls to investigate if abnormal functional lateralization is related to genetic risk for this brain disorder. Whereas activity associated with motor task performance was mainly contralateral with only a marginal ipsilateral component in healthy participants, unaffected siblings had strong bilateral activity with significantly greater response in ipsilateral and contralateral premotor areas as well as in contralateral subcortical motor regions relative to controls. Reduced lateralization in siblings was also identified with a measure of laterality quotient. These findings suggest that abnormal functional lateralization of motor circuitry is related to genetic risk of schizophrenia. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Simões, Gustavo F; Benitez, Suzana U; Oliveira, Alexandre L R
2014-01-01
Background G-CSF has been shown to decrease inflammatory processes and to act positively on the process of peripheral nerve regeneration during the course of muscular dystrophy. Aims The aims of this study were to investigate the effects of treatment of G-CSF during sciatic nerve regeneration and histological analysis in the soleus muscle in MDX mice. Methods Six-week-old male MDX mice underwent left sciatic nerve crush and were G-CSF treated at 7 days prior to and 21 days after crush. Ten and twenty-one days after surgery, the mice were euthanized, and the sciatic nerves were processed for immunohistochemistry (anti-p75NTR and anti-neurofilament) and transmission electron microscopy. The soleus muscles were dissected out and processed for H&E staining and subsequent morphologic analysis. Motor function analyses were performed at 7 days prior to and 21 days after sciatic crush using the CatWalk system and the sciatic nerve index. Results Both groups treated with G-CSF showed increased p75NTR and neurofilament expression after sciatic crush. G-CSF treatment decreased the number of degenerated and regenerated muscle fibers, thereby increasing the number of normal muscle fibers. Conclusions The reduction in p75NTR and neurofilament indicates a decreased regenerative capacity in MDX mice following a lesion to a peripheral nerve. The reduction in motor function in the crushed group compared with the control groups may reflect the cycles of muscle degeneration/regeneration that occur postnatally. Thus, G-CSF treatment increases motor function in MDX mice. Nevertheless, the decrease in baseline motor function in these mice is not reversed completely by G-CSF. PMID:25328849
Anomalous Putamen Volume in Children with Complex Motor Stereotypies
Mahone, E. Mark; Crocetti, Deana; Tochen, Laura; Kline, Tina; Mostofsky, Stewart H.; Singer, Harvey S.
2016-01-01
Introduction Complex motor stereotypies in children are repetitive, rhythmic movements that have a predictable pattern and location, seem purposeful, but serve no obvious function, tend to be prolonged, and stop with distraction, e.g., arm/hand flapping, waving. They occur in both “primary” (otherwise typically developing) and secondary conditions. These movements are best defined as habitual behaviors and therefore pathophysiologically hypothesized to reside in premotor to posterior putamen circuits. This study sought to clarify the underlying neurobiological abnormality in children with primary complex motor stereotypies using structural neuroimaging, emphasizing brain regions hypothesized to underlie these atypical behaviors. Methods High-resolution anatomical MRI images, acquired at 3.0T, were analyzed in children ages 8–12 years (20 with primary complex motor stereotypies, 20 typically developing). Frontal lobe sub-regions and striatal structures were delineated for analysis. Results Significant reductions (p=0.045) in the stereotypies group were identified in total putamen volume, but not caudate, nucleus accumbens or frontal sub-regions. There were no group differences in total cerebral volume. Conclusion Findings of a smaller putamen provide preliminary evidence suggesting the potential involvement of the habitual pathway as the underlying anatomical site in primary complex motor stereotypies. PMID:27751663
Are there critical periods for brain growth in children born preterm?
Cooke, R W I
2006-01-01
Children born very preterm who attend mainstream schools have a high prevalence of minor motor, behavioural, and learning disorders. These appear to be associated with reduced postnatal growth, particularly of the head. It is unclear when this poor growth occurs and whether growth restriction during different periods has different effects on later function. To identify periods during early development, in children born preterm, when impaired head growth may influence minor motor and cognitive function. A geographically defined cohort of 194 infants born in Merseyside during 1980-81 and weighing less than 1500 g. Measurements of head circumference (occipitofrontal circumference (OFC)) were available at birth, hospital discharge, 4 years, and 15 years of age. Assessments of intelligence (intelligence quotient (IQ)) and minor motor impairment (test of motor impairment (TOMI)) were made at 8 years of age. Clinical, social, and demographic variables were obtained from the clinical record and maternal interviews. IQ correlated significantly with OFC at 4 and 15 years of age after correction for growth restriction at birth (intrauterine growth restriction (IUGR)) and social class. TOMI scores correlated significantly with OFC at all four times, but especially with OFC at discharge and with change in OFC between birth and discharge. They were not affected by correction for social class or IUGR. Although both IQ and minor motor impairments correlate strongly with each other at school age in very low birthweight children, the factors determining them and their timing of operation are different. Interventions designed to improve IQ in this population would need to reduce IUGR and improve later childhood growth. Those aimed to improve motor ability need to be targeted more at brain protection during the neonatal period.
Scarbel, Lucie; Beautemps, Denis; Schwartz, Jean-Luc; Sato, Marc
2014-01-01
One classical argument in favor of a functional role of the motor system in speech perception comes from the close-shadowing task in which a subject has to identify and to repeat as quickly as possible an auditory speech stimulus. The fact that close-shadowing can occur very rapidly and much faster than manual identification of the speech target is taken to suggest that perceptually induced speech representations are already shaped in a motor-compatible format. Another argument is provided by audiovisual interactions often interpreted as referring to a multisensory-motor framework. In this study, we attempted to combine these two paradigms by testing whether the visual modality could speed motor response in a close-shadowing task. To this aim, both oral and manual responses were evaluated during the perception of auditory and audiovisual speech stimuli, clear or embedded in white noise. Overall, oral responses were faster than manual ones, but it also appeared that they were less accurate in noise, which suggests that motor representations evoked by the speech input could be rough at a first processing stage. In the presence of acoustic noise, the audiovisual modality led to both faster and more accurate responses than the auditory modality. No interaction was however, observed between modality and response. Altogether, these results are interpreted within a two-stage sensory-motor framework, in which the auditory and visual streams are integrated together and with internally generated motor representations before a final decision may be available. PMID:25009512
Oberer, Nicole; Gashaj, Venera; Roebers, Claudia M
2017-04-01
The present study aimed to contribute to the discussion about the relation between motor coordination and executive functions in preschool children. Specifically, the relation between gross and fine motor skills and executive functions as well as the relation to possible background variables (SES, physical activity) were investigated. Based on the data of N=156 kindergarten children the internal structure of motor skills was investigated and confirmed the theoretically assumed subdivision of gross and fine motor skills. Both, gross and fine motor skills correlated significantly with executive functions, whereas the background variables seemed to have no significant impact on the executive functions and motor skills. Higher order control processes are discussed as an explanation of the relation between executive functions and motor skills. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of Spaceflight and Hindlimb Suspension on the Posture and Gait of Rats
NASA Technical Reports Server (NTRS)
Fox, R. A.; Corcoran, M.; Daunton, N. G.; Morey-Holton, E.
1994-01-01
Instability of posture and gait in astronauts following spaceflight (SF) is thought to result from muscle atrophy and from changes in sensory-motor integration in the CNS (central nervous system) that occur during adaptation to microgravity (micro-G). Individuals are thought to have developed, during SF, adaptive changes for the processing of proprioceptive, vestibular and visual sensory inputs with reduced weighting of gravity-based signals and increased weighting of visual and tactile cues. This sensory-motor rearrangement in the CNS apparently occurs to optimize neuromuscular system function for effective movement and postural control in micro-G. However, these adaptive changes are inappropriate for the 1 g environment and lead to disruptions in posture and gait on return to Earth. Few reports are available on the effects of SF on the motor behavior of animals. Rats studied following 18.5 - 19.5 days of SF in the COSMOS program were described as being ..'inert, apathetic, slow'.. and generally unstable. The hindlimbs of these rats were ..'thrust out from the body with fingers pulled apart and the shin unnaturally pronated'. On the 6th postflight day motor behavior was described as similar to that observed in preflight observations. Improved understanding of the mechanisms leading to these changes can be obtained in animal models through detailed analysis of neural and molecular mechanisms related to gait. To begin this process the posture and gait of rats were examined following exposure to either SF or hindlimb suspension (HLS), and during recovery from these conditions.
Prediger, Rui D S
2010-01-01
Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting approximately 1% of the population older than 60 years. Classically, PD is considered to be a motor system disease and its diagnosis is based on the presence of a set of cardinal motor signs (rigidity, bradykinesia, rest tremor) that are consequence of a pronounced death of dopaminergic neurons in the substantia nigra pars compacta. Nowadays there is considerable evidence showing that non-dopaminergic degeneration also occurs in other brain areas which seems to be responsible for the deficits in olfactory, emotional and memory functions that precede the classical motor symptoms in PD. The present review attempts to examine results reported in epidemiological, clinical and animal studies to provide a comprehensive picture of the antiparkinsonian potential of caffeine. Convergent epidemiological and pre-clinical data suggest that caffeine may confer neuroprotection against the underlying dopaminergic neuron degeneration, and influence the onset and progression of PD. The available data also suggest that caffeine can improve the motor deficits of PD and that adenosine A2A receptor antagonists such as istradefylline reduces OFF time and dyskinesia associated with standard 'dopamine replacement' treatments. Finally, recent experimental findings have indicated the potential of caffeine in the management of non-motor symptoms of PD, which do not improve with the current dopaminergic drugs. Altogether, the studies reviewed provide strong evidence that caffeine may represent a promising therapeutic tool in PD, thus being the first compound to restore both motor and non-motor early symptoms of PD together with its neuroprotective potential.
Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C; Chen, Adam; Tamrazian, Eric; Babaniyi, Olusegun; Selig, Martin; Hynynen, Meri; Woolf, Clifford J; Brown, Robert H
2014-01-28
ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.
NASA Astrophysics Data System (ADS)
Wang, Chun; Brunton, Emma; Haghgooie, Saman; Cassells, Kahli; Lowery, Arthur; Rajan, Ramesh
2013-08-01
Objective. Cortical neural prostheses with implanted electrode arrays have been used to restore compromised brain functions but concerns remain regarding their long-term stability and functional performance. Approach. Here we report changes in electrode impedance and stimulation thresholds for a custom-designed electrode array implanted in rat motor cortex for up to three months. Main Results. The array comprises four 2000 µm long electrodes with a large annular stimulating surface (7860-15700 µm2) displaced from the penetrating insulated tip. Compared to pre-implantation in vitro values there were three phases of impedance change: (1) an immediate large increase of impedance by an average of two-fold on implantation; (2) a period of continued impedance increase, albeit with considerable variability, which reached a peak at approximately four weeks post-implantation and remained high over the next two weeks; (3) finally, a period of 5-6 weeks when impedance stabilized at levels close to those seen immediately post-implantation. Impedance could often be temporarily decreased by applying brief trains of current stimulation, used to evoke motor output. The stimulation threshold to induce observable motor behaviour was generally between 75-100 µA, with charge density varying from 48-128 µC cm-2, consistent with the lower current density generated by electrodes with larger stimulating surface area. No systematic change in thresholds occurred over time, suggesting that device functionality was not compromised by the factors that caused changes in electrode impedance. Significance. The present results provide support for the use of annulus electrodes in future applications in cortical neural prostheses.
Human spinal cord injury: motor unit properties and behaviour.
Thomas, C K; Bakels, R; Klein, C S; Zijdewind, I
2014-01-01
Spinal cord injury (SCI) results in widespread variation in muscle function. Review of motor unit data shows that changes in the amount and balance of excitatory and inhibitory inputs after SCI alter management of motoneurons. Not only are units recruited up to higher than usual relative forces when SCI leaves few units under voluntary control, the force contribution from recruitment increases due to elevation of twitch/tetanic force ratios. Force gradation and precision are also coarser with reduced unit numbers. Maximal unit firing rates are low in hand muscles, limiting voluntary strength, but are low, normal or high in limb muscles. Unit firing rates during spasms can exceed voluntary rates, emphasizing that deficits in descending drive limit force production. SCI also changes muscle properties. Motor unit weakness and fatigability seem universal across muscles and species, increasing the muscle weakness that arises from paralysis of units, motoneuron death and sensory impairment. Motor axon conduction velocity decreases after human SCI. Muscle contractile speed is also reduced, which lowers the stimulation frequencies needed to grade force when paralysed muscles are activated with patterned electrical stimulation. This slowing does not necessarily occur in hind limb muscles after cord transection in cats and rats. The nature, duration and level of SCI underlie some of these species differences, as do variations in muscle function, daily usage, tract control and fibre-type composition. Exploring this diversity is important to promote recovery of the hand, bowel, bladder and locomotor function most wanted by people with SCI. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Von Bergen, Nicholas H; Subieta, Alberto; Brennan, Timothy J
2002-07-01
Excitatory amino acid receptors are important for both sensory and motor function in the spinal cord. We studied the effects of intrathecal LY293558, a competitive non-N-methyl-D-aspartate excitatory amino acid receptor antagonist, on motor and sensory function in rats to determine whether drugs blocking these receptors could potentially be used as alternative agents to local anesthetics for spinal anesthesia. Rats were tested before and 15-240 min after intrathecal injection of 5 nmol (in 10 microl) LY293558. Sensory function was tested at the hind paw using withdrawal response to pin prick and withdrawal to pinch with sharp forceps. Motor performance (ambulation, placing reflex, and Rotorod time), blood pressure, and heart rate were also evaluated. Some tests were repeated the next day. Responses after LY293558 were compared to injection of 40 microl bupivacaine, 0.75%. Pin-prick responses at the forepaw, chest, abdomen, hind leg, and hind paw were also examined after intrathecal LY293558. Intrathecal LY293558 blocked both sensory and motor responses through 180 min; complete recovery was present the following day. No change in blood pressure or heart rate occurred. The effects of LY293558 were more pronounced and sustained than those of bupivacaine. Segmental blockade of the response to pin prick was present after LY293558. Drugs like LY293558 that block alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA)/kainate receptors may be an alternative to local anesthetics for spinal anesthesia in humans.
Prenatal Iron Deficiency, Neonatal Ferritin, and Infant Cognitive Function
Davidson, Leslie L.; Boivin, Michael J.; Zoumenou, Romeo; Massougbodji, Achille; Cot, Michel; Bodeau-Livinec, Florence
2016-01-01
OBJECTIVE: To investigate the impact of prenatal maternal iron deficiency (ID) on cord blood serum ferritin (CBSF) concentration and infant cognitive and motor development. METHODS: Our prospective cohort study included 636 mother-singleton child pairs from 828 eligible pregnant women who were enrolled during their first antenatal care (ANC) visit in Allada, Benin, into a clinical trial comparing the efficacy of mefloquine and sulfadoxine-pyrimethamine. Venous blood samples of women were assessed for ferritin and hemoglobin concentrations at the first and second ANC visits (occurring at least 1-month apart) and at delivery. Women were prescribed daily iron and folic acid supplements throughout pregnancy. Hematologic examinations were repeated for cord blood at birth. At age 1 year, cognitive and motor functions of children were assessed by using the Mullen Scales of Early Learning. RESULTS: The prevalence of prenatal ID at first and second ANC visits, and at delivery was 30.5%, 34.0%, and 28.4%, respectively. CBSF concentrations were similar between ID and non-ID pregnant women. Neither prenatal ID nor CBSF concentration was associated with poor cognitive or gross motor function of children at age 1 year. CBSF concentrations were lower among mothers who had ID anemia (IDA) at delivery compared with non-IDA pregnant women (adjusted mean difference: –0.2 [95% confidence interval: –0.4 to –0.0]). CONCLUSIONS: In a malaria-endemic region, ID in pregnancy in the context of iron supplementation is neither associated with CBSF concentration nor with infant cognitive and motor development. Prenatal IDA around the time of delivery is associated with lower CBSF concentrations. PMID:27940685
Complex Regional Pain Syndrome Type I Affects Brain Structure in Prefrontal and Motor Cortex
Pleger, Burkhard; Draganski, Bogdan; Schwenkreis, Peter; Lenz, Melanie; Nicolas, Volkmar; Maier, Christoph; Tegenthoff, Martin
2014-01-01
The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the “non-flipped” data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the “flipped” data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control. PMID:24416397
Wandering in a dementia special care unit: behavioral aspects and the risk of falling.
Merims, Doron; Nahari, Havazelet; Ben-Ari, Giora; Jamal, Samira; Vigder, Carola; Ben-Israel, Joshua
2013-07-01
Wandering is a common phenomenon among patients with dementia. While traditionally considered to be a behavioral problem, it also includes fundamental aspects of motor performance (e.g., gait and falls). To examine the difference in motor function and behavioral symptoms between patients with severe dementia who wander and those who do not. We conducted a retrospective study reviewing the medical records of 72 patients with severe dementia, all residents of a dementia special care unit. Motor and behavioral aspects were compared between "wanderers" and "non-wanderers." No difference was found in motor performance including the occurrence of falls between the wanderers and non-wanderers. A significant difference was found in aggressiveness and sleep disturbances, which were more frequent among the wanderers. There was no preference to wandering at a certain period of the day among the patients with sleep disturbances who wander. In a protected environment wandering is not a risk factor for falls. Sleep disturbances and wandering co-occur, but there is no circumstantial association between the two symptoms.
Paraneoplastic subacute lower motor neuron syndrome associated with solid cancer.
Verschueren, Annie; Gallard, Julien; Boucraut, José; Honnorat, Jerome; Pouget, Jean; Attarian, Shahram
2015-11-15
We retrospectively analyzed three patients with pure motor neuronopathy followed for more than four years in our center. The patients presented a rapidly progressive lower motor neuron syndrome (LMNS) over the course of a few weeks leading to a severe functional impairment. The neurological symptoms preceded the diagnosis of a breast adenocarcinoma and a thymoma in the first two patients, one of them with anti-CV2/CRMP5 antibodies. Cancer was not detected in the third patient who had circulating anti-Hu antibodies. A final diagnosis of paraneoplastic syndrome was made after investigations for alternative causes of lower motor neuron syndrome. Early diagnosis, combined treatment of the underlying cancer, and immunomodulatory treatment led to neurological improvement of the disease in two out of the three cases in which the cancer was diagnosed. Cases of subacute LMNS with rapid progression may occur as an expression of a paraneoplastic neurological syndrome. Identification of these syndromes is important, as the treatment of underlying malignancy along with immunomodulatory treatment may result in a favorable long-term outcome of these potentially fatal diseases. Copyright © 2015 Elsevier B.V. All rights reserved.
Jarrahi, M; Sedighi Moghadam, B; Torkmandi, H
2015-08-15
Assessment of the ability of rat to balance by rotarod apparatus (ROTA) is frequently used as a measure of impaired motor system function. Most of these methods have some disadvantages, such as failing to sense motor coordination rather than endurance and as the sensitivity of the method is low, more animals are needed to obtain statistically significant results. We have designed and tested a new designed apparatus (NDA) to measure motor system function in rats. Our system consists of a glass box containing 4 beams which placed with 1cm distance between them, two electrical motors for rotating the beams, and a camera to record the movements of the rats. The RPM of the beams is adjustable digitally between 0 and 50 rounds per minute. We evaluated experimentally the capability of the NDA for the rapid measurement of impaired motor function in rats. Also we demonstrated that the sensitivity of the NDA increases by faster rotation speeds and may be more sensitive than ROTA for evaluating of impaired motor system function. Compared to a previous version of this task, our NDA provides a more efficient method to test rodents for studies of motor system function after impaired motor nervous system. In summary, our NDA will allow high efficient monitoring of rat motor system function and may be more sensitive than ROTA for evaluating of impaired motor system function in rats. Copyright © 2015 Elsevier B.V. All rights reserved.
Physical activity, motor function, and white matter hyperintensity burden in healthy older adults.
Fleischman, Debra A; Yang, Jingyun; Arfanakis, Konstantinos; Arvanitakis, Zoe; Leurgans, Sue E; Turner, Arlener D; Barnes, Lisa L; Bennett, David A; Buchman, Aron S
2015-03-31
To test the hypothesis that physical activity modifies the association between white matter hyperintensity (WMH) burden and motor function in healthy older persons without dementia. Total daily activity (exercise and nonexercise physical activity) was measured for up to 11 days with actigraphy (Actical; Philips Respironics, Bend, OR) in 167 older adults without dementia participating in the Rush Memory and Aging Project. Eleven motor performances were summarized into a previously described global motor score. WMH volume was expressed as percent of intracranial volume. Linear regression models, adjusted for age, education, and sex, were performed with total WMH volume as the predictor and global motor score as the outcome. Terms for total daily physical activity and its interaction with WMH volume were then added to the model. Higher WMH burden was associated with lower motor function (p = 0.006), and total daily activity was positively associated with motor function (p = 0.002). Total daily activity modified the association between WMH and motor function (p = 0.007). WMH burden was not associated with motor function in persons with high activity (90th percentile). By contrast, higher WMH burden remained associated with lower motor function in persons with average (50th percentile; estimate = -0.304, slope = -0.133) and low (10th percentile; estimate = -1.793, slope = -0.241) activity. Higher levels of physical activity may reduce the effect of WMH burden on motor function in healthy older adults. © 2015 American Academy of Neurology.
Physical activity, motor function, and white matter hyperintensity burden in healthy older adults
Yang, Jingyun; Arfanakis, Konstantinos; Arvanitakis, Zoe; Leurgans, Sue E.; Turner, Arlener D.; Barnes, Lisa L.; Bennett, David A.; Buchman, Aron S.
2015-01-01
Objective: To test the hypothesis that physical activity modifies the association between white matter hyperintensity (WMH) burden and motor function in healthy older persons without dementia. Methods: Total daily activity (exercise and nonexercise physical activity) was measured for up to 11 days with actigraphy (Actical; Philips Respironics, Bend, OR) in 167 older adults without dementia participating in the Rush Memory and Aging Project. Eleven motor performances were summarized into a previously described global motor score. WMH volume was expressed as percent of intracranial volume. Linear regression models, adjusted for age, education, and sex, were performed with total WMH volume as the predictor and global motor score as the outcome. Terms for total daily physical activity and its interaction with WMH volume were then added to the model. Results: Higher WMH burden was associated with lower motor function (p = 0.006), and total daily activity was positively associated with motor function (p = 0.002). Total daily activity modified the association between WMH and motor function (p = 0.007). WMH burden was not associated with motor function in persons with high activity (90th percentile). By contrast, higher WMH burden remained associated with lower motor function in persons with average (50th percentile; estimate = −0.304, slope = −0.133) and low (10th percentile; estimate = −1.793, slope = −0.241) activity. Conclusions: Higher levels of physical activity may reduce the effect of WMH burden on motor function in healthy older adults. PMID:25762710
Volkow, N D; Chang, L; Wang, G J; Fowler, J S; Leonido-Yee, M; Franceschi, D; Sedler, M J; Gatley, S J; Hitzemann, R; Ding, Y S; Logan, J; Wong, C; Miller, E N
2001-03-01
Methamphetamine is a popular and highly addictive drug of abuse that has raised concerns because it has been shown in laboratory animals to be neurotoxic to dopamine terminals. The authors evaluated if similar changes occur in humans and assessed if they were functionally significant. Positron emission tomography scans following administration of [(11)C]d-threo-methylphenidate (a dopamine transporter ligand) measured dopamine transporter levels (a marker of dopamine cell terminals) in the brains of 15 detoxified methamphetamine abusers and 18 comparison subjects. Neuropsychological tests were also performed to assess motor and cognitive function. Methamphetamine abusers showed significant dopamine transporter reduction in the striatum (mean differences of 27.8% in the caudate and 21.1% in the putamen) relative to the comparison subjects; this reduction was evident even in abusers who had been detoxified for at least 11 months. Dopamine transporter reduction was associated with motor slowing and memory impairment. These results provide evidence that methamphetamine at dose levels taken by human abusers of the drug leads to dopamine transporter reduction that is associated with motor and cognitive impairment. These results emphasize the urgency of alerting clinicians and the public of the long-term changes that methamphetamine can induce in the human brain.
Maze, Ian S.; Wright, Geraldine A.; Mustard, Julie A.
2006-01-01
Ethanol consumption produces characteristic behavioral states in animals that include sedation, disorientation, and disruption of motor function. Using individual honey bees, we assessed the effects of ethanol ingestion on motor function via continuous observations of their behavior. Consumption of 1 M sucrose solutions containing a range of ethanol doses lead to hemolymph ethanol levels of approximately 40 to 100 mM. Using ethanol doses in this range, we observed time and dose-dependent effects of ethanol on the percent of time our subjects spent walking, stopped, or upside down, and on the duration and frequency of bouts of behavior. The effects on grooming and flying behavior were more complex. Behavioral recovery from ethanol treatment was both time and ethanol dose dependent, occurring between 12 and 24 hr post-ingestion for low doses and at 24 to 48 hours for higher doses. Furthermore, the amount of ethanol measured in honey bee hemolymph appeared to correlate with recovery. We predict that the honey bee will prove to be an excellent model system for studying the influence of ethanol on the neural mechanisms underlying behavior. PMID:17070538
Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.
Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly
2016-01-01
Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.
Walther, Sebastian; Stegmayer, Katharina; Federspiel, Andrea; Bohlhalter, Stephan; Wiest, Roland; Viher, Petra V
2017-09-01
Motor abnormalities are frequently observed in schizophrenia and structural alterations of the motor system have been reported. The association of aberrant motor network function, however, has not been tested. We hypothesized that abnormal functional connectivity would be related to the degree of motor abnormalities in schizophrenia. In 90 subjects (46 patients) we obtained resting stated functional magnetic resonance imaging (fMRI) for 8 minutes 40 seconds at 3T. Participants further completed a motor battery on the scanning day. Regions of interest (ROI) were cortical motor areas, basal ganglia, thalamus and motor cerebellum. We computed ROI-to-ROI functional connectivity. Principal component analyses of motor behavioral data produced 4 factors (primary motor, catatonia and dyskinesia, coordination, and spontaneous motor activity). Motor factors were correlated with connectivity values. Schizophrenia was characterized by hyperconnectivity in 3 main areas: motor cortices to thalamus, motor cortices to cerebellum, and prefrontal cortex to the subthalamic nucleus. In patients, thalamocortical hyperconnectivity was linked to catatonia and dyskinesia, whereas aberrant connectivity between rostral anterior cingulate and caudate was linked to the primary motor factor. Likewise, connectivity between motor cortex and cerebellum correlated with spontaneous motor activity. Therefore, altered functional connectivity suggests a specific intrinsic and tonic neural abnormality in the motor system in schizophrenia. Furthermore, altered neural activity at rest was linked to motor abnormalities on the behavioral level. Thus, aberrant resting state connectivity may indicate a system out of balance, which produces characteristic behavioral alterations. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Microtubules and motor proteins: Mechanically regulated self-organization in vivo
NASA Astrophysics Data System (ADS)
Vogel, S. K.; Pavin, N.; Maghelli, N.; Jülicher, F.; Tolić-Nørrelykke, I. M.
2009-11-01
A key aspect of life is sexual reproduction, which requires concerted movement. For successful mixing of the genetic material, molecular motors move the nucleus back and forth inside the cell. How motors work together to produce these large-scale movements, however, remains a mystery. To answer this question, we studied nuclear movement in fission yeast, which is driven by motor proteins pulling on microtubules. We show that motor proteins dynamically redistribute from one part of the cell to the other, generating asymmetric patterns of motors and, consequently, of forces that generate movement. By combining quantitative live cell imaging and laser ablation with a theoretical model, we find that this dynamic motor redistribution occurs purely as a result of changes in the mechanical strain sensed by the motor proteins. Our work therefore demonstrates that spatio-temporal pattern formation within a cell can occur as a result of mechanical cues (Vogel et al., 2009), which differs from conventional molecular signaling, as well as from self-organization based on a combination of biochemical reactions and diffusion.
Sugita, Satoshi; Fleming, Leland L; Wood, Caleb; Vaughan, Sydney K; Gomes, Matheus P S M; Camargo, Wallace; Naves, Ligia A; Prado, Vania F; Prado, Marco A M; Guatimosim, Cristina; Valdez, Gregorio
2016-01-01
Cholinergic dysfunction occurs during aging and in a variety of diseases, including amyotrophic lateral sclerosis (ALS). However, it remains unknown whether changes in cholinergic transmission contributes to age- and disease-related degeneration of the motor system. Here we investigated the effect of moderately increasing levels of synaptic acetylcholine (ACh) on the neuromuscular junction (NMJ), muscle fibers, and motor neurons during development and aging and in a mouse model for amyotrophic lateral sclerosis (ALS). Chat-ChR2-EYFP (VAChT Hyp ) mice containing multiple copies of the vesicular acetylcholine transporter (VAChT), mutant superoxide dismutase 1 (SOD1 G93A ), and Chat-IRES-Cre and tdTomato transgenic mice were used in this study. NMJs, muscle fibers, and α-motor neurons' somata and their axons were examined using a light microscope. Transcripts for select genes in muscles and spinal cords were assessed using real-time quantitative PCR. Motor function tests were carried out using an inverted wire mesh and a rotarod. Electrophysiological recordings were collected to examine miniature endplate potentials (MEPP) in muscles. We show that VAChT is elevated in the spinal cord and at NMJs of VAChT Hyp mice. We also show that the amplitude of MEPPs is significantly higher in VAChT Hyp muscles, indicating that more ACh is loaded into synaptic vesicles and released into the synaptic cleft at NMJs of VAChT Hyp mice compared to control mice. While the development of NMJs was not affected in VAChT Hyp mice, NMJs prematurely acquired age-related structural alterations in adult VAChT Hyp mice. These structural changes at NMJs were accompanied by motor deficits in VAChT Hyp mice. However, cellular features of muscle fibers and levels of molecules with critical functions at the NMJ and in muscle fibers were largely unchanged in VAChT Hyp mice. In the SOD1 G93A mouse model for ALS, increasing synaptic ACh accelerated degeneration of NMJs caused motor deficits and resulted in premature death specifically in male mice. The data presented in this manuscript demonstrate that increasing levels of ACh at the synaptic cleft promote degeneration of adult NMJs, contributing to age- and disease-related motor deficits. We thus propose that maintaining normal cholinergic signaling in muscles will slow degeneration of NMJs and attenuate loss of motor function caused by aging and neuromuscular diseases.
Masseter motor unit recruitment is altered in experimental jaw muscle pain.
Minami, I; Akhter, R; Albersen, I; Burger, C; Whittle, T; Lobbezoo, F; Peck, C C; Murray, G M
2013-02-01
Some management strategies for chronic orofacial pain are influenced by models (e.g., Vicious Cycle Theory, Pain Adaptation Model) proposing either excitation or inhibition within a painful muscle. The aim of this study was to determine if experimental painful stimulation of the masseter muscle resulted in only increases or only decreases in masseter activity. Recordings of single-motor-unit (SMU, basic functional unit of muscle) activity were made from the right masseters of 10 asymptomatic participants during biting trials at the same force level and direction under infusion into the masseter of isotonic saline (no-pain condition), and in another block of biting trials on the same day, with 5% hypertonic saline (pain condition). Of the 36 SMUs studied, 2 SMUs exhibited a significant (p < 0.05) increase, 5 a significant decrease, and 14 no significant change in firing rate during pain. Five units were present only during the no-pain block and 10 units during the pain block only. The findings suggest that, rather than only excitation or only inhibition within a painful muscle, a re-organization of activity occurs, with increases and decreases occurring within the painful muscle. This suggests the need to re-assess management strategies based on models that propose uniform effects of pain on motor activity.
Orihuela-Espina, Felipe; Fernández del Castillo, Isabel; Palafox, Lorena; Pasaye, Erick; Sánchez-Villavicencio, Israel; Leder, Ronald; Franco, Jorge Hernández; Sucar, Luis Enrique
2013-01-01
Gesture Therapy is an upper limb virtual reality rehabilitation-based therapy for stroke survivors. It promotes motor rehabilitation by challenging patients with simple computer games representative of daily activities for self-support. This therapy has demonstrated clinical value, but the underlying functional neural reorganization changes associated with this therapy that are responsible for the behavioral improvements are not yet known. We sought to quantify the occurrence of neural reorganization strategies that underlie motor improvements as they occur during the practice of Gesture Therapy and to identify those strategies linked to a better prognosis. Functional magnetic resonance imaging (fMRI) neuroscans were longitudinally collected at 4 time points during Gesture Therapy administration to 8 patients. Behavioral improvements were monitored using the Fugl-Meyer scale and Motricity Index. Activation loci were anatomically labelled and translated to reorganization strategies. Strategies are quantified by counting the number of active clusters in brain regions tied to them. All patients demonstrated significant behavioral improvements (P < .05). Contralesional activation of the unaffected motor cortex, cerebellar recruitment, and compensatory prefrontal cortex activation were the most prominent strategies evoked. A strong and significant correlation between motor dexterity upon commencing therapy and total recruited activity was found (r2 = 0.80; P < .05), and overall brain activity during therapy was inversely related to normalized behavioral improvements (r2 = 0.64; P < .05). Prefrontal cortex and cerebellar activity are the driving forces of the recovery associated with Gesture Therapy. The relation between behavioral and brain changes suggests that those with stronger impairment benefit the most from this paradigm.
Himuro, Nobuaki; Mishima, Reiko; Seshimo, Takashi; Morishima, Toshibumi; Kosaki, Keisuke; Ibe, Shigeharu; Asagai, Yoshimi; Minematsu, Koji; Kurita, Kazuhiro; Okayasu, Tsutomu; Shimura, Tsukasa; Hoshino, Kotaro; Suzuki, Toshiro; Yanagizono, Taiichiro
2018-04-07
The prognosis for mobility function by Gross Motor Function Classification System (GMFCS) level is vital as a guide to rehabilitation for people with cerebral palsy. This study sought to investigate change in mobility function and its causes in adults with cerebral palsy by GMFCS level. We conducted a cross-sectional questionnaire study. A total of 386 participants (26 y 8 m, SD 5 y 10 m) with cerebral palsy were analyzed. Participant numbers by GMFCS level were: I (53), II (139), III (74) and IV (120). The median age of participants with peak mobility function in GMFCS level III was younger than that in the other levels. 48% had experienced a decline in mobility. A Kaplan-Meier plot showed the risk of mobility decline increased in GMFCS level III; the hazard ratio was 1.97 (95% CI, 1.20-3.23) compared with level I. The frequently reported causes of mobility decline were changes in environment, and illness and injury in GMFCS level III, stiffness and deformity in level IV, and reduced physical activity in level II and III. Peak mobility function and mobility decline occurred at a younger age in GMFCS level III, with the cause of mobility decline differing by GMFCS level.
Sassoon, Stephanie A; Rosenbloom, Margaret J; Fama, Rosemary; Sullivan, Edith V; Pfefferbaum, Adolf
2012-09-30
Alcoholism, HIV, and depressive symptoms frequently co-occur and are associated with impairment in cognition and life function. We administered the Beck Depression Inventory-II (BDI-II), measures of life function, and neurocognitive tests to 67 alcoholics, 56 HIV+ patients, 63 HIV+ alcoholics, and 64 controls to examine whether current depressive symptom level (significant, BDI-II>14 vs. minimal, BDI-II<14) was associated with poorer cognitive or psychosocial function in alcoholism-HIV comorbidity. Participants with significant depressive symptoms demonstrated slower manual motor speed and poorer visuospatial memory than those with minimal depressive symptoms. HIV patients with depressive symptoms showed impaired manual motor speed. Alcoholics with depressive symptoms showed impaired visuospatial memory. HIV+ alcoholics with depressive symptoms reported the poorest quality of life; alcoholics with depressive symptoms, irrespective of HIV status, had poorest life functioning. Thus, significant depressive symptoms were associated with poorer selective cognitive and life functioning in alcoholism and in HIV infection, even though depressive symptoms had neither synergistic nor additive effects on cognition in alcoholism-HIV comorbidity. The results suggest the relevance of assessing and treating current depressive symptoms to reduce cognitive compromise and functional disability in HIV infection, alcoholism, and their comorbidity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Thinking, Walking, Talking: Integratory Motor and Cognitive Brain Function
Leisman, Gerry; Moustafa, Ahmed A.; Shafir, Tal
2016-01-01
In this article, we argue that motor and cognitive processes are functionally related and most likely share a similar evolutionary history. This is supported by clinical and neural data showing that some brain regions integrate both motor and cognitive functions. In addition, we also argue that cognitive processes coincide with complex motor output. Further, we also review data that support the converse notion that motor processes can contribute to cognitive function, as found by many rehabilitation and aerobic exercise training programs. Support is provided for motor and cognitive processes possessing dynamic bidirectional influences on each other. PMID:27252937
Olfaction Is Related to Motor Function in Older Adults.
Tian, Qu; Resnick, Susan M; Studenski, Stephanie A
2017-08-01
Among older adults, both olfaction and motor function predict future cognitive decline and dementia, suggesting potential shared causal pathways. However, it is not known whether olfactory and motor function are independently related in late life. We assessed cross-sectional associations of olfaction with motor and cognitive function, using concurrent data on olfactory function, mobility, balance, fine motor function, manual dexterity, and cognition in 163 Baltimore Longitudinal Study of Aging participants aged 60 and older without common neurological diseases (n = 114 with available cognitive data). Using multiple linear regression, we adjusted for age, sex, race, smoking history, height, and weight for mobility and balance, and education for cognition. We used multiple linear regression to test whether olfaction-motor associations were independent of cognition and depressive symptoms. Olfactory scores were significantly associated with mobility (usual gait speed, rapid gait speed, 400-m walk time, and Health ABC Physical Performance Battery score), balance, fine motor function, and manual dexterity (all p < .05). In those with available cognitive data, additional adjustment for depressive symptoms, verbal memory, or visuoperceptual speed demonstrated especially strong independent relationships with challenging motor tasks such as 400-m walk and nondominant hand manual dexterity (p < .005). This study demonstrates for the first time that, in older adults, olfactory function is associated with mobility, balance, fine motor function, and manual dexterity, and independent of cognitive function, with challenging upper and lower extremity motor function tasks. Longitudinal studies are needed to determine if olfactory performance predicts future mobility and functional decline. Published by Oxford University Press on behalf of The Gerontological Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
49 CFR 382.501 - Removal from safety-sensitive function.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...
49 CFR 382.501 - Removal from safety-sensitive function.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...
49 CFR 382.501 - Removal from safety-sensitive function.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...
49 CFR 382.501 - Removal from safety-sensitive function.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...
49 CFR 382.501 - Removal from safety-sensitive function.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...
Novel disposable transnasal endoscopy for assessment of esophageal motor function.
Lim, Chul-Hyun; Choi, Myung-Gyu; Baeg, Myong-Ki; Moon, Sung Jin; Kim, Jin Su; Cho, Yu Kyung; Park, Jae Myung; Lee, In Seok; Kim, Sang Woo; Choi, Kyu Yong
2014-01-01
A novel disposable transnasal endoscopy (DTE) with a portable system has been developed to provide unsedated esophagoscopy by modifying capsule endoscopy. The aim of this study was to assess the feasibility of DTE to evaluate esophageal motor function. Patients with or suspected esophageal motility disorders and healthy volunteers were enrolled. Participants underwent esophageal high-resolution manometry and DTE in random order on different days. Motility was observed with DTE at 1, 8, and 16 cm above the gastroesophageal junction. Twenty healthy volunteers and 20 symptomatic subjects participated (8 achalasia, 5 scleroderma, 3 diffuse esophageal spasm, 1 hypertensive peristalsis, 1 peristaltic dysfunction, and 22 normal esophageal function). The normal findings on DTE were as follows. As the subject swallowed water, swallow-induced relaxation with elevation of the lower esophageal sphincter caused the endoscope to cross the Z-line into the gastric lumen. After the passage of water and air, complete closure of the lower esophageal sphincter occurred, with the return of the endoscope to its previous position. During the resting stage of the esophageal body, an air bubble could be seen in the center of the radially wrinkled and occluded lumen. The endoscopic diagnosis was in agreement with the clinical diagnosis in all but 2. Most of the participants reported acceptable discomfort during DTE and 62.5% of the subjects preferred DTE to manometry. DTE can accurately characterize normal esophageal motor function, allowing the diagnosis of esophageal motility disorders. DTE has potential widespread applications, especially in outpatient clinics.
Matsubayashi, Yoshito; Asakawa, Yasuyoshi; Yamaguchi, Haruyasu
2016-01-01
[Purpose] This study examined whether low-frequency group exercise improved the motor functions of community-dwelling elderly people in a rural area when combined with home exercise with self-monitoring. [Subjects] The subjects were community-dwelling elderly people in a rural area of Japan. [Methods] One group (n = 50) performed group exercise combined with home exercise with self-monitoring. Another group (n = 37) performed group exercise only. Low-frequency group exercise (warm-up, exercises for motor functions, and cool-down) was performed in seven 40 to 70-minute sessions over 9 weeks by both groups. Five items of motor functions were assessed before and after the intervention. [Results] Significant interactions were observed between groups and assessment times for all motor functions. Improvements in motor functions were significantly greater in the group that performed group exercise combined with home exercise with self-monitoring than in the group that performed group exercise only. Post-hoc comparisons revealed significant differences in 3 items of motor functions. No significant improvements were observed in motor functions in the group that performed group exercise only. [Conclusions] Group exercise combined with home exercise with self-monitoring improved motor functions in the setting of low-frequency group exercise for community-dwelling elderly people in a rural area. PMID:27065520
The cerebellum and visual perceptual learning: evidence from a motion extrapolation task.
Deluca, Cristina; Golzar, Ashkan; Santandrea, Elisa; Lo Gerfo, Emanuele; Eštočinová, Jana; Moretto, Giuseppe; Fiaschi, Antonio; Panzeri, Marta; Mariotti, Caterina; Tinazzi, Michele; Chelazzi, Leonardo
2014-09-01
Visual perceptual learning is widely assumed to reflect plastic changes occurring along the cerebro-cortical visual pathways, including at the earliest stages of processing, though increasing evidence indicates that higher-level brain areas are also involved. Here we addressed the possibility that the cerebellum plays an important role in visual perceptual learning. Within the realm of motor control, the cerebellum supports learning of new skills and recalibration of motor commands when movement execution is consistently perturbed (adaptation). Growing evidence indicates that the cerebellum is also involved in cognition and mediates forms of cognitive learning. Therefore, the obvious question arises whether the cerebellum might play a similar role in learning and adaptation within the perceptual domain. We explored a possible deficit in visual perceptual learning (and adaptation) in patients with cerebellar damage using variants of a novel motion extrapolation, psychophysical paradigm. Compared to their age- and gender-matched controls, patients with focal damage to the posterior (but not the anterior) cerebellum showed strongly diminished learning, in terms of both rate and amount of improvement over time. Consistent with a double-dissociation pattern, patients with focal damage to the anterior cerebellum instead showed more severe clinical motor deficits, indicative of a distinct role of the anterior cerebellum in the motor domain. The collected evidence demonstrates that a pure form of slow-incremental visual perceptual learning is crucially dependent on the intact cerebellum, bearing the notion that the human cerebellum acts as a learning device for motor, cognitive and perceptual functions. We interpret the deficit in terms of an inability to fine-tune predictive models of the incoming flow of visual perceptual input over time. Moreover, our results suggest a strong dissociation between the role of different portions of the cerebellum in motor versus non-motor functions, with only the posterior lobe being responsible for learning in the perceptual domain. Copyright © 2014. Published by Elsevier Ltd.
Motor imagery learning modulates functional connectivity of multiple brain systems in resting state.
Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun
2014-01-01
Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning.
Differential sensitivity of cranial and limb motor function to nigrostriatal dopamine depletion
Plowman, Emily K.; Maling, Nicholas; Rivera, Benjamin J.; Larson, Krista; Thomas, Nagheme J.; Fowler, Stephen C.; Manfredsson, Fredric P.; Shrivastav, Rahul; Kleim, Jeffrey A.
2012-01-01
The present study determined the differential effects of unilateral striatal dopamine depletion on cranial motor versus limb motor function. Forty male Long Evans rats were first trained on a comprehensive motor testing battery that dissociated cranial versus limb motor function and included: cylinder forepaw placement, single pellet reaching, vermicelli pasta handling; sunflower seed opening, pasta biting acoustics, and a licking task. Following baseline testing, animals were randomized to either a 6-hydroxydopamine (6-OHDA) (n = 20) or control (n = 20) group. Animals in the 6-OHDA group received unilateral intrastriatal 6-OHDA infusions to induce striatal dopamine depletion. Six-weeks following infusion, all animals were re-tested on the same battery of motor tests. Near infrared densitometry was performed on sections taken through the striatum that were immunohistochemically stained for tyrosine hydroxylase (TH). Animals in the 6-OHDA condition showed a mean reduction in TH staining of 88.27%. Although 6-OHDA animals were significantly impaired on all motor tasks, limb motor deficits were more severe than cranial motor impairments. Further, performance on limb motor tasks was correlated with degree of TH depletion while performance on cranial motor impairments showed no significant correlation. These results suggest that limb motor function may be more sensitive to striatal dopaminergic depletion than cranial motor function and is consistent with the clinical observation that therapies targeting the nigrostriatal dopaminergic system in Parkinson’s disease are more effective for limb motor symptoms than cranial motor impairments. PMID:23018122
Sadikov, Aleksander; Groznik, Vida; Možina, Martin; Žabkar, Jure; Nyholm, Dag; Memedi, Mevludin; Bratko, Ivan; Georgiev, Dejan
2017-09-01
Parkinson's disease (PD) is currently incurable, however proper treatment can ease the symptoms and significantly improve the quality of life of patients. Since PD is a chronic disease, its efficient monitoring and management is very important. The objective of this paper was to investigate the feasibility of using the features and methodology of a spirography application, originally designed to detect early Parkinson's disease (PD) motoric symptoms, for automatically assessing motor symptoms of advanced PD patients experiencing motor fluctuations. More specifically, the aim was to objectively assess motor symptoms related to bradykinesias (slowness of movements occurring as a result of under-medication) and dyskinesias (involuntary movements occurring as a result of over-medication). This work combined spirography data and clinical assessments from a longitudinal clinical study in Sweden with the features and pre-processing methodology of a Slovenian spirography application. The study involved 65 advanced PD patients and over 30,000 spiral-drawing measurements over the course of three years. Machine learning methods were used to learn to predict the "cause" (bradykinesia or dyskinesia) of upper limb motor dysfunctions as assessed by a clinician who observed animated spirals in a web interface. The classification model was also tested for comprehensibility. For this purpose a visualisation technique was used to present visual clues to clinicians as to which parts of the spiral drawing (or its animation) are important for the given classification. Using the machine learning methods with feature descriptions and pre-processing from the Slovenian application resulted in 86% classification accuracy and over 0.90 AUC. The clinicians also rated the computer's visual explanations of its classifications as at least meaningful if not necessarily helpful in over 90% of the cases. The relatively high classification accuracy and AUC demonstrates the usefulness of this approach for objective monitoring of PD patients. The positive evaluation of computer's explanations suggests the potential use of this methodology in a decision support setting. Copyright © 2017 Elsevier B.V. All rights reserved.
Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto
2014-03-01
We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.
Osteogenesis imperfecta in childhood: treatment strategies.
Engelbert, R H; Pruijs, H E; Beemer, F A; Helders, P J
1998-12-01
Osteogenesis imperfecta (OI) is a skeletal disorder of remarkable clinical variability characterized by bone fragility, osteopenia, variable degrees of short stature, and progressive skeletal deformities. Additional clinical manifestations such as blue sclerae, dentinogenesis imperfecta, joint laxity, and maturity onset deafness are described in the literature. OI occurs in about 1 in 20,000 births and is caused by quantitative and qualitative defects in the synthesis of collagen I. Depending on the severity of the disease, a large impact on motor development, range of joint motion, muscle strength, and functional ability may occur. Treatment strategies should primarily focus on the improvement of functional ability and the adoption of compensatory strategies, rather than merely improving range of joint motion and muscle strength. Surgical treatment of the extremities may be indicated to stabilize the long bones to optimize functional ability and walking capacity. Surgical treatment of the spine may be indicated in patients with progressive spinal deformity and in those with symptomatic basilar impression.
Rogoveanu, OC; Tuțescu, NC; Kamal, D; Alexandru, DO; Kamal, C; Streba, CT; Trăistaru, MR
2016-01-01
Spastic quadriplegia has as an etiopathogenic substrate, a non-progressive brain lesion; however, the clinical manifestations of the disease evolve over time. Children diagnosed with spastic quadriplegia show a variety of symptoms in different areas: sensorimotor, emotional, cognitive, and social. The purpose of this study was to assess the functional status in patients diagnosed with spastic quadriplegia, who followed a complex medical rehabilitation program, during a year, and highlight the importance of using physical and kinetic techniques in improving their status. A total of 10 children diagnosed with spastic quadriplegia were included in the study and the Gross Motor Function Classification System (GMFCS) and manual ability classification system (MACS) were used to evaluate the functionality status of each patient. Every patient was evaluated initially (T1), after six months of program (T2), and after they completed the study. All the children were originally monitored daily, for 5 days per week for a period of one month, then two times a week for a year. A statistically significant difference regarding the modification of the GMFCS and MACS stage was found, which occurred between the first and the third evaluation. The inverse correlation of the statistical significance between the ages of patients and the decrease in GMFCS or MACS stage was highlighted; the younger the patient, the more the scale decreased. A direct link between the gross motor function and the manual ability was noticed. Applying a complex rehabilitation program has proven efficient by improving both the gross motor functionality and the manual ability. PMID:27974931
Rogoveanu, O C; Tuțescu, N C; Kamal, D; Alexandru, D O; Kamal, C; Streba, C T; Trăistaru, M R
2016-01-01
Spastic quadriplegia has as an etiopathogenic substrate, a non-progressive brain lesion; however, the clinical manifestations of the disease evolve over time. Children diagnosed with spastic quadriplegia show a variety of symptoms in different areas: sensorimotor, emotional, cognitive, and social. The purpose of this study was to assess the functional status in patients diagnosed with spastic quadriplegia, who followed a complex medical rehabilitation program, during a year, and highlight the importance of using physical and kinetic techniques in improving their status. A total of 10 children diagnosed with spastic quadriplegia were included in the study and the Gross Motor Function Classification System (GMFCS) and manual ability classification system (MACS) were used to evaluate the functionality status of each patient. Every patient was evaluated initially (T1), after six months of program (T2), and after they completed the study. All the children were originally monitored daily, for 5 days per week for a period of one month, then two times a week for a year. A statistically significant difference regarding the modification of the GMFCS and MACS stage was found, which occurred between the first and the third evaluation. The inverse correlation of the statistical significance between the ages of patients and the decrease in GMFCS or MACS stage was highlighted; the younger the patient, the more the scale decreased. A direct link between the gross motor function and the manual ability was noticed. Applying a complex rehabilitation program has proven efficient by improving both the gross motor functionality and the manual ability.
Autonomic nervous system correlates in movement observation and motor imagery
Collet, C.; Di Rienzo, F.; El Hoyek, N.; Guillot, A.
2013-01-01
The purpose of the current article is to provide a comprehensive overview of the literature offering a better understanding of the autonomic nervous system (ANS) correlates in motor imagery (MI) and movement observation. These are two high brain functions involving sensori-motor coupling, mediated by memory systems. How observing or mentally rehearsing a movement affect ANS activity has not been extensively investigated. The links between cognitive functions and ANS responses are not so obvious. We will first describe the organization of the ANS whose main purposes are controlling vital functions by maintaining the homeostasis of the organism and providing adaptive responses when changes occur either in the external or internal milieu. We will then review how scientific knowledge evolved, thus integrating recent findings related to ANS functioning, and show how these are linked to mental functions. In turn, we will describe how movement observation or MI may elicit physiological responses at the peripheral level of the autonomic effectors, thus eliciting autonomic correlates to cognitive activity. Key features of this paper are to draw a step-by step progression from the understanding of ANS physiology to its relationships with high mental processes such as movement observation or MI. We will further provide evidence that mental processes are co-programmed both at the somatic and autonomic levels of the central nervous system (CNS). We will thus detail how peripheral physiological responses may be analyzed to provide objective evidence that MI is actually performed. The main perspective is thus to consider that, during movement observation and MI, ANS activity is an objective witness of mental processes. PMID:23908623
Lin, Keh-chung; Huang, Pai-chuan; Chen, Yu-ting; Wu, Ching-yi; Huang, Wen-ling
2014-02-01
Mirror therapy (MT) and mesh glove (MG) afferent stimulation may be effective in reducing motor impairment after stroke. A hybrid intervention of MT combined with MG (MT + MG) may broaden aspects of treatment benefits. To demonstrate the comparative effects of MG + MT, MT, and a control treatment (CT) on the outcomes of motor impairments, manual dexterity, ambulation function, motor control, and daily function. Forty-three chronic stroke patients with mild to moderate upper extremity impairment were randomly assigned to receive MT + MG, MT, or CT for 1.5 hours/day, 5 days/week for 4 weeks. Outcome measures were the Fugl-Meyer Assessment (FMA) and muscle tone measured by Myoton-3 for motor impairment and the Box and Block Test (BBT) and 10-Meter Walk Test (10 MWT) for motor function. Secondary outcomes included kinematic parameters for motor control and the Motor Activity Log and ABILHAND Questionnaire for daily function. FMA total scores were significantly higher and synergistic shoulder abduction during reach was less in the MT + MG and MT groups compared with the CT group. Performance on the BBT and the 10 MWT (velocity and stride length in self-paced task and velocity in as-quickly-as-possible task) were improved after MT + MG compared with MT. MT + MG improved manual dexterity and ambulation. MT + MG and MT reduced motor impairment and synergistic shoulder abduction more than CT. Future studies may integrate functional task practice into treatments to enhance functional outcomes in patients with various levels of motor severity. The long-term effects of MG + MT remain to be evaluated.
Gross motor function change after multilevel soft tissue release in children with cerebral palsy.
Chang, Chia-Hsieh; Chen, Yu-Ying; Yeh, Kuo-Kuang; Chen, Chia-Ling
2017-06-01
Improving motor function is a major goal of therapy for children with cerebral palsy (CP). However, changes in motor function after orthopedic surgery for gait disorders are seldom discussed. This study aimed to evaluate the postoperative changes in gross motor function and to investigate the prognostic factors for such changes. We prospectively studied 25 children with CP (4-12 years) who were gross motor function classification system (GMFCS) level II to IV and and underwent bilateral multilevel soft-tissue release for knee flexion gait. Patients were evaluated preoperatively and at 6 weeks and 3 and 6 months postoperatively for Gross Motor Function Measure (GMFM-66), range of motion, spasticity, and selective motor control. The associations between change in GMFM-66 score and possible factors were analyzed. 25 children with gross motor function level II to IV underwent surgery at a mean age of 8.6 years (range, 4-12 years). Mean GMFM-66 score decreased from 55.9 at baseline to 54.3 at 6-weeks postoperatively and increased to 57.5 at 6-months postoperatively (p < 0.05). Regression analysis revealed better gross motor function level and greater surgical reduction of spasticity were predictors for decreased GMFM-66 score at 6-weeks postoperatively. Younger age was a predictor for increased GMFM-66 score at 6-months postoperatively. Reduction of contracture and spasticity and improvement of selective motor control were noted after surgery in children with CP. However, a down-and-up course of GMFM-66 score was noted. It is emphasized that deterioration of motor function in children with ambulatory ability and the improvement in young children after orthopedic surgery for gait disorders. case series, therapeutic study, level 4. Copyright © 2017 Chang Gung University. Published by Elsevier B.V. All rights reserved.
Assessment of motor functioning in the preschool period.
Piek, Jan P; Hands, Beth; Licari, Melissa K
2012-12-01
The assessment of motor functioning in young children has become increasingly important in recent years with the acknowledgement that motor impairment is linked with cognitive, language, social and emotional difficulties. However, there is no one gold standard assessment tool to investigate motor ability in children. The aim of the current paper was to discuss the issues related to the assessment of motor ability in young pre-school children and to provide guidelines on the best approach for motor assessment. The paper discusses the maturational changes in brain development at the preschool level in relation to motor ability. Other issues include sex differences in motor ability at this young age, and evidence for this in relation to sociological versus biological influences. From the previous literature it is unclear what needs to be assessed in relation to motor functioning. Should the focus be underlying motor processes or movement skill assessment? Several key assessment tools are discussed that produce a general measure of motor performance followed by a description of tools that assess specific skills, such as fine and gross motor, ball and graphomotor skills. The paper concludes with recommendations on the best approach in assessing motor function in pre-school children.
Catenin-dependent cadherin function drives divisional segregation of spinal motor neurons.
Bello, Sanusi M; Millo, Hadas; Rajebhosale, Manisha; Price, Stephen R
2012-01-11
Motor neurons that control limb movements are organized as a neuronal nucleus in the developing ventral horn of the spinal cord called the lateral motor column. Neuronal migration segregates motor neurons into distinct lateral and medial divisions within the lateral motor column that project axons to dorsal or ventral limb targets, respectively. This migratory phase is followed by an aggregation phase whereby motor neurons within a division that project to the same muscle cluster together. These later phases of motor neuron organization depend on limb-regulated differential cadherin expression within motor neurons. Initially, all motor neurons display the same cadherin expression profile, which coincides with the migratory phase of motor neuron segregation. Here, we show that this early, pan-motor neuron cadherin function drives the divisional segregation of spinal motor neurons in the chicken embryo by controlling motor neuron migration. We manipulated pan-motor neuron cadherin function through dissociation of cadherin binding to their intracellular partners. We found that of the major intracellular transducers of cadherin signaling, γ-catenin and α-catenin predominate in the lateral motor column. In vivo manipulations that uncouple cadherin-catenin binding disrupt divisional segregation via deficits in motor neuron migration. Additionally, reduction of the expression of cadherin-7, a cadherin predominantly expressed in motor neurons only during their migration, also perturbs divisional segregation. Our results show that γ-catenin-dependent cadherin function is required for spinal motor neuron migration and divisional segregation and suggest a prolonged role for cadherin expression in all phases of motor neuron organization.
Neuromuscular adaptation to actual and simulated weightlessness
NASA Technical Reports Server (NTRS)
Edgerton, V. R.; Roy, R. R.
1994-01-01
The chronic "unloading" of the neuromuscular system during spaceflight has detrimental functional and morphological effects. Changes in the metabolic and mechanical properties of the musculature can be attributed largely to the loss of muscle protein and the alteration in the relative proportion of the proteins in skeletal muscle, particularly in the muscles that have an antigravity function under normal loading conditions. These adaptations could result in decrements in the performance of routine or specialized motor tasks, both of which may be critical for survival in an altered gravitational field, i.e., during spaceflight and during return to 1 G. For example, the loss in extensor muscle mass requires a higher percentage of recruitment of the motor pools for any specific motor task. Thus, a faster rate of fatigue will occur in the activated muscles. These consequences emphasize the importance of developing techniques for minimizing muscle loss during spaceflight, at least in preparation for the return to 1 G after spaceflight. New insights into the complexity and the interactive elements that contribute to the neuromuscular adaptations to space have been gained from studies of the role of exercise and/or growth factors as countermeasures of atrophy. The present chapter illustrates the inevitable interactive effects of neural and muscular systems in adapting to space. It also describes the considerable progress that has been made toward the goal of minimizing the functional impact of the stimuli that induce the neuromuscular adaptations to space.
Mikell, Charles B.; Youngerman, Brett E.; Liston, Conor; Sisti, Michael B.; Bruce, Jeffrey N.; Small, Scott A.; McKhann, Guy M.
2012-01-01
While a tumour in or abutting primary motor cortex leads to motor weakness, how tumours elsewhere in the frontal or parietal lobes affect functional connectivity in a weak patient is less clear. We hypothesized that diminished functional connectivity in a distributed network of motor centres would correlate with motor weakness in subjects with brain masses. Furthermore, we hypothesized that interhemispheric connections would be most vulnerable to subtle disruptions in functional connectivity. We used task-free functional magnetic resonance imaging connectivity to probe motor networks in control subjects and patients with brain tumours (n = 22). Using a control dataset, we developed a method for automated detection of key nodes in the motor network, including the primary motor cortex, supplementary motor area, premotor area and superior parietal lobule, based on the anatomic location of the hand-motor knob in the primary motor cortex. We then calculated functional connectivity between motor network nodes in control subjects, as well as patients with and without brain masses. We used this information to construct weighted, undirected graphs, which were then compared to variables of interest, including performance on a motor task, the grooved pegboard. Strong connectivity was observed within the identified motor networks between all nodes bilaterally, and especially between the primary motor cortex and supplementary motor area. Reduced connectivity was observed in subjects with motor weakness versus subjects with normal strength (P < 0.001). This difference was driven mostly by decreases in interhemispheric connectivity between the primary motor cortices (P < 0.05) and between the left primary motor cortex and the right premotor area (P < 0.05), as well as other premotor area connections. In the subjects without motor weakness, however, performance on the grooved pegboard did not relate to interhemispheric connectivity, but rather was inversely correlated with connectivity between the left premotor area and left supplementary motor area, for both the left and the right hands (P < 0.01). Finally, two subjects who experienced severe weakness following surgery for their brain tumours were followed longitudinally, and the subject who recovered showed reconstitution of her motor network at follow-up. The subject who was persistently weak did not reconstitute his motor network. Motor weakness in subjects with brain tumours that do not involve primary motor structures is associated with decreased connectivity within motor functional networks, particularly interhemispheric connections. Motor networks become weaker as the subjects become weaker, and may become strong again during motor recovery. PMID:22408270
Maturation of Sensori-Motor Functional Responses in the Preterm Brain.
Allievi, Alessandro G; Arichi, Tomoki; Tusor, Nora; Kimpton, Jessica; Arulkumaran, Sophie; Counsell, Serena J; Edwards, A David; Burdet, Etienne
2016-01-01
Preterm birth engenders an increased risk of conditions like cerebral palsy and therefore this time may be crucial for the brain's developing sensori-motor system. However, little is known about how cortical sensori-motor function matures at this time, whether development is influenced by experience, and about its role in spontaneous motor behavior. We aimed to systematically characterize spatial and temporal maturation of sensori-motor functional brain activity across this period using functional MRI and a custom-made robotic stimulation device. We studied 57 infants aged from 30 + 2 to 43 + 2 weeks postmenstrual age. Following both induced and spontaneous right wrist movements, we saw consistent positive blood oxygen level-dependent functional responses in the contralateral (left) primary somatosensory and motor cortices. In addition, we saw a maturational trend toward faster, higher amplitude, and more spatially dispersed functional responses; and increasing integration of the ipsilateral hemisphere and sensori-motor associative areas. We also found that interhemispheric functional connectivity was significantly related to ex-utero exposure, suggesting the influence of experience-dependent mechanisms. At term equivalent age, we saw a decrease in both response amplitude and interhemispheric functional connectivity, and an increase in spatial specificity, culminating in the establishment of a sensori-motor functional response similar to that seen in adults. © The Author 2015. Published by Oxford University Press.
Neural network connectivity differences in children who stutter
Zhu, David C.
2013-01-01
Affecting 1% of the general population, stuttering impairs the normally effortless process of speech production, which requires precise coordination of sequential movement occurring among the articulatory, respiratory, and resonance systems, all within millisecond time scales. Those afflicted experience frequent disfluencies during ongoing speech, often leading to negative psychosocial consequences. The aetiology of stuttering remains unclear; compared to other neurodevelopmental disorders, few studies to date have examined the neural bases of childhood stuttering. Here we report, for the first time, results from functional (resting state functional magnetic resonance imaging) and structural connectivity analyses (probabilistic tractography) of multimodal neuroimaging data examining neural networks in children who stutter. We examined how synchronized brain activity occurring among brain areas associated with speech production, and white matter tracts that interconnect them, differ in young children who stutter (aged 3–9 years) compared with age-matched peers. Results showed that children who stutter have attenuated connectivity in neural networks that support timing of self-paced movement control. The results suggest that auditory-motor and basal ganglia-thalamocortical networks develop differently in stuttering children, which may in turn affect speech planning and execution processes needed to achieve fluent speech motor control. These results provide important initial evidence of neurological differences in the early phases of symptom onset in children who stutter. PMID:24131593
Evaluation of Esophageal Motor Function With High-resolution Manometry
2013-01-01
For several decades esophageal manometry has been the test of choice to evaluate disorders of esophageal motor function. The recent introduction of high-resolution manometry for the study of esophageal motor function simplified performance of esophageal manometry, and revealed previously unidentified patterns of normal and abnormal esophageal motor function. Presentation of pressure data as color contour plots or esophageal pressure topography led to the development of new tools for analyzing and classifying esophageal motor patterns. The current standard and still developing approach to do this is the Chicago classification. While this methodical approach is improving our diagnosis of esophageal motor disorders, it currently does not address all motor abnormalities. We will explore the Chicago classification and disorders that it does not address. PMID:23875094
Brain representations for acquiring and recalling visual-motor adaptations
Bédard, Patrick; Sanes, Jerome N.
2014-01-01
Humans readily learn and remember new motor skills, a process that likely underlies adaptation to changing environments. During adaptation, the brain develops new sensory-motor relationships, and if consolidation occurs, a memory of the adaptation can be retained for extended periods. Considerable evidence exists that multiple brain circuits participate in acquiring new sensory-motor memories, though the networks engaged in recalling these and whether the same brain circuits participate in their formation and recall has less clarity. To address these issues, we assessed brain activation with functional MRI while young healthy adults learned and recalled new sensory-motor skills by adapting to world-view rotations of visual feedback that guided hand movements. We found cerebellar activation related to adaptation rate, likely reflecting changes related to overall adjustments to the visual rotation. A set of parietal and frontal regions, including inferior and superior parietal lobules, premotor area, supplementary motor area and primary somatosensory cortex, exhibited non-linear learning-related activation that peaked in the middle of the adaptation phase. Activation in some of these areas, including the inferior parietal lobule, intra-parietal sulcus and somatosensory cortex, likely reflected actual learning, since the activation correlated with learning after-effects. Lastly, we identified several structures having recall-related activation, including the anterior cingulate and the posterior putamen, since the activation correlated with recall efficacy. These findings demonstrate dynamic aspects of brain activation patterns related to formation and recall of a sensory-motor skill, such that non-overlapping brain regions participate in distinctive behavioral events. PMID:25019676
Multiple Sensory-Motor Pathways Lead to Coordinated Visual Attention
Yu, Chen; Smith, Linda B.
2016-01-01
Joint attention has been extensively studied in the developmental literature because of overwhelming evidence that the ability to socially coordinate visual attention to an object is essential to healthy developmental outcomes, including language learning. The goal of the present study is to understand the complex system of sensory-motor behaviors that may underlie the establishment of joint attention between parents and toddlers. In an experimental task, parents and toddlers played together with multiple toys. We objectively measured joint attention – and the sensory-motor behaviors that underlie it – using a dual head-mounted eye-tracking system and frame-by-frame coding of manual actions. By tracking the momentary visual fixations and hand actions of each participant, we precisely determined just how often they fixated on the same object at the same time, the visual behaviors that preceded joint attention, and manual behaviors that preceded and co-occurred with joint attention. We found that multiple sequential sensory-motor patterns lead to joint attention. In addition, there are developmental changes in this multi-pathway system evidenced as variations in strength among multiple routes. We propose that coordinated visual attention between parents and toddlers is primarily a sensory-motor behavior. Skill in achieving coordinated visual attention in social settings – like skills in other sensory-motor domains – emerges from multiple pathways to the same functional end. PMID:27016038
Nozaki, Takao; Sugiyama, Kenji; Yagi, Shunsuke; Yoshikawa, Etsuji; Kanno, Toshihiko; Asakawa, Tetsuya; Ito, Tae; Terada, Tatsuhiro; Namba, Hiroki; Ouchi, Yasuomi
2013-03-01
To elucidate the dynamic effects of deep brain stimulation (DBS) in the subthalamic nucleus (STN) during activity on the dopaminergic system, 12 PD patients who had STN-DBS operations at least 1 month prior, underwent two positron emission tomography scans during right-foot movement in DBS-off and DBS-on conditions. To quantify motor performance changes, the motion speed and mobility angle of the foot at the ankle were measured twice. Estimations of the binding potential of [(11)C]raclopride (BP(ND)) were based on the Logan plot method. Significant motor recovery was found in the DBS-on condition. The STN-DBS during exercise significantly reduced the [(11)C]raclopride BP(ND) in the caudate and the nucleus accumbens (NA), but not in the dorsal or ventral putamen. The magnitude of dopamine release in the NA correlated negatively with the magnitude of motor load, indicating that STN-DBS facilitated motor behavior more smoothly and at less expense to dopamine neurons in the region. The lack of dopamine release in the putamen and the significant dopamine release in the ventromedial striatum by STN-DBS during exercise indicated dopaminergic activation occurring in the motivational circuit during action, suggesting a compensatory functional activation of the motor loop from the nonmotor to the motor loop system.
The Orion Pad Abort 1 (PA-1) Flight Test: A Propulsion Success
NASA Technical Reports Server (NTRS)
Jones, Daniel S.
2015-01-01
This poster provides a concise overview of the highly successful Orion Pad Abort 1 (PA-1) flight test, and the three rocket motors that contributed to this success. The primary purpose of the Orion PA-1 flight was to help certify the Orion Launch Abort System (LAS), which can be utilized in the unlikely event of an emergency on the launchpad or during mission vehicle ascent. The PA-1 test was the first fully integrated flight test of the Orion LAS, one of the primary systems within the Orion Multi-Purpose Crew Vehicle (MPCV). The Orion MPCV is part of the architecture within the Space Launch System (SLS), which is being designed to transport astronauts beyond low-Earth orbit for future exploration missions. Had the Orion PA-1 flight abort occurred during launch preparations for a real human spaceflight mission, the PA-1 LAS would have saved the lives of the crew. The PA-1 flight test was largely successful due to the three solid rocket motors of the LAS: the Attitude Control Motor (ACM); the Jettison Motor (JM); and the Abort Motor (AM). All three rocket motors successfully performed their required functions during the Orion PA-1 flight test, flown on May 6, 2010 at the White Sands Missile Range in New Mexico, culminating in a successful demonstration of an abort capability from the launchpad.
Multiple Sensory-Motor Pathways Lead to Coordinated Visual Attention.
Yu, Chen; Smith, Linda B
2017-02-01
Joint attention has been extensively studied in the developmental literature because of overwhelming evidence that the ability to socially coordinate visual attention to an object is essential to healthy developmental outcomes, including language learning. The goal of this study was to understand the complex system of sensory-motor behaviors that may underlie the establishment of joint attention between parents and toddlers. In an experimental task, parents and toddlers played together with multiple toys. We objectively measured joint attention-and the sensory-motor behaviors that underlie it-using a dual head-mounted eye-tracking system and frame-by-frame coding of manual actions. By tracking the momentary visual fixations and hand actions of each participant, we precisely determined just how often they fixated on the same object at the same time, the visual behaviors that preceded joint attention and manual behaviors that preceded and co-occurred with joint attention. We found that multiple sequential sensory-motor patterns lead to joint attention. In addition, there are developmental changes in this multi-pathway system evidenced as variations in strength among multiple routes. We propose that coordinated visual attention between parents and toddlers is primarily a sensory-motor behavior. Skill in achieving coordinated visual attention in social settings-like skills in other sensory-motor domains-emerges from multiple pathways to the same functional end. Copyright © 2016 Cognitive Science Society, Inc.
Orion Launch Abort System (LAS) Propulsion on Pad Abort 1 (PA-1)
NASA Technical Reports Server (NTRS)
Jones, Daniel S.
2015-01-01
This presentation provides a concise overview of the highly successful Orion Pad Abort 1 (PA-1) flight test, and the three rocket motors that contributed to this success. The primary purpose of the Orion PA-1 flight was to help certify the Orion Launch Abort System (LAS), which can be utilized in the unlikely event of an emergency on the launchpad or during mission vehicle ascent. The PA-1 test was the first fully integrated flight test of the Orion LAS, one of the primary systems within the Orion Multi-Purpose Crew Vehicle (MPCV). The Orion MPCV is part of the architecture within the Space Launch System (SLS), which is being designed to transport astronauts beyond low-Earth orbit for future exploration missions. Had the Orion PA-1 flight abort occurred during launch preparations for a real human spaceflight mission, the PA-1 LAS would have saved the lives of the crew. The PA-1 flight test was largely successful due to the three solid rocket motors of the LAS: the Attitude Control Motor (ACM); the Jettison Motor (JM); and the Abort Motor (AM). All three rocket motors successfully performed their required functions during the Orion PA-1 flight test, flown on May 6, 2010 at the White Sands Missile Range in New Mexico, culminating in a successful demonstration of an abort capability from the launchpad.
Determination of burning area and port volume in complex burning regions of a solid rocket motor
NASA Technical Reports Server (NTRS)
Kingsbury, J. A.
1977-01-01
An analysis of the geometry of the burning in both star-cylindrical port interface regions and regions of partially inhibited slots is presented. Some characteristics parameters are defined and illustrated. Methods are proposed for calculating burning areas which functionally depend only on the total distance burned. According to this method, several points are defined where abrupt changes in geometry occur, and these are tracked throughout the burn. Equations are developed for computing port perimeter and port area at pre-established longitudinal positions. Some common formulas and some newly developed formulas are then used to compute burning surface area and port volume. Some specific results are presented for the solid rocket motor committed to the space shuttle project.
Reactions of animals and people under conditions of brief weightlessness
NASA Technical Reports Server (NTRS)
Kitayev-Smik, L. A.
1975-01-01
It has been shown that under brief weightlessness sensory reactions arise in a number of people, mainly those under these conditions for the first time, in the form of spatial and visual illusions, motor excitation, in which tonic and motor components can be distinguished, and vestibular-vegetative disturbances (nausea, vomiting, etc.). In repeated flights with creation of weightlessness, a decrease in the extent of expression and, then, disappearance of these reactions occurred in a significant majority of those studied. Experiments in weightlessness with the vision cut off and with the absence of vestibular functions in the subjects confirm the hypothesis that spatial conceptions of people in weightlessness depend on predominance of gravireceptor or visual afferent signals under these conditions.
Tomata, Yasutake; Kogure, Mana; Sugawara, Yumi; Watanabe, Takashi; Asaka, Tadayoshi; Tsuji, Ichiro
2016-01-01
Objective Previous studies have reported that elderly victims of natural disasters might be prone to a subsequent decline in motor function. Victims of the Great East Japan Earthquake (GEJE) relocated to a wide range of different types of housing. As the evacuee lifestyle varies according to the type of housing available to them, their degree of motor function loss might also vary accordingly. However, the association between postdisaster housing type and loss of motor function has never been investigated. The present study was conducted to investigate the association between housing type after the GEJE and loss of motor function in elderly victims. Methods We conducted a prospective observational study of 478 Japanese individuals aged ≥65 years living in Miyagi Prefecture, one of the areas most significantly affected by the GEJE. Information on housing type after the GEJE, motor function as assessed by the Kihon checklist and other lifestyle factors was collected by interview and questionnaire in 2012. Information on motor function was then collected 1 year later. The multiple logistic regression model was used to estimate the multivariate adjusted ORs of motor function loss. Results We classified 53 (11.1%) of the respondents as having loss of motor function. The multivariate adjusted OR (with 95% CI) for loss of motor function among participants who were living in privately rented temporary housing/rental housing was 2.62 (1.10 to 6.24) compared to those who had remained in the same housing as that before the GEJE, and this increase was statistically significant. Conclusions The proportion of individuals with loss of motor function was higher among persons who had relocated to privately rented temporary housing/rental housing after the GEJE. This result may reflect the influence of a move to a living environment where few acquaintances are located (lack of social capital). PMID:27810976
Obsessive-compulsive disorder: a disorder of pessimal (non-functional) motor behavior.
Zor, R; Keren, H; Hermesh, H; Szechtman, H; Mort, J; Eilam, D
2009-10-01
To determine whether in addition to repetitiveness, the motor rituals of patients with obsessive-compulsive disorder (OCD) involve reduced functionality due to numerous and measurable acts that are irrelevant and unnecessary for task completion. Comparing motor rituals of OCD patients with behavior of non-patient control individuals who were instructed to perform the same motor task. Obsessive-compulsive disorder behavior comprises abundant acts that were not performed by the controls. These acts seem unnecessary or even irrelevant for the task that the patients were performing, and therefore are termed 'non-functional'. Non-functional acts comprise some 60% of OCD motor behavior. Moreover, OCD behavior consists of short chains of functional acts bounded by long chains of non-functional acts. The abundance of irrelevant or unnecessary acts in OCD motor rituals represents reduced functionality in terms of task completion, typifying OCD rituals as pessimal behavior (antonym of optimal behavior).
Cognitive function in early HIV infection.
Prakash, Aanchal; Hou, Jue; Liu, Lei; Gao, Yi; Kettering, Casey; Ragin, Ann B
2017-04-01
This study aimed to examine cognitive function in acute/early HIV infection over the subsequent 2 years. Fifty-six HIV+ subjects and 21 seronegative participants of the Chicago Early HIV Infection Study were evaluated using a comprehensive neuropsychological assessment at study enrollment and at 2-year follow-up. Cognitive performance measures were compared in the groups using t tests and mixed-effect models. Patterns of relationship with clinical measures were determined between cognitive function and clinical status markers using Spearman's correlations. At the initial timepoint, the HIV group demonstrated significantly weaker performance on measures of verbal memory, visual memory, psychomotor speed, motor speed, and executive function. A similar pattern was found when cognitive function was examined at follow-up and across both timepoints. The HIV subjects had generally weaker performance on psychomotor speed, executive function, motor speed, visual memory, and verbal memory. The rate of decline in cognitive function across the 2-year follow-up period did not differ between groups. Correlations between clinical status markers and cognitive function at both timepoints showed weaker performance associated with increased disease burden. Neurocognitive difficulty in chronic HIV infection may have very early onset and reflect consequences of initial brain viral invasion and neuroinflammation during the intense, uncontrolled viremia of acute HIV infection. Further characterization of the changes occurring in initial stages of infection and the risk and protective factors for cognitive function could inform new strategies for neuroprotection.
Barbour, John; Yee, Andrew; Kahn, Lorna C; Mackinnon, Susan E
2012-10-01
Functional motor recovery after peripheral nerve injury is predominantly determined by the time to motor end plate reinnervation and the absolute number of regenerated motor axons that reach target. Experimental models have shown that axonal regeneration occurs across a supercharged end-to-side (SETS) nerve coaptation. In patients with a recovering proximal ulnar nerve injury, a SETS nerve transfer conceptually is useful to protect and preserve distal motor end plates until the native axons fully regenerate. In addition, for nerve injuries in which incomplete regeneration is anticipated, a SETS nerve transfer may be useful to augment the regenerating nerve with additional axons and to more quickly reinnervate target muscle. We describe our technique for a SETS nerve transfer of the terminal anterior interosseous nerve (AIN) to the pronator quadratus muscle (PQ) end-to-side to the deep motor fascicle of the ulnar nerve in the distal forearm. In addition, we describe our postoperative therapy regimen for these transfers and an evaluation tool for monitoring progressive muscle reinnervation. Although the AIN-to-ulnar motor group SETS nerve transfer was specifically designed for ulnar nerve injuries, we believe that the SETS procedure might have broad clinical utility for second- and third-degree axonotmetic nerve injuries, to augment partial recovery and/or "babysit" motor end plates until the native parent axons regenerate to target. We would consider all donor nerves currently utilized in end-to-end nerve transfers for neurotmetic injuries as candidates for this SETS technique. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Zhang, Luduan; Butler, Andrew J.; Sun, Chang-Kai; Sahgal, Vinod; Wittenberg, George F.; Yue, Guang H.
2008-01-01
Little is known about the association between brain white matter (WM) structure and motor function in humans. This study investigated complexity of brain WM interior shape as determined by magnetic resonance imaging (MRI) and its relationship with upper-extremity (UE) motor function in patients post stroke. We hypothesized that (1) the WM complexity would decrease following stroke, and (2) higher WM complexity in non-affected cortical areas would be related to greater UE motor function. Thirty-eight stroke patients (16 with left-hemisphere lesions) underwent MRI anatomical brain scans. Fractal dimension (FD), a quantitative shape metric, was applied onto skeletonized brain WM images to evaluate WM internal structural complexity. Wolf Motor Function Test (WMFT) and Fugl-Meyer Motor Assessment (FM) scores were measured to assess motor function of the affected limb. The WM complexity was lower in the stroke-affected hemisphere. The FD was associated with better motor function in two subgroups: with left-subcortical lesions, FD values of the lesion-free areas of the left hemisphere were associated with better FM scores; with right-cortical lesions, FD values of lesion-free regions were robustly associated with better WMFT scores. These findings suggest that greater residual WM complexity is associated with less impaired UE motor function, which is more robust in patients with right-hemisphere lesions. No correlations were found between lesion volume and WMFT or FM scores. This study addressed WM complexity in stroke patients and its relationship with UE motor function. Measurement of brain WM reorganization may be a sensitive correlate of UE function in people recovering from stroke. PMID:18590710
Solianik, Rima; Satas, Andrius; Mickeviciene, Dalia; Cekanauskaite, Agne; Valanciene, Dovile; Majauskiene, Daiva; Skurvydas, Albertas
2018-06-01
This study aimed to explore the effect of prolonged speed-accuracy motor task on the indicators of psychological, cognitive, psychomotor and motor function. Ten young men aged 21.1 ± 1.0 years performed a fast- and accurate-reaching movement task and a control task. Both tasks were performed for 2 h. Despite decreased motivation, and increased perception of effort as well as subjective feeling of fatigue, speed-accuracy motor task performance improved during the whole period of task execution. After the motor task, the increased working memory function and prefrontal cortex oxygenation at rest and during conflict detection, and the decreased efficiency of incorrect response inhibition and visuomotor tracking were observed. The speed-accuracy motor task increased the amplitude of motor-evoked potentials, while grip strength was not affected. These findings demonstrate that to sustain the performance of 2-h speed-accuracy task under conditions of self-reported fatigue, task-relevant functions are maintained or even improved, whereas less critical functions are impaired.
Spectrum of gross motor and cognitive functions in children with cerebral palsy: gender differences.
Romeo, Domenico M M; Cioni, Matteo; Battaglia, Laura R; Palermo, Filippo; Mazzone, Domenico
2011-01-01
Multiple differences between males and females are reported both in physiological and pathophysiological conditions. To test the hypothesis that gender could influence the motor and cognitive development in children with cerebral palsy (CP). Prospective, cross-sectional. One hundred seventy one children with CP (98 males and 73 females) were evaluated for motor (Gross Motor Function Measure, Gross Motor Function Classification System) and cognitive (Bayley II, Wechsler Scales) functions. Eighty-four of them were assessed before and other eighty-seven children after 4 years of age. No gender-related differences were observed in children with diplegia or quadriplegia, both for motor and cognitive functions. On the contrary, females with hemiplegia scored significantly better (P < 0.01) in cognitive functions and in the dimension D (standing) of the Gross Motor Function Measure, under the age of 4 years. These differences were not observed after this age. In this study we point out that gender might influence differently the psycho-motor development of children with hemiplegia and of those with a more severe clinical involvement as diplegia and quadriplegia. © 2010 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Finger, Stanley; Buckner, Randy L; Buckingham, Hugh
2003-06-01
In 1877 Thomas Barlow, a London physician, published a remarkable case of functional recovery of speech following brain damage. It involved a 10-year-old boy who had lost his speech, regained it, and lost it again before he died from a disorder that affected his heart and produced embolisms that subsequently affected other organs, including his brain. Examination of the boy's brain revealed two focal regions of softening; one that affected Broca's area and the left facial-motor area, and another, which occurred weeks later, in the homologous regions of the right hemisphere. Although Barlow was most concerned with motor deficits, others at the turn of the century began to cite this case as strong evidence that the corresponding region of the right hemisphere can take over speech functions for Broca's area on the left. Whether this case really provides good support for functional takeover or vicariation theory is critically evaluated in the light of contemporary research, including PET scan studies involving damage to Broca's speech region.
Development and Plasticity of Cortical Processing Architectures
NASA Astrophysics Data System (ADS)
Singer, Wolf
1995-11-01
One of the basic functions of the cerebral cortex is the analysis and representation of relations among the components of sensory and motor patterns. It is proposed that the cortex applies two complementary strategies to cope with the combinatorial problem posed by the astronomical number of possible relations: (i) the analysis and representation of frequently occurring, behaviorally relevant relations by groups of cells with fixed but broadly tuned response properties; and (ii) the dynamic association of these cells into functionally coherent assemblies. Feedforward connections and reciprocal associative connections, respectively, are thought to underlie these two operations. The architectures of both types of connections are susceptible to experience-dependent modifications during development, but they become fixed in the adult. As development proceeds, feedforward connections also appear to lose much of their functional plasticity, whereas the synapses of the associative connections retain a high susceptibility to use-dependent modifications. The reduced plasticity of feedforward connections is probably responsible for the invariance of cognitive categories acquired early in development. The persistent adaptivity of reciprocal connections is a likely substrate for the ability to generate representations for new perceptual objects and motor patterns throughout life.
Motor Imagery Learning Modulates Functional Connectivity of Multiple Brain Systems in Resting State
Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun
2014-01-01
Background Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. Methodology/Principal Findings We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. Conclusions/Significance These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning. PMID:24465577
[Facial nerve injuries cause changes in central nervous system microglial cells].
Cerón, Jeimmy; Troncoso, Julieta
2016-12-01
Our research group has described both morphological and electrophysiological changes in motor cortex pyramidal neurons associated with contralateral facial nerve injury in rats. However, little is known about those neural changes, which occur together with changes in surrounding glial cells. To characterize the effect of the unilateral facial nerve injury on microglial proliferation and activation in the primary motor cortex. We performed immunohistochemical experiments in order to detect microglial cells in brain tissue of rats with unilateral facial nerve lesion sacrificed at different times after the injury. We caused two types of lesions: reversible (by crushing, which allows functional recovery), and irreversible (by section, which produces permanent paralysis). We compared the brain tissues of control animals (without surgical intervention) and sham-operated animals with animals with lesions sacrificed at 1, 3, 7, 21 or 35 days after the injury. In primary motor cortex, the microglial cells of irreversibly injured animals showed proliferation and activation between three and seven days post-lesion. The proliferation of microglial cells in reversibly injured animals was significant only three days after the lesion. Facial nerve injury causes changes in microglial cells in the primary motor cortex. These modifications could be involved in the generation of morphological and electrophysiological changes previously described in the pyramidal neurons of primary motor cortex that command facial movements.
Impairment of a parieto-premotor network specialized for handwriting in writer's cramp
Najee-ullah, Muslimah 'Ali; Hallett, Mark
2016-01-01
Handwriting with the dominant hand is a highly skilled task singularly acquired in humans. This skill is the isolated deficit in patients with writer's cramp (WC), a form of dystonia with maladaptive plasticity, acquired through intensive and repetitive motor practice. When a skill is highly trained, a motor program is created in the brain to execute the same movement kinematics regardless of the effector used for the task. The task- and effector-specific symptoms in WC suggest that a problem particularly occurs in the brain when the writing motor program is carried out by the dominant hand. In the present MRI study involving 12 WC patients (with symptoms only affecting the right dominant hand during writing) and 15 age matched unaffected controls we showed that: (1) the writing program recruited the same network regardless of the effector used to write in both groups; (2) dominant handwriting recruited a segregated parieto-premotor network only in the control group; (3) local structural alteration of the premotor area, the motor component of this network, predicted functional connectivity deficits during dominant handwriting and symptom duration in the patient group. Dysfunctions and structural abnormalities of a segregated parieto-premotor network in WC patients suggest that network specialization in focal brain areas is crucial for well-learned motor skill. PMID:27466043
Windows of sensitivity to toxic chemicals in the motor effects development.
Ingber, Susan Z; Pohl, Hana R
2016-02-01
Many chemicals currently used are known to elicit nervous system effects. In addition, approximately 2000 new chemicals introduced annually have not yet undergone neurotoxicity testing. This review concentrated on motor development effects associated with exposure to environmental neurotoxicants to help identify critical windows of exposure and begin to assess data needs based on a subset of chemicals thoroughly reviewed by the Agency for Toxic Substances and Disease Registry (ATSDR) in Toxicological Profiles and Addenda. Multiple windows of sensitivity were identified that differed based on the maturity level of the neurological system at the time of exposure, as well as dose and exposure duration. Similar but distinct windows were found for both motor activity (GD 8-17 [rats], GD 12-14 and PND 3-10 [mice]) and motor function performance (insufficient data for rats, GD 12-17 [mice]). Identifying specific windows of sensitivity in animal studies was hampered by study designs oriented towards detection of neurotoxicity that occurred at any time throughout the developmental process. In conclusion, while this investigation identified some critical exposure windows for motor development effects, it demonstrates a need for more acute duration exposure studies based on neurodevelopmental windows, particularly during the exposure periods identified in this review. Published by Elsevier Inc.
Anomalous Putamen Volume in Children With Complex Motor Stereotypies.
Mahone, E Mark; Crocetti, Deana; Tochen, Laura; Kline, Tina; Mostofsky, Stewart H; Singer, Harvey S
2016-12-01
Complex motor stereotypies in children are repetitive rhythmic movements that have a predictable pattern and location, seem purposeful, but serve no obvious function, tend to be prolonged, and stop with distraction, e.g., arm or hand flapping, waving. They occur in both "primary" (otherwise typically developing) and secondary conditions. These movements are best defined as habitual behaviors and therefore pathophysiologically hypothesized to reside in premotor to posterior putamen circuits. This study sought to clarify the underlying neurobiologic abnormality in children with primary complex motor stereotypies using structural neuroimaging, emphasizing brain regions hypothesized to underlie these atypical behaviors. High-resolution anatomic magnetic resonance images, acquired at 3.0 T, were analyzed in children aged eight to twelve years (20 with primary complex motor stereotypies and 20 typically developing). Frontal lobe subregions and striatal structures were delineated for analysis. Significant reductions (P = 0.045) in the stereotypies group were identified in total putamen volume but not in caudate, nucleus accumbens, or frontal subregions. There were no group differences in total cerebral volume. Findings of a smaller putamen provide preliminary evidence suggesting the potential involvement of the habitual pathway as the underlying anatomic site in primary complex motor stereotypies. Copyright © 2016 Elsevier Inc. All rights reserved.
Windows of sensitivity to toxic chemicals in the motor effects development✩
Ingber, Susan Z.; Pohl, Hana R.
2017-01-01
Many chemicals currently used are known to elicit nervous system effects. In addition, approximately 2000 new chemicals introduced annually have not yet undergone neurotoxicity testing. This review concentrated on motor development effects associated with exposure to environmental neurotoxicants to help identify critical windows of exposure and begin to assess data needs based on a subset of chemicals thoroughly reviewed by the Agency for Toxic Substances and Disease Registry (ATSDR) in Toxicological Profiles and Addenda. Multiple windows of sensitivity were identified that differed based on the maturity level of the neurological system at the time of exposure, as well as dose and exposure duration. Similar but distinct windows were found for both motor activity (GD 8–17 [rats], GD 12–14 and PND 3–10 [mice]) and motor function performance (insufficient data for rats, GD 12–17 [mice]). Identifying specific windows of sensitivity in animal studies was hampered by study designs oriented towards detection of neurotoxicity that occurred at any time throughout the developmental process. In conclusion, while this investigation identified some critical exposure windows for motor development effects, it demonstrates a need for more acute duration exposure studies based on neurodevelopmental windows, particularly during the exposure periods identified in this review. PMID:26686904
Neuropathological Basis of Non-Motor Manifestations of Parkinson’s Disease
Adler, Charles H.; Beach, Thomas G.
2016-01-01
Non-motor manifestations of Parkinson’s disease (PD) can begin well before motor PD begins. It is now clear, from clinical and autopsy studies, that there is significant Lewy type alpha-synucleinopathy present outside the nigro-striatal pathway, and that this may underlie these non-motor manifestations. This review will discuss neuropathological findings that may underlie non-motor symptoms that either predate motor findings or occur as the disease progresses. PMID:27030013
Cortes, Juan C; Goldsmith, Jeff; Harran, Michelle D; Xu, Jing; Kim, Nathan; Schambra, Heidi M; Luft, Andreas R; Celnik, Pablo; Krakauer, John W; Kitago, Tomoko
2017-06-01
Studies demonstrate that most arm motor recovery occurs within three months after stroke, when measured with standard clinical scales. Improvements on these measures, however, reflect a combination of recovery in motor control, increases in strength, and acquisition of compensatory strategies. To isolate and characterize the time course of recovery of arm motor control over the first year poststroke. Longitudinal study of 18 participants with acute ischemic stroke. Motor control was evaluated using a global kinematic measure derived from a 2-dimensional reaching task designed to minimize the need for antigravity strength and prevent compensation. Arm impairment was evaluated with the Fugl-Meyer Assessment of the upper extremity (FMA-UE), activity limitation with the Action Research Arm Test (ARAT), and strength with biceps dynamometry. Assessments were conducted at: 1.5, 5, 14, 27, and 54 weeks poststroke. Motor control in the paretic arm improved up to week 5, with no further improvement beyond this time point. In contrast, improvements in the FMA-UE, ARAT, and biceps dynamometry continued beyond 5 weeks, with a similar magnitude of improvement between weeks 5 and 54 as the one observed between weeks 1.5 and 5. Recovery after stroke plateaued much earlier for arm motor control, isolated with a global kinematic measure, compared to motor function assessed with clinical scales. This dissociation between the time courses of kinematic and clinical measures of recovery may be due to the contribution of strength improvement to the latter. Novel interventions, focused on the first month poststroke, will be required to exploit the narrower window of spontaneous recovery for motor control.
Motor function and incident dementia: a systematic review and meta-analysis.
Kueper, Jacqueline Kathleen; Speechley, Mark; Lingum, Navena Rebecca; Montero-Odasso, Manuel
2017-09-01
cognitive and mobility decline are interrelated processes, whereby mobility decline coincides or precedes the onset of cognitive decline. to assess whether there is an association between performance on motor function tests and incident dementia. electronic database, grey literature and hand searching identified studies testing for associations between baseline motor function and incident dementia in older adults. of 2,540 potentially relevant documents, 37 met the final inclusion criteria and were reviewed qualitatively. Three meta-analyses were conducted using data from 10 studies. Three main motor domains-upper limb motor function, parkinsonism and lower limb motor function-emerged as associated with increased risk of incident dementia. Studies including older adults without neurological overt disease found a higher risk of incident dementia associated with poorer performance on composite motor function scores, balance and gait velocity (meta-analysis pooled HR = 1.94, 95% CI: 1.41, 2.65). Mixed results were found across different study samples for upper limb motor function, overall parkinsonism (meta-analysis pooled OR = 3.05, 95% CI: 1.31, 7.08), bradykinesia and rigidity. Studies restricted to older adults with Parkinson's Disease found weak or no association with incident dementia even for motor domains highly associated in less restrictive samples. Tremor was not associated with an increased risk of dementia in any population (meta-analysis pooled HR = 0.80, 95% CI 0.31, 2.03). lower limb motor function was associated with increased risk of developing dementia, while tremor and hand grip strength were not. Our results support future research investigating the inclusion of quantitative motor assessment, specifically gait velocity tests, for clinical dementia risk evaluation. © The Author 2017. Published by Oxford University Press on behalf of the British Geriatrics Society.All rights reserved. For permissions, please email: journals.permissions@oup.com
Jones, Margaret; Zumsteg, Jennifer
2016-01-01
Case Description This case reviews the acute care and rehabilitation course of a 44-year-old right-handed woman after an assault with a pocketknife. She suffered multiple stab wounds including penetrating injury to the left side of her neck. Physical examination revealed left hemiplegia (motor score = 57), impaired pinprick sensation on the right caudal to the C5 dermatome, impaired joint position sense on the left, and left ptosis and miosis. Initially she was unable to stand without maximum assistance. MR imaging revealed transection of the left hemicord at the C5 level without cord hemorrhage. CTA of the neck was negative for vascular injury. She completed 18 days of acute inpatient rehabilitation. She used forearm crutches for ambulation at time of discharge. Prior to discharge the patient provided written permission for a case report. Discussion Stab wounds are the most common cause of traumatic Brown-Séquard syndrome. Horner's syndrome is common in spinal cord lesions occurring in the cervical or thoracic region, however the combination of Horner's and Brown-Séquard syndromes is less commonly reported. In this case report, we review recommendations regarding initial imaging following cervical stab wounds, discuss anatomy and associated neurological findings in Brown-Séquard and Horner's syndromes, and review the expected temporal course of motor recovery. Conclusions Facilitating motor recovery and optimizing function after Brown-Séquard spinal cord injury are important roles for the rehabilitation team. Imaging is necessary to rule out cord hemorrhage or vascular injury and to clinically correlate cord damage with physical examination findings and expected functional impairments. Documenting associated anisocoria and explaining this finding to the patient is an important element of spinal cord injury education. Commonly, patients with Brown-Séquard injuries demonstrate remarkable motor recovery and regain voluntary motor strength and functional ambulation. PMID:25659820
A suppression hierarchy among competing motor programs drives sequential grooming in Drosophila
Seeds, Andrew M; Ravbar, Primoz; Chung, Phuong; Hampel, Stefanie; Midgley, Frank M; Mensh, Brett D; Simpson, Julie H
2014-01-01
Motor sequences are formed through the serial execution of different movements, but how nervous systems implement this process remains largely unknown. We determined the organizational principles governing how dirty fruit flies groom their bodies with sequential movements. Using genetically targeted activation of neural subsets, we drove distinct motor programs that clean individual body parts. This enabled competition experiments revealing that the motor programs are organized into a suppression hierarchy; motor programs that occur first suppress those that occur later. Cleaning one body part reduces the sensory drive to its motor program, which relieves suppression of the next movement, allowing the grooming sequence to progress down the hierarchy. A model featuring independently evoked cleaning movements activated in parallel, but selected serially through hierarchical suppression, was successful in reproducing the grooming sequence. This provides the first example of an innate motor sequence implemented by the prevailing model for generating human action sequences. DOI: http://dx.doi.org/10.7554/eLife.02951.001 PMID:25139955
Motor Function Is Associated With Incident Disability in Older African Americans
Wilson, Robert S.; Yu, Lei; Boyle, Patricia A.; Bennett, David A.; Barnes, Lisa L.
2016-01-01
Background: Disability in older African American adults is common, but its basis is unclear. We tested the hypothesis that the level of motor function is associated with incident disability in older African Americans after adjusting for cognition. Methods: A prospective observational cohort study of 605 older community-dwelling African American adults without dementia was carried out. Baseline global motor score summarized 11 motor performances, cognition was based on 19 cognitive tests, and self-reported disability was obtained annually. We examined the association of motor function with incident disability (instrumental activities of daily living [IADL], activities of daily living [ADL], and mobility disability) with a series of Cox proportional hazards models which controlled for age, sex, and education. Results: Average follow-up was about 5 years. In proportional hazards models, a 1-SD increase in baseline level of global motor score was associated with about a 50% decrease in the risk of subsequent IADL, ADL, and mobility disability (all p values < .001). These associations were unchanged in analyses controlling for cognition and other covariates. Further, the association of global motor score and incident ADL disability varied with the level of cognition (estimate −5.541, SE 1.634, p < .001), such that higher motor function was more protective at higher levels of cognition. Mobility and dexterity components of global motor score were more strongly associated with incident disability than strength (all p values < .001). Conclusions: Better motor function in older African Americans is associated with a decreased risk of developing disability. Moreover, the association of motor function and disability is stronger in individuals with better cognitive function. PMID:26525087
Pashmdarfard, Marzieh; Amini, Malek; Badv, Reza Shervin; Ghaffarzade Namazi, Narges; Rassafiani, Mehdi
2017-01-01
The aim of this study was to assess the effect of parent report gross motor function level of cerebral palsy (CP) children on the parent report quality of life of CP children. Sampling of this cross-sectional study was done in occupational therapy clinics and CP children's schools in 2016 in Zanjan, Iran. Samples size was 60 CP children aged 6-12 yr and for sampling method, a non-probability convenience was used. For assessing the quality of life of CP children the cerebral palsy quality of life (CP QOL) questionnaire and for assessing the level of gross motor function of CP children the Gross Motor Function Classification System Family Report Questionnaire (GMFCSFRQ) were used. The average age of children (22 males and 30 females) was 8.92 yr old (minimum 6 yr and maximum 12 yr). The relationship between the level of gross motor function and participation and physical health was direct and significant (r=0.65). The relationship between functioning, access to services and family health with the level of gross motor function was direct but was not significant ( P >0.05) and the relationship between pain and impact of disability and emotional well-being with the level of gross motor function was significant ( P <0.05). There was no strong correlation between the level of gross motor function and quality of life of children with cerebral palsy. It means that the level of gross motor function cannot be used as a predictor of quality of life for children with cerebral palsy alone.
Engineered kinesin motor proteins amenable to small-molecule inhibition
Engelke, Martin F.; Winding, Michael; Yue, Yang; Shastry, Shankar; Teloni, Federico; Reddy, Sanjay; Blasius, T. Lynne; Soppina, Pushpanjali; Hancock, William O.; Gelfand, Vladimir I.; Verhey, Kristen J.
2016-01-01
The human genome encodes 45 kinesin motor proteins that drive cell division, cell motility, intracellular trafficking and ciliary function. Determining the cellular function of each kinesin would benefit from specific small-molecule inhibitors. However, screens have yielded only a few specific inhibitors. Here we present a novel chemical-genetic approach to engineer kinesin motors that can carry out the function of the wild-type motor yet can also be efficiently inhibited by small, cell-permeable molecules. Using kinesin-1 as a prototype, we develop two independent strategies to generate inhibitable motors, and characterize the resulting inhibition in single-molecule assays and in cells. We further apply these two strategies to create analogously inhibitable kinesin-3 motors. These inhibitable motors will be of great utility to study the functions of specific kinesins in a dynamic manner in cells and animals. Furthermore, these strategies can be used to generate inhibitable versions of any motor protein of interest. PMID:27045608
ERIC Educational Resources Information Center
Wuang, Y-P.; Su, C-Y.; Huang, M-H.
2012-01-01
Background: Deficit in motor performance is common in children with intellectual disabilities (ID). A motor function measure with sound psychometric properties is indispensable for clinical and research use. The purpose of this study was to compare the psychometric properties of three commonly used clinical measures for assessing motor function in…
Egger, Fabienne; Benzing, Valentin; Jäger, Katja; Conzelmann, Achim; Roebers, Claudia M.; Pesce, Caterina
2017-01-01
Even though positive relations between children’s motor ability and their academic achievement are frequently reported, the underlying mechanisms are still unclear. Executive function has indeed been proposed, but hardly tested as a potential mediator. The aim of the present study was therefore to examine the mediating role of executive function in the relationship between motor ability and academic achievement, also investigating the individual contribution of specific motor abilities to the hypothesized mediated linkage to academic achievement. At intervals of ten weeks, 236 children aged between 10 and 12 years were tested in terms of their motor ability (t1: cardiovascular endurance, muscular strength, motor coordination), core executive functions (t2: updating, inhibition, shifting), and academic achievement (t3: mathematics, reading, spelling). Structural equation modelling revealed executive function to be a mediator in the relation between motor ability and academic achievement, represented by a significant indirect effect. In separate analyses, each of the three motor abilities were positively related to children’s academic achievement. However, only in the case of children’s motor coordination, the mediation by executive function accounted for a significance percentage of variance of academic achievement data. The results provide evidence in support of models that conceive executive function as a mechanism explaining the relationship that links children’s physical activity-related outcomes to academic achievement and strengthen the advocacy for quality physical activity not merely focused on health-related physical fitness outcomes, but also on motor skill development and learning. PMID:28817625
Radial nerve palsy in mid/distal humeral fractures: is early exploration effective?
Keighley, Geffrey; Hermans, Deborah; Lawton, Vidya; Duckworth, David
2018-03-01
Radial nerve palsies are a common complication with displaced distal humeral fractures. This case series examines the outcomes of early operative exploration and decompression of the nerve with fracture fixation with the view that this provides a solid construct for optimisation of nerve recovery. A total of 10 consecutive patients with a displaced distal humeral fracture and an acute radial nerve palsy were treated by the senior author by open reduction and internal fixation of the distal humerus and exploration and decompression of the radial nerve. Motor function and sensation of the radial nerve was assessed in the post-operative period every 2 months or until full recovery of the radial nerve function had occurred. All patients (100%) had recovery of motor and sensation function of their upper limb in the radial nerve distribution over a 12-month period. Recovery times ranged between 4 and 32 weeks, with the median time to recovery occurring at 26 weeks and the average time to full recovery being 22.9 weeks. Wrist extension recovered by an average of 3 months (range 2-26 weeks) and then finger extension started to recover 2-6 weeks after this. Disability of the arm, shoulder and hand scores ranged from 0 to 11.8 at greater than 1 year post-operatively. Our study demonstrated that early operative exploration of the radial nerve when performing an open stabilization of displaced distal humeral fractures resulted in a 100% recovery of the radial nerve. © 2017 Royal Australasian College of Surgeons.
Motor-Behavioral Episodes in REM Sleep Behavior Disorder and Phasic Events During REM Sleep
Manni, Raffaele; Terzaghi, Michele; Glorioso, Margaret
2009-01-01
Study Objectives: To investigate if sudden-onset motor-behavioral episodes in REM sleep behavior disorder (RBD) are associated with phasic events of REM sleep, and to explore the potential meaning of such an association. Design: Observational review analysis. Setting: Tertiary sleep center. Patients: Twelve individuals (11 males; mean age 67.6 ± 7.4 years) affected by idiopathic RBD, displaying a total of 978 motor-behavioral episodes during nocturnal in-laboratory video-PSG. Interventions: N/A Measurements and Results: The motor activity displayed was primitive in 69.1% and purposeful/semi-purposeful in 30.9% of the motor-behavioral episodes recorded. Sleeptalking was significantly more associated with purposeful/semi-purposeful motor activity than crying and/or incomprehensible muttering (71.0% versus 21.4%, P < 0.005). In 58.2% of the motor-behavioral episodes, phasic EEG-EOG events (rapid eye movements [REMs], α bursts, or sawtooth waves [STWs]) occurred simultaneously. Each variable (REMs, STWs, α bursts) was associated more with purposeful/semi-purposeful than with primitive movements (P < 0.05). Conclusions: Motor-behavioral episodes in RBD were significantly more likely to occur in association with phasic than with tonic periods of REM sleep. The presence of REMs, α bursts and STWs was found to be more frequent in more complex episodes. We hypothesize that motor-behavioral episodes in RBD are likely to occur when the brain, during REM sleep, is in a state of increased instability (presence of α bursts) and experiencing stronger stimulation of visual areas (REMs). Citation: Manni R; Terzaghi M; Glorioso M. Motor-behavioral episodes in REM sleep behavior disorder and phasic events during REM sleep. SLEEP 2009;32(2):241–245. PMID:19238811
Hodson-Tole, Emma F; Wakeling, James M
2008-06-01
To effectively meet the force requirements of a given movement an appropriate number and combination of motor units must be recruited between and within muscles. Orderly recruitment of motor units has been shown to occur in a wide range of skeletal muscles, however, alternative strategies do occur. Faster motor units are better suited to developing force rapidly, and produce higher mechanical power with greater efficiency at faster shortening strain rates than slower motor units. As the frequency content of the myoelectric signal is related to the fibre type of the active motor units, we hypothesised that, in addition to an association between myoelectric frequency and intensity, there would be a significant association between muscle fascicle shortening strain rate and myoelectric frequency content. Myoelectric and sonomicrometric data were collected from the three ankle extensor muscles of the rat hind limb during walking and running. Myoelectric signals were analysed using wavelet transformation and principal component analysis to give a measure of the signal frequency content. Sonomicrometric signals were analysed to give measures of muscle fascicle strain and strain rate. The relationship between myoelectric frequency and both intensity and muscle fascicle strain rate was found to change across the time course of a stride, with differences also occurring in the strength of the associations between and within muscles. In addition to the orderly recruitment of motor units, a mechanical strategy of motor unit recruitment was therefore identified. Motor unit recruitment is therefore a multifactorial phenomenon, which is more complex than typically thought.
Exchange of rotor components in functioning bacterial flagellar motor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuoka, Hajime; Inoue, Yuichi; Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577
2010-03-26
The bacterial flagellar motor is a rotary motor driven by the electrochemical potential of a coupling ion. The interaction between a rotor and stator units is thought to generate torque. The overall structure of flagellar motor has been thought to be static, however, it was recently proved that stators are exchanged in a rotating motor. Understanding the dynamics of rotor components in functioning motor is important for the clarifying of working mechanism of bacterial flagellar motor. In this study, we focused on the dynamics and the turnover of rotor components in a functioning flagellar motor. Expression systems for GFP-FliN, FliM-GFP,more » and GFP-FliG were constructed, and each GFP-fusion was functionally incorporated into the flagellar motor. To investigate whether the rotor components are exchanged in a rotating motor, we performed fluorescence recovery after photobleaching experiments using total internal reflection fluorescence microscopy. After photobleaching, in a tethered cell producing GFP-FliN or FliM-GFP, the recovery of fluorescence at the rotational center was observed. However, in a cell producing GFP-FliG, no recovery of fluorescence was observed. The transition phase of fluorescence intensity after full or partially photobleaching allowed the turnover of FliN subunits to be calculated as 0.0007 s{sup -1}, meaning that FliN would be exchanged in tens of minutes. These novel findings indicate that a bacterial flagellar motor is not a static structure even in functioning state. This is the first report for the exchange of rotor components in a functioning bacterial flagellar motor.« less
Karadayian, A G; Bustamante, J; Czerniczyniec, A; Cutrera, R A; Lores-Arnaiz, S
2014-06-06
Increased reactive oxygen species generation and mitochondrial dysfunction occur during ethanol hangover. The aim of this work was to study the effect of melatonin pretreatment on motor performance and mitochondrial function during ethanol hangover. Male mice received melatonin solution or its vehicle in drinking water during 7 days and i.p. injection with EtOH (3.8 g/kg BW) or saline at the eighth day. Motor performance and mitochondrial function were evaluated at the onset of hangover (6h after injection). Melatonin improved motor coordination in ethanol hangover mice. Malate-glutamate-dependent oxygen uptake was decreased by ethanol hangover treatment and partially prevented by melatonin pretreatment. Melatonin alone induced a decrease of 30% in state 4 succinate-dependent respiratory rate. Also, the activity of the respiratory complexes was decreased in melatonin-pretreated ethanol hangover group. Melatonin pretreatment before the hangover prevented mitochondrial membrane potential collapse and induced a 79% decrement of hydrogen peroxide production as compared with ethanol hangover group. Ethanol hangover induced a 25% decrease in NO production. Melatonin alone and as a pretreatment before ethanol hangover significantly increased NO production by nNOS and iNOS as compared with control groups. No differences were observed in nNOS protein expression, while iNOS expression was increased in the melatonin group. Increased NO production by melatonin could be involved in the decrease of succinate-dependent oxygen consumption and the inhibition of complex IV observed in our study. Melatonin seems to act as an antioxidant agent in the ethanol hangover condition but also exhibited some dual effects related to NO metabolism. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Radiotherapy of metastatic spinal cord compression in very elderly patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rades, Dirk; Hoskin, Peter J.; Karstens, Johann H.
2007-01-01
Purpose: Owing to the aging of the population, the proportion of elderly patients receiving cancer treatment has increased. This study investigated the results of radiotherapy (RT) for metastatic spinal cord compression (MSCC) in the very elderly, because few data are available for these patients. Methods and Materials: The data from 308 patients aged {>=}75 years who received short-course (treatment time 1-5 days) or long-course RT (2-4 weeks) for MSCC were retrospectively analyzed for functional outcome, local control, and survival. Furthermore, nine potential prognostic factors were investigated: gender, performance status, interval from tumor diagnosis to MSCC, tumor type, number of involvedmore » vertebrae, other bone or visceral metastases, ambulatory status, and speed at which motor deficits developed. Results: Improvement of motor deficits occurred in 25% of patients, with no further progression of MSCC in an additional 59%. The 1-year local control and survival rate was 92% and 43%, respectively. Improved functional outcomes were associated with ambulatory status and slower developing motor deficits. Improved local control resulted from long-course RT. Improved survival was associated with a longer interval from tumor diagnosis to MSCC, tumor type (breast/prostate cancer, myeloma/lymphoma), lack of visceral or other bone metastases, ambulatory status, and a slower development of motor deficits. Conclusion: Short- and long-course RT are similarly effective in patients aged {>=}75 years regarding functional outcome and survival. Long-course RT provided better local control. Patients with better expected survival should receive long-course RT and others short-course RT. The criteria for selection of an appropriate regimen for MSCC in very elderly patients should be the same as for younger individuals.« less
NASA Astrophysics Data System (ADS)
Basso Moro, Sara; Carrieri, Marika; Avola, Danilo; Brigadoi, Sabrina; Lancia, Stefania; Petracca, Andrea; Spezialetti, Matteo; Ferrari, Marco; Placidi, Giuseppe; Quaresima, Valentina
2016-06-01
Objective. In the last few years, the interest in applying virtual reality systems for neurorehabilitation is increasing. Their compatibility with neuroimaging techniques, such as functional near-infrared spectroscopy (fNIRS), allows for the investigation of brain reorganization with multimodal stimulation and real-time control of the changes occurring in brain activity. The present study was aimed at testing a novel semi-immersive visuo-motor task (VMT), which has the features of being adopted in the field of neurorehabilitation of the upper limb motor function. Approach. A virtual environment was simulated through a three-dimensional hand-sensing device (the LEAP Motion Controller), and the concomitant VMT-related prefrontal cortex (PFC) response was monitored non-invasively by fNIRS. Upon the VMT, performed at three different levels of difficulty, it was hypothesized that the PFC would be activated with an expected greater level of activation in the ventrolateral PFC (VLPFC), given its involvement in the motor action planning and in the allocation of the attentional resources to generate goals from current contexts. Twenty-one subjects were asked to move their right hand/forearm with the purpose of guiding a virtual sphere over a virtual path. A twenty-channel fNIRS system was employed for measuring changes in PFC oxygenated-deoxygenated hemoglobin (O2Hb/HHb, respectively). Main results. A VLPFC O2Hb increase and a concomitant HHb decrease were observed during the VMT performance, without any difference in relation to the task difficulty. Significance. The present study has revealed a particular involvement of the VLPFC in the execution of the novel proposed semi-immersive VMT adoptable in the neurorehabilitation field.
Moro, Sara Basso; Carrieri, Marika; Avola, Danilo; Brigadoi, Sabrina; Lancia, Stefania; Petracca, Andrea; Spezialetti, Matteo; Ferrari, Marco; Placidi, Giuseppe; Quaresima, Valentina
2016-06-01
In the last few years, the interest in applying virtual reality systems for neurorehabilitation is increasing. Their compatibility with neuroimaging techniques, such as functional near-infrared spectroscopy (fNIRS), allows for the investigation of brain reorganization with multimodal stimulation and real-time control of the changes occurring in brain activity. The present study was aimed at testing a novel semi-immersive visuo-motor task (VMT), which has the features of being adopted in the field of neurorehabilitation of the upper limb motor function. A virtual environment was simulated through a three-dimensional hand-sensing device (the LEAP Motion Controller), and the concomitant VMT-related prefrontal cortex (PFC) response was monitored non-invasively by fNIRS. Upon the VMT, performed at three different levels of difficulty, it was hypothesized that the PFC would be activated with an expected greater level of activation in the ventrolateral PFC (VLPFC), given its involvement in the motor action planning and in the allocation of the attentional resources to generate goals from current contexts. Twenty-one subjects were asked to move their right hand/forearm with the purpose of guiding a virtual sphere over a virtual path. A twenty-channel fNIRS system was employed for measuring changes in PFC oxygenated-deoxygenated hemoglobin (O2Hb/HHb, respectively). A VLPFC O2Hb increase and a concomitant HHb decrease were observed during the VMT performance, without any difference in relation to the task difficulty. The present study has revealed a particular involvement of the VLPFC in the execution of the novel proposed semi-immersive VMT adoptable in the neurorehabilitation field.
Vohr, Betty R; Msall, Michael E; Wilson, Dee; Wright, Linda L; McDonald, Scott; Poole, W Kenneth
2005-07-01
The purpose of this study was to evaluate the relationship between cerebral palsy (CP) diagnoses as measured by the topographic distribution of the tone abnormality with level of function on the Gross Motor Function Classification System (GMFCS) and developmental performance on the Bayley Scales of Infant Development II (BSID-II). It was hypothesized that (1) the greater the number of limbs involved, the higher the GMFCS and the lower the BSID-II Motor Scores and (2) there would be a spectrum of function and skill achievement on the GMFCS and BSID-II Motor Scores for children in each of the CP categories. A multicenter, longitudinal cohort study was conducted of 1860 extremely low birth weight (ELBW) infants who were born between August 1, 1995 and February 1, 1998, and evaluated at 18 to 22 months' corrected age. Children were categorized into impairment groups on the basis of the typography of neurologic findings: spastic quadriplegia, triplegia, diplegia, hemiplegia, monoplegia, hypotonic and/or athetotic CP, other abnormal neurologic findings, and normal. The neurologic category then was compared with GMFCS level and BSID-II Motor Scores. A total of 282 (15.2%) of the 1860 children evaluated had CP. Children with more limbs involved had more abnormal GMFCS levels and lower BSID-II scores, reflecting more severe functional limitations. However, for each CP diagnostic category, there was a spectrum of gross motor functional levels and BSID-II scores. Although more than 1 (26.6%) in 4 of the children with CP had moderate to severe gross motor functional impairment, 1 (27.6%) in 4 had motor functional skills that allowed for ambulation. Given the range of gross motor skill outcomes for specific types of CP, the GMFCS is a better indicator of gross motor functional impairment than the traditional categorization of CP that specifies the number of limbs with neurologic impairment. The neurodevelopmental assessment of young children is optimized by combining a standard neurologic examination with measures of gross and fine motor function (GMFCS and Bayley Psychomotor Developmental Index). Additional studies to examine longer term functional motor and adaptive-functional developmental skills are required to devise strategies that delineate therapies to optimize functional performance.
Dynamics of brain activity underlying working memory for music in a naturalistic condition.
Burunat, Iballa; Alluri, Vinoo; Toiviainen, Petri; Numminen, Jussi; Brattico, Elvira
2014-08-01
We aimed at determining the functional neuroanatomy of working memory (WM) recognition of musical motifs that occurs while listening to music by adopting a non-standard procedure. Western tonal music provides naturally occurring repetition and variation of motifs. These serve as WM triggers, thus allowing us to study the phenomenon of motif tracking within real music. Adopting a modern tango as stimulus, a behavioural test helped to identify the stimulus motifs and build a time-course regressor of WM neural responses. This regressor was then correlated with the participants' (musicians') functional magnetic resonance imaging (fMRI) signal obtained during a continuous listening condition. In order to fine-tune the identification of WM processes in the brain, the variance accounted for by the sensory processing of a set of the stimulus' acoustic features was pruned from participants' neurovascular responses to music. Motivic repetitions activated prefrontal and motor cortical areas, basal ganglia, medial temporal lobe (MTL) structures, and cerebellum. The findings suggest that WM processing of motifs while listening to music emerges from the integration of neural activity distributed over cognitive, motor and limbic subsystems. The recruitment of the hippocampus stands as a novel finding in auditory WM. Effective connectivity and agglomerative hierarchical clustering analyses indicate that the hippocampal connectivity is modulated by motif repetitions, showing strong connections with WM-relevant areas (dorsolateral prefrontal cortex - dlPFC, supplementary motor area - SMA, and cerebellum), which supports the role of the hippocampus in the encoding of the musical motifs in WM, and may evidence long-term memory (LTM) formation, enabled by the use of a realistic listening condition. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rehabilitation outcomes in children with cerebral palsy during a 2 year period
İçağasıoğlu, Afitap; Mesci, Erkan; Yumusakhuylu, Yasemin; Turgut, Selin Turan; Murat, Sadiye
2015-01-01
[Purpose] To observe motor and functional progress of children with cerebral palsy during 2 years. [Subjects and Methods] Pediatric cerebral palsy patients aged 3–15 years (n = 35/69) with 24-month follow-up at our outpatient cerebral palsy clinic were evaluated retrospectively. The distribution of cerebral palsy types was as follows: diplegia (n = 19), hemiplegia (n = 4), and quadriplegia (n = 12). Participants were divided into 3 groups according to their Gross Motor Functional Classification System scores (i.e., mild, moderate, and severe). All participants were evaluated initially and at the final assessment 2 years later. During this time, patients were treated 3 times/week. Changes in motor and functional abilities were assessed based on Gross Motor Function Measure-88 and Wee Functional Independence Measure. [Results] Significant improvements were observed in Gross Motor Function Measure-88 and Wee Functional Independence Measure results in all 35 patients at the end of 2 years. The Gross Motor Function Measure-88 scores correlated with Wee Functional Independence Measure Scores. Marked increases in motor and functional capabilities in mild and moderate cerebral palsy patients were observed in the subgroup assessments, but not in those with severe cerebral palsy. [Conclusion] Rehabilitation may greatly help mild and moderate cerebral palsy patients achieve their full potential. PMID:26644677
Boespflug, Erin L; Storrs, Judd M; Allendorfer, Jane B; Lamy, Martine; Eliassen, James C; Page, Stephen
2014-09-01
Changes in diffusion tensor imaging (DTI) values co-occur with neurological and functional changes after stroke. However, quantitative DTI metrics have not been examined in response to participation in targeted rehabilitative interventions in chronic stroke. The primary purpose of this pilot study was to examine whether changes in DTI metrics co-occur with paretic arm movement changes among chronic stroke patients participating in a regimen of electrical stimulation targeting the paretic arm. Three subjects exhibiting stable arm hemiparesis were administered 30-minute (n = 1) or 120-minute (n = 2) therapy sessions emphasizing paretic arm use during valued, functional tasks and incorporating an electrical stimulation device. These sessions occurred every weekday for 8 weeks. A fourth subject served as a treatment control, participating in a 30-minute home exercise regimen without electrical stimulation every weekday for 8 weeks. DTI and behavioral outcome measures were acquired at baseline and after intervention. DTI data were analyzed using a region of interest (ROI) approach, with ROIs chosen based on tract involvement in sensorimotor function or as control regions. Behavioral outcome measures were the Fugl-Meyer Scale (FM) and the Action Research Arm Test (ARAT). The treatment control subject exhibited gains in pinch and grasp, as shown by a 5-point increase on the ARAT. The subject who participated in 30-minute therapy sessions exhibited no behavioral gains. Subjects participating in 120-minute therapy sessions displayed consistent impairment reductions and distal movement changes. DTI changes were largest in subjects two and three, with mean diffusivity (MD) decreases in the middle cerebellar peduncle and posterior limb of the internal capsule following treatment. No changes in fractional anisotropy (FA) were observed for sensorimotor tracts. Our preliminary results suggest that active rehabilitative therapies augmented by electrical stimulation may induce positive behavioral changes which are underscored by DTI changes indicative of increased white matter tract integrity in regions specific to sensory-motor function.
Animal models of the non-motor features of Parkinson’s disease
McDowell, Kimberly; Chesselet, Marie-Françoise
2012-01-01
The non-motor symptoms (NMS) of Parkinson’s disease (PD) occur in roughly 90% of patients, have a profound negative impact on their quality of life, and often go undiagnosed. NMS typically involve many functional systems, and include sleep disturbances, neuropsychiatric and cognitive deficits, and autonomic and sensory dysfunction. The development and use of animal models have provided valuable insight into the classical motor symptoms of PD over the past few decades. Toxin-induced models provide a suitable approach to study aspects of the disease that derive from the loss of nigrostriatal dopaminergic neurons, a cardinal feature of PD. This also includes some NMS, primarily cognitive dysfunction. However, several NMS poorly respond to dopaminergic treatments, suggesting that they may be due to other pathologies. Recently developed genetic models of PD are providing new ways to model these NMS and identify their mechanisms. This review summarizes the current available literature on the ability of both toxin-induced and genetically-based animal models to reproduce the NMS of PD. PMID:22236386
White matter lesions in Parkinson disease
Bohnen, Nicolaas I.; Albin, Roger L.
2013-01-01
Pure vascular parkinsonism without evidence of nigral Lewy body pathology may occur as a distinct clinicopathological entity, but a much more frequent occurrence is the comorbid presence of age-associated white matter lesions (WMLs) in idiopathic Parkinson disease (PD). WMLs are associated with motor and cognitive symptoms in otherwise normal elderly individuals. Comorbid WMLs are, therefore, expected to contribute to clinical symptoms in PD. Studies of WMLs in PD differ with regard to methods of assessment of WML burden and the patient populations selected for analysis, but converging evidence suggests that postural stability and gait motor functions are predominantly affected. WMLs are described to contribute to dementia in Alzheimer disease, and emerging but inconclusive evidence indicates similar effects in PD. In this article, we review the literature addressing the occurrence and impact of WMLs in PD, and suggest that WMLs may exacerbate or contribute to some motor and cognitive deficits associated with PD. We review existing and emerging methods for studying white matter pathology in vivo, and propose future research directions. PMID:21343896
REVIEW ARTICLE: Hither and yon: a review of bi-directional microtubule-based transport
NASA Astrophysics Data System (ADS)
Gross, Steven P.
2004-06-01
Active transport is critical for cellular organization and function, and impaired transport has been linked to diseases such as neuronal degeneration. Much long distance transport in cells uses opposite polarity molecular motors of the kinesin and dynein families to move cargos along microtubules. It is increasingly clear that many cargos are moved by both sets of motors, and frequently reverse course. This review compares this bi-directional transport to the more well studied uni-directional transport. It discusses some bi-directionally moving cargos, and critically evaluates three different physical models for how such transport might occur. It then considers the evidence for the number of active motors per cargo, and how the net or average direction of transport might be controlled. The likelihood of a complex linking the activities of kinesin and dynein is also discussed. The paper concludes by reviewing elements of apparent universality between different bi-directionally moving cargos and by briefly considering possible reasons for the existence of bi-directional transport.
Madan, Christopher R
2014-06-01
Imageability is known to enhance association-memory for verbal paired-associates. High-imageability words can be further subdivided by manipulability, the ease by which the named object can be functionally interacted with. Prior studies suggest that motor processing enhances item-memory, but impairs association-memory. However, these studies used action verbs and concrete nouns as the high- and low-manipulability words, respectively, confounding manipulability with word class. Recent findings demonstrated that nouns can serve as both high- and low-manipulability words (e.g., CAMERA and TABLE, respectively), allowing us to avoid this confound. Here participants studied pairs of words that consisted of all possible pairings of high- and low-manipulability words and were tested with immediate cued recall. Recall was worse for pairs that contained high-manipulability words. In free recall, participants recalled more high- than low-manipulability words. Our results provide further evidence that manipulability influences memory, likely occurring through automatic motor imagery. Copyright © 2014 Elsevier B.V. All rights reserved.
Prsa, Mario; Galiñanes, Gregorio L; Huber, Daniel
2017-02-22
Neuronal motor commands, whether generating real or neuroprosthetic movements, are shaped by ongoing sensory feedback from the displacement being produced. Here we asked if cortical stimulation could provide artificial feedback during operant conditioning of cortical neurons. Simultaneous two-photon imaging and real-time optogenetic stimulation were used to train mice to activate a single neuron in motor cortex (M1), while continuous feedback of its activity level was provided by proportionally stimulating somatosensory cortex. This artificial signal was necessary to rapidly learn to increase the conditioned activity, detect correct performance, and maintain the learned behavior. Population imaging in M1 revealed that learning-related activity changes are observed in the conditioned cell only, which highlights the functional potential of individual neurons in the neocortex. Our findings demonstrate the capacity of animals to use an artificially induced cortical channel in a behaviorally relevant way and reveal the remarkable speed and specificity at which this can occur. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
The tongue and its control by sleep state-dependent modulators.
Horner, R L
2011-12-01
The neural networks controlling vital functions such as breathing are embedded in the brain, the neural and chemical environment of which changes with state, i.e., wakefulness, non-rapid eye movement (non-REM) sleep and REM sleep, and with commonly administered drugs such as anaesthetics, sedatives and ethanol. One particular output from the state-dependent chemical brain is the focus of attention in this paper; the motor output to the muscles of the tongue, specifically the actions of state-dependent modulators acting at the hypoglossal motor pool. Determining the mechanisms underlying the modulation of the hypoglossal motor output during sleep is relevant to understanding the spectrum of increased upper airway resistance, airflow limitation, hypoventilation and airway obstructions that occur during natural and drug-influenced sleep in humans. Understanding the mechanisms underlying upper airway dysfunction in sleep-disordered breathing is also important given the large and growing prevalence of obstructive sleep apnea syndrome which constitutes a major public health problem with serious clinical, social and economic consequences.
Mahé, Sylvain; Braud, Raphaël; Gaussier, Philippe; Quoy, Mathias; Pitti, Alexandre
2015-02-01
The so-called self-other correspondence problem in imitation demands to find the transformation that maps the motor dynamics of one partner to our own. This requires a general purpose sensorimotor mechanism that transforms an external fixation-point (partner's shoulder) reference frame to one's own body-centered reference frame. We propose that the mechanism of gain-modulation observed in parietal neurons may generally serve these types of transformations by binding the sensory signals across the modalities with radial basis functions (tensor products) on the one hand and by permitting the learning of contextual reference frames on the other hand. In a shoulder-elbow robotic experiment, gain-field neurons (GF) intertwine the visuo-motor variables so that their amplitude depends on them all. In situations of modification of the body-centered reference frame, the error detected in the visuo-motor mapping can serve then to learn the transformation between the robot's current sensorimotor space and the new one. These situations occur for instance when we turn the head on its axis (visual transformation), when we use a tool (body modification), or when we interact with a partner (embodied simulation). Our results defend the idea that the biologically-inspired mechanism of gain modulation found in parietal neurons can serve as a basic structure for achieving nonlinear mapping in spatial tasks as well as in cooperative and social functions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Catatonia in Down syndrome; a treatable cause of regression
Ghaziuddin, Neera; Nassiri, Armin; Miles, Judith H
2015-01-01
Objective: The main aim of this case series report is to alert physicians to the occurrence of catatonia in Down syndrome (DS). A second aim is to stimulate the study of regression in DS and of catatonia. A subset of individuals with DS is noted to experience unexplained regression in behavior, mood, activities of daily living, motor activities, and intellectual functioning during adolescence or young adulthood. Depression, early onset Alzheimer’s, or just “the Down syndrome” are often blamed after general medical causes have been ruled out. Clinicians are generally unaware that catatonia, which can cause these symptoms, may occur in DS. Study design: Four DS adolescents who experienced regression are reported. Laboratory tests intended to rule out causes of motor and cognitive regression were within normal limits. Based on the presence of multiple motor disturbances (slowing and/or increased motor activity, grimacing, posturing), the individuals were diagnosed with unspecified catatonia and treated with anti-catatonic treatments (benzodiazepines and electroconvulsive therapy [ECT]). Results: All four cases were treated with a benzodiazepine combined with ECT and recovered their baseline functioning. Conclusion: We suspect catatonia is a common cause of unexplained deterioration in adolescents and young adults with DS. Moreover, pediatricians and others who care for individuals with DS are generally unfamiliar with the catatonia diagnosis outside schizophrenia, resulting in misdiagnosis and years of morbidity. Alerting physicians to catatonia in DS is essential to prompt diagnosis, appropriate treatment, and identification of the frequency and course of this disorder. PMID:25897230
Chakraborty, Arijit; Anstice, Nicola S.; Jacobs, Robert J.; Paudel, Nabin; LaGasse, Linda L.; Lester, Barry M.; McKinlay, Christopher J. D.; Harding, Jane E.; Wouldes, Trecia A.; Thompson, Benjamin
2017-01-01
Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of gross motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. PMID:28435122
Calabrò, Rocco Salvatore; Naro, Antonino; Russo, Margherita; Leo, Antonino; Balletta, Tina; Saccá, Ileana; De Luca, Rosaria; Bramanti, Placido
2015-01-01
Tilt-table equipped with the dynamic foot-support (ERIGO) and the functional electric stimulation could be a safe and suitable device for stabilization of vital signs, increasing patient's motivation for further recovery, decreasing the duration of hospitalization, and accelerating the adaptation to vertical posture in bedridden patients with brain-injury. Moreover, it is conceivable that verticalization may improve cognitive functions, and induce plastic changes at sensory motor and vestibular system level that may in turn facilitate motor functional recovery. To test the safety and effectiveness of ERIGO treatment on motor and cognitive functions, cortical plasticity within vestibular and sensory-motor systems in a bedridden post-stroke sample. 20 patients were randomly divided in two groups that performed ERIGO training (30 sessions) (G1) or physiotherapist-assisted verticalization training (same duration) (G2), beyond conventional neurorehabilitation treatment. Motor and cognitive functions as well as sensory-motor and vestibular system plasticity were investigated either before (T0) or after (T1) the rehabilitative protocols. Both the verticalization treatments were well-tolerated. Notably, the G1 patients had a significant improvement in cognitive function (p = 0.03), global motor function (p = 0.006), sensory-motor (p < 0.001) and vestibular system plasticity (p = 0.02) as compared to G2. ERIGO training could be a valuable tool for the adaptation to the vertical position with a better global function improvement, as also suggested by the sensory-motor and vestibular system plasticity induction.
Bülbül, Mehmet; Sinen, Osman; Birsen, İlknur; Nimet İzgüt-Uysal, V
2017-06-01
Apelin is the endogenous ligand of the G protein-coupled receptor APJ. The APJ receptor is widely expressed in gastrointestinal (GI) tissues including stomach and small intestine. Apelin administration was shown to induce the release of cholecystokinin (CCK) which is a well-known alimentary hormone with its inhibitory actions on GI motor functions through CCK 1 receptors on vagal afferent fibers. We investigated whether; (i) peripherally injected apelin-13 alters GI motor functions, (ii) apelin-induced changes are mediated by APJ receptor or CCK 1 receptor and (iii) vagal afferents are involved in inhibitory effects of apelin. Solid gastric emptying (GE) and colon transit (CT) were measured, whereas duodenal phase III-like contractions were recorded in rats administered with apelin-13 (300μg/kg, ip). CCK 1 receptor antagonist lorglumide (10mg/kg, ip) or APJ receptor antagonist F13A (300μg/kg, ip) was administered 30min prior to the apelin-13 injections. Vagal afferent denervation was achieved by systemic administration of vanilloid receptor agonist capsaicin (125mg/kg, sc). Apelin-13 administration significantly (p<0.01) increased the CCK level in portal venous plasma samples. Compared with vehicle-treated rats, apelin-13 significantly delayed both GE (p<0.001) and CT (p<0.01). Pretreatment of lorglumide or F13A completely abolished the apelin-13-induced inhibitory effects on GE and CT, moreover, apelin-13 was found ineffective in rats underwent afferent denervation. F13A administration alone significantly accelerated the basal CT. Apelin-13 noticeably disturbed the duodenal fasting motor pattern by impairing phase III-like contractions while increasing the amplitudes of phase II contractions which were prevented by pretreatment of lorglumide and capsaicin. Compared with vehicle-treated rats, lorglumide and capsaicin significantly (p<0.05) reduced the apelin-13-induced increases in phase II motility index. Peripherally administered apelin-13 inhibits GI motor functions through CCK-dependent pathway which appears to be mediated by CCK 1 receptors on vagal afferents. Peripheral apelin might contribute to the motility changes occurred in postprandial period. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ozkan, Ozlenen; Ozkan, Omer; Derin, Alper Tunga; Bektas, Gamze; Cinpolat, An; Duymaz, Ahmet; Mardini, Samir; Cigna, Emanuele; Chen, Hung-Chi
2015-05-01
The purpose of this study was to report the motor functional outcomes and sensory recovery of patients who had undergone total or subtotal glossectomy for oral squamous cell carcinomas reconstructed with chimeric anterolateral thigh (ALT) flaps. Six patients, 4 men and 2 women, with a mean age of 49.5 years (range, 36-73 years) were included in the study. All patients were treated with chimeric ALT, including the vastus lateralis muscle with its motor nerve and skin paddle with its innervating nerve. All patients were administered functional tests involving sensory recovery, intelligibility, and swallowing. Flap sensibility was evaluated using light touch sensation with the Semmes-Weinstein monofilament test, 2-point discrimination according to the Weber sensitive test, warm and cold temperature sensations, and pain sensation. Intelligibility was scored by a speech therapist on a scale from 1 to 5. Swallowing was assessed by electromyography, deglutition scores (on a scale of 1 to 8), and modified barium swallow. Donor-site morbidities were recorded. Mean follow-up was 26.6 months (6 months-5 years). The flaps were successful in all 6 patients. The donor site was closed primarily and no complications were seen in the follow-up period. Normal extension of the knee joint and no evidence of lateral patella instability occurred. Speech intelligibility was good (4) in 3 patients and acceptable (3) in 3. Deglutition scores were 6 in 2 patients, 5 in 2, and 4 in 2. Modified barium swallow revealed that 4 patients experienced bolus transit, but 2 required a liquid swallow to promote bolus transit. Electromyographic recordings showed innervations of the vastus lateralis muscle with active generation of motor unit potentials in 4 patients when trying to elevate the tongue. This was not performed in 1 patient, and 1 other had macroscopic muscle contractions. All sensory tests were satisfactory in all parameters. The results of this reconstructive option were satisfactory in terms of motor function and sensitive assessment of the neotongue. This technique is strongly recommended for patients with total or subtotal glossectomy.
Physical activity and motor decline in older persons.
Buchman, A S; Boyle, P A; Wilson, R S; Bienias, Julia L; Bennett, D A
2007-03-01
We tested the hypothesis that physical activity modifies the course of age-related motor decline. More than 850 older participants of the Rush Memory and Aging Project underwent baseline assessment of physical activity and annual motor testing for up to 8 years. Nine strength measures and nine motor performance measures were summarized into composite measures of motor function. In generalized estimating equation models, global motor function declined during follow-up (estimate, -0.072; SE, 0.008; P < 0.001). Each additional hour of physical activity at baseline was associated with about a 5% decrease in the rate of global motor function decline (estimate, 0.004; SE, 0.001; P = 0.007). Secondary analyses suggested that the association of physical activity with motor decline was mostly due to the effect of physical activity on the rate of motor performance decline. Thus, higher levels of physical activity are associated with a slower rate of motor decline in older persons.
Schucht, Philippe; Seidel, Kathleen; Beck, Jürgen; Murek, Michael; Jilch, Astrid; Wiest, Roland; Fung, Christian; Raabe, Andreas
2014-12-01
Resection of glioblastoma adjacent to motor cortex or subcortical motor pathways carries a high risk of both incomplete resection and postoperative motor deficits. Although the strategy of maximum safe resection is widely accepted, the rates of complete resection of enhancing tumor (CRET) and the exact causes for motor deficits (mechanical vs vascular) are not always known. The authors report the results of their concept of combining monopolar mapping and 5-aminolevulinic acid (5-ALA)-guided surgery in patients with glioblastoma adjacent to eloquent tissue. The authors prospectively studied 72 consecutive patients who underwent 5-ALA-guided surgery for a glioblastoma adjacent to the corticospinal tract (CST; < 10 mm) with continuous dynamic monopolar motor mapping (short-train interstimulus interval 4.0 msec, pulse duration 500 μsec) coupled to an acoustic motor evoked potential (MEP) alarm. The extent of resection was determined based on early (< 48 hours) postoperative MRI findings. Motor function was assessed 1 day after surgery, at discharge, and at 3 months. Five patients were excluded because of nonadherence to protocol; thus, 67 patients were evaluated. The lowest motor threshold reached during individual surgery was as follows (motor threshold, number of patients): > 20 mA, n = 8; 11-20 mA, n = 13; 6-10 mA, n = 10; 4-5 mA, n = 13; and 1-3 mA, n = 23. Motor deterioration at postsurgical Day 1 and at discharge occurred in 30% (n = 20) and 10% (n = 7) of patients, respectively. At 3 months, 3 patients (4%) had a persisting postoperative motor deficit, 2 caused by vascular injury and 1 by mechanical injury. The rates of intra- and postoperative seizures were 1% and 0%, respectively. Complete resection of enhancing tumor was achieved in 73% of patients (49/67) despite proximity to the CST. A rather high rate of CRET can be achieved in glioblastomas in motor eloquent areas via a combination of 5-ALA for tumor identification and intraoperative mapping for distinguishing between presumed and actual motor eloquent tissues. Continuous dynamic mapping was found to be a very ergonomic technique that localizes the motor tissue early and reliably.
From Children to Adults: Motor Performance across the Life-Span
Leversen, Jonas S. R.; Haga, Monika; Sigmundsson, Hermundur
2012-01-01
The life-span approach to development provides a theoretical framework to examine the general principles of life-long development. This study aims to investigate motor performance across the life span. It also aims to investigate if the correlations between motor tasks increase with aging. A cross-sectional design was used to describe the effects of aging on motor performance across age groups representing individuals from childhood to young adult to old age. Five different motor tasks were used to study changes in motor performance within 338 participants (7–79 yrs). Results showed that motor performance increases from childhood (7–9) to young adulthood (19–25) and decreases from young adulthood (19–25) to old age (66–80). These results are mirroring results from cognitive research. Correlation increased with increasing age between two fine motor tasks and two gross motor tasks. We suggest that the findings might be explained, in part, by the structural changes that have been reported to occur in the developing and aging brain and that the theory of Neural Darwinism can be used as a framework to explain why these changes occur. PMID:22719958
McGregor, Heather R; Gribble, Paul L
2017-08-01
Action observation can facilitate the acquisition of novel motor skills; however, there is considerable individual variability in the extent to which observation promotes motor learning. Here we tested the hypothesis that individual differences in brain function or structure can predict subsequent observation-related gains in motor learning. Subjects underwent an anatomical MRI scan and resting-state fMRI scans to assess preobservation gray matter volume and preobservation resting-state functional connectivity (FC), respectively. On the following day, subjects observed a video of a tutor adapting her reaches to a novel force field. After observation, subjects performed reaches in a force field as a behavioral assessment of gains in motor learning resulting from observation. We found that individual differences in resting-state FC, but not gray matter volume, predicted postobservation gains in motor learning. Preobservation resting-state FC between left primary somatosensory cortex and bilateral dorsal premotor cortex, primary motor cortex, and primary somatosensory cortex and left superior parietal lobule was positively correlated with behavioral measures of postobservation motor learning. Sensory-motor resting-state FC can thus predict the extent to which observation will promote subsequent motor learning. NEW & NOTEWORTHY We show that individual differences in preobservation brain function can predict subsequent observation-related gains in motor learning. Preobservation resting-state functional connectivity within a sensory-motor network may be used as a biomarker for the extent to which observation promotes motor learning. This kind of information may be useful if observation is to be used as a way to boost neuroplasticity and sensory-motor recovery for patients undergoing rehabilitation for diseases that impair movement such as stroke. Copyright © 2017 the American Physiological Society.
McLeod, Kevin R; Langevin, Lisa Marie; Dewey, Deborah; Goodyear, Bradley G
2016-01-01
Developmental coordination disorder (DCD) and attention-deficit hyperactivity disorder (ADHD) are highly comorbid neurodevelopmental disorders; however, the neural mechanisms of this comorbidity are poorly understood. Previous research has demonstrated that children with DCD and ADHD have altered brain region communication, particularly within the motor network. The structure and function of the motor network in a typically developing brain exhibits hemispheric dominance. It is plausible that functional deficits observed in children with DCD and ADHD are associated with neurodevelopmental alterations in within- and between-hemisphere motor network functional connection strength that disrupt this hemispheric dominance. We used resting-state functional magnetic resonance imaging to examine functional connections of the left and right primary and sensory motor (SM1) cortices in children with DCD, ADHD and DCD + ADHD, relative to typically developing children. Our findings revealed that children with DCD, ADHD and DCD + ADHD exhibit atypical within- and between-hemisphere functional connection strength between SM1 and regions of the basal ganglia, as well as the cerebellum. Our findings further support the assertion that development of atypical motor network connections represents common and distinct neural mechanisms underlying DCD and ADHD. In children with DCD and DCD + ADHD (but not ADHD), a significant correlation was observed between clinical assessment of motor function and the strength of functional connections between right SM1 and anterior cingulate cortex, supplementary motor area, and regions involved in visuospatial processing. This latter finding suggests that behavioral phenotypes associated with atypical motor network development differ between individuals with DCD and those with ADHD.
Canonici, Ana Paula; Andrade, Larissa Pires de; Gobbi, Sebastião; Santos-Galduroz, Ruth Ferreira; Gobbi, Lílian Teresa Bucken; Stella, Florindo
2012-09-01
Cognitive decline has a negative impact on functional activities in Alzheimer's disease. Investigating the effects of motor intervention with the intent to reduce the decline in functionality is an expected target for patients and caregivers. The aim of this study was to verify if a 6-month motor intervention programme promoted functionality in Alzheimer's patients and attenuated caregivers' burden. The sample comprised 32 community patients with Alzheimer's disease and their 32 respective caregivers. Patients were divided into two groups: 16 participated in the motor intervention programme and 16 controls. Subjects performed 60 minutes of exercises, three times per week during the 6-month period, to improve flexibility, strength, agility and balance. Caregivers followed the procedures with their patients during this period. Functionality was evaluated by the Berg Functional Balance Scale and the Functional Independence Measure. Caregivers completed the Neuropsychiatric Inventory Caregiver Distress Scale and the Zarit Carer Burden Scale. Two-way ANOVA was used to verify the interaction between time (pre- and post-intervention) and the motor intervention program. While patients in the motor programme preserved their functionality, as assessed by the Functional Independence Measure, the controls suffered a relative decline (motor intervention group: from 109.6 to 108.4 vs controls: from 99.5 to 71.6; P= 0.01). Patients from motor intervention also had better scores than the controls on functional balance assessed by Berg scale (F: 22.2; P= 0.001). As assessed by the Neuropsychiatric Inventory and Zarit scale, burden was reduced among caregivers whose patients participated in the motor intervention programme compared with caregivers whose patients did not participate in this programme (Neuropsychiatric Inventory, caregiver's part: F: 9.37; P= 0.01; Zarit: F: 11.28; P= 0.01). Patients from the motor intervention group showed reduced functional decline compared to the controls, and there was an associated decrease in caregivers' burden. © 2012 The Authors. Psychogeriatrics © 2012 Japanese Psychogeriatric Society.
Jones, Sarah E.
2016-01-01
Degeneracy of respiratory network function would imply that anatomically discrete aspects of the brain stem are capable of producing respiratory rhythm. To test this theory we a priori transected brain stem preparations before reperfusion and reoxygenation at 4 rostrocaudal levels: 1.5 mm caudal to obex (n = 5), at obex (n = 5), and 1.5 (n = 7) and 3 mm (n = 6) rostral to obex. The respiratory activity of these preparations was assessed via recordings of phrenic and vagal nerves and lumbar spinal expiratory motor output. Preparations with a priori transection at level of the caudal brain stem did not produce stable rhythmic respiratory bursting, even when the arterial chemoreceptors were stimulated with sodium cyanide (NaCN). Reperfusion of brain stems that preserved the pre-Bötzinger complex (pre-BötC) showed spontaneous and sustained rhythmic respiratory bursting at low phrenic nerve activity (PNA) amplitude that occurred simultaneously in all respiratory motor outputs. We refer to this rhythm as the pre-BötC burstlet-type rhythm. Conserving circuitry up to the pontomedullary junction consistently produced robust high-amplitude PNA at lower burst rates, whereas sequential motor patterning across the respiratory motor outputs remained absent. Some of the rostrally transected preparations expressed both burstlet-type and regular PNA amplitude rhythms. Further analysis showed that the burstlet-type rhythm and high-amplitude PNA had 1:2 quantal relation, with burstlets appearing to trigger high-amplitude bursts. We conclude that no degenerate rhythmogenic circuits are located in the caudal medulla oblongata and confirm the pre-BötC as the primary rhythmogenic kernel. The absence of sequential motor patterning in a priori transected preparations suggests that pontine circuits govern respiratory pattern formation. PMID:26888109
Jones, Sarah E; Dutschmann, Mathias
2016-05-01
Degeneracy of respiratory network function would imply that anatomically discrete aspects of the brain stem are capable of producing respiratory rhythm. To test this theory we a priori transected brain stem preparations before reperfusion and reoxygenation at 4 rostrocaudal levels: 1.5 mm caudal to obex (n = 5), at obex (n = 5), and 1.5 (n = 7) and 3 mm (n = 6) rostral to obex. The respiratory activity of these preparations was assessed via recordings of phrenic and vagal nerves and lumbar spinal expiratory motor output. Preparations with a priori transection at level of the caudal brain stem did not produce stable rhythmic respiratory bursting, even when the arterial chemoreceptors were stimulated with sodium cyanide (NaCN). Reperfusion of brain stems that preserved the pre-Bötzinger complex (pre-BötC) showed spontaneous and sustained rhythmic respiratory bursting at low phrenic nerve activity (PNA) amplitude that occurred simultaneously in all respiratory motor outputs. We refer to this rhythm as the pre-BötC burstlet-type rhythm. Conserving circuitry up to the pontomedullary junction consistently produced robust high-amplitude PNA at lower burst rates, whereas sequential motor patterning across the respiratory motor outputs remained absent. Some of the rostrally transected preparations expressed both burstlet-type and regular PNA amplitude rhythms. Further analysis showed that the burstlet-type rhythm and high-amplitude PNA had 1:2 quantal relation, with burstlets appearing to trigger high-amplitude bursts. We conclude that no degenerate rhythmogenic circuits are located in the caudal medulla oblongata and confirm the pre-BötC as the primary rhythmogenic kernel. The absence of sequential motor patterning in a priori transected preparations suggests that pontine circuits govern respiratory pattern formation. Copyright © 2016 the American Physiological Society.
Movement-related phase locking in the delta-theta frequency band.
Popovych, S; Rosjat, N; Toth, T I; Wang, B A; Liu, L; Abdollahi, R O; Viswanathan, S; Grefkes, C; Fink, G R; Daun, S
2016-10-01
Movements result from a complex interplay of multiple brain regions. These regions are assembled into distinct functional networks depending on the specific properties of the action. However, the nature and details of the dynamics of this complex assembly process are unknown. In this study, we sought to identify key markers of the neural processes underlying the preparation and execution of motor actions that always occur irrespective of differences in movement initiation, hence the specific neural processes and functional networks involved. To this end, EEG activity was continuously recorded from 18 right-handed healthy participants while they performed a simple motor task consisting of button presses with the left or right index finger. The movement was performed either in response to a visual cue or at a self-chosen, i.e., non-cued point in time. Despite these substantial differences in movement initiation, dynamic properties of the EEG signals common to both conditions could be identified using time-frequency and phase locking analysis of the EEG data. In both conditions, a significant phase locking effect was observed that started prior to the movement onset in the δ-θ frequency band (2-7Hz), and that was strongest at the electrodes nearest to the contralateral motor region (M1). This phase locking effect did not have a counterpart in the corresponding power spectra (i.e., amplitudes), or in the event-related potentials. Our finding suggests that phase locking in the δ-θ frequency band is a ubiquitous movement-related signal independent of how the actual movement has been initiated. We therefore suggest that phase-locked neural oscillations in the motor cortex are a prerequisite for the preparation and execution of motor actions. Copyright © 2016 Elsevier Inc. All rights reserved.
Alterations of motor performance and brain cortex mitochondrial function during ethanol hangover.
Bustamante, Juanita; Karadayian, Analia G; Lores-Arnaiz, Silvia; Cutrera, Rodolfo A
2012-08-01
Ethanol has been known to affect various behavioral parameters in experimental animals, even several hours after ethanol (EtOH) is absent from blood circulation, in the period known as hangover. The aim of this study was to assess the effects of acute ethanol hangover on motor performance in association with the brain cortex energetic metabolism. Evaluation of motor performance and brain cortex mitochondrial function during alcohol hangover was performed in mice 6 hours after a high ethanol dose (hangover onset). Animals were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Ethanol hangover group showed a bad motor performance compared with control animals (p < .05). Oxygen uptake in brain cortex mitochondria from hangover animals showed a 34% decrease in the respiratory control rate as compared with the control group. Mitochondrial complex activities were decreased being the complex I-III the less affected by the hangover condition; complex II-III was markedly decreased by ethanol hangover showing 50% less activity than controls. Complex IV was 42% decreased as compared with control animals. Hydrogen peroxide production was 51% increased in brain cortex mitochondria from the hangover group, as compared with the control animals. Quantification of the mitochondrial transmembrane potential indicated that ethanol injected animals presented 17% less ability to maintain the polarized condition as compared with controls. These results indicate that a clear decrease in proton motive force occurs in brain cortex mitochondria during hangover conditions. We can conclude that a decreased motor performance observed in the hangover group of animals could be associated with brain cortex mitochondrial dysfunction and the resulting impairment of its energetic metabolism. Copyright © 2012 Elsevier Inc. All rights reserved.
Denervation and reinnervation of skeletal muscle
NASA Technical Reports Server (NTRS)
Mayer, R. F.; Max, S. R.
1983-01-01
A review is presented of the physiological and biochemical changes that occur in mammalian skeletal muscle after denervation and reinnervation. These changes are compared with those observed after altered motor function. Also considered is the nature of the trophic influence by which nerves control muscle properties. Topics examined include the membrane and contractile properties of denervated and reinnervated muscle; the cholinergic proteins, such as choline acetyltransferase, acetylcholinesterase, and the acetylcholine receptor; and glucose-6-phosphate dehydrogenase.
NASA Technical Reports Server (NTRS)
Gorodinskiy, S. M.; Gramenitskiy, P. M.; Kuznets, Y. I.; Ozerov, O. Y.; Yakovleva, E. V.; Groza, P.; Kozlovskiy, S.; Naremski, Y.
1974-01-01
Thermal regulation for astronauts working in pressure suits in open space provides for protection by a system of artificial heat removal and compensation to counteract possible changes in the heat regulating function of the human body that occur under the complex effects of space flight conditions. Most important of these factors are prolonged weightlessness, prolonged limitation of motor activity, and possible deviations of microclimatic environmental parameters.
Neuronal Response Gain Enhancement prior to Microsaccades.
Chen, Chih-Yang; Ignashchenkova, Alla; Thier, Peter; Hafed, Ziad M
2015-08-17
Neuronal response gain enhancement is a classic signature of the allocation of covert visual attention without eye movements. However, microsaccades continuously occur during gaze fixation. Because these tiny eye movements are preceded by motor preparatory signals well before they are triggered, it may be the case that a corollary of such signals may cause enhancement, even without attentional cueing. In six different macaque monkeys and two different brain areas previously implicated in covert visual attention (superior colliculus and frontal eye fields), we show neuronal response gain enhancement for peripheral stimuli appearing immediately before microsaccades. This enhancement occurs both during simple fixation with behaviorally irrelevant peripheral stimuli and when the stimuli are relevant for the subsequent allocation of covert visual attention. Moreover, this enhancement occurs in both purely visual neurons and visual-motor neurons, and it is replaced by suppression for stimuli appearing immediately after microsaccades. Our results suggest that there may be an obligatory link between microsaccade occurrence and peripheral selective processing, even though microsaccades can be orders of magnitude smaller than the eccentricities of peripheral stimuli. Because microsaccades occur in a repetitive manner during fixation, and because these eye movements reset neurophysiological rhythms every time they occur, our results highlight a possible mechanism through which oculomotor events may aid periodic sampling of the visual environment for the benefit of perception, even when gaze is prevented from overtly shifting. One functional consequence of such periodic sampling could be the magnification of rhythmic fluctuations of peripheral covert visual attention. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hypothyroid-induced acute compartment syndrome in all extremities.
Musielak, Matthew C; Chae, Jung Hee
2016-12-20
Acute compartment syndrome (ACS) is an uncommon complication of uncontrolled hypothyroidism. If unrecognized, this can lead to ischemia, necrosis and potential limb loss. A 49-year-old female presented with the sudden onset of bilateral lower and upper extremity swelling and pain. The lower extremity anterior compartments were painful and tense. The extensor surface of the upper extremities exhibited swelling and pain. Motor function was intact, however, limited due to pain. Bilateral lower extremity fasciotomies were performed. Postoperative Day 1, upper extremity motor function decreased significantly and paresthesias occurred. She therefore underwent bilateral forearm fasciotomies. The pathogenesis of hypothyroidism-induced compartment syndrome is unclear. Thyroid-stimulating hormone-induced fibroblast activation results in increased glycosaminoglycan deposition. The primary glycosaminoglycan in hypothyroid myxedematous changes is hyaluronic acid, which binds water causing edema. This increases vascular permeability, extravasation of proteins and impaired lymphatic drainage. These contribute to increased intra-compartmental pressure and subsequent ACS. Published by Oxford University Press and JSCR Publishing Ltd. All rights reserved. © The Author 2016.
Rangasamy, Suresh Babu
2013-07-01
Spinal cord injuries usually produce loss or impairment of sensory, motor and reflex function below the level of damage. In the absence of functional regeneration or manipulations that promote regeneration, spontaneous improvements in motor functions occur due to the activation of multiple compensatory mechanisms in animals and humans following the partial spinal cord injury. Many studies were performed on quantitative evaluation of locomotor recovery after induced spinal cord injury in animals using behavioral tests and scoring techniques. Although few studies on rodents have led to clinical trials, it would appear imperative to use nonhuman primates such as macaque monkeys in order to relate the research outcomes to recovery of functions in humans. In this review, we will discuss some of our research evidences concerning the degree of spontaneous recovery in bipedal locomotor functions of bonnet monkeys that underwent spinal cord hemisection/contusion lesions. To our knowledge, this is the first report to discuss on the extent of spontaneous recovery in bipedal locomotion of macaque monkeys through the application of footprint analyzing technique. In addition, the results obtained were compared with the published data on recovery of quadrupedal locomotion of spinally injured rodents. We propose that the mechanisms underlying spontaneous recovery of functions in spinal cord lesioned monkeys may be correlated to the mature function of spinal pattern generator for locomotion under the impact of residual descending and afferent connections. Moreover, based on analysis of motor functions observed in locomotion in these subjected monkeys, we understand that spinal automatism and development of responses by afferent stimuli from outside the cord could possibly contribute to recovery of paralyzed hindlimbs. This report also emphasizes the functional contribution of progressive strengthening of undamaged nerve fibers through a collateral sprouts/synaptic plasticity formed in partially lesioned cord of monkeys. Copyright © 2013 Wiley Periodicals, Inc.
Dynamic Modulation of Human Motor Activity When Observing Actions
Press, Clare; Cook, Jennifer; Blakemore, Sarah-Jayne; Kilner, James
2012-01-01
Previous studies have demonstrated that when we observe somebody else executing an action many areas of our own motor systems are active. It has been argued that these motor activations are evidence that we motorically simulate observed actions; this motoric simulation may support various functions such as imitation and action understanding. However, whether motoric simulation is indeed the function of motor activations during action observation is controversial, due to inconsistency in findings. Previous studies have demonstrated dynamic modulations in motor activity when we execute actions. Therefore, if we do motorically simulate observed actions, our motor systems should also be modulated dynamically, and in a corresponding fashion, during action observation. Using magnetoencephalography, we recorded the cortical activity of human participants while they observed actions performed by another person. Here, we show that activity in the human motor system is indeed modulated dynamically during action observation. The finding that activity in the motor system is modulated dynamically when observing actions can explain why studies of action observation using functional magnetic resonance imaging have reported conflicting results, and is consistent with the hypothesis that we motorically simulate observed actions. PMID:21414901
Exercise alters resting state functional connectivity of motor circuits in Parkinsonian rats
Wang, Zhuo; Guo, Yumei; Myers, Kalisa G.; Heintz, Ryan; Peng, Yu-Hao; Maarek, Jean-Michel I.; Holschneider, Daniel P.
2014-01-01
Few studies have examined changes in functional connectivity after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise on the resting-state functional connectivity (rsFC) of motor circuits of rats subjected to bilateral 6-hydroxydopamine lesion of the dorsal striatum. Our results showed substantial similarity between lesion-induced changes in rsFC in the rats and alterations in rsFC reported in Parkinson’s disease subjects, including disconnection of the dorsolateral striatum. Exercise in lesioned rats resulted in: (a) normalization of many of the lesion-induced alterations in rsFC, including reintegration of the dorsolateral striatum into the motor network; (b) emergence of the ventrolateral striatum as a new broadly connected network hub; (c) increased rsFC among the motor cortex, motor thalamus, basal ganglia, and cerebellum. Our results showed for the first time that long-term exercise training partially reversed lesion-induced alterations in rsFC of the motor circuits, and in addition enhanced functional connectivity in specific motor pathways in the Parkinsonian rats, which could underlie recovery in motor functions observed in these rats. PMID:25219465
DNA nanotechnology based on i-motif structures.
Dong, Yuanchen; Yang, Zhongqiang; Liu, Dongsheng
2014-06-17
CONSPECTUS: Most biological processes happen at the nanometer scale, and understanding the energy transformations and material transportation mechanisms within living organisms has proved challenging. To better understand the secrets of life, researchers have investigated artificial molecular motors and devices over the past decade because such systems can mimic certain biological processes. DNA nanotechnology based on i-motif structures is one system that has played an important role in these investigations. In this Account, we summarize recent advances in functional DNA nanotechnology based on i-motif structures. The i-motif is a DNA quadruplex that occurs as four stretches of cytosine repeat sequences form C·CH(+) base pairs, and their stabilization requires slightly acidic conditions. This unique property has produced the first DNA molecular motor driven by pH changes. The motor is reliable, and studies show that it is capable of millisecond running speeds, comparable to the speed of natural protein motors. With careful design, the output of these types of motors was combined to drive micrometer-sized cantilevers bend. Using established DNA nanostructure assembly and functionalization methods, researchers can easily integrate the motor within other DNA assembled structures and functional units, producing DNA molecular devices with new functions such as suprahydrophobic/suprahydrophilic smart surfaces that switch, intelligent nanopores triggered by pH changes, molecular logic gates, and DNA nanosprings. Recently, researchers have produced motors driven by light and electricity, which have allowed DNA motors to be integrated within silicon-based nanodevices. Moreover, some devices based on i-motif structures have proven useful for investigating processes within living cells. The pH-responsiveness of the i-motif structure also provides a way to control the stepwise assembly of DNA nanostructures. In addition, because of the stability of the i-motif, this structure can serve as the stem of one-dimensional nanowires, and a four-strand stem can provide a new basis for three-dimensional DNA structures such as pillars. By sacrificing some accuracy in assembly, we used these properties to prepare the first fast-responding pure DNA supramolecular hydrogel. This hydrogel does not swell and cannot encapsulate small molecules. These unique properties could lead to new developments in smart materials based on DNA assembly and support important applications in fields such as tissue engineering. We expect that DNA nanotechnology will continue to develop rapidly. At a fundamental level, further studies should lead to greater understanding of the energy transformation and material transportation mechanisms at the nanometer scale. In terms of applications, we expect that many of these elegant molecular devices will soon be used in vivo. These further studies could demonstrate the power of DNA nanotechnology in biology, material science, chemistry, and physics.
Navigating the plant cell: intracellular transport logistics in the green kingdom
Geitmann, Anja; Nebenführ, Andreas
2015-01-01
Intracellular transport in plant cells occurs on microtubular and actin arrays. Cytoplasmic streaming, the rapid motion of plant cell organelles, is mostly driven by an actin–myosin mechanism, whereas specialized functions, such as the transport of large cargo or the assembly of a new cell wall during cell division, are performed by the microtubules. Different modes of transport are used, fast and slow, to either haul cargo over long distances or ascertain high-precision targeting, respectively. Various forms of the actin-specific motor protein myosin XI exist in plant cells and might be involved in different cellular functions. PMID:26416952
Ito, Kumiko; Tomata, Yasutake; Kogure, Mana; Sugawara, Yumi; Watanabe, Takashi; Asaka, Tadayoshi; Tsuji, Ichiro
2016-11-03
Previous studies have reported that elderly victims of natural disasters might be prone to a subsequent decline in motor function. Victims of the Great East Japan Earthquake (GEJE) relocated to a wide range of different types of housing. As the evacuee lifestyle varies according to the type of housing available to them, their degree of motor function loss might also vary accordingly. However, the association between postdisaster housing type and loss of motor function has never been investigated. The present study was conducted to investigate the association between housing type after the GEJE and loss of motor function in elderly victims. We conducted a prospective observational study of 478 Japanese individuals aged ≥65 years living in Miyagi Prefecture, one of the areas most significantly affected by the GEJE. Information on housing type after the GEJE, motor function as assessed by the Kihon checklist and other lifestyle factors was collected by interview and questionnaire in 2012. Information on motor function was then collected 1 year later. The multiple logistic regression model was used to estimate the multivariate adjusted ORs of motor function loss. We classified 53 (11.1%) of the respondents as having loss of motor function. The multivariate adjusted OR (with 95% CI) for loss of motor function among participants who were living in privately rented temporary housing/rental housing was 2.62 (1.10 to 6.24) compared to those who had remained in the same housing as that before the GEJE, and this increase was statistically significant. The proportion of individuals with loss of motor function was higher among persons who had relocated to privately rented temporary housing/rental housing after the GEJE. This result may reflect the influence of a move to a living environment where few acquaintances are located (lack of social capital). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Aron, Adam R.
2013-01-01
When an unexpected event occurs in everyday life (e.g., a car honking), one experiences a slowing down of ongoing action (e.g., of walking into the street). Motor slowing following unexpected events is a ubiquitous phenomenon, both in laboratory experiments as well as such everyday situations, yet the underlying mechanism is unknown. We hypothesized that unexpected events recruit the same inhibition network in the brain as does complete cancellation of an action (i.e., action-stopping). Using electroencephalography and independent component analysis in humans, we show that a brain signature of successful outright action-stopping also exhibits activity following unexpected events, and more so in blocks with greater motor slowing. Further, using transcranial magnetic stimulation to measure corticospinal excitability, we show that an unexpected event has a global motor suppressive effect, just like outright action-stopping. Thus, unexpected events recruit a common mechanism with outright action-stopping, moreover with global suppressive effects. These findings imply that we can now leverage the considerable extant knowledge of the neural architecture and functional properties of the stopping system to better understand the processing of unexpected events, including perhaps how they induce distraction via global suppression. PMID:24259571
Activation of the cerebellar cortex and the dentate nucleus in a prism adaptation fMRI study.
Küper, Michael; Wünnemann, Meret J S; Thürling, Markus; Stefanescu, Roxana M; Maderwald, Stefan; Elles, Hans G; Göricke, Sophia; Ladd, Mark E; Timmann, Dagmar
2014-04-01
During prism adaptation two types of learning processes can be distinguished. First, fast strategic motor control responses are predominant in the early course of prism adaptation to achieve rapid error correction within few trials. Second, slower spatial realignment occurs among the misaligned visual and proprioceptive sensorimotor coordinate system. The aim of the present ultra-highfield (7T) functional magnetic resonance imaging (fMRI) study was to explore cerebellar cortical and dentate nucleus activation during the course of prism adaptation in relation to a similar visuomotor task without prism exposure. Nineteen young healthy participants were included into the study. Recently developed normalization procedures were applied for the cerebellar cortex and the dentate nucleus. By means of subtraction analysis (early prism adaptation > visuomotor, early prism adaptation > late prism adaptation) we identified ipsilateral activation associated with strategic motor control responses within the posterior cerebellar cortex (lobules VIII and IX) and the ventro-caudal dentate nucleus. During the late phase of adaptation we observed pronounced activation of posterior parts of lobule VI, although subtraction analyses (late prism adaptation > visuomotor) remained negative. These results are in good accordance with the concept of a representation of non-motor functions, here strategic control, within the ventro-caudal dentate nucleus. Copyright © 2013 Wiley Periodicals, Inc.
Change in motor function and adverse health outcomes in older African-Americans.
Buchman, Aron S; Wilson, Robert S; Leurgans, Sue E; Bennett, David A; Barnes, Lisa L
2015-10-01
We tested whether declining motor function accelerates with age in older African-Americans. Eleven motor performances were assessed annually in 513 older African-Americans. During follow-up of 5 years, linear mixed-effect models showed that motor function declined by about 0.03 units/year (Estimate, -0.026, p<0.001); about 4% more rapidly for each additional year of age at baseline. A proportional hazard model showed that both baseline motor function level and its rate of change were independent predictors of death and incident disability (all p's<0.001). These models showed that the additional annual amount of motor decline in 85 year old persons at baseline versus 65 year old persons was associated with a 1.5-fold higher rate of death and a 3-fold higher rate of developing Katz disability. The rate of declining motor function accelerates with increasing age and its rate of decline predicts adverse health outcomes in older African-Americans. Copyright © 2015 Elsevier Inc. All rights reserved.
Change in Motor Function and Adverse Health Outcomes in Older African Americas
Buchman, Aron S.; Wilson, Robert S.; Leurgans, Sue E.; Bennett, David A.; Barnes, Lisa L.
2015-01-01
Objective We tested whether declining motor function accelerates with age in older African Americans. Methods Eleven motor performances were assessed annually in 513 older African Americans. Results During follow-up of 5 years, linear mixed-effect models showed that motor function declined by about 0.03 units/yr (Estimate, −0.026, p<0.001); about 4% more rapidly for each additional year of age at baseline. A proportional hazard model showed that both baseline motor function level and its rate of change were independent predictors of death and incident disability (all p’s <0.001). These models showed that the additional annual amount of motor decline in 85 year old persons at baseline versus 65 year old persons was associated with a 1.5-fold higher rate of death and a 3-fold higher rate of developing Katz disability. Conclusions The rate of declining motor function accelerates with increasing age and its rate of decline predicts adverse health outcomes in older African Americans. PMID:26209439
Guo, LanJun; Li, Yan; Han, Ruquan; Gelb, Adrian W
2018-01-01
Motor evoked potentials (MEPs) are commonly used during surgery for spinal cord tumor resection. However, it can be difficult to record reliable MEPs from the muscles of the lower extremities during surgery in patients with preoperative weakness due to spinal cord compression. In this study, motor function of patients' lower extremities and their association with intraoperative MEP recording were compared. Patients undergoing thoracic spinal cord tumor resection were studied. Patients' motor function was checked immediately before the surgical procedure. MEP responses were recorded from the tibialis anterior and foot muscles, and the hand muscles were used as control. Electrical current with train of eight pulses, 200 to 500 V was delivered through 2 corkscrews placed at C3' and C4' sites. Anesthesia was maintained by total intravenous anesthesia using a combination of propofol and remifentanil after induction with intravenous propofol, remifentanil, and rocuronium. Rocuronium was not repeated. Bispectral Index was maintained between 40 to 50. From 178 lower limbs of 89 patients, myogenic MEPs could be recorded from 100% (105/105) of the patients with 5 of 5 motor strength in lower extremity; 90% (36/40) from the patients with 4/5 motor strength; only 25% (5/20) with 3/5; and 12.5% (1/8) with 2/5 motor strength; none (0/5) were able to be recorded if the motor strength was 1/5. The ability to record myogenic MEPs is closely associated with the patient's motor function. They are difficult to obtain if motor function is 3/5 motor strength in the lower extremity. They are almost impossible to record if motor function is worse than 3/5.
Cecatto, Rebeca Boltes; Maximino, Jessica Ruivo; Chadi, Gerson
2014-09-01
The aim of this study was to investigate the functional responses and plastic cortical changes in a sample of animals with sequelae of cerebral ischemia that were subjected to a model of functional electrical stimulation (FES). Rats received an ischemic cortical lesion (Rose Bengal method) and were randomized and submitted to an FES stimulation (1-2 mA, 30 Hz, 20-40 mins for 14 days) or sham stimulation. The Foot Fault Test was performed before inducing the cortical lesion and also before and after FES. Brain immunochemistry labeling with microtubule-associated protein-2 and neurofilament-200 markers was performed after FES. The authors found a decreased percentage of errors in the Foot Fault Test (P < 0.001) in the stimulated group compared with the sham group after FES. FES has not altered the lesion size. Spontaneous motor parameters returned to basal values in both groups. The qualitative analysis showed an increased amount of radial microtubule-associated protein-2 immunoreactive fibers in the preserved cortex adjacent to stroke site in the stimulated animals. Regarding the measurements of neurofilament-200 immunostaining, there were no differences between the hemispheres or groups in area or intensity. Acute and short period of FES led to motor recovery of ankle joint neurodisability. The extent to which compensatory plasticity occurs after stroke or after FES and the extent to which it contributes to functional recovery are yet unclear. The changes induced by the stimulation may improve the ability of the nervous system to undergo spontaneous recovery, which is of substantial interest for neurorehabilitation strategies.
Exercise-induced changes in local cerebral glucose utilization in the rat.
Vissing, J; Andersen, M; Diemer, N H
1996-07-01
In exercise, little is known about local cerebral glucose utilization (LCGU), which is an index of functional neurogenic activity. We measured LCGU in resting and running (approximately 85% of maximum O2 uptake) rats (n = 7 in both groups) previously equipped with a tail artery catheter. LCGU was measured quantitatively from 2-deoxy-D-[1-14C]glucose autoradiographs. During exercise, total cerebral glucose utilization (TCGU) increased by 38% (p < 0.005). LCGU increased (p < 0.05) in areas involved in motor function (motor cortex 39%, cerebellum approximately 110%, basal ganglia approximately 30%, substantia nigra approximately 37%, and in the following nuclei: subthalamic 47%, posterior hypothalamic 74%, red 61%, ambiguous 43%, pontine 61%), areas involved in sensory function (somatosensory 27%, auditory 32%, and visual cortex 42%, thalamus approximately 75%, and in the following nuclei: Darkschewitsch 22%, cochlear 51%, vestibular 30%, superior olive 23%, cuneate 115%), areas involved in autonomic function (dorsal raphe nucleus 30%, and areas in the hypothalamus approximately 35%, amygdala approximately 35%, and hippocampus 29%), and in white matter of the corpus callosum (36%) and cerebellum (52%). LCGU did not change with exercise in prefrontal and frontal cortex, cingulum, inferior olive, nucleus of solitary tract and median raphe, lateral septal and interpenduncular nuclei, or in areas of the hippocampus, amygdala, and hypothalamus. Glucose utilization did not decrease during exercise in any of the studied cerebral regions. In summary, heavy dynamic exercise increases TCGU and evokes marked differential changes in LCGU. The findings provide clues to the cerebral areas that participate in the large motor, sensory, and autonomic adaptation occurring in exercise.
Guo, Peixuan; Zhao, Zhengyi; Haak, Jeannie; Wang, Shaoying; Weitao, Tao
2014-01-01
Biomotors were once classified into two categories: linear motor and rotation motor. For decades, the viral DNA-packaging motor has been popularly believed to be a five-fold rotation motor. Recently, a third type of biomotor with revolution mechanism without rotation has been discovered. By analogy, rotation resembles the Earth rotating on its axis in a complete cycle every 24 hours, while revolution resembles the Earth revolving around the Sun one circle per 365 days (see animations http://nanobio.uky.edu/movie.html). The action of revolution that enables a motor free of coiling and torque has solved many puzzles and debates that have occurred throughout the history of viral DNA packaging motor studies. It also settles the discrepancies concerning the structure, stoichiometry, and functioning of DNA translocation motors. This review uses bacteriophages Phi29, HK97, SPP1, P22, T4, T7 as well as bacterial DNA translocase FtsK and SpoIIIE as examples to elucidate the puzzles. These motors use a ATPase, some of which have been confirmed to be a hexamer, to revolve around the dsDNA sequentially. ATP binding induces conformational change and possibly an entropy alteration in ATPase to a high affinity toward dsDNA; but ATP hydrolysis triggers another entropic and conformational change in ATPase to a low affinity for DNA, by which dsDNA is pushed toward an adjacent ATPase subunit. The rotation and revolution mechanisms can be distinguished by the size of channel: the channels of rotation motors are equal to or smaller than 2 nm, whereas channels of revolution motors are larger than 3 nm. Rotation motors use parallel threads to operate with a right-handed channel, while revolution motors use a left-handed channel to drive the right-handed DNA in an anti-parallel arrangement. Coordination of several vector factors in the same direction makes viral DNA-packaging motors unusually powerful and effective. Revolution mechanism avoids DNA coiling in translocating the lengthy genomic dsDNA helix could be advantage for cell replication such as bacterial binary fission and cell mitosis without the need for topoisomerase or helicase to consume additional energy. PMID:24913057
NASA Technical Reports Server (NTRS)
Mulavara, Ajitkumar; Fiedler, Matthew; Kofman, Igor; Fisher, Elizabeth; Wood, Scott; Serrador, Jorge; Peters, Brian; Cohen, Helen; Reschke, Millard; Bloomberg, Jacob
2009-01-01
Astronauts experience disturbances in sensorimotor function following their return to Earth due to adaptive responses that occur during exposure to the microgravity conditions of space flight. As part of the Crew Exploration Vehicle design requirements, the crewmember adapted to the microgravity state may need to egress the vehicle within a few minutes for safety and operational reasons in various sea state conditions following a water landing. The act of emergency egress includes and is not limited to rapid motor control tasks (including both fine motor such as object manipulation and gross motor such as opening a hatch) and visual acuity tasks while maintaining spatial orientation and postural stability in time to escape safely. Exposure to even low frequency motions (0.2-2.0 Hz) induced by sea conditions surrounding a vessel can cause significant fine and gross motor control problems affecting critical functions. These motion frequencies coupled with the varying sea state conditions (frequencies ranging from 0.125-0.5 Hz) cause performance deficits by affecting the efficacy of motor and visual acuity dependent skills in tasks critical to emergency egress activities such as visual monitoring of displays, actuating discrete controls, operating auxiliary equipment and communicating with Mission Control and recovery teams. Thus, during exploration class missions the sensorimotor disturbances due to the crewmember's adaptation to microgravity may lead to disruption in the ability to maintain postural stability and perform functional egress tasks during the initial introduction to the Earth's gravitational environment. At present, the functional implication of the interactions between a debilitated crewmember during readaptation to Earth s gravity and the environmental constraints imposed by a water landing scenario is not defined and no operational countermeasure has been implemented to mitigate this risk. Stochastic resonance (SR) is a mechanism whereby noise can assist and hence enhance the response of neural systems to relevant, subthreshold sensory signals. Application of subthreshold stochastic resonance noise coupled to sensory input either through the proprioceptive, visual or vestibular sensory systems, has been shown to improve motor function. Crew members who have adapted to microgravity have acquired new sensorimotor strategies that take time to discard. We hypothesize that detection of time-critical subthreshold sensory signals will play a crucial role in improving strategic responses and thus the rate of skill re-acquisition will be faster, leading to faster recovery of function during their re-adaptation to Earth G. Therefore, we expect the use of stochastic resonance mechanisms will enhance the acquisition of new strategic abilities. This process should ensure rapid restoration of functional egress capabilities during the initial return to Earth G after prolonged space flight. Therefore, the overall goals of this project are to investigate performance of motor and visual tasks during varying sea state conditions and develop a countermeasure based on stochastic resonance that could be implemented to enhance sensorimotor capabilities with the aim of facilitating rapid adaptation to Earth s gravity, allowing rapid CEV egress on water in varying sea states following long-duration space flight.
System and method to determine electric motor efficiency using an equivalent circuit
Lu, Bin; Habetler, Thomas G.
2015-10-27
A system and method for determining electric motor efficiency includes a monitoring system having a processor programmed to determine efficiency of an electric motor under load while the electric motor is online. The determination of motor efficiency is independent of a rotor speed measurement. Further, the efficiency is based on a determination of stator winding resistance, an input voltage, and an input current. The determination of the stator winding resistance occurs while the electric motor under load is online.
System and method to determine electric motor efficiency using an equivalent circuit
Lu, Bin [Kenosha, WI; Habetler, Thomas G [Snellville, GA
2011-06-07
A system and method for determining electric motor efficiency includes a monitoring system having a processor programmed to determine efficiency of an electric motor under load while the electric motor is online. The determination of motor efficiency is independent of a rotor speed measurement. Further, the efficiency is based on a determination of stator winding resistance, an input voltage, and an input current. The determination of the stator winding resistance occurs while the electric motor under load is online.
Cognitive and motor function of neurologically impaired extremely low birth weight children.
Bernardo, Janine; Friedman, Harriet; Minich, Nori; Taylor, H Gerry; Wilson-Costello, Deanne; Hack, Maureen
2015-01-01
Rates of neurological impairment among extremely low birth weight children (ELBW [<1 kg]) have decreased since 2000; however, their functioning is unexamined. To compare motor and cognitive functioning of ELBW children with neurological impairment, including cerebral palsy and severe hypotonia/hypertonia, between two periods: 1990 to 1999 (n=83) and 2000 to 2005 (n=34). Measures of function at 20 months corrected age included the Mental and Psychomotor Developmental Indexes of the Bayley Scales of Infant Development and the Gross Motor Functional Classification System as primary outcomes and individual motor function items as secondary outcomes. Analysis failed to reveal significant differences for the primary outcomes, although during 2000 to 2005, sitting significantly improved in children with neurological impairment (P=0.003). Decreases in rates of neurological impairment among ELBW children have been accompanied by a suggestion of improved motor function, although cognitive function has not changed.
Mandel-Brehm, Caleigh; Salogiannis, John; Dhamne, Sameer C.; Rotenberg, Alexander; Greenberg, Michael E.
2015-01-01
Angelman syndrome (AS) is a neurodevelopmental disorder arising from loss-of-function mutations in the maternally inherited copy of the UBE3A gene, and is characterized by an absence of speech, excessive laughter, cognitive delay, motor deficits, and seizures. Despite the fact that the symptoms of AS occur in early childhood, behavioral characterization of AS mouse models has focused primarily on adult phenotypes. In this report we describe juvenile behaviors in AS mice that are strain-independent and clinically relevant. We find that young AS mice, compared with their wild-type littermates, produce an increased number of ultrasonic vocalizations. In addition, young AS mice have defects in motor coordination, as well as abnormal brain activity that results in an enhanced seizure-like response to an audiogenic challenge. The enhanced seizure-like activity, but not the increased ultrasonic vocalizations or motor deficits, is rescued in juvenile AS mice by genetically reducing the expression level of the activity-regulated cytoskeleton-associated protein, Arc. These findings suggest that therapeutic interventions that reduce the level of Arc expression have the potential to reverse the seizures associated with AS. In addition, the identification of aberrant behaviors in young AS mice may provide clues regarding the neural circuit defects that occur in AS and ultimately allow new approaches for treating this disorder. PMID:25848016
Mandel-Brehm, Caleigh; Salogiannis, John; Dhamne, Sameer C; Rotenberg, Alexander; Greenberg, Michael E
2015-04-21
Angelman syndrome (AS) is a neurodevelopmental disorder arising from loss-of-function mutations in the maternally inherited copy of the UBE3A gene, and is characterized by an absence of speech, excessive laughter, cognitive delay, motor deficits, and seizures. Despite the fact that the symptoms of AS occur in early childhood, behavioral characterization of AS mouse models has focused primarily on adult phenotypes. In this report we describe juvenile behaviors in AS mice that are strain-independent and clinically relevant. We find that young AS mice, compared with their wild-type littermates, produce an increased number of ultrasonic vocalizations. In addition, young AS mice have defects in motor coordination, as well as abnormal brain activity that results in an enhanced seizure-like response to an audiogenic challenge. The enhanced seizure-like activity, but not the increased ultrasonic vocalizations or motor deficits, is rescued in juvenile AS mice by genetically reducing the expression level of the activity-regulated cytoskeleton-associated protein, Arc. These findings suggest that therapeutic interventions that reduce the level of Arc expression have the potential to reverse the seizures associated with AS. In addition, the identification of aberrant behaviors in young AS mice may provide clues regarding the neural circuit defects that occur in AS and ultimately allow new approaches for treating this disorder.
A common functional neural network for overt production of speech and gesture.
Marstaller, L; Burianová, H
2015-01-22
The perception of co-speech gestures, i.e., hand movements that co-occur with speech, has been investigated by several studies. The results show that the perception of co-speech gestures engages a core set of frontal, temporal, and parietal areas. However, no study has yet investigated the neural processes underlying the production of co-speech gestures. Specifically, it remains an open question whether Broca's area is central to the coordination of speech and gestures as has been suggested previously. The objective of this study was to use functional magnetic resonance imaging to (i) investigate the regional activations underlying overt production of speech, gestures, and co-speech gestures, and (ii) examine functional connectivity with Broca's area. We hypothesized that co-speech gesture production would activate frontal, temporal, and parietal regions that are similar to areas previously found during co-speech gesture perception and that both speech and gesture as well as co-speech gesture production would engage a neural network connected to Broca's area. Whole-brain analysis confirmed our hypothesis and showed that co-speech gesturing did engage brain areas that form part of networks known to subserve language and gesture. Functional connectivity analysis further revealed a functional network connected to Broca's area that is common to speech, gesture, and co-speech gesture production. This network consists of brain areas that play essential roles in motor control, suggesting that the coordination of speech and gesture is mediated by a shared motor control network. Our findings thus lend support to the idea that speech can influence co-speech gesture production on a motoric level. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
"Long-term stability of stimulating spiral nerve cuff electrodes on human peripheral nerves".
Christie, Breanne P; Freeberg, Max; Memberg, William D; Pinault, Gilles J C; Hoyen, Harry A; Tyler, Dustin J; Triolo, Ronald J
2017-07-11
Electrical stimulation of the peripheral nerves has been shown to be effective in restoring sensory and motor functions in the lower and upper extremities. This neural stimulation can be applied via non-penetrating spiral nerve cuff electrodes, though minimal information has been published regarding their long-term performance for multiple years after implantation. Since 2005, 14 human volunteers with cervical or thoracic spinal cord injuries, or upper limb amputation, were chronically implanted with a total of 50 spiral nerve cuff electrodes on 10 different nerves (mean time post-implant 6.7 ± 3.1 years). The primary outcome measures utilized in this study were muscle recruitment curves, charge thresholds, and percent overlap of recruited motor unit populations. In the eight recipients still actively involved in research studies, 44/45 of the spiral contacts were still functional. In four participants regularly studied over the course of 1 month to 10.4 years, the charge thresholds of the majority of individual contacts remained stable over time. The four participants with spiral cuffs on their femoral nerves were all able to generate sufficient moment to keep the knees locked during standing after 2-4.5 years. The dorsiflexion moment produced by all four fibular nerve cuffs in the active participants exceeded the value required to prevent foot drop, but no tibial nerve cuffs were able to meet the plantarflexion moment that occurs during push-off at a normal walking speed. The selectivity of two multi-contact spiral cuffs was examined and both were still highly selective for different motor unit populations for up to 6.3 years after implantation. The spiral nerve cuffs examined remain functional in motor and sensory neuroprostheses for 2-11 years after implantation. They exhibit stable charge thresholds, clinically relevant recruitment properties, and functional muscle selectivity. Non-penetrating spiral nerve cuff electrodes appear to be a suitable option for long-term clinical use on human peripheral nerves in implanted neuroprostheses.
Fowler, Eileen G; Knutson, Loretta M; Demuth, Sharon K; Siebert, Kara L; Simms, Victoria D; Sugi, Mia H; Souza, Richard B; Karim, Roksana; Azen, Stanley P
2010-03-01
Effective interventions to improve and maintain strength (force-generating capacity) and endurance are needed for children with cerebral palsy (CP). This study was performed to examine the effects of a stationary cycling intervention on muscle strength, locomotor endurance, preferred walking speed, and gross motor function in children with spastic diplegic CP. This was a phase I randomized controlled trial with single blinding. The interventions were performed in community-based outpatient physical therapy clinics. Outcome assessments were performed in university laboratories. Sixty-two ambulatory children aged 7 to 18 years with spastic diplegic CP and Gross Motor Function Classification System levels I to III participated in this study. Participants were randomly assigned to cycling or control (no-intervention) groups. Thirty intervention sessions occurred over 12 weeks. Primary outcomes were peak knee extensor and flexor moments, the 600-Yard Walk-Run Test, the Thirty-Second Walk Test, and the Gross Motor Function Measure sections D and E (GMFM-66). Significant baseline-postintervention improvements were found for the 600-Yard Walk-Run Test, the GMFM-66, peak knee extensor moments at 120 degrees /s, and peak knee flexor moments at 30 degrees /s for the cycling group. Improved peak knee flexor moments at 120 degrees/s were found for the control group only, although not all participants could complete this speed of testing. Significant differences between the cycling and control groups based on change scores were not found for any outcomes. Limitations Heterogeneity of the patient population and intrasubject variability were limitations of the study. Significant improvements in locomotor endurance, gross motor function, and some measures of strength were found for the cycling group but not the control group, providing preliminary support for this intervention. As statistical differences were not found in baseline-postintervention change scores between the 2 groups; the results did not demonstrate that stationary cycling was more effective than no intervention. The results of this phase I study provide guidance for future research.
Scaling of movement is related to pallidal γ oscillations in patients with dystonia.
Brücke, Christof; Huebl, Julius; Schönecker, Thomas; Neumann, Wolf-Julian; Yarrow, Kielan; Kupsch, Andreas; Blahak, Christian; Lütjens, Goetz; Brown, Peter; Krauss, Joachim K; Schneider, Gerd-Helge; Kühn, Andrea A
2012-01-18
Neuronal synchronization in the gamma (γ) band is considered important for information processing through functional integration of neuronal assemblies across different brain areas. Movement-related γ synchronization occurs in the human basal ganglia where it is centered at ~70 Hz and more pronounced contralateral to the moved hand. However, its functional significance in motor performance is not yet well understood. Here, we assessed whether event-related γ synchronization (ERS) recorded from the globus pallidus internus in patients undergoing deep brain stimulation for medically intractable primary focal and segmental dystonia might code specific motor parameters. Pallidal local field potentials were recorded in 22 patients during performance of a choice-reaction-time task. Movement amplitude of the forearm pronation-supination movements was parametrically modulated with an angular degree of 30°, 60°, and 90°. Only patients with limbs not affected by dystonia were tested. A broad contralateral γ band (35-105 Hz) ERS occurred at movement onset with a maximum reached at peak velocity of the movement. The pallidal oscillatory γ activity correlated with movement parameters: the larger and faster the movement, the stronger was the synchronization in the γ band. In contrast, the event-related decrease in beta band activity was similar for all movements. Gamma band activity did not change with movement direction and did not occur during passive movements. The stepwise increase of γ activity with movement size and velocity suggests a role of neuronal synchronization in this frequency range in basal ganglia control of the scaling of ongoing movements.
ERIC Educational Resources Information Center
Park, Eun-Young; Kim, Won-Ho
2013-01-01
Physical therapy intervention for children with cerebral palsy (CP) is focused on reducing neurological impairments, improving strength, and preventing the development of secondary impairments in order to improve functional outcomes. However, relationship between motor impairments and functional outcome has not been proved definitely. This study…
Music supported therapy promotes motor plasticity in individuals with chronic stroke.
Ripollés, P; Rojo, N; Grau-Sánchez, J; Amengual, J L; Càmara, E; Marco-Pallarés, J; Juncadella, M; Vaquero, L; Rubio, F; Duarte, E; Garrido, C; Altenmüller, E; Münte, T F; Rodríguez-Fornells, A
2016-12-01
Novel rehabilitation interventions have improved motor recovery by induction of neural plasticity in individuals with stroke. Of these, Music-supported therapy (MST) is based on music training designed to restore motor deficits. Music training requires multimodal processing, involving the integration and co-operation of visual, motor, auditory, affective and cognitive systems. The main objective of this study was to assess, in a group of 20 individuals suffering from chronic stroke, the motor, cognitive, emotional and neuroplastic effects of MST. Using functional magnetic resonance imaging (fMRI) we observed a clear restitution of both activity and connectivity among auditory-motor regions of the affected hemisphere. Importantly, no differences were observed in this functional network in a healthy control group, ruling out possible confounds such as repeated imaging testing. Moreover, this increase in activity and connectivity between auditory and motor regions was accompanied by a functional improvement of the paretic hand. The present results confirm MST as a viable intervention to improve motor function in chronic stroke individuals.
Understanding the role of the primary somatosensory cortex: Opportunities for rehabilitation
Borich, M.R.; Brodie, S.M.; Gray, W.A.; Ionta, S.; Boyd, L.A.
2016-01-01
Emerging evidence indicates impairments in somatosensory function may be a major contributor to motor dysfunction associated with neurologic injury or disorders. However, the neuroanatomical substrates underlying the connection between aberrant sensory input and ineffective motor output are still under investigation. The primary somatosensory cortex (S1) plays a critical role in processing afferent somatosensory input and contributes to the integration of sensory and motor signals necessary for skilled movement. Neuroimaging and neurostimulation approaches provide unique opportunities to non-invasively study S1 structure and function including connectivity with other cortical regions. These research techniques have begun to illuminate casual contributions of abnormal S1 activity and connectivity to motor dysfunction and poorer recovery of motor function in neurologic patient populations. This review synthesizes recent evidence illustrating the role of S1 in motor control, motor learning and functional recovery with an emphasis on how information from these investigations may be exploited to inform stroke rehabilitation to reduce motor dysfunction and improve therapeutic outcomes. PMID:26164474
Piasecki, M; Ireland, A; Piasecki, J; Stashuk, D W; Swiecicka, A; Rutter, M K; Jones, D A; McPhee, J S
2018-05-01
The age-related loss of muscle mass is related to the loss of innervating motor neurons and denervation of muscle fibres. Not all denervated muscle fibres are degraded; some may be reinnervated by an adjacent surviving neuron, which expands the innervating motor unit proportional to the numbers of fibres rescued. Enlarged motor units have larger motor unit potentials when measured using electrophysiological techniques. We recorded much larger motor unit potentials in relatively healthy older men compared to young men, but the older men with the smallest muscles (sarcopenia) had smaller motor unit potentials than healthy older men. These findings suggest that healthy older men reinnervate large numbers of muscle fibres to compensate for declining motor neuron numbers, but a failure to do so contributes to muscle loss in sarcopenic men. Sarcopenia results from the progressive loss of skeletal muscle mass and reduced function in older age. It is likely to be associated with the well-documented reduction of motor unit numbers innervating limb muscles and the increase in size of surviving motor units via reinnervation of denervated fibres. However, no evidence exists to confirm the extent of motor unit remodelling in sarcopenic individuals. The aim of the present study was to compare motor unit size and number between young (n = 48), non-sarcopenic old (n = 13), pre-sarcopenic (n = 53) and sarcopenic (n = 29) men. Motor unit potentials (MUPs) were isolated from intramuscular and surface EMG recordings. The motor unit numbers were reduced in all groups of old compared with young men (all P < 0.001). MUPs were higher in non-sarcopenic and pre-sarcopenic men compared with young men (P = 0.039 and 0.001 respectively), but not in the vastus lateralis of sarcopenic old (P = 0.485). The results suggest that extensive motor unit remodelling occurs relatively early during ageing, exceeds the loss of muscle mass and precedes sarcopenia. Reinnervation of denervated muscle fibres probably expands the motor unit size in the non-sarcopenic and pre-sarcopenic old, but not in the sarcopenic old. These findings suggest that a failure to expand the motor unit size distinguishes sarcopenic from pre-sarcopenic muscles. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
1998-03-24
The roman candle effect as seen in this picture represents the testing of a solid rocket booster (SRB) for unexplained corrosion conditions (EUCC) which have occurred on the nozzles of redesigned solid rocket motors (RSRM). The motor being tested in this photo is a 48 M-NASA motor.
Xie, Yanjun J; Liu, Elizabeth Y; Anson, Eric R; Agrawal, Yuri
Walking speed is an important dimension of gait function and is known to decline with age. Gait function is a process of dynamic balance and motor control that relies on multiple sensory inputs (eg, visual, proprioceptive, and vestibular) and motor outputs. These sensory and motor physiologic systems also play a role in static postural control, which has been shown to decline with age. In this study, we evaluated whether imbalance that occurs as part of healthy aging is associated with slower walking speed in a nationally representative sample of older adults. We performed a cross-sectional analysis of the previously collected 1999 to 2002 National Health and Nutrition Examination Survey (NHANES) data to evaluate whether age-related imbalance is associated with slower walking speed in older adults aged 50 to 85 years (n = 2116). Balance was assessed on a pass/fail basis during a challenging postural task-condition 4 of the modified Romberg Test-and walking speed was determined using a 20-ft (6.10 m) timed walk. Multivariable linear regression was used to evaluate the association between imbalance and walking speed, adjusting for demographic and health-related covariates. A structural equation model was developed to estimate the extent to which imbalance mediates the association between age and slower walking speed. In the unadjusted regression model, inability to perform the NHANES balance task was significantly associated with 0.10 m/s slower walking speed (95% confidence interval: -0.13 to -0.07; P < .01). In the multivariable regression analysis, inability to perform the balance task was significantly associated with 0.06 m/s slower walking speed (95% confidence interval: -0.09 to -0.03; P < .01), an effect size equivalent to 12 years of age. The structural equation model estimated that age-related imbalance mediates 12.2% of the association between age and slower walking speed in older adults. In a nationally representative sample, age-related balance limitation was associated with slower walking speed. Balance impairment may lead to walking speed declines. In addition, reduced static postural control and dynamic walking speed that occur with aging may share common etiologic origins, including the decline in visual, proprioceptive, and vestibular sensory and motor functions.
Case-Smith, J
2000-01-01
This study examined how performance components and variables in intervention influenced fine motor and functional outcomes in preschool children. In a sample of 44 preschool-aged children with fine motor delays who received occupational therapy services, eight fine motor and functional performance assessments were administered at the beginning and end of the academic year. Data on the format and intervention activities of each occupational therapy session were recorded for 8 months. The children received a mean of 23 sessions, in both individual and group format. Most of the sessions (81%) used fine motor activities; 29% addressed peer interaction, and 16% addressed play skills. Visual motor outcomes were influenced by the number of intervention sessions and percent of sessions with play goals. Fine motor outcomes were most influenced by the therapists' emphasis on play and peer interaction goals; functional outcomes were influenced by number of sessions and percent of sessions that specifically addressed self-care goals. The influence of play on therapy outcomes suggests that a focus on play in intervention activities can enhance fine motor and visual motor performance.
Calabrò, Rocco Salvatore; Naro, Antonino; Russo, Margherita; Leo, Antonino; Balletta, Tina; Saccá, Ileana; De Luca, Rosaria; Bramanti, Placido
2015-01-01
Abstract Background: Tilt-table equipped with the dynamic foot-support (ERIGO) and the functional electric stimulation could be a safe and suitable device for stabilization of vital signs, increasing patient’s motivation for further recovery, decreasing the duration of hospitalization, and accelerating the adaptation to vertical posture in bedridden patients with brain-injury. Moreover, it is conceivable that verticalization may improve cognitive functions, and induce plastic changes at sensory motor and vestibular system level that may in turn facilitate motor functional recovery. Objective: To test the safety and effectiveness of ERIGO treatment on motor and cognitive functions, cortical plasticity within vestibular and sensory-motor systems in a bedridden post-stroke sample. Methods: 20 patients were randomly divided in two groups that performed ERIGO training (30 sessions) (G1) or physiotherapist-assisted verticalization training (same duration) (G2), beyond conventional neurorehabilitation treatment. Motor and cognitive functions as well as sensory-motor and vestibular system plasticity were investigated either before (T0) or after (T1) the rehabilitative protocols. Results: Both the verticalization treatments were well-tolerated. Notably, the G1 patients had a significant improvement in cognitive function (p = 0.03), global motor function (p = 0.006), sensory-motor (p < 0.001) and vestibular system plasticity (p = 0.02) as compared to G2. Conclusions: ERIGO training could be a valuable tool for the adaptation to the vertical position with a better global function improvement, as also suggested by the sensory-motor and vestibular system plasticity induction. PMID:26410207
How to make spinal motor neurons.
Davis-Dusenbery, Brandi N; Williams, Luis A; Klim, Joseph R; Eggan, Kevin
2014-02-01
All muscle movements, including breathing, walking, and fine motor skills rely on the function of the spinal motor neuron to transmit signals from the brain to individual muscle groups. Loss of spinal motor neuron function underlies several neurological disorders for which treatment has been hampered by the inability to obtain sufficient quantities of primary motor neurons to perform mechanistic studies or drug screens. Progress towards overcoming this challenge has been achieved through the synthesis of developmental biology paradigms and advances in stem cell and reprogramming technology, which allow the production of motor neurons in vitro. In this Primer, we discuss how the logic of spinal motor neuron development has been applied to allow generation of motor neurons either from pluripotent stem cells by directed differentiation and transcriptional programming, or from somatic cells by direct lineage conversion. Finally, we discuss methods to evaluate the molecular and functional properties of motor neurons generated through each of these techniques.
Neural and vascular variability and the fMRI-BOLD response in normal aging.
Kannurpatti, Sridhar S; Motes, Michael A; Rypma, Bart; Biswal, Bharat B
2010-05-01
Neural, vascular and structural variables contributing to the blood oxygen level-dependent (BOLD) signal response variability were investigated in younger and older humans. Twelve younger healthy human subjects (six male and six female; mean age: 24 years; range: 19-27 years) and 12 older healthy subjects (five male and seven female; mean age: 58 years; range: 55-71 years) with no history of head trauma and neurological disease were scanned. Functional magnetic resonance imaging measurements using the BOLD contrast were made when participants performed a motor, cognitive or a breath hold (BH) task. Activation volume and the BOLD response amplitude were estimated for the younger and older at both group and subject levels. Mean activation volume was reduced by 45%, 40% and 38% in the elderly group during the motor, cognitive and BH tasks, respectively, compared to the younger. Reduction in activation volume was substantially higher compared to the reduction in the gray matter volume of 14% in the older compared to the younger. A significantly larger variability in the intersubject BOLD signal change occurred during the motor task, compared to the cognitive task. BH-induced BOLD signal change between subjects was significantly less-variable in the motor task-activated areas in the younger compared to older whereas such a difference between age groups was not observed during the cognitive task. Hemodynamic scaling using the BH signal substantially reduced the BOLD signal variability during the motor task compared to the cognitive task. The results indicate that the origin of the BOLD signal variability between subjects was predominantly vascular during the motor task while being principally a consequence of neural variability during the cognitive task. Thus, in addition to gray matter differences, the type of task performed can have different vascular variability weighting that can influence age-related differences in brain functional response. 2010 Elsevier Inc. All rights reserved.
Muto, Akira; Ohkura, Masamichi; Kotani, Tomoya; Higashijima, Shin-ichi; Nakai, Junichi; Kawakami, Koichi
2011-01-01
Animal behaviors are generated by well-coordinated activation of neural circuits. In zebrafish, embryos start to show spontaneous muscle contractions at 17 to 19 h postfertilization. To visualize how motor circuits in the spinal cord are activated during this behavior, we developed GCaMP-HS (GCaMP-hyper sensitive), an improved version of the genetically encoded calcium indicator GCaMP, and created transgenic zebrafish carrying the GCaMP-HS gene downstream of the Gal4-recognition sequence, UAS (upstream activation sequence). Then we performed a gene-trap screen and identified the SAIGFF213A transgenic fish that expressed Gal4FF, a modified version of Gal4, in a subset of spinal neurons including the caudal primary (CaP) motor neurons. We conducted calcium imaging using the SAIGFF213A; UAS:GCaMP-HS double transgenic embryos during the spontaneous contractions. We demonstrated periodic and synchronized activation of a set of ipsilateral motor neurons located on the right and left trunk in accordance with actual muscle movements. The synchronized activation of contralateral motor neurons occurred alternately with a regular interval. Furthermore, a detailed analysis revealed rostral-to-caudal propagation of activation of the ipsilateral motor neuron, which is similar to but much slower than the rostrocaudal delay observed during swimming in later stages. Our study thus demonstrated coordinated activities of the motor neurons during the first behavior in a vertebrate. We propose the GCaMP technology combined with the Gal4FF-UAS system is a powerful tool to study functional neural circuits in zebrafish. PMID:21383146
Axonal Dysfunction Precedes Motor Neuronal Death in Amyotrophic Lateral Sclerosis
Iwai, Yuta; Shibuya, Kazumoto; Misawa, Sonoko; Sekiguchi, Yukari; Watanabe, Keisuke; Amino, Hiroshi; Kuwabara, Satoshi
2016-01-01
Wide-spread fasciculations are a characteristic feature in amyotrophic lateral sclerosis (ALS), suggesting motor axonal hyperexcitability. Previous excitability studies have shown increased nodal persistent sodium conductances and decreased potassium currents in motor axons of ALS patients, both of the changes inducing hyperexcitability. Altered axonal excitability potentially contributes to motor neuron death in ALS, but the relationship of the extent of motor neuronal death and abnormal excitability has not been fully elucidated. We performed multiple nerve excitability measurements in the median nerve at the wrist of 140 ALS patients and analyzed the relationship of compound muscle action potential (CMAP) amplitude (index of motor neuronal loss) and excitability indices, such as strength-duration time constant, threshold electrotonus, recovery cycle and current-threshold relationships. Compared to age-matched normal controls (n = 44), ALS patients (n = 140) had longer strength-duration time constant (SDTC: a measure of nodal persistent sodium current; p < 0.05), greater threshold changes in depolarizing threshold electrotonus (p < 0.05) and depolarizing current threshold relationship (i.e. less accommodation; (p < 0.05), greater superexcitability (a measure of fast potassium current; p < 0.05) and reduced late subexcitability (a measure of slow potassium current; p < 0.05), suggesting increased persistent sodium currents and decreased potassium currents. The reduced potassium currents were found even in the patient subgroups with normal CMAP (> 5mV). Regression analyses showed that SDTC (R = -0.22) and depolarizing threshold electrotonus (R = -0.22) increased with CMAP decline. These findings suggest that motor nerve hyperexcitability occurs in the early stage of the disease, and precedes motor neuronal loss in ALS. Modulation of altered ion channel function could be a treatment option for ALS. PMID:27383069
Development of Displacement Gages Exposed to Solid Rocket Motor Internal Environments
NASA Technical Reports Server (NTRS)
Bolton, D. E.; Cook, D. J.
2003-01-01
The Space Shuttle Reusable Solid Rocket Motor (RSRM) has three non-vented segment-to-segment case field joints. These joints use an interference fit J-joint that is bonded at assembly with a Pressure Sensitive Adhesive (PSA) inboard of redundant O-ring seals. Full-scale motor and sub-scale test article experience has shown that the ability to preclude gas leakage past the J-joint is a function of PSA type, joint moisture from pre-assembly humidity exposure, and the magnitude of joint displacement during motor operation. To more accurately determine the axial displacements at the J-joints, two thermally durable displacement gages (one mechanical and one electrical) were designed and developed. The mechanical displacement gage concept was generated first as a non-electrical, self-contained gage to capture the maximum magnitude of the J-joint motion. When it became feasible, the electrical displacement gage concept was generated second as a real-time linear displacement gage. Both of these gages were refined in development testing that included hot internal solid rocket motor environments and simulated vibration environments. As a result of this gage development effort, joint motions have been measured in static fired RSRM J-joints where intentional venting was produced (Flight Support Motor #8, FSM-8) and nominal non-vented behavior occurred (FSM-9 and FSM-10). This data gives new insight into the nominal characteristics of the three case J-joint positions (forward, center and aft) and characteristics of some case J-joints that became vented during motor operation. The data supports previous structural model predictions. These gages will also be useful in evaluating J-joint motion differences in a five-segment Space Shuttle solid rocket motor.
A spelling device for the paralysed
NASA Astrophysics Data System (ADS)
Birbaumer, N.; Ghanayim, N.; Hinterberger, T.; Iversen, I.; Kotchoubey, B.; Kübler, A.; Perelmouter, J.; Taub, E.; Flor, H.
1999-03-01
When Jean-Dominique Bauby suffered from a cortico-subcortical stroke that led to complete paralysis with totally intact sensory and cognitive functions, he described his experience in The Diving-Bell and the Butterfly as ``something like a giant invisible diving-bell holds my whole body prisoner''. This horrifying condition also occurs as a consequence of a progressive neurological disease, amyotrophic lateral sclerosis, which involves progressive degeneration of all the motor neurons of the somatic motor system. These `locked-in' patients ultimately become unable to express themselves and to communicate even their most basic wishes or desires, as they can no longer control their muscles to activate communication devices. We have developed a new means of communication for the completely paralysed that uses slow cortical potentials (SCPs) of the electro-encephalogram to drive an electronic spelling device.
Stereotypic Movement Disorders.
Katherine, Mackenzie
2018-04-01
This review summarizes motor stereotypies in terms of description, prevalence, pathophysiology, diagnosis and management. They are fixed and persistent movements. Stereotypies begin before 3 years of age and continue into adulthood. Primary motor stereotypies occur in children of normal intelligence, whereas secondary stereotypies ensue in the setting of an additional diagnosis such as autism spectrum disorder or other neurologic disorders. They are highly associated with comorbidities such as anxiety, obsessive-compulsive symptoms, inattention, and tics. The pathophysiology of stereotypies involves fronto-striatal overactive dopaminergic pathways, and underactive cholinergic and GABAergic inhibitory pathways. No genetic markers have been identified despite a clear genetic predisposition. Behavioral therapy is the principle treatment. Future studies will focus on identifying genetic markers, and on better understanding the functional and structural neurobiology of these movements. Copyright © 2018 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Cintas, Holly Lea; Parks, Rebecca; Don, Sarah; Gerber, Lynn
2011-01-01
Content validity and reliability of the Brief Assessment of Motor Function (BAMF) Upper Extremity Gross Motor Scale (UEGMS) were evaluated in this prospective, descriptive study. The UEGMS is one of five BAMF ordinal scales designed for quick documentation of gross, fine, and oral motor skill levels. Designed to be independent of age and…
Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron.
Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip
2016-01-01
Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons.
Motor functioning in autistic spectrum disorders: a preliminary analysis.
Behere, Aniruddh; Shahani, Lokesh; Noggle, Chad A; Dean, Raymond
2012-01-01
The study sought to identify differences in motor functioning between autism and Asperger syndrome while also assessing the diagnostic contribution of such assessment. A sample of 16 individuals with autism and 10 with Asperger syndrome completed the Dean-Woodcock Sensory-Motor Battery, and outcomes were compared. Significant differences were found in measures of cerebellar functioning, favoring Asperger subjects. Deficits in coordination, ambulation, and the Romberg test were associated with both disorders. On the basis of motor outcomes alone, 100% were accurately differentiated. Findings support the idea that motor dysfunction is a core feature of these presentations and demonstrated the utility of motor assessment in diagnostic practice.
Memisevic, Haris; Sinanovic, Osman
2013-12-01
The goal of this study was to assess the relationship between visual-motor integration and executive functions, and in particular, the extent to which executive functions can predict visual-motor integration skills in children with intellectual disability. The sample consisted of 90 children (54 boys, 36 girls; M age = 11.3 yr., SD = 2.7, range 7-15) with intellectual disabilities of various etiologies. The measure of executive functions were 8 subscales of the Behavioral Rating Inventory of Executive Function (BRIEF) consisting of Inhibition, Shifting, Emotional Control, Initiating, Working memory, Planning, Organization of material, and Monitoring. Visual-motor integration was measured with the Acadia test of visual-motor integration (VMI). Regression analysis revealed that BRIEF subscales explained 38% of the variance in VMI scores. Of all the BRIEF subscales, only two were statistically significant predictors of visual-motor integration: Working memory and Monitoring. Possible implications of this finding are further elaborated.
Motor unit recruitment by size does not provide functional advantages for motor performance
Dideriksen, Jakob L; Farina, Dario
2013-01-01
It is commonly assumed that the orderly recruitment of motor units by size provides a functional advantage for the performance of movements compared with a random recruitment order. On the other hand, the excitability of a motor neuron depends on its size and this is intrinsically linked to its innervation number. A range of innervation numbers among motor neurons corresponds to a range of sizes and thus to a range of excitabilities ordered by size. Therefore, if the excitation drive is similar among motor neurons, the recruitment by size is inevitably due to the intrinsic properties of motor neurons and may not have arisen to meet functional demands. In this view, we tested the assumption that orderly recruitment is necessarily beneficial by determining if this type of recruitment produces optimal motor output. Using evolutionary algorithms and without any a priori assumptions, the parameters of neuromuscular models were optimized with respect to several criteria for motor performance. Interestingly, the optimized model parameters matched well known neuromuscular properties, but none of the optimization criteria determined a consistent recruitment order by size unless this was imposed by an association between motor neuron size and excitability. Further, when the association between size and excitability was imposed, the resultant model of recruitment did not improve the motor performance with respect to the absence of orderly recruitment. A consistent observation was that optimal solutions for a variety of criteria of motor performance always required a broad range of innervation numbers in the population of motor neurons, skewed towards the small values. These results indicate that orderly recruitment of motor units in itself does not provide substantial functional advantages for motor control. Rather, the reason for its near-universal presence in human movements is that motor functions are optimized by a broad range of innervation numbers. PMID:24144879
Motor unit recruitment by size does not provide functional advantages for motor performance.
Dideriksen, Jakob L; Farina, Dario
2013-12-15
It is commonly assumed that the orderly recruitment of motor units by size provides a functional advantage for the performance of movements compared with a random recruitment order. On the other hand, the excitability of a motor neuron depends on its size and this is intrinsically linked to its innervation number. A range of innervation numbers among motor neurons corresponds to a range of sizes and thus to a range of excitabilities ordered by size. Therefore, if the excitation drive is similar among motor neurons, the recruitment by size is inevitably due to the intrinsic properties of motor neurons and may not have arisen to meet functional demands. In this view, we tested the assumption that orderly recruitment is necessarily beneficial by determining if this type of recruitment produces optimal motor output. Using evolutionary algorithms and without any a priori assumptions, the parameters of neuromuscular models were optimized with respect to several criteria for motor performance. Interestingly, the optimized model parameters matched well known neuromuscular properties, but none of the optimization criteria determined a consistent recruitment order by size unless this was imposed by an association between motor neuron size and excitability. Further, when the association between size and excitability was imposed, the resultant model of recruitment did not improve the motor performance with respect to the absence of orderly recruitment. A consistent observation was that optimal solutions for a variety of criteria of motor performance always required a broad range of innervation numbers in the population of motor neurons, skewed towards the small values. These results indicate that orderly recruitment of motor units in itself does not provide substantial functional advantages for motor control. Rather, the reason for its near-universal presence in human movements is that motor functions are optimized by a broad range of innervation numbers.
Choo, Silvana X; Stratford, Paul; Richardson, Julie; Bosch, Jackie; Pettit, Susan M; Ansley, Barbara J; Harris, Jocelyn E
2017-09-10
To determine whether there was a difference in the sensitivity to change of the subscales of the Functional Independence Measure and the Assessment of Motor and Process Skills within three different post-acute inpatient rehabilitation populations. We conducted retrospective chart review of patients consecutively admitted to inpatient rehabilitation units, with both admission and discharge Functional Independence Measure and Assessment of Motor and Process Skills scores. A total of 276 participants were included and categorized into diagnostic groups (orthopedic, oncology, and geriatric). Within group, sensitivity to change was evaluated for the subscales of each measure by calculating the difference in standardized response means (SRM) and 95% confidence intervals (CI). The Functional Independence Measure motor subscale was more sensitive to change than the Assessment of Motor and Process Skills in the orthopedic and geriatric groups (SRM difference = 1.53 [95% CI 0.93, 2.3] and 0.65 [95% CI 0.3, 1.02], respectively) but not in the oncology group (SRM difference = 0.42 [95% CI -0.2, 1.04]). For the cognitive subscales, the Assessment of Motor and Process Skills was more sensitive to change than the Functional Independence Measure in all three groups (SRM difference = 0.38 [95% CI 004, 0.74], 0.65 [95% CI 0.45, 0.90], and 1.15 [95% CI 0.77, 1.69] for orthopedic, geriatric, and oncology, respectively). The Functional Independence Measure is a mandated measure for all rehabilitation units in Canada. As the cognitive subscale of the Assessment of Motor and Process Skills is more sensitive to change than the Functional Independence Measure, we recommend also administering the Assessment of Motor and Process Skills to better detect changes in the cognitive aspect of function. Implications for rehabilitation When deciding between the Functional Independence Measure or the Assessment of Motor and Process Skills, it is important to consider whether patients' functional status is expected to change similarly or differently. The difference in sensitivity to change between the subscales of the two outcome measures varies with the characteristics of change (similar or different) in patients' functional status. We recommend using the Assessment of Motor and Process Skills, along with the Functional Independence Measure, for patients who are expected to make similar amounts of change in functional status, as the cognitive subscale of the Assessment of Motor and Process Skills is more sensitive to change and can better detect changes in the cognitive aspect of functioning. For patients whose functional status are expected to change differently (diverse diagnoses), the Functional Independence Measure may be more useful as the motor subscale was more sensitive to change when comparing between rehabilitation populations.
Zukor, Katherine; Wang, Hong; Siddharthan, Venkatraman; Julander, Justin G; Morrey, John D
2018-06-01
Zika virus (ZIKV) has received widespread attention because of its effect on the developing fetus. It is becoming apparent, however, that severe neurological sequelae, such as Guillian-Barrë syndrome (GBS), myelitis, encephalitis, and seizures can occur after infection of adults. This study demonstrates that a contemporary strain of ZIKV can widely infect astrocytes and neurons in the brain and spinal cord of adult, interferon α/β receptor knockout mice (AG129 strain) and cause progressive hindlimb paralysis, as well as severe seizure-like activity during the acute phase of disease. The severity of hindlimb motor deficits correlated with increased numbers of ZIKV-infected lumbosacral spinal motor neurons and decreased numbers of spinal motor neurons. Electrophysiological compound muscle action potential (CMAP) amplitudes in response to stimulation of the lumbosacral spinal cord were reduced when obvious motor deficits were present. ZIKV immunoreactivity was high, intense, and obvious in tissue sections of the brain and spinal cord. Infection in the brain and spinal cord was also associated with astrogliosis as well as T cell and neutrophil infiltration. CMAP and histological analysis indicated that peripheral nerve and muscle functions were intact. Consequently, motor deficits in these circumstances appear to be primarily due to myelitis and possibly encephalitis as opposed to a peripheral neuropathy or a GBS-like syndrome. Thus, acute ZIKV infection of adult AG129 mice may be a useful model for ZIKV-induced myelitis, encephalitis, and seizure activity.
Raij, Tuukka T.; Riekki, Tapani J.J.
2012-01-01
Neuronal underpinnings of auditory verbal hallucination remain poorly understood. One suggested mechanism is brain activation that is similar to verbal imagery but occurs without the proper activation of the neuronal systems that are required to tag the origins of verbal imagery in one's mind. Such neuronal systems involve the supplementary motor area. The supplementary motor area has been associated with awareness of intention to make a hand movement, but whether this region is related to the sense of ownership of one's verbal thought remains poorly known. We hypothesized that the supplementary motor area is related to the distinction between one's own mental processing (auditory verbal imagery) and similar processing that is attributed to non-self author (auditory verbal hallucination). To test this hypothesis, we asked patients to signal the onset and offset of their auditory verbal hallucinations during functional magnetic resonance imaging. During non-hallucination periods, we asked the same patients to imagine the hallucination they had previously experienced. In addition, healthy control subjects signaled the onset and offset of self-paced imagery of similar voices. Both hallucinations and the imagery of hallucinations were associated with similar activation strengths of the fronto-temporal language-related circuitries, but the supplementary motor area was activated more strongly during the imagery than during hallucination. These findings suggest that auditory verbal hallucination resembles verbal imagery in language processing, but without the involvement of the supplementary motor area, which may subserve the sense of ownership of one's own verbal imagery. PMID:24179739
Neural Mechanisms Underlying Motivation of Mental Versus Physical Effort
Daunizeau, Jean; Pessiglione, Mathias
2012-01-01
Mental and physical efforts, such as paying attention and lifting weights, have been shown to involve different brain systems. These cognitive and motor systems, respectively, include cortical networks (prefronto-parietal and precentral regions) as well as subregions of the dorsal basal ganglia (caudate and putamen). Both systems appeared sensitive to incentive motivation: their activity increases when we work for higher rewards. Another brain system, including the ventral prefrontal cortex and the ventral basal ganglia, has been implicated in encoding expected rewards. How this motivational system drives the cognitive and motor systems remains poorly understood. More specifically, it is unclear whether cognitive and motor systems can be driven by a common motivational center or if they are driven by distinct, dedicated motivational modules. To address this issue, we used functional MRI to scan healthy participants while performing a task in which incentive motivation, cognitive, and motor demands were varied independently. We reasoned that a common motivational node should (1) represent the reward expected from effort exertion, (2) correlate with the performance attained, and (3) switch effective connectivity between cognitive and motor regions depending on task demand. The ventral striatum fulfilled all three criteria and therefore qualified as a common motivational node capable of driving both cognitive and motor regions of the dorsal striatum. Thus, we suggest that the interaction between a common motivational system and the different task-specific systems underpinning behavioral performance might occur within the basal ganglia. PMID:22363208
Liu, Ying; Xu, Xun-cheng; Zou, Yi; Li, Su-rong; Zhang, Bin; Wang, Yue
2015-01-01
Phrenic nerve transfer is a major dynamic treatment used to repair brachial plexus root avulsion. We analyzed 72 relevant articles on phrenic nerve transfer to repair injured brachial plexus that were indexed by Science Citation Index. The keywords searched were brachial plexus injury, phrenic nerve, repair, surgery, protection, nerve transfer, and nerve graft. In addition, we performed neurophysiological analysis of the preoperative condition and prognosis of 10 patients undergoing ipsilateral phrenic nerve transfer to the musculocutaneous nerve in our hospital from 2008 to 201 3 and observed the electromyograms of the biceps brachii and motor conduction function of the musculocutaneous nerve. Clinically, approximately 28% of patients had brachial plexus injury combined with phrenic nerve injury, and injured phrenic nerve cannot be used as a nerve graft. After phrenic nerve transfer to the musculocutaneous nerve, the regenerated potentials first appeared at 3 months. Recovery of motor unit action potential occurred 6 months later and became more apparent at 12 months. The percent of patients recovering ‘excellent’ and ‘good’ muscle strength in the biceps brachii was 80% after 18 months. At 12 months after surgery, motor nerve conduction potential appeared in the musculocutaneous nerve in seven cases. These data suggest that preoperative evaluation of phrenic nerve function may help identify the most appropriate nerve graft in patients with an injured brachial plexus. The functional recovery of a transplanted nerve can be dynamically observed after the surgery. PMID:25883637
Liu, Ying; Xu, Xun-Cheng; Zou, Yi; Li, Su-Rong; Zhang, Bin; Wang, Yue
2015-02-01
Phrenic nerve transfer is a major dynamic treatment used to repair brachial plexus root avulsion. We analyzed 72 relevant articles on phrenic nerve transfer to repair injured brachial plexus that were indexed by Science Citation Index. The keywords searched were brachial plexus injury, phrenic nerve, repair, surgery, protection, nerve transfer, and nerve graft. In addition, we performed neurophysiological analysis of the preoperative condition and prognosis of 10 patients undergoing ipsilateral phrenic nerve transfer to the musculocutaneous nerve in our hospital from 2008 to 201 3 and observed the electromyograms of the biceps brachii and motor conduction function of the musculocutaneous nerve. Clinically, approximately 28% of patients had brachial plexus injury combined with phrenic nerve injury, and injured phrenic nerve cannot be used as a nerve graft. After phrenic nerve transfer to the musculocutaneous nerve, the regenerated potentials first appeared at 3 months. Recovery of motor unit action potential occurred 6 months later and became more apparent at 12 months. The percent of patients recovering 'excellent' and 'good' muscle strength in the biceps brachii was 80% after 18 months. At 12 months after surgery, motor nerve conduction potential appeared in the musculocutaneous nerve in seven cases. These data suggest that preoperative evaluation of phrenic nerve function may help identify the most appropriate nerve graft in patients with an injured brachial plexus. The functional recovery of a transplanted nerve can be dynamically observed after the surgery.
Redle, Erin; Vannest, Jennifer; Maloney, Thomas; Tsevat, Rebecca K.; Eikenberry, Sarah; Lewis, Barbara; Shriberg, Lawrence D.; Tkach, Jean; Holland, Scott K.
2014-01-01
Children with persistent speech disorders (PSD) often present with overt or subtle motor deficits; the possibility that speech disorders and motor deficits could arise from a shared neurological base is currently unknown. Functional MRI (fMRI) was used to examine the brain networks supporting fine motor praxis in children with PSD and without clinically identified fine motor deficits. Methods This case-control study included 12 children with PSD (mean age 7.42 years, 4 female) and 12 controls (mean age 7.44 years, 4 female). Children completed behavioral evaluations using standardized motor assessments and parent reported functional measures. During fMRI scanning, participants completed a cued finger tapping task contrasted passive listening. A general linear model approach identified brain regions associated with finger tapping in each group and regions that differed between groups. The relationship between regional fMRI activation and fine motor skill was assessed using a regression analysis. Results Children with PSD had significantly poorer results for rapid speech production and fine motor praxis skills, but did not differ on classroom functional skills. Functional MRI results showed that children with PSD had significantly more activation in the cerebellum during finger tapping. Positive correlations between performance on a fine motor praxis test and activation multiple cortical regions were noted for children with PSD but not for controls. Conclusions Over-activation in the cerebellum during a motor task may reflect a subtle abnormality in the non-speech motor neural circuitry in children with PSD. PMID:25481413
The structure and function of serially homologous leg motor neurons in the locust. I. Anatomy.
Wilson, J A
1979-01-01
Twenty-one prothoracic and 17 mesothoracic motor neurons innervating leg muscles have been identified physiologically and subsequently injected with dye from a microelectrode. A tract containing the primary neurites of motor neurons innervating the retractor unquis, levator and depressor tarsus, flexor tibiae, and reductor femora is described. All motor neurons studied have regions in which their dendritic branches overlap with those of other leg motor neurons. Identified, serially homologous motor neurons in the three thoracic ganglia were found to have: (1) cell bodies at similar locations and morphologically similar primary neurites (e.g., flexor tibiae motor neurons), (2) cell bodies at different locations in each ganglion and morphologically different primary neurites in each ganglion (e.g., fast retractor unguis motor neurons), or (3) cell bodies at similar locations and morphologically similar primary neurites but with a functional switch in one ganglion relative to the function of the neurons in the other two ganglia. As an example of the latter, the morphology of the metathoracic slow extensor tibiae (SETi) motor neurons was similar to that of pro- and mesothoracic fast extensor tibiae (FETi) motor neurons. Similarly the metathoracic FETi bears a striking resemblance to the pro- and the mesothoracic SETi. It is proposed that in the metathoracic ganglion the two extensor tibiae motor neurons have switched functions while retaining similar morphologies relative to the structure and function of their pro- and mesothoracic serial homologues.
NASA Astrophysics Data System (ADS)
Stam, Samantha; Alberts, Jonathan; Gardel, Margaret; Munro, Edwin
2013-03-01
The interactions of bipolar myosin II filaments with actin arrays are a predominate means of generating forces in numerous physiological processes including muscle contraction and cell migration. However, how the spatiotemporal regulation of these forces depends on motor mechanochemistry, bipolar filament size, and local actin mechanics is unknown. Here, we simulate myosin II motors with an agent-based model in which the motors have been benchmarked against experimental measurements. Force generation occurs in two distinct regimes characterized either by stable tension maintenance or by stochastic buildup and release; transitions between these regimes occur by changes to duty ratio and myosin filament size. The time required for building force to stall scales inversely with the stiffness of a network and the actin gliding speed of a motor. Finally, myosin motors are predicted to contract a network toward stiffer regions, which is consistent with experimental observations. Our representation of myosin motors can be used to understand how their mechanical and biochemical properties influence their observed behavior in a variety of in vitro and in vivo contexts.
Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; LaGasse, Linda L; Lester, Barry M; McKinlay, Christopher J D; Harding, Jane E; Wouldes, Trecia A; Thompson, Benjamin
2017-06-01
Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of fine motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Jinjiang; Chen, Xiaolei; Zhang, Jiashu; Zheng, Gang; Lv, Xueming; Li, Fangye; Hu, Shen; Zhang, Ting; Xu, Bainan
2013-01-01
Insular lesions remain surgically challenging because of the need to balance aggressive resection and functional protection. Motor function deficits due to corticospinal tract injury are a common complication of surgery for lesions adjacent to the internal capsule and it is therefore essential to evaluate the corticospinal tract adjacent to the lesion. We used diffusion tensor imaging to evaluate the corticospinal tract in 89 patients with insular lobe lesions who underwent surgery in Chinese PLA General Hospital from February 2009 to May 2011. Postoperative motor function evaluation revealed that 57 patients had no changes in motor function, and 32 patients suffered motor dysfunction or aggravated motor dysfunction. Of the affected patients, 20 recovered motor function during the 6–12-month follow-up, and an additional 12 patients did not recover over more than 12 months of follow-up. Following reconstruction of the corticospinal tract, fractional anisotropy comparison demonstrated that preoperative, intraoperative and follow-up normalized fractional anisotropy in the stable group was higher than in the transient deficits group or the long-term deficits group. Compared with the transient deficits group, intraoperative normalized fractional anisotropy significantly decreased in the long-term deficits group. We conclude that intraoperative fractional anisotropy values of the corticospinal tracts can be used as a prognostic indicator of motor function outcome. PMID:25206435
Makary, Meena M; Seulgi, Eun; Kyungmo Park
2017-07-01
Recent developments in data acquisition of functional magnetic resonance imaging (fMRI) have led to rapid preprocessing and analysis of brain activity in a quasireal-time basis, what so called real-time fMRI neurofeedback (rtfMRI-NFB). This information is fed back to subjects allowing them to gain a voluntary control over their own region-specific brain activity. Forty-one healthy participants were randomized into an experimental (NFB) group, who received a feedback directly proportional to their brain activity from the primary motor cortex (M1), and a control (CTRL) group who received a sham feedback. The M1 ROI was functionally localized during motor execution and imagery tasks. A resting-state functional run was performed before and after the neurofeedback training to investigate the default mode network (DMN) modulation after training. The NFB group revealed increased DMN functional connectivity after training to the cortical and subcortical sensory/motor areas (M1/S1 and caudate nucleus, respectively), which may be associated with sensorimotor processing of learning in the resting state. These results show that motor imagery training through rtfMRI-NFB could modulate the DMN functional connectivity to motor-related areas, suggesting that this modulation potentially subserved the establishment of motor learning in the NFB group.
Fan, Yang-teng; Lin, Keh-chung; Liu, Ho-ling; Chen, Yao-liang; Wu, Ching-yi
2015-01-01
Diffusion tensor imaging (DTI) studies indicate the structural integrity of the ipsilesional corticospinal tract (CST) and the transcallosal motor tract, which are closely linked to stroke recovery. However, the individual contribution of these 2 fibers on different levels of outcomes remains unclear. Here, we used DTI tractography to investigate whether structural changes of the ipsilesional CST and the transcallosal motor tracts associate with motor and functional recovery after stroke rehabilitation. Ten participants with post-acute stroke underwent the Fugl-Meyer Assessment (FMA), the Wolf Motor Function Test (WMFT), the Functional Independence Measure (FIM), and DTI before and after bilateral robotic training. All participants had marked improvements in motor performance, functional use of the affected arm, and independence in daily activities. Increased fractional anisotropy (FA) in the ipsilesional CST and the transcallosal motor tracts was noted from pre-treatment to the end of treatment. Participants with higher pre-to-post differences in FA values of the transcallosal motor tracts had greater gains in the WMFT and the FIM scores. A greater improvement on the FMA was coupled with increased FA changes along the ipsilesional CST. These findings suggest 2 different structural indicators for post-stroke recovery separately at the impairment-based and function-based levels.
Alves-Pinto, Ana; Turova, Varvara; Blumenstein, Tobias; Thienel, Anna; Wohlschläger, Afra; Lampe, Renée
2015-01-01
Damage to the developing brain may lead to lifelong motor impairments namely of the hand function. Playing an instrument combines the execution of gross and fine motor movements with direct auditory feedback of performance and with emotional value. This motor-associated sensory information may work as a self-control of motor performance in therapeutic settings. The current study examined the occurrence of neuronal changes associated to piano training in youths with neurodevelopmental-associated hand motor deficits. Functional magnetic resonance imaging responses evoked during a finger tapping task in a group of ten youths with neuromotor impairments that received individualized piano lessons for eighteen months were analyzed. Functional imaging data obtained before and after the piano training was compared to that obtained from a similar group of six youths who received no training during the same period of time. Dynamic causal modeling of functional data indicated an increase in positive connectivity from the left primary motor cortical area to the right cerebellum from before to after the piano training. A wide variability across patients was observed and further studies remain necessary to clarify the neurophysiological basis of the effects of piano training in hand motor function of patients with neurodevelopmental motor disorders. Copyright © 2014 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
De Bellis, Francesco; Ferrara, Antonia; Errico, Domenico; Panico, Francesco; Sagliano, Laura; Conson, Massimiliano; Trojano, Luigi
2016-01-01
Recent evidence shows that activation of motor information can favor identification of related tools, thus suggesting a strict link between motor and conceptual knowledge in cognitive representation of tools. However, the involvement of motor information in further semantic processing has not been elucidated. In three experiments, we aimed to ascertain whether motor information provided by observation of actions could affect processing of conceptual knowledge about tools. In Experiment 1, healthy participants judged whether pairs of tools evoking different functional handgrips had the same function. In Experiment 2 participants judged whether tools were paired with appropriate recipients. Finally, in Experiment 3 we again required functional judgments as in Experiment 1, but also included in the set of stimuli pairs of objects having different function and similar functional handgrips. In all experiments, pictures displaying either functional grasping (aimed to use tools) or structural grasping (just aimed to move tools independently from their use) were presented before each stimulus pair. The results demonstrated that, in comparison with structural grasping, observing functional grasping facilitates judgments about tools' function when objects did not imply the same functional manipulation (Experiment 1), whereas worsened such judgments when objects shared functional grasp (Experiment 3). Instead, action observation did not affect judgments concerning tool-recipient associations (Experiment 2). Our findings support a task-dependent influence of motor information on high-order conceptual tasks and provide further insights into how motor and conceptual processing about tools can interact.
Modulation of motor performance and motor learning by transcranial direct current stimulation.
Reis, Janine; Fritsch, Brita
2011-12-01
Transcranial direct current stimulation (tDCS) has shown preliminary success in improving motor performance and motor learning in healthy individuals, and restitution of motor deficits in stroke patients. This brief review highlights some recent work. Within the past years, behavioural studies have confirmed and specified the timing and polarity specific effects of tDCS on motor skill learning and motor adaptation. There is strong evidence that timely co-application of (hand/arm) training and anodal tDCS to the contralateral M1 can improve motor learning. Improvements in motor function as measured by clinical scores have been described for combined tDCS and training in stroke patients. For this purpose, electrode montages have been modified with respect to interhemispheric imbalance after brain injury. Cathodal tDCS applied to the unlesioned M1 or bihemispheric M1 stimulation appears to be well tolerated and useful to induce improvements in motor function. Mechanistic studies in humans and animals are discussed with regard to physiological motor learning. tDCS is well tolerated, easy to use and capable of inducing lasting improvements in motor function. This method holds promise for the rehabilitation of motor disabilities, although acute studies in patients with brain injury are so far lacking.
Exercise alters resting-state functional connectivity of motor circuits in parkinsonian rats.
Wang, Zhuo; Guo, Yumei; Myers, Kalisa G; Heintz, Ryan; Peng, Yu-Hao; Maarek, Jean-Michel I; Holschneider, Daniel P
2015-01-01
Few studies have examined changes in functional connectivity after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise on the resting-state functional connectivity (rsFC) of motor circuits of rats subjected to bilateral 6-hydroxydopamine lesion of the dorsal striatum. Our results showed substantial similarity between lesion-induced changes in rsFC in the rats and alterations in rsFC reported in Parkinson's disease subjects, including disconnection of the dorsolateral striatum. Exercise in lesioned rats resulted in: (1) normalization of many of the lesion-induced alterations in rsFC, including reintegration of the dorsolateral striatum into the motor network; (2) emergence of the ventrolateral striatum as a new broadly connected network hub; and (3) increased rsFC among the motor cortex, motor thalamus, basal ganglia, and cerebellum. Our results showed for the first time that long-term exercise training partially reversed lesion-induced alterations in rsFC of the motor circuits, and in addition enhanced functional connectivity in specific motor pathways in the parkinsonian rats, which could underlie recovery in motor functions observed in these animals. Copyright © 2015 Elsevier Inc. All rights reserved.
Pomeroy, Valerie M; Ward, Nick S; Johansen-Berg, Heidi; van Vliet, Paulette; Burridge, Jane; Hunter, Susan M; Lemon, Roger N; Rothwell, John; Weir, Christopher J; Wing, Alan; Walker, Andrew A; Kennedy, Niamh; Barton, Garry; Greenwood, Richard J; McConnachie, Alex
2014-02-01
Functional strength training in addition to conventional physical therapy could enhance upper limb recovery early after stroke more than movement performance therapy plus conventional physical therapy. To determine (a) the relative clinical efficacy of conventional physical therapy combined with functional strength training and conventional physical therapy combined with movement performance therapy for upper limb recovery; (b) the neural correlates of response to conventional physical therapy combined with functional strength training and conventional physical therapy combined with movement performance therapy; (c) whether any one or combination of baseline measures predict motor improvement in response to conventional physical therapy combined with functional strength training or conventional physical therapy combined with movement performance therapy. Randomized, controlled, observer-blind trial. The sample will consist of 288 participants with upper limb paresis resulting from a stroke that occurred within the previous 60 days. All will be allocated to conventional physical therapy combined with functional strength training or conventional physical therapy combined with movement performance therapy. Functional strength training and movement performance therapy will be undertaken for up to 1·5 h/day, five-days/week for six-weeks. Measurements will be undertaken before randomization, six-weeks thereafter, and six-months after stroke. Primary efficacy outcome will be the Action Research Arm Test. Explanatory measurements will include voxel-wise estimates of brain activity during hand movement, brain white matter integrity (fractional anisotropy), and brain-muscle connectivity (e.g. latency of motor evoked potentials). The primary clinical efficacy analysis will compare treatment groups using a multilevel normal linear model adjusting for stratification variables and for which therapist administered the treatment. Effect of conventional physical therapy combined with functional strength training versus conventional physical therapy combined with movement performance therapy will be summarized using the adjusted mean difference and 95% confidence interval. To identify the neural correlates of improvement in both groups, we will investigate associations between change from baseline in clinical outcomes and each explanatory measure. To identify baseline measurements that independently predict motor improvement, we will develop a multiple regression model. © 2013 The Authors. International Journal of Stroke published by John Wiley & Sons Ltd on behalf of World Stroke Organization.
Bernard-Marissal, Nathalie; Médard, Jean-Jacques; Azzedine, Hamid; Chrast, Roman
2015-04-01
Mutations in Sigma 1 receptor (SIGMAR1) have been previously identified in patients with amyotrophic lateral sclerosis and disruption of Sigmar1 in mouse leads to locomotor deficits. However, cellular mechanisms underlying motor phenotypes in human and mouse with disturbed SIGMAR1 function have not been described so far. Here we used a combination of in vivo and in vitro approaches to investigate the role of SIGMAR1 in motor neuron biology. Characterization of Sigmar1(-/-) mice revealed that affected animals display locomotor deficits associated with muscle weakness, axonal degeneration and motor neuron loss. Using primary motor neuron cultures, we observed that pharmacological or genetic inactivation of SIGMAR1 led to motor neuron axonal degeneration followed by cell death. Disruption of SIGMAR1 function in motor neurons disturbed endoplasmic reticulum-mitochondria contacts, affected intracellular calcium signalling and was accompanied by activation of endoplasmic reticulum stress and defects in mitochondrial dynamics and transport. These defects were not observed in cultured sensory neurons, highlighting the exacerbated sensitivity of motor neurons to SIGMAR1 function. Interestingly, the inhibition of mitochondrial fission was sufficient to induce mitochondria axonal transport defects as well as axonal degeneration similar to the changes observed after SIGMAR1 inactivation or loss. Intracellular calcium scavenging and endoplasmic reticulum stress inhibition were able to restore mitochondrial function and consequently prevent motor neuron degeneration. These results uncover the cellular mechanisms underlying motor neuron degeneration mediated by loss of SIGMAR1 function and provide therapeutically relevant insight into motor neuronal diseases. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
SMN is required for sensory-motor circuit function in Drosophila
Imlach, Wendy L.; Beck, Erin S.; Choi, Ben Jiwon; Lotti, Francesco; Pellizzoni, Livio; McCabe, Brian D.
2012-01-01
Summary Spinal muscular atrophy (SMA) is a lethal human disease characterized by motor neuron dysfunction and muscle deterioration due to depletion of the ubiquitous Survival Motor Neuron (SMN) protein. Drosophila SMN mutants have reduced muscle size and defective locomotion, motor rhythm and motor neuron neurotransmission. Unexpectedly, restoration of SMN in either muscles or motor neurons did not alter these phenotypes. Instead, SMN must be expressed in proprioceptive neurons and interneurons in the motor circuit to non-autonomously correct defects in motor neurons and muscles. SMN depletion disrupts the motor system subsequent to circuit development and can be mimicked by the inhibition of motor network function. Furthermore, increasing motor circuit excitability by genetic or pharmacological inhibition of K+ channels can correct SMN-dependent phenotypes. These results establish sensory-motor circuit dysfunction as the origin of motor system deficits in this SMA model and suggest that enhancement of motor neural network activity could ameliorate the disease. PMID:23063130
Neuropsychological Investigation of Motor Impairments in Autism
Duffield, Tyler; Trontel, Haley; Bigler, Erin D.; Froehlich, Alyson; Prigge, Molly B.; Travers, Brittany; Green, Ryan R.; Cariello, Annahir N.; Cooperrider, Jason; Nielsen, Jared; Alexander, Andrew; Anderson, Jeffrey; Fletcher, P. Thomas; Lange, Nicholas; Zielinski, Brandon; Lainhart, Janet
2013-01-01
It is unclear how standardized neuropsychological measures of motor function relate to brain volumes of motor regions in autism spectrum disorder (ASD). An all male sample composed of 59 ASD and 30 controls (ages 5–33 years) completed three measures of motor function: strength of grip (SOG), finger tapping test (FTT), and grooved peg-board test (GPT). Likewise, all participants underwent magnetic resonance imaging with region of interest (ROI) volumes obtained to include the following regions: motor cortex (pre-central gyrus), somatosensory cortex (post-central gyrus), thalamus, basal ganglia, cerebellum and caudal middle frontal gyrus. These traditional neuropsychological measures of motor function are assumed to differ in motor complexity with GPT requiring the most followed by FTT and SOG. Performance by ASD participants on the GPT and FTT differed significantly from controls, with the largest effect size differences observed on the more complex GPT task. Differences on the SOG task between the two groups were non-significant. Since more complex motor tasks tap more complex networks, poorer GPT performance by those with ASD may reflect less efficient motor networks. There was no gross pathology observed in classic motor areas of the brain in ASD, as region of interest (ROI) volumes did not differ, but FTT was negatively related to motor cortex volume in ASD. The results suggest a hierarchical motor disruption in ASD, with difficulties evident only in more complex tasks as well as a potential anomalous size-function relation in motor cortex in ASD. PMID:23985036
Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J
2012-06-20
The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.
Wijdicks, Eelco F M; Varelas, Panayiotis N; Gronseth, Gary S; Greer, David M
2010-06-08
To provide an update of the 1995 American Academy of Neurology guideline with regard to the following questions: Are there patients who fulfill the clinical criteria of brain death who recover neurologic function? What is an adequate observation period to ensure that cessation of neurologic function is permanent? Are complex motor movements that falsely suggest retained brain function sometimes observed in brain death? What is the comparative safety of techniques for determining apnea? Are there new ancillary tests that accurately identify patients with brain death? A systematic literature search was conducted and included a review of MEDLINE and EMBASE from January 1996 to May 2009. Studies were limited to adults. In adults, there are no published reports of recovery of neurologic function after a diagnosis of brain death using the criteria reviewed in the 1995 American Academy of Neurology practice parameter. Complex-spontaneous motor movements and false-positive triggering of the ventilator may occur in patients who are brain dead. There is insufficient evidence to determine the minimally acceptable observation period to ensure that neurologic functions have ceased irreversibly. Apneic oxygenation diffusion to determine apnea is safe, but there is insufficient evidence to determine the comparative safety of techniques used for apnea testing. There is insufficient evidence to determine if newer ancillary tests accurately confirm the cessation of function of the entire brain.
Combs, Hannah L.; Jones, Theresa A.; Kozlowski, Dorothy A.
2016-01-01
Abstract Cortical reorganization subsequent to post-stroke motor rehabilitative training (RT) has been extensively examined in animal models and humans. However, similar studies focused on the effects of motor training after traumatic brain injury (TBI) are lacking. We previously reported that after a moderate/severe TBI in adult male rats, functional improvements in forelimb use were accomplished only with a combination of skilled forelimb reach training and aerobic exercise, with or without nonimpaired forelimb constraint. Thus, the current study was designed to examine the relationship between functional motor cortical map reorganization after experimental TBI and the behavioral improvements resulting from this combinatorial rehabilitative regime. Adult male rats were trained to proficiency on a skilled reaching task, received a unilateral controlled cortical impact (CCI) over the forelimb area of the caudal motor cortex (CMC). Three days post-CCI, animals began RT (n = 13) or no rehabilitative training (NoRT) control procedures (n = 13). The RT group participated in daily skilled reach training, voluntary aerobic exercise, and nonimpaired forelimb constraint. This RT regimen significantly improved impaired forelimb reaching success and normalized reaching strategies, consistent with previous findings. RT also enlarged the area of motor cortical wrist representation, derived by intracortical microstimulation, compared to NoRT. These findings indicate that sufficient RT can greatly improve motor function and improve the functional integrity of remaining motor cortex after a moderate/severe CCI. When compared with findings from stroke models, these findings also suggest that more intense RT may be needed to improve motor function and remodel the injured cortex after TBI. PMID:26421759
Combs, Hannah L; Jones, Theresa A; Kozlowski, Dorothy A; Adkins, DeAnna L
2016-04-15
Cortical reorganization subsequent to post-stroke motor rehabilitative training (RT) has been extensively examined in animal models and humans. However, similar studies focused on the effects of motor training after traumatic brain injury (TBI) are lacking. We previously reported that after a moderate/severe TBI in adult male rats, functional improvements in forelimb use were accomplished only with a combination of skilled forelimb reach training and aerobic exercise, with or without nonimpaired forelimb constraint. Thus, the current study was designed to examine the relationship between functional motor cortical map reorganization after experimental TBI and the behavioral improvements resulting from this combinatorial rehabilitative regime. Adult male rats were trained to proficiency on a skilled reaching task, received a unilateral controlled cortical impact (CCI) over the forelimb area of the caudal motor cortex (CMC). Three days post-CCI, animals began RT (n = 13) or no rehabilitative training (NoRT) control procedures (n = 13). The RT group participated in daily skilled reach training, voluntary aerobic exercise, and nonimpaired forelimb constraint. This RT regimen significantly improved impaired forelimb reaching success and normalized reaching strategies, consistent with previous findings. RT also enlarged the area of motor cortical wrist representation, derived by intracortical microstimulation, compared to NoRT. These findings indicate that sufficient RT can greatly improve motor function and improve the functional integrity of remaining motor cortex after a moderate/severe CCI. When compared with findings from stroke models, these findings also suggest that more intense RT may be needed to improve motor function and remodel the injured cortex after TBI.
Carmel, Jason B; Kimura, Hiroki; Martin, John H
2014-01-08
Partial injury to the corticospinal tract (CST) causes sprouting of intact axons at their targets, and this sprouting correlates with functional improvement. Electrical stimulation of motor cortex augments sprouting of intact CST axons and promotes functional recovery when applied soon after injury. We hypothesized that electrical stimulation of motor cortex in the intact hemisphere after chronic lesion of the CST in the other hemisphere would restore function through ipsilateral control. To test motor skill, rats were trained and tested to walk on a horizontal ladder with irregularly spaced rungs. Eight weeks after injury, produced by pyramidal tract transection, half of the rats received forelimb motor cortex stimulation of the intact hemisphere. Rats with injury and stimulation had significantly improved forelimb control compared with rats with injury alone and achieved a level of proficiency similar to uninjured rats. To test whether recovery of forelimb function was attributable to ipsilateral control, we selectively inactivated the stimulated motor cortex using the GABA agonist muscimol. The dose of muscimol we used produces strong contralateral but no ipsilateral impairments in naive rats. In rats with injury and stimulation, but not those with injury alone, inactivation caused worsening of forelimb function; the initial deficit was reinstated. These results demonstrate that electrical stimulation can promote recovery of motor function when applied late after injury and that motor control can be exerted from the ipsilateral motor cortex. These results suggest that the uninjured motor cortex could be targeted for brain stimulation in people with large unilateral CST lesions.
Li, Mingfen; Liu, Ye; Wu, Yi; Liu, Sirao; Jia, Jie; Zhang, Liqing
2014-06-01
We investigated the efficacy of motor imagery-based Brain Computer Interface (MI-based BCI) training for eight stroke patients with severe upper extremity paralysis using longitudinal clinical assessments. The results were compared with those of a control group (n = 7) that only received FES (Functional Electrical Stimulation) treatment besides conventional therapies. During rehabilitation training, changes in the motor function of the upper extremity and in the neurophysiologic electroencephalographic (EEG) were observed for two groups. After 8 weeks of training, a significant improvement in the motor function of the upper extremity for the BCI group was confirmed (p < 0.05 for ARAT), simultaneously with the activation of bilateral cerebral hemispheres. Additionally, event-related desynchronization (ERD) of the affected sensorimotor cortexes (SMCs) was significantly enhanced when compared to the pretraining course, which was only observed in the BCI group (p < 0.05). Furthermore, the activation of affected SMC and parietal lobe were determined to contribute to motor function recovery (p < 0.05). In brief, our findings demonstrate that MI-based BCI training can enhance the motor function of the upper extremity for stroke patients by inducing the optimal cerebral motor functional reorganization.
Kim, HyunJin; Lee, GyuChang; Song, ChangHo
2014-04-01
Motor recovery of the upper extremity in stroke patients is an important goal of rehabilitation. In particular, motor recovery can be accelerated when physical and cognitive interventions are combined. Thus, the aim of this study was to investigate the effects of functional electrical stimulation (FES) with mirror therapy (MT) on motor function of upper extremity in stroke patients. Twenty-seven stroke patients were recruited, and the 23 subjects who met the inclusion criteria were randomly allocated into 2 groups: the experimental group (n = 12) and the control group (n = 11). Both groups received conventional rehabilitation training for 60 minutes/day and 5 days/week for 4 weeks. In addition, members of the experimental group received FES with MT and members of the control group received FES without MT for 30 minutes/day and 5 days/week for 4 weeks. Immediately before and after intervention, motor recovery was measured using the Fugl-Meyer (FM) assessment, Brunnstrom's motor recovery stage (BMRS), the Manual Function Test (MFT), and the Box and Block Test (BBT). Significant upper extremity motor improvements were observed in the experimental and control groups according to the FM, BMRS, MFT, and BBT (P < .05). In particular, FM subscores for wrist, hand, and co-ordination and MFT subscores for hand function were more significantly improved in the experimental group (P < .05). Motor functions of the upper extremity were improved by FES with MT versus controls. The study shows that FES with MT during poststroke rehabilitation may effectively improve motor functions of the upper extremity. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Tong, Ling-Ling; Ding, You-Quan; Jing, Hong-Bo; Li, Xuan-Yang; Qi, Jian-Guo
2015-05-06
Peripheral nerve functional recovery after injuries relies on both axon regeneration and remyelination. Both axon regeneration and remyelination require intimate interactions between regenerating neurons and their accompanying Schwann cells. Previous studies have shown that motor and sensory neurons are intrinsically different in their regeneration potentials. Moreover, denervated Schwann cells accompanying myelinated motor and sensory axons have distinct gene expression profiles for regeneration-associated growth factors. However, it is unknown whether differential motor and sensory functional recovery exists. If so, the particular one among axon regeneration and remyelination responsible for this difference remains unclear. Here, we aimed to establish an adult rat sciatic nerve crush model with the nonserrated microneedle holders and measured rat motor and sensory functions during regeneration. Furthermore, axon regeneration and remyelination was evaluated by morphometric analysis of electron microscopic images on the basis of nerve fiber classification. Our results showed that Aα fiber-mediated motor function was successfully recovered in both male and female rats. Aδ fiber-mediated sensory function was partially restored in male rats, but completely recovered in female littermates. For both male and female rats, the numbers of regenerated motor and sensory axons were quite comparable. However, remyelination was diverse among myelinated motor and sensory nerve fibers. In detail, Aβ and Aδ fibers incompletely remyelinated in male, but not female rats, whereas Aα fibers fully remyelinated in both sexes. Our result indicated that differential motor and sensory functional recovery in male but not female adult rats is associated with remyelination rather than axon regeneration after sciatic nerve crush.
Bala, Gustav; Katić, Ratko
2009-12-01
The study included a sample of 333 preschool children (162 male and 171 female) at the time of school enrolment. Study subjects were recruited from the population of children in kindergartens in the cities of Novi Sad, Sombor, Sremska Mitrovica and Backa Palanka (Province of Voivodina, Serbia). Eight anthropometric variables, seven motor variables and one cognitive variable were analyzed to identify quantitative and qualitative sex differences in anthropometric characteristics, motor and cognitive functioning. Study results showed statistically significant sex differences in anthropometric characteristics and motor abilities in favor of male children, whereas no such difference was recorded in cognitive functioning. Sex differences found in morphological and motor spaces contributed to structuring proper general factors according to space and sex. Somewhat stronger structures were observed in male children. The cognitive aspect of functioning yielded better correlation with motor functioning in female than in male children. Motor functioning correlated better with morphological growth and development in male children, whereas cognitive functioning was relatively independent. These results are not fully in accordance with the current concept of general conditions in preschool children, nor they fully confirm the theory of integral development of children, hence they should be re-examined in future studies. Although these study results cannot be applied to sports practice in general, since we believe that it is too early for preschool children to take up sports and sport competitions, they are relevant for pointing to the need of developing general motor ability and motor behavior in preschool children.
Flight Test of the Aerojet 7KS-6000 T-27 Jato Rocket Motor
NASA Technical Reports Server (NTRS)
Bond, Aleck C.; Thibodaux, Joseph G., Jr.
1949-01-01
A flight test of the Aero jet Engineering Corporation's 7KS-6000 T-27 Jato rocket motor was conducted at the Langley Pilotless Aircraft Research Station at Wallops Island, Va, to determine the flight performance characteristics of the motor. The flight test imposed an absolute longitudinal acceleration of 9.8 g upon the rocket motor at 2.8 seconds after launching. The total impulse developed by the motor was 43,400 pound-seconds, and the thrusting time was 7.58 seconds. The maximum thrust was 7200 pounds and occurred at 4.8 seconds after launching. No thrust irregularities attributable to effects of the flight longitudinal acceleration were observed. Certain small thrust irregularities occurred in the flight test which appear to correspond to irregularities observed in static tests conducted elsewhere. A hypothesis regarding the origin of these small irregularities is presented.
Impairment of a parieto-premotor network specialized for handwriting in writer's cramp.
Gallea, Cecile; Horovitz, Silvina G; Najee-Ullah, Muslimah 'Ali; Hallett, Mark
2016-12-01
Handwriting with the dominant hand is a highly skilled task singularly acquired in humans. This skill is the isolated deficit in patients with writer's cramp (WC), a form of dystonia with maladaptive plasticity, acquired through intensive and repetitive motor practice. When a skill is highly trained, a motor program is created in the brain to execute the same movement kinematics regardless of the effector used for the task. The task- and effector-specific symptoms in WC suggest that a problem particularly occurs in the brain when the writing motor program is carried out by the dominant hand. In this MRI study involving 12 WC patients (with symptoms only affecting the right dominant hand during writing) and 15 age matched unaffected controls we showed that: (1) the writing program recruited the same network regardless of the effector used to write in both groups; (2) dominant handwriting recruited a segregated parieto-premotor network only in the control group; (3) local structural alteration of the premotor area, the motor component of this network, predicted functional connectivity deficits during dominant handwriting and symptom duration in the patient group. Dysfunctions and structural abnormalities of a segregated parieto-premotor network in WC patients suggest that network specialization in focal brain areas is crucial for well-learned motor skill. Hum Brain Mapp 37:4363-4375, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Ji, Eun-Sang; Lim, Baek-Vin
2017-02-01
Parkinson disease is one of the common brain diseases caused by dopaminergic neuronal loss in the substantia nigra and dopaminergic fiber loss in the striatum. In the present study, the effects of treadmill exercise on motor performance, dopaminergic loss of neurons and fibers, and α-synuclein expression in the nigrostriatum were evaluated using rotenone-induced Parkinson rats. For the induction of Parkinson rats, 3-mg/kg rotenone was injected, once a day for 14 consecutive days. Treadmill running was conducted for 30 min once a day during 14 consecutive days. Rota-rod test for motor balance and coordination and immunohistochemistry for tyrosine hydroxylase and α-synuclein in the nigrostriatum were performed. In the present study, motor balance and coordination was disturbed by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated motor dysfunction in the rotenone-induced Parkinson rats. Nigrostriatal dopaminergic loss of neurons and fibers was occurred by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated nigrostriatal dopaminergic loss of neurons and fibers in the rotenone-induced Parkinson rats. α-Synuclein expression in the nigrostriatum was enhanced by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise suppressed α-synuclein expression in the rotenone-induced Parkinson rats. Treadmill exercise improved motor function through preservation of nigrostriatal dopaminergic neurons and fibers and suppression of nigrostriatal formation of Lewy bodies in rotenone-induced Parkinson rats.
Statistical Mechanics of the Cytoskeleton
NASA Astrophysics Data System (ADS)
Wang, Shenshen
The mechanical integrity of eukaryotic cells along with their capability of dynamic remodeling depends on their cytoskeleton, a structural scaffold made up of a complex and dense network of filamentous proteins spanning the cytoplasm. Active force generation within the cytoskeletal networks by molecular motors is ultimately powered by the consumption of chemical energy and conversion of that energy into mechanical work. The resulting functional movements range from the collective cell migration in epithelial tissues responsible for wound healing to the changes of cell shape that occur during muscle contraction, as well as all the internal structural rearrangements essential for cell division. The role of the cytoskeleton as a dynamic versatile mesoscale "muscle", whose passive and active performance is both highly heterogeneous in space and time and intimately linked to diverse biological functions, allows it to serve as a sensitive indicator for the health and developmental state of the cell. By approaching this natural nonequilibrium many-body system from a variety of perspectives, researchers have made major progress toward understanding the cytoskeleton's unusual mechanical, dynamical and structural properties. Yet a unifying framework capable of capturing both the dynamics of active pattern formation and the emergence of spontaneous collective motion, that allows one to predict the dependence of the model's control parameters on motor properties, is still needed. In the following we construct a microscopic model and provide a theoretical framework to investigate the intricate interplay between local force generation, network architecture and collective motor action. This framework is able to accommodate both regular and heterogeneous pattern formation, as well as arrested coarsening and macroscopic contraction in a unified manner, through the notion of motor-driven effective interactions. Moreover a systematic expansion scheme combined with a variational stability analysis yields a threshold strength of motor kicking noise, below which the motorized system behaves as if it were at an effective equilibrium, but with a nontrivial effective temperature. Above the threshold, however, collective directed motion emerges spontaneously. Computer simulations support the theoretical predictions and highlight the essential role played in large-scale contraction by spatial correlation in motor kicking events.
Lai, Chih-Jou; Liu, Wen-Yu; Yang, Tsui-Fen; Chen, Chia-Ling; Wu, Ching-Yi; Chan, Rai-Chi
2015-02-01
This study investigates the effects of pediatric aquatic therapy on motor function, enjoyment, activities of daily living, and health-related quality of life for children with spastic cerebral palsy of various motor severities. Children with spastic cerebral palsy were assigned to a pediatric aquatic therapy group (n = 11; mean age = 85.0 ± 33.1 months; male : female = 4 : 7) or a control group (n = 13; mean age = 87.6 ± 34.0 months; male : female = 9 : 4). The statistic results indicate that the pediatric aquatic therapy group had greater average 66-item Gross Motor Function Measure following intervention than the control group (η(2) = 0.308, P = .007), even for children with Gross Motor Function Classification System level IV (5.0 vs 1.3). The pediatric aquatic therapy group had higher Physical Activity Enjoyment Scale scores than the control group at post-treatment (P = .015). These findings demonstrate that pediatric aquatic therapy can be an effective and alternative therapy for children with cerebral palsy even with poor Gross Motor Function Classification System level. © The Author(s) 2014.
Arnedillo-Sánchez, Inmaculada; Boyle, Bryan; Bossavit, Benoît
2017-01-01
MotorSense is a motion detection and tracking technology that can be implemented across a range of environments to assist in detecting delays in gross-motor skills development. The system utilises the motion tracking functionality of Microsoft's Kinect™. It features games that require children to perform graded gross-motor tasks matched with their chronological and developmental ages. This paper describes the rationale for MotorSense, provides an overview of the functionality of the system and illustrates sample activities.
Boraxbekk, C J; Hagkvist, Filip; Lindner, Philip
2016-08-01
Learning new motor skills may become more difficult with advanced age. In the present study, we randomized 56 older individuals, including 30 women (mean age 70.6 years), to 6 weeks of motor training, mental (motor imagery) training, or a combination of motor and mental training of a finger tapping sequence. Performance improvements and post-training functional magnetic resonance imaging (fMRI) were used to investigate performance gains and associated underlying neural processes. Motor-only training and a combination of motor and mental training improved performance in the trained task more than mental-only training. The fMRI data showed that motor training was associated with a representation in the premotor cortex and mental training with a representation in the secondary visual cortex. Combining motor and mental training resulted in both premotor and visual cortex representations. During fMRI scanning, reduced performance was observed in the combined motor and mental training group, possibly indicating interference between the two training methods. We concluded that motor and motor imagery training in older individuals is associated with different functional brain responses. Furthermore, adding mental training to motor training did not result in additional performance gains compared to motor-only training and combining training methods may result in interference between representations, reducing performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Barber, Anita D; Srinivasan, Priti; Joel, Suresh E; Caffo, Brian S; Pekar, James J; Mostofsky, Stewart H
2012-01-01
Motor control relies on well-established motor circuits, which are critical for typical child development. Although many imaging studies have examined task activation during motor performance, none have examined the relationship between functional intrinsic connectivity and motor ability. The current study investigated the relationship between resting state functional connectivity within the motor network and motor performance assessment outside of the scanner in 40 typically developing right-handed children. Better motor performance correlated with greater left-lateralized (mean left hemisphere-mean right hemisphere) motor circuit connectivity. Speed, rhythmicity, and control of movements were associated with connectivity within different individual region pairs: faster speed was associated with more left-lateralized putamen-thalamus connectivity, less overflow with more left-lateralized supplementary motor-primary motor connectivity, and less dysrhythmia with more left-lateralized supplementary motor-anterior cerebellar connectivity. These findings suggest that for right-handed children, superior motor development depends on the establishment of left-hemisphere dominance in intrinsic motor network connectivity.
Lee, Myung Mo; Cho, Hwi-Young; Song, Chang Ho
2012-08-01
The purpose of this study was to evaluate the effects of the mirror therapy program on upper-limb motor recovery and motor function in patients with acute stroke. Twenty-six patients who had an acute stroke within 6 mos of study commencement were assigned to the experimental group (n = 13) or the control group (n = 13). Both experimental and control group members participated in a standard rehabilitation program, but only the experimental group members additionally participated in mirror therapy program, for 25 mins twice a day, five times a week, for 4 wks. The Fugl-Meyer Assessment, Brunnstrom motor recovery stage, and Manual Function Test were used to assess changes in upper-limb motor recovery and motor function after intervention. In upper-limb motor recovery, the scores of Fugl-Meyer Assessment (by shoulder/elbow/forearm items, 9.54 vs. 4.61; wrist items, 2.76 vs. 1.07; hand items, 4.43 vs. 1.46, respectively) and Brunnstrom stages for upper limb and hand (by 1.77 vs. 0.69 and 1.92 vs. 0.50, respectively) were improved more in the experimental group than in the control group (P < 0.05). In upper-limb motor function, the Manual Function Test score (by shoulder item, 5.00 vs. 2.23; hand item, 5.07 vs. 0.46, respectively) was significantly increased in the experimental group compared with the control group (P < 0.01). No significant differences were found between the groups for the coordination items in Fugl-Meyer Assessment. This study confirms that mirror therapy program is an effective intervention for upper-limb motor recovery and motor function improvement in acute stroke patients. Additional research on mirror therapy program components, intensity, application time, and duration could result in it being used as a standardized form of hand rehabilitation in clinics and homes.
Global motion perception is associated with motor function in 2-year-old children.
Thompson, Benjamin; McKinlay, Christopher J D; Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; Yu, Tzu-Ying; Ansell, Judith M; Wouldes, Trecia A; Harding, Jane E
2017-09-29
The dorsal visual processing stream that includes V1, motion sensitive area V5 and the posterior parietal lobe, supports visually guided motor function. Two recent studies have reported associations between global motion perception, a behavioural measure of processing in V5, and motor function in pre-school and school aged children. This indicates a relationship between visual and motor development and also supports the use of global motion perception to assess overall dorsal stream function in studies of human neurodevelopment. We investigated whether associations between vision and motor function were present at 2 years of age, a substantially earlier stage of development. The Bayley III test of Infant and Toddler Development and measures of vision including visual acuity (Cardiff Acuity Cards), stereopsis (Lang stereotest) and global motion perception were attempted in 404 2-year-old children (±4 weeks). Global motion perception (quantified as a motion coherence threshold) was assessed by observing optokinetic nystagmus in response to random dot kinematograms of varying coherence. Linear regression revealed that global motion perception was modestly, but statistically significantly associated with Bayley III composite motor (r 2 =0.06, P<0.001, n=375) and gross motor scores (r 2 =0.06, p<0.001, n=375). The associations remained significant when language score was included in the regression model. In addition, when language score was included in the model, stereopsis was significantly associated with composite motor and fine motor scores, but unaided visual acuity was not statistically significantly associated with any of the motor scores. These results demonstrate that global motion perception and binocular vision are associated with motor function at an early stage of development. Global motion perception can be used as a partial measure of dorsal stream function from early childhood. Copyright © 2017 Elsevier B.V. All rights reserved.
Upper limb motor function in young adults with spina bifida and hydrocephalus
Salman, M. S.; Jewell, D.; Hetherington, R.; Spiegler, B. J.; MacGregor, D. L.; Drake, J. M.; Humphreys, R. P.; Gentili, F.
2011-01-01
Objective The objective of the study was to measure upper limb motor function in young adults with spina bifida meningomyelocele (SBM) and typically developing age peers. Method Participants were 26 young adults with SBM, with a Verbal or Performance IQ score of at least 70 on the Wechsler scales, and 27 age- and gender-matched controls. Four upper limb motor function tasks were performed under four different visual and cognitive challenge conditions. Motor independence was assessed by questionnaire. Results Fewer SBM than control participants obtained perfect posture and rebound scores. The SBM group performed less accurately and was more disrupted by cognitive challenge than controls on limb dysmetria tasks. The SBM group was slower than controls on the diadochokinesis task. Adaptive motor independence was related to one upper limb motor task, arm posture, and upper rather than lower spinal lesions were associated with less motor independence. Conclusions Young adults with SBM have significant limitations in upper limb function and are more disrupted by some challenges while performing upper limb motor tasks. Within the group of young adults with SBM, upper spinal lesions compromise motor independence more than lower spinal lesions. PMID:19672605
Sterr, Annette; Dean, Phil J A; Szameitat, Andre J; Conforto, Adriana Bastos; Shen, Shan
2014-05-01
Initial evidence suggests that the integrity of the ipsilesional corticospinal tract (CST) after stroke is strongly related to motor function in the chronic state but not the treatment gain induced by motor rehabilitation. We examined the association of motor status and treatment benefit by testing patients with a wide range of severity of hemiparesis of the left and right upper extremity. Diffusion tensor imaging was performed in 22 patients beyond 12 months after onset of stroke with severe to moderate hemiparesis. Motor function was tested before and after 2 weeks of modified constraint-induced movement therapy. CST integrity, but not lesion volume, correlated with the motor ability measures of the Wolf Motor Function Test and the Motor Activity Log. No differences were found between left and right hemiparesis. Motor performance improved significantly with the treatment regime, and did so equally for patients with left and right arm paresis. However, treatment benefit was not associated with either CST integrity or lesion volume. CST integrity correlated best in this small trial with chronic long-term status but not treatment-induced improvements. The CST may play a different role in the mechanisms mediating long-term outcome compared to those underlying practice-induced gains after a chronic plateau in motor function.
Sergi, Fabrizio; Krebs, Hermano Igo; Groissier, Benjamin; Rykman, Avrielle; Guglielmelli, Eugenio; Volpe, Bruce T; Schaechter, Judith D
2011-01-01
We are investigating the neural correlates of motor recovery promoted by robot-mediated therapy in chronic stroke. This pilot study asked whether efficacy of robot-aided motor rehabilitation in chronic stroke could be predicted by a change in functional connectivity within the sensorimotor network in response to a bout of motor rehabilitation. To address this question, two stroke patients participated in a functional connectivity MRI study pre and post a 12-week robot-aided motor rehabilitation program. Functional connectivity was evaluated during three consecutive scans before the rehabilitation program: resting-state; point-to-point reaching movements executed by the paretic upper extremity (UE) using a newly developed MRI-compatible sensorized passive manipulandum; resting-state. A single resting-state scan was conducted after the rehabilitation program. Before the program, UE movement reduced functional connectivity between the ipsilesional and contralesional primary motor cortex. Reduced interhemispheric functional connectivity persisted during the second resting-state scan relative to the first and during the resting-state scan after the rehabilitation program. Greater reduction in interhemispheric functional connectivity during the resting-state was associated with greater gains in UE motor function induced by the 12-week robotic therapy program. These findings suggest that greater reduction in interhemispheric functional connectivity in response to a bout of motor rehabilitation may predict greater efficacy of the full rehabilitation program.
Vos, Rimke C; Becher, Jules G; Voorman, Jeanine M; Gorter, Jan Willem; van Eck, Mirjam; van Meeteren, Jetty; Smits, Dirk-Wouter; Twisk, Jos W; Dallmeijer, Annet J
2016-08-01
To examine associations over longitudinal measurements between neuromusculoskeletal function and gross motor capacity in children and youth with cerebral palsy (CP). A prospective cohort study. Rehabilitation departments of university medical centers and rehabilitations centers. A sample (N=327) consisting of 148 children (aged 5-9y) and 179 youth (aged 11-20y) with CP, Gross Motor Function Classification System level I (n=180), level II (n=44), level III (n=36), level IV (n=34), and level V (n=33). Not applicable. Gross motor capacity was assessed with the Gross Motor Function Measure-66 over a period of 2 to 4 years in different age cohorts. Neuromusculoskeletal function included selective motor control (SMC), muscle strength, spasticity, and range of motion (ROM) of the lower extremities. Multilevel analyses showed that SMC was significantly associated with gross motor capacity in children and youth with CP, showing higher values and a more favorable course of gross motor capacity in those with better SMC. Strength was only associated with gross motor capacity in youth. Reduced ROM of hip (children) and knee extension (youth) and spasticity of the hip adductors (youth) were additionally-but more weakly-associated with lower values and a less favorable course of gross motor capacity. Results indicate that children and youth with more severely impaired SMC and youth with reduced muscle strength have a less favorable course of gross motor capacity, while spasticity and reduced ROM are less determinative. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Redle, Erin; Vannest, Jennifer; Maloney, Thomas; Tsevat, Rebecca K; Eikenberry, Sarah; Lewis, Barbara; Shriberg, Lawrence D; Tkach, Jean; Holland, Scott K
2015-02-09
Children with persistent speech disorders (PSD) often present with overt or subtle motor deficits; the possibility that speech disorders and motor deficits could arise from a shared neurological base is currently unknown. Functional MRI (fMRI) was used to examine the brain networks supporting fine motor praxis in children with PSD and without clinically identified fine motor deficits. This case-control study included 12 children with PSD (mean age 7.42 years, four female) and 12 controls (mean age 7.44 years, four female). Children completed behavioral evaluations using standardized motor assessments and parent reported functional measures. During fMRI scanning, participants completed a cued finger tapping task contrasted passive listening. A general linear model approach identified brain regions associated with finger tapping in each group and regions that differed between groups. The relationship between regional fMRI activation and fine motor skill was assessed using a regression analysis. Children with PSD had significantly poorer results for rapid speech production and fine motor praxis skills, but did not differ on classroom functional skills. Functional MRI results showed that children with PSD had significantly more activation in the cerebellum during finger tapping. Positive correlations between performance on a fine motor praxis test and activation multiple cortical regions were noted for children with PSD but not for controls. Over-activation in the cerebellum during a motor task may reflect a subtle abnormality in the non-speech motor neural circuitry in children with PSD. Copyright © 2014 Elsevier B.V. All rights reserved.
Shemmell, Jonathan; An, Je Hi; Perreault, Eric J.
2009-01-01
The motor cortex assumes an increasingly important role in higher mammals relative to that in lower mammals. This is true to such an extent that the human motor cortex is deeply involved in reflex regulation and it is common to speak of “transcortical reflex loops”. Such loops appear to add flexibility to the human stretch reflex, once considered to be immutable, allowing it to adapt across a range of functional tasks. However, the purpose of this adaptation remains unclear. A common proposal is that stretch reflexes contribute to the regulation of limb stability; increased reflex sensitivity during tasks performed in unstable environments supports this hypothesis. Alternatively, prior to movement onset, stretch reflexes can assist an imposed stretch, opposite to what would be expected from a stabilizing response. Here we show that stretch reflex modulation in tasks that require changes in limb stability is mediated by motor cortical pathways, and that these differ from pathways contributing to reflex modulation that depends on how the subject is instructed to react to an imposed perturbation. By timing muscle stretches such that the modulated portion of the reflex occurred within a cortical silent period induced by transcranial magnetic stimulation, we abolished the increase in reflex sensitivity observed when individuals stabilized arm posture within a compliant environment. Conversely, reflex modulation caused by altered task instruction was unaffected by cortical silence. These results demonstrate that task-dependent changes in reflex function can be mediated through multiple neural pathways and that these pathways have task specific roles. PMID:19846713
Shemmell, Jonathan; An, Je Hi; Perreault, Eric J
2009-10-21
The motor cortex assumes an increasingly important role in higher mammals relative to that in lower mammals. This is true to such an extent that the human motor cortex is deeply involved in reflex regulation and it is common to speak of "transcortical reflex loops." Such loops appear to add flexibility to the human stretch reflex, once considered to be immutable, allowing it to adapt across a range of functional tasks. However, the purpose of this adaptation remains unclear. A common proposal is that stretch reflexes contribute to the regulation of limb stability; increased reflex sensitivity during tasks performed in unstable environments supports this hypothesis. Alternatively, before movement onset, stretch reflexes can assist an imposed stretch, opposite to what would be expected from a stabilizing response. Here we show that stretch reflex modulation in tasks that require changes in limb stability is mediated by motor cortical pathways, and that these differ from pathways contributing to reflex modulation that depend on how the subject is instructed to react to an imposed perturbation. By timing muscle stretches such that the modulated portion of the reflex occurred within a cortical silent period induced by transcranial magnetic stimulation, we abolished the increase in reflex sensitivity observed when individuals stabilized arm posture within a compliant environment. Conversely, reflex modulation caused by altered task instruction was unaffected by cortical silence. These results demonstrate that task-dependent changes in reflex function can be mediated through multiple neural pathways and that these pathways have task-specific roles.
NASA Technical Reports Server (NTRS)
Jasdzewski, G.; Strangman, G.; Wagner, J.; Kwong, K. K.; Poldrack, R. A.; Boas, D. A.; Sutton, J. P. (Principal Investigator)
2003-01-01
Several current brain imaging techniques rest on the assumption of a tight coupling between neural activity and hemodynamic response. The nature of this neurovascular coupling, however, is not completely understood. There is some evidence for a decoupling of these processes at the onset of neural activity, which manifests itself as a momentary increase in the relative concentration of deoxyhemoglobin (HbR). The existence of this early component of the hemodynamic response function, however, is controversial, as it is inconsistently found. Near infrared spectroscopy (NIRS) allows quantification of levels of oxyhemoglobin (HbO(2)) and HbR during task performance in humans. We acquired NIRS data during performance of simple motor and visual tasks, using rapid-presentation event-related paradigms. Our results demonstrate that rapid, event-related NIRS can provide robust estimates of the hemodynamic response without artifacts due to low-frequency signal components, unlike data from blocked designs. In both the motor and visual data the onset of the increase in HbO(2) occurs before HbR decreases, and there is a poststimulus undershoot. Our results also show that total blood volume (HbT) drops before HbO(2) and undershoots baseline, raising a new issue for neurovascular models. We did not find early deoxygenation in the motor data using physiologically plausible values for the differential pathlength factor, but did find one in the visual data. We suggest that this difference, which is consistent with functional magnetic resonance imaging (fMRI) data, may be attributable to different capillary transit times in these cortices.
Freeman, Scott M; Itthipuripat, Sirawaj; Aron, Adam R
2016-05-18
Motor affordances occur when the visual properties of an object elicit behaviorally relevant motor representations. Typically, motor affordances only produce subtle effects on response time or on motor activity indexed by neuroimaging/neuroelectrophysiology, but sometimes they can trigger action itself. This is apparent in "utilization behavior," where individuals with frontal cortex damage inappropriately grasp affording objects. This raises the possibility that, in healthy-functioning individuals, frontal cortex helps ensure that irrelevant affordance provocations remain below the threshold for actual movement. In Experiment 1, we tested this "frontal control" hypothesis by "loading" the frontal cortex with an effortful working memory (WM) task (which ostensibly consumes frontal resources) and examined whether this increased EEG measures of motor affordances to irrelevant affording objects. Under low WM load, there were typical motor affordance signatures: an event-related desynchronization in the mu frequency and an increased P300 amplitude for affording (vs nonaffording) objects over centroparietal electrodes. Contrary to our prediction, however, these affordance measures were diminished under high WM load. In Experiment 2, we tested competing mechanisms responsible for the diminished affordance in Experiment 1. We used paired-pulse transcranial magnetic stimulation over primary motor cortex to measure long-interval cortical inhibition. We found greater long-interval cortical inhibition for high versus low load both before and after the affording object, suggesting that a tonic inhibition state in primary motor cortex could prevent the affordance from provoking the motor system. Overall, our results suggest that a high WM load "sets" the motor system into a suppressed state that mitigates motor affordances. Is an irrelevant motor affordance more likely to be triggered when you are under low or high cognitive load? We examined this using physiological measures of the motor affordance while working memory load was varied. We observed a typical motor affordance signature when working memory load was low; however, it was abolished when load was high. Further, there was increased intracortical inhibition in primary motor cortex under high working memory load. This suggests that being in a state of high cognitive load "sets" the motor system to be imperturbable to distracting motor influences. This makes a novel link between working memory load and the balance of excitatory/inhibitory activity in the motor cortex and potentially has implications for disorders of impulsivity. Copyright © 2016 the authors 0270-6474/16/365544-12$15.00/0.
ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function
Sharma, Aarti; Lyashchenko, Alexander K.; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z.; Shneider, Neil A.
2016-01-01
Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations. PMID:26842965
Sharma, Aarti; Lyashchenko, Alexander K; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z; Shneider, Neil A
2016-02-04
Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations.
Males and females differ in brain activation during cognitive tasks.
Bell, Emily C; Willson, Morgan C; Wilman, Alan H; Dave, Sanjay; Silverstone, Peter H
2006-04-01
To examine the effect of gender on regional brain activity, we utilized functional magnetic resonance imaging (fMRI) during a motor task and three cognitive tasks; a word generation task, a spatial attention task, and a working memory task in healthy male (n = 23) and female (n = 10) volunteers. Functional data were examined for group differences both in the number of pixels activated, and the blood-oxygen-level-dependent (BOLD) magnitude during each task. Males had a significantly greater mean activation than females in the working memory task with a greater number of pixels being activated in the right superior parietal gyrus and right inferior occipital gyrus, and a greater BOLD magnitude occurring in the left inferior parietal lobe. However, despite these fMRI changes, there were no significant differences between males and females on cognitive performance of the task. In contrast, in the spatial attention task, men performed better at this task than women, but there were no significant functional differences between the two groups. In the word generation task, there were no external measures of performance, but in the functional measurements, males had a significantly greater mean activation than females, where males had a significantly greater BOLD signal magnitude in the left and right dorsolateral prefrontal cortex, the right inferior parietal lobe, and the cingulate. In neither of the motor tasks (right or left hand) did males and females perform differently. Our fMRI findings during the motor tasks were a greater mean BOLD signal magnitude in males in the right hand motor task, compared to females where males had an increased BOLD signal magnitude in the right inferior parietal gyrus and in the left inferior frontal gyrus. In conclusion, these results demonstrate differential patterns of activation in males and females during a variety of cognitive tasks, even though performance in these tasks may not vary, and also that variability in performance may not be reflected in differences in brain activation. These results suggest that in functional imaging studies in clinical populations it may be sensible to examine each sex independently until this effect is more fully understood.
Speech and motor disturbances in Rett syndrome.
Bashina, V M; Simashkova, N V; Grachev, V V; Gorbachevskaya, N L
2002-01-01
Rett syndrome is a severe, genetically determined disease of early childhood which produces a defined clinical phenotype in girls. The main clinical manifestations include lesions affecting speech functions, involving both expressive and receptive speech, as well as motor functions, producing apraxia of the arms and profound abnormalities of gait in the form of ataxia-apraxia. Most investigators note that patients have variability in the severity of derangement to large motor acts and in the damage to fine hand movements and speech functions. The aims of the present work were to study disturbances of speech and motor functions over 2-5 years in 50 girls aged 12 months to 14 years with Rett syndrome and to analyze the correlations between these disturbances. The results of comparing clinical data and EEG traces supported the stepwise involvement of frontal and parietal-temporal cortical structures in the pathological process. The ability to organize speech and motor activity is affected first, with subsequent development of lesions to gnostic functions, which are in turn followed by derangement of subcortical structures and the cerebellum and later by damage to structures in the spinal cord. A clear correlation was found between the severity of lesions to motor and speech functions and neurophysiological data: the higher the level of preservation of elements of speech and motor functions, the smaller were the contributions of theta activity and the greater the contributions of alpha and beta activities to the EEG. The possible pathogenetic mechanisms underlying the motor and speech disturbances in Rett syndrome are discussed.
Unintentional deaths from carbon monoxide in motor vehicle exhaust: West Virginia.
Baron, R C; Backer, R C; Sopher, I M
1989-01-01
We investigated the circumstances of unintended carbon monoxide deaths from motor vehicle exhaust. Of 64 episodes involving 82 deaths investigated by the West Virginia Office of the Chief Medical Examiner, 1978-84, 50 occurred outdoors in older vehicles with defective exhaust systems and 14 occurred in enclosed or semi-enclosed home garages. Blood alcohol was detected in 50 (68 per cent) of 74 victims tested; 34 had blood alcohol concentrations greater than or equal to 0.10 g/dl. We suggest increasing public awareness of the hazards of motor vehicle exhaust and enforcing vehicle inspection regulations. PMID:2464951
A model for the transfer of perceptual-motor skill learning in human behaviors.
Rosalie, Simon M; Müller, Sean
2012-09-01
This paper presents a preliminary model that outlines the mechanisms underlying the transfer of perceptual-motor skill learning in sport and everyday tasks. Perceptual-motor behavior is motivated by performance demands and evolves over time to increase the probability of success through adaptation. Performance demands at the time of an event create a unique transfer domain that specifies a range of potentially successful actions. Transfer comprises anticipatory subconscious and conscious mechanisms. The model also outlines how transfer occurs across a continuum, which depends on the individual's expertise and contextual variables occurring at the incidence of transfer
Miniaturized Technologies for Enhancement of Motor Plasticity
Moorjani, Samira
2016-01-01
The idea that the damaged brain can functionally reorganize itself – so when one part fails, there lies the possibility for another to substitute – is an exciting discovery of the twentieth century. We now know that motor circuits once presumed to be hardwired are not, and motor-skill learning, exercise, and even mental rehearsal of motor tasks can turn genes on or off to shape brain architecture, function, and, consequently, behavior. This is a very significant alteration from our previously static view of the brain and has profound implications for the rescue of function after a motor injury. Presentation of the right cues, applied in relevant spatiotemporal geometries, is required to awaken the dormant plastic forces essential for repair. The focus of this review is to highlight some of the recent progress in neural interfaces designed to harness motor plasticity, and the role of miniaturization in development of strategies that engage diverse elements of the neuronal machinery to synergistically facilitate recovery of function after motor damage. PMID:27148525
Darling, Warren G.; Pizzimenti, Marc A.; Morecraft, Robert J.
2013-01-01
This review discusses selected classical works and contemporary research on recovery of contralesional fine hand motor function following lesions to motor areas of the cerebral cortex in non-human primates. Findings from both the classical literature and contemporary studies show that lesions of cortical motor areas induce paresis initially, but are followed by remarkable recovery of fine hand/digit motor function that depends on lesion size and post-lesion training. Indeed, in recent work where considerable quantification of fine digit function associated with grasping and manipulating small objects has been observed, very favorable recovery is possible with minimal forced use of the contralesional limb. Studies of the mechanisms underlying recovery have shown that following small lesions of the digit areas of primary motor cortex (M1), there is expansion of the digit motor representations into areas of M1 that did not produce digit movements prior to the lesion. However, after larger lesions involving the elbow, wrist and digit areas of M1, no such expansion of the motor representation was observed, suggesting that recovery was due to other cortical or subcortical areas taking over control of hand/digit movements. Recently, we showed that one possible mechanism of recovery after lesion to the arm areas of M1 and lateral premotor cortex is enhancement of corticospinal projections from the medially located supplementary motor area (M2) to spinal cord laminae containing neurons which have lost substantial input from the lateral motor areas and play a critical role in reaching and digit movements. Because human stroke and brain injury patients show variable, and usually poorer, recovery of hand motor function than that of nonhuman primates after motor cortex damage, we conclude with a discussion of implications of this work for further experimentation to improve recovery of hand function in human stroke patients. PMID:21960307
Human neural progenitors differentiate into astrocytes and protect motor neurons in aging rats.
Das, Melanie M; Avalos, Pablo; Suezaki, Patrick; Godoy, Marlesa; Garcia, Leslie; Chang, Christine D; Vit, Jean-Philippe; Shelley, Brandon; Gowing, Genevieve; Svendsen, Clive N
2016-06-01
Age-associated health decline presents a significant challenge to healthcare, although there are few animal models that can be used to test potential treatments. Here, we show that there is a significant reduction in both spinal cord motor neurons and motor function over time in the aging rat. One explanation for this motor neuron loss could be reduced support from surrounding aging astrocytes. Indeed, we have previously shown using in vitro models that aging rat astrocytes are less supportive to rat motor neuron function and survival over time. Here, we test whether rejuvenating the astrocyte niche can improve the survival of motor neurons in an aging spinal cord. We transplanted fetal-derived human neural progenitor cells (hNPCs) into the aging rat spinal cord and found that the cells survive and differentiate into astrocytes with a much higher efficiency than when transplanted into younger animals, suggesting that the aging environment stimulates astrocyte maturation. Importantly, the engrafted astrocytes were able to protect against motor neuron loss associated with aging, although this did not result in an increase in motor function based on behavioral assays. We also transplanted hNPCs genetically modified to secrete glial cell line-derived neurotrophic factor (GDNF) into the aging rat spinal cord, as this combination of cell and protein delivery can protect motor neurons in animal models of ALS. During aging, GDNF-expressing hNPCs protected motor neurons, though to the same extent as hNPCs alone, and again had no effect on motor function. We conclude that hNPCs can survive well in the aging spinal cord, protect motor neurons and mature faster into astrocytes when compared to transplantation into the young spinal cord. While there was no functional improvement, there were no functional deficits either, further supporting a good safety profile of hNPC transplantation even into the older patient population. Copyright © 2016 Elsevier Inc. All rights reserved.
Prediction of recovery of motor function after stroke.
Stinear, Cathy
2010-12-01
Stroke is a leading cause of disability. The ability to live independently after stroke depends largely on the reduction of motor impairment and the recovery of motor function. Accurate prediction of motor recovery assists rehabilitation planning and supports realistic goal setting by clinicians and patients. Initial impairment is negatively related to degree of recovery, but inter-individual variability makes accurate prediction difficult. Neuroimaging and neurophysiological assessments can be used to measure the extent of stroke damage to the motor system and predict subsequent recovery of function, but these techniques are not yet used routinely. The use of motor impairment scores and neuroimaging has been refined by two recent studies in which these investigations were used at multiple time points early after stroke. Voluntary finger extension and shoulder abduction within 5 days of stroke predicted subsequent recovery of upper-limb function. Diffusion-weighted imaging within 7 days detected the effects of stroke on caudal motor pathways and was predictive of lasting motor impairment. Thus, investigations done soon after stroke had good prognostic value. The potential prognostic value of cortical activation and neural plasticity has been explored for the first time by two recent studies. Functional MRI detected a pattern of cortical activation at the acute stage that was related to subsequent reduction in motor impairment. Transcranial magnetic stimulation enabled measurement of neural plasticity in the primary motor cortex, which was related to subsequent disability. These studies open interesting new lines of enquiry. WHERE NEXT?: The accuracy of prediction might be increased by taking into account the motor system's capacity for functional reorganisation in response to therapy, in addition to the extent of stroke-related damage. Improved prognostic accuracy could also be gained by combining simple tests of motor impairment with neuroimaging, genotyping, and neurophysiological assessment of neural plasticity. The development of algorithms to guide the sequential combinations of these assessments could also further increase accuracy, in addition to improving rehabilitation planning and outcomes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Impact of Auditory Context on Executed Motor Actions
Yoles-Frenkel, Michal; Avron, Maayan; Prut, Yifat
2016-01-01
The auditory and motor systems are strongly coupled, as is evident in the specifically tight motor synchronization that occurs in response to regularly occurring auditory cues compared with cues of other modalities. Timing of rhythmic action is known to rely on multiple neural centers including the cerebellum and the basal-ganglia which have access to both motor cortical and spinal circuitries. To date, however, there is little information on the motor mechanisms that operate during preparation and execution of rhythmic vs. non-rhythmic movements. We measured acceleration profile and muscle activity while subjects performed tapping movements in response to auditory cues. We found that when tapping at random intervals there was a higher variability of both acceleration profile and muscle activity during motor preparation compared to rhythmic tapping. However, the specific rhythmic context (cued, self-paced, or syncopation) did not affect the motor parameters of the executed taps. Finally, during entrainment we found a gradual as opposed to episodic change in low-level motor parameters (i.e., preparatory muscle activity) that was strongly correlated with changes in high-level parameters (i.e., shift in the reaction time to negative asynchrony). These findings suggest that motor entrainment involves not only adjusting the timing of movement but also modifying parameters that are related to its production. These changes in motor output were insensitive to the specifics of the rhythmic cue: although it took subjects different times to become entrained to different types of rhythmic cues, the motor actions produced once entrainment was obtained were indistinguishable. These findings suggest that motor entrainment involves not only adjusting the timing of movement but also modifying parameters related to its production. The reduced variability of muscle activity during the preparatory period could be one mechanism used by the motor system to enhance the accuracy of motor timing. PMID:26834584
Tan, Xiaodong; Pecka, Jason L; Tang, Jie; Okoruwa, Oseremen E; Zhang, Qian; Beisel, Kirk W; He, David Z Z
2011-01-01
Prestin is the motor protein of cochlear outer hair cells. It belongs to a distinct anion transporter family called solute carrier protein 26A, or SLC26A. Members of this family serve two fundamentally distinct functions. Although most members transport different anion substrates across a variety of epithelia, prestin (SLC26A5) is unique, functioning as a voltage-dependent motor protein. Recent evidence suggests that prestin orthologs from zebrafish and chicken are electrogenic divalent/chloride anion exchangers/transporters with no motor function. These studies appear to suggest that prestin was evolved from an anion transporter. We examined the motor and transport functions of prestin and its orthologs from four different species in the vertebrate lineage, to gain insights of how these two physiological functions became distinct. Somatic motility, voltage-dependent nonlinear capacitance (NLC), and transporter function were measured in transfected human embryonic kidney (HEK) cells using voltage-clamp and anion uptake techniques. Zebrafish and chicken prestins both exhibited weak NLC, with peaks significantly shifted in the depolarization (right) direction. This was contrasted by robust NLC with peaks left shifted in the platypus and gerbil. The platypus and gerbil prestins retained little transporter function compared with robust anion transport capacities in the zebrafish and chicken orthologs. Somatic motility was detected only in the platypus and gerbil prestins. There appears to be an inverse relationship between NLC and anion transport functions, whereas motor function appears to have emerged only in mammalian prestin. Our results suggest that motor function is an innovation of therian prestin and is concurrent with diminished transporter capabilities.
Hagmann-von Arx, Priska; Manicolo, Olivia; Lemola, Sakari; Grob, Alexander
2016-01-01
Age-dependent gait characteristics and associations with cognition, motor behavior, injuries, and psychosocial functioning were investigated in 138 typically developing children aged 6.7–13.2 years (M = 10.0 years). Gait velocity, normalized velocity, and variability were measured using the walkway system GAITRite without an additional task (single task) and while performing a motor or cognitive task (dual task). Assessment of children’s cognition included tests for intelligence and executive functions; parents reported on their child’s motor behavior, injuries, and psychosocial functioning. Gait variability (an index of gait regularity) decreased with increasing age in both single- and dual-task walking. Dual-task gait decrements were stronger when children walked in the motor compared to the cognitive dual-task condition and decreased with increasing age in both dual-task conditions. Gait alterations from single- to dual-task conditions were not related to children’s cognition, motor behavior, injuries, or psychosocial functioning. PMID:27014158
Subjective perception of sleep benefit in Parkinson's disease: Valid or irrelevant?
Lee, Will; Evans, Andrew; Williams, David R
2017-09-01
The phenomenon of sleep benefit (SB) in Parkinson's disease (PD), whereby waking motor function is improved despite no dopaminergic treatment overnight, is controversial. Previous studies suggested a significant discrepancy between subjective functional and objective motor improvement. The aim of this study was to determine how well subjective reporting of SB correlates with objective measures and if true motor improvement can be predicted by a standardized questionnaire. Ninety-two patients with PD participated. A structured questionnaire was developed to assess subjective SB. Quantitative motor assessment was performed using a validated smartphone application. Objective motor SB was considered to be present when the waking motor function was similar or superior to the daytime on-state. Twenty (22%) patients showed objective motor improvement on waking compared to end-of-dose. Most patients (77%) reported subjective SB without corresponding objective motor benefit. Our structured questionnaire could not predict Motor SB. The ability to delay morning medications and a perception of indifference or paradoxical worsening following the morning levodopa dose may suggest Motor SB. Most patients experience subjective SB with no measureable motor improvement. This perceived benefit could be related to non-motor improvement that is distinctly different to objective motor benefit. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Whinnery, Stacie B.; Whinnery, Keith W.; Eddins, Daisy
2016-01-01
This article addresses the challenges educators face when attempting to find a balance between both functional and academic skill instruction for students with severe, multiple disabilities including motor impairments. The authors describe a strategy that employs embedded instruction of early numeracy and functional motor skills during physical…
Effect of a nicotinic acetylcholine receptor agonists and antagonists on motor function in mice
USDA-ARS?s Scientific Manuscript database
Nicotinic acetylcholine receptors (nAChR) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChR located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The...
The aging neuromuscular system and motor performance
Keenan, Kevin G.
2016-01-01
Age-related changes in the basic functional unit of the neuromuscular system, the motor unit, and its neural inputs have a profound effect on motor function, especially among the expanding number of old (older than ∼60 yr) and very old (older than ∼80 yr) adults. This review presents evidence that age-related changes in motor unit morphology and properties lead to impaired motor performance that includes 1) reduced maximal strength and power, slower contractile velocity, and increased fatigability; and 2) increased variability during and between motor tasks, including decreased force steadiness and increased variability of contraction velocity and torque over repeat contractions. The age-related increase in variability of motor performance with aging appears to involve reduced and more variable synaptic inputs that drive motor neuron activation, fewer and larger motor units, less stable neuromuscular junctions, lower and more variable motor unit action potential discharge rates, and smaller and slower skeletal muscle fibers that coexpress different myosin heavy chain isoforms in the muscle of older adults. Physical activity may modify motor unit properties and function in old men and women, although the effects on variability of motor performance are largely unknown. Many studies are of cross-sectional design, so there is a tremendous opportunity to perform high-impact and longitudinal studies along the continuum of aging that determine 1) the influence and cause of the increased variability with aging on functional performance tasks, and 2) whether lifestyle factors such as physical exercise can minimize this age-related variability in motor performance in the rapidly expanding numbers of very old adults. PMID:27516536
Hodson-Tole, E F; Wakeling, J M
2007-07-01
Motor units are generally considered to follow a set, orderly pattern of recruitment within each muscle with activation occurring in the slowest through to the fastest units. A growing body of evidence, however, suggests that recruitment patterns may not always follow such an orderly sequence. Here we investigate whether motor unit recruitment patterns vary within and between the ankle extensor muscles of the rat running at 40 cm s(-1) on a level treadmill. In the past it has been difficult to quantify motor unit recruitment patterns during locomotion; however, recent application of wavelet analysis techniques has made such detailed analysis of motor unit recruitment possible. Here we present methods for quantifying the interplay of fast and slow motor unit recruitment based on their myoelectric signals. Myoelectric data were collected from soleus, plantaris and medial gastrocnemius muscles representing populations of slow, mixed and fast fibres, respectively, and providing a good opportunity to relate myoelectric frequency content to motor unit recruitment patterns. Following wavelet transformation, principal component analysis quantified signal intensity and relative frequency content. Significant differences in signal frequency content occurred between different time points within a stride (P<0.001). We optimised high- and low-frequency wavelets to the major signals from the fast and slow motor units. The goodness-of-fit of the optimised wavelets to the signal intensity was high for all three muscles (r2>0.98). The low-frequency band had a significantly better fit to signals from the soleus muscle (P<0.001), while the high-frequency band had a significantly better fit to the medial gastrocnemius (P<0.001).
Motor Neurons Tune Premotor Activity in a Vertebrate Central Pattern Generator
2017-01-01
Central patterns generators (CPGs) are neural circuits that drive rhythmic motor output without sensory feedback. Vertebrate CPGs are generally believed to operate in a top-down manner in which premotor interneurons activate motor neurons that in turn drive muscles. In contrast, the frog (Xenopus laevis) vocal CPG contains a functionally unexplored neuronal projection from the motor nucleus to the premotor nucleus, indicating a recurrent pathway that may contribute to rhythm generation. In this study, we characterized the function of this bottom-up connection. The X. laevis vocal CPG produces a 50–60 Hz “fast trill” song used by males during courtship. We recorded “fictive vocalizations” in the in vitro CPG from the laryngeal nerve while simultaneously recording premotor activity at the population and single-cell level. We show that transecting the motor-to-premotor projection eliminated the characteristic firing rate of premotor neurons. Silencing motor neurons with the intracellular sodium channel blocker QX-314 also disrupted premotor rhythms, as did blockade of nicotinic synapses in the motor nucleus (the putative location of motor neuron-to-interneuron connections). Electrically stimulating the laryngeal nerve elicited primarily IPSPs in premotor neurons that could be blocked by a nicotinic receptor antagonist. Our results indicate that an inhibitory signal, activated by motor neurons, is required for proper CPG function. To our knowledge, these findings represent the first example of a CPG in which precise premotor rhythms are tuned by motor neuron activity. SIGNIFICANCE STATEMENT Central pattern generators (CPGs) are neural circuits that produce rhythmic behaviors. In vertebrates, motor neurons are not commonly known to contribute to CPG function, with the exception of a few spinal circuits where the functional significance of motor neuron feedback is still poorly understood. The frog hindbrain vocal circuit contains a previously unexplored connection from the motor to premotor region. Our results indicate that motor neurons activate this bottom-up connection, and blocking this signal eliminates normal premotor activity. These findings may promote increased awareness of potential involvement of motor neurons in a wider range of CPGs, perhaps clarifying our understanding of network principles underlying motor behaviors in numerous organisms, including humans. PMID:28219984
ERIC Educational Resources Information Center
Draper, Catherine E.; Achmat, Masturah; Forbes, Jared; Lambert, Estelle V.
2012-01-01
The aims of the studies were to assess the impact of the Little Champs programme for motor development on (1) the gross motor skills, and (2) cognitive function of children in the programme. In study 1, 118 children from one Early Childhood Development Centre (ECDC) were tested using the Test of Gross Motor Development-2, and in study 2, 83…
Hsieh, Yu-wei; Liing, Rong-jiuan; Lin, Keh-chung; Wu, Ching-yi; Liou, Tsan-hon; Lin, Jui-chi; Hung, Jen-wen
2016-03-22
The combination of robot-assisted therapy (RT) and a modified form of constraint-induced therapy (mCIT) shows promise for improving motor function of patients with stroke. However, whether the changes of motor control strategies are concomitant with the improvements in motor function after combination of RT and mCIT (RT + mCIT) is unclear. This study investigated the effects of the sequential combination of RT + mCIT compared with RT alone on the strategies of motor control measured by kinematic analysis and on motor function and daily performance measured by clinical scales. The study enrolled 34 patients with chronic stroke. The data were derived from part of a single-blinded randomized controlled trial. Participants in the RT + mCIT and RT groups received 20 therapy sessions (90 to 105 min/day, 5 days for 4 weeks). Patients in the RT + mCIT group received 10 RT sessions for first 2 weeks and 10 mCIT sessions for the next 2 weeks. The Bi-Manu-Track was used in RT sessions to provide bilateral practice of wrist and forearm movements. The primary outcome was kinematic variables in a task of reaching to press a desk bell. Secondary outcomes included scores on the Wolf Motor Function Test, Functional Independence Measure, and Nottingham Extended Activities of Daily Living. All outcome measures were administered before and after intervention. RT + mCIT and RT demonstrated different benefits on motor control strategies. RT + mCIT uniquely improved motor control strategies by reducing shoulder abduction, increasing elbow extension, and decreasing trunk compensatory movement during the reaching task. Motor function and quality of the affected limb was improved, and patients achieved greater independence in instrumental activities of daily living. Force generation at movement initiation was improved in the patients who received RT. A combination of RT and mCIT could be an effective approach to improve stroke rehabilitation outcomes, achieving better motor control strategies, motor function, and functional independence of instrumental activities of daily living. ClinicalTrials.gov. NCT01727648.
Sartori, Massimo; Yavuz, Utku Ş; Farina, Dario
2017-10-18
Human motor function emerges from the interaction between the neuromuscular and the musculoskeletal systems. Despite the knowledge of the mechanisms underlying neural and mechanical functions, there is no relevant understanding of the neuro-mechanical interplay in the neuro-musculo-skeletal system. This currently represents the major challenge to the understanding of human movement. We address this challenge by proposing a paradigm for investigating spinal motor neuron contribution to skeletal joint mechanical function in the intact human in vivo. We employ multi-muscle spatial sampling and deconvolution of high-density fiber electrical activity to decode accurate α-motor neuron discharges across five lumbosacral segments in the human spinal cord. We use complete α-motor neuron discharge series to drive forward subject-specific models of the musculoskeletal system in open-loop with no corrective feedback. We perform validation tests where mechanical moments are estimated with no knowledge of reference data over unseen conditions. This enables accurate blinded estimation of ankle function purely from motor neuron information. Remarkably, this enables observing causal associations between spinal motor neuron activity and joint moment control. We provide a new class of neural data-driven musculoskeletal modeling formulations for bridging between movement neural and mechanical levels in vivo with implications for understanding motor physiology, pathology, and recovery.
Hip Surveillance in Children with Cerebral Palsy.
Huser, Aaron; Mo, Michelle; Hosseinzadeh, Pooya
2018-04-01
The hip is the second most common involved joint in cerebral palsy. Hip displacement occurs in more than 33% of children with cerebral palsy, with a higher prevalence in nonambulatory children. Hip displacement in this population is typically progressive. Hip dislocation can result in pain and difficulty with sitting and perineal care. Since early stage of hip displacement can be silent, and hip surveillance programs are recommended. Most programs use the degree of hip dysplasia and Growth Motor Function Classification System level for screening recommendations. Treatment depends on the degree of dysplasia, functional status of the patient, and patient's age. Copyright © 2017 Elsevier Inc. All rights reserved.
Neural and behavioural changes in male periadolescent mice after prolonged nicotine-MDMA treatment.
Adeniyi, Philip A; Ishola, Azeez O; Laoye, Babafemi J; Olatunji, Babawale P; Bankole, Oluwamolakun O; Shallie, Philemon D; Ogundele, Olalekan M
2016-02-01
The interaction between MDMA and Nicotine affects multiple brain centres and neurotransmitter systems (serotonin, dopamine and glutamate) involved in motor coordination and cognition. In this study, we have elucidated the effect of prolonged (10 days) MDMA, Nicotine and a combined Nicotine-MDMA treatment on motor-cognitive neural functions. In addition, we have shown the correlation between the observed behavioural change and neural structural changes induced by these treatments in BALB/c mice. We observed that MDMA (2 mg/Kg body weight; subcutaneous) induced a decline in motor function, while Nicotine (2 mg/Kg body weight; subcutaneous) improved motor function in male periadolescent mice. In combined treatment, Nicotine reduced the motor function decline observed in MDMA treatment, thus no significant change in motor function for the combined treatment versus the control. Nicotine or MDMA treatment reduced memory function and altered hippocampal structure. Similarly, a combined Nicotine-MDMA treatment reduced memory function when compared with the control. Ultimately, the metabolic and structural changes in these neural systems were seen to vary for the various forms of treatment. It is noteworthy to mention that a combined treatment increased the rate of lipid peroxidation in brain tissue.
The contributions of balance to gait capacity and motor function in chronic stroke.
Lee, Kyoung Bo; Lim, Seong Hoon; Kim, Young Dong; Yang, Byung Il; Kim, Kyung Hoon; Lee, Kang Sung; Kim, Eun Ja; Hwang, Byong Yong
2016-06-01
[Purpose] The aim of this study was to identify the contributions of balance to gait and motor function in chronic stroke. [Subjects and Methods] Twenty-three outpatients participated in a cross-sectional assessment. Gait ability was assessed using the functional ambulation category, self-paced 10-m walking speed, and fastest 10-m walking speed. Standing balance and trunk control measures included the Berg Balance Scale and the Trunk Impairment Scale. Univariate and multivariate regression analyses were performed. [Results] Balance was the best predictor of the FAC, self-paced walking speed, and fastest walking speed, accounting for 57% to 61% of the variances. Additionally, the total score of TIS was the only predictor of the motor function of the lower limbs and the dynamic balance of TIS was a predictor of the motor function of the upper limbs, accounting for 41% and 29% of the variance, respectively. [Conclusion] This study demonstrated the relative contribution of standing balance and trunk balance to gait ability and motor function. They show that balance has a high power of explanation of gait ability and that trunk balance is a determinant of motor function rather than gait ability.
The contributions of balance to gait capacity and motor function in chronic stroke
Lee, Kyoung Bo; Lim, Seong Hoon; Kim, Young Dong; Yang, Byung Il; Kim, Kyung Hoon; Lee, Kang Sung; Kim, Eun Ja; Hwang, Byong Yong
2016-01-01
[Purpose] The aim of this study was to identify the contributions of balance to gait and motor function in chronic stroke. [Subjects and Methods] Twenty-three outpatients participated in a cross-sectional assessment. Gait ability was assessed using the functional ambulation category, self-paced 10-m walking speed, and fastest 10-m walking speed. Standing balance and trunk control measures included the Berg Balance Scale and the Trunk Impairment Scale. Univariate and multivariate regression analyses were performed. [Results] Balance was the best predictor of the FAC, self-paced walking speed, and fastest walking speed, accounting for 57% to 61% of the variances. Additionally, the total score of TIS was the only predictor of the motor function of the lower limbs and the dynamic balance of TIS was a predictor of the motor function of the upper limbs, accounting for 41% and 29% of the variance, respectively. [Conclusion] This study demonstrated the relative contribution of standing balance and trunk balance to gait ability and motor function. They show that balance has a high power of explanation of gait ability and that trunk balance is a determinant of motor function rather than gait ability. PMID:27390395
Ballester-Plané, Júlia; Laporta-Hoyos, Olga; Macaya, Alfons; Póo, Pilar; Meléndez-Plumed, Mar; Toro-Tamargo, Esther; Gimeno, Francisca; Narberhaus, Ana; Segarra, Dolors; Pueyo, Roser
2018-01-01
Cerebral palsy (CP) is a disorder of motor function often accompanied by cognitive impairment. There is a paucity of research focused on cognition in dyskinetic CP and on the potential effect of related factors. To describe the cognitive profile in dyskinetic CP and to assess its relationship with motor function and associated impairments. Fifty-two subjects with dyskinetic CP (28 males, mean age 24 y 10 mo, SD 13 y) and 52 typically-developing controls (age- and gender-matched) completed a comprehensive neuropsychological assessment. Gross Motor Function Classification System (GMFCS), Communication Function Classification System (CFCS) and epilepsy were recorded. Cognitive performance was compared between control and CP groups, also according different levels of GMFCS. The relationship between cognition, CFCS and epilepsy was examined through partial correlation coefficients, controlling for GMFCS. Dyskinetic CP participants performed worse than controls on all cognitive functions except for verbal memory. Milder cases (GMFCS I) only showed impairment in attention, visuoperception and visual memory. Participants with GMFCS II-III also showed impairment in language-related functions. Severe cases (GMFCS IV-V) showed impairment in intelligence and all specific cognitive functions but verbal memory. CFCS was associated with performance in receptive language functions. Epilepsy was related to performance in intelligence, visuospatial abilities, visual memory, grammar comprehension and learning. Cognitive performance in dyskinetic CP varies with the different levels of motor impairment, with more cognitive functions impaired as motor severity increases. This study also demonstrates the relationship between communication and epilepsy and cognitive functioning, even controlling for the effect of motor severity. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Shishov, Nataliya; Melzer, Itshak; Bar-Haim, Simona
2017-01-01
Upper limb function, essential for daily life, is often impaired in individuals after stroke and cerebral palsy (CP). For an improved upper limb function, learning should occur, and therefore training with motor learning principles is included in many rehabilitation interventions. Despite accurate measurement being an important aspect for examination and optimization of treatment outcomes, there are no standard algorithms for outcome measures selection. Moreover, the ability of the chosen measures to identify learning is not well established. We aimed to review and categorize the parameters and measures utilized for identification of motor learning in stroke and CP populations. PubMed, Pedro, and Web of Science databases were systematically searched between January 2000 and March 2016 for studies assessing a form of motor learning following upper extremity training using motor control measures. Thirty-two studies in persons after stroke and 10 studies in CP of any methodological quality were included. Identified outcome measures were sorted into two categories, “parameters,” defined as identifying a form of learning, and “measures,” as tools measuring the parameter. Review's results were organized as a narrative synthesis focusing on the outcome measures. The included studies were heterogeneous in their study designs, parameters and measures. Parameters included adaptation (n = 6), anticipatory control (n = 2), after-effects (n = 3), de-adaptation (n = 4), performance (n = 24), acquisition (n = 8), retention (n = 8), and transfer (n = 14). Despite motor learning theory's emphasis on long-lasting changes and generalization, the majority of studies did not assess the retention and transfer parameters. Underlying measures included kinematic analyses in terms of speed, geometry or both (n = 39), dynamic metrics, measures of accuracy, consistency, and coordination. There is no exclusivity of measures to a specific parameter. Many factors affect task performance and the ability to measure it—necessitating the use of several metrics to examine different features of movement and learning. Motor learning measures' applicability to clinical setting can benefit from a treatment-focused approach, currently lacking. The complexity of motor learning results in various metrics, utilized to assess its occurrence, making it difficult to synthesize findings across studies. Further research is desirable for development of an outcome measures selection algorithm, while considering the quality of such measurements. PMID:28286474
NASA Technical Reports Server (NTRS)
Erdeniz, B.; Koppelmans, V.; Bloomberg, J. J.; Kofman, I. S.; DeDios, Y. E.; Riascos-Castaneda, R. F.; Wood, S. J.; Mulavara, A. P.; Seidler, R. D.
2014-01-01
NASA offers researchers from a variety of backgrounds the opportunity to study bed rest as an experimental analog for space flight. Extended exposure to a head-down tilt position during long duration bed rest can resemble many of the effects of a low-gravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The aim of our study is to a) identify changes in brain function that occur with prolonged bed rest and characterize their recovery time course; b) assess whether and how these changes impact behavioral and neurocognitive performance. Thus far, we completed data collection from six participants that include task based and resting state fMRI. The data have been acquired through the bed rest facility located at the University of Texas Medical Branch (Galveston, TX). Subjects remained in bed with their heads tilted down 6 degrees below their feet for 70 consecutive days. Behavioral measures and neuroimaging assessments were obtained at seven time points: a) 7 and 12 days before bed rest; b) 7, 30, and 65 days during bed rest; and c) 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (FcMRI) analysis was performed to assess the connectivity of motor cortex in and out of bed rest. We found a decrease in motor cortex connectivity with vestibular cortex and the cerebellum from pre bed rest to in bed rest. We also used a battery of behavioral measures including the functional mobility test and computerized dynamic posturography collected before and after bed rest. We will report the preliminary results of analyses relating brain and behavior changes. Furthermore, we will also report the preliminary results of a spatial working memory task and vestibular stimulation during in and out of bed rest.
Brain stimulation and constraint for perinatal stroke hemiparesis
Andersen, John; Herrero, Mia; Nettel-Aguirre, Alberto; Carsolio, Lisa; Damji, Omar; Keess, Jamie; Mineyko, Aleksandra; Hodge, Jacquie; Hill, Michael D.
2016-01-01
Objective: To determine whether the addition of repetitive transcranial magnetic stimulation (rTMS) and/or constraint-induced movement therapy (CIMT) to intensive therapy increases motor function in children with perinatal stroke and hemiparesis. Methods: A factorial-design, blinded, randomized controlled trial (clinicaltrials.gov/NCT01189058) assessed rTMS and CIMT effects in hemiparetic children (aged 6–19 years) with MRI-confirmed perinatal stroke. All completed a 2-week, goal-directed, peer-supported motor learning camp randomized to daily rTMS, CIMT, both, or neither. Primary outcomes were the Assisting Hand Assessment and the Canadian Occupational Performance Measure at baseline, and 1 week, 2 and 6 months postintervention. Outcome assessors were blinded to treatment. Interim safety analyses occurred after 12 and 24 participants. Intention-to-treat analysis examined treatment effects over time (linear mixed effects model). Results: All 45 participants completed the trial. Addition of rTMS, CIMT, or both doubled the chances of clinically significant improvement. Assisting Hand Assessment gains at 6 months were additive and largest with rTMS + CIMT (β coefficient = 5.54 [2.57–8.51], p = 0.0004). The camp alone produced large improvements in Canadian Occupational Performance Measure scores, maximal at 6 months (Cohen d = 1.6, p = 0.002). Quality-of-life scores improved. Interventions were well tolerated and safe with no decrease in function of either hand. Conclusions: Hemiparetic children participating in intensive, psychosocial rehabilitation programs can achieve sustained functional gains. Addition of CIMT and rTMS increases the chances of improvement. Classification of evidence: This study provides Class II evidence that combined rTMS and CIMT enhance therapy-induced functional motor gains in children with stroke-induced hemiparetic cerebral palsy. PMID:27029628
Brain stimulation and constraint for perinatal stroke hemiparesis: The PLASTIC CHAMPS Trial.
Kirton, Adam; Andersen, John; Herrero, Mia; Nettel-Aguirre, Alberto; Carsolio, Lisa; Damji, Omar; Keess, Jamie; Mineyko, Aleksandra; Hodge, Jacquie; Hill, Michael D
2016-05-03
To determine whether the addition of repetitive transcranial magnetic stimulation (rTMS) and/or constraint-induced movement therapy (CIMT) to intensive therapy increases motor function in children with perinatal stroke and hemiparesis. A factorial-design, blinded, randomized controlled trial (clinicaltrials.gov/NCT01189058) assessed rTMS and CIMT effects in hemiparetic children (aged 6-19 years) with MRI-confirmed perinatal stroke. All completed a 2-week, goal-directed, peer-supported motor learning camp randomized to daily rTMS, CIMT, both, or neither. Primary outcomes were the Assisting Hand Assessment and the Canadian Occupational Performance Measure at baseline, and 1 week, 2 and 6 months postintervention. Outcome assessors were blinded to treatment. Interim safety analyses occurred after 12 and 24 participants. Intention-to-treat analysis examined treatment effects over time (linear mixed effects model). All 45 participants completed the trial. Addition of rTMS, CIMT, or both doubled the chances of clinically significant improvement. Assisting Hand Assessment gains at 6 months were additive and largest with rTMS + CIMT (β coefficient = 5.54 [2.57-8.51], p = 0.0004). The camp alone produced large improvements in Canadian Occupational Performance Measure scores, maximal at 6 months (Cohen d = 1.6, p = 0.002). Quality-of-life scores improved. Interventions were well tolerated and safe with no decrease in function of either hand. Hemiparetic children participating in intensive, psychosocial rehabilitation programs can achieve sustained functional gains. Addition of CIMT and rTMS increases the chances of improvement. This study provides Class II evidence that combined rTMS and CIMT enhance therapy-induced functional motor gains in children with stroke-induced hemiparetic cerebral palsy. © 2016 American Academy of Neurology.
Disrupted functional connectivity of the pain network in fibromyalgia.
Cifre, Ignacio; Sitges, Carolina; Fraiman, Daniel; Muñoz, Miguel Ángel; Balenzuela, Pablo; González-Roldán, Ana; Martínez-Jauand, Mercedes; Birbaumer, Niels; Chialvo, Dante R; Montoya, Pedro
2012-01-01
To investigate the impact of chronic pain on brain dynamics at rest. Functional connectivity was examined in patients with fibromyalgia (FM) (n = 9) and healthy controls (n = 11) by calculating partial correlations between low-frequency blood oxygen level-dependent fluctuations extracted from 15 brain regions. Patients with FM had more positive and negative correlations within the pain network than healthy controls. Patients with FM displayed enhanced functional connectivity of the anterior cingulate cortex (ACC) with the insula (INS) and basal ganglia (p values between .01 and .05), the secondary somatosensory area with the caudate (CAU) (p = .012), the primary motor cortex with the supplementary motor area (p = .007), the globus pallidus with the amygdala and superior temporal sulcus (both p values < .05), and the medial prefrontal cortex with the posterior cingulate cortex (PCC) and CAU (both p values < .05). Functional connectivity of the ACC with the amygdala and periaqueductal gray (PAG) matter (p values between .001 and .05), the thalamus with the INS and PAG (both p values < .01), the INS with the putamen (p = .038), the PAG with the CAU (p = .038), the secondary somatosensory area with the motor cortex and PCC (both p values < .05), and the PCC with the superior temporal sulcus (p = .002) was also reduced in FM. In addition, significant negative correlations were observed between depression and PAG connectivity strength with the thalamus (r = -0.64, p = .003) and ACC (r = -0.60, p = .004). These findings demonstrate that patients with FM display a substantial imbalance of the connectivity within the pain network during rest, suggesting that chronic pain may also lead to changes in brain activity during internally generated thought processes such as occur at rest.
Jech, Robert; Mueller, Karsten; Urgošík, Dušan; Sieger, Tomáš; Holiga, Štefan; Růžička, Filip; Dušek, Petr; Havránková, Petra; Vymazal, Josef; Růžička, Evžen
2012-01-01
Electrode implantation into the subthalamic nucleus for deep brain stimulation in Parkinson's disease (PD) is associated with a temporary motor improvement occurring prior to neurostimulation. We studied this phenomenon by functional magnetic resonance imaging (fMRI) when considering the Unified Parkinson's Disease Rating Scale (UPDRS-III) and collateral oedema. Twelve patients with PD (age 55.9± (SD)6.8 years, PD duration 9-15 years) underwent bilateral electrode implantation into the subthalamic nucleus. The fMRI was carried out after an overnight withdrawal of levodopa (OFF condition): (i) before and (ii) within three days after surgery in absence of neurostimulation. The motor task involved visually triggered finger tapping. The OFF/UPDRS-III score dropped from 33.8±8.7 before to 23.3±4.8 after the surgery (p<0.001), correlating with the postoperative oedema score (p<0.05). During the motor task, bilateral activation of the thalamus and basal ganglia, motor cortex and insula were preoperatively higher than after surgery (p<0.001). The results became more enhanced after compensation for the oedema and UPDRS-III scores. In addition, the rigidity and axial symptoms score correlated inversely with activation of the putamen and globus pallidus (p<0.0001). One month later, the OFF/UPDRS-III score had returned to the preoperative level (35.8±7.0, p = 0.4).In conclusion, motor improvement induced by insertion of an inactive electrode into the subthalamic nucleus caused an acute microlesion which was at least partially related to the collateral oedema and associated with extensive impact on the motor network. This was postoperatively manifested as lowered movement-related activation at the cortical and subcortical levels and differed from the known effects of neurostimulation or levodopa. The motor system finally adapted to the microlesion within one month as suggested by loss of motor improvement and good efficacy of deep brain stimulation.
Urgošík, Dušan; Sieger, Tomáš; Holiga, Štefan; Růžička, Filip; Dušek, Petr; Havránková, Petra; Vymazal, Josef; Růžička, Evžen
2012-01-01
Electrode implantation into the subthalamic nucleus for deep brain stimulation in Parkinson's disease (PD) is associated with a temporary motor improvement occurring prior to neurostimulation. We studied this phenomenon by functional magnetic resonance imaging (fMRI) when considering the Unified Parkinson's Disease Rating Scale (UPDRS-III) and collateral oedema. Twelve patients with PD (age 55.9± (SD)6.8 years, PD duration 9–15 years) underwent bilateral electrode implantation into the subthalamic nucleus. The fMRI was carried out after an overnight withdrawal of levodopa (OFF condition): (i) before and (ii) within three days after surgery in absence of neurostimulation. The motor task involved visually triggered finger tapping. The OFF/UPDRS-III score dropped from 33.8±8.7 before to 23.3±4.8 after the surgery (p<0.001), correlating with the postoperative oedema score (p<0.05). During the motor task, bilateral activation of the thalamus and basal ganglia, motor cortex and insula were preoperatively higher than after surgery (p<0.001). The results became more enhanced after compensation for the oedema and UPDRS-III scores. In addition, the rigidity and axial symptoms score correlated inversely with activation of the putamen and globus pallidus (p<0.0001). One month later, the OFF/UPDRS-III score had returned to the preoperative level (35.8±7.0, p = 0.4). In conclusion, motor improvement induced by insertion of an inactive electrode into the subthalamic nucleus caused an acute microlesion which was at least partially related to the collateral oedema and associated with extensive impact on the motor network. This was postoperatively manifested as lowered movement-related activation at the cortical and subcortical levels and differed from the known effects of neurostimulation or levodopa. The motor system finally adapted to the microlesion within one month as suggested by loss of motor improvement and good efficacy of deep brain stimulation. PMID:23145068
Schneider, H
1975-12-22
Eight cases of spastic torticollis were examined during the course of stereotactic operations with the writing pressure apparatus of Steinwachs while the ventrolateral thalamus was stimulated. When 50 stimuli per sec are given, the significant changes of motor function in writing are the following: slowing of writing speed, an increase in writing pressure, greater changes of pressure amplitude with tendences to parallel course. With 25 stimuli per sec, simular results may appear, but smaller amplitude changes and lowering of writing pressure may also occur. When 8 stimuli per sec are given, no changes of pressure patterns in writing were found. Three typical cases are described. It is concluded that the recording of fine pressure changes in writing may indicate alterations of cerebral motor regulations although specific changes for certain thalamic stimulus locations were lacking.
Shashoua, V E; Hesse, G W
1989-04-10
ELISA measurements showed that brain extracellular fluid (ECF) levels of ependymin decreased for animals that learned to associate a paired presentation of a light stimulus (CS) with the onset of an electric shock (US), whereas no changes were obtained for control goldfish that received the same number of stimuli delivered in a random unpaired order. Studies of the time course of the changes showed an immediate decrease (19%) after training followed by an increase (20%) above baseline by 5 h and a final return to baseline by 25 h. These data extend the findings of previous experiments, which demonstrated a role for ependymin in two training procedures that involved motor learning, to classical conditioning where no motor learning occurs. Thus it appears that ependymin may have a functional role in molecular mechanisms of learning and memory in general.
2005-07-01
families. In all cases, mutations in one allele results in the inactivation of the gene while missense mutations were found in the second allele. Four...of the five missense mutations occurred in the catalytic domain and thus suggest a dysfunctional BubRi kinase. The fifth missense mutation was found in...a region of the protein with no ascribed function. Nevertheless, this missense mutation along with one found in the kinase domain were associated
Cauda equina syndrome: a comprehensive review.
Gitelman, Alex; Hishmeh, Shuriz; Morelli, Brian N; Joseph, Samuel A; Casden, Andrew; Kuflik, Paul; Neuwirth, Michael; Stephen, Mark
2008-11-01
Cauda equina syndrome (CES) is a rare syndrome that has been described as a complex of symptoms and signs--low back pain, unilateral or bilateral sciatica, motor weakness of lower extremities, sensory disturbance in saddle area, and loss of visceral function--resulting from compression of the cauda equina. CES occurs in approximately 2% of cases of herniated lumbar discs and is one of the few spinal surgical emergencies. In this article, we review information that is critical in understanding, diagnosing, and treating CES.
Guo, Xinyao; Xiang, Jing; Wang, Yingying; O’Brien, Hope; Kabbouche, Marielle; Horn, Paul; Powers, Scott W.; Hershey, Andrew D.
2012-01-01
Migraine attacks have been shown to interfere with normal function in the brain such as motor or sensory function. However, to date, there has been no clinical neurophysiology study focusing on the motor function in children with migraine during headache attacks. To investigate the motor function in children with migraine, twenty-six children with acute migraine, meeting International Classification of Headache Disorders criteria and age- and gender-matched healthy children were studied using a 275-channel magnetoencephalography system. A finger-tapping paradigm was designed to elicit neuromagnetic activation in the motor cortex. Children with migraine showed significantly prolonged latency of movement-evoked magnetic fields (MEF) during finger movement compared with the controls. The correlation coefficient of MEF latency and age in children with migraine was significantly different from that in healthy controls. The spectral power of high gamma (65–150 Hz) oscillations during finger movement in the primary motor cortex is also significantly higher in children with migraine than in controls. The alteration of responding latency and aberrant high gamma oscillations suggest that the developmental trajectory of motor function in children with migraine is impaired during migraine attacks and/or developmentally delayed. This finding indicates that childhood migraine may affect the development of brain function and result in long-term problems. PMID:23185541
The effect of subclinical infantile thiamine deficiency on motor function in preschool children.
Harel, Yael; Zuk, Luba; Guindy, Michal; Nakar, Orly; Lotan, Dafna; Fattal-Valevski, Aviva
2017-10-01
We investigated the long-term implications of infantile thiamine (vitamin B1) deficiency on motor function in preschoolers who had been fed during the first 2 years of life with a faulty milk substitute. In this retrospective cohort study, 39 children aged 5-6 years who had been exposed to a thiamine-deficient formula during infancy were compared with 30 age-matched healthy children with unremarkable infant nutritional history. The motor function of the participants was evaluated with The Movement Assessment Battery for Children (M-ABC) and the Zuk Assessment. Both evaluation tools revealed statistically significant differences between the exposed and unexposed groups for gross and fine motor development (p < .001, ball skills p = .01) and grapho-motor development (p = .004). The differences were especially noteworthy on M-ABC testing for balance control functioning (p < .001, OR 5.4; 95% CI 3.4-7.4) and fine motor skills (p < .001, OR 3.2; 95% CI 1.8-4.6). In the exposed group, both assessments concurred on the high rate of children exhibiting motor function difficulties in comparison to unexposed group (M-ABC: 56% vs. 10%, Zuk Assessment: 59% vs. 3%, p < .001). Thiamine deficiency in infancy has long-term implications on gross and fine motor function and balance skills in childhood, thiamine having a crucial role in normal motor development. The study emphasizes the importance of proper infant feeding and regulatory control of breast milk substitutes. © 2017 John Wiley & Sons Ltd.
Forced, not voluntary, exercise improves motor function in Parkinson's disease patients.
Ridgel, Angela L; Vitek, Jerrold L; Alberts, Jay L
2009-01-01
Animal studies indicate forced exercise (FE) improves overall motor function in Parkinsonian rodents. Global improvements in motor function following voluntary exercise (VE) are not widely reported in human Parkinson's disease (PD) patients. The aim of this study was to compare the effects of VE and FE on PD symptoms, motor function, and bimanual dexterity. Ten patients with mild to moderate PD were randomly assigned to complete 8 weeks of FE or VE. With the assistance of a trainer, patients in the FE group pedaled at a rate 30% greater than their preferred voluntary rate, whereas patients in the VE group pedaled at their preferred rate. Aerobic intensity for both groups was identical, 60% to 80% of their individualized training heart rate. Aerobic fitness improved for both groups. Following FE, Unified Parkinson's Disease Rating Scale (UPDRS) motor scores improved 35%, whereas patients completing VE did not exhibit any improvement. The control and coordination of grasping forces during the performance of a functional bimanual dexterity task improved significantly for patients in the FE group, whereas no changes in motor performance were observed following VE. Improvements in clinical measures of rigidity and bradykinesia and biomechanical measures of bimanual dexterity were maintained 4 weeks after FE cessation. Aerobic fitness can be improved in PD patients following both VE and FE interventions. However, only FE results in significant improvements in motor function and bimanual dexterity. Biomechanical data indicate that FE leads to a shift in motor control strategy, from feedback to a greater reliance on feedforward processes, which suggests FE may be altering central motor control processes.
Multi-modal Brain MRI in Subjects with PD and iRBD.
Mangia, Silvia; Svatkova, Alena; Mascali, Daniele; Nissi, Mikko J; Burton, Philip C; Bednarik, Petr; Auerbach, Edward J; Giove, Federico; Eberly, Lynn E; Howell, Michael J; Nestrasil, Igor; Tuite, Paul J; Michaeli, Shalom
2017-01-01
Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a condition that often evolves into Parkinson's disease (PD). Therefore, by monitoring iRBD it is possible to track the neurodegeneration of individuals who may progress to PD. Here we aimed at piloting the characterization of brain tissue properties in mid-brain subcortical regions of 10 healthy subjects, 8 iRBD, and 9 early-diagnosed PD. We used a battery of magnetic resonance imaging (MRI) contrasts at 3 T, including adiabatic and non-adiabatic rotating frame techniques developed by our group, along with diffusion tensor imaging (DTI) and resting-state fMRI. Adiabatic T 1ρ and T 2ρ , and non-adiabatic RAFF4 (Relaxation Along a Fictitious Field in the rotating frame of rank 4) were found to have lower coefficient of variations and higher sensitivity to detect group differences as compared to DTI parameters such as fractional anisotropy and mean diffusivity. Significantly longer T 1ρ were observed in the amygdala of PD subjects vs. controls, along with a trend of lower functional connectivity as measured by regional homogeneity, thereby supporting the notion that amygdalar dysfunction occurs in PD. Significant abnormalities in reward networks occurred in iRBD subjects, who manifested lower network strength of the accumbens. In agreement with previous studies, significantly longer T 1ρ occurred in the substantia nigra compacta of PD vs. controls, indicative of neuronal degeneration, while regional homogeneity was lower in the substantia nigra reticulata. Finally, other trend-level findings were observed, i.e., lower RAFF4 and T 2ρ in the midbrain of iRBD subjects vs. controls, possibly indicating changes in non-motor features as opposed to motor function in the iRBD group. We conclude that rotating frame relaxation methods along with functional connectivity measures are valuable to characterize iRBD and PD subjects, and with proper validation in larger cohorts may provide pathological signatures of iRBD and PD.
Asthana, Pallavi; Zhang, Ni; Kumar, Gajendra; Chine, Virendra Bhagawan; Singh, Kunal Kumar; Mak, Yim Ling; Chan, Leo Lai; Lam, Paul Kwan Sing; Ma, Chi Him Eddie
2018-01-18
Consumption of fish containing ciguatera toxins or ciguatoxins (CTXs) causes ciguatera fish poisoning (CFP). In some patients, CFP recurrence occurs even years after exposure related to CTXs accumulation. Pacific CTX-1 (P-CTX-1) is one of the most potent natural substances known that causes predominantly neurological symptoms in patients; however, the underlying pathogenies of CFP remain unknown. Using clinically relevant neurobehavioral tests and electromyography (EMG) to assess effects of P-CTX-1 during the 4 months after exposure, recurrent motor strength deficit occurred in mice exposed to P-CTX-1. We detected irreversible motor strength deficits accompanied by reduced EMG activity, demyelination, and slowing of motor nerve conduction, whereas control unexposed mice fully recovered in 1 month after peripheral nerve injury. Finally, to uncover the mechanism underlying CFP, we detected reduction of spontaneous firing rate of motor cortical neurons even 6 months after exposure and increased number of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Increased numbers of motor cortical neuron apoptosis were detected by dUTP-digoxigenin nick end labeling assay along with activation of caspase 3. Taken together, our study demonstrates that persistence of P-CTX-1 in the nervous system induces irreversible motor deficit that correlates well with excitotoxicity and neurodegeneration detected in the motor cortical neurons.
Synaptic Democracy and Vesicular Transport in Axons
NASA Astrophysics Data System (ADS)
Bressloff, Paul C.; Levien, Ethan
2015-04-01
Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of these phenomena reflect fundamental limitations of transport processes based on a localized source. In this Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making the transport process less efficient. This involves two components: bidirectional or "stop-and-go" motor transport (which can be modeled in terms of advection-diffusion), and reversible interactions between motor-cargo complexes and synaptic targets. Both of these features have recently been observed experimentally. Our model suggests that, just as in human societies, there needs to be a balance between "efficiency" and "equality".
Motor cognition and its role in the phylogeny and ontogeny of action understanding.
Gallese, Vittorio; Rochat, Magali; Cossu, Giuseppe; Sinigaglia, Corrado
2009-01-01
Social life rests in large part on the capacity to understand the intentions behind the behavior of others. What are the origins of this capacity? How is one to construe its development in ontogenesis? By assuming that action understanding can be explained only in terms of the ability to read the minds of others--that is, to represent mental states--the traditional view claims that a sharp discontinuity occurs in both phylogeny and ontogeny. Over the last few years this view has been challenged by a number of ethological and psychological studies, as well as by several neurophysiological findings. In particular, the functional properties of the mirror neuron system and its direct matching mechanism indicate that action understanding may be primarily based on the motor cognition that underpins one's own capacity to act. This article aims to elaborate and motivate the pivotal role of such motor cognition, providing a biologically plausible and theoretically unitary account for the phylogeny and ontogeny of action understanding and also its impairment, as in the case of autistic spectrum disorder.
Intrinsic signature of essential tremor in the cerebello-frontal network
Popa, Traian; García-Lorenzo, Daniel; Valabregue, Romain; Legrand, André-Pierre; Marais, Lea; Degos, Bertrand; Hubsch, Cecile; Fernández-Vidal, Sara; Bardinet, Eric; Roze, Emmanuel; Lehéricy, Stéphane; Vidailhet, Marie; Meunier, Sabine
2015-01-01
See Raethjen and Muthuraman (doi:10.1093/brain/awv238) for a scientific commentary on this article. Essential tremor is a movement disorder characterized by tremor during voluntary movements, mainly affecting the upper limbs. The cerebellum and its connections to the cortex are known to be involved in essential tremor, but no task-free intrinsic signatures of tremor related to structural cerebellar defects have so far been found in the cortical motor network. Here we used voxel-based morphometry, tractography and resting-state functional MRI at 3 T to compare structural and functional features in 19 patients with essential tremor and homogeneous symptoms in the upper limbs, and 19 age- and gender-matched healthy volunteers. Both structural and functional abnormalities were found in the patients' cerebellum and supplementary motor area. Relative to the healthy controls, the essential tremor patients' cerebellum exhibited less grey matter in lobule VIII and less effective connectivity between each cerebellar cortex and the ipsilateral dentate nucleus. The patient's supplementary motor area exhibited (i) more grey matter; (ii) a lower amplitude of low-frequency fluctuation of the blood oxygenation level-dependent signal; (iii) less effective connectivity between each supplementary motor area and the ipsilateral primary motor hand area, and (iv) a higher probability of connection between supplementary motor area fibres and the spinal cord. Structural and functional changes in the supplementary motor area, but not in the cerebellum, correlated with clinical severity. In addition, changes in the cerebellum and supplementary motor area were interrelated, as shown by a correlation between the lower amplitude of low-frequency fluctuation in the supplementary motor area and grey matter loss in the cerebellum. The structural and functional changes observed in the supplementary motor area might thus be a direct consequence of cerebellar defects: the supplementary motor area would attempt to reduce tremor in the motor output by reducing its communication with M1 hand areas and by directly modulating motor output via its corticospinal projections. PMID:26115677
Sütbeyaz, Serap; Yavuzer, Gunes; Sezer, Nebahat; Koseoglu, B Füsun
2007-05-01
To evaluate the effects of mirror therapy, using motor imagery training, on lower-extremity motor recovery and motor functioning of patients with subacute stroke. Randomized, controlled, assessor-blinded, 4-week trial, with follow-up at 6 months. Rehabilitation education and research hospital. A total of 40 inpatients with stroke (mean age, 63.5 y), all within 12 months poststroke and without volitional ankle dorsiflexion. Thirty minutes per day of the mirror therapy program, consisting of nonparetic ankle dorsiflexion movements or sham therapy, in addition to a conventional stroke rehabilitation program, 5 days a week, 2 to 5 hours a day, for 4 weeks. The Brunnstrom stages of motor recovery, spasticity assessed by the Modified Ashworth Scale (MAS), walking ability (Functional Ambulation Categories [FAC]), and motor functioning (motor items of the FIM instrument). The mean change score and 95% confidence interval (CI) of the Brunnstrom stages (mean, 1.7; 95% CI, 1.2-2.1; vs mean, 0.8; 95% CI, 0.5-1.2; P=.002), as well as the FIM motor score (mean, 21.4; 95% CI, 18.2-24.7; vs mean, 12.5; 95% CI, 9.6-14.8; P=.001) showed significantly more improvement at follow-up in the mirror group compared with the control group. Neither MAS (mean, 0.8; 95% CI, 0.4-1.2; vs mean, 0.3; 95% CI, 0.1-0.7; P=.102) nor FAC (mean, 1.7; 95% CI, 1.2-2.1; vs mean, 1.5; 95% CI, 1.1-1.9; P=.610) showed a significant difference between the groups. Mirror therapy combined with a conventional stroke rehabilitation program enhances lower-extremity motor recovery and motor functioning in subacute stroke patients.
Learning stage-dependent effect of M1 disruption on value-based motor decisions.
Derosiere, Gerard; Vassiliadis, Pierre; Demaret, Sophie; Zénon, Alexandre; Duque, Julie
2017-11-15
The present study aimed at characterizing the impact of M1 disruption on the implementation of implicit value information in motor decisions, at both early stages (during reinforcement learning) and late stages (after consolidation) of action value encoding. Fifty subjects performed, over three consecutive days, a task that required them to select between two finger responses according to the color (instruction) and to the shape (implicit, undisclosed rule) of an imperative signal: considering the implicit rule in addition to the instruction allowed subjects to earn more money. We investigated the functional contribution of M1 to the implementation of the implicit rule in subjects' motor decisions. Continuous theta burst stimulation (cTBS) was applied over M1 either on Day 1 or on Day 3, producing a temporary lesion either during reinforcement learning (cTBS Learning group) or after consolidation of the implicit rule, during decision-making (cTBS Decision group), respectively. Interestingly, disrupting M1 activity on Day 1 improved the reliance on the implicit rule, plausibly because M1 cTBS increased dopamine release in the putamen in an indirect way. This finding corroborates the view that cTBS may affect activity in unstimulated areas, such as the basal ganglia. Notably, this effect was short-lasting; it did not persist overnight, suggesting that the functional integrity of M1 during learning is a prerequisite for the consolidation of implicit value information to occur. Besides, cTBS over M1 did not impact the use of the implicit rule when applied on Day 3, although it did so when applied on Day 2 in a recent study where the reliance on the implicit rule declined following cTBS (Derosiere et al., 2017). Overall, these findings indicate that the human M1 is functionally involved in the consolidation and implementation of implicit value information underlying motor decisions. However, M1 contribution seems to vanish as subjects become more experienced in using the implicit value information to make their motor decisions. Copyright © 2017 Elsevier Inc. All rights reserved.
Bourret, S.C.; Swansen, J.E.
1982-07-02
A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.
Wriessnegger, Selina C.; Steyrl, David; Koschutnig, Karl; Müller-Putz, Gernot R.
2014-01-01
Motor imagery (MI) is a commonly used paradigm for the study of motor learning or cognitive aspects of action control. The rationale for using MI training to promote the relearning of motor function arises from research on the functional correlates that MI shares with the execution of physical movements. While most of the previous studies investigating MI were based on simple movements in the present study a more attractive mental practice was used to investigate cortical activation during MI. We measured cerebral responses with functional magnetic resonance imaging (fMRI) in twenty three healthy volunteers as they imagined playing soccer or tennis before and after a short physical sports exercise. Our results demonstrated that only 10 min of training are enough to boost MI patterns in motor related brain regions including premotor cortex and supplementary motor area (SMA) but also fronto-parietal and subcortical structures. This supports previous findings that MI has beneficial effects especially in combination with motor execution when used in motor rehabilitation or motor learning processes. We conclude that sports MI combined with an interactive game environment could be a promising additional tool in future rehabilitation programs aiming to improve upper or lower limb functions or support neuroplasticity. PMID:25071505
Shaping Early Reorganization of Neural Networks Promotes Motor Function after Stroke
Volz, L. J.; Rehme, A. K.; Michely, J.; Nettekoven, C.; Eickhoff, S. B.; Fink, G. R.; Grefkes, C.
2016-01-01
Neural plasticity is a major factor driving cortical reorganization after stroke. We here tested whether repetitively enhancing motor cortex plasticity by means of intermittent theta-burst stimulation (iTBS) prior to physiotherapy might promote recovery of function early after stroke. Functional magnetic resonance imaging (fMRI) was used to elucidate underlying neural mechanisms. Twenty-six hospitalized, first-ever stroke patients (time since stroke: 1–16 days) with hand motor deficits were enrolled in a sham-controlled design and pseudo-randomized into 2 groups. iTBS was administered prior to physiotherapy on 5 consecutive days either over ipsilesional primary motor cortex (M1-stimulation group) or parieto-occipital vertex (control-stimulation group). Hand motor function, cortical excitability, and resting-state fMRI were assessed 1 day prior to the first stimulation and 1 day after the last stimulation. Recovery of grip strength was significantly stronger in the M1-stimulation compared to the control-stimulation group. Higher levels of motor network connectivity were associated with better motor outcome. Consistently, control-stimulated patients featured a decrease in intra- and interhemispheric connectivity of the motor network, which was absent in the M1-stimulation group. Hence, adding iTBS to prime physiotherapy in recovering stroke patients seems to interfere with motor network degradation, possibly reflecting alleviation of post-stroke diaschisis. PMID:26980614
Induction of mice adult bone marrow mesenchymal stem cells into functional motor neuron-like cells.
Abdullah, Rafal H; Yaseen, Nahi Y; Salih, Shahlaa M; Al-Juboory, Ahmad Adnan; Hassan, Ayman; Al-Shammari, Ahmed Majeed
2016-11-01
The differentiation of mesenchymal stem cells (MSC) into acetylcholine secreted motor neuron-like cells, followed by elongation of the cell axon, is a promising treatment for spinal cord injury and motor neuron cell dysfunction in mammals. Differentiation is induced through a pre-induction step using Beta- mercaptoethanol (BME) followed by four days of induction with retinoic acid and sonic hedgehog. This process results in a very efficient differentiation of BM-MSCs into motor neuron-like cells. Immunocytochemistry showed that these treated cells had specific motor neural markers: microtubule associated protein-2 and acetylcholine transferase. The ability of these cells to function as motor neuron cells was assessed by measuring acetylcholine levels in a culture media during differentiation. High-performance liquid chromatography (HPLC) showed that the differentiated cells were functional. Motor neuron axon elongation was then induced by adding different concentrations of a nerve growth factor (NGF) to the differentiation media. Using a collagen matrix to mimic the natural condition of neural cells in a three-dimensional model showed that the MSCs were successfully differentiated into motor neuron-like cells. This process can efficiently differentiate MSCs into functional motor neurons that can be used for autologous nervous system therapy and especially for treating spinal cord injuries. Copyright © 2016 Elsevier B.V. All rights reserved.
Cortico-Cerebellar Structural Connectivity Is Related to Residual Motor Output in Chronic Stroke.
Schulz, Robert; Frey, Benedikt M; Koch, Philipp; Zimerman, Maximo; Bönstrup, Marlene; Feldheim, Jan; Timmermann, Jan E; Schön, Gerhard; Cheng, Bastian; Thomalla, Götz; Gerloff, Christian; Hummel, Friedhelm C
2017-01-01
Functional imaging studies have argued that interactions between cortical motor areas and the cerebellum are relevant for motor output and recovery processes after stroke. However, the impact of the underlying structural connections is poorly understood. To investigate this, diffusion-weighted brain imaging was conducted in 26 well-characterized chronic stroke patients (aged 63 ± 1.9 years, 18 males) with supratentorial ischemic lesions and 26 healthy participants. Probabilistic tractography was used to reconstruct reciprocal cortico-cerebellar tracts and to relate their microstructural integrity to residual motor functioning applying linear regression modeling. The main finding was a significant association between cortico-cerebellar structural connectivity and residual motor function, independent from the level of damage to the cortico-spinal tract. Specifically, white matter integrity of the cerebellar outflow tract, the dentato-thalamo-cortical tract, was positively related to both general motor output and fine motor skills. Additionally, the integrity of the descending cortico-ponto-cerebellar tract contributed to rather fine motor skills. A comparable structure-function relationship was not evident in the controls. The present study provides first tract-related structural data demonstrating a critical importance of distinct cortico-cerebellar connections for motor output after stroke. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Non-Invasive Electrical Brain Stimulation Montages for Modulation of Human Motor Function.
Curado, Marco; Fritsch, Brita; Reis, Janine
2016-02-04
Non-invasive electrical brain stimulation (NEBS) is used to modulate brain function and behavior, both for research and clinical purposes. In particular, NEBS can be applied transcranially either as direct current stimulation (tDCS) or alternating current stimulation (tACS). These stimulation types exert time-, dose- and in the case of tDCS polarity-specific effects on motor function and skill learning in healthy subjects. Lately, tDCS has been used to augment the therapy of motor disabilities in patients with stroke or movement disorders. This article provides a step-by-step protocol for targeting the primary motor cortex with tDCS and transcranial random noise stimulation (tRNS), a specific form of tACS using an electrical current applied randomly within a pre-defined frequency range. The setup of two different stimulation montages is explained. In both montages the emitting electrode (the anode for tDCS) is placed on the primary motor cortex of interest. For unilateral motor cortex stimulation the receiving electrode is placed on the contralateral forehead while for bilateral motor cortex stimulation the receiving electrode is placed on the opposite primary motor cortex. The advantages and disadvantages of each montage for the modulation of cortical excitability and motor function including learning are discussed, as well as safety, tolerability and blinding aspects.
Motor system evolution and the emergence of high cognitive functions.
Mendoza, Germán; Merchant, Hugo
2014-11-01
In human and nonhuman primates, the cortical motor system comprises a collection of brain areas primarily related to motor control. Existing evidence suggests that no other mammalian group has the number, extension, and complexity of motor-related areas observed in the frontal lobe of primates. Such diversity is probably related to the wide behavioral flexibility that primates display. Indeed, recent comparative anatomical, psychophysical, and neurophysiological studies suggest that the evolution of the motor cortical areas closely correlates with the emergence of high cognitive abilities. Advances in understanding the cortical motor system have shown that these areas are also related to functions previously linked to higher-order associative areas. In addition, experimental observations have shown that the classical distinction between perceptual and motor functions is not strictly followed across cortical areas. In this paper, we review evidence suggesting that evolution of the motor system had a role in the shaping of different cognitive functions in primates. We argue that the increase in the complexity of the motor system has contributed to the emergence of new abilities observed in human and nonhuman primates, including the recognition and imitation of the actions of others, speech perception and production, and the execution and appreciation of the rhythmic structure of music. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kantomaa, Marko T.; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija
2013-01-01
The global epidemic of obesity and physical inactivity may have detrimental implications for young people’s cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents’ academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents’ academic achievement via physical inactivity (B = –0.023, 95% confidence interval = –0.031, –0.015) and obesity (B = –0.025, 95% confidence interval = –0.039, –0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents’ academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement. PMID:23277558
Kantomaa, Marko T; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija
2013-01-29
The global epidemic of obesity and physical inactivity may have detrimental implications for young people's cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents' academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents' academic achievement via physical inactivity (B = -0.023, 95% confidence interval = -0.031, -0.015) and obesity (B = -0.025, 95% confidence interval = -0.039, -0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents' academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement.
The Motor System: The Whole and its Parts
Otten, E.
2001-01-01
Our knowledge of components of the human motor system has been growing steadily, but our understanding of its integration into a system is lagging behind. It is suggested that a combination of measurements of forces and movements of the motor system in a functionally meaningful environment in conjunction with computer simulations of the motor system may help us in understanding motor system properties. Neurotrauma can be seen as a natural deviation, with recovery as a slow path to yet another deviant state of the motor system. In that form they may be useful in explaining the close interaction between form and function of the human motor system. PMID:11530882
Altermann, Caroline D. C.; Martins, Alexandre S.; Carpes, Felipe P.; Mello-Carpes, Pâmela B.
2014-01-01
Background With aging, it is important to maintain cognitive and motor functions to ensure autonomy and quality of life. During the acquisition of motor skills, it is necessary for the elderly to understand the purpose of the proposed activities. Physical and mental practice, as well as demonstrations, are strategies used to learn movements. Objectives To investigate the influence of mental practice and the observation of movement on motor memory and to understand the relationship between cognitive function and motor performance in the execution of a sequence of digital movements in the elderly. Method This was a cross-sectional study conducted with 45 young and 45 aged subjects. The instruments used were Mini-Mental State Examination (MMSE), Manual Preference Inventory and a Digital Motor Task (composed of a training of a sequence of movements, an interval and a test phase). The subjects were divided into three subgroups: control, mental practice and observation of movement. Results The elderly depend more strongly on mental practice for the acquisition of a motor memory. In comparing the performances of people in different age groups, we found that in the elderly, there was a negative correlation between the MMSE score and the execution time as well as the number of errors in the motor task. Conclusions For the elderly, mental practice can advantage motor performance. Also, there is a significant relationship between cognitive function, learning and the execution of new motor skills. PMID:24839046
Multimotor Transport in a System of Active and Inactive Kinesin-1 Motors
Scharrel, Lara; Ma, Rui; Schneider, René; Jülicher, Frank; Diez, Stefan
2014-01-01
Long-range directional transport in cells is facilitated by microtubule-based motor proteins. One example is transport in a nerve cell, where small groups of motor proteins, such as kinesins and cytoplasmic dynein, work together to ensure the supply and clearance of cellular material along the axon. Defects in axonal transport have been linked to Alzheimer’s and other neurodegenerative diseases. However, it is not known in detail how multimotor-based cargo transport is impaired if a fraction of the motors are defective. To mimic impaired multimotor transport in vitro, we performed gliding motility assays with varying fractions of active kinesin-1 motors and inactive kinesin-1 motor mutants. We found that impaired transport manifests in multiple motility regimes: 1), a fast-motility regime characterized by gliding at velocities close to the single-molecule velocity of the active motors; 2), a slow-motility regime characterized by gliding at close-to zero velocity or full stopping; and 3), a regime in which fast and slow motilities coexist. Notably, the transition from the fast to the slow regime occurred sharply at a threshold fraction of active motors. Based on single-motor parameters, we developed a stochastic model and a mean-field theoretical description that explain our experimental findings. Our results demonstrate that impaired multimotor transport mostly occurs in an either/or fashion: depending on the ratio of active to inactive motors, transport is either performed at close to full speed or is out of action. PMID:25028878
Genetic inhibition of JNK3 ameliorates spinal muscular atrophy.
Genabai, Naresh K; Ahmad, Saif; Zhang, Zhanying; Jiang, Xiaoting; Gabaldon, Cynthia A; Gangwani, Laxman
2015-12-15
Mutation of the Survival Motor Neuron 1 (SMN1) gene causes spinal muscular atrophy (SMA), an autosomal recessive neurodegenerative disorder that occurs in early childhood. Degeneration of spinal motor neurons caused by SMN deficiency results in progressive muscle atrophy and death in SMA. The molecular mechanism underlying neurodegeneration in SMA is unknown. No treatment is available to prevent neurodegeneration and reduce the burden of illness in SMA. We report that the c-Jun NH2-terminal kinase (JNK) signaling pathway mediates neurodegeneration in SMA. The neuron-specific isoform JNK3 is required for neuron degeneration caused by SMN deficiency. JNK3 deficiency reduces degeneration of cultured neurons caused by low levels of SMN. Genetic inhibition of JNK pathway in vivo by Jnk3 knockout results in amelioration of SMA phenotype. JNK3 deficiency prevents the loss of spinal cord motor neurons, reduces muscle degeneration, improves muscle fiber thickness and muscle growth, improves motor function and overall growth and increases lifespan of mice with SMA that shows a systemic rescue of phenotype by a SMN-independent mechanism. JNK3 represents a potential (non-SMN) therapeutic target for the treatment of SMA. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Stone, Eric A; Lehmann, Michael L; Lin, Yan; Quartermain, David
2007-08-15
A previous study showed that two mouse models of behavioral depression, immune system activation and depletion of brain monoamines, are accompanied by marked reductions in stimulated neural activity in brain regions involved in motivated behavior. The present study tested whether this effect is common to other depression models by examining the effects of repeated forced swimming, chronic subordination stress or acute intraventricular galanin injection - three additional models - on baseline or stimulated c-fos expression in several brain regions known to be involved in motor or motivational processes (secondary motor, M2, anterior piriform cortex, APIR, posterior cingulate gyrus, CG, nucleus accumbens, NAC). Each of the depression models was found to reduce the fos response stimulated by exposure to a novel cage or a swim stress in all four of these brain areas but not to affect the response of a stress-sensitive region (paraventricular hypothalamus, PVH) that was included for control purposes. Baseline fos expression in these structures was either unaffected or affected in an opposite direction to the stimulated response. Pretreatment with either desmethylimipramine (DMI) or tranylcypromine (tranyl) attenuated these changes. It is concluded that the pattern of a reduced neural function of CNS motor/motivational regions with an increased function of stress areas is common to 5 models of behavioral depression in the mouse and is a potential experimental analog of the neural activity changes occurring in the clinical condition.
Application of describing function analysis to a model of deep brain stimulation.
Davidson, Clare Muireann; de Paor, Annraoi M; Lowery, Madeleine M
2014-03-01
Deep brain stimulation effectively alleviates motor symptoms of medically refractory Parkinson's disease, and also relieves many other treatment-resistant movement and affective disorders. Despite its relative success as a treatment option, the basis of its efficacy remains elusive. In Parkinson's disease, increased functional connectivity and oscillatory activity occur within the basal ganglia as a result of dopamine loss. A correlative relationship between pathological oscillatory activity and the motor symptoms of the disease, in particular bradykinesia, rigidity, and tremor, has been established. Suppression of the oscillations by either dopamine replacement or DBS also correlates with an improvement in motor symptoms. DBS parameters are currently chosen empirically using a "trial and error" approach, which can be time-consuming and costly. The work presented here amalgamates concepts from theories of neural network modeling with nonlinear control engineering to describe and analyze a model of synchronous neural activity and applied stimulation. A theoretical expression for the optimum stimulation parameters necessary to suppress oscillations is derived. The effect of changing stimulation parameters (amplitude and pulse duration) on induced oscillations is studied in the model. Increasing either stimulation pulse duration or amplitude enhanced the level of suppression. The predicted parameters were found to agree well with clinical measurements reported in the literature for individual patients. It is anticipated that the simplified model described may facilitate the development of protocols to aid optimum stimulation parameter choice on a patient by patient basis.
TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update.
Lattante, Serena; Rouleau, Guy A; Kabashi, Edor
2013-06-01
Mutations in the TAR DNA Binding Protein gene (TARDBP), encoding the protein TDP-43, were identified in amyotrophic lateral sclerosis (ALS) patients. Interestingly, TDP-43 positive inclusion bodies were first discovered in ubiquitin-positive, tau-negative ALS and frontotemporal dementia (FTD) inclusion bodies, and subsequently observed in the majority of neurodegenerative disorders. To date, 47 missense and one truncating mutations have been described in a large number of familial (FALS) and sporadic (SALS) patients. Fused in sarcoma (FUS) was found to be responsible for a previously identified ALS6 locus, being mutated in both FALS and SALS patients. TARDBP and FUS have a structural and functional similarity and most of mutations in both genes are also clustered in the C-terminus of the proteins. The molecular mechanisms through which mutant TDP-43 and FUS may cause motor neuron degeneration are not well understood. Both proteins play an important role in mRNA transport, axonal maintenance, and motor neuron development. Functional characterization of these mutations in in vitro and in vivo systems is helping to better understand how motor neuron degeneration occurs. This report summarizes the biological and clinical relevance of TARDBP and FUS mutations in ALS. All the data reviewed here have been submitted to a database based on the Leiden Open (source) Variation Database (LOVD) and is accessible online at www.lovd.nl/TARDBP, www.lovd.nl/FUS. © 2013 Wiley Periodicals, Inc.
McCairn, Kevin W; Iriki, Atsushi; Isoda, Masaki
2013-01-09
Motor tics, a cardinal symptom of Tourette syndrome (TS), are hypothesized to arise from abnormalities within cerebro-basal ganglia circuits. Yet noninvasive neuroimaging of TS has previously identified robust activation in the cerebellum. To date, electrophysiological properties of cerebellar activation and its role in basal ganglia-mediated tic expression remain unknown. We performed multisite, multielectrode recordings of single-unit activity and local field potentials from the cerebellum, basal ganglia, and primary motor cortex using a pharmacologic monkey model of motor tics/TS. Following microinjections of bicuculline into the sensorimotor putamen, periodic tics occurred predominantly in the orofacial region, and a sizable number of cerebellar neurons showed phasic changes in activity associated with tic episodes. Specifically, 64% of the recorded cerebellar cortex neurons exhibited increases in activity, and 85% of the dentate nucleus neurons displayed excitatory, inhibitory, or multiphasic responses. Critically, abnormal discharges of cerebellar cortex neurons and excitatory-type dentate neurons mostly preceded behavioral tic onset, indicating their central origins. Latencies of pathological activity in the cerebellum and primary motor cortex substantially overlapped, suggesting that aberrant signals may be traveling along divergent pathways to these structures from the basal ganglia. Furthermore, the occurrence of tic movement was most closely associated with local field potential spikes in the cerebellum and primary motor cortex, implying that these structures may function as a gate to release overt tic movements. These findings indicate that tic-generating networks in basal ganglia mediated tic disorders extend beyond classical cerebro-basal ganglia circuits, leading to global network dysrhythmia including cerebellar circuits.
Yokoi, Fumiaki; Dang, Mai T.; Yang, Guang; Li, JinDong; Doroodchi, Atbin; Zhou, Tong; Li, Yuqing
2011-01-01
Myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonia. DYT11 M-D is caused by mutations in SGCE which codes for ε-sarcoglycan. SGCE is maternally imprinted and paternally expressed. Abnormal nuclear envelope has been reported in mouse models of DYT1 generalized torsion dystonia. However, it is not known whether similar alterations occur in DYT11 M-D. We developed a mouse model of DYT11 M-D using paternally-inherited Sgce heterozygous knockout (Sgce KO) mice and reported that they had myoclonus and motor coordination and learning deficits in the beam-walking test. However, the specific brain regions that contribute to these phenotypes have not been identified. Since ε-sarcoglycan is highly expressed in the cerebellar Purkinje cells, here we examined the nuclear envelope in these cells using a transmission electron microscope and found that they are abnormal in Sgce KO mice. Our results put DYT11 M-D in a growing family of nuclear envelopathies. To analyze the effect of loss of ε-sarcoglycan function in the cerebellar Purkinje cells, we produced paternally-inherited cerebellar Purkinje cell-specific Sgce conditional knockout (Sgce pKO) mice. Sgce pKO mice showed motor learning deficits, while they did not show abnormal nuclear envelope in the cerebellar Purkinje cells, robust motor deficits, or myoclonus. The results suggest that ε-sarcoglycan in the cerebellar Purkinje cells contributes to the motor learning, while loss of ε-sarcoglycan in other brain regions may contribute to nuclear envelope abnormality, myoclonus and motor coordination deficits. PMID:22040906
Enhanced Muscle Afferent Signals during Motor Learning in Humans.
Dimitriou, Michael
2016-04-25
Much has been revealed concerning human motor learning at the behavioral level [1, 2], but less is known about changes in the involved neural circuits and signals. By examining muscle spindle responses during a classic visuomotor adaptation task [3-6] performed by fully alert humans, I found substantial modulation of sensory afferent signals as a function of adaptation state. Specifically, spindle control was independent of concurrent muscle activity but was specific to movement direction (representing muscle lengthening versus shortening) and to different stages of learning. Increased spindle afferent responses to muscle stretch occurring early during learning reflected individual error size and were negatively related to subsequent antagonist activity (i.e., 60-80 ms thereafter). Relative increases in tonic afferent output early during learning were predictive of the subjects' adaptation rate. I also found that independent spindle control during sensory realignment (the "washout" stage) induced afferent signal "linearization" with respect to muscle length (i.e., signals were more tuned to hand position). The results demonstrate for the first time that motor learning also involves independent and state-related modulation of sensory mechanoreceptor signals. The current findings suggest that adaptive motor performance also relies on the independent control of sensors, not just of muscles. I propose that the "γ" motor system innervating spindles acts to facilitate the acquisition and extraction of task-relevant information at the early stages of sensorimotor adaptation. This designates a more active and targeted role for the human proprioceptive system during motor learning. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kuznetsov, S V; Sizonov, V A; Dmitrieva, L E
2014-01-01
On newborn rat pups, for the first day after birth, there was studied the character of mutual influences between the slow-wave rhythmical components of the cardiac, respiratory, and motor activities reflecting interactions between the main functional systems of the developing organism. The study was carried out in norm and after pharmacological depression of the spontaneous periodical motor activity (SPMA) performed by narcotization of rat pups with urethane at low (0.5 g/kg, i/p) and maximal (1 g/kg, i/p) doses. Based on the complex of our obtained data, it is possible to conclude that after birth in rat pups the intersystemic interactions are realized mainly by the slow-wave oscillations of the near- and manyminute diapason. The correlational interactions mediated by rhythms of the decasecond diapason do not play essential role in integrative processes. Injection to the animals of urethane producing selective suppression of reaction of consciousness, but not affecting activating influences of reticular formation on cerebral cortex does not cause marked changes of autonomous parameters, but modulates structure and expression of spontaneous periodical motor activity. There occurs an essential decrease of mutual influences between motor and cardiovascular systems. In the case of preservation of motor activity bursts, a tendency for enhancement of correlational relations between the modulating rhythms of motor and somatomotor systems is observed. The cardiorespiratory interactions, more pronounced in intact rat pups in the near- and many-minute modulation diapason, under conditions of urethane, somewhat decrease, whereas the rhythmical components of the decasecond diapason--are weakly enhanced.
Ubiquitin–Synaptobrevin Fusion Protein Causes Degeneration of Presynaptic Motor Terminals in Mice
Liu, Yun; Li, Hongqiao; Sugiura, Yoshie; Han, Weiping; Gallardo, Gilbert; Khvotchev, Mikhail; Zhang, Yinan; Kavalali, Ege T.; Südhof, Thomas C.
2015-01-01
Protein aggregates containing ubiquitin (Ub) are commonly observed in neurodegenerative disorders, implicating the involvement of the ubiquitin proteasome system (UPS) in their pathogenesis. Here, we aimed to generate a mouse model for monitoring UPS function using a green fluorescent protein (GFP)-based substrate that carries a “noncleavable” N-terminal ubiquitin moiety (UbG76V). We engineered transgenic mice expressing a fusion protein, consisting of the following: (1) UbG76V, GFP, and a synaptic vesicle protein synaptobrevin-2 (UbG76V-GFP-Syb2); (2) GFP-Syb2; or (3) UbG76V-GFP-Syntaxin1, all under the control of a neuron-specific Thy-1 promoter. As expected, UbG76V-GFP-Syb2, GFP-Syb2, and UbG76V-GFP-Sytaxin1 were highly expressed in neurons, such as motoneurons and motor nerve terminals of the neuromuscular junction (NMJ). Surprisingly, UbG76V-GFP-Syb2 mice developed progressive adult-onset degeneration of motor nerve terminals, whereas GFP-Syb2 and UbG76V-GFP-Syntaxin1 mice were normal. The degeneration of nerve terminals in UbG76V-GFP-Syb2 mice was preceded by a progressive impairment of synaptic transmission at the NMJs. Biochemical analyses demonstrated that UbG76V-GFP-Syb2 interacted with SNAP-25 and Syntaxin1, the SNARE partners of synaptobrevin. Ultrastructural analyses revealed a marked reduction in synaptic vesicle density, accompanying an accumulation of tubulovesicular structures at presynaptic nerve terminals. These morphological defects were largely restricted to motor nerve terminals, as the ultrastructure of motoneuron somata appeared to be normal at the stages when synaptic nerve terminals degenerated. Furthermore, synaptic vesicle endocytosis and membrane trafficking were impaired in UbG76V-GFP-Syb2 mice. These findings indicate that UbG76V-GFP-Syb2 may compete with endogenous synaptobrevin, acting as a gain-of-function mutation that impedes SNARE function, resulting in the depletion of synaptic vesicles and degeneration of the nerve terminals. SIGNIFICANCE STATEMENT Degeneration of motor nerve terminals occurs in amyotrophic lateral sclerosis (ALS) patients as well as in mouse models of ALS, leading to progressive paralysis. What causes a motor nerve terminal to degenerate remains unknown. Here we report on transgenic mice expressing a ubiquitinated synaptic vesicle protein (UbG76V-GFP-Syb2) that develop progressive degeneration of motor nerve terminals. These mice may serve as a model for further elucidating the underlying cellular and molecular mechanisms of presynaptic nerve terminal degeneration. PMID:26290230
David, Fabian J.; Baranek, Grace T.; Wiesen, Chris; Miao, Adrienne F.; Thorpe, Deborah E.
2012-01-01
Impaired motor coordination is prevalent in children with Autism Spectrum Disorders (ASD) and affects adaptive skills. Little is known about the development of motor patterns in young children with ASD between 2 and 6 years of age. The purpose of the current study was threefold: (1) to describe developmental correlates of motor coordination in children with ASD, (2) to identify the extent to which motor coordination deficits are unique to ASD by using a control group of children with other developmental disabilities (DD), and (3) to determine the association between motor coordination variables and functional fine motor skills. Twenty-four children with ASD were compared to 30 children with typical development (TD) and 11 children with DD. A precision grip task was used to quantify and analyze motor coordination. The motor coordination variables were two temporal variables (grip to load force onset latency and time to peak grip force) and two force variables (grip force at onset of load force and peak grip force). Functional motor skills were assessed using the Fine Motor Age Equivalents of the Vineland Adaptive Behavior Scale and the Mullen Scales of Early Learning. Mixed regression models were used for all analyses. Children with ASD presented with significant motor coordination deficits only on the two temporal variables, and these variables differentiated children with ASD from the children with TD, but not from children with DD. Fine motor functional skills had no statistically significant associations with any of the motor coordination variables. These findings suggest that subtle problems in the timing of motor actions, possibly related to maturational delays in anticipatory feed-forward mechanisms, may underlie some motor deficits reported in children with ASD, but that these issues are not unique to this population. Further research is needed to investigate how children with ASD or DD compensate for motor control deficits to establish functional skills. PMID:23293589