Ranganathan, Rajiv; Wieser, Jon; Mosier, Kristine M; Mussa-Ivaldi, Ferdinando A; Scheidt, Robert A
2014-06-11
Prior learning of a motor skill creates motor memories that can facilitate or interfere with learning of new, but related, motor skills. One hypothesis of motor learning posits that for a sensorimotor task with redundant degrees of freedom, the nervous system learns the geometric structure of the task and improves performance by selectively operating within that task space. We tested this hypothesis by examining if transfer of learning between two tasks depends on shared dimensionality between their respective task spaces. Human participants wore a data glove and learned to manipulate a computer cursor by moving their fingers. Separate groups of participants learned two tasks: a prior task that was unique to each group and a criterion task that was common to all groups. We manipulated the mapping between finger motions and cursor positions in the prior task to define task spaces that either shared or did not share the task space dimensions (x-y axes) of the criterion task. We found that if the prior task shared task dimensions with the criterion task, there was an initial facilitation in criterion task performance. However, if the prior task did not share task dimensions with the criterion task, there was prolonged interference in learning the criterion task due to participants finding inefficient task solutions. These results show that the nervous system learns the task space through practice, and that the degree of shared task space dimensionality influences the extent to which prior experience transfers to subsequent learning of related motor skills. Copyright © 2014 the authors 0270-6474/14/348289-11$15.00/0.
Predicting explorative motor learning using decision-making and motor noise.
Chen, Xiuli; Mohr, Kieran; Galea, Joseph M
2017-04-01
A fundamental problem faced by humans is learning to select motor actions based on noisy sensory information and incomplete knowledge of the world. Recently, a number of authors have asked whether this type of motor learning problem might be very similar to a range of higher-level decision-making problems. If so, participant behaviour on a high-level decision-making task could be predictive of their performance during a motor learning task. To investigate this question, we studied performance during an explorative motor learning task and a decision-making task which had a similar underlying structure with the exception that it was not subject to motor (execution) noise. We also collected an independent measurement of each participant's level of motor noise. Our analysis showed that explorative motor learning and decision-making could be modelled as the (approximately) optimal solution to a Partially Observable Markov Decision Process bounded by noisy neural information processing. The model was able to predict participant performance in motor learning by using parameters estimated from the decision-making task and the separate motor noise measurement. This suggests that explorative motor learning can be formalised as a sequential decision-making process that is adjusted for motor noise, and raises interesting questions regarding the neural origin of explorative motor learning.
Predicting explorative motor learning using decision-making and motor noise
Galea, Joseph M.
2017-01-01
A fundamental problem faced by humans is learning to select motor actions based on noisy sensory information and incomplete knowledge of the world. Recently, a number of authors have asked whether this type of motor learning problem might be very similar to a range of higher-level decision-making problems. If so, participant behaviour on a high-level decision-making task could be predictive of their performance during a motor learning task. To investigate this question, we studied performance during an explorative motor learning task and a decision-making task which had a similar underlying structure with the exception that it was not subject to motor (execution) noise. We also collected an independent measurement of each participant’s level of motor noise. Our analysis showed that explorative motor learning and decision-making could be modelled as the (approximately) optimal solution to a Partially Observable Markov Decision Process bounded by noisy neural information processing. The model was able to predict participant performance in motor learning by using parameters estimated from the decision-making task and the separate motor noise measurement. This suggests that explorative motor learning can be formalised as a sequential decision-making process that is adjusted for motor noise, and raises interesting questions regarding the neural origin of explorative motor learning. PMID:28437451
Whitfield, Jason A; Goberman, Alexander M
2017-06-22
Everyday communication is carried out concurrently with other tasks. Therefore, determining how dual tasks interfere with newly learned speech motor skills can offer insight into the cognitive mechanisms underlying speech motor learning in Parkinson disease (PD). The current investigation examines a recently learned speech motor sequence under dual-task conditions. A previously learned sequence of 6 monosyllabic nonwords was examined using a dual-task paradigm. Participants repeated the sequence while concurrently performing a visuomotor task, and performance on both tasks was measured in single- and dual-task conditions. The younger adult group exhibited little to no dual-task interference on the accuracy and duration of the sequence. The older adult group exhibited variability in dual-task costs, with the group as a whole exhibiting an intermediate, though significant, amount of dual-task interference. The PD group exhibited the largest degree of bidirectional dual-task interference among all the groups. These data suggest that PD affects the later stages of speech motor learning, as the dual-task condition interfered with production of the recently learned sequence beyond the effect of normal aging. Because the basal ganglia is critical for the later stages of motor sequence learning, the observed deficits may result from the underlying neural dysfunction associated with PD.
Mayor-Dubois, C; Zesiger, P; Van der Linden, M; Roulet-Perez, E
2014-01-01
Ullman (2004) suggested that Specific Language Impairment (SLI) results from a general procedural learning deficit. In order to test this hypothesis, we investigated children with SLI via procedural learning tasks exploring the verbal, motor, and cognitive domains. Results showed that compared with a Control Group, the children with SLI (a) were unable to learn a phonotactic learning task, (b) were able but less efficiently to learn a motor learning task and (c) succeeded in a cognitive learning task. Regarding the motor learning task (Serial Reaction Time Task), reaction times were longer and learning slower than in controls. The learning effect was not significant in children with an associated Developmental Coordination Disorder (DCD), and future studies should consider comorbid motor impairment in order to clarify whether impairments are related to the motor rather than the language disorder. Our results indicate that a phonotactic learning but not a cognitive procedural deficit underlies SLI, thus challenging Ullmans' general procedural deficit hypothesis, like a few other recent studies.
Sleep benefits consolidation of visuo-motor adaptation learning in older adults.
Mantua, Janna; Baran, Bengi; Spencer, Rebecca M C
2016-02-01
Sleep is beneficial for performance across a range of memory tasks in young adults, but whether memories are similarly consolidated in older adults is less clear. Performance benefits have been observed following sleep in older adults for declarative learning tasks, but this benefit may be reduced for non-declarative, motor skill learning tasks. To date, studies of sleep-dependent consolidation of motor learning in older adults are limited to motor sequence tasks. To examine whether reduced sleep-dependent consolidation in older adults is generalizable to other forms of motor skill learning, we examined performance changes over intervals of sleep and wake in young (n = 62) and older adults (n = 61) using a mirror-tracing task, which assesses visuo-motor adaptation learning. Participants learned the task either in the morning or in evening, and performance was assessed following a 12-h interval containing overnight sleep or daytime wake. Contrary to our prediction, both young adults and older adults exhibited sleep-dependent gains in visuo-motor adaptation. There was a correlation between performance improvement over sleep and percent of the night in non-REM stage 2 sleep. These results indicate that motor skill consolidation remains intact with increasing age although this relationship may be limited to specific forms of motor skill learning.
A quantitative meta-analysis and review of motor learning in the human brain
Hardwick, Robert M.; Rottschy, Claudia; Miall, R. Chris; Eickhoff, Simon B.
2013-01-01
Neuroimaging studies have improved our understanding of which brain structures are involved in motor learning. Despite this, questions remain regarding the areas that contribute consistently across paradigms with different task demands. For instance, sensorimotor tasks focus on learning novel movement kinematics and dynamics, while serial response time task (SRTT) variants focus on sequence learning. These differing task demands are likely to elicit quantifiably different patterns of neural activity on top of a potentially consistent core network. The current study identified consistent activations across 70 motor learning experiments using activation likelihood estimation (ALE) meta-analysis. A global analysis of all tasks revealed a bilateral cortical–subcortical network consistently underlying motor learning across tasks. Converging activations were revealed in the dorsal premotor cortex, supplementary motor cortex, primary motor cortex, primary somatosensory cortex, superior parietal lobule, thalamus, putamen and cerebellum. These activations were broadly consistent across task specific analyses that separated sensorimotor tasks and SRTT variants. Contrast analysis indicated that activity in the basal ganglia and cerebellum was significantly stronger for sensorimotor tasks, while activity in cortical structures and the thalamus was significantly stronger for SRTT variants. Additional conjunction analyses then indicated that the left dorsal premotor cortex was activated across all analyses considered, even when controlling for potential motor confounds. The highly consistent activation of the left dorsal premotor cortex suggests it is a critical node in the motor learning network. PMID:23194819
Wu, Howard G; Miyamoto, Yohsuke R; Gonzalez Castro, Luis Nicolas; Ölveczky, Bence P; Smith, Maurice A
2014-02-01
Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning.
Temporal structure of motor variability is dynamically regulated and predicts motor learning ability
Wu, Howard G; Miyamoto, Yohsuke R; Castro, Luis Nicolas Gonzalez; Ölveczky, Bence P; Smith, Maurice A
2015-01-01
Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning. PMID:24413700
Raza, Meher; Ivry, Richard B.
2016-01-01
In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. NEW & NOTEWORTHY We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the alternating serial reaction time task, exhibited good test-retest reliability in measures of learning and performance. However, the learning measures did not correlate between the two tasks, arguing against a shared process for implicit motor learning. PMID:27832611
Ferrer-Uris, Blai; Busquets, Albert; Angulo-Barroso, Rosa
2018-02-01
We assessed the effect of an acute intense exercise bout on the adaptation and consolidation of a visuomotor adaptation task in children. We also sought to assess if exercise and learning task presentation order could affect task consolidation. Thirty-three children were randomly assigned to one of three groups: (a) exercise before the learning task, (b) exercise after the learning task, and (c) only learning task. Baseline performance was assessed by practicing the learning task in a 0° rotation condition. Afterward, a 60° rotation-adaptation set was applied followed by three rotated retention sets after 1 hr, 24 hr, and 7 days. For the exercise groups, exercise was presented before or after the motor adaptation. Results showed no group differences during the motor adaptation while exercise seemed to enhance motor consolidation. Greater consolidation enhancement was found in participants who exercised before the learning task. Our data support the importance of exercise to improve motor-memory consolidation in children.
Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task
NASA Astrophysics Data System (ADS)
Laubach, Mark; Wessberg, Johan; Nicolelis, Miguel A. L.
2000-06-01
When an animal learns to make movements in response to different stimuli, changes in activity in the motor cortex seem to accompany and underlie this learning. The precise nature of modifications in cortical motor areas during the initial stages of motor learning, however, is largely unknown. Here we address this issue by chronically recording from neuronal ensembles located in the rat motor cortex, throughout the period required for rats to learn a reaction-time task. Motor learning was demonstrated by a decrease in the variance of the rats' reaction times and an increase in the time the animals were able to wait for a trigger stimulus. These behavioural changes were correlated with a significant increase in our ability to predict the correct or incorrect outcome of single trials based on three measures of neuronal ensemble activity: average firing rate, temporal patterns of firing, and correlated firing. This increase in prediction indicates that an association between sensory cues and movement emerged in the motor cortex as the task was learned. Such modifications in cortical ensemble activity may be critical for the initial learning of motor tasks.
Interference in Ballistic Motor Learning: Specificity and Role of Sensory Error Signals
Lundbye-Jensen, Jesper; Petersen, Tue Hvass; Rothwell, John C.; Nielsen, Jens Bo
2011-01-01
Humans are capable of learning numerous motor skills, but newly acquired skills may be abolished by subsequent learning. Here we ask what factors determine whether interference occurs in motor learning. We speculated that interference requires competing processes of synaptic plasticity in overlapping circuits and predicted specificity. To test this, subjects learned a ballistic motor task. Interference was observed following subsequent learning of an accuracy-tracking task, but only if the competing task involved the same muscles and movement direction. Interference was not observed from a non-learning task suggesting that interference requires competing learning. Subsequent learning of the competing task 4 h after initial learning did not cause interference suggesting disruption of early motor memory consolidation as one possible mechanism underlying interference. Repeated transcranial magnetic stimulation (rTMS) of corticospinal motor output at intensities below movement threshold did not cause interference, whereas suprathreshold rTMS evoking motor responses and (re)afferent activation did. Finally, the experiments revealed that suprathreshold repetitive electrical stimulation of the agonist (but not antagonist) peripheral nerve caused interference. The present study is, to our knowledge, the first to demonstrate that peripheral nerve stimulation may cause interference. The finding underscores the importance of sensory feedback as error signals in motor learning. We conclude that interference requires competing plasticity in overlapping circuits. Interference is remarkably specific for circuits involved in a specific movement and it may relate to sensory error signals. PMID:21408054
Motor Task Variation Induces Structural Learning
Braun, Daniel A.; Aertsen, Ad; Wolpert, Daniel M.; Mehring, Carsten
2009-01-01
Summary When we have learned a motor skill, such as cycling or ice-skating, we can rapidly generalize to novel tasks, such as motorcycling or rollerblading [1–8]. Such facilitation of learning could arise through two distinct mechanisms by which the motor system might adjust its control parameters. First, fast learning could simply be a consequence of the proximity of the original and final settings of the control parameters. Second, by structural learning [9–14], the motor system could constrain the parameter adjustments to conform to the control parameters' covariance structure. Thus, facilitation of learning would rely on the novel task parameters' lying on the structure of a lower-dimensional subspace that can be explored more efficiently. To test between these two hypotheses, we exposed subjects to randomly varying visuomotor tasks of fixed structure. Although such randomly varying tasks are thought to prevent learning, we show that when subsequently presented with novel tasks, subjects exhibit three key features of structural learning: facilitated learning of tasks with the same structure, strong reduction in interference normally observed when switching between tasks that require opposite control strategies, and preferential exploration along the learned structure. These results suggest that skill generalization relies on task variation and structural learning. PMID:19217296
Motor task variation induces structural learning.
Braun, Daniel A; Aertsen, Ad; Wolpert, Daniel M; Mehring, Carsten
2009-02-24
When we have learned a motor skill, such as cycling or ice-skating, we can rapidly generalize to novel tasks, such as motorcycling or rollerblading [1-8]. Such facilitation of learning could arise through two distinct mechanisms by which the motor system might adjust its control parameters. First, fast learning could simply be a consequence of the proximity of the original and final settings of the control parameters. Second, by structural learning [9-14], the motor system could constrain the parameter adjustments to conform to the control parameters' covariance structure. Thus, facilitation of learning would rely on the novel task parameters' lying on the structure of a lower-dimensional subspace that can be explored more efficiently. To test between these two hypotheses, we exposed subjects to randomly varying visuomotor tasks of fixed structure. Although such randomly varying tasks are thought to prevent learning, we show that when subsequently presented with novel tasks, subjects exhibit three key features of structural learning: facilitated learning of tasks with the same structure, strong reduction in interference normally observed when switching between tasks that require opposite control strategies, and preferential exploration along the learned structure. These results suggest that skill generalization relies on task variation and structural learning.
Cherry, Kendra M.; Lenze, Eric J.
2014-01-01
Neurological rehabilitation involving motor training has resulted in clinically meaningful improvements in function but is unable to eliminate many of the impairments associated with neurological injury. Thus there is a growing need for interventions that facilitate motor learning during rehabilitation therapy, to optimize recovery. d-Cycloserine (DCS), a partial N-methyl-d-aspartate (NMDA) receptor agonist that enhances neurotransmission throughout the central nervous system (Ressler KJ, Rothbaum BO, Tannenbaum L, Anderson P, Graap K, Zimand E, Hodges L, Davis M. Arch Gen Psychiatry 61: 1136–1144, 2004), has been shown to facilitate declarative and emotional learning. We therefore tested whether combining DCS with motor training facilitates motor learning after stroke in a series of two experiments. Forty-one healthy adults participated in experiment I, and twenty adults with stroke participated in experiment II of this two-session, double-blind study. Session one consisted of baseline assessment, subject randomization, and oral administration of DCS or placebo (250 mg). Subjects then participated in training on a balancing task, a simulated feeding task, and a cognitive task. Subjects returned 1–3 days later for posttest assessment. We found that all subjects had improved performance from pretest to posttest on the balancing task, the simulated feeding task, and the cognitive task. Subjects who were given DCS before motor training, however, did not show enhanced learning on the balancing task, the simulated feeding task, or the associative recognition task compared with subjects given placebo. Moreover, training on the balancing task did not generalize to a similar, untrained balance task. Our findings suggest that DCS does not enhance motor learning or motor skill generalization in neurologically intact adults or in adults with stroke. PMID:24671538
Task-specificity of unilateral anodal and dual-M1 tDCS effects on motor learning.
Karok, Sophia; Fletcher, David; Witney, Alice G
2017-01-08
Task-specific effects of transcranial direct current stimulation (tDCS) on motor learning were investigated in 30 healthy participants. In a sham-controlled, mixed design, participants trained on 3 different motor tasks (Purdue Pegboard Test, Visuomotor Grip Force Tracking Task and Visuomotor Wrist Rotation Speed Control Task) over 3 consecutive days while receiving either unilateral anodal over the right primary motor cortex (M1), dual-M1 or sham stimulation. Retention sessions were administered 7 and 28 days after the end of training. In the Purdue Pegboard Test, both anodal and dual-M1 stimulation reduced average completion time approximately equally, an improvement driven by online learning effects and maintained for about 1 week. The Visuomotor Grip Force Tracking Task and the Visuomotor Wrist Rotation Speed Control Task were associated with an advantage of dual-M1 tDCS in consolidation processes both between training sessions and when testing at long-term retention; both were maintained for at least 1 month. This study demonstrates that M1-tDCS enhances and sustains motor learning with different electrode montages. Stimulation-induced effects emerged at different learning phases across the tasks, which strongly suggests that the influence of tDCS on motor learning is dynamic with respect to the functional recruitment of the distributed motor system at the time of stimulation. Divergent findings regarding M1-tDCS effects on motor learning may partially be ascribed to task-specific consequences and the effects of offline consolidation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Psychosocial Modulators of Motor Learning in Parkinson’s Disease
Zemankova, Petra; Lungu, Ovidiu; Bares, Martin
2016-01-01
Using the remarkable overlap between brain circuits affected in Parkinson’s disease (PD) and those underlying motor sequence learning, we may improve the effectiveness of motor rehabilitation interventions by identifying motor learning facilitators in PD. For instance, additional sensory stimulation and task cueing enhanced motor learning in people with PD, whereas exercising using musical rhythms or console computer games improved gait and balance, and reduced some motor symptoms, in addition to increasing task enjoyment. Yet, despite these advances, important knowledge gaps remain. Most studies investigating motor learning in PD used laboratory-specific tasks and equipment, with little resemblance to real life situations. Thus, it is unknown whether similar results could be achieved in more ecological setups and whether individual’s task engagement could further improve motor learning capacity. Moreover, the role of social interaction in motor skill learning process has not yet been investigated in PD and the role of mind-set and self-regulatory mechanisms have been sporadically examined. Here, we review evidence suggesting that these psychosocial factors may be important modulators of motor learning in PD. We propose their incorporation in future research, given that it could lead to development of improved non-pharmacological interventions aimed to preserve or restore motor function in PD. PMID:26973495
Dancey, Erin; Andrew, Danielle; Yielder, Paul
2016-01-01
Previous work has demonstrated differential changes in early somatosensory evoked potentials (SEPs) when motor learning acquisition occurred in the presence of acute pain; however, the learning task was insufficiently complex to determine how these underlying neurophysiological differences impacted learning acquisition and retention. To address this limitation, we have utilized a complex motor task in conjunction with SEPs. Two groups of 12 participants (n = 24) were randomly assigned to either a capsaicin (capsaicin cream) or a control (inert lotion) group. SEP amplitudes were collected at baseline, after application, and after motor learning acquisition. Participants performed a motor acquisition task followed by a pain-free retention task within 24–48 h. After motor learning acquisition, the amplitude of the N20 SEP peak significantly increased (P < 0.05) and the N24 SEP peak significantly decreased (P < 0.001) for the control group while the N18 SEP peak significantly decreased (P < 0.01) for the capsaicin group. The N30 SEP peak was significantly increased (P < 0.001) after motor learning acquisition for both groups. The P25 SEP peak decreased significantly (P < 0.05) after the application of capsaicin cream. Both groups improved in accuracy after motor learning acquisition (P < 0.001). The capsaicin group outperformed the control group before motor learning acquisition (P < 0.05) and after motor learning acquisition (P < 0.05) and approached significance at retention (P = 0.06). Improved motor learning in the presence of capsaicin provides support for the enhancement of motor learning while in acute pain. In addition, the changes in SEP peak amplitudes suggest that early SEP changes reflect neurophysiological alterations accompanying both motor learning and mild acute pain. PMID:27535371
Gatti, R; Tettamanti, A; Gough, P M; Riboldi, E; Marinoni, L; Buccino, G
2013-04-12
Both motor imagery and action observation have been shown to play a role in learning or re-learning complex motor tasks. According to a well accepted view they share a common neurophysiological basis in the mirror neuron system. Neurons within this system discharge when individuals perform a specific action and when they look at another individual performing the same or a motorically related action. In the present paper, after a short review of literature on the role of action observation and motor imagery in motor learning, we report the results of a kinematics study where we directly compared motor imagery and action observation in learning a novel complex motor task. This involved movement of the right hand and foot in the same angular direction (in-phase movement), while at the same time moving the left hand and foot in an opposite angular direction (anti-phase movement), all at a frequency of 1Hz. Motor learning was assessed through kinematics recording of wrists and ankles. The results showed that action observation is better than motor imagery as a strategy for learning a novel complex motor task, at least in the fast early phase of motor learning. We forward that these results may have important implications in educational activities, sport training and neurorehabilitation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Stark-Inbar, Alit; Raza, Meher; Taylor, Jordan A; Ivry, Richard B
2017-01-01
In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the alternating serial reaction time task, exhibited good test-retest reliability in measures of learning and performance. However, the learning measures did not correlate between the two tasks, arguing against a shared process for implicit motor learning. Copyright © 2017 the American Physiological Society.
Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li
2012-01-01
Background Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. Methodology/Principal Findings Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. Conclusions/Significance These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that the potential value of MI learning in motor function rehabilitation and motor skill learning deserves more attention and further investigation. PMID:22629308
Zhu, Frank F; Yeung, Andrew Y; Poolton, Jamie M; Lee, Tatia M C; Leung, Gilberto K K; Masters, Rich S W
2015-01-01
Implicit motor learning is characterized by low dependence on working memory and stable performance despite stress, fatigue, or multi-tasking. However, current paradigms for implicit motor learning are based on behavioral interventions that are often task-specific and limited when applied in practice. To investigate whether cathodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) area during motor learning suppressed working memory activity and reduced explicit verbal-analytical involvement in movement control, thereby promoting implicit motor learning. Twenty-seven healthy individuals practiced a golf putting task during a Training Phase while receiving either real cathodal tDCS stimulation over the left DLPFC area or sham stimulation. Their performance was assessed during a Test phase on another day. Verbal working memory capacity was assessed before and after the Training Phase, and before the Test Phase. Compared to sham stimulation, real stimulation suppressed verbal working memory activity after the Training Phase, but enhanced golf putting performance during the Training Phase and the Test Phase, especially when participants were required to multi-task. Cathodal tDCS over the left DLPFC may foster implicit motor learning and performance in complex real-life motor tasks that occur during sports, surgery or motor rehabilitation. Copyright © 2015 Elsevier Inc. All rights reserved.
Akizuki, Kazunori; Ohashi, Yukari
2015-10-01
The relationship between task difficulty and learning benefit was examined, as was the measurability of task difficulty. Participants were required to learn a postural control task on an unstable surface at one of four different task difficulty levels. Results from the retention test showed an inverted-U relationship between task difficulty during acquisition and motor learning. The second-highest level of task difficulty was the most effective for motor learning, while learning was delayed at the most and least difficult levels. Additionally, the results indicate that salivary α-amylase and the performance dimension of the National Aeronautics and Space Administration-Task Load Index (NASA-TLX) are useful indices of task difficulty. Our findings suggested that instructors may be able to adjust task difficulty based on salivary α-amylase and the performance dimension of the NASA-TLX to enhance learning. Copyright © 2015 Elsevier B.V. All rights reserved.
High variability impairs motor learning regardless of whether it affects task performance.
Cardis, Marco; Casadio, Maura; Ranganathan, Rajiv
2018-01-01
Motor variability plays an important role in motor learning, although the exact mechanisms of how variability affects learning are not well understood. Recent evidence suggests that motor variability may have different effects on learning in redundant tasks, depending on whether it is present in the task space (where it affects task performance) or in the null space (where it has no effect on task performance). We examined the effect of directly introducing null and task space variability using a manipulandum during the learning of a motor task. Participants learned a bimanual shuffleboard task for 2 days, where their goal was to slide a virtual puck as close as possible toward a target. Critically, the distance traveled by the puck was determined by the sum of the left- and right-hand velocities, which meant that there was redundancy in the task. Participants were divided into five groups, based on both the dimension in which the variability was introduced and the amount of variability that was introduced during training. Results showed that although all groups were able to reduce error with practice, learning was affected more by the amount of variability introduced rather than the dimension in which variability was introduced. Specifically, groups with higher movement variability during practice showed larger errors at the end of practice compared with groups that had low variability during learning. These results suggest that although introducing variability can increase exploration of new solutions, this may adversely affect the ability to retain the learned solution. NEW & NOTEWORTHY We examined the role of introducing variability during motor learning in a redundant task. The presence of redundancy allows variability to be introduced in different dimensions: the task space (where it affects task performance) or the null space (where it does not affect task performance). We found that introducing variability affected learning adversely, but the amount of variability was more critical than the dimension in which variability was introduced.
Motor cortex is required for learning but not executing a motor skill
Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu; Dhawale, Ashesh; Kampff, Adam R.; Ölveczky, Bence P.
2018-01-01
Motor cortex is widely believed to underlie the acquisition and execution of motor skills, yet its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex’s established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in ‘tutoring’ these circuits during learning. PMID:25892304
Thürer, Benjamin; Stein, Thorsten
2017-01-01
Intermanual transfer (motor memory generalization across arms) and motor memory interference (impairment of retest performance in consecutive motor learning) are well-investigated motor learning phenomena. However, the interplay of these phenomena remains elusive, i.e., whether intermanual interference occurs when two unimanual tasks are consecutively learned using different arms. Here, we examine intermanual interference when subjects consecutively adapt their right and left arm movements to novel dynamics. We considered two force field tasks A and B which were of the same structure but mirrored orientation (B = -A). The first test group (ABA-group) consecutively learned task A using their right arm and task B using their left arm before being retested for task A with their right arm. Another test group (AAA-group) learned only task A in the same right-left-right arm schedule. Control subjects learned task A using their right arm without intermediate left arm learning. All groups were able to adapt their right arm movements to force field A and both test groups showed significant intermanual transfer of this initial learning to the contralateral left arm of 21.9% (ABA-group) and 27.6% (AAA-group). Consecutively, both test groups adapted their left arm movements to force field B (ABA-group) or force field A (AAA-group). For the ABA-group, left arm learning caused significant intermanual interference of the initially learned right arm task (68.3% performance decrease). The performance decrease of the AAA-group (10.2%) did not differ from controls (15.5%). These findings suggest that motor control and learning of right and left arm movements involve partly similar neural networks or underlie a vital interhemispheric connectivity. Moreover, our results suggest a preferred internal task representation in extrinsic Cartesian-based coordinates rather than in intrinsic joint-based coordinates because interference was absent when learning was performed in extrinsically equivalent fashion (AAA-group) but interference occurred when learning was performed in intrinsically equivalent fashion (ABA-group). PMID:28459833
Stockinger, Christian; Thürer, Benjamin; Stein, Thorsten
2017-01-01
Intermanual transfer (motor memory generalization across arms) and motor memory interference (impairment of retest performance in consecutive motor learning) are well-investigated motor learning phenomena. However, the interplay of these phenomena remains elusive, i.e., whether intermanual interference occurs when two unimanual tasks are consecutively learned using different arms. Here, we examine intermanual interference when subjects consecutively adapt their right and left arm movements to novel dynamics. We considered two force field tasks A and B which were of the same structure but mirrored orientation (B = -A). The first test group (ABA-group) consecutively learned task A using their right arm and task B using their left arm before being retested for task A with their right arm. Another test group (AAA-group) learned only task A in the same right-left-right arm schedule. Control subjects learned task A using their right arm without intermediate left arm learning. All groups were able to adapt their right arm movements to force field A and both test groups showed significant intermanual transfer of this initial learning to the contralateral left arm of 21.9% (ABA-group) and 27.6% (AAA-group). Consecutively, both test groups adapted their left arm movements to force field B (ABA-group) or force field A (AAA-group). For the ABA-group, left arm learning caused significant intermanual interference of the initially learned right arm task (68.3% performance decrease). The performance decrease of the AAA-group (10.2%) did not differ from controls (15.5%). These findings suggest that motor control and learning of right and left arm movements involve partly similar neural networks or underlie a vital interhemispheric connectivity. Moreover, our results suggest a preferred internal task representation in extrinsic Cartesian-based coordinates rather than in intrinsic joint-based coordinates because interference was absent when learning was performed in extrinsically equivalent fashion (AAA-group) but interference occurred when learning was performed in intrinsically equivalent fashion (ABA-group).
Brain Activation in Motor Sequence Learning Is Related to the Level of Native Cortical Excitability
Lissek, Silke; Vallana, Guido S.; Güntürkün, Onur; Dinse, Hubert; Tegenthoff, Martin
2013-01-01
Cortical excitability may be subject to changes through training and learning. Motor training can increase cortical excitability in motor cortex, and facilitation of motor cortical excitability has been shown to be positively correlated with improvements in performance in simple motor tasks. Thus cortical excitability may tentatively be considered as a marker of learning and use-dependent plasticity. Previous studies focused on changes in cortical excitability brought about by learning processes, however, the relation between native levels of cortical excitability on the one hand and brain activation and behavioral parameters on the other is as yet unknown. In the present study we investigated the role of differential native motor cortical excitability for learning a motor sequencing task with regard to post-training changes in excitability, behavioral performance and involvement of brain regions. Our motor task required our participants to reproduce and improvise over a pre-learned motor sequence. Over both task conditions, participants with low cortical excitability (CElo) showed significantly higher BOLD activation in task-relevant brain regions than participants with high cortical excitability (CEhi). In contrast, CElo and CEhi groups did not exhibit differences in percentage of correct responses and improvisation level. Moreover, cortical excitability did not change significantly after learning and training in either group, with the exception of a significant decrease in facilitatory excitability in the CEhi group. The present data suggest that the native, unmanipulated level of cortical excitability is related to brain activation intensity, but not to performance quality. The higher BOLD mean signal intensity during the motor task might reflect a compensatory mechanism in CElo participants. PMID:23613956
ERIC Educational Resources Information Center
Lidor, Ronnie
2004-01-01
Research in motor learning and sport pedagogy has shown that task-pertinent learning strategies enhance the learning and performance of self-paced motor tasks. Strategy research has typically been conducted under laboratory conditions in which artificial self-paced tasks were executed under well-controlled conditions. The purpose of this study was…
Cluff, Tyler; Boulet, Jason; Balasubramaniam, Ramesh
2011-08-01
Theories of motor learning argue that the acquisition of novel motor skills requires a task-specific organization of sensory and motor subsystems. We examined task-specific coupling between motor subsystems as subjects learned a novel stick-balancing task. We focused on learning-induced changes in finger movements and body sway and investigated the effect of practice on their coupling. Eight subjects practiced balancing a cylindrical wooden stick for 30 min a day during a 20 day learning period. Finger movements and center of pressure trajectories were recorded in every fifth practice session (4 in total) using a ten camera VICON motion capture system interfaced with two force platforms. Motor learning was quantified using average balancing trial lengths, which increased with practice and confirmed that subjects learned the task. Nonlinear time series and phase space reconstruction methods were subsequently used to investigate changes in the spatiotemporal properties of finger movements, body sway and their progressive coupling. Systematic increases in subsystem coupling were observed despite reduced autocorrelation and differences in the temporal properties of center of pressure and finger trajectories. The average duration of these coupled trajectories increased systematically across the learning period. In short, the abrupt transition between coupled and decoupled subsystem dynamics suggested that stick balancing is regulated by a hierarchical control mechanism that switches from collective to independent control of the finger and center of pressure. In addition to traditional measures of motor performance, dynamical analyses revealed changes in motor subsystem organization that occurred when subjects learned a novel stick-balancing task.
The Effect of Haptic Guidance on Learning a Hybrid Rhythmic-Discrete Motor Task.
Marchal-Crespo, Laura; Bannwart, Mathias; Riener, Robert; Vallery, Heike
2015-01-01
Bouncing a ball with a racket is a hybrid rhythmic-discrete motor task, combining continuous rhythmic racket movements with discrete impact events. Rhythmicity is exceptionally important in motor learning, because it underlies fundamental movements such as walking. Studies suggested that rhythmic and discrete movements are governed by different control mechanisms at different levels of the Central Nervous System. The aim of this study is to evaluate the effect of fixed/fading haptic guidance on learning to bounce a ball to a desired apex in virtual reality with varying gravity. Changing gravity changes dominance of rhythmic versus discrete control: The higher the value of gravity, the more rhythmic the task; lower values reduce the bouncing frequency and increase dwell times, eventually leading to a repetitive discrete task that requires initiation and termination, resembling target-oriented reaching. Although motor learning in the ball-bouncing task with varying gravity has been studied, the effect of haptic guidance on learning such a hybrid rhythmic-discrete motor task has not been addressed. We performed an experiment with thirty healthy subjects and found that the most effective training condition depended on the degree of rhythmicity: Haptic guidance seems to hamper learning of continuous rhythmic tasks, but it seems to promote learning for repetitive tasks that resemble discrete movements.
Jarus, Tal; Ghanouni, Parisa; Abel, Rachel L; Fomenoff, Shelby L; Lundberg, Jocelyn; Davidson, Stephanie; Caswell, Sarah; Bickerton, Laura; Zwicker, Jill G
2015-02-01
Children with developmental coordination disorder (DCD) struggle to learn new motor skills. It is unknown whether children with DCD learn motor skills more effectively with an external focus of attention (focusing on impact of movement on the environment) or an internal focus of attention (focusing on one's body movements) during implicit (unconscious) and explicit (conscious) motor learning. This paper aims to determine the trends of implicit motor learning in children with DCD, and how focus of attention influences motor learning in children with DCD in comparison with typically developing children. 25 children, aged 8-12, with (n=12) and without (n=13) DCD were randomly assigned to receive instructions that focused attention externally or internally while completing a computer tracking task during acquisition, retention, and transfer phases. The motor task involved tracking both repeated and random patterns, with the repeated pattern indicative of implicit learning. Children with DCD scored lower on the motor task in all three phases of the study, demonstrating poorer implicit learning. Furthermore, graphical data showed that for the children with DCD, there was no apparent difference between internal and external focus of attention during retention and transfer, while there was an advantage to the external focus of attention group for typically developing children. Children with DCD demonstrate less accuracy than typically developing children in learning a motor task. Also, the effect of focus of attention on motor performance is different in children with DCD versus their typically developing counterparts during the three phases of motor learning. Results may inform clinicians how to facilitate motor learning in children with DCD by incorporating explicit learning with either internal or external focus of attention within interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.
The "Motor" in Implicit Motor Sequence Learning: A Foot-stepping Serial Reaction Time Task.
Du, Yue; Clark, Jane E
2018-05-03
This protocol describes a modified serial reaction time (SRT) task used to study implicit motor sequence learning. Unlike the classic SRT task that involves finger-pressing movements while sitting, the modified SRT task requires participants to step with both feet while maintaining a standing posture. This stepping task necessitates whole body actions that impose postural challenges. The foot-stepping task complements the classic SRT task in several ways. The foot-stepping SRT task is a better proxy for the daily activities that require ongoing postural control, and thus may help us better understand sequence learning in real-life situations. In addition, response time serves as an indicator of sequence learning in the classic SRT task, but it is unclear whether response time, reaction time (RT) representing mental process, or movement time (MT) reflecting the movement itself, is a key player in motor sequence learning. The foot-stepping SRT task allows researchers to disentangle response time into RT and MT, which may clarify how motor planning and movement execution are involved in sequence learning. Lastly, postural control and cognition are interactively related, but little is known about how postural control interacts with learning motor sequences. With a motion capture system, the movement of the whole body (e.g., the center of mass (COM)) can be recorded. Such measures allow us to reveal the dynamic processes underlying discrete responses measured by RT and MT, and may aid in elucidating the relationship between postural control and the explicit and implicit processes involved in sequence learning. Details of the experimental set-up, procedure, and data processing are described. The representative data are adopted from one of our previous studies. Results are related to response time, RT, and MT, as well as the relationship between the anticipatory postural response and the explicit processes involved in implicit motor sequence learning.
Effects of Dispositional Mindfulness on the Self-Controlled Learning of a Novel Motor Task
ERIC Educational Resources Information Center
Kee, Ying Hwa; Liu, Yeou-Teh
2011-01-01
Current literature suggests that mindful learning is beneficial to learning but its links with motor learning is seldom examined. In the present study, we examine the effects of learners' mindfulness disposition on the self-controlled learning of a novel motor task. Thirty-two participants undertook five practice sessions, in addition to a pre-,…
ERIC Educational Resources Information Center
Keetch, Katherine M.; Lee, Timothy D.
2007-01-01
Research suggests that allowing individuals to control their own practice schedule has a positive effect on motor learning. In this experiment we examined the effect of task difficulty and self-regulated practice strategies on motor learning. The task was to move a mouse-operated cursor through pattern arrays that differed in two levels of…
Motor cortex is required for learning but not for executing a motor skill.
Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu L; Dhawale, Ashesh K; Kampff, Adam R; Ölveczky, Bence P
2015-05-06
Motor cortex is widely believed to underlie the acquisition and execution of motor skills, but its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex's established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in "tutoring" these circuits during learning. Copyright © 2015 Elsevier Inc. All rights reserved.
Dissociable effects of practice variability on learning motor and timing skills.
Caramiaux, Baptiste; Bevilacqua, Frédéric; Wanderley, Marcelo M; Palmer, Caroline
2018-01-01
Motor skill acquisition inherently depends on the way one practices the motor task. The amount of motor task variability during practice has been shown to foster transfer of the learned skill to other similar motor tasks. In addition, variability in a learning schedule, in which a task and its variations are interweaved during practice, has been shown to help the transfer of learning in motor skill acquisition. However, there is little evidence on how motor task variations and variability schedules during practice act on the acquisition of complex motor skills such as music performance, in which a performer learns both the right movements (motor skill) and the right time to perform them (timing skill). This study investigated the impact of rate (tempo) variability and the schedule of tempo change during practice on timing and motor skill acquisition. Complete novices, with no musical training, practiced a simple musical sequence on a piano keyboard at different rates. Each novice was assigned to one of four learning conditions designed to manipulate the amount of tempo variability across trials (large or small tempo set) and the schedule of tempo change (randomized or non-randomized order) during practice. At test, the novices performed the same musical sequence at a familiar tempo and at novel tempi (testing tempo transfer), as well as two novel (but related) sequences at a familiar tempo (testing spatial transfer). We found that practice conditions had little effect on learning and transfer performance of timing skill. Interestingly, practice conditions influenced motor skill learning (reduction of movement variability): lower temporal variability during practice facilitated transfer to new tempi and new sequences; non-randomized learning schedule improved transfer to new tempi and new sequences. Tempo (rate) and the sequence difficulty (spatial manipulation) affected performance variability in both timing and movement. These findings suggest that there is a dissociable effect of practice variability on learning complex skills that involve both motor and timing constraints.
The effect of haptic guidance and visual feedback on learning a complex tennis task.
Marchal-Crespo, Laura; van Raai, Mark; Rauter, Georg; Wolf, Peter; Riener, Robert
2013-11-01
While haptic guidance can improve ongoing performance of a motor task, several studies have found that it ultimately impairs motor learning. However, some recent studies suggest that the haptic demonstration of optimal timing, rather than movement magnitude, enhances learning in subjects trained with haptic guidance. Timing of an action plays a crucial role in the proper accomplishment of many motor skills, such as hitting a moving object (discrete timing task) or learning a velocity profile (time-critical tracking task). The aim of the present study is to evaluate which feedback conditions-visual or haptic guidance-optimize learning of the discrete and continuous elements of a timing task. The experiment consisted in performing a fast tennis forehand stroke in a virtual environment. A tendon-based parallel robot connected to the end of a racket was used to apply haptic guidance during training. In two different experiments, we evaluated which feedback condition was more adequate for learning: (1) a time-dependent discrete task-learning to start a tennis stroke and (2) a tracking task-learning to follow a velocity profile. The effect that the task difficulty and subject's initial skill level have on the selection of the optimal training condition was further evaluated. Results showed that the training condition that maximizes learning of the discrete time-dependent motor task depends on the subjects' initial skill level. Haptic guidance was especially suitable for less-skilled subjects and in especially difficult discrete tasks, while visual feedback seems to benefit more skilled subjects. Additionally, haptic guidance seemed to promote learning in a time-critical tracking task, while visual feedback tended to deteriorate the performance independently of the task difficulty and subjects' initial skill level. Haptic guidance outperformed visual feedback, although additional studies are needed to further analyze the effect of other types of feedback visualization on motor learning of time-critical tasks.
Mayor-Dubois, Claire; Zesiger, Pascal; Van der Linden, Martial; Roulet-Perez, Eliane
2016-01-01
In this study, we investigated motor and cognitive procedural learning in typically developing children aged 8-12 years with a serial reaction time (SRT) task and a probabilistic classification learning (PCL) task. The aims were to replicate and extend the results of previous SRT studies, to investigate PCL in school-aged children, to explore the contribution of declarative knowledge to SRT and PCL performance, to explore the strategies used by children in the PCL task via a mathematical model, and to see whether performances obtained in motor and cognitive tasks correlated. The results showed similar learning effects in the three age groups in the SRT and in the first half of the PCL tasks. Participants did not develop explicit knowledge in the SRT task whereas declarative knowledge of the cue-outcome associations correlated with the performances in the second half of the PCL task, suggesting a participation of explicit knowledge after some time of exposure in PCL. An increasing proportion of the optimal strategy use with increasing age was observed in the PCL task. Finally, no correlation appeared between cognitive and motor performance. In conclusion, we extended the hypothesis of age invariance from motor to cognitive procedural learning, which had not been done previously. The ability to adopt more efficient learning strategies with age may rely on the maturation of the fronto-striatal loops. The lack of correlation between performance in the SRT task and the first part of the PCL task suggests dissociable developmental trajectories within the procedural memory system.
Consolidating the effects of waking and sleep on motor-sequence learning.
Brawn, Timothy P; Fenn, Kimberly M; Nusbaum, Howard C; Margoliash, Daniel
2010-10-20
Sleep is widely believed to play a critical role in memory consolidation. Sleep-dependent consolidation has been studied extensively in humans using an explicit motor-sequence learning paradigm. In this task, performance has been reported to remain stable across wakefulness and improve significantly after sleep, making motor-sequence learning the definitive example of sleep-dependent enhancement. Recent work, however, has shown that enhancement disappears when the task is modified to reduce task-related inhibition that develops over a training session, thus questioning whether sleep actively consolidates motor learning. Here we use the same motor-sequence task to demonstrate sleep-dependent consolidation for motor-sequence learning and explain the discrepancies in results across studies. We show that when training begins in the morning, motor-sequence performance deteriorates across wakefulness and recovers after sleep, whereas performance remains stable across both sleep and subsequent waking with evening training. This pattern of results challenges an influential model of memory consolidation defined by a time-dependent stabilization phase and a sleep-dependent enhancement phase. Moreover, the present results support a new account of the behavioral effects of waking and sleep on explicit motor-sequence learning that is consistent across a wide range of tasks. These observations indicate that current theories of memory consolidation that have been formulated to explain sleep-dependent performance enhancements are insufficient to explain the range of behavioral changes associated with sleep.
Older Adults can Learn to Learn New Motor Skills
Seidler, Rachael D.
2007-01-01
Many studies have demonstrated that aging is associated with declines in skill acquisition. In the current study, we tested whether older adults could acquire general, transferable knowledge about skill learning processes. Older adult participants learned five different motor tasks. Two older adult control groups performed the same number of trials, but learned only one task. The experimental group exhibited faster learning than that seen in the control groups. These data demonstrate that older adults can learn to learn new motor skills. PMID:17602760
Rothkirch, Inken; Wolff, Stephan; Margraf, Nils G.; Pedersen, Anya; Witt, Karsten
2018-01-01
Previous studies demonstrated the influence of the post-learning period on procedural motor memory consolidation. In an early period after the acquisition, motor skills are vulnerable to modifications during wakefulness. Indeed, specific interventions such as world-list learning within this early phase of motor memory consolidation seem to enhance motor performance as an indicator for successful consolidation. This finding highlights the idea that manipulations of procedural and declarative memory systems during the early phase of memory consolidation over wakefulness may influence off-line consolidation. Using functional magnetic resonance imaging (fMRI) during initial motor sequence learning and motor sequence recall, we indirectly assess the influence of a secondary task taken place in the early phase of memory consolidation. All participants were scanned using fMRI during the learning phase of a serial reaction time task (SRTT) at 8 a.m. Afterwards, they were randomly assigned to one of five conditions. One group performed a declarative verbal, one a declarative nonverbal learning task. Two groups worked on attention tasks. A control group passed a resting condition. Participants stayed awake the whole day and performed the SRTT in the MRI scanner 12 h later at 8 p.m. At the behavioral level, the analysis of the reaction times failed to show a significant group difference. The primary analysis assessing fMRI data based on the contrast (sequence – random) between learning and retrieval also did not show any significant group differences. Therefore, our main analysis do not support the hypothesis that a secondary task influences the retrieval of the SRTT. In a more liberal fMRI analysis, we compared only the sequence blocks of the SRTT from learning to recall. BOLD signal decreased in the ipsilateral cerebellum and the supplementary motor area solely in the verbal learning group. Although our primary analysis failed to show significant changes between our groups, results of the secondary analysis could be an indication for a beneficial effect of the verbal declarative task in the early post-learning phase. A nonverbal learning task did not affect the activation within the motor network. Further studies are needed to replicate this finding and to assess the usefulness of this manipulation. PMID:29755315
Rothkirch, Inken; Wolff, Stephan; Margraf, Nils G; Pedersen, Anya; Witt, Karsten
2018-01-01
Previous studies demonstrated the influence of the post-learning period on procedural motor memory consolidation. In an early period after the acquisition, motor skills are vulnerable to modifications during wakefulness. Indeed, specific interventions such as world-list learning within this early phase of motor memory consolidation seem to enhance motor performance as an indicator for successful consolidation. This finding highlights the idea that manipulations of procedural and declarative memory systems during the early phase of memory consolidation over wakefulness may influence off-line consolidation. Using functional magnetic resonance imaging (fMRI) during initial motor sequence learning and motor sequence recall, we indirectly assess the influence of a secondary task taken place in the early phase of memory consolidation. All participants were scanned using fMRI during the learning phase of a serial reaction time task (SRTT) at 8 a.m. Afterwards, they were randomly assigned to one of five conditions. One group performed a declarative verbal, one a declarative nonverbal learning task. Two groups worked on attention tasks. A control group passed a resting condition. Participants stayed awake the whole day and performed the SRTT in the MRI scanner 12 h later at 8 p.m. At the behavioral level, the analysis of the reaction times failed to show a significant group difference. The primary analysis assessing fMRI data based on the contrast (sequence - random) between learning and retrieval also did not show any significant group differences. Therefore, our main analysis do not support the hypothesis that a secondary task influences the retrieval of the SRTT. In a more liberal fMRI analysis, we compared only the sequence blocks of the SRTT from learning to recall. BOLD signal decreased in the ipsilateral cerebellum and the supplementary motor area solely in the verbal learning group. Although our primary analysis failed to show significant changes between our groups, results of the secondary analysis could be an indication for a beneficial effect of the verbal declarative task in the early post-learning phase. A nonverbal learning task did not affect the activation within the motor network. Further studies are needed to replicate this finding and to assess the usefulness of this manipulation.
Chauvel, Guillaume; Maquestiaux, François; Hartley, Alan A; Joubert, Sven; Didierjean, André; Masters, Rich S W
2012-01-01
Can motor learning be equivalent in younger and older adults? To address this question, 48 younger (M = 23.5 years) and 48 older (M = 65.0 years) participants learned to perform a golf-putting task in two different motor learning situations: one that resulted in infrequent errors or one that resulted in frequent errors. The results demonstrated that infrequent-error learning predominantly relied on nondeclarative, automatic memory processes whereas frequent-error learning predominantly relied on declarative, effortful memory processes: After learning, infrequent-error learners verbalized fewer strategies than frequent-error learners; at transfer, a concurrent, attention-demanding secondary task (tone counting) left motor performance of infrequent-error learners unaffected but impaired that of frequent-error learners. The results showed age-equivalent motor performance in infrequent-error learning but age deficits in frequent-error learning. Motor performance of frequent-error learners required more attention with age, as evidenced by an age deficit on the attention-demanding secondary task. The disappearance of age effects when nondeclarative, automatic memory processes predominated suggests that these processes are preserved with age and are available even early in motor learning.
Sawers, Andrew; Hahn, Michael E
2013-08-01
Motor learning strategies that increase practice difficulty and the size of movement errors are thought to facilitate motor learning. In contrast to this, gradual training minimizes movement errors and reduces practice difficulty by incrementally introducing task requirements, yet remains as effective as sudden training and its large movement errors for learning novel reaching tasks. While attractive as a locomotor rehabilitation strategy, it remains unknown whether the efficacy of gradual training extends to learning locomotor tasks and their unique requirements. The influence of gradual vs. sudden training on learning a locomotor task, asymmetric split belt treadmill walking, was examined by assessing whole body sagittal plane kinematics during 24 hour retention and transfer performance following either gradual or sudden training. Despite less difficult and less specific practice for the gradual cohort on day 1, gradual training resulted in equivalent motor learning of the novel locomotor task as sudden training when assessed by retention and transfer a day later. This suggests that large movement errors and increased practice difficulty may not be necessary for learning novel locomotor tasks. Further, gradual training may present a viable locomotor rehabilitation strategy avoiding large movement errors that could limit or impair improvements in locomotor performance. Copyright © 2013 Elsevier B.V. All rights reserved.
Lei, Yuming; Binder, Jeffrey R.
2015-01-01
The extent to which motor learning is generalized across the limbs is typically very limited. Here, we investigated how two motor learning hypotheses could be used to enhance the extent of interlimb transfer. According to one hypothesis, we predicted that reinforcement of successful actions by providing binary error feedback regarding task success or failure, in addition to terminal error feedback, during initial training would increase the extent of interlimb transfer following visuomotor adaptation (experiment 1). According to the other hypothesis, we predicted that performing a reaching task repeatedly with one arm without providing performance feedback (which prevented learning the task with this arm), while concurrently adapting to a visuomotor rotation with the other arm, would increase the extent of transfer (experiment 2). Results indicate that providing binary error feedback, compared with continuous visual feedback that provided movement direction and amplitude information, had no influence on the extent of transfer. In contrast, repeatedly performing (but not learning) a specific task with one arm while visuomotor adaptation occurred with the other arm led to nearly complete transfer. This suggests that the absence of motor instances associated with specific effectors and task conditions is the major reason for limited interlimb transfer and that reinforcement of successful actions during initial training is not beneficial for interlimb transfer. These findings indicate crucial contributions of effector- and task-specific motor instances, which are thought to underlie (a type of) model-free learning, to optimal motor learning and interlimb transfer. PMID:25632082
Marsh, Rachel; Alexander, Gerianne M; Packard, Mark G; Zhu, Hongtu; Peterson, Bradley S
2005-01-01
Procedural learning and memory systems likely comprise several skills that are differentially affected by various illnesses of the central nervous system, suggesting their relative functional independence and reliance on differing neural circuits. Gilles de la Tourette syndrome (GTS) is a movement disorder that involves disturbances in the structure and function of the striatum and related circuitry. Recent studies suggest that patients with GTS are impaired in performance of a probabilistic classification task that putatively involves the acquisition of stimulus-response (S-R)-based habits. Assessing the learning of perceptual-motor skills and probabilistic classification in the same samples of GTS and healthy control subjects may help to determine whether these various forms of procedural (habit) learning rely on the same or differing neuroanatomical substrates and whether those substrates are differentially affected in persons with GTS. Therefore, we assessed perceptual-motor skill learning using the pursuit-rotor and mirror tracing tasks in 50 patients with GTS and 55 control subjects who had previously been compared at learning a task of probabilistic classifications. The GTS subjects did not differ from the control subjects in performance of either the pursuit rotor or mirror-tracing tasks, although they were significantly impaired in the acquisition of a probabilistic classification task. In addition, learning on the perceptual-motor tasks was not correlated with habit learning on the classification task in either the GTS or healthy control subjects. These findings suggest that the differing forms of procedural learning are dissociable both functionally and neuroanatomically. The specific deficits in the probabilistic classification form of habit learning in persons with GTS are likely to be a consequence of disturbances in specific corticostriatal circuits, but not the same circuits that subserve the perceptual-motor form of habit learning.
Platz, Thomas; Adler-Wiebe, Marija; Roschka, Sybille; Lotze, Martin
2018-01-01
Motor rehabilitation after brain damage relies on motor re-learning as induced by specific training. Non-invasive brain stimulation (NIBS) can alter cortical excitability and thereby has a potential to enhance subsequent training-induced learning. Knowledge about any priming effects of NIBS on motor learning in healthy subjects can help to design targeted therapeutic applications in brain-damaged subjects. To examine whether complex motor learning in healthy subjects can be enhanced by intermittent theta burst stimulation (iTBS) to primary motor or sensory cortical areas. Eighteen young healthy subjects trained eight different arm motor tasks (arm ability training, AAT) once a day for 5 days using their left non-dominant arm. Except for day 1 (baseline), training was performed after applying an excitatory form of repetitive transcranial magnetic stimulation (iTBS) to either (I) right M1 or (II) S1, or (III) sham stimulation to the right M1. Subjects were randomly assigned to conditions I, II, or III. A principal component analysis of the motor behaviour data suggested eight independent motor abilities corresponding to the 8 trained tasks. AAT induced substantial motor learning across abilities with generalisation to a non-trained test of finger dexterity (Nine-Hole-Peg-Test, NHPT). Participants receiving iTBS (to either M1 or S1) showed better performance with the AAT tasks over the period of training compared to sham stimulation as well as a bigger improvement with the generalisation task (NHPT) for the trained left hand after training completion. Priming with an excitatory repetitive transcranial magnetic stimulation as iTBS of either M1 or S1 can enhance motor learning across different sensorimotor abilities.
de Mello Monteiro, Carlos Bandeira; da Silva, Talita Dias; de Abreu, Luiz Carlos; Fregni, Felipe; de Araujo, Luciano Vieira; Ferreira, Fernando Henrique Inocêncio Borba; Leone, Claudio
2017-04-14
Down syndrome (DS) has unique physical, motor and cognitive characteristics. Despite cognitive and motor difficulties, there is a possibility of intervention based on the knowledge of motor learning. However, it is important to study the motor learning process in individuals with DS during a virtual reality task to justify the use of virtual reality to organize intervention programs. The aim of this study was to analyze the motor learning process in individuals with DS during a virtual reality task. A total of 40 individuals participated in this study, 20 of whom had DS (24 males and 8 females, mean age of 19 years, ranging between 14 and 30 yrs.) and 20 typically developing individuals (TD) who were matched by age and gender to the individuals with DS. To examine this issue, we used software that uses 3D images and reproduced a coincidence-timing task. The results showed that all individuals improved performance in the virtual task, but the individuals with DS that started the task with worse performance showed higher difference from the beginning. Besides that, they were able to retain and transfer the performance with increase of speed of the task. Individuals with DS are able to learn movements from virtual tasks, even though the movement time was higher compared to the TD individuals. The results showed that individuals with DS who started with low performance improved coincidence- timing task with virtual objects, but were less accurate than typically developing individuals. ClinicalTrials.gov Identifier: NCT02719600 .
Motor Sequence Learning-Induced Neural Efficiency in Functional Brain Connectivity
Karim, Helmet T; Huppert, Theodore J; Erickson, Kirk I; Wollam, Mariegold E; Sparto, Patrick J; Sejdić, Ervin; VanSwearingen, Jessie M
2016-01-01
Previous studies have shown the functional neural circuitry differences before and after an explicitly learned motor sequence task, but have not assessed these changes during the process of motor skill learning. Functional magnetic resonance imaging activity was measured while participants (n=13) were asked to tap their fingers to visually presented sequences in blocks that were either the same sequence repeated (learning block) or random sequences (control block). Motor learning was associated with a decrease in brain activity during learning compared to control. Lower brain activation was noted in the posterior parietal association area and bilateral thalamus during the later periods of learning (not during the control). Compared to the control condition, we found the task-related motor learning was associated with decreased connectivity between the putamen and left inferior frontal gyrus and left middle cingulate brain regions. Motor learning was associated with changes in network activity, spatial extent, and connectivity. PMID:27845228
Weiss, Patrice L.; Keshner, Emily A.
2015-01-01
The primary focus of rehabilitation for individuals with loss of upper limb movement as a result of acquired brain injury is the relearning of specific motor skills and daily tasks. This relearning is essential because the loss of upper limb movement often results in a reduced quality of life. Although rehabilitation strives to take advantage of neuroplastic processes during recovery, results of traditional approaches to upper limb rehabilitation have not entirely met this goal. In contrast, enriched training tasks, simulated with a wide range of low- to high-end virtual reality–based simulations, can be used to provide meaningful, repetitive practice together with salient feedback, thereby maximizing neuroplastic processes via motor learning and motor recovery. Such enriched virtual environments have the potential to optimize motor learning by manipulating practice conditions that explicitly engage motivational, cognitive, motor control, and sensory feedback–based learning mechanisms. The objectives of this article are to review motor control and motor learning principles, to discuss how they can be exploited by virtual reality training environments, and to provide evidence concerning current applications for upper limb motor recovery. The limitations of the current technologies with respect to their effectiveness and transfer of learning to daily life tasks also are discussed. PMID:25212522
Visuo-Motor and Cognitive Procedural Learning in Children with Basal Ganglia Pathology
ERIC Educational Resources Information Center
Mayor-Dubois, C.; Maeder, P.; Zesiger, P.; Roulet-Perez, E.
2010-01-01
We investigated procedural learning in 18 children with basal ganglia (BG) lesions or dysfunctions of various aetiologies, using a visuo-motor learning test, the Serial Reaction Time (SRT) task, and a cognitive learning test, the Probabilistic Classification Learning (PCL) task. We compared patients with early (less than 1 year old, n=9), later…
Single Neurons in M1 and Premotor Cortex Directly Reflect Behavioral Interference
Zach, Neta; Inbar, Dorrit; Grinvald, Yael; Vaadia, Eilon
2012-01-01
Some motor tasks, if learned together, interfere with each other's consolidation and subsequent retention, whereas other tasks do not. Interfering tasks are said to employ the same internal model whereas noninterfering tasks use different models. The division of function among internal models, as well as their possible neural substrates, are not well understood. To investigate these questions, we compared responses of single cells in the primary motor cortex and premotor cortex of primates to interfering and noninterfering tasks. The interfering tasks were visuomotor rotation followed by opposing visuomotor rotation. The noninterfering tasks were visuomotor rotation followed by an arbitrary association task. Learning two noninterfering tasks led to the simultaneous formation of neural activity typical of both tasks, at the level of single neurons. In contrast, and in accordance with behavioral results, after learning two interfering tasks, only the second task was successfully reflected in motor cortical single cell activity. These results support the hypothesis that the representational capacity of motor cortical cells is the basis of behavioral interference and division between internal models. PMID:22427923
Krakauer, John W.; Mazzoni, Pietro
2012-01-01
The public pays large sums of money to watch skilled motor performance. Notably, however, in recent decades motor skill learning (performance improvement beyond baseline levels) has received less experimental attention than motor adaptation (return to baseline performance in the setting of an external perturbation). Motor skill can be assessed at the levels of task success and movement quality, but the link between these levels remains poorly understood. We devised a motor skill task that required visually guided curved movements of the wrist without a perturbation, and we defined skill learning at the task level as a change in the speed–accuracy trade-off function (SAF). Practice in restricted speed ranges led to a global shift of the SAF. We asked how the SAF shift maps onto changes in trajectory kinematics, to establish a link between task-level performance and fine motor control. Although there were small changes in mean trajectory, improved performance largely consisted of reduction in trial-to-trial variability and increase in movement smoothness. We found evidence for improved feedback control, which could explain the reduction in variability but does not preclude other explanations such as an increased signal-to-noise ratio in cortical representations. Interestingly, submovement structure remained learning invariant. The global generalization of the SAF across a wide range of difficulty suggests that skill for this task is represented in a temporally scalable network. We propose that motor skill acquisition can be characterized as a slow reduction in movement variability, which is distinct from faster model-based learning that reduces systematic error in adaptation paradigms. PMID:22514286
Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task
Marchal-Crespo, Laura; Michels, Lars; Jaeger, Lukas; López-Olóriz, Jorge; Riener, Robert
2017-01-01
Up to date, the functional gains obtained after robot-aided gait rehabilitation training are limited. Error augmenting strategies have a great potential to enhance motor learning of simple motor tasks. However, little is known about the effect of these error modulating strategies on complex tasks, such as relearning to walk after a neurologic accident. Additionally, neuroimaging evaluation of brain regions involved in learning processes could provide valuable information on behavioral outcomes. We investigated the effect of robotic training strategies that augment errors—error amplification and random force disturbance—and training without perturbations on brain activation and motor learning of a complex locomotor task. Thirty-four healthy subjects performed the experiment with a robotic stepper (MARCOS) in a 1.5 T MR scanner. The task consisted in tracking a Lissajous figure presented on a display by coordinating the legs in a gait-like movement pattern. Behavioral results showed that training without perturbations enhanced motor learning in initially less skilled subjects, while error amplification benefited better-skilled subjects. Training with error amplification, however, hampered transfer of learning. Randomly disturbing forces induced learning and promoted transfer in all subjects, probably because the unexpected forces increased subjects' attention. Functional MRI revealed main effects of training strategy and skill level during training. A main effect of training strategy was seen in brain regions typically associated with motor control and learning, such as, the basal ganglia, cerebellum, intraparietal sulcus, and angular gyrus. Especially, random disturbance and no perturbation lead to stronger brain activation in similar brain regions than error amplification. Skill-level related effects were observed in the IPS, in parts of the superior parietal lobe (SPL), i.e., precuneus, and temporal cortex. These neuroimaging findings indicate that gait-like motor learning depends on interplay between subcortical, cerebellar, and fronto-parietal brain regions. An interesting observation was the low activation observed in the brain's reward system after training with error amplification compared to training without perturbations. Our results suggest that to enhance learning of a locomotor task, errors should be augmented based on subjects' skill level. The impacts of these strategies on motor learning, brain activation, and motivation in neurological patients need further investigation. PMID:29021739
Effects of Single Compared to Dual Task Practice on Learning a Dynamic Balance Task in Young Adults
Kiss, Rainer; Brueckner, Dennis; Muehlbauer, Thomas
2018-01-01
Background: In everyday life, people engage in situations involving the concurrent processing of motor (balance) and cognitive tasks (i.e., “dual task situations”) that result in performance declines in at least one of the given tasks. The concurrent practice of both the motor and cognitive task may counteract these performance decrements. The purpose of this study was to examine the effects of single task (ST) compared to dual task (DT) practice on learning a dynamic balance task. Methods: Forty-eight young adults were randomly assigned to either a ST (i.e., motor or cognitive task training only) or a DT (i.e., motor-cognitive training) practice condition. The motor task required participants to stand on a platform and keeping the platform as close to horizontal as possible. In the cognitive task, participants were asked to recite serial subtractions of three. For 2 days, participants of the ST groups practiced the motor or cognitive task only, while the participants of the DT group concurrently performed both. Root-mean-square error (RMSE) for the motor and total number of correct calculations for the cognitive task were computed. Results: During practice, all groups improved their respective balance and/or cognitive task performance. With regard to the assessment of learning on day 3, we found significantly smaller RMSE values for the ST motor (d = 1.31) and the DT motor-cognitive (d = 0.76) practice group compared to the ST cognitive practice group but not between the ST motor and the DT motor-cognitive practice group under DT test condition. Further, we detected significantly larger total numbers of correct calculations under DT test condition for the ST cognitive (d = 2.19) and the DT motor-cognitive (d = 1.55) practice group compared to the ST motor practice group but not between the ST cognitive and the DT motor-cognitive practice group. Conclusion: We conclude that ST practice resulted in an effective modulation of the trained domain (i.e., motor or cognitive) while only DT practice resulted in an effective modulation of both domains (i.e., motor and cognitive). Thus, particularly DT practice frees up central resources that were used for an effective modulation of motor and cognitive processing mechanisms. PMID:29593614
Sleep promotes branch-specific formation of dendritic spines after learning
Yang, Guang; Lai, Cora Sau Wan; Cichon, Joseph; Ma, Lei; Li, Wei; Gan, Wen-Biao
2015-01-01
How sleep helps learning and memory remains unknown. We report in mouse motor cortex that sleep after motor learning promotes the formation of postsynaptic dendritic spines on a subset of branches of individual layer V pyramidal neurons. New spines are formed on different sets of dendritic branches in response to different learning tasks and are protected from being eliminated when multiple tasks are learned. Neurons activated during learning of a motor task are reactivated during subsequent non-rapid eye movement sleep, and disrupting this neuronal reactivation prevents branch-specific spine formation. These findings indicate that sleep has a key role in promoting learning-dependent synapse formation and maintenance on selected dendritic branches, which contribute to memory storage. PMID:24904169
Sagari, Akira; Iso, Naoki; Moriuchi, Takefumi; Ogahara, Kakuya; Kitajima, Eiji; Tanaka, Koji; Tabira, Takayuki; Higashi, Toshio
2015-01-01
Studies of cerebral hemodynamics during motor learning have mostly focused on neurorehabilitation interventions and their effectiveness. However, only a few imaging studies of motor learning and the underlying complex cognitive processes have been performed. We measured cerebral hemodynamics using near-infrared spectroscopy (NIRS) in relation to acquisition patterns of motor skills in healthy subjects using character entry into a touch-screen terminal. Twenty healthy, right-handed subjects who had no previous experience with character entry using a touch-screen terminal participated in this study. They were asked to enter the characters of a randomly formed Japanese syllabary into the touch-screen terminal. All subjects performed the task with their right thumb for 15 s alternating with 25 s of rest for 30 repetitions. Performance was calculated by subtracting the number of incorrect answers from the number of correct answers, and gains in motor skills were evaluated according to the changes in performance across cycles. Behavioral and oxygenated hemoglobin concentration changes across task cycles were analyzed using Spearman's rank correlations. Performance correlated positively with task cycle, thus confirming motor learning. Hemodynamic activation over the left sensorimotor cortex (SMC) showed a positive correlation with task cycle, whereas activations over the right prefrontal cortex (PFC) and supplementary motor area (SMA) showed negative correlations. We suggest that increases in finger momentum with motor learning are reflected in the activity of the left SMC. We further speculate that the right PFC and SMA were activated during the early phases of motor learning, and that this activity was attenuated with learning progress.
Aging Affects Motor Learning but Not Savings at Transfer of Learning
ERIC Educational Resources Information Center
Seidler, Rachael D.
2007-01-01
Two important components of skill learning are the learning process itself (motor acquisition) and the ability to transfer what has been learned to new task variants (motor transfer). Many studies have documented age-related declines in the ability to learn new manual motor skills. In this study, I tested whether the degree of savings at transfer…
Children show limited movement repertoire when learning a novel motor skill.
Lee, Mei-Hua; Farshchiansadegh, Ali; Ranganathan, Rajiv
2017-09-27
Examining age differences in motor learning using real-world tasks is often problematic due to task novelty and biomechanical confounds. Here, we investigated how children and adults acquire a novel motor skill in a virtual environment. Participants of three different age groups (9-year-olds, 12-year-olds, and adults) learned to use their upper body movements to control a cursor on a computer screen. Results showed that 9-year-old and 12-year-old children showed poorer ability to control the cursor at the end of practice. Critically, when we investigated the movement coordination, we found that the lower task performance of children was associated with limited exploration of their movement repertoire. These results reveal the critical role of motor exploration in understanding developmental differences in motor learning. © 2017 John Wiley & Sons Ltd.
Smits-Engelsman, Bouwien C. M.; Jelsma, Lemke Dorothee; Ferguson, Gillian D.; Geuze, Reint H.
2015-01-01
Objective Although Developmental Coordination Disorder (DCD) is often characterized as a skill acquisition deficit disorder, few studies have addressed the process of motor learning. This study examined learning of a novel motor task; the Wii Fit ski slalom game. The main objectives were to determine: 1) whether learning occurs over 100 trial runs of the game, 2) if the learning curve is different between children with and without DCD, 3) if learning is different in an easier or harder version of the task, 4) if learning transfers to other balance tasks. Method 17 children with DCD (6–10 years) and a matched control group of 17 typically developing (TD) children engaged in 20 minutes of gaming, twice a week for five weeks. Each training session comprised of alternating trial runs, with five runs at an easy level and five runs at a difficult level. Wii scores, which combine speed and accuracy per run, were recorded. Standardized balance tasks were used to measure transfer. Results Significant differences in initial performance were found between groups on the Wii score and balance tasks. Both groups improved their Wii score over the five weeks. Improvement in the easy and in the hard task did not differ between groups. Retention in the time between training sessions was not different between TD and DCD groups either. The DCD group improved significantly on all balance tasks. Conclusions The findings in this study give a fairly coherent picture of the learning process over a medium time scale (5 weeks) in children novice to active computer games; they learn, retain and there is evidence of transfer to other balance tasks. The rate of motor learning is similar for those with and without DCD. Our results raise a number of questions about motor learning that need to be addressed in future research. PMID:26466324
Successful Transfer of a Motor Learning Strategy to a Novel Sport.
Kearney, Philip E; Judge, Phil
2017-10-01
This study investigated whether secondary school students who were taught a motor learning strategy could transfer their knowledge of the strategy to learning a novel task. Twenty adolescents were randomly allocated to a strategy or control group. The strategy group was taught Singer's five-step learning strategy, while the control group received information on the evolution and biomechanics of the basketball free throw. Both groups received three 1-hour practice sessions on a modified basketball shooting task. After one month, participants were introduced to the transfer task, golf putting. Performance accuracy was recorded for all tasks, and participants completed questionnaires regarding strategy use during practice. Participants taught the five-step learning strategy successfully recalled and applied it after a 1-month interval, and they demonstrated superior performance on both acquisition and transfer tasks, relative to the control group. Physical education teachers and coaches should consider using this learning strategy to enhance the learning of closed motor skills.
Self-Controlled Practice Enhances Motor Learning in Introverts and Extroverts
ERIC Educational Resources Information Center
Kaefer, Angélica; Chiviacowsky, Suzete; Meira, Cassio de Miranda, Jr.; Tani, Go
2014-01-01
Purpose: The purpose of the present study was to investigate the effects of self-controlled feedback on the learning of a sequential-timing motor task in introverts and extroverts. Method: Fifty-six university students were selected by the Eysenck Personality Questionnaire. They practiced a motor task consisting of pressing computer keyboard keys…
Quantifying transfer after perceptual-motor sequence learning: how inflexible is implicit learning?
Sanchez, Daniel J; Yarnik, Eric N; Reber, Paul J
2015-03-01
Studies of implicit perceptual-motor sequence learning have often shown learning to be inflexibly tied to the training conditions during learning. Since sequence learning is seen as a model task of skill acquisition, limits on the ability to transfer knowledge from the training context to a performance context indicates important constraints on skill learning approaches. Lack of transfer across contexts has been demonstrated by showing that when task elements are changed following training, this leads to a disruption in performance. These results have typically been taken as suggesting that the sequence knowledge relies on integrated representations across task elements (Abrahamse, Jiménez, Verwey, & Clegg, Psychon Bull Rev 17:603-623, 2010a). Using a relatively new sequence learning task, serial interception sequence learning, three experiments are reported that quantify this magnitude of performance disruption after selectively manipulating individual aspects of motor performance or perceptual information. In Experiment 1, selective disruption of the timing or order of sequential actions was examined using a novel response manipulandum that allowed for separate analysis of these two motor response components. In Experiments 2 and 3, transfer was examined after selective disruption of perceptual information that left the motor response sequence intact. All three experiments provided quantifiable estimates of partial transfer to novel contexts that suggest some level of information integration across task elements. However, the ability to identify quantifiable levels of successful transfer indicates that integration is not all-or-none and that measurement sensitivity is a key in understanding sequence knowledge representations.
Sleep-Dependent Learning and Motor-Skill Complexity
ERIC Educational Resources Information Center
Kuriyama, Kenichi; Stickgold, Robert; Walker, Matthew P.
2004-01-01
Learning of a procedural motor-skill task is known to progress through a series of unique memory stages. Performance initially improves during training, and continues to improve, without further rehearsal, across subsequent periods of sleep. Here, we investigate how this delayed sleep-dependent learning is affected when the task characteristics…
The neural correlates of learned motor acuity
Yang, Juemin; Caffo, Brian; Mazzoni, Pietro; Krakauer, John W.
2014-01-01
We recently defined a component of motor skill learning as “motor acuity,” quantified as a shift in the speed-accuracy trade-off function for a task. These shifts are primarily driven by reductions in movement variability. To determine the neural correlates of improvement in motor acuity, we devised a motor task compatible with magnetic resonance brain imaging that required subjects to make finely controlled wrist movements under visual guidance. Subjects were imaged on day 1 and day 5 while they performed this task and were trained outside the scanner on intervening days 2, 3, and 4. The potential confound of performance changes between days 1 and 5 was avoided by constraining movement time to a fixed duration. After training, subjects showed a marked increase in success rate and a reduction in trial-by-trial variability for the trained task but not for an untrained control task, without changes in mean trajectory. The decrease in variability for the trained task was associated with increased activation in contralateral primary motor and premotor cortical areas and in ipsilateral cerebellum. A global nonlocalizing multivariate analysis confirmed that learning was associated with increased overall brain activation. We suggest that motor acuity is acquired through increases in the number of neurons recruited in contralateral motor cortical areas and in ipsilateral cerebellum, which could reflect increased signal-to-noise ratio in motor output and improved state estimation for feedback corrections, respectively. PMID:24848466
ERIC Educational Resources Information Center
Andrieux, Mathieu; Danna, Jeremy; Thon, Bernard
2012-01-01
The aim of the present work was to analyze the influence of self-controlled task difficulty on motor learning. Participants had to intercept three targets falling at different velocities by displacing a stylus above a digitizer. Task difficulty corresponded to racquet width. Half the participants (self-control condition) could choose the racquet…
Sequence-specific procedural learning deficits in children with specific language impairment.
Hsu, Hsinjen Julie; Bishop, Dorothy V M
2014-05-01
This study tested the procedural deficit hypothesis of specific language impairment (SLI) by comparing children's performance in two motor procedural learning tasks and an implicit verbal sequence learning task. Participants were 7- to 11-year-old children with SLI (n = 48), typically developing age-matched children (n = 20) and younger typically developing children matched for receptive grammar (n = 28). In a serial reaction time task, the children with SLI performed at the same level as the grammar-matched children, but poorer than age-matched controls in learning motor sequences. When tested with a motor procedural learning task that did not involve learning sequential relationships between discrete elements (i.e. pursuit rotor), the children with SLI performed comparably with age-matched children and better than younger grammar-matched controls. In addition, poor implicit learning of word sequences in a verbal memory task (the Hebb effect) was found in the children with SLI. Together, these findings suggest that SLI might be characterized by deficits in learning sequence-specific information, rather than generally weak procedural learning. © 2014 The Authors. Developmental Science Published by John Wiley & Sons Ltd.
Performance on a functional motor task is enhanced by sleep in middle-aged and older adults.
Al-Sharman, Alham; Siengsukon, Catherine F
2014-07-01
Although sleep has been shown to enhance motor skill learning, it remains unclear whether sleep enhances learning of a functional motor task in middle-aged and older individuals. The purpose of this study was to examine whether sleep enhances motor learning of a functional motor task in middle-aged and older adults. Twenty middle-aged and 20 older individuals were randomly assigned to either the sleep condition or the no-sleep condition. Participants in the sleep condition practiced a novel walking task in the evening, and returned the following morning for retesting. Participants in the no-sleep condition practiced the walking task in the morning and returned the same day in the evening for a retest. Outcome measures included time around the walking path and spatiotemporal gait parameters. Only the middle-aged and older adults in the sleep condition demonstrated significant off-line improvement in performance, measured as a decline in time to walk around the novel path and improvement in spatiotemporal gait parameters. The middle-aged and older adults in the no-sleep condition failed to demonstrate off-line improvements in performance of this functional task. This is the first study to provide evidence that sleep facilitates learning a clinically relevant functional motor task in middle-aged and older adults. Because many neurologic conditions occur in the middle-aged and older adults and sleep issues are very prevalent in many neurologic conditions, it is imperative that physical therapists consider sleep as a factor that may impact motor learning and recovery in these individuals. (See Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A73) for more insights from the authors.
Motor sequence learning-induced neural efficiency in functional brain connectivity.
Karim, Helmet T; Huppert, Theodore J; Erickson, Kirk I; Wollam, Mariegold E; Sparto, Patrick J; Sejdić, Ervin; VanSwearingen, Jessie M
2017-02-15
Previous studies have shown the functional neural circuitry differences before and after an explicitly learned motor sequence task, but have not assessed these changes during the process of motor skill learning. Functional magnetic resonance imaging activity was measured while participants (n=13) were asked to tap their fingers to visually presented sequences in blocks that were either the same sequence repeated (learning block) or random sequences (control block). Motor learning was associated with a decrease in brain activity during learning compared to control. Lower brain activation was noted in the posterior parietal association area and bilateral thalamus during the later periods of learning (not during the control). Compared to the control condition, we found the task-related motor learning was associated with decreased connectivity between the putamen and left inferior frontal gyrus and left middle cingulate brain regions. Motor learning was associated with changes in network activity, spatial extent, and connectivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Charalambous, Charalambos C; Alcantara, Carolina C; French, Margaret A; Li, Xin; Matt, Kathleen S; Kim, Hyosub E; Morton, Susanne M; Reisman, Darcy S
2018-05-15
Previous work demonstrated an effect of a single high-intensity exercise bout coupled with motor practice on the retention of a newly acquired skilled arm movement, in both neurologically intact and impaired adults. In the present study, using behavioural and computational analyses we demonstrated that a single exercise bout, regardless of its intensity and timing, did not increase the retention of a novel locomotor task after stroke. Considering both present and previous work, we postulate that the benefits of exercise effect may depend on the type of motor learning (e.g. skill learning, sensorimotor adaptation) and/or task (e.g. arm accuracy-tracking task, walking). Acute high-intensity exercise coupled with motor practice improves the retention of motor learning in neurologically intact adults. However, whether exercise could improve the retention of locomotor learning after stroke is still unknown. Here, we investigated the effect of exercise intensity and timing on the retention of a novel locomotor learning task (i.e. split-belt treadmill walking) after stroke. Thirty-seven people post stroke participated in two sessions, 24 h apart, and were allocated to active control (CON), treadmill walking (TMW), or total body exercise on a cycle ergometer (TBE). In session 1, all groups exercised for a short bout (∼5 min) at low (CON) or high (TMW and TBE) intensity and before (CON and TMW) or after (TBE) the locomotor learning task. In both sessions, the locomotor learning task was to walk on a split-belt treadmill in a 2:1 speed ratio (100% and 50% fast-comfortable walking speed) for 15 min. To test the effect of exercise on 24 h retention, we applied behavioural and computational analyses. Behavioural data showed that neither high-intensity group showed greater 24 h retention compared to CON, and computational data showed that 24 h retention was attributable to a slow learning process for sensorimotor adaptation. Our findings demonstrated that acute exercise coupled with a locomotor adaptation task, regardless of its intensity and timing, does not improve retention of the novel locomotor task after stroke. We postulate that exercise effects on motor learning may be context specific (e.g. type of motor learning and/or task) and interact with the presence of genetic variant (BDNF Val66Met). © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Sakurada, Takeshi; Hirai, Masahiro; Watanabe, Eiju
2016-01-01
Motor learning performance has been shown to be affected by various cognitive factors such as the focus of attention and motor imagery ability. Most previous studies on motor learning have shown that directing the attention of participants externally, such as on the outcome of an assigned body movement, can be more effective than directing their attention internally, such as on body movement itself. However, to the best of our knowledge, no findings have been reported on the effect of the focus of attention selected according to the motor imagery ability of an individual on motor learning performance. We measured individual motor imagery ability assessed by the Movement Imagery Questionnaire and classified the participants into kinesthetic-dominant (n = 12) and visual-dominant (n = 8) groups based on the questionnaire score. Subsequently, the participants performed a motor learning task such as tracing a trajectory using visuomotor rotation. When the participants were required to direct their attention internally, the after-effects of the learning task in the kinesthetic-dominant group were significantly greater than those in the visual-dominant group. Conversely, when the participants were required to direct their attention externally, the after-effects of the visual-dominant group were significantly greater than those of the kinesthetic-dominant group. Furthermore, we found a significant positive correlation between the size of after-effects and the modality-dominance of motor imagery. These results suggest that a suitable attention strategy based on the intrinsic motor imagery ability of an individual can improve performance during motor learning tasks.
The effectiveness of robotic training depends on motor task characteristics.
Marchal-Crespo, Laura; Rappo, Nicole; Riener, Robert
2017-12-01
Previous research suggests that the effectiveness of robotic training depends on the motor task to be learned. However, it is still an open question which specific task's characteristics influence the efficacy of error-modulating training strategies. Motor tasks can be classified based on the time characteristics of the task, in particular the task's duration (discrete vs. continuous). Continuous tasks require movements without distinct beginning or end. Discrete tasks require fast movements that include well-defined postures at the beginning and the end. We developed two games, one that requires a continuous movement-a tracking task-and one that requires discrete movements-a fast reaching task. We conducted an experiment with thirty healthy subjects to evaluate the effectiveness of three error-modulating training strategies-no guidance, error amplification (i.e., repulsive forces proportional to errors) and haptic guidance-on self-reported motivation and learning of the continuous and discrete games. Training with error amplification resulted in better motor learning than haptic guidance, besides the fact that error amplification reduced subjects' interest/enjoyment and perceived competence during training. Only subjects trained with error amplification improved their performance after training the discrete game. In fact, subjects trained without guidance improved the performance in the continuous game significantly more than in the discrete game, probably because the continuous task required greater attentional levels. Error-amplifying training strategies have a great potential to provoke better motor learning in continuous and discrete tasks. However, their long-lasting negative effects on motivation might limit their applicability in intense neurorehabilitation programs.
Normalized Index of Synergy for Evaluating the Coordination of Motor Commands
Togo, Shunta; Imamizu, Hiroshi
2015-01-01
Humans perform various motor tasks by coordinating the redundant motor elements in their bodies. The coordination of motor outputs is produced by motor commands, as well properties of the musculoskeletal system. The aim of this study was to dissociate the coordination of motor commands from motor outputs. First, we conducted simulation experiments where the total elbow torque was generated by a model of a simple human right and left elbow with redundant muscles. The results demonstrated that muscle tension with signal-dependent noise formed a coordinated structure of trial-to-trial variability of muscle tension. Therefore, the removal of signal-dependent noise effects was required to evaluate the coordination of motor commands. We proposed a method to evaluate the coordination of motor commands, which removed signal-dependent noise from the measured variability of muscle tension. We used uncontrolled manifold analysis to calculate a normalized index of synergy. Simulation experiments confirmed that the proposed method could appropriately represent the coordinated structure of the variability of motor commands. We also conducted experiments in which subjects performed the same task as in the simulation experiments. The normalized index of synergy revealed that the subjects coordinated their motor commands to achieve the task. Finally, the normalized index of synergy was applied to a motor learning task to determine the utility of the proposed method. We hypothesized that a large part of the change in the coordination of motor outputs through learning was because of changes in motor commands. In a motor learning task, subjects tracked a target trajectory of the total torque. The change in the coordination of muscle tension through learning was dominated by that of motor commands, which supported the hypothesis. We conclude that the normalized index of synergy can be used to evaluate the coordination of motor commands independently from the properties of the musculoskeletal system. PMID:26474043
Maxwell, Jon P; Capio, Catherine M; Masters, Rich S W
2017-05-01
The benefits of implicit and explicit motor learning approaches in young adults have been studied extensively, but much less in children. This study investigated the relationship between fundamental motor ability and implicit/explicit learning in children using the errorless learning paradigm. First, the motor ability of 261 children (142 boys, 119 girls) aged 9-12 years (M = 9.74, SD = 0.67) was measured. Second, children with motor ability scores in the upper and lower quartile learned a golf-putting skill in either an errorless (implicit) or errorful (explicit) learning condition. Four groups were formed: Errorless High-Ability (n = 13), Errorless Low-Ability (n = 11), Errorful High-Ability (n = 10), and Errorful Low-Ability (n = 11). Learning consisted of 300 practice trials, while testing included a 50-trial retention test, followed by a 50-trial secondary task transfer test, and another 50-trial retention test. The results showed that for high- and low-ability errorless learners, motor performance was unaffected by the secondary task, as was the case for high-ability errorful learners. Low-ability errorful learners performed worse with a secondary task and were significantly poorer than the corresponding high-ability group. These results suggest that implicit motor learning (errorless) may be beneficial for children with low motor ability. The findings also show a trend that children of high motor ability might benefit from learning explicitly (errorful). Further research is recommended to examine the compatibility of implicit and explicit approaches for children of different abilities.
Fan, Julie; Voisin, Julien; Milot, Marie-Hélène; Higgins, Johanne; Boudrias, Marie-Hélène
2017-09-01
Recovery of handgrip is critical after stroke since it is positively related to upper limb function. To boost motor recovery, transcranial direct current stimulation (tDCS) is a promising, non-invasive brain stimulation technique for the rehabilitation of persons with stroke. When applied over the primary motor cortex (M1), tDCS has been shown to modulate neural processes involved in motor learning. However, no studies have looked at the impact of tDCS on the learning of a grip task in both stroke and healthy individuals. To assess the use of tDCS over multiple days to promote motor learning of a grip task using a learning paradigm involving a speed-accuracy tradeoff in healthy individuals. In a double-blinded experiment, 30 right-handed subjects (mean age: 22.1±3.3 years) participated in the study and were randomly assigned to an anodal (n=15) or sham (n=15) stimulation group. First, subjects performed the grip task with their dominant hand while following the pace of a metronome. Afterwards, subjects trained on the task, at their own pace, over 5 consecutive days while receiving sham or anodal tDCS over M1. After training, subjects performed de novo the metronome-assisted task. The change in performance between the pre and post metronome-assisted task was used to assess the impact of the grip task and tDCS on learning. Anodal tDCS over M1 had a significant effect on the speed-accuracy tradeoff function. The anodal tDCS group showed significantly greater improvement in performance (39.28±15.92%) than the sham tDCS group (24.06±16.35%) on the metronome-assisted task, t(28)=2.583, P=0.015 (effect size d=0.94). Anodal tDCS is effective in promoting grip motor learning in healthy individuals. Further studies are warranted to test its potential use for the rehabilitation of fine motor skills in stroke patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Quantifying transfer after perceptual-motor sequence learning: how inflexible is implicit learning?
Sanchez, Daniel J.; Yarnik, Eric N.
2015-01-01
Studies of implicit perceptual-motor sequence learning have often shown learning to be inflexibly tied to the training conditions during learning. Since sequence learning is seen as a model task of skill acquisition, limits on the ability to transfer knowledge from the training context to a performance context indicates important constraints on skill learning approaches. Lack of transfer across contexts has been demonstrated by showing that when task elements are changed following training, this leads to a disruption in performance. These results have typically been taken as suggesting that the sequence knowledge relies on integrated representations across task elements (Abrahamse, Jiménez, Verwey, & Clegg, Psychon Bull Rev 17:603–623, 2010a). Using a relatively new sequence learning task, serial interception sequence learning, three experiments are reported that quantify this magnitude of performance disruption after selectively manipulating individual aspects of motor performance or perceptual information. In Experiment 1, selective disruption of the timing or order of sequential actions was examined using a novel response manipulandum that allowed for separate analysis of these two motor response components. In Experiments 2 and 3, transfer was examined after selective disruption of perceptual information that left the motor response sequence intact. All three experiments provided quantifiable estimates of partial transfer to novel contexts that suggest some level of information integration across task elements. However, the ability to identify quantifiable levels of successful transfer indicates that integration is not all-or-none and that measurement sensitivity is a key in understanding sequence knowledge representations. PMID:24668505
Refinement of learned skilled movement representation in motor cortex deep output layer
Li, Qian; Ko, Ho; Qian, Zhong-Ming; Yan, Leo Y. C.; Chan, Danny C. W.; Arbuthnott, Gordon; Ke, Ya; Yung, Wing-Ho
2017-01-01
The mechanisms underlying the emergence of learned motor skill representation in primary motor cortex (M1) are not well understood. Specifically, how motor representation in the deep output layer 5b (L5b) is shaped by motor learning remains virtually unknown. In rats undergoing motor skill training, we detect a subpopulation of task-recruited L5b neurons that not only become more movement-encoding, but their activities are also more structured and temporally aligned to motor execution with a timescale of refinement in tens-of-milliseconds. Field potentials evoked at L5b in vivo exhibit persistent long-term potentiation (LTP) that parallels motor performance. Intracortical dopamine denervation impairs motor learning, and disrupts the LTP profile as well as the emergent neurodynamical properties of task-recruited L5b neurons. Thus, dopamine-dependent recruitment of L5b neuronal ensembles via synaptic reorganization may allow the motor cortex to generate more temporally structured, movement-encoding output signal from M1 to downstream circuitry that drives increased uniformity and precision of movement during motor learning. PMID:28598433
Brach, Jennifer S.; Lowry, Kristin; Perera, Subashan; Hornyak, Victoria; Wert, David; Studenski, Stephanie A.; VanSwearingen, Jessie M.
2016-01-01
Objective The objective was to test the proposed mechanism of action of a task-specific motor learning intervention by examining its effect on measures of the motor control of gait. Design Single blinded randomized clinical trial. Setting University research laboratory. Participants Forty older adults 65 years of age and older, with gait speed >1.0 m/s and impaired motor skill (Figure of 8 walk time > 8 secs). Interventions The two interventions included a task-oriented motor learning and a standard exercise program. Both interventions lasted 12 weeks, with twice weekly one hour physical therapist supervised sessions. Main Outcome Measures Two measure of the motor control of gait, gait variability and smoothness of walking, were assessed pre and post intervention by assessors masked to treatment arm. Results Of 40 randomized subjects; 38 completed the trial (mean age 77.1±6.0 years). Motor control group improved more than standard group in double support time variability (0.13 vs. 0.05 m/s; adjusted difference, AD=0.006, p=0.03). Smoothness of walking in the anterior/posterior direction improved more in motor control than standard for all conditions (usual: AD=0.53, p=0.05; narrow: AD=0.56, p=0.01; dual task: AD=0.57, p=0.04). Conclusions Among older adults with subclinical walking difficulty, there is initial evidence that task-oriented motor learning exercise results in gains in the motor control of walking, while standard exercise does not. Task-oriented motor learning exercise is a promising intervention for improving timing and coordination deficits related to mobility difficulties in older adults, and needs to be evaluated in a definitive larger trial. PMID:25448244
Lissek, Silke; Vallana, Guido S.; Schlaffke, Lara; Lenz, Melanie; Dinse, Hubert R.; Tegenthoff, Martin
2014-01-01
The dopaminergic system is involved in learning and participates in the modulation of cortical excitability (CE). CE has been suggested as a marker of learning and use-dependent plasticity. However, results from separate studies on either motor CE or motor learning challenge this notion, suggesting opposing effects of dopaminergic modulation upon these parameters: while agonists decrease and antagonists increase CE, motor learning is enhanced by agonists and disturbed by antagonists. To examine whether this discrepancy persists when complex motor learning and motor CE are measured in the same experimental setup, we investigated the effects of dopaminergic (DA) antagonism upon both parameters and upon task-associated brain activation. Our results demonstrate that DA-antagonism has opposing effects upon motor CE and motor sequence learning. Tiapride did not alter baseline CE, but increased CE post training of a complex motor sequence while simultaneously impairing motor learning. Moreover, tiapride reduced activation in several brain regions associated with motor sequence performance, i.e., dorsolateral PFC (dlPFC), supplementary motor area (SMA), Broca's area, cingulate and caudate body. Blood-oxygenation-level-dependent (BOLD) intensity in anterior cingulate and caudate body, but not CE, correlated with performance across groups. In summary, our results do not support a concept of CE as a general marker of motor learning, since they demonstrate that a straightforward relation of increased CE and higher learning success does not apply to all instances of motor learning. At least for complex motor tasks that recruit a network of brain regions outside motor cortex, CE in primary motor cortex is probably no central determinant for learning success. PMID:24994972
Hughey, Laura; Wheaton, Lewis A
2016-01-01
Loss of an upper extremity and the resulting rehabilitation often requires individuals to learn how to use a prosthetic device for activities of daily living. It remains unclear how prostheses affect motor learning outcomes. The authors' aim was to evaluate whether incidental motor learning and explicit recall is affected in intact persons either using prostheses (n = 10) or the sound limb (n = 10), and a chronic amputee on a modified serial reaction time task. Latency and accuracy of task completion were recorded over six blocks, with a distractor task between blocks 5 and 6. Participants were also asked to recall the sequence immediately following the study and at a 24-hr follow-up. Prosthesis users demonstrate patterns consistent with implicit learning, with sustained error patterns with the distal terminal device. More intact individuals were able to explicitly recall the sequence initially, however there was no significant difference 24 hr following the study. Acute incidental motor learning does not appear to diminish task related error patterns or accompany with explicit recall in prosthesis users, which could present limitations for acute training of prosthesis use in amputees. This suggests differing mechanisms of visuospatial sequential learning and motor control with prostheses.
Impedance learning for robotic contact tasks using natural actor-critic algorithm.
Kim, Byungchan; Park, Jooyoung; Park, Shinsuk; Kang, Sungchul
2010-04-01
Compared with their robotic counterparts, humans excel at various tasks by using their ability to adaptively modulate arm impedance parameters. This ability allows us to successfully perform contact tasks even in uncertain environments. This paper considers a learning strategy of motor skill for robotic contact tasks based on a human motor control theory and machine learning schemes. Our robot learning method employs impedance control based on the equilibrium point control theory and reinforcement learning to determine the impedance parameters for contact tasks. A recursive least-square filter-based episodic natural actor-critic algorithm is used to find the optimal impedance parameters. The effectiveness of the proposed method was tested through dynamic simulations of various contact tasks. The simulation results demonstrated that the proposed method optimizes the performance of the contact tasks in uncertain conditions of the environment.
ERIC Educational Resources Information Center
Stockel, Tino; Wang, Jinsung
2011-01-01
Interlimb transfer of motor learning, indicating an improvement in performance with one limb following training with the other, often occurs asymmetrically (i.e., from non-dominant to dominant limb or vice versa, but not both). In the present study, we examined whether interlimb transfer of the same motor task could occur asymmetrically and in…
Acquisition of Internal Models of Motor Tasks in Children with Autism
ERIC Educational Resources Information Center
Gidley Larson, Jennifer C.; Bastian, Amy J.; Donchin, Opher; Shadmehr, Reza; Mostofsky, Stewart H.
2008-01-01
Children with autism exhibit a host of motor disorders including poor coordination, poor tool use and delayed learning of complex motor skills like riding a tricycle. Theory suggests that one of the crucial steps in motor learning is the ability to form internal models: to predict the sensory consequences of motor commands and learn from errors to…
Hosp, J A; Mann, S; Wegenast-Braun, B M; Calhoun, M E; Luft, A R
2013-10-10
Motor learning requires protein synthesis within the primary motor cortex (M1). Here, we show that the immediate early gene Arc/Arg3.1 is specifically induced in M1 by learning a motor skill. Arc mRNA was quantified using a fluorescent in situ hybridization assay in adult Long-Evans rats learning a skilled reaching task (SRT), in rats performing reaching-like forelimb movement without learning (ACT) and in rats that were trained in the operant but not the motor elements of the task (controls). Apart from M1, Arc expression was assessed within the rostral motor area (RMA), primary somatosensory cortex (S1), striatum (ST) and cerebellum. In SRT animals, Arc mRNA levels in M1 contralateral to the trained limb were 31% higher than ipsilateral (p<0.001), 31% higher than in the contralateral M1 of ACT animals (p<0.001) and 48% higher than in controls (p<0.001). Arc mRNA expression in SRT was positively correlated with learning success between two sessions (r=0.52; p=0.026). For RMA, S1, ST or cerebellum no significant differences in Arc mRNA expression were found between hemispheres or across behaviors. As Arc expression has been related to different forms of cellular plasticity, these findings suggest a link between M1 Arc expression and motor skill learning in rats. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Can Robots Help the Learning of Skilled Actions?
Reinkensmeyer, David J.; Patton, James L.
2010-01-01
Learning to move skillfully requires that the motor system adjusts muscle commands based on ongoing performance errors, a process influenced by the dynamics of the task being practiced. Recent experiments from our laboratories show how robotic devices can temporarily alter task dynamics in ways that contribute to the motor learning experience, suggesting possible applications in rehabilitation and sports training. PMID:19098524
Carter, Michael J; Ste-Marie, Diane M
2017-12-01
Lewthwaite et al. (2015) reported that the learning benefits of exercising choice (i.e., their self-controlled condition) are not restricted to task-relevant features (e.g., feedback). They found that choosing one's golf ball color (Exp. 1) or choosing which of two tasks to perform at a later time plus which of two artworks to hang (Exp. 2) resulted in better retention than did being denied these same choices (i.e., yoked condition). The researchers concluded that the learning benefits derived from choice, whether irrelevant or relevant to the to-be-learned task, are predominantly motivational because choice is intrinsically rewarding and satisfies basic psychological needs. However, the absence of a group that made task-relevant choices and the lack of psychological measures significantly weakened their conclusions. Here, we investigated how task-relevant and task-irrelevant choices affect motor-skill learning. Participants practiced a spatiotemporal motor task in either a task-relevant group (choice over feedback schedule), a task-irrelevant group (choice over the color of an arm-wrap plus game selection), or a no-choice group. The results showed significantly greater learning in the task-relevant group than in both the task-irrelevant and no-choice groups, who did not differ significantly. Critically, these learning differences were not attributed to differences in perceptions of competence or autonomy, but instead to superior error-estimation abilities. These results challenge the perspective that motivational influences are the root cause of self-controlled learning advantages. Instead, the findings add to the growing evidence highlighting that the informational value gained from task-relevant choices makes a greater relative contribution to these advantages than motivational influences do.
Bevilacqua, Frédéric; Boyer, Eric O; Françoise, Jules; Houix, Olivier; Susini, Patrick; Roby-Brami, Agnès; Hanneton, Sylvain
2016-01-01
This article reports on an interdisciplinary research project on movement sonification for sensori-motor learning. First, we describe different research fields which have contributed to movement sonification, from music technology including gesture-controlled sound synthesis, sonic interaction design, to research on sensori-motor learning with auditory-feedback. In particular, we propose to distinguish between sound-oriented tasks and movement-oriented tasks in experiments involving interactive sound feedback. We describe several research questions and recently published results on movement control, learning and perception. In particular, we studied the effect of the auditory feedback on movements considering several cases: from experiments on pointing and visuo-motor tracking to more complex tasks where interactive sound feedback can guide movements, or cases of sensory substitution where the auditory feedback can inform on object shapes. We also developed specific methodologies and technologies for designing the sonic feedback and movement sonification. We conclude with a discussion on key future research challenges in sensori-motor learning with movement sonification. We also point out toward promising applications such as rehabilitation, sport training or product design.
Age differences in spatial working memory contributions to visuomotor adaptation and transfer.
Langan, Jeanne; Seidler, Rachael D
2011-11-20
Throughout our life span we encounter challenges that require us to adapt to the demands of our changing environment; this entails learning new skills. Two primary components of motor skill learning are motor acquisition, the initial process of learning the skill, and motor transfer, when learning a new skill is benefitted by the overlap with a previously learned one. Older adults typically exhibit declines in motor acquisition compared to young adults, but remarkably, do not demonstrate deficits in motor transfer [10]. Our recent work demonstrates that a failure to engage spatial working memory (SWM) is associated with skill learning deficits in older adults [16]. Here, we investigate the role that SWM plays in both motor learning and transfer in young and older adults. Both age groups exhibited performance savings, or positive transfer, at transfer of learning for some performance variables. Measures of spatial working memory performance and reaction time correlated with both motor learning and transfer for young adults. Young adults recruited overlapping brain regions in prefrontal, premotor, parietal and occipital cortex for performance of a SWM and a visuomotor adaptation task, most notably during motor learning, replicating our prior findings [12]. Neural overlap between the SWM task and visuomotor adaptation for the older adults was limited to parietal cortex, with minimal changes from motor learning to transfer. Combined, these results suggest that age differences in engagement of cognitive strategies have a differential impact on motor learning and transfer. Copyright © 2011 Elsevier B.V. All rights reserved.
Age differences in spatial working memory contributions to visuomotor adaptation and transfer
Langan, Jeanne; Seidler, Rachael. D.
2011-01-01
Throughout our life span we encounter challenges that require us to adapt to the demands of our changing environment; this entails learning new skills. Two primary components of motor skill learning are motor acquisition, the initial process of learning the skill, and motor transfer, when learning a new skill is benefitted by the overlap with a previously learned one. Older adults typically exhibit declines in motor acquisition compared to young adults, but remarkably, do not demonstrate deficits in motor transfer (Seidler, 2007). Our recent work demonstrates that a failure to engage spatial working memory (SWM) is associated with skill learning deficits in older adults (Anguera et al., 2011). Here, we investigate the role that SWM plays in both motor learning and transfer in young and older adults. Both age groups exhibited performance savings, or positive transfer, at transfer of learning for some performance variables. Measures of spatial working memory performance and reaction time correlated with both motor learning and transfer for young adults. Young adults recruited overlapping brain regions in prefrontal, premotor, parietal and occipital cortex for performance of a SWM and a visuomotor adaptation task, most notably during motor learning, replicating our prior findings (Anguera et al., 2010). Neural overlap between the SWM task and visuomotor adaptation for the older adults was limited to parietal cortex, with minimal changes from motor learning to transfer. Combined, these results suggest that age differences in engagement of cognitive strategies have a differential impact on motor learning and transfer. PMID:21784106
Neural substrates underlying stimulation-enhanced motor skill learning after stroke
Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques
2015-01-01
Motor skill learning is one of the key components of motor function recovery after stroke, especially recovery driven by neurorehabilitation. Transcranial direct current stimulation can enhance neurorehabilitation and motor skill learning in stroke patients. However, the neural mechanisms underlying the retention of stimulation-enhanced motor skill learning involving a paretic upper limb have not been resolved. These neural substrates were explored by means of functional magnetic resonance imaging. Nineteen chronic hemiparetic stroke patients participated in a double-blind, cross-over randomized, sham-controlled experiment with two series. Each series consisted of two sessions: (i) an intervention session during which dual transcranial direct current stimulation or sham was applied during motor skill learning with the paretic upper limb; and (ii) an imaging session 1 week later, during which the patients performed the learned motor skill. The motor skill learning task, called the ‘circuit game’, involves a speed/accuracy trade-off and consists of moving a pointer controlled by a computer mouse along a complex circuit as quickly and accurately as possible. Relative to the sham series, dual transcranial direct current stimulation applied bilaterally over the primary motor cortex during motor skill learning with the paretic upper limb resulted in (i) enhanced online motor skill learning; (ii) enhanced 1-week retention; and (iii) superior transfer of performance improvement to an untrained task. The 1-week retention’s enhancement driven by the intervention was associated with a trend towards normalization of the brain activation pattern during performance of the learned motor skill relative to the sham series. A similar trend towards normalization relative to sham was observed during performance of a simple, untrained task without a speed/accuracy constraint, despite a lack of behavioural difference between the dual transcranial direct current stimulation and sham series. Finally, dual transcranial direct current stimulation applied during the first session enhanced continued learning with the paretic limb 1 week later, relative to the sham series. This lasting behavioural enhancement was associated with more efficient recruitment of the motor skill learning network, that is, focused activation on the motor-premotor areas in the damaged hemisphere, especially on the dorsal premotor cortex. Dual transcranial direct current stimulation applied during motor skill learning with a paretic upper limb resulted in prolonged shaping of brain activation, which supported behavioural enhancements in stroke patients. PMID:25488186
Acquisition of Motor and Cognitive Skills through Repetition in Typically Developing Children
Magallón, Sara; Narbona, Juan; Crespo-Eguílaz, Nerea
2016-01-01
Background Procedural memory allows acquisition, consolidation and use of motor skills and cognitive routines. Automation of procedures is achieved through repeated practice. In children, improvement in procedural skills is a consequence of natural neurobiological development and experience. Methods The aim of the present research was to make a preliminary evaluation and description of repetition-based improvement of procedures in typically developing children (TDC). Ninety TDC children aged 6–12 years were asked to perform two procedural learning tasks. In an assembly learning task, which requires predominantly motor skills, we measured the number of assembled pieces in 60 seconds. In a mirror drawing learning task, which requires more cognitive functions, we measured time spent and efficiency. Participants were tested four times for each task: three trials were consecutive and the fourth trial was performed after a 10-minute nonverbal interference task. The influence of repeated practice on performance was evaluated by means of the analysis of variance with repeated measures and the paired-sample test. Correlation coefficients and simple linear regression test were used to examine the relationship between age and performance. Results TDC achieved higher scores in both tasks through repetition. Older children fitted more pieces than younger ones in assembling learning and they were faster and more efficient at the mirror drawing learning task. Conclusions These findings indicate that three consecutive trials at a procedural task increased speed and efficiency, and that age affected basal performance in motor-cognitive procedures. PMID:27384671
Acquisition of Motor and Cognitive Skills through Repetition in Typically Developing Children.
Magallón, Sara; Narbona, Juan; Crespo-Eguílaz, Nerea
2016-01-01
Procedural memory allows acquisition, consolidation and use of motor skills and cognitive routines. Automation of procedures is achieved through repeated practice. In children, improvement in procedural skills is a consequence of natural neurobiological development and experience. The aim of the present research was to make a preliminary evaluation and description of repetition-based improvement of procedures in typically developing children (TDC). Ninety TDC children aged 6-12 years were asked to perform two procedural learning tasks. In an assembly learning task, which requires predominantly motor skills, we measured the number of assembled pieces in 60 seconds. In a mirror drawing learning task, which requires more cognitive functions, we measured time spent and efficiency. Participants were tested four times for each task: three trials were consecutive and the fourth trial was performed after a 10-minute nonverbal interference task. The influence of repeated practice on performance was evaluated by means of the analysis of variance with repeated measures and the paired-sample test. Correlation coefficients and simple linear regression test were used to examine the relationship between age and performance. TDC achieved higher scores in both tasks through repetition. Older children fitted more pieces than younger ones in assembling learning and they were faster and more efficient at the mirror drawing learning task. These findings indicate that three consecutive trials at a procedural task increased speed and efficiency, and that age affected basal performance in motor-cognitive procedures.
Heremans, Elke; Nackaerts, Evelien; Vervoort, Griet; Broeder, Sanne; Swinnen, Stephan P; Nieuwboer, Alice
2016-01-01
Patients with Parkinson's disease (PD) and freezing of gait (FOG) suffer from more impaired motor and cognitive functioning than their non-freezing counterparts. This underlies an even higher need for targeted rehabilitation programs in this group. However, so far it is unclear whether FOG affects the ability for consolidation and generalization of motor learning and thus the efficacy of rehabilitation. To investigate the hallmarks of motor learning in people with FOG compared to those without by comparing the effects of an intensive motor learning program to improve handwriting. Thirty five patients with PD, including 19 without and 16 with FOG received six weeks of handwriting training consisting of exercises provided on paper and on a touch-sensitive writing tablet. Writing training was based on single- and dual-task writing and was supported by means of visual target zones. To investigate automatization, generalization and retention of learning, writing performance was assessed before and after training in the presence and absence of cues and dual tasking and after a six-week retention period. Writing amplitude was measured as primary outcome measure and variability of writing and dual-task accuracy as secondary outcomes. Significant learning effects were present on all outcome measures in both groups, both for writing under single- and dual-task conditions. However, the gains in writing amplitude were not retained after a retention period of six weeks without training in the patient group without FOG. Furthermore, patients with FOG were highly dependent on the visual target zones, reflecting reduced generalization of learning in this group. Although short-term learning effects were present in both groups, generalization and retention of motor learning were specifically impaired in patients with PD and FOG. The results of this study underscore the importance of individualized rehabilitation protocols.
Batcho, C S; Gagné, M; Bouyer, L J; Roy, J S; Mercier, C
2016-11-19
When subjects learn a novel motor task, several sources of feedback (proprioceptive, visual or auditory) contribute to the performance. Over the past few years, several studies have investigated the role of visual feedback in motor learning, yet evidence remains conflicting. The aim of this study was therefore to investigate the role of online visual feedback (VFb) on the acquisition and retention stages of motor learning associated with training in a reaching task. Thirty healthy subjects made ballistic reaching movements with their dominant arm toward two targets, on 2 consecutive days using a robotized exoskeleton (KINARM). They were randomly assigned to a group with (VFb) or without (NoVFb) VFb of index position during movement. On day 1, the task was performed before (baseline) and during the application of a velocity-dependent resistive force field (adaptation). To assess retention, participants repeated the task with the force field on day 2. Motor learning was characterized by: (1) the final endpoint error (movement accuracy) and (2) the initial angle (iANG) of deviation (motor planning). Even though both groups showed motor adaptation, the NoVFb-group exhibited slower learning and higher final endpoint error than the VFb-group. In some condition, subjects trained without visual feedback used more curved initial trajectories to anticipate for the perturbation. This observation suggests that learning to reach targets in a velocity-dependent resistive force field is possible even when feedback is limited. However, the absence of VFb leads to different strategies that were only apparent when reaching toward the most challenging target. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wolpert, Daniel M; Flanagan, J Randall
2010-06-08
Although learning a motor skill, such as a tennis stroke, feels like a unitary experience, researchers who study motor control and learning break the processes involved into a number of interacting components. These components can be organized into four main groups. First, skilled performance requires the effective and efficient gathering of sensory information, such as deciding where and when to direct one's gaze around the court, and thus an important component of skill acquisition involves learning how best to extract task-relevant information. Second, the performer must learn key features of the task such as the geometry and mechanics of the tennis racket and ball, the properties of the court surface, and how the wind affects the ball's flight. Third, the player needs to set up different classes of control that include predictive and reactive control mechanisms that generate appropriate motor commands to achieve the task goals, as well as compliance control that specifies, for example, the stiffness with which the arm holds the racket. Finally, the successful performer can learn higher-level skills such as anticipating and countering the opponent's strategy and making effective decisions about shot selection. In this Primer we shall consider these components of motor learning using as an example how we learn to play tennis. 2010 Elsevier Ltd. All rights reserved.
Censor, N
2013-10-10
In both perceptual and motor learning, numerous studies have shown specificity of learning to the trained eye or hand and to the physical features of the task. However, generalization of learning is possible in both perceptual and motor domains. Here, I review evidence for perceptual and motor learning generalization, suggesting that generalization patterns are affected by the way in which the original memory is encoded and consolidated. Generalization may be facilitated during fast learning, with possible engagement of higher-order brain areas recurrently interacting with the primary visual or motor cortices encoding the stimuli or movements' memories. Such generalization may be supported by sleep, involving functional interactions between low and higher-order brain areas. Repeated exposure to the task may alter generalization patterns of learning and overall offline learning. Development of unifying frameworks across learning modalities and better understanding of the conditions under which learning can generalize may enable to gain insight regarding the neural mechanisms underlying procedural learning and have useful clinical implications. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Morin-Moncet, Olivier; Beaumont, Vincent; de Beaumont, Louis; Lepage, Jean-Francois; Théoret, Hugo
2014-05-01
Recent data suggest that the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene can alter cortical plasticity within the motor cortex of carriers, which exhibits abnormally low rates of cortical reorganization after repetitive motor tasks. To verify whether long-term retention of a motor skill is also modulated by the presence of the polymorphism, 20 participants (10 Val66Val, 10 Val66Met) were tested twice at a 1-wk interval. During each visit, excitability of the motor cortex was measured by transcranial magnetic stimulations (TMS) before and after performance of a procedural motor learning task (serial reaction time task) designed to study sequence-specific learning of the right hand and sequence-specific transfer from the right to the left hand. Behavioral results showed a motor learning effect that persisted for at least a week and task-related increases in corticospinal excitability identical for both sessions and without distinction for genetic group. Sequence-specific transfer of the motor skill from the right hand to the left hand was greater in session 2 than in session 1 only in the Val66Met genetic group. Further analysis revealed that the sequence-specific transfer occurred equally at both sessions in the Val66Val genotype group. In the Val66Met genotype group, sequence-specific transfer did not occur at session 1 but did at session 2. These data suggest a limited impact of Val66Met polymorphism on the learning and retention of a complex motor skill and its associated changes in corticospinal excitability over time, and a possible modulation of the interhemispheric transfer of procedural learning. Copyright © 2014 the American Physiological Society.
Sleep Consolidates Motor Learning of Complex Movement Sequences in Mice.
Nagai, Hirotaka; de Vivo, Luisa; Bellesi, Michele; Ghilardi, Maria Felice; Tononi, Giulio; Cirelli, Chiara
2017-02-01
Sleep-dependent consolidation of motor learning has been extensively studied in humans, but it remains unclear why some, but not all, learned skills benefit from sleep. Here, we compared 2 different motor tasks, both requiring the mice to run on an accelerating device. In the rotarod task, mice learn to maintain balance while running on a small rod, while in the complex wheel task, mice run on an accelerating wheel with an irregular rung pattern. In the rotarod task, performance improved to the same extent after sleep or after sleep deprivation (SD). Overall, using 7 different experimental protocols (41 sleep deprived mice, 26 sleeping controls), we found large interindividual differences in the learning and consolidation of the rotarod task, but sleep before/after training did not account for this variability. By contrast, using the complex wheel, we found that sleep after training, relative to SD, led to better performance from the beginning of the retest session, and longer sleep was correlated with greater subsequent performance. As in humans, the effects of sleep showed large interindividual variability and varied between fast and slow learners, with sleep favoring the preservation of learned skills in fast learners and leading to a net offline gain in the performance in slow learners. Using Fos expression as a proxy for neuronal activation, we also found that complex wheel training engaged motor cortex and hippocampus more than the rotarod training. Sleep specifically consolidates a motor skill that requires complex movement sequences and strongly engages both motor cortex and hippocampus. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Maier, Jonathan G; Piosczyk, Hannah; Holz, Johannes; Landmann, Nina; Deschler, Christoph; Frase, Lukas; Kuhn, Marion; Klöppel, Stefan; Spiegelhalder, Kai; Sterr, Annette; Riemann, Dieter; Feige, Bernd; Voderholzer, Ulrich; Nissen, Christoph
2017-11-01
Sleep modulates motor learning, but its detailed impact on performance curves remains to be fully characterized. This study aimed to further determine the impact of brief daytime periods of NREM sleep on 'offline' (task discontinuation after initial training) and 'on-task' (performance within the test session) changes in motor skill performance (finger tapping task). In a mixed design (combined parallel group and repeated measures) sleep laboratory study (n=17 'active' wake vs. sleep, n=19 'passive' wake vs. sleep), performance curves were assessed prior to and after a 90min period containing either sleep, active or passive wakefulness. We observed a highly significant, but state- (that is, sleep/wake)-independent early offline gain and improved on-task performance after sleep in comparison to wakefulness. Exploratory curve fitting suggested that the observed sleep effect most likely emerged from an interaction of training-induced improvement and detrimental 'time-on-task' processes, such as fatigue. Our results indicate that brief periods of NREM sleep do not promote early offline gains but subsequent on-task performance in motor skill learning. Copyright © 2017 Elsevier Inc. All rights reserved.
Electrifying the motor engram: effects of tDCS on motor learning and control
de Xivry, Jean-Jacques Orban; Shadmehr, Reza
2014-01-01
Learning to control our movements accompanies neuroplasticity of motor areas of the brain. The mechanisms of neuroplasticity are diverse and produce what is referred to as the motor engram, i.e. the neural trace of the motor memory. Transcranial direct current stimulation (tDCS) alters the neural and behavioral correlates of motor learning, but its precise influence on the motor engram is unknown. In this review, we summarize the effects of tDCS on neural activity and suggest a few key principles: 1) firing rates are increased by anodal polarization and decreased by cathodal polarization, 2) anodal polarization strengthens newly formed associations, and 3) polarization modulates the memory of new/preferred firing patterns. With these principles in mind, we review the effects of tDCS on motor control, motor learning, and clinical applications. The increased spontaneous and evoked firing rates may account for the modulation of dexterity in non-learning tasks by tDCS. The facilitation of new association may account for the effect of tDCS on learning in sequence tasks while the ability of tDCS to strengthen memories of new firing patterns may underlie the effect of tDCS on consolidation of skills. We then describe the mechanisms of neuroplasticity of motor cortical areas and how they might be influenced by tDCS. We end with current challenges for the fields of brain stimulation and motor learning. PMID:25200178
Electrifying the motor engram: effects of tDCS on motor learning and control.
Orban de Xivry, Jean-Jacques; Shadmehr, Reza
2014-11-01
Learning to control our movements is accompanied by neuroplasticity of motor areas of the brain. The mechanisms of neuroplasticity are diverse and produce what is referred to as the motor engram, i.e., the neural trace of the motor memory. Transcranial direct current stimulation (tDCS) alters the neural and behavioral correlates of motor learning, but its precise influence on the motor engram is unknown. In this review, we summarize the effects of tDCS on neural activity and suggest a few key principles: (1) Firing rates are increased by anodal polarization and decreased by cathodal polarization, (2) anodal polarization strengthens newly formed associations, and (3) polarization modulates the memory of new/preferred firing patterns. With these principles in mind, we review the effects of tDCS on motor control, motor learning, and clinical applications. The increased spontaneous and evoked firing rates may account for the modulation of dexterity in non-learning tasks by tDCS. The facilitation of new association may account for the effect of tDCS on learning in sequence tasks while the ability of tDCS to strengthen memories of new firing patterns may underlie the effect of tDCS on consolidation of skills. We then describe the mechanisms of neuroplasticity of motor cortical areas and how they might be influenced by tDCS. We end with current challenges for the fields of brain stimulation and motor learning.
Chrobak, Adrian Andrzej; Siuda-Krzywicka, Katarzyna; Siwek, Grzegorz Przemysław; Tereszko, Anna; Janeczko, Weronika; Starowicz-Filip, Anna; Siwek, Marcin; Dudek, Dominika
2017-10-03
Impairment of implicit motor sequence learning was shown in schizophrenia (SZ) and, most recently, in bipolar disorder (BD), and was connected to cerebellar abnormalities. The goal of this study was to compare implicit motor sequence learning in BD and SZ. We examined 33 patients with BD, 33 patients with SZ and 31 healthy controls with a use of ambidextrous Serial Reaction Time Task (SRTT), which allows exploring asymmetries in performance depending on the hand used. BD and SZ patients presented impaired implicit motor sequence learning, although the pattern of their impairments was different. While BD patients showed no signs of implicit motor sequence learning for both hands, the SZ group presented some features of motor learning when performing with the right, but not with the left hand. To our best knowledge this is the first study comparing implicit motor sequence learning in BD and SZ. We show that both diseases share impairments in this domain, however in the case of SZ this impairment differs dependently on the hand performing SRTT. We propose that implicit motor sequence learning impairments constitute an overlapping symptom in BD and SZ and suggest further neuroimaging studies to verify cerebellar underpinnings as its cause. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Gabay, Yafit; Schiff, Rachel; Vakil, Eli
2012-01-01
Motor sequence learning has been studied extensively in Developmental dyslexia (DD). The purpose of the present research was to examine procedural learning of letter names and motor sequences in individuals with DD and control groups. Both groups completed the Serial Search Task which enabled the assessment of learning of letter names and motor…
Meunier, Sabine; Russmann, Heike; Shamim, Ejaz; Lamy, Jean-Charles; Hallett, Mark
2012-01-01
Summary Artificial induction of plasticity by paired associative stimulation (PAS) in healthy subjects (HV) demonstrates Hebbian-like plasticity in selected inhibitory networks as well as excitatory ones. In a group of 17 patients with focal hand dystonia and a group of 19 HV, we evaluated how PAS and the learning of a simple motor task influence the circuits supporting long interval intracortical inhibition (LICI, reflecting activity of GABAB interneurons) and long latency afferent inhibition (LAI, reflecting activity of somatosensory inputs to the motor cortex). In HV, PAS and motor learning induced LTP-like plasticity of excitatory networks and a lasting decrease of LAI and LICI in the motor representation of the targeted or trained muscle. The better the motor performance, the larger was the decrease of LAI. Although motor performance in the patient group was similar to that of the control group, LAI did not decrease during the motor learning as it did in the control group. In contrast, LICI was normally modulated. In patients the results after PAS did not match those obtained after motor learning: LAI was paradoxically increased and LICI did not exhibit any change. In the normal situation, decreased excitability in inhibitory circuits after induction of LTP-like plasticity may help to shape the cortical maps according to the new sensorimotor task. In patients, the abnormal or absent modulation of afferent and intracortical long-interval inhibition might indicate maladaptive plasticity that possibly contributes to the difficulty that they have to learn a new sensorimotor task.“ PMID:22429246
Role of cerebellum in learning postural tasks.
Ioffe, M E; Chernikova, L A; Ustinova, K I
2007-01-01
For a long time, the cerebellum has been known to be a structure related to posture and equilibrium control. According to the anatomic structure of inputs and internal structure of the cerebellum, its role in learning was theoretically reasoned and experimentally proved. The hypothesis of an inverse internal model based on feedback-error learning mechanism combines feedforward control by the cerebellum and feedback control by the cerebral motor cortex. The cerebellar cortex is suggested to acquire internal models of the body and objects in the external world. During learning of a new tool the motor cortex receives feedback from the realized movement while the cerebellum produces only feedforward command. To realize a desired movement without feedback of the realized movement, the cerebellum needs to form an inverse model of the hand/arm system. This suggestion was supported by FMRi data. The role of cerebellum in learning new postural tasks mainly concerns reorganization of natural synergies. A learned postural pattern in dogs has been shown to be disturbed after lesions of the cerebral motor cortex or cerebellar nuclei. In humans, learning voluntary control of center of pressure position is greatly disturbed after cerebellar lesions. However, motor cortex and basal ganglia are also involved in the feedback learning postural tasks.
Integration of Temporal and Ordinal Information During Serial Interception Sequence Learning
Gobel, Eric W.; Sanchez, Daniel J.; Reber, Paul J.
2011-01-01
The expression of expert motor skills typically involves learning to perform a precisely timed sequence of movements (e.g., language production, music performance, athletic skills). Research examining incidental sequence learning has previously relied on a perceptually-cued task that gives participants exposure to repeating motor sequences but does not require timing of responses for accuracy. Using a novel perceptual-motor sequence learning task, learning a precisely timed cued sequence of motor actions is shown to occur without explicit instruction. Participants learned a repeating sequence through practice and showed sequence-specific knowledge via a performance decrement when switched to an unfamiliar sequence. In a second experiment, the integration of representation of action order and timing sequence knowledge was examined. When either action order or timing sequence information was selectively disrupted, performance was reduced to levels similar to completely novel sequences. Unlike prior sequence-learning research that has found timing information to be secondary to learning action sequences, when the task demands require accurate action and timing information, an integrated representation of these types of information is acquired. These results provide the first evidence for incidental learning of fully integrated action and timing sequence information in the absence of an independent representation of action order, and suggest that this integrative mechanism may play a material role in the acquisition of complex motor skills. PMID:21417511
Disentangling perceptual from motor implicit sequence learning with a serial color-matching task.
Gheysen, Freja; Gevers, Wim; De Schutter, Erik; Van Waelvelde, Hilde; Fias, Wim
2009-08-01
This paper contributes to the domain of implicit sequence learning by presenting a new version of the serial reaction time (SRT) task that allows unambiguously separating perceptual from motor learning. Participants matched the colors of three small squares with the color of a subsequently presented large target square. An identical sequential structure was tied to the colors of the target square (perceptual version, Experiment 1) or to the manual responses (motor version, Experiment 2). Short blocks of sequenced and randomized trials alternated and hence provided a continuous monitoring of the learning process. Reaction time measurements demonstrated clear evidence of independently learning perceptual and motor serial information, though revealed different time courses between both learning processes. No explicit awareness of the serial structure was needed for either of the two types of learning to occur. The paradigm introduced in this paper evidenced that perceptual learning can occur with SRT measurements and opens important perspectives for future imaging studies to answer the ongoing question, which brain areas are involved in the implicit learning of modality specific (motor vs. perceptual) or general serial order.
Todd, Gabrielle; Pearson-Dennett, Verity; Flavel, Stanley C.; Haberfield, Miranda; Edwards, Hannah; White, Jason M.
2016-01-01
Little is known about the long-lasting effect of use of illicit stimulant drugs on learning of new motor skills. We hypothesised that abstinent individuals with a history of primarily methamphetamine and ecstasy use would exhibit normal learning of a visuomotor tracking task compared to controls. The study involved three groups: abstinent stimulant users (n = 21; 27 ± 6 yrs) and two gender-matched control groups comprising nondrug users (n = 16; 22 ± 4 yrs) and cannabis users (n = 16; 23 ± 5 yrs). Motor learning was assessed with a three-minute visuomotor tracking task. Subjects were instructed to follow a moving target on a computer screen with movement of the index finger. Metacarpophalangeal joint angle and first dorsal interosseous electromyographic activity were recorded. Pattern matching was assessed by cross-correlation of the joint angle and target traces. Distance from the target (tracking error) was also calculated. Motor learning was evident in the visuomotor task. Pattern matching improved over time (cross-correlation coefficient) and tracking error decreased. However, task performance did not differ between the groups. The results suggest that learning of a new fine visuomotor skill is unchanged in individuals with a history of illicit stimulant use. PMID:26819778
Todd, Gabrielle; Pearson-Dennett, Verity; Flavel, Stanley C; Haberfield, Miranda; Edwards, Hannah; White, Jason M
2016-01-01
Little is known about the long-lasting effect of use of illicit stimulant drugs on learning of new motor skills. We hypothesised that abstinent individuals with a history of primarily methamphetamine and ecstasy use would exhibit normal learning of a visuomotor tracking task compared to controls. The study involved three groups: abstinent stimulant users (n = 21; 27 ± 6 yrs) and two gender-matched control groups comprising nondrug users (n = 16; 22 ± 4 yrs) and cannabis users (n = 16; 23 ± 5 yrs). Motor learning was assessed with a three-minute visuomotor tracking task. Subjects were instructed to follow a moving target on a computer screen with movement of the index finger. Metacarpophalangeal joint angle and first dorsal interosseous electromyographic activity were recorded. Pattern matching was assessed by cross-correlation of the joint angle and target traces. Distance from the target (tracking error) was also calculated. Motor learning was evident in the visuomotor task. Pattern matching improved over time (cross-correlation coefficient) and tracking error decreased. However, task performance did not differ between the groups. The results suggest that learning of a new fine visuomotor skill is unchanged in individuals with a history of illicit stimulant use.
Prichard, George; Weiller, Cornelius; Fritsch, Brita; Reis, Janine
2014-01-01
Noninvasive electrical brain stimulation (NEBS) with transcranial direct current (tDCS) or random noise stimulation (tRNS) applied to the primary motor cortex (M1) can augment motor learning. We tested whether different types of stimulation alter particular aspects of learning a tracing task over three consecutive days, namely skill acquisition (online/within session effects) or consolidation (offline/between session effects). Motor training on a tracing task over three consecutive days was combined with different types and montages of stimulation (tDCS, tRNS). Unilateral M1 stimulation using tRNS as well as unilateral and bilateral M1 tDCS all enhanced motor skill learning compared to sham stimulation. In all groups, this appeared to be driven by online effects without an additional offline effect. Unilateral tDCS resulted in large skill gains immediately following the onset of stimulation, while tRNS exerted more gradual effects. Control stimulation of the right temporal lobe did not enhance skill learning relative to sham. The mechanisms of action of tDCS and tRNS are likely different. Hence, the time course of skill improvement within sessions could point to specific and temporally distinct interactions with the physiological process of motor skill learning. Exploring the parameters of NEBS on different tasks and in patients with brain injury will allow us to maximize the benefits of NEBS for neurorehabilitation. Copyright © 2014 Elsevier Inc. All rights reserved.
Neural substrates underlying stimulation-enhanced motor skill learning after stroke.
Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques; Vandermeeren, Yves
2015-01-01
Motor skill learning is one of the key components of motor function recovery after stroke, especially recovery driven by neurorehabilitation. Transcranial direct current stimulation can enhance neurorehabilitation and motor skill learning in stroke patients. However, the neural mechanisms underlying the retention of stimulation-enhanced motor skill learning involving a paretic upper limb have not been resolved. These neural substrates were explored by means of functional magnetic resonance imaging. Nineteen chronic hemiparetic stroke patients participated in a double-blind, cross-over randomized, sham-controlled experiment with two series. Each series consisted of two sessions: (i) an intervention session during which dual transcranial direct current stimulation or sham was applied during motor skill learning with the paretic upper limb; and (ii) an imaging session 1 week later, during which the patients performed the learned motor skill. The motor skill learning task, called the 'circuit game', involves a speed/accuracy trade-off and consists of moving a pointer controlled by a computer mouse along a complex circuit as quickly and accurately as possible. Relative to the sham series, dual transcranial direct current stimulation applied bilaterally over the primary motor cortex during motor skill learning with the paretic upper limb resulted in (i) enhanced online motor skill learning; (ii) enhanced 1-week retention; and (iii) superior transfer of performance improvement to an untrained task. The 1-week retention's enhancement driven by the intervention was associated with a trend towards normalization of the brain activation pattern during performance of the learned motor skill relative to the sham series. A similar trend towards normalization relative to sham was observed during performance of a simple, untrained task without a speed/accuracy constraint, despite a lack of behavioural difference between the dual transcranial direct current stimulation and sham series. Finally, dual transcranial direct current stimulation applied during the first session enhanced continued learning with the paretic limb 1 week later, relative to the sham series. This lasting behavioural enhancement was associated with more efficient recruitment of the motor skill learning network, that is, focused activation on the motor-premotor areas in the damaged hemisphere, especially on the dorsal premotor cortex. Dual transcranial direct current stimulation applied during motor skill learning with a paretic upper limb resulted in prolonged shaping of brain activation, which supported behavioural enhancements in stroke patients. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Dail, Teresa K.; Christina, Robert W.
2004-01-01
This study examined judgments of learning and the long-term retention of a discrete motor task (golf putting) as a function of practice distribution. The results indicated that participants in the distributed practice group performed more proficiently than those in the massed practice group during both acquisition and retention phases. No…
Motor Interference Does Not Impair the Memory Consolidation of Imagined Movements
ERIC Educational Resources Information Center
Debarnot, Ursula; Maley, Laura; De Rossi, Danilo; Guillot, Aymeric
2010-01-01
The present study aimed to investigate whether an interference task might impact the sleep-dependent consolidation process of a mentally learned sequence of movements. Thirty-two participants were subjected to a first training session through motor imagery (MI) or physical practice (PP) of a finger sequence learning task. After 2 h, half of the…
Search for Autonomy in Motor Task Learning in Physical Education University Students
ERIC Educational Resources Information Center
Moreno Murcia, Juan Antonio; Lacarcel, Jose Antonio Vera; Del Villar Alvarez, Fernando
2010-01-01
The study focused on discovering the influence that an autonomous motor task learning programme had on the improvement of perceived competence, intrinsic regulation, incremental belief and motivational orientations. The study was performed with two groups of participants (n = 22 and n = 20) aged between 19 and 35 years. The instruments used were…
Motor Learning of a Bimanual Task in Children with Unilateral Cerebral Palsy
ERIC Educational Resources Information Center
Hung, Ya-Ching; Gordon, Andrew M.
2013-01-01
Children with unilateral cerebral palsy (CP) have been shown to improve their motor performance with sufficient practice. However, little is known about how they learn goal-oriented tasks. In the current study, 21 children with unilateral CP (age 4-10 years old) and 21 age-matched typically developed children (TDC) practiced a simple bimanual…
Visuo-motor and cognitive procedural learning in children with basal ganglia pathology.
Mayor-Dubois, C; Maeder, P; Zesiger, P; Roulet-Perez, E
2010-06-01
We investigated procedural learning in 18 children with basal ganglia (BG) lesions or dysfunctions of various aetiologies, using a visuo-motor learning test, the Serial Reaction Time (SRT) task, and a cognitive learning test, the Probabilistic Classification Learning (PCL) task. We compared patients with early (<1 year old, n=9), later onset (>6 years old, n=7) or progressive disorder (idiopathic dystonia, n=2). All patients showed deficits in both visuo-motor and cognitive domains, except those with idiopathic dystonia, who displayed preserved classification learning skills. Impairments seem to be independent from the age of onset of pathology. As far as we know, this study is the first to investigate motor and cognitive procedural learning in children with BG damage. Procedural impairments were documented whatever the aetiology of the BG damage/dysfunction and time of pathology onset, thus supporting the claim of very early skill learning development and lack of plasticity in case of damage. Copyright 2010 Elsevier Ltd. All rights reserved.
Muraskin, Jordan; Dodhia, Sonam; Lieberman, Gregory; Garcia, Javier O; Verstynen, Timothy; Vettel, Jean M; Sherwin, Jason; Sajda, Paul
2016-12-01
Post-task resting state dynamics can be viewed as a task-driven state where behavioral performance is improved through endogenous, non-explicit learning. Tasks that have intrinsic value for individuals are hypothesized to produce post-task resting state dynamics that promote learning. We measured simultaneous fMRI/EEG and DTI in Division-1 collegiate baseball players and compared to a group of controls, examining differences in both functional and structural connectivity. Participants performed a surrogate baseball pitch Go/No-Go task before a resting state scan, and we compared post-task resting state connectivity using a seed-based analysis from the supplementary motor area (SMA), an area whose activity discriminated players and controls in our previous results using this task. Although both groups were equally trained on the task, the experts showed differential activity in their post-task resting state consistent with motor learning. Specifically, we found (1) differences in bilateral SMA-L Insula functional connectivity between experts and controls that may reflect group differences in motor learning, (2) differences in BOLD-alpha oscillation correlations between groups suggests variability in modulatory attention in the post-task state, and (3) group differences between BOLD-beta oscillations that may indicate cognitive processing of motor inhibition. Structural connectivity analysis identified group differences in portions of the functionally derived network, suggesting that functional differences may also partially arise from variability in the underlying white matter pathways. Generally, we find that brain dynamics in the post-task resting state differ as a function of subject expertise and potentially result from differences in both functional and structural connectivity. Hum Brain Mapp 37:4454-4471, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Meunier, Sabine; Russmann, Heike; Shamim, Ejaz; Lamy, Jean-Charles; Hallett, Mark
2012-03-01
Artificial induction of plasticity by paired associative stimulation (PAS) in healthy volunteers (HV) demonstrates Hebbian-like plasticity in selected inhibitory networks as well as excitatory networks. In a group of 17 patients with focal hand dystonia and a group of 19 HV, we evaluated how PAS and the learning of a simple motor task influence the circuits supporting long-interval intracortical inhibition (LICI, reflecting activity of GABA(B) interneurons) and long-latency afferent inhibition (LAI, reflecting activity of somatosensory inputs to the motor cortex). In HV, PAS and motor learning induced long-term potentiation (LTP)-like plasticity of excitatory networks and a lasting decrease of LAI and LICI in the motor representation of the targeted or trained muscle. The better the motor performance, the larger was the decrease of LAI. Although motor performance in the patient group was similar to that of the control group, LAI did not decrease during the motor learning as it did in the control group. In contrast, LICI was normally modulated. In patients the results after PAS did not match those obtained after motor learning: LAI was paradoxically increased and LICI did not exhibit any change. In the normal situation, decreased excitability in inhibitory circuits after induction of LTP-like plasticity may help to shape the cortical maps according to the new sensorimotor task. In patients, the abnormal or absent modulation of afferent and intracortical long-interval inhibition might indicate maladaptive plasticity that possibly contributes to the difficulty that they have to learn a new sensorimotor task. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Implicit perceptual-motor skill learning in mild cognitive impairment and Parkinson's disease.
Gobel, Eric W; Blomeke, Kelsey; Zadikoff, Cindy; Simuni, Tanya; Weintraub, Sandra; Reber, Paul J
2013-05-01
Implicit skill learning is hypothesized to depend on nondeclarative memory that operates independent of the medial temporal lobe (MTL) memory system and instead depends on cortico striatal circuits between the basal ganglia and cortical areas supporting motor function and planning. Research with the Serial Reaction Time (SRT) task suggests that patients with memory disorders due to MTL damage exhibit normal implicit sequence learning. However, reports of intact learning rely on observations of no group differences, leading to speculation as to whether implicit sequence learning is fully intact in these patients. Patients with Parkinson's disease (PD) often exhibit impaired sequence learning, but this impairment is not universally observed. Implicit perceptual-motor sequence learning was examined using the Serial Interception Sequence Learning (SISL) task in patients with amnestic Mild Cognitive Impairment (MCI; n = 11) and patients with PD (n = 15). Sequence learning in SISL is resistant to explicit learning and individually adapted task difficulty controls for baseline performance differences. Patients with MCI exhibited robust sequence learning, equivalent to healthy older adults (n = 20), supporting the hypothesis that the MTL does not contribute to learning in this task. In contrast, the majority of patients with PD exhibited no sequence-specific learning in spite of matched overall task performance. Two patients with PD exhibited performance indicative of an explicit compensatory strategy suggesting that impaired implicit learning may lead to greater reliance on explicit memory in some individuals. The differences in learning between patient groups provides strong evidence in favor of implicit sequence learning depending solely on intact basal ganglia function with no contribution from the MTL memory system.
Therrien, Amanda S; Wolpert, Daniel M; Bastian, Amy J
2016-01-01
Reinforcement and error-based processes are essential for motor learning, with the cerebellum thought to be required only for the error-based mechanism. Here we examined learning and retention of a reaching skill under both processes. Control subjects learned similarly from reinforcement and error-based feedback, but showed much better retention under reinforcement. To apply reinforcement to cerebellar patients, we developed a closed-loop reinforcement schedule in which task difficulty was controlled based on recent performance. This schedule produced substantial learning in cerebellar patients and controls. Cerebellar patients varied in their learning under reinforcement but fully retained what was learned. In contrast, they showed complete lack of retention in error-based learning. We developed a mechanistic model of the reinforcement task and found that learning depended on a balance between exploration variability and motor noise. While the cerebellar and control groups had similar exploration variability, the patients had greater motor noise and hence learned less. Our results suggest that cerebellar damage indirectly impairs reinforcement learning by increasing motor noise, but does not interfere with the reinforcement mechanism itself. Therefore, reinforcement can be used to learn and retain novel skills, but optimal reinforcement learning requires a balance between exploration variability and motor noise. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
Therrien, Amanda S.; Wolpert, Daniel M.
2016-01-01
Abstract See Miall and Galea (doi: 10.1093/awv343 ) for a scientific commentary on this article. Reinforcement and error-based processes are essential for motor learning, with the cerebellum thought to be required only for the error-based mechanism. Here we examined learning and retention of a reaching skill under both processes. Control subjects learned similarly from reinforcement and error-based feedback, but showed much better retention under reinforcement. To apply reinforcement to cerebellar patients, we developed a closed-loop reinforcement schedule in which task difficulty was controlled based on recent performance. This schedule produced substantial learning in cerebellar patients and controls. Cerebellar patients varied in their learning under reinforcement but fully retained what was learned. In contrast, they showed complete lack of retention in error-based learning. We developed a mechanistic model of the reinforcement task and found that learning depended on a balance between exploration variability and motor noise. While the cerebellar and control groups had similar exploration variability, the patients had greater motor noise and hence learned less. Our results suggest that cerebellar damage indirectly impairs reinforcement learning by increasing motor noise, but does not interfere with the reinforcement mechanism itself. Therefore, reinforcement can be used to learn and retain novel skills, but optimal reinforcement learning requires a balance between exploration variability and motor noise. PMID:26626368
Heremans, Elke; Nackaerts, Evelien; Vervoort, Griet; Broeder, Sanne; Swinnen, Stephan P.; Nieuwboer, Alice
2016-01-01
Background Patients with Parkinson’s disease (PD) and freezing of gait (FOG) suffer from more impaired motor and cognitive functioning than their non-freezing counterparts. This underlies an even higher need for targeted rehabilitation programs in this group. However, so far it is unclear whether FOG affects the ability for consolidation and generalization of motor learning and thus the efficacy of rehabilitation. Objective To investigate the hallmarks of motor learning in people with FOG compared to those without by comparing the effects of an intensive motor learning program to improve handwriting. Methods Thirty five patients with PD, including 19 without and 16 with FOG received six weeks of handwriting training consisting of exercises provided on paper and on a touch-sensitive writing tablet. Writing training was based on single- and dual-task writing and was supported by means of visual target zones. To investigate automatization, generalization and retention of learning, writing performance was assessed before and after training in the presence and absence of cues and dual tasking and after a six-week retention period. Writing amplitude was measured as primary outcome measure and variability of writing and dual-task accuracy as secondary outcomes. Results Significant learning effects were present on all outcome measures in both groups, both for writing under single- and dual-task conditions. However, the gains in writing amplitude were not retained after a retention period of six weeks without training in the patient group without FOG. Furthermore, patients with FOG were highly dependent on the visual target zones, reflecting reduced generalization of learning in this group. Conclusions Although short-term learning effects were present in both groups, generalization and retention of motor learning were specifically impaired in patients with PD and FOG. The results of this study underscore the importance of individualized rehabilitation protocols. PMID:26862915
Barzgari, Amy; Sojkova, Jitka; Maritza Dowling, N; Pozorski, Vincent; Okonkwo, Ozioma C; Starks, Erika J; Oh, Jennifer; Thiesen, Frances; Wey, Alexandra; Nicholas, Christopher R; Johnson, Sterling; Gallagher, Catherine L
2018-05-09
Parkinson's disease (PD) is an age-related neurodegenerative disease that produces changes in movement, cognition, sleep, and autonomic function. Motor learning involves acquisition of new motor skills through practice, and is affected by PD. The purpose of the present study was to evaluate regional differences in resting cerebral blood flow (rCBF), measured using arterial spin labeling (ASL) MRI, during a finger-typing task of motor skill acquisition in PD patients compared to age- and gender-matched controls. Voxel-wise multiple linear regression models were used to examine the relationship between rCBF and several task variables, including initial speed, proficiency gain, and accuracy. In these models, a task-by-disease group interaction term was included to investigate where the relationship between rCBF and task performance was influenced by PD. At baseline, perfusion was lower in PD subjects than controls in the right occipital cortex. The task-by-disease group interaction for initial speed was significantly related to rCBF (p < 0.05, corrected) in several brain regions involved in motor learning, including the occipital, parietal, and temporal cortices, cerebellum, anterior cingulate, and the superior and middle frontal gyri. In these regions, PD patients showed higher rCBF, and controls lower rCBF, with improved performance. Within the control group, proficiency gain over 12 typing trials was related to greater rCBF in cerebellar, occipital, and temporal cortices. These results suggest that higher rCBF within networks involved in motor learning enable PD patients to compensate for disease-related deficits.
Seidel, Oliver; Carius, Daniel; Kenville, Rouven; Ragert, Patrick
2017-09-01
Studies suggested that motor expertise is associated with functional and structural brain alterations, which positively affect sensorimotor performance and learning capabilities. The purpose of the present study was to unravel differences in motor skill learning and associated functional neuroplasticity between endurance athletes (EA) and nonathletes (NA). For this purpose, participants had to perform a multimodal balance task (MBT) training on 2 sessions, which were separated by 1 wk. Before and after MBT training, a static balance task (SBT) had to be performed. MBT-induced functional neuroplasticity and neuromuscular alterations were assessed by means of functional near-infrared spectroscopy (fNIRS) and electromyography (EMG) during SBT performance. We hypothesized that EA would showed superior initial SBT performance and stronger MBT-induced improvements in SBT learning rates compared with NA. On a cortical level, we hypothesized that MBT training would lead to differential learning-dependent functional changes in motor-related brain regions [such as primary motor cortex (M1)] during SBT performance. In fact, EA showed superior initial SBT performance, whereas learning rates did not differ between groups. On a cortical level, fNIRS recordings (time × group interaction) revealed a stronger MBT-induced decrease in left M1 and inferior parietal lobe (IPL) for deoxygenated hemoglobin in EA. Even more interesting, learning rates were correlated with fNIRS changes in right M1/IPL. On the basis of these findings, we provide novel evidence for superior MBT training-induced functional neuroplasticity in highly trained athletes. Future studies should investigate these effects in different sports disciplines to strengthen previous work on experience-dependent neuroplasticity. NEW & NOTEWORTHY Motor expertise is associated with functional/structural brain plasticity. How such neuroplastic reorganization translates into altered motor learning processes remains elusive. We investigated endurance athletes (EA) and nonathletes (NA) in a multimodal balance task (MBT). EA showed superior static balance performance (SBT), whereas MBT-induced SBT improvements did not differ between groups. Functional near-infrared spectroscopy recordings revealed a differential MBT training-induced decrease of deoxygenated hemoglobin in left primary motor cortex and inferior parietal lobe between groups. Copyright © 2017 the American Physiological Society.
Gene Expression Changes in the Motor Cortex Mediating Motor Skill Learning
Cheung, Vincent C. K.; DeBoer, Caroline; Hanson, Elizabeth; Tunesi, Marta; D'Onofrio, Mara; Arisi, Ivan; Brandi, Rossella; Cattaneo, Antonino; Goosens, Ki A.
2013-01-01
The primary motor cortex (M1) supports motor skill learning, yet little is known about the genes that contribute to motor cortical plasticity. Such knowledge could identify candidate molecules whose targeting might enable a new understanding of motor cortical functions, and provide new drug targets for the treatment of diseases which impair motor function, such as ischemic stroke. Here, we assess changes in the motor-cortical transcriptome across different stages of motor skill acquisition. Adult rats were trained on a gradually acquired appetitive reach and grasp task that required different strategies for successful pellet retrieval, or a sham version of the task in which the rats received pellet reward without needing to develop the reach and grasp skill. Tissue was harvested from the forelimb motor-cortical area either before training commenced, prior to the initial rise in task performance, or at peak performance. Differential classes of gene expression were observed at the time point immediately preceding motor task improvement. Functional clustering revealed that gene expression changes were related to the synapse, development, intracellular signaling, and the fibroblast growth factor (FGF) family, with many modulated genes known to regulate synaptic plasticity, synaptogenesis, and cytoskeletal dynamics. The modulated expression of synaptic genes likely reflects ongoing network reorganization from commencement of training till the point of task improvement, suggesting that motor performance improves only after sufficient modifications in the cortical circuitry have accumulated. The regulated FGF-related genes may together contribute to M1 remodeling through their roles in synaptic growth and maturation. PMID:23637843
Interference effects between memory systems in the acquisition of a skill.
Gagné, Marie-Hélène; Cohen, Henri
2016-10-01
There is now converging evidence that the declarative memory system (hippocampus dependent) contributes to sequential motor learning in concert with the procedural memory system (striatum dependent). Because of the competition for shared neuronal resources, introducing a declarative memory task can impair learning of a new motor sequence and interference may occur during the procedural consolidation process. Here, we investigated the extent to which interference effects between memory systems are seen at the retrieval phase of skill learning. Healthy participants were assigned to a control (n = 15) or a declarative condition (n = 15) and trained on a sequence of finger movements (FOS task). Both groups showed similar improvement at the end of the practice session on the first day. Twenty-four hours later, controls were tested solely on the FOS task, while subjects in the declarative condition first engaged in a visuospatial task. Additional offline gains in performance were observed only in the control condition. The introduction of a visuospatial memory task just before retrieval of the motor skill was sufficient to eliminate these gains. This suggests that interference between procedural and declarative memory systems may also occur during subsequent motor recall. It is proposed that the interference effects are linked, in part, to the spatial nature of the motor and declarative tasks, which specifically depends upon hippocampal involvement.
Gobel, Eric W; Parrish, Todd B; Reber, Paul J
2011-10-15
Learning of complex motor skills requires learning of component movements as well as the sequential structure of their order and timing. Using a Serial Interception Sequence Learning (SISL) task, participants learned a sequence of precisely timed interception responses through training with a repeating sequence. Following initial implicit learning of the repeating sequence, functional MRI data were collected during performance of that known sequence and compared with activity evoked during novel sequences of actions, novel timing patterns, or both. Reduced activity was observed during the practiced sequence in a distributed bilateral network including extrastriate occipital, parietal, and premotor cortical regions. These reductions in evoked activity likely reflect improved efficiency in visuospatial processing, spatio-motor integration, motor planning, and motor execution for the trained sequence, which is likely supported by nondeclarative skill learning. In addition, the practiced sequence evoked increased activity in the left ventral striatum and medial prefrontal cortex, while the posterior cingulate was more active during periods of better performance. Many prior studies of perceptual-motor skill learning have found increased activity in motor areas of the frontal cortex (e.g., motor and premotor cortex, SMA) and striatal areas (e.g., the putamen). The change in activity observed here (i.e., decreased activity across a cortical network) may reflect skill learning that is predominantly expressed through more accurate performance rather than decreased reaction time. Copyright © 2011 Elsevier Inc. All rights reserved.
Gobel, Eric W.; Parrish, Todd B.; Reber, Paul J.
2011-01-01
Learning of complex motor skills requires learning of component movements as well as the sequential structure of their order and timing. Using a Serial Interception Sequence Learning (SISL) task, participants learned a sequence of precisely timed interception responses through training with a repeating sequence. Following initial implicit learning of the repeating sequence, functional MRI data were collected during performance of that known sequence and compared with activity evoked during novel sequences of actions, novel timing patterns, or both. Reduced activity was observed during the practiced sequence in a distributed bilateral network including extrastriate occipital, parietal, and premotor cortical regions. These reductions in evoked activity likely reflect improved efficiency in visuospatial processing, spatio-motor integration, motor planning, and motor execution for the trained sequence, which is likely supported by nondeclarative skill learning. In addition, the practiced sequence evoked increased activity in the left ventral striatum and medial prefrontal cortex, while the posterior cingulate was more active during periods of better performance. Many prior studies of perceptual-motor skill learning have found increased activity in motor areas of frontal cortex (e.g., motor and premotor cortex, SMA) and striatal areas (e.g., the putamen). The change in activity observed here (i.e., decreased activity across a cortical network) may reflect skill learning that is predominantly expressed through more accurate performance rather than decreased reaction time. PMID:21771663
Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults.
Berghuis, K M M; Veldman, M P; Solnik, S; Koch, G; Zijdewind, I; Hortobágyi, T
2015-06-01
It is controversial whether or not old adults are capable of learning new motor skills and consolidate the performance gains into motor memory in the offline period. The underlying neuronal mechanisms are equally unclear. We determined the magnitude of motor learning and motor memory consolidation in healthy old adults and examined if specific metrics of neuronal excitability measured by magnetic brain stimulation mediate the practice and retention effects. Eleven healthy old adults practiced a wrist extension-flexion visuomotor skill for 20 min (MP, 71.3 years), while a second group only watched the templates without movements (attentional control, AC, n = 11, 70.5 years). There was 40 % motor learning in MP but none in AC (interaction, p < 0.001) with the skill retained 24 h later in MP and a 16 % improvement in AC. Corticospinal excitability at rest and during task did not change, but when measured during contraction at 20 % of maximal force, it strongly increased in MP and decreased in AC (interaction, p = 0.002). Intracortical inhibition at rest and during the task decreased and facilitation at rest increased in MP, but these metrics changed in the opposite direction in AC. These neuronal changes were especially profound at retention. Healthy old adults can learn a new motor skill and consolidate the learned skill into motor memory, processes that are most likely mediated by disinhibitory mechanisms. These results are relevant for the increasing number of old adults who need to learn and relearn movements during motor rehabilitation.
Comparing the benefits of caffeine, naps and placebo on verbal, motor and perceptual memory.
Mednick, Sara C; Cai, Denise J; Kanady, Jennifer; Drummond, Sean P A
2008-11-03
Caffeine, the world's most common psychoactive substance, is used by approximately 90% of North Americans everyday. Little is known, however, about its benefits for memory. Napping has been shown to increase alertness and promote learning on some memory tasks. We directly compared caffeine (200mg) with napping (60-90min) and placebo on three distinct memory processes: declarative verbal memory, procedural motor skills, and perceptual learning. In the verbal task, recall and recognition for unassociated words were tested after a 7h retention period (with a between-session nap or drug intervention). A second, different, word list was administered post-intervention and memory was tested after a 20min retention period. The non-declarative tasks (finger tapping task (FTT) and texture discrimination task (TDT)) were trained before the intervention and then retested afterwards. Naps enhanced recall of words after a 7h and 20min retention interval relative to both caffeine and placebo. Caffeine significantly impaired motor learning compared to placebo and naps. Napping produced robust perceptual learning compared with placebo; however, naps and caffeine were not significantly different. These findings provide evidence of the limited benefits of caffeine for memory improvement compared with napping. We hypothesize that impairment from caffeine may be restricted to tasks that contain explicit information; whereas strictly implicit learning is less compromised.
Enriched childhood experiences moderate age-related motor and cognitive decline
Metzler, Megan J.; Saucier, Deborah M.; Metz, Gerlinde A.
2012-01-01
Aging is associated with deterioration of skilled manual movement. Specifically, aging corresponds with increased reaction time, greater movement duration, segmentation of movement, increased movement variability, and reduced ability to adapt to external forces and inhibit previously learned sequences. Moreover, it is thought that decreased lateralization of neural function in older adults may point to increased neural recruitment as a compensatory response to deterioration of key frontal and intra-hemispheric networks, particularly of callosal structures. However, factors that mediate age-related motor decline are not well understood. Here we show that music training in childhood is associated with reduced age-related decline of bimanual and unimanual motor skills in a MIDI keyboard motor learning task. Compared to older adults without music training, older adults with more than a year of music training demonstrated proficient bimanual and unimanual movement, evidenced by enhanced speed and decreased movement errors. Further, this group demonstrated significantly better implicit learning in the weather prediction task, a non-motor task. The performance of older adults with music training in those tasks was comparable to young adults. Older adults, however, displayed greater verbal ability compared to young adults irrespective of a past history of music training. Our results indicate that music training early in life may reduce age-associated decline of neural motor and cognitive networks. PMID:23423702
Probabilistic Motor Sequence Yields Greater Offline and Less Online Learning than Fixed Sequence
Du, Yue; Prashad, Shikha; Schoenbrun, Ilana; Clark, Jane E.
2016-01-01
It is well acknowledged that motor sequences can be learned quickly through online learning. Subsequently, the initial acquisition of a motor sequence is boosted or consolidated by offline learning. However, little is known whether offline learning can drive the fast learning of motor sequences (i.e., initial sequence learning in the first training session). To examine offline learning in the fast learning stage, we asked four groups of young adults to perform the serial reaction time (SRT) task with either a fixed or probabilistic sequence and with or without preliminary knowledge (PK) of the presence of a sequence. The sequence and PK were manipulated to emphasize either procedural (probabilistic sequence; no preliminary knowledge (NPK)) or declarative (fixed sequence; with PK) memory that were found to either facilitate or inhibit offline learning. In the SRT task, there were six learning blocks with a 2 min break between each consecutive block. Throughout the session, stimuli followed the same fixed or probabilistic pattern except in Block 5, in which stimuli appeared in a random order. We found that PK facilitated the learning of a fixed sequence, but not a probabilistic sequence. In addition to overall learning measured by the mean reaction time (RT), we examined the progressive changes in RT within and between blocks (i.e., online and offline learning, respectively). It was found that the two groups who performed the fixed sequence, regardless of PK, showed greater online learning than the other two groups who performed the probabilistic sequence. The groups who performed the probabilistic sequence, regardless of PK, did not display online learning, as indicated by a decline in performance within the learning blocks. However, they did demonstrate remarkably greater offline improvement in RT, which suggests that they are learning the probabilistic sequence offline. These results suggest that in the SRT task, the fast acquisition of a motor sequence is driven by concurrent online and offline learning. In addition, as the acquisition of a probabilistic sequence requires greater procedural memory compared to the acquisition of a fixed sequence, our results suggest that offline learning is more likely to take place in a procedural sequence learning task. PMID:26973502
Probabilistic Motor Sequence Yields Greater Offline and Less Online Learning than Fixed Sequence.
Du, Yue; Prashad, Shikha; Schoenbrun, Ilana; Clark, Jane E
2016-01-01
It is well acknowledged that motor sequences can be learned quickly through online learning. Subsequently, the initial acquisition of a motor sequence is boosted or consolidated by offline learning. However, little is known whether offline learning can drive the fast learning of motor sequences (i.e., initial sequence learning in the first training session). To examine offline learning in the fast learning stage, we asked four groups of young adults to perform the serial reaction time (SRT) task with either a fixed or probabilistic sequence and with or without preliminary knowledge (PK) of the presence of a sequence. The sequence and PK were manipulated to emphasize either procedural (probabilistic sequence; no preliminary knowledge (NPK)) or declarative (fixed sequence; with PK) memory that were found to either facilitate or inhibit offline learning. In the SRT task, there were six learning blocks with a 2 min break between each consecutive block. Throughout the session, stimuli followed the same fixed or probabilistic pattern except in Block 5, in which stimuli appeared in a random order. We found that PK facilitated the learning of a fixed sequence, but not a probabilistic sequence. In addition to overall learning measured by the mean reaction time (RT), we examined the progressive changes in RT within and between blocks (i.e., online and offline learning, respectively). It was found that the two groups who performed the fixed sequence, regardless of PK, showed greater online learning than the other two groups who performed the probabilistic sequence. The groups who performed the probabilistic sequence, regardless of PK, did not display online learning, as indicated by a decline in performance within the learning blocks. However, they did demonstrate remarkably greater offline improvement in RT, which suggests that they are learning the probabilistic sequence offline. These results suggest that in the SRT task, the fast acquisition of a motor sequence is driven by concurrent online and offline learning. In addition, as the acquisition of a probabilistic sequence requires greater procedural memory compared to the acquisition of a fixed sequence, our results suggest that offline learning is more likely to take place in a procedural sequence learning task.
Whole body heat stress increases motor cortical excitability and skill acquisition in humans
Littmann, Andrew E.; Shields, Richard K.
2015-01-01
Objective Vigorous systemic exercise stimulates a cascade of molecular and cellular processes that enhance central nervous system (CNS) plasticity and performance. The influence of heat stress on CNS performance and learning is novel. We designed two experiments to determine whether passive heat stress 1) facilitated motor cortex excitability and 2) improved motor task acquisition compared to no heat stress. Methods Motor evoked potentials (MEPs) from the first dorsal interosseus (FDI) were collected before and after 30 minutes of heat stress at 73° C. A second cohort of subjects performed a motor learning task using the FDI either following heat or the no heat condition. Results Heat stress increased heart rate to 65% of age-predicted maximum. After heat, mean resting MEP amplitude increased 48% (P < 0.05). MEP stimulus-response amplitudes did not differ according to stimulus intensity. In the second experiment, heat stress caused a significant decrease in absolute and variable error (p < 0.05) during a novel movement task using the FDI. Conclusions Passive environmental heat stress 1) increases motor cortical excitability, and 2) enhances performance in a motor skill acquisition task. Significance Controlled heat stress may prime the CNS to enhance motor skill acquisition during rehabilitation. PMID:26616546
Braun, Daniel A.; Mehring, Carsten; Wolpert, Daniel M.
2010-01-01
‘Learning to learn’ phenomena have been widely investigated in cognition, perception and more recently also in action. During concept learning tasks, for example, it has been suggested that characteristic features are abstracted from a set of examples with the consequence that learning of similar tasks is facilitated—a process termed ‘learning to learn’. From a computational point of view such an extraction of invariants can be regarded as learning of an underlying structure. Here we review the evidence for structure learning as a ‘learning to learn’ mechanism, especially in sensorimotor control where the motor system has to adapt to variable environments. We review studies demonstrating that common features of variable environments are extracted during sensorimotor learning and exploited for efficient adaptation in novel tasks. We conclude that structure learning plays a fundamental role in skill learning and may underlie the unsurpassed flexibility and adaptability of the motor system. PMID:19720086
Matheson, Heath E; Familiar, Ariana M; Thompson-Schill, Sharon L
2018-03-02
Theories of embodied cognition propose that we recognize tools in part by reactivating sensorimotor representations of tool use in a process of simulation. If motor simulations play a causal role in tool recognition then performing a concurrent motor task should differentially modulate recognition of experienced vs. non-experienced tools. We sought to test the hypothesis that an incompatible concurrent motor task modulates conceptual processing of learned vs. non-learned objects by directly manipulating the embodied experience of participants. We trained one group to use a set of novel, 3-D printed tools under the pretense that they were preparing for an archeological expedition to Mars (manipulation group); we trained a second group to report declarative information about how the tools are stored (storage group). With this design, familiarity and visual attention to different object parts was similar for both groups, though their qualitative interactions differed. After learning, participants made familiarity judgments of auditorily presented tool names while performing a concurrent motor task or simply sitting at rest. We showed that familiarity judgments were facilitated by motor state-dependence; specifically, in the manipulation group, familiarity was facilitated by a concurrent motor task, whereas in the spatial group familiarity was facilitated while sitting at rest. These results are the first to directly show that manipulation experience differentially modulates conceptual processing of familiar vs. unfamiliar objects, suggesting that embodied representations contribute to recognizing tools.
Is Implicit Motor Learning Preserved after Stroke? A Systematic Review with Meta-Analysis
Kal, E.; Winters, M.; van der Kamp, J.; Houdijk, H.; Groet, E.; van Bennekom, C.; Scherder, E.
2016-01-01
Many stroke patients experience difficulty with performing dual-tasks. A promising intervention to target this issue is implicit motor learning, as it should enhance patients’ automaticity of movement. Yet, although it is often thought that implicit motor learning is preserved post-stroke, evidence for this claim has not been systematically analysed yet. Therefore, we systematically reviewed whether implicit motor learning is preserved post-stroke, and whether patients benefit more from implicit than from explicit motor learning. We comprehensively searched conventional (MEDLINE, Cochrane, Embase, PEDro, PsycINFO) and grey literature databases (BIOSIS, Web of Science, OpenGrey, British Library, trial registries) for relevant reports. Two independent reviewers screened reports, extracted data, and performed a risk of bias assessment. Overall, we included 20 out of the 2177 identified reports that allow for a succinct evaluation of implicit motor learning. Of these, only 1 study investigated learning on a relatively complex, whole-body (balance board) task. All 19 other studies concerned variants of the serial-reaction time paradigm, with most of these focusing on learning with the unaffected hand (N = 13) rather than the affected hand or both hands (both: N = 4). Four of the 20 studies compared explicit and implicit motor learning post-stroke. Meta-analyses suggest that patients with stroke can learn implicitly with their unaffected side (mean difference (MD) = 69 ms, 95% CI[45.1, 92.9], p < .00001), but not with their affected side (standardized MD = -.11, 95% CI[-.45, .25], p = .56). Finally, implicit motor learning seemed equally effective as explicit motor learning post-stroke (SMD = -.54, 95% CI[-1.37, .29], p = .20). However, overall, the high risk of bias, small samples, and limited clinical relevance of most studies make it impossible to draw reliable conclusions regarding the effect of implicit motor learning strategies post-stroke. High quality studies with larger samples are warranted to test implicit motor learning in clinically relevant contexts. PMID:27992442
Kim, Soyoung; Stephenson, Mary C; Morris, Peter G; Jackson, Stephen R
2014-10-01
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability in a polarity specific manner and has been shown to influence learning and memory. tDCS may have both on-line and after-effects on learning and memory, and the latter are thought to be based upon tDCS-induced alterations in neurochemistry and synaptic function. We used ultra-high-field (7 T) magnetic resonance spectroscopy (MRS), together with a robotic force adaptation and de-adaptation task, to investigate whether tDCS-induced alterations in GABA and Glutamate within motor cortex predict motor learning and memory. Note that adaptation to a robot-induced force field has long been considered to be a form of model-based learning that is closely associated with the computation and 'supervised' learning of internal 'forward' models within the cerebellum. Importantly, previous studies have shown that on-line tDCS to the cerebellum, but not to motor cortex, enhances model-based motor learning. Here we demonstrate that anodal tDCS delivered to the hand area of the left primary motor cortex induces a significant reduction in GABA concentration. This effect was specific to GABA, localised to the left motor cortex, and was polarity specific insofar as it was not observed following either cathodal or sham stimulation. Importantly, we show that the magnitude of tDCS-induced alterations in GABA concentration within motor cortex predicts individual differences in both motor learning and motor memory on the robotic force adaptation and de-adaptation task. Copyright © 2014. Published by Elsevier Inc.
The Impact of Feedback Frequency on Performance in a Novel Speech Motor Learning Task.
Lowe, Mara Steinberg; Buchwald, Adam
2017-06-22
This study investigated whether whole nonword accuracy, phoneme accuracy, and acoustic duration measures were influenced by the amount of feedback speakers without impairment received during a novel speech motor learning task. Thirty-two native English speakers completed a nonword production task across 3 time points: practice, short-term retention, and long-term retention. During practice, participants received knowledge of results feedback according to a randomly assigned schedule (100%, 50%, 20%, or 0%). Changes in nonword accuracy, phoneme accuracy, nonword duration, and initial-cluster duration were compared among feedback groups, sessions, and stimulus properties. All participants improved phoneme and whole nonword accuracy at short-term and long-term retention time points. Participants also refined productions of nonwords, as indicated by a decrease in nonword duration across sessions. The 50% group exhibited the largest reduction in duration between practice and long-term retention for nonwords with native and nonnative clusters. All speakers, regardless of feedback schedule, learned new speech motor behaviors quickly with a high degree of accuracy and refined their speech motor skills for perceptually accurate productions. Acoustic measurements may capture more subtle, subperceptual changes that may occur during speech motor learning. https://doi.org/10.23641/asha.5116324.
The Time Course of Task-Specific Memory Consolidation Effects in Resting State Networks
Sami, Saber; Robertson, Edwin M.
2014-01-01
Previous studies have reported functionally localized changes in resting-state brain activity following a short period of motor learning, but their relationship with memory consolidation and their dependence on the form of learning is unclear. We investigate these questions with implicit or explicit variants of the serial reaction time task (SRTT). fMRI resting-state functional connectivity was measured in human subjects before the tasks, and 0.1, 0.5, and 6 h after learning. There was significant improvement in procedural skill in both groups, with the group learning under explicit conditions showing stronger initial acquisition, and greater improvement at the 6 h retest. Immediately following acquisition, this group showed enhanced functional connectivity in networks including frontal and cerebellar areas and in the visual cortex. Thirty minutes later, enhanced connectivity was observed between cerebellar nuclei, thalamus, and basal ganglia, whereas at 6 h there was enhanced connectivity in a sensory-motor cortical network. In contrast, immediately after acquisition under implicit conditions, there was increased connectivity in a network including precentral and sensory-motor areas, whereas after 30 min a similar cerebello-thalamo-basal ganglionic network was seen as in explicit learning. Finally, 6 h after implicit learning, we found increased connectivity in medial temporal cortex, but reduction in precentral and sensory-motor areas. Our findings are consistent with predictions that two variants of the SRTT task engage dissociable functional networks, although there are also networks in common. We also show a converging and diverging pattern of flux between prefrontal, sensory-motor, and parietal areas, and subcortical circuits across a 6 h consolidation period. PMID:24623776
Effects of practice schedule and task specificity on the adaptive process of motor learning.
Barros, João Augusto de Camargo; Tani, Go; Corrêa, Umberto Cesar
2017-10-01
This study investigated the effects of practice schedule and task specificity based on the perspective of adaptive process of motor learning. For this purpose, tasks with temporal and force control learning requirements were manipulated in experiments 1 and 2, respectively. Specifically, the task consisted of touching with the dominant hand the three sequential targets with specific movement time or force for each touch. Participants were children (N=120), both boys and girls, with an average age of 11.2years (SD=1.0). The design in both experiments involved four practice groups (constant, random, constant-random, and random-constant) and two phases (stabilisation and adaptation). The dependent variables included measures related to the task goal (accuracy and variability of error of the overall movement and force patterns) and movement pattern (macro- and microstructures). Results revealed a similar error of the overall patterns for all groups in both experiments and that they adapted themselves differently in terms of the macro- and microstructures of movement patterns. The study concludes that the effects of practice schedules on the adaptive process of motor learning were both general and specific to the task. That is, they were general to the task goal performance and specific regarding the movement pattern. Copyright © 2017 Elsevier B.V. All rights reserved.
Motor learning characterizes habilitation of children with hemiplegic cerebral palsy.
Krebs, Hermano I; Fasoli, Susan E; Dipietro, Laura; Fragala-Pinkham, Maria; Hughes, Richard; Stein, Joel; Hogan, Neville
2012-09-01
This study tested in children with cerebral palsy (CP) whether motor habilitation resembles motor learning. Twelve children with hemiplegic CP ages 5 to 12 years with moderate to severe motor impairments underwent a 16-session robot-mediated planar therapy program to improve upper limb reach, with a focus on shoulder and elbow movements. Participants were trained to execute point-to-point movements (with robot assistance) with the affected arm and were evaluated (without robot assistance) in trained (point-to-point) and untrained (circle-drawing) conditions. Outcomes were measured at baseline, midpoint, immediately after the program, and 1 month postcompletion. Outcome measures were the Fugl-Meyer (FM), Quality of Upper Extremity Skills Test (QUEST), and Modified Ashworth Scale (MAS) scores; parent questionnaire; and robot-based kinematic metrics. To assess whether learning best characterizes motor habilitation in CP, the authors quantified (a) improvement on trained tasks at completion of training (acquisition) and 1 month following completion (retention) and (b) quantified generalization of improvement to untrained tasks. After robotic intervention, the authors found significant gains in the FM, QUEST, and parent questionnaire. Robot-based evaluations demonstrated significant improvement in trained movements and that improvement was sustained at follow-up. Furthermore, children improved their performance in untrained movements indicating generalization. Motor habilitation in CP exhibits some traits of motor learning. Optimal treatment may not require an extensive repertoire of tasks but rather a select set to promote generalization.
Motor Decline in Clinically Presymptomatic Spinocerebellar Ataxia Type 2 Gene Carriers
Velázquez-Perez, Luis; Díaz, Rosalinda; Pérez-González, Ruth; Canales, Nalia; Rodríguez-Labrada, Roberto; Medrano, Jacquelín; Sánchez, Gilberto; Almaguer-Mederos, Luis; Torres, Cira; Fernandez-Ruiz, Juan
2009-01-01
Background Motor deficits are a critical component of the clinical characteristics of patients with spinocerebellar ataxia type 2. However, there is no current information on the preclinical manifestation of those motor deficits in presymptomatic gene carriers. To further understand and characterize the onset of the clinical manifestation in this disease, we tested presymptomatic spinocerebellar ataxia type 2 gene carriers, and volunteers, in a task that evaluates their motor performance and their motor learning capabilities. Methods and Findings 28 presymptomatic spinocerebellar ataxia type 2 gene carriers and an equal number of control volunteers matched for age and gender participated in the study. Both groups were tested in a prism adaptation task known to be sensible to both motor performance and visuomotor learning deficits. Our results clearly show that although motor learning capabilities are intact, motor performance deficits are present even years before the clinical manifestation of the disease start. Conclusions The results show a clear deficit in motor performance that can be detected years before the clinical onset of the disease. This motor performance deficit appears before any motor learning or clinical manifestations of the disease. These observations identify the performance coefficient as an objective and quantitative physiological biomarker that could be useful to assess the efficiency of different therapeutic agents. PMID:19401771
Are There Age-Related Differences in the Ability to Learn Configural Responses?
Clark, Rachel; Freedberg, Michael; Hazeltine, Eliot; Voss, Michelle W.
2015-01-01
Age is often associated with a decline in cognitive abilities that are important for maintaining functional independence, such as learning new skills. Many forms of motor learning appear to be relatively well preserved with age, while learning tasks that involve associative binding tend to be negatively affected. The current study aimed to determine whether age differences exist on a configural response learning task, which includes aspects of motor learning and associative binding. Young (M = 24 years) and older adults (M = 66.5 years) completed a modified version of a configural learning task. Given the requirement of associative binding in the configural relationships between responses, we predicted older adults would show significantly less learning than young adults. Older adults demonstrated lower performance (slower reaction time and lower accuracy). However, contrary to our prediction, older adults showed similar rates of learning as indexed by a configural learning score compared to young adults. These results suggest that the ability to acquire knowledge incidentally about configural response relationships is largely unaffected by cognitive aging. The configural response learning task provides insight into the task demands that constrain learning abilities in older adults. PMID:26317773
Contributions of the cerebellum and the motor cortex to acquisition and retention of motor memories
Herzfeld, David J.; Pastor, Damien; Haith, Adrian M.; Rossetti, Yves; Shadmehr, Reza; O’Shea, Jacinta
2014-01-01
We investigated the contributions of the cerebellum and the motor cortex (M1) to acquisition and retention of human motor memories in a force field reaching task. We found that anodal transcranial direct current stimulation (tDCS) of the cerebellum, a technique that is thought to increase neuronal excitability, increased the ability to learn from error and form an internal model of the field, while cathodal cerebellar stimulation reduced this error-dependent learning. In addition, cathodal cerebellar stimulation disrupted the ability to respond to error within a reaching movement, reducing the gain of the sensory-motor feedback loop. By contrast, anodal M1 stimulation had no significant effects on these variables. During sham stimulation, early in training the acquired motor memory exhibited rapid decay in error-clamp trials. With further training the rate of decay decreased, suggesting that with training the motor memory was transformed from a labile to a more stable state. Surprisingly, neither cerebellar nor M1 stimulation altered these decay patterns. Participants returned 24 hours later and were re-tested in error-clamp trials without stimulation. The cerebellar group that had learned the task with cathodal stimulation exhibited significantly impaired retention, and retention was not improved by M1 anodal stimulation. In summary, non-invasive cerebellar stimulation resulted in polarity-dependent up- or down-regulation of error-dependent motor learning. In addition, cathodal cerebellar stimulation during acquisition impaired the ability to retain the motor memory overnight. Thus, in the force field task we found a critical role for the cerebellum in both formation of motor memory and its retention. PMID:24816533
The many facets of motor learning and their relevance for Parkinson's disease.
Marinelli, Lucio; Quartarone, Angelo; Hallett, Mark; Frazzitta, Giuseppe; Ghilardi, Maria Felice
2017-07-01
The final goal of motor learning, a complex process that includes both implicit and explicit (or declarative) components, is the optimization and automatization of motor skills. Motor learning involves different neural networks and neurotransmitters systems depending on the type of task and on the stage of learning. After the first phase of acquisition, a motor skill goes through consolidation (i.e., becoming resistant to interference) and retention, processes in which sleep and long-term potentiation seem to play important roles. The studies of motor learning in Parkinson's disease have yielded controversial results that likely stem from the use of different experimental paradigms. When a task's characteristics, instructions, context, learning phase and type of measures are taken into consideration, it is apparent that, in general, only learning that relies on attentional resources and cognitive strategies is affected by PD, in agreement with the finding of a fronto-striatal deficit in this disease. Levodopa administration does not seem to reverse the learning deficits in PD, while deep brain stimulation of either globus pallidus or subthalamic nucleus appears to be beneficial. Finally and most importantly, patients with PD often show a decrease in retention of newly learned skill, a problem that is present even in the early stages of the disease. A thorough dissection and understanding of the processes involved in motor learning is warranted to provide solid bases for effective medical, surgical and rehabilitative approaches in PD. Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved.
ERIC Educational Resources Information Center
Wood, Milton E.
The purpose of the effort was to determine the benefits to be derived from the adaptive training technique of automatically adjusting task difficulty as a function of a student skill during early learning of a complex perceptual motor task. A digital computer provided the task dynamics, scoring, and adaptive control of a second-order, two-axis,…
Sleep to the beat: A nap favours consolidation of timing.
Verweij, Ilse M; Onuki, Yoshiyuki; Van Someren, Eus J W; Van der Werf, Ysbrand D
2016-06-01
Growing evidence suggests that sleep is important for procedural learning, but few studies have investigated the effect of sleep on the temporal aspects of motor skill learning. We assessed the effect of a 90-min day-time nap on learning a motor timing task, using 2 adaptations of a serial interception sequence learning (SISL) task. Forty-two right-handed participants performed the task before and after a 90-min period of sleep or wake. Electroencephalography (EEG) was recorded throughout. The motor task consisted of a sequential spatial pattern and was performed according to 2 different timing conditions, that is, either following a sequential or a random temporal pattern. The increase in accuracy was compared between groups using a mixed linear regression model. Within the sleep group, performance improvement was modeled based on sleep characteristics, including spindle- and slow-wave density. The sleep group, but not the wake group, showed improvement in the random temporal, but especially and significantly more strongly in the sequential temporal condition. None of the sleep characteristics predicted improvement on either general of the timing conditions. In conclusion, a daytime nap improves performance on a timing task. We show that performance on the task with a sequential timing sequence benefits more from sleep than motor timing. More important, the temporal sequence did not benefit initial learning, because differences arose only after an offline period and specifically when this period contained sleep. Sleep appears to aid in the extraction of regularities for optimal subsequent performance. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Meehan, S K; Zabukovec, J R; Dao, E; Cheung, K L; Linsdell, M A; Boyd, L A
2013-10-01
Consolidation of motor memories associated with skilled practice can occur both online, concurrent with practice, and offline, after practice has ended. The current study investigated the role of dorsal premotor cortex (PMd) in early offline motor memory consolidation of implicit sequence-specific learning. Thirty-three participants were assigned to one of three groups of repetitive transcranial magnetic stimulation (rTMS) over left PMd (5 Hz, 1 Hz or control) immediately following practice of a novel continuous tracking task. There was no additional practice following rTMS. This procedure was repeated for 4 days. The continuous tracking task contained a repeated sequence that could be learned implicitly and random sequences that could not. On a separate fifth day, a retention test was performed to assess implicit sequence-specific motor learning of the task. Tracking error was decreased for the group who received 1 Hz rTMS over the PMd during the early consolidation period immediately following practice compared with control or 5 Hz rTMS. Enhanced sequence-specific learning with 1 Hz rTMS following practice was due to greater offline consolidation, not differences in online learning between the groups within practice days. A follow-up experiment revealed that stimulation of PMd following practice did not differentially change motor cortical excitability, suggesting that changes in offline consolidation can be largely attributed to stimulation-induced changes in PMd. These findings support a differential role for the PMd in support of online and offline sequence-specific learning of a visuomotor task and offer converging evidence for competing memory systems. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Neuromodulatory effect of bromazepam on motor learning: an electroencephalographic approach.
Cunha, Marlo; Machado, Dionis; Bastos, Victor H; Ferreira, Camila; Cagy, Maurício; Basile, Luis; Piedade, Roberto; Ribeiro, Pedro
2006-10-23
To investigate the effects of bromazepam on motor performance and electroencephalographic activity (qEEG) in healthy subjects, during the process of learning a typewriting task, with a focused attention demand. A randomized double-blind model was used to allocate subjects in one of the following conditions: placebo (n=13), bromazepam 3 mg (n=13) or bromazepam 6 mg (n=13). Forty minutes after treatment administration, subjects were submitted to the motor task. EEG activity was recorded simultaneously. The analyzed variables were: number of errors and execution time, which were extracted from each block of the typewriting task, and mean relative power values in the beta band (13-35 Hz), extracted from the qEEG. A significantly lower number of typing errors was observed in both bromazepam conditions (Br 3 mg and Br 6 mg) when compared to the placebo. There was no difference between the two bromazepam conditions. For the execution time variable, a better performance was observed in the Br 3 mg condition, but with no statistical significance. The highest degree of cortical activation during the task was observed in Br 3 mg and Br 6 mg when compared to placebo. The medication's anxiolytic effect intensifies the attentional focus over predictable events occurring in reduced perceptual fields. The qEEG's accentuated response in pre-motor and primary motor areas suggests a greater effort directed to the most relevant aspects of the task. In short, the doses employed (3 and 6 mg) seem to enhance the learning of motor tasks that involve focused attention, such as typewriting.
Implicit Perceptual-Motor Skill Learning in Mild Cognitive Impairment and Parkinson's Disease
Gobel, Eric W.; Blomeke, Kelsey; Zadikoff, Cindy; Simuni, Tanya; Weintraub, Sandy; Reber, Paul J.
2015-01-01
Objective Implicit skill learning is hypothesized to depend on nondeclarative memory that operates independent of the medial temporal lobe (MTL) memory system and instead depends on cortico-striatal circuits between the basal ganglia and cortical areas supporting motor function and planning. Research with the Serial Reaction Time (SRT) task suggests that patients with memory-disorders due to MTL damage exhibit normal implicit sequence learning. However, reports of intact learning rely on observations of no group differences, leading to speculation whether implicit sequence learning is fully intact in these patients. Patients with Parkinson's Disease (PD) often exhibit impaired sequence learning, but this impairment is not universally observed. Method Implicit perceptual-motor sequence learning was examined using the Serial Interception Sequence Learning (SISL) task in patients with amnestic Mild Cognitive Impairment (MCI; n=11) and patients with PD (n=15). Sequence learning in SISL is resistant to explicit learning and individually adapted task difficulty controls for baseline performance differences. Results Patients with MCI exhibited robust sequence learning, equivalent to healthy older adults (n=20), supporting the hypothesis that the MTL does not contribute to learning in this task. In contrast, the majority of patients with PD exhibited no sequence-specific learning in spite of matched overall task performance. Two patients with PD exhibited performance indicative of an explicit compensatory strategy suggesting that impaired implicit learning may lead to greater reliance on explicit memory in some individuals. Conclusion The differences in learning between patient groups provides strong evidence in favor of implicit sequence learning depending solely on intact basal ganglia function with no contribution from the MTL memory system. PMID:23688213
Bigbee, Allison J.; Crown, Eric D.; Ferguson, Adam R.; Roy, Roland R.; Tillakaratne, Niranjala J.K.; Grau, James W.; Edgerton, V. Reggie
2008-01-01
The effect of two chronic motor training paradigms on the ability of the lumbar spinal cord to perform an acute instrumental learning task was examined in neonatally (postnatal day 5; P5) spinal cord transected (i.e., spinal) rats. At ∼P30, rats began either unipedal hindlimb stand training (Stand-Tr; 20-25 min/day, 5 days/wk), or bipedal hindlimb step training (Step-Tr; 20 min/day; 5 days/wk) for 7 wks. Non-trained spinal rats (Non-Tr) served as controls. After 7 wks all groups were tested on the flexor-biased instrumental learning paradigm. We hypothesized that 1) Step-Tr rats would exhibit an increased capacity to learn the flexor-biased task relative to Non-Tr subjects, as locomotion involves repetitive training of the tibialis anterior (TA), the ankle flexor whose activation is important for successful instrumental learning, and 2) Stand-Tr rats would exhibit a deficit in acute motor learning, as unipedal training activates the ipsilateral ankle extensors, but not flexors. Results showed no differences in acute learning potential between Non-Tr and Step-Tr rats, while the Stand-Tr group showed a reduced capacity to learn the acute task. Further investigation of the Stand-Tr group showed that, while both the ipsilateral and contralateral hindlimbs were significantly impaired in their acute learning potential, the contralateral, untrained hindlimbs exhibited significantly greater learning deficits. These results suggest that different types of chronic peripheral input may have a significant impact on the ability to learn a novel motor task, and demonstrate the potential for experience-dependent plasticity in the spinal cord in the absence of supraspinal connectivity. PMID:17434606
Classical eyeblink conditioning in Parkinson's disease.
Daum, I; Schugens, M M; Breitenstein, C; Topka, H; Spieker, S
1996-11-01
Patients with Parkinson's disease (PD) show impairments of a range of motor learning tasks, including tracking or serial reaction time task learning. Our study investigated whether such deficits would also be seen on a simple type of motor learning, classic conditioning of the eyeblink response. Medicated and unmediated patients with PD showed intact unconditioned eyeblink responses and significant learning across acquisition; the learning rates did not differ from those of healthy control subjects. The overall frequency of conditioned responses was significantly higher in the medicated patients with PD relative to control subjects, and there was also some evidence of facilitation in the unmedicated patients with PD. Conditioning of electrodermal and electrocortical responses was comparable in all groups. The findings are discussed in terms of enhanced excitability of brainstem pathways in PD and of the involvement of different neuronal circuits in different types of motor learning.
Task Integration Facilitates Multitasking.
de Oliveira, Rita F; Raab, Markus; Hegele, Mathias; Schorer, Jörg
2017-01-01
The aim of this study was to investigate multi-task integration in a continuous tracking task. We were particularly interested in how manipulating task structure in a dual-task situation affects learning of a constant segment embedded in a pursuit-tracking task. Importantly, we examined if dual-task effects could be attributed to task integration by varying the structural similarity and difficulty of the primary and secondary tasks. In Experiment 1 participants performed a pursuit tracking task while counting high-pitched tones and ignoring low-pitched tones. The tones were either presented randomly or structurally 250 ms before each tracking turn. Experiment 2 increased the motor load of the secondary tasks by asking participants to tap their feet to the tones. Experiment 3 further increased motor load of the primary task by increasing its speed and having participants tracking with their non-dominant hand. The results show that dual-task interference can be moderated by secondary task conditions that match the structure of the primary task. Therefore our results support proposals of task integration in continuous tracking paradigms. We conclude that multi-tasking is not always detrimental for motor learning but can be facilitated through task-integration.
Baxter, Bryan S; Edelman, Bradley J; Nesbitt, Nicholas; He, Bin
Transcranial direct current stimulation (tDCS) has been used to alter the excitability of neurons within the cerebral cortex. Improvements in motor learning have been found in multiple studies when tDCS was applied to the motor cortex before or during task learning. The motor cortex is also active during the performance of motor imagination, a cognitive task during which a person imagines, but does not execute, a movement. Motor imagery can be used with noninvasive brain computer interfaces (BCIs) to control virtual objects in up to three dimensions, but to master control of such devices requires long training times. To evaluate the effect of high-definition tDCS on the performance and underlying electrophysiology of motor imagery based BCI. We utilize high-definition tDCS to investigate the effect of stimulation on motor imagery-based BCI performance across and within sessions over multiple training days. We report a decreased time-to-hit with anodal stimulation both within and across sessions. We also found differing electrophysiological changes of the stimulated sensorimotor cortex during online BCI task performance for left vs. right trials. Cathodal stimulation led to a decrease in alpha and beta band power during task performance compared to sham stimulation for right hand imagination trials. These results suggest that unilateral tDCS over the sensorimotor motor cortex differentially affects cortical areas based on task specific neural activation. Copyright © 2016 Elsevier Inc. All rights reserved.
Cuppone, Anna Vera; Squeri, Valentina; Semprini, Marianna; Masia, Lorenzo; Konczak, Jürgen
2016-01-01
This study examined the trainability of the proprioceptive sense and explored the relationship between proprioception and motor learning. With vision blocked, human learners had to perform goal-directed wrist movements relying solely on proprioceptive/haptic cues to reach several haptically specified targets. One group received additional somatosensory movement error feedback in form of vibro-tactile cues applied to the skin of the forearm. We used a haptic robotic device for the wrist and implemented a 3-day training regimen that required learners to make spatially precise goal-directed wrist reaching movements without vision. We assessed whether training improved the acuity of the wrist joint position sense. In addition, we checked if sensory learning generalized to the motor domain and improved spatial precision of wrist tracking movements that were not trained. The main findings of the study are: First, proprioceptive acuity of the wrist joint position sense improved after training for the group that received the combined proprioceptive/haptic and vibro-tactile feedback (VTF). Second, training had no impact on the spatial accuracy of the untrained tracking task. However, learners who had received VTF significantly reduced their reliance on haptic guidance feedback when performing the untrained motor task. That is, concurrent VTF was highly salient movement feedback and obviated the need for haptic feedback. Third, VTF can be also provided by the limb not involved in the task. Learners who received VTF to the contralateral limb equally benefitted. In conclusion, somatosensory training can significantly enhance proprioceptive acuity within days when learning is coupled with vibro-tactile sensory cues that provide feedback about movement errors. The observable sensory improvements in proprioception facilitates motor learning and such learning may generalize to the sensorimotor control of the untrained motor tasks. The implications of these findings for neurorehabilitation are discussed.
Self-controlled practice enhances motor learning in introverts and extroverts.
Kaefer, Angélica; Chiviacowsky, Suzete; Meira, Cassio de Miranda; Tani, Go
2014-06-01
The purpose of the present study was to investigate the effects of self-controlled feedback on the learning of a sequential-timing motor task in introverts and extroverts. Fifty-six university students were selected by the Eysenck Personality Questionnaire. They practiced a motor task consisting of pressing computer keyboard keys in a specific spatial and temporal pattern. The experiment consisted of practice, retention, and transfer phases. The participants were distributed into 4 groups, formed by the combination of personality trait (extraversion/introversion) and type of feedback frequency (self-controlled/yoked). The results showed superior learning for the groups that practiced in a self-controlled schedule, in relation to groups who practiced in an externally controlled schedule, F(1, 52) = 4.13, p < .05, eta2 = .07, regardless of personality trait. We conclude that self-controlled practice enhances motor learning in introverts and extroverts.
Comparing the benefits of Caffeine, Naps and Placebo on Verbal, Motor and Perceptual Memory
Mednick, Sara C.; Cai, Denise J.; Kanady, Jennifer; Drummond, Sean P.A.
2008-01-01
Caffeine, the world’s most common psychoactive substance, is used by approximately 90% of North Americans everyday. Little is known, however, about its benefits for memory. Napping has been shown to increase alertness and promote learning on some memory tasks. We directly compared caffeine (200mg) with napping (60–90 minutes) and placebo on three distinct memory processes: declarative verbal memory, procedural motor skills, and perceptual learning. In the verbal task, recall and recognition for unassociated words were tested after a 7hr retention period (with a between-session nap or drug intervention). A second, different, word list was administered post-intervention and memory was tested after a 20min retention period. The non-declarative tasks (finger tapping task and texture discrimination task) were trained before the intervention and then retested afterwards. Naps enhanced recall of words after a 7hr and 20min retention interval relative to both caffeine and placebo. Caffeine significantly impaired motor learning compared to placebo and naps. Napping produced robust perceptual learning compared with placebo; however, naps and caffeine were not significantly different. These findings provide evidence of the limited benefits of caffeine for memory improvement compared with napping. We hypothesize that impairment from caffeine may be restricted to tasks that contain explicit information; whereas strictly implicit learning is less compromised. PMID:18554731
Tallet, Jessica; Albaret, Jean-Michel; Rivière, James
2015-01-01
Motor memory is the process by which humans can adopt both persistent and flexible motor behaviours. Persistence and flexibility can be assessed through the examination of the cooperation/competition between new and old motor routines in the motor memory repertoire. Two paradigms seem to be particularly relevant to examine this competition/cooperation. First, a manual search task for hidden objects, namely the C-not-B task, which allows examining how a motor routine may influence the selection of action in toddlers. The second paradigm is procedural learning, and more precisely the consolidation stage, which allows assessing how a previously learnt motor routine becomes resistant to subsequent programming or learning of a new - competitive - motor routine. The present article defends the idea that results of both paradigms give precious information to understand the evolution of motor routines in healthy children. Moreover, these findings echo some clinical observations in developmental neuropsychology, particularly in children with Developmental Coordination Disorder. Such studies suggest that the level of equilibrium between persistence and flexibility of motor routines is an index of the maturity of the motor system.
Multiple systems for motor skill learning.
Clark, Dav; Ivry, Richard B
2010-07-01
Motor learning is a ubiquitous feature of human competence. This review focuses on two particular classes of model tasks for studying skill acquisition. The serial reaction time (SRT) task is used to probe how people learn sequences of actions, while adaptation in the context of visuomotor or force field perturbations serves to illustrate how preexisting movements are recalibrated in novel environments. These tasks highlight important issues regarding the representational changes that occur during the course of motor learning. One important theme is that distinct mechanisms vary in their information processing costs during learning and performance. Fast learning processes may require few trials to produce large changes in performance but impose demands on cognitive resources. Slower processes are limited in their ability to integrate complex information but minimally demanding in terms of attention or processing resources. The representations derived from fast systems may be accessible to conscious processing and provide a relatively greater measure of flexibility, while the representations derived from slower systems are more inflexible and automatic in their behavior. In exploring these issues, we focus on how multiple neural systems may interact and compete during the acquisition and consolidation of new behaviors. Copyright © 2010 John Wiley & Sons, Ltd. This article is categorized under: Psychology > Motor Skill and Performance. Copyright © 2010 John Wiley & Sons, Ltd.
Sleep-Related Improvements in Motor Learning Following Mental Practice
ERIC Educational Resources Information Center
Debarnot, Ursula; Creveaux, Thomas; Collet, Christian; Gemignani, Angelo; Massarelli, Raphael; Doyon, Julien; Guillot, Aymeric
2009-01-01
A wide range of experimental studies have provided evidence that a night of sleep may enhance motor performance following physical practice (PP), but little is known, however, about its effect after motor imagery (MI). Using an explicitly learned pointing task paradigm, thirty participants were assigned to one of three groups that differed in the…
Pollock, Courtney L; Boyd, Lara A; Hunt, Michael A; Garland, S Jayne
2014-04-01
Stepping reactions are important for walking balance and community-level mobility. Stepping reactions of people with stroke are characterized by slow reaction times, poor coordination of motor responses, and low amplitude of movements, which may contribute to their decreased ability to recover their balance when challenged. An important aspect of rehabilitation of mobility after stroke is optimizing the motor learning associated with retraining effective stepping reactions. The Challenge Point Framework (CPF) is a model that can be used to promote motor learning through manipulation of conditions of practice to modify task difficulty, that is, the interaction of the skill of the learner and the difficulty of the task to be learned. This case series illustrates how the retraining of multidirectional stepping reactions may be informed by the CPF to improve balance function in people with stroke. Four people (53-68 years of age) with chronic stroke (>1 year) and mild to moderate motor recovery received 4 weeks of multidirectional stepping reaction retraining. Important tenets of motor learning were optimized for each person during retraining in accordance with the CPF. Participants demonstrated improved community-level walking balance, as determined with the Community Balance and Mobility Scale. These improvements were evident 1 year later. Aspects of balance-related self-efficacy and movement kinematics also showed improvements during the course of the intervention. The application of CPF motor learning principles in the retraining of stepping reactions to improve community-level walking balance in people with chronic stroke appears to be promising. The CPF provides a plausible theoretical framework for the progression of functional task training in neurorehabilitation.
Buss, Aaron T; Wifall, Tim; Hazeltine, Eliot; Spencer, John P
2014-02-01
People are typically slower when executing two tasks than when only performing a single task. These dual-task costs are initially robust but are reduced with practice. Dux et al. (2009) explored the neural basis of dual-task costs and learning using fMRI. Inferior frontal junction (IFJ) showed a larger hemodynamic response on dual-task trials compared with single-task trial early in learning. As dual-task costs were eliminated, dual-task hemodynamics in IFJ reduced to single-task levels. Dux and colleagues concluded that the reduction of dual-task costs is accomplished through increased efficiency of information processing in IFJ. We present a dynamic field theory of response selection that addresses two questions regarding these results. First, what mechanism leads to the reduction of dual-task costs and associated changes in hemodynamics? We show that a simple Hebbian learning mechanism is able to capture the quantitative details of learning at both the behavioral and neural levels. Second, is efficiency isolated to cognitive control areas such as IFJ, or is it also evident in sensory motor areas? To investigate this, we restrict Hebbian learning to different parts of the neural model. None of the restricted learning models showed the same reductions in dual-task costs as the unrestricted learning model, suggesting that efficiency is distributed across cognitive control and sensory motor processing systems.
Rats' learning of a new motor skill: insight into the evolution of motor sequence learning.
Hermer-Vazquez, Linda; Moshtagh, Nasim
2009-05-01
Recent behavioral and neural evidence has suggested that ethologically relevant sub-movements (movement primitives) are used by primates for more complex motor skill learning. These primitives include extending the hand, grasping an object, and holding food while moving it toward the mouth. In prior experiments with rats performing a reach-to-grasp-food task, we observed that especially during early task learning, rats appeared to have movement primitives similar to those seen in primates. Unlike primates, however, during task learning the rats performed these sub-movements in a disordered manner not seen in humans or macaques, e.g. with the rat chewing before placing the food pellet in its mouth. Here, in two experiments, we tested the hypothesis that for rats, learning this ecologically relevant skill involved learning to concatenate the sub-movements in the correct order. The results confirmed our initial observations, and suggested that several aspects of forepaw/hand use, taken for granted in primate studies, must be learned by rats to perform a logically connected and seemingly ecologically important series of sub-movements. We discuss our results from a comparative and evolutionary perspective.
Neurophysiological correlates of visuo-motor learning through mental and physical practice.
Allami, Nadia; Brovelli, Andrea; Hamzaoui, El Mehdi; Regragui, Fakhita; Paulignan, Yves; Boussaoud, Driss
2014-03-01
We have previously shown that mental rehearsal can replace up to 75% of physical practice for learning a visuomotor task (Allami, Paulignan, Brovelli, & Boussaoud, (2008). Experimental Brain Research, 184, 105-113). Presumably, mental rehearsal must induce brain changes that facilitate motor learning. We tested this hypothesis by recording scalp electroencephalographic activity (EEG) in two groups of subjects. In one group, subjects executed a reach to grasp task for 240 trials. In the second group, subjects learned the task through a combination of mental rehearsal for the initial 180 trials followed by the execution of 60 trials. Thus, one group physically executed the task for 240 trials, the other only for 60 trials. Amplitudes and latencies of event-related potentials (ERPs) were compared across groups at different stages during learning. We found that ERP activity increases dramatically with training and reaches the same amplitude over the premotor regions in the two groups, despite large differences in physically executed trials. These findings suggest that during mental rehearsal, neuronal changes occur in the motor networks that make physical practice after mental rehearsal more effective in configuring functional networks for skilful behaviour. Copyright © 2013 Elsevier Ltd. All rights reserved.
Whole body heat stress increases motor cortical excitability and skill acquisition in humans.
Littmann, Andrew E; Shields, Richard K
2016-02-01
Vigorous systemic exercise stimulates a cascade of molecular and cellular processes that enhance central nervous system (CNS) plasticity and performance. The influence of heat stress on CNS performance and learning is novel. We designed two experiments to determine whether passive heat stress (1) facilitated motor cortex excitability and (2) improved motor task acquisition compared to no heat stress. Motor evoked potentials (MEPs) from the first dorsal interosseus (FDI) were collected before and after 30 min of heat stress at 73 °C. A second cohort of subjects performed a motor learning task using the FDI either following heat or the no heat condition. Heat stress increased heart rate to 65% of age-predicted maximum. After heat, mean resting MEP amplitude increased 48% (p<0.05). MEP stimulus-response amplitudes did not differ according to stimulus intensity. In the second experiment, heat stress caused a significant decrease in absolute and variable error (p<0.05) during a novel movement task using the FDI. Passive environmental heat stress (1) increases motor cortical excitability, and (2) enhances performance in a motor skill acquisition task. Controlled heat stress may prime the CNS to enhance motor skill acquisition during rehabilitation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
The transition to increased automaticity during finger sequence learning in adult males who stutter.
Smits-Bandstra, Sarah; De Nil, Luc; Rochon, Elizabeth
2006-01-01
The present study compared the automaticity levels of persons who stutter (PWS) and persons who do not stutter (PNS) on a practiced finger sequencing task under dual task conditions. Automaticity was defined as the amount of attention required for task performance. Twelve PWS and 12 control subjects practiced finger tapping sequences under single and then dual task conditions. Control subjects performed the sequencing task significantly faster and less variably under single versus dual task conditions while PWS' performance was consistently slow and variable (comparable to the dual task performance of control subjects) under both conditions. Control subjects were significantly more accurate on a colour recognition distracter task than PWS under dual task conditions. These results suggested that control subjects transitioned to quick, accurate and increasingly automatic performance on the sequencing task after practice, while PWS did not. Because most stuttering treatment programs for adults include practice and automatization of new motor speech skills, findings of this finger sequencing study and future studies of speech sequence learning may have important implications for how to maximize stuttering treatment effectiveness. As a result of this activity, the participant will be able to: (1) Define automaticity and explain the importance of dual task paradigms to investigate automaticity; (2) Relate the proposed relationship between motor learning and automaticity as stated by the authors; (3) Summarize the reviewed literature concerning the performance of PWS on dual tasks; and (4) Explain why the ability to transition to automaticity during motor learning may have important clinical implications for stuttering treatment effectiveness.
Physical Activity Predicts Performance in an Unpracticed Bimanual Coordination Task.
Boisgontier, Matthieu P; Serbruyns, Leen; Swinnen, Stephan P
2017-01-01
Practice of a given physical activity is known to improve the motor skills related to this activity. However, whether unrelated skills are also improved is still unclear. To test the impact of physical activity on an unpracticed motor task, 26 young adults completed the international physical activity questionnaire and performed a bimanual coordination task they had never practiced before. Results showed that higher total physical activity predicted higher performance in the bimanual task, controlling for multiple factors such as age, physical inactivity, music practice, and computer games practice. Linear mixed models allowed this effect of physical activity to be generalized to a large population of bimanual coordination conditions. This finding runs counter to the notion that generalized motor abilities do not exist and supports the existence of a "learning to learn" skill that could be improved through physical activity and that impacts performance in tasks that are not necessarily related to the practiced activity.
Interference from mere thinking: mental rehearsal temporarily disrupts recall of motor memory.
Yin, Cong; Wei, Kunlin
2014-08-01
Interference between successively learned tasks is widely investigated to study motor memory. However, how simultaneously learned motor memories interact with each other has been rarely studied despite its prevalence in daily life. Assuming that motor memory shares common neural mechanisms with declarative memory system, we made unintuitive predictions that mental rehearsal, as opposed to further practice, of one motor memory will temporarily impair the recall of another simultaneously learned memory. Subjects simultaneously learned two sensorimotor tasks, i.e., visuomotor rotation and gain. They retrieved one memory by either practice or mental rehearsal and then had their memory evaluated. We found that mental rehearsal, instead of execution, impaired the recall of unretrieved memory. This impairment was content-independent, i.e., retrieving either gain or rotation impaired the other memory. Hence, conscious recollection of one motor memory interferes with the recall of another memory. This is analogous to retrieval-induced forgetting in declarative memory, suggesting a common neural process across memory systems. Our findings indicate that motor imagery is sufficient to induce interference between motor memories. Mental rehearsal, currently widely regarded as beneficial for motor performance, negatively affects memory recall when it is exercised for a subset of memorized items. Copyright © 2014 the American Physiological Society.
Effects of Acute Sleep Deprivation on Motor and Reversal Learning in Mice
Varga, Andrew W.; Kang, Mihwa; Ramesh, Priyanka V.; Klann, Eric
2014-01-01
Sleep supports the formation of a variety of declarative and non-declarative memories, and sleep deprivation often impairs these types of memories. In human subjects, natural sleep either during a nap or overnight leads to long-lasting improvements in visuomotor and fine motor tasks, but rodent models recapitulating these findings have been scarce. Here we present evidence that 5 hours of acute sleep deprivation impairs mouse skilled reach learning compared to a matched period of ad libitum sleep. In sleeping mice, the duration of total sleep time during the 5 hours of sleep opportunity or during the first bout of sleep did not correlate with ultimate gain in motor performance. In addition, we observed that reversal learning during the skilled reaching task was also affected by sleep deprivation. Consistent with this observation, 5 hours of sleep deprivation also impaired reversal learning in the water-based Y-maze. In conclusion, acute sleep deprivation negatively impacts subsequent motor and reversal learning and memory. PMID:25046627
Effects of acute sleep deprivation on motor and reversal learning in mice.
Varga, Andrew W; Kang, Mihwa; Ramesh, Priyanka V; Klann, Eric
2014-10-01
Sleep supports the formation of a variety of declarative and non-declarative memories, and sleep deprivation often impairs these types of memories. In human subjects, natural sleep either during a nap or overnight leads to long-lasting improvements in visuomotor and fine motor tasks, but rodent models recapitulating these findings have been scarce. Here we present evidence that 5h of acute sleep deprivation impairs mouse skilled reach learning compared to a matched period of ad libitum sleep. In sleeping mice, the duration of total sleep time during the 5h of sleep opportunity or during the first bout of sleep did not correlate with ultimate gain in motor performance. In addition, we observed that reversal learning during the skilled reaching task was also affected by sleep deprivation. Consistent with this observation, 5h of sleep deprivation also impaired reversal learning in the water-based Y-maze. In conclusion, acute sleep deprivation negatively impacts subsequent motor and reversal learning and memory. Copyright © 2014 Elsevier Inc. All rights reserved.
Capelini, Camila Miliani; da Silva, Talita Dias; Tonks, James; Watson, Suzanna; Alvarez, Mayra Priscila Boscolo; de Menezes, Lilian Del Ciello; Favero, Francis Meire; Caromano, Fátima Aparecida; Massetti, Thais; de Mello Monteiro, Carlos Bandeira
2017-01-01
In individuals severely affected with Duchenne muscular dystrophy (DMD), virtual reality has recently been used as a tool to enhance community interaction. Smartphones offer the exciting potential to improve communication, access, and participation, and present the unique opportunity to directly deliver functionality to people with disabilities. To verify whether individuals with DMD improve their motor performance when undertaking a visual motor task using a smartphone game. Fifty individuals with DMD and 50 healthy, typically developing (TD) controls, aged 10-34 years participated in the study. The functional characterization of the sample was determined through Vignos, Egen Klassifikation, and the Motor Function Measure scales. To complete the task, individuals moved a virtual ball around a virtual maze and the time in seconds was measured after every attempt in order to analyze improvement of performance after the practice trials. Motor performance (time to finish each maze) was measured in phases of acquisition, short-term retention, and transfer. Use of the smartphone maze game promoted improvement in performance during acquisition in both groups, which remained in the retention phase. At the transfer phases, with alternative maze tasks, the performance in DMD group was similar to the performance of TD group, with the exception of the transfer to the contralateral hand (nondominant). However, the group with DMD demonstrated longer movement time at all stages of learning, compared with the TD group. The practice of a visual motor task delivered via smartphone game promoted an improvement in performance with similar patterns of learning in both groups. Performance can be influenced by task difficulty, and for people with DMD, motor deficits are responsible for the lower speed of execution. This study indicates that individuals with DMD showed improved performance in a short-term motor learning protocol using a smartphone. We advocate that this technology could be used to promote function in this population.
Capelini, Camila Miliani; da Silva, Talita Dias; Tonks, James; Watson, Suzanna; Alvarez, Mayra Priscila Boscolo; de Menezes, Lilian Del Ciello; Favero, Francis Meire; Caromano, Fátima Aparecida; Massetti, Thais; de Mello Monteiro, Carlos Bandeira
2017-01-01
Background In individuals severely affected with Duchenne muscular dystrophy (DMD), virtual reality has recently been used as a tool to enhance community interaction. Smartphones offer the exciting potential to improve communication, access, and participation, and present the unique opportunity to directly deliver functionality to people with disabilities. Objective To verify whether individuals with DMD improve their motor performance when undertaking a visual motor task using a smartphone game. Patients and methods Fifty individuals with DMD and 50 healthy, typically developing (TD) controls, aged 10–34 years participated in the study. The functional characterization of the sample was determined through Vignos, Egen Klassifikation, and the Motor Function Measure scales. To complete the task, individuals moved a virtual ball around a virtual maze and the time in seconds was measured after every attempt in order to analyze improvement of performance after the practice trials. Motor performance (time to finish each maze) was measured in phases of acquisition, short-term retention, and transfer. Results Use of the smartphone maze game promoted improvement in performance during acquisition in both groups, which remained in the retention phase. At the transfer phases, with alternative maze tasks, the performance in DMD group was similar to the performance of TD group, with the exception of the transfer to the contralateral hand (nondominant). However, the group with DMD demonstrated longer movement time at all stages of learning, compared with the TD group. Conclusion The practice of a visual motor task delivered via smartphone game promoted an improvement in performance with similar patterns of learning in both groups. Performance can be influenced by task difficulty, and for people with DMD, motor deficits are responsible for the lower speed of execution. This study indicates that individuals with DMD showed improved performance in a short-term motor learning protocol using a smartphone. We advocate that this technology could be used to promote function in this population. PMID:28860778
Lopez-Alonso, Virginia; Liew, Sook-Lei; Fernández Del Olmo, Miguel; Cheeran, Binith; Sandrini, Marco; Abe, Mitsunari; Cohen, Leonardo G
2018-01-01
Non-invasive brain stimulation (NIBS) has been widely explored as a way to safely modulate brain activity and alter human performance for nearly three decades. Research using NIBS has grown exponentially within the last decade with promising results across a variety of clinical and healthy populations. However, recent work has shown high inter-individual variability and a lack of reproducibility of previous results. Here, we conducted a small preliminary study to explore the effects of three of the most commonly used excitatory NIBS paradigms over the primary motor cortex (M1) on motor learning (Sequential Visuomotor Isometric Pinch Force Tracking Task) and secondarily relate changes in motor learning to changes in cortical excitability (MEP amplitude and SICI). We compared anodal transcranial direct current stimulation (tDCS), paired associative stimulation (PAS 25 ), and intermittent theta burst stimulation (iTBS), along with a sham tDCS control condition. Stimulation was applied prior to motor learning. Participants ( n = 28) were randomized into one of the four groups and were trained on a skilled motor task. Motor learning was measured immediately after training (online), 1 day after training (consolidation), and 1 week after training (retention). We did not find consistent differential effects on motor learning or cortical excitability across groups. Within the boundaries of our small sample sizes, we then assessed effect sizes across the NIBS groups that could help power future studies. These results, which require replication with larger samples, are consistent with previous reports of small and variable effect sizes of these interventions on motor learning.
Lopez-Alonso, Virginia; Liew, Sook-Lei; Fernández del Olmo, Miguel; Cheeran, Binith; Sandrini, Marco; Abe, Mitsunari; Cohen, Leonardo G.
2018-01-01
Non-invasive brain stimulation (NIBS) has been widely explored as a way to safely modulate brain activity and alter human performance for nearly three decades. Research using NIBS has grown exponentially within the last decade with promising results across a variety of clinical and healthy populations. However, recent work has shown high inter-individual variability and a lack of reproducibility of previous results. Here, we conducted a small preliminary study to explore the effects of three of the most commonly used excitatory NIBS paradigms over the primary motor cortex (M1) on motor learning (Sequential Visuomotor Isometric Pinch Force Tracking Task) and secondarily relate changes in motor learning to changes in cortical excitability (MEP amplitude and SICI). We compared anodal transcranial direct current stimulation (tDCS), paired associative stimulation (PAS25), and intermittent theta burst stimulation (iTBS), along with a sham tDCS control condition. Stimulation was applied prior to motor learning. Participants (n = 28) were randomized into one of the four groups and were trained on a skilled motor task. Motor learning was measured immediately after training (online), 1 day after training (consolidation), and 1 week after training (retention). We did not find consistent differential effects on motor learning or cortical excitability across groups. Within the boundaries of our small sample sizes, we then assessed effect sizes across the NIBS groups that could help power future studies. These results, which require replication with larger samples, are consistent with previous reports of small and variable effect sizes of these interventions on motor learning. PMID:29740271
Motor Learning Characterizes Habilitation of Children With Hemiplegic Cerebral Palsy
Krebs, Hermano I.; Fasoli, Susan E.; Dipietro, Laura; Fragala-Pinkham, Maria; Hughes, Richard; Stein, Joel; Hogan, Neville
2015-01-01
Background This study tested in children with cerebral palsy (CP) whether motor habilitation resembles motor learning. Methods Twelve children with hemiplegic CP ages 5 to 12 years with moderate to severe motor impairments underwent a 16-session robot-mediated planar therapy program to improve upper limb reach, with a focus on shoulder and elbow movements. Participants were trained to execute point-to-point movements (with robot assistance) with the affected arm and were evaluated (without robot assistance) in trained (point-to-point) and untrained (circle-drawing) conditions. Outcomes were measured at baseline, midpoint, immediately after the program, and 1 month postcompletion. Outcome measures were the Fugl-Meyer (FM), Quality of Upper Extremity Skills Test (QUEST), and Modified Ashworth Scale (MAS) scores; parent questionnaire; and robot-based kinematic metrics. To assess whether learning best characterizes motor habilitation in CP, the authors quantified (a) improvement on trained tasks at completion of training (acquisition) and 1 month following completion (retention) and (b) quantified generalization of improvement to untrained tasks. Results After robotic intervention, the authors found significant gains in the FM, QUEST, and parent questionnaire. Robot-based evaluations demonstrated significant improvement in trained movements and that improvement was sustained at follow-up. Furthermore, children improved their performance in untrained movements indicating generalization. Conclusions Motor habilitation in CP exhibits some traits of motor learning. Optimal treatment may not require an extensive repertoire of tasks but rather a select set to promote generalization. PMID:22331211
A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition.
Statton, Matthew A; Encarnacion, Marysol; Celnik, Pablo; Bastian, Amy J
2015-01-01
Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise-resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation programs.
A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition
Statton, Matthew A.; Encarnacion, Marysol; Celnik, Pablo; Bastian, Amy J.
2015-01-01
Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise–resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation programs. PMID:26506413
Sleep-dependent learning and motor-skill complexity
Kuriyama, Kenichi; Stickgold, Robert; Walker, Matthew P.
2004-01-01
Learning of a procedural motor-skill task is known to progress through a series of unique memory stages. Performance initially improves during training, and continues to improve, without further rehearsal, across subsequent periods of sleep. Here, we investigate how this delayed sleep-dependent learning is affected when the task characteristics are varied across several degrees of difficulty, and whether this improvement differentially enhances individual transitions of the motor-sequence pattern being learned. We report that subjects show similar overnight improvements in speed whether learning a five-element unimanual sequence (17.7% improvement), a nine-element unimanual sequence (20.2%), or a five-element bimanual sequence (17.5%), but show markedly increased overnight improvement (28.9%) with a nine-element bimanual sequence. In addition, individual transitions within the motor-sequence pattern that appeared most difficult at the end of training showed a significant 17.8% increase in speed overnight, whereas those transitions that were performed most rapidly at the end of training showed only a non-significant 1.4% improvement. Together, these findings suggest that the sleep-dependent learning process selectively provides maximum benefit to motor-skill procedures that proved to be most difficult prior to sleep. PMID:15576888
Perceived Difficulty of a Motor-Skill Task as a Function of Training.
ERIC Educational Resources Information Center
Bratfisch, Oswald; And Others
A simple device called a "wire labyrinth" was used in an experiment involving learning of a two-hand motor task. The Ss were asked, after completing each of 7 successive trails, to give their estimates of perceived (subjective) difficulty of the task. For this purpose, the psychophysical method of magnitude estimation was used. Time was…
Tracking Plasticity: Effects of Long-Term Rehearsal in Expert Dancers Encoding Music to Movement
Bar, Rachel J.; DeSouza, Joseph F. X.
2016-01-01
Our knowledge of neural plasticity suggests that neural networks show adaptation to environmental and intrinsic change. In particular, studies investigating the neuroplastic changes associated with learning and practicing motor tasks have shown that practicing such tasks results in an increase in neural activation in several specific brain regions. However, studies comparing experts and non-experts suggest that experts employ less neuronal activation than non-experts when performing a familiar motor task. Here, we aimed to determine the long-term changes in neural networks associated with learning a new dance in professional ballet dancers over 34 weeks. Subjects visualized dance movements to music while undergoing fMRI scanning at four time points over 34-weeks. Results demonstrated that initial learning and performance at seven weeks led to increases in activation in cortical regions during visualization compared to the first week. However, at 34 weeks, the cortical networks showed reduced activation compared to week seven. Specifically, motor learning and performance over the 34 weeks showed the typical inverted-U-shaped function of learning. Further, our result demonstrate that learning of a motor sequence of dance movements to music in the real world can be visualized by expert dancers using fMRI and capture highly significant modeled fits of the brain network variance of BOLD signals from early learning to expert level performance. PMID:26824475
Electrophysiological evidence for right frontal lobe dominance in spatial visuomotor learning.
Lang, W; Lang, M; Kornhuber, A; Kornhuber, H H
1986-02-01
Slow negative potential shifts were recorded together with the error made in motor performance when two different groups of 14 students tracked visual stimuli with their right hand. Various visuomotor tasks were compared. A tracking task (T) in which subjects had to track the stimulus directly, showed no decrease of error in motor performance during the experiment. In a distorted tracking task (DT) a continuous horizontal distortion of the visual feedback had to be compensated. The additional demands of this task required visuomotor learning. Another learning condition was a mirrored-tracking task (horizontally inverted tracking, hIT), i.e. an elementary function, such as the concept of changing left and right was interposed between perception and action. In addition, subjects performed a no-tracking control task (NT) in which they started the visual stimulus without tracking it. A slow negative potential shift was associated with the visuomotor performance (TP: tracking potential). In the learning tasks (DT and hIT) this negativity was significantly enhanced over the anterior midline and in hIT frontally and precentrally over both hemispheres. Comparing hIT and T for every subject, the enhancement of the tracking potential in hIT was correlated with the success in motor learning in frontomedial and bilaterally in frontolateral recordings (r = 0.81-0.88). However, comparing DT and T, such a correlation was only found in frontomedial and right frontolateral electrodes (r = 0.5-0.61), but not at the left frontolateral electrode. These experiments are consistent with previous findings and give further neurophysiological evidence for frontal lobe activity in visuomotor learning. The hemispherical asymmetry is discussed in respect to hemispherical specialization (right frontal lobe dominance in spatial visuomotor learning).
Kwon, Hae-Yeon; Ahn, So-Yoon
2016-10-01
[Purpose] This study investigates how a task-oriented training and high-variability practice program can affect the gross motor performance and activities of daily living for children with spastic diplegia and provides an effective and reliable clinical database for future improvement of motor performances skills. [Subjects and Methods] This study randomly assigned seven children with spastic diplegia to each intervention group including that of a control group, task-oriented training group, and a high-variability practice group. The control group only received neurodevelopmental treatment for 40 minutes, while the other two intervention groups additionally implemented a task-oriented training and high-variability practice program for 8 weeks (twice a week, 60 min per session). To compare intra and inter-relationships of the three intervention groups, this study measured gross motor performance measure (GMPM) and functional independence measure for children (WeeFIM) before and after 8 weeks of training. [Results] There were statistically significant differences in the amount of change before and after the training among the three intervention groups for the gross motor performance measure and functional independence measure. [Conclusion] Applying high-variability practice in a task-oriented training course may be considered an efficient intervention method to improve motor performance skills that can tune to movement necessary for daily livelihood through motor experience and learning of new skills as well as change of tasks learned in a complex environment or similar situations to high-variability practice.
Impaired sequential and partially compensated probabilistic skill learning in Parkinson's disease.
Kemény, Ferenc; Demeter, Gyula; Racsmány, Mihály; Valálik, István; Lukács, Ágnes
2018-06-08
The striatal dopaminergic dysfunction in Parkinson's disease (PD) has been associated with deficits in skill learning in numerous studies, but some of the findings remain controversial. Our aim was to explore the generality of the learning deficit using two widely reported skill learning tasks in the same group of Parkinson's patients. Thirty-four patients with PD (mean age: 62.83 years, SD: 7.67) were compared to age-matched healthy adults. Two tasks were employed: the Serial Reaction Time Task (SRT), testing the learning of motor sequences, and the Weather Prediction (WP) task, testing non-sequential probabilistic category learning. On the SRT task, patients with PD showed no significant evidence for sequence learning. These results support and also extend previous findings, suggesting that motor skill learning is vulnerable in PD. On the WP task, the PD group showed the same amount of learning as controls, but they exploited qualitatively different strategies in predicting the target categories. While controls typically combined probabilities from multiple predicting cues, patients with PD instead focused on individual cues. We also found moderate to high correlations between the different measures of skill learning. These findings support our hypothesis that skill learning is generally impaired in PD, and can in some cases be compensated by relying on alternative learning strategies. © 2018 The Authors. Journal of Neuropsychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
Spatio-Temporal Information Analysis of Event-Related BOLD Responses
Alpert, Galit Fuhrmann; Handwerker, Dan; Sun, Felice T.; D’Esposito, Mark; Knight, Robert T.
2009-01-01
A new approach for analysis of event related fMRI (BOLD) signals is proposed. The technique is based on measures from information theory and is used both for spatial localization of task related activity, as well as for extracting temporal information regarding the task dependent propagation of activation across different brain regions. This approach enables whole brain visualization of voxels (areas) most involved in coding of a specific task condition, the time at which they are most informative about the condition, as well as their average amplitude at that preferred time. The approach does not require prior assumptions about the shape of the hemodynamic response function (HRF), nor about linear relations between BOLD response and presented stimuli (or task conditions). We show that relative delays between different brain regions can also be computed without prior knowledge of the experimental design, suggesting a general method that could be applied for analysis of differential time delays that occur during natural, uncontrolled conditions. Here we analyze BOLD signals recorded during performance of a motor learning task. We show that during motor learning, the BOLD response of unimodal motor cortical areas precedes the response in higher-order multimodal association areas, including posterior parietal cortex. Brain areas found to be associated with reduced activity during motor learning, predominantly in prefrontal brain regions, are informative about the task typically at significantly later times. PMID:17188515
A Model for the Transfer of Perceptual-Motor Skill Learning in Human Behaviors
ERIC Educational Resources Information Center
Rosalie, Simon M.; Muller, Sean
2012-01-01
This paper presents a preliminary model that outlines the mechanisms underlying the transfer of perceptual-motor skill learning in sport and everyday tasks. Perceptual-motor behavior is motivated by performance demands and evolves over time to increase the probability of success through adaptation. Performance demands at the time of an event…
Mirror neuron system and observational learning: behavioral and neurophysiological evidence.
Lago-Rodriguez, Angel; Lopez-Alonso, Virginia; Fernández-del-Olmo, Miguel
2013-07-01
Three experiments were performed to study observational learning using behavioral, perceptual, and neurophysiological data. Experiment 1 investigated whether observing an execution model, during physical practice of a transitive task that only presented one execution strategy, led to performance improvements compared with physical practice alone. Experiment 2 investigated whether performing an observational learning protocol improves subjects' action perception. In experiment 3 we evaluated whether the type of practice performed determined the activation of the Mirror Neuron System during action observation. Results showed that, compared with physical practice, observing an execution model during a task that only showed one execution strategy does not provide behavioral benefits. However, an observational learning protocol allows subjects to predict more precisely the outcome of the learned task. Finally, intersperse observation of an execution model with physical practice results in changes of primary motor cortex activity during the observation of the motor pattern previously practiced, whereas modulations in the connectivity between primary and non primary motor areas (PMv-M1; PPC-M1) were not affected by the practice protocol performed by the observer. Copyright © 2013 Elsevier B.V. All rights reserved.
Amadi, Ugwechi; Allman, Claire; Johansen-Berg, Heidi; Stagg, Charlotte J
2015-01-01
The relative timing of plasticity-induction protocols is known to be crucial. For example, anodal transcranial direct current stimulation (tDCS), which increases cortical excitability and typically enhances plasticity, can impair performance if it is applied before a motor learning task. Such timing-dependent effects have been ascribed to homeostatic plasticity, but the specific synaptic site of this interaction remains unknown. We wished to investigate the synaptic substrate, and in particular the role of inhibitory signaling, underpinning the behavioral effects of anodal tDCS in homeostatic interactions between anodal tDCS and motor learning. We used transcranial magnetic stimulation (TMS) to investigate cortical excitability and inhibitory signaling following tDCS and motor learning. Each subject participated in four experimental sessions and data were analyzed using repeated measures ANOVAs and post-hoc t-tests as appropriate. As predicted, we found that anodal tDCS prior to the motor task decreased learning rates. This worsening of learning after tDCS was accompanied by a correlated increase in GABAA activity, as measured by TMS-assessed short interval intra-cortical inhibition (SICI). This provides the first direct demonstration in humans that inhibitory synapses are the likely site for the interaction between anodal tDCS and motor learning, and further, that homeostatic plasticity at GABAA synapses has behavioral relevance in humans. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Vaquero, Lucía; Ramos-Escobar, Neus; François, Clément; Penhune, Virginia; Rodríguez-Fornells, Antoni
2018-06-18
Music learning has received increasing attention in the last decades due to the variety of functions and brain plasticity effects involved during its practice. Most previous reports interpreted the differences between music experts and laymen as the result of training. However, recent investigations suggest that these differences are due to a combination of genetic predispositions with the effect of music training. Here, we tested the relationship of the dorsal auditory-motor pathway with individual behavioural differences in short-term music learning. We gathered structural neuroimaging data from 44 healthy non-musicians (28 females) before they performed a rhythm- and a melody-learning task during a single behavioural session, and manually dissected the arcuate fasciculus (AF) in both hemispheres. The macro- and microstructural organization of the AF (i.e., volume and FA) predicted the learning rate and learning speed in the musical tasks, but only in the right hemisphere. Specifically, the volume of the right anterior segment predicted the synchronization improvement during the rhythm task, the FA in the right long segment was correlated with the learning rate in the melody task, and the volume and FA of the right whole AF predicted the learning speed during the melody task. This is the first study finding a specific relation between different branches within the AF and rhythmic and melodic materials. Our results support the relevant function of the AF as the structural correlate of both auditory-motor transformations and the feedback-feedforward loop, and suggest a crucial involvement of the anterior segment in error-monitoring processes related to auditory-motor learning. These findings have implications for both the neuroscience of music field and second-language learning investigations. Copyright © 2018. Published by Elsevier Inc.
Sakreida, Katrin; Higuchi, Satomi; Di Dio, Cinzia; Ziessler, Michael; Turgeon, Martine; Roberts, Neil; Vogt, Stefan
2018-03-01
Imitation learning involves the acquisition of novel motor patterns based on action observation (AO). We used event-related functional magnetic resonance imaging to study the imitation learning of spatial sequences and rhythms during AO, motor imagery (MI), and imitative execution in nonmusicians and musicians. While both tasks engaged the fronto-parietal mirror circuit, the spatial sequence task recruited posterior parietal and dorsal premotor regions more strongly. The rhythm task involved an additional network for auditory working memory. This partial dissociation supports the concept of task-specific mirror mechanisms. Two regions of cognitive control were identified: 1) dorsolateral prefrontal cortex (DLPFC) was found to be more strongly activated during MI of novel spatial sequences, which allowed us to extend the 2-level model of imitation learning by Buccino et al. (2004) to spatial sequences. 2) During imitative execution of both tasks, the posterior medial frontal cortex was robustly activated, along with the DLPFC, which suggests that both regions are involved in the cognitive control of imitation learning. The musicians' selective behavioral advantage for rhythm imitation was reflected cortically in enhanced sensory-motor processing during AO and by the absence of practice-related activation differences in DLPFC during rhythm execution. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Sela, Itamar; Karni, Avi
2012-01-01
The ‘Cerebellar Deficit Theory’ of developmental dyslexia proposes that a subtle developmental cerebellar dysfunction leads to deficits in attaining ‘automatic’ procedures and therefore manifests as subtle motor impairments (e.g., balance control, motor skill learning) in addition to the reading and phonological difficulties. A more recent version of the theory suggests a core deficit in motor skill acquisition. This study was undertaken to compare the time-course and the nature of practice-related changes in volitional (manual) and non-volitional (posture) motor performance in dyslexic and typical readers while learning a new movement sequence. Seventeen dyslexic and 26 skilled young adult readers underwent a three-session training program in which they practiced a novel sequence of manual movements while standing in a quiet stance position. Both groups exhibited robust and well-retained gains in speed, with no loss of accuracy, on the volitional, manual, aspects of the task, with a time-course characteristic of procedural learning. However, the dyslexic readers exhibited a pervasive slowness in the initiation of volitional performance. In addition, while typical readers showed clear and well-retained task-related adaptation of the balance and posture control system, the dyslexic readers had significantly larger sway and variance of sway throughout the three sessions and were less efficient in adapting the posture control system to support the acquisition of the novel movement sequence. These results support the notion of a non-language-related deficit in developmental dyslexia, one related to the recruitment of motor systems for effective task performance rather than to a general motor learning disability. PMID:23049736
Behavioral responses of trained squirrel and rhesus monkeys during oculomotor tasks
Heiney, Shane A.; Blazquez, Pablo M.
2018-01-01
The oculomotor system is the motor system of choice for many neuroscientists studying motor control and learning because of its simplicity, easy control of inputs (e.g., visual stimulation), and precise control and measurement of motor outputs (eye position). This is especially true in primates, which are easily trained to perform oculomotor tasks. Here we provide the first detailed characterization of the oculomotor performance of trained squirrel monkeys, primates used extensively in oculomotor physiology, during saccade and smooth pursuit tasks, and compare it to that of the rhesus macaque. We found that both primates have similar oculomotor behavior but the rhesus shows a larger oculomotor range, better performance for horizontal saccades above 10 degrees, and better horizontal smooth pursuit gain to target velocities above 15 deg/s. These results are important for interspecies comparisons and necessary when selecting the best stimuli to study motor control and motor learning in the oculomotor systems of these primates. PMID:21656216
Watch and Learn: Seeing Is Better than Doing when Acquiring Consecutive Motor Tasks
Larssen, Beverley C.; Ong, Nicole T.; Hodges, Nicola J.
2012-01-01
During motor adaptation learning, consecutive physical practice of two different tasks compromises the retention of the first. However, there is evidence that observational practice, while still effectively aiding acquisition, will not lead to interference and hence prove to be a better practice method. Observers and Actors practised in a clockwise (Task A) followed by a counterclockwise (Task B) visually rotated environment, and retention was immediately assessed. An Observe-all and Act-all group were compared to two groups who both physically practised Task A, but then only observed (ObsB) or did not see or practice Task B (NoB). The two observer groups and the NoB control group better retained Task A than Actors, although importantly only the observer groups learnt Task B. RT data and explicit awareness of the rotation suggested that the observers had acquired their respective tasks in a more strategic manner than Actor and Control groups. We conclude that observational practice benefits learning of multiple tasks more than physical practice due to the lack of updating of implicit, internal models for aiming in the former. PMID:22723909
Fluet, Gerard G; Patel, Jigna; Qiu, Qinyin; Yarossi, Matthew; Massood, Supriya; Adamovich, Sergei V; Tunik, Eugene; Merians, Alma S
2017-07-01
The complexity of upper extremity (UE) behavior requires recovery of near normal neuromuscular function to minimize residual disability following a stroke. This requirement places a premium on spontaneous recovery and neuroplastic adaptation to rehabilitation by the lesioned hemisphere. Motor skill learning is frequently cited as a requirement for neuroplasticity. Studies examining the links between training, motor learning, neuroplasticity, and improvements in hand motor function are indicated. This case study describes a patient with slow recovering hand and finger movement (Total Upper Extremity Fugl-Meyer examination score = 25/66, Wrist and Hand items = 2/24 on poststroke day 37) following a stroke. The patient received an intensive eight-session intervention utilizing simulated activities that focused on the recovery of finger extension, finger individuation, and pinch-grasp force modulation. Over the eight sessions, the patient demonstrated improvements on untrained transfer tasks, which suggest that motor learning had occurred, as well a dramatic increase in hand function and corresponding expansion of the cortical motor map area representing several key muscles of the paretic hand. Recovery of hand function and motor map expansion continued after discharge through the three-month retention testing. This case study describes a neuroplasticity based intervention for UE hemiparesis and a model for examining the relationship between training, motor skill acquisition, neuroplasticity, and motor function changes. Implications for rehabilitation Intensive hand and finger rehabilitation activities can be added to an in-patient rehabilitation program for persons with subacute stroke. Targeted training of the thumb may have an impact on activity level function in persons with upper extremity hemiparesis. Untrained transfer tasks can be utilized to confirm that training tasks have elicited motor learning. Changes in cortical motor maps can be used to document changes in brain function which can be used to evaluate changes in motor behavior persons with subacute stroke.
On the role of cost-sensitive learning in multi-class brain-computer interfaces.
Devlaminck, Dieter; Waegeman, Willem; Wyns, Bart; Otte, Georges; Santens, Patrick
2010-06-01
Brain-computer interfaces (BCIs) present an alternative way of communication for people with severe disabilities. One of the shortcomings in current BCI systems, recently put forward in the fourth BCI competition, is the asynchronous detection of motor imagery versus resting state. We investigated this extension to the three-class case, in which the resting state is considered virtually lying between two motor classes, resulting in a large penalty when one motor task is misclassified into the other motor class. We particularly focus on the behavior of different machine-learning techniques and on the role of multi-class cost-sensitive learning in such a context. To this end, four different kernel methods are empirically compared, namely pairwise multi-class support vector machines (SVMs), two cost-sensitive multi-class SVMs and kernel-based ordinal regression. The experimental results illustrate that ordinal regression performs better than the other three approaches when a cost-sensitive performance measure such as the mean-squared error is considered. By contrast, multi-class cost-sensitive learning enables us to control the number of large errors made between two motor tasks.
Social Cues Alter Implicit Motor Learning in a Serial Reaction Time Task.
Geiger, Alexander; Cleeremans, Axel; Bente, Gary; Vogeley, Kai
2018-01-01
Learning is a central ability for human development. Many skills we learn, such as language, are learned through observation or imitation in social contexts. Likewise, many skills are learned implicitly, that is, without an explicit intent to learn and without full awareness of the acquired knowledge. Here, we asked whether performance in a motor learning task is modulated by social vs. object cues of varying validity. To address this question, we asked participants to carry out a serial reaction time (SRT) task in which, on each trial, people have to respond as fast and as accurately as possible to the appearance of a stimulus at one of four possible locations. Unbeknownst to participants, the sequence of successive locations was sequentially structured, so that knowledge of the sequence facilitates anticipation of the next stimulus and hence faster motor responses. Crucially, each trial also contained a cue pointing to the next stimulus location. Participants could thus learn based on the cue, or on learning about the sequence of successive locations, or on a combination of both. Results show an interaction between cue type and cue validity for the motor responses: social cues (vs. object cues) led to faster responses in the low validity (LV) condition only. Concerning the extent to which learning was implicit, results show that in the cued blocks only, the highly valid social cue led to implicit learning. In the uncued blocks, participants showed no implicit learning in the highly valid social cue condition, but did in all other combinations of stimulus type and cueing validity. In conclusion, our results suggest that implicit learning is context-dependent and can be influenced by the cue type, e.g., social and object cues.
Shared internal models for feedforward and feedback control.
Wagner, Mark J; Smith, Maurice A
2008-10-15
A child often learns to ride a bicycle in the driveway, free of unforeseen obstacles. Yet when she first rides in the street, we hope that if a car suddenly pulls out in front of her, she will combine her innate goal of avoiding an accident with her learned knowledge of the bicycle, and steer away or brake. In general, when we train to perform a new motor task, our learning is most robust if it updates the rules of online error correction to reflect the rules and goals of the new task. Here we provide direct evidence that, after a new feedforward motor adaptation, motor feedback responses to unanticipated errors become precisely task appropriate, even when such errors were never experienced during training. To study this ability, we asked how, if at all, do online responses to occasional, unanticipated force pulses during reaching arm movements change after adapting to altered arm dynamics? Specifically, do they change in a task-appropriate manner? In our task, subjects learned novel velocity-dependent dynamics. However, occasional force-pulse perturbations produced unanticipated changes in velocity. Therefore, after adaptation, task-appropriate responses to unanticipated pulses should compensate corresponding changes in velocity-dependent dynamics. We found that after adaptation, pulse responses precisely compensated these changes, although they were never trained to do so. These results provide evidence for a smart feedback controller which automatically produces responses specific to the learned dynamics of the current task. To accomplish this, the neural processes underlying feedback control must (1) be capable of accurate real-time state prediction for velocity via a forward model and (2) have access to recently learned changes in internal models of limb dynamics.
Resting-state connectivity predicts visuo-motor skill learning.
Manuel, Aurélie L; Guggisberg, Adrian G; Thézé, Raphaël; Turri, Francesco; Schnider, Armin
2018-08-01
Spontaneous brain activity at rest is highly organized even when the brain is not explicitly engaged in a task. Functional connectivity (FC) in the alpha frequency band (α, 8-12 Hz) during rest is associated with improved performance on various cognitive and motor tasks. In this study we explored how FC is associated with visuo-motor skill learning and offline consolidation. We tested two hypotheses by which resting-state FC might achieve its impact on behavior: preparing the brain for an upcoming task or consolidating training gains. Twenty-four healthy participants were assigned to one of two groups: The experimental group (n = 12) performed a computerized mirror-drawing task. The control group (n = 12) performed a similar task but with concordant cursor direction. High-density 156-channel resting-state EEG was recorded before and after learning. Subjects were tested for offline consolidation 24h later. The Experimental group improved during training and showed offline consolidation. Increased α-FC between the left superior parietal cortex and the rest of the brain before training and decreased α-FC in the same region after training predicted learning. Resting-state FC following training did not predict offline consolidation and none of these effects were present in controls. These findings indicate that resting-state alpha-band FC is primarily implicated in providing optimal neural resources for upcoming tasks. Copyright © 2018 Elsevier Inc. All rights reserved.
Mang, Cameron S.; Snow, Nicholas J.; Campbell, Kristin L.; Ross, Colin J. D.
2014-01-01
The objectives of the present study were to evaluate the impact of a single bout of high-intensity aerobic exercise on 1) long-term potentiation (LTP)-like neuroplasticity via response to paired associative stimulation (PAS) and 2) the temporal and spatial components of sequence-specific implicit motor learning. Additionally, relationships between exercise-induced increases in systemic brain-derived neurotrophic factor (BDNF) and response to PAS and motor learning were evaluated. Sixteen young healthy participants completed six experimental sessions, including the following: 1) rest followed by PAS; 2) aerobic exercise followed by PAS; 3) rest followed by practice of a continuous tracking (CT) task and 4) a no-exercise 24-h retention test; and 5) aerobic exercise followed by CT task practice and 6) a no-exercise 24-h retention test. The CT task included an embedded repeated sequence allowing for evaluation of sequence-specific implicit learning. Slope of motor-evoked potential recruitment curves generated with transcranial magnetic stimulation showed larger increases when PAS was preceded by aerobic exercise (59.8% increase) compared with rest (14.2% increase, P = 0.02). Time lag of CT task performance on the repeated sequence improved under the aerobic exercise condition from early (−100.8 ms) to late practice (−75.2 ms, P < 0.001) and was maintained at retention (−79.2 ms, P = 0.004) but did not change under the rest condition (P > 0.16). Systemic BDNF increased on average by 3.4-fold following aerobic exercise (P = 0.003), but the changes did not relate to neurophysiological or behavioral measures (P > 0.42). These results indicate that a single bout of high-intensity aerobic exercise can prime LTP-like neuroplasticity and promote sequence-specific implicit motor learning. PMID:25257866
Primary Motor Cortex Involvement in Initial Learning during Visuomotor Adaptation
ERIC Educational Resources Information Center
Riek, Stephan; Hinder, Mark R.; Carson, Richard G.
2012-01-01
Human motor behaviour is continually modified on the basis of errors between desired and actual movement outcomes. It is emerging that the role played by the primary motor cortex (M1) in this process is contingent upon a variety of factors, including the nature of the task being performed, and the stage of learning. Here we used repetitive TMS to…
Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice
Hasan, Mazahir T.; Hernández-González, Samuel; Dogbevia, Godwin; Treviño, Mario; Bertocchi, Ilaria; Gruart, Agnès; Delgado-García, José M.
2013-01-01
The primary motor cortex has an important role in the precise execution of learned motor responses. During motor learning, synaptic efficacy between sensory and primary motor cortical neurons is enhanced, possibly involving long-term potentiation and N-methyl-D-aspartate (NMDA)-specific glutamate receptor function. To investigate whether NMDA receptor in the primary motor cortex can act as a coincidence detector for activity-dependent changes in synaptic strength and associative learning, here we generate mice with deletion of the Grin1 gene, encoding the essential NMDA receptor subunit 1 (GluN1), specifically in the primary motor cortex. The loss of NMDA receptor function impairs primary motor cortex long-term potentiation in vivo. Importantly, it impairs the synaptic efficacy between the primary somatosensory and primary motor cortices and significantly reduces classically conditioned eyeblink responses. Furthermore, compared with wild-type littermates, mice lacking primary motor cortex show slower learning in Skinner-box tasks. Thus, primary motor cortex NMDA receptors are necessary for activity-dependent synaptic strengthening and associative learning. PMID:23978820
Abnormal experimentally- and behaviorally-induced LTP-like plasticity in focal hand dystonia.
Belvisi, Daniele; Suppa, Antonio; Marsili, Luca; Di Stasio, Flavio; Parvez, Ahmad Khandker; Agostino, Rocco; Fabbrini, Giovanni; Berardelli, Alfredo
2013-02-01
Idiopathic focal hand dystonia (FHD) arises from abnormal plasticity in the primary motor cortex (M1) possibly reflecting abnormal sensori-motor integration processes. In this transcranial magnetic stimulation (TMS) study in FHD, we evaluated changes in motor evoked potentials (MEPs) after intermittent theta burst stimulation (iTBS) and paired associative stimulation (PAS), techniques that elicit different forms of experimentally-induced long-term potentiation (LTP)-like plasticity in M1. We also examined behaviorally-induced LTP-like plasticity as reflected by early motor learning of a simple motor task. We studied 14 patients with FHD and 14 healthy subjects. MEPs were recorded before and after iTBS and PAS at the 25 ms interstimulus interval (PAS(25)) in separate sessions. Subjects did a simple motor task entailing repetitive index finger abductions. To measure early motor learning we tested practice-related improvement in peak velocity and peak acceleration. In FHD patients iTBS failed to elicit the expected MEP changes and PAS(25) induced abnormally increased MEPs in target and non-target muscles. In the experiment testing early motor learning, patients lacked the expected practice-related changes in kinematic variables. In FHD, the degree of early motor learning correlated with patients' clinical features. We conclude that experimentally-induced (iTBS and PAS) and behaviorally-induced LTP-like plasticity are both altered in FHD. Copyright © 2012 Elsevier Inc. All rights reserved.
Executive Function Is Associated With Off-Line Motor Learning in People With Chronic Stroke.
Al-Dughmi, Mayis; Al-Sharman, Alham; Stevens, Suzanne; Siengsukon, Catherine F
2017-04-01
Sleep has been shown to promote off-line motor learning in individuals following stroke. Executive function ability has been shown to be a predictor of participation in rehabilitation and motor recovery following stroke. The purpose of this study was to explore the association between executive function and off-line motor learning in individuals with chronic stroke compared with healthy control participants. Seventeen individuals with chronic stroke (>6 months poststroke) and 9 healthy adults were included in the study. Participants underwent 3 consecutive nights of polysomnography, practiced a continuous tracking task the morning of the third day, and underwent a retention test the morning after the third night. Participants underwent testing on 4 executive function tests after the continuous tracking task retention test. Participants with stroke showed a significant positive correlation between the off-line motor learning score and performance on the Trail-Making Test from Delis-Kaplan Executive Function System (r = 0.652; P = 0.005), while the healthy control participants did not. Regression analysis showed that the Trail-Making Test-Delis-Kaplan Executive Function System is a significant predictor of off-line motor learning (P = 0.008). This is the first study to demonstrate that better performance on an executive function test of attention and set-shifting predicts a higher magnitude of off-line motor learning in individuals with chronic stroke. This emphasizes the need to consider attention and set-shifting abilities of individuals following stroke as these abilities are associated with motor learning. This in turn could affect learning of activities of daily living and impact functional recovery following stroke.Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A166).
When money is not enough: awareness, success, and variability in motor learning.
Manley, Harry; Dayan, Peter; Diedrichsen, Jörn
2014-01-01
When performing a skill such as throwing a dart, many different combinations of joint motions suffice to hit the target. The motor system adapts rapidly to reduce bias in the desired outcome (i.e., the first-order moment of the error); however, the essence of skill is to produce movements with less variability (i.e., to reduce the second-order moment). It is easy to see how feedback about success or failure could sculpt performance to achieve this aim. However, it is unclear whether the dimensions responsible for success or failure need to be known explicitly by the subjects, or whether learning can proceed without explicit awareness of the movement parameters that need to change. Here, we designed a redundant, two-dimensional reaching task in which we could selectively manipulate task success and the variability of action outcomes, whilst also manipulating awareness of the dimension along which performance could be improved. Variability was manipulated either by amplifying natural errors, leaving the correlation between the executed movement and the visual feedback intact, or by adding extrinsic noise, decorrelating movement and feedback. We found that explicit, binary, feedback about success or failure was only sufficient for learning when participants were aware of the dimension along which motor behavior had to change. Without such awareness, learning was only present when extrinsic noise was added to the feedback, but not when task success or variability was manipulated in isolation; learning was also much slower. Our results highlight the importance of conscious awareness of the relevant dimension during motor learning, and suggest that higher-order moments of outcome signals are likely to play a significant role in skill learning in complex tasks.
Learning a locomotor task: with or without errors?
Marchal-Crespo, Laura; Schneider, Jasmin; Jaeger, Lukas; Riener, Robert
2014-03-04
Robotic haptic guidance is the most commonly used robotic training strategy to reduce performance errors while training. However, research on motor learning has emphasized that errors are a fundamental neural signal that drive motor adaptation. Thus, researchers have proposed robotic therapy algorithms that amplify movement errors rather than decrease them. However, to date, no study has analyzed with precision which training strategy is the most appropriate to learn an especially simple task. In this study, the impact of robotic training strategies that amplify or reduce errors on muscle activation and motor learning of a simple locomotor task was investigated in twenty two healthy subjects. The experiment was conducted with the MAgnetic Resonance COmpatible Stepper (MARCOS) a special robotic device developed for investigations in the MR scanner. The robot moved the dominant leg passively and the subject was requested to actively synchronize the non-dominant leg to achieve an alternating stepping-like movement. Learning with four different training strategies that reduce or amplify errors was evaluated: (i) Haptic guidance: errors were eliminated by passively moving the limbs, (ii) No guidance: no robot disturbances were presented, (iii) Error amplification: existing errors were amplified with repulsive forces, (iv) Noise disturbance: errors were evoked intentionally with a randomly-varying force disturbance on top of the no guidance strategy. Additionally, the activation of four lower limb muscles was measured by the means of surface electromyography (EMG). Strategies that reduce or do not amplify errors limit muscle activation during training and result in poor learning gains. Adding random disturbing forces during training seems to increase attention, and therefore improve motor learning. Error amplification seems to be the most suitable strategy for initially less skilled subjects, perhaps because subjects could better detect their errors and correct them. Error strategies have a great potential to evoke higher muscle activation and provoke better motor learning of simple tasks. Neuroimaging evaluation of brain regions involved in learning can provide valuable information on observed behavioral outcomes related to learning processes. The impacts of these strategies on neurological patients need further investigations.
Helm, Erin E; Matt, Kathleen S; Kirschner, Kenneth F; Pohlig, Ryan T; Kohl, Dave; Reisman, Darcy S
2017-10-01
Brain-derived neurotrophic factor (BDNF) has been directly related to exercise-enhanced motor performance in the neurologically injured animal model; however literature concerning the role of BDNF in the enhancement of motor learning in the human population is limited. Previous studies in healthy subjects have examined the relationship between intensity of an acute bout of exercise, increases in peripheral BDNF and motor learning of a simple isometric upper extremity task. The current study examined the role of high intensity exercise on upregulation of peripheral BDNF levels as well as the role of high intensity exercise in mediation of motor learning and retention of a novel locomotor task in neurologically intact adults. In addition, the impact of a single nucleotide polymorphism in the BDNF gene (Val66Met) in moderating the relationship between exercise and motor learning was explored. It was hypothesized that participation in high intensity exercise prior to practicing a novel walking task (split-belt treadmill walking) would elicit increases in peripheral BDNF as well as promote an increased rate and magnitude of within session learning and retention on a second day of exposure to the walking task. Within session learning and retention would be moderated by the presence or absence of Val66Met polymorphism. Fifty-four neurologically intact participants participated in two sessions of split-belt treadmill walking. Step length and limb phase were measured to assess learning of spatial and temporal parameters of walking. Serum BDNF was collected prior to and immediately following either high intensity exercise or 5min of quiet rest. The results demonstrated that high intensity exercise provides limited additional benefit to learning of a novel locomotor pattern in neurologically intact adults, despite increases in circulating BDNF. In addition, presence of a single nucleotide polymorphism on the BDNF gene did not moderate the magnitude of serum BDNF increases with high intensity exercise, nor did it moderate the relationship between high intensity exercise and locomotor learning. Copyright © 2017 Elsevier Inc. All rights reserved.
Speech Motor Sequence Learning: Acquisition and Retention in Parkinson Disease and Normal Aging
ERIC Educational Resources Information Center
Whitfield, Jason A.; Goberman, Alexander M.
2017-01-01
Purpose: The aim of the current investigation was to examine speech motor sequence learning in neurologically healthy younger adults, neurologically healthy older adults, and individuals with Parkinson disease (PD) over a 2-day period. Method: A sequential nonword repetition task was used to examine learning over 2 days. Participants practiced a…
Does (Non-)Meaningful Sensori-Motor Engagement Promote Learning with Animated Physical Systems?
ERIC Educational Resources Information Center
Pouw, Wim T. J. L.; Eielts, Charly; Gog, Tamara; Zwaan, Rolf A.; Paas, Fred
2016-01-01
Previous research indicates that sensori-motor experience with physical systems can have a positive effect on learning. However, it is not clear whether this effect is caused by mere bodily engagement or the intrinsically meaningful information that such interaction affords in performing the learning task. We investigated (N = 74), through the use…
Self-Controlled Amount of Practice Benefits Learning of a Motor Skill
ERIC Educational Resources Information Center
Post, Phillip G.; Fairbrother, Jeffrey T.; Barros, Joao A. C.
2011-01-01
Self-control over factors involving task-related information (e.g., feedback) can enhance motor learning. It is unknown if these benefits extend to manipulations that do not directly affect such information. The purpose of this study was to determine if self-control over the amount of practice would also facilitate learning. Participants learned…
Enhancing motor learning through peer tutoring.
Feinberg, Judy R; Elkington, Sarah J; Dewey, Kimberly A; Dzielawa, Dawn M; Hayden, Nicky L; Blankenship, Staci L; Nahrwold, Christopher M; Smith, Jennifer L
2002-01-01
The purpose of this study was to examine the efficacy of incorporating mnemonic memory aids and having a subject teach another person a given task (peer tutoring) as a method of enhancing task acquisition and recall by the subject and to discuss the implications for occupational therapists who instruct clients in motor tasks such as therapeutic exercise programs. Sixty-seven college students were randomly assigned to one of three groups using different teaching methods for the purpose of learning a motor task, specifically the American Sign Language alphabet. Subjects who were taught using mnemonics and peer tutoring scored significantly better on post-testing two days following instruction than did the control groups. Use of these techniques did not increase direct teaching time by the instructor, nor did they incur additional costs. Thus, these techniques may be easily incorporated into client education to improve recall and performance.
Unstable Memories Create a High-Level Representation that Enables Learning Transfer.
Mosha, Neechi; Robertson, Edwin M
2016-01-11
A memory is unstable, making it susceptible to interference and disruption, after its acquisition [1-4]. The function or possible benefit of a memory being unstable at its acquisition is not well understood. Potentially, instability may be critical for the communication between recently acquired memories, which would allow learning in one task to be transferred to the other subsequent task [1, 5]. Learning may be transferred between any memories that are unstable, even between different types of memory. Here, we test the link between a memory being unstable and the transfer of learning to a different type of memory task. We measured how learning in one task transferred to and thus improved learning in a subsequent task. There was transfer from a motor skill to a word list task and, vice versa, from a word list to a motor skill task. What was transferred was a high-level relationship between elements, rather than knowledge of the individual elements themselves. Memory instability was correlated with subsequent transfer, suggesting that transfer was related to the instability of the memory. Using different methods, we stabilized the initial memory, preventing it from being susceptible to interference, and found that these methods consistently prevented transfer to the subsequent memory task. This suggests that the transfer of learning across diverse tasks is due to a high-level representation that can only be formed when a memory is unstable. Our work has identified an important function of memory instability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Changes of motor-cortical oscillations associated with motor learning.
Pollok, B; Latz, D; Krause, V; Butz, M; Schnitzler, A
2014-09-05
Motor learning results from practice but also between practice sessions. After skill acquisition early consolidation results in less interference with other motor tasks and even improved performance of the newly learned skill. A specific significance of the primary motor cortex (M1) for early consolidation has been suggested. Since synchronized oscillatory activity is assumed to facilitate neuronal plasticity, we here investigate alterations of motor-cortical oscillations by means of event-related desynchronization (ERD) at alpha (8-12 Hz) and beta (13-30 Hz) frequencies in healthy humans. Neuromagnetic activity was recorded using a 306-channel whole-head magnetoencephalography (MEG) system. ERD was investigated in 15 subjects during training on a serial reaction time task and 10 min after initial training. The data were compared with performance during a randomly varying sequence serving as control condition. The data reveal a stepwise decline of alpha-band ERD associated with faster reaction times replicating previous findings. The amount of beta-band suppression was significantly correlated with reduction of reaction times. While changes of alpha power have been related to lower cognitive control after initial skill acquisition, the present data suggest that the amount of beta suppression represents a neurophysiological marker of early cortical reorganization associated with motor learning. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Berman, Brian D.; Horovitz, Silvina G.; Venkataraman, Gaurav; Hallett, Mark
2011-01-01
Advances in fMRI data acquisition and processing have made it possible to analyze brain activity as rapidly as the images are acquired allowing this information to be fed back to subjects in the scanner. The ability of subjects to learn to volitionally control localized brain activity within motor cortex using such real-time fMRI-based neurofeedback (NF) is actively being investigated as it may have clinical implications for motor rehabilitation after central nervous system injury and brain-computer interfaces. We investigated the ability of fifteen healthy volunteers to use NF to modulate brain activity within the primary motor cortex (M1) during a finger tapping and tapping imagery task. The M1 hand area ROI (ROIm) was functionally localized during finger tapping and a visual representation of BOLD signal changes within the ROIm fed back to the subject in the scanner. Surface EMG was used to assess motor output during tapping and ensure no motor activity was present during motor imagery task. Subjects quickly learned to modulate brain activity within their ROIm during the finger-tapping task, which could be dissociated from the magnitude of the tapping, but did not show a significant increase within the ROIm during the hand motor imagery task at the group level despite strongly activating a network consistent with the performance of motor imagery. The inability of subjects to modulate M1 proper with motor imagery may reflect an inherent difficulty in activating synapses in this area, with or without NF, since such activation may lead to M1 neuronal output and obligatory muscle activity. Future real-time fMRI-based NF investigations involving motor cortex may benefit from focusing attention on cortical regions other than M1 for feedback training or alternative feedback strategies such as measures of functional connectivity within the motor system. PMID:21803163
Inter-cortical Modulation from Premotor to Motor Plasticity.
Huang, Ying-Zu; Chen, Rou-Shayn; Fong, Po-Yu; Rothwell, John C; Chuang, Wen-Li; Weng, Yi-Hsin; Lin, Wey-Yil; Lu, Chin-Song
2018-06-11
Plasticity is involved in daily activities but abnormal plasticity may be deleterious. In this study, we found that motor plasticity could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Such changes in motor plasticity were associated with reduced learning of a simple motor task. We postulate that the premotor cortex adjusts the amount of motor plasticity to modulate motor learning through heterosynaptic metaplasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network. This concept could be employed to intervene in diseases with abnormal plasticity. Primary motor cortex (M1) plasticity is known to be influenced by the excitability and prior activation history of M1 itself. However, little is known about how its plasticity is influenced by other areas of the brain. In the present study on humans of either sex who were known to respond to theta burst stimulation from previous studies, we found plasticity of M1 could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Motor plasticity was distorted and disappeared 30 min and 120 min respectively after premotor excitability was suppressed. Further evaluation revealed that such changes in motor plasticity were associated with impaired learning of a simple motor task. We postulate that the premotor cortex modulates the amount of plasticity within M1 through heterosynaptic metaplasticity, and that this may impact on learning of a simple motor task previously shown to be directly affected by M1 plasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network. Furthermore, such concepts could be translated into therapeutic approaches for diseases with aberrant plasticity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Muscle cocontraction following dynamics learning.
Darainy, Mohammad; Ostry, David J
2008-09-01
Coactivation of antagonist muscles is readily observed early in motor learning, in interactions with unstable mechanical environments and in motor system pathologies. Here we present evidence that the nervous system uses coactivation control far more extensively and that patterns of cocontraction during movement are closely tied to the specific requirements of the task. We have examined the changes in cocontraction that follow dynamics learning in tasks that are thought to involve finely sculpted feedforward adjustments to motor commands. We find that, even following substantial training, cocontraction varies in a systematic way that depends on both movement direction and the strength of the external load. The proportion of total activity that is due to cocontraction nevertheless remains remarkably constant. Moreover, long after indices of motor learning and electromyographic measures have reached asymptotic levels, cocontraction still accounts for a significant proportion of total muscle activity in all phases of movement and in all load conditions. These results show that even following dynamics learning in predictable and stable environments, cocontraction forms a central part of the means by which the nervous system regulates movement.
Marzullo, T C; Dudley, J R; Miller, C R; Trejo, L; Kipke, D R
2005-01-01
Brain machine interface development typically falls into two arenas, invasive extracellular recording and non-invasive electroencephalogram recording methods. The relationship between action potentials and field potentials is not well understood, and investigation of interrelationships may improve design of neuroprosthetic control systems. Rats were trained on a motor learning task whereby they had to insert their noses into an aperture while simultaneously pressing down on levers with their forepaws; spikes, local field potentials (LFPs), and electrocorticograms (ECoGs) over the motor cortex were recorded and characterized. Preliminary results suggest that the LFP activity in lower cortical layers oscillates with the ECoG.
A developmental roadmap for learning by imitation in robots.
Lopes, Manuel; Santos-Victor, José
2007-04-01
In this paper, we present a strategy whereby a robot acquires the capability to learn by imitation following a developmental pathway consisting on three levels: 1) sensory-motor coordination; 2) world interaction; and 3) imitation. With these stages, the system is able to learn tasks by imitating human demonstrators. We describe results of the different developmental stages, involving perceptual and motor skills, implemented in our humanoid robot, Baltazar. At each stage, the system's attention is drawn toward different entities: its own body and, later on, objects and people. Our main contributions are the general architecture and the implementation of all the necessary modules until imitation capabilities are eventually acquired by the robot. Also, several other contributions are made at each level: learning of sensory-motor maps for redundant robots, a novel method for learning how to grasp objects, and a framework for learning task description from observation for program-level imitation. Finally, vision is used extensively as the sole sensing modality (sometimes in a simplified setting) avoiding the need for special data-acquisition hardware.
New Learning of Music after Bilateral Medial Temporal Lobe Damage: Evidence from an Amnesic Patient
Valtonen, Jussi; Gregory, Emma; Landau, Barbara; McCloskey, Michael
2014-01-01
Damage to the hippocampus impairs the ability to acquire new declarative memories, but not the ability to learn simple motor tasks. An unresolved question is whether hippocampal damage affects learning for music performance, which requires motor processes, but in a cognitively complex context. We studied learning of novel musical pieces by sight-reading in a newly identified amnesic, LSJ, who was a skilled amateur violist prior to contracting herpes simplex encephalitis. LSJ has suffered virtually complete destruction of the hippocampus bilaterally, as well as extensive damage to other medial temporal lobe structures and the left anterior temporal lobe. Because of LSJ’s rare combination of musical training and near-complete hippocampal destruction, her case provides a unique opportunity to investigate the role of the hippocampus for complex motor learning processes specifically related to music performance. Three novel pieces of viola music were composed and closely matched for factors contributing to a piece’s musical complexity. LSJ practiced playing two of the pieces, one in each of the two sessions during the same day. Relative to a third unpracticed control piece, LSJ showed significant pre- to post-training improvement for the two practiced pieces. Learning effects were observed both with detailed analyses of correctly played notes, and with subjective whole-piece performance evaluations by string instrument players. The learning effects were evident immediately after practice and 14 days later. The observed learning stands in sharp contrast to LSJ’s complete lack of awareness that the same pieces were being presented repeatedly, and to the profound impairments she exhibits in other learning tasks. Although learning in simple motor tasks has been previously observed in amnesic patients, our results demonstrate that non-hippocampal structures can support complex learning of novel musical sequences for music performance. PMID:25232312
Learning trajectories for speech motor performance in children with specific language impairment.
Richtsmeier, Peter T; Goffman, Lisa
2015-01-01
Children with specific language impairment (SLI) often perform below expected levels, including on tests of motor skill and in learning tasks, particularly procedural learning. In this experiment we examined the possibility that children with SLI might also have a motor learning deficit. Twelve children with SLI and thirteen children with typical development (TD) produced complex nonwords in an imitation task. Productions were collected across three blocks, with the first and second blocks on the same day and the third block one week later. Children's lip movements while producing the nonwords were recorded using an Optotrak camera system. Movements were then analyzed for production duration and stability. Movement analyses indicated that both groups of children produced shorter productions in later blocks (corroborated by an acoustic analysis), and the rate of change was comparable for the TD and SLI groups. A nonsignificant trend for more stable productions was also observed in both groups. SLI is regularly accompanied by a motor deficit, and this study does not dispute that. However, children with SLI learned to make more efficient productions at a rate similar to their peers with TD, revealing some modification of the motor deficit associated with SLI. The reader will learn about deficits commonly associated with specific language impairment (SLI) that often occur alongside the hallmark language deficit. The authors present an experiment showing that children with SLI improved speech motor performance at a similar rate compared to typically developing children. The implication is that speech motor learning is not impaired in children with SLI. Copyright © 2015 Elsevier Inc. All rights reserved.
Changes in spinal reflex excitability associated with motor sequence learning.
Lungu, Ovidiu; Frigon, Alain; Piché, Mathieu; Rainville, Pierre; Rossignol, Serge; Doyon, Julien
2010-05-01
There is ample evidence that motor sequence learning is mediated by changes in brain activity. Yet the question of whether this form of learning elicits changes detectable at the spinal cord level has not been addressed. To date, studies in humans have revealed that spinal reflex activity may be altered during the acquisition of various motor skills, but a link between motor sequence learning and changes in spinal excitability has not been demonstrated. To address this issue, we studied the modulation of H-reflex amplitude evoked in the flexor carpi radialis muscle of 14 healthy individuals between blocks of movements that involved the implicit acquisition of a sequence versus other movements that did not require learning. Each participant performed the task in three conditions: "sequence"-externally triggered, repeating and sequential movements, "random"-similar movements, but performed in an arbitrary order, and "simple"- involving alternating movements in a left-right or up-down direction only. When controlling for background muscular activity, H-reflex amplitude was significantly more reduced in the sequence (43.8 +/- 1.47%. mean +/- SE) compared with the random (38.2 +/- 1.60%) and simple (31.5 +/- 1.82%) conditions, while the M-response was not different across conditions. Furthermore, H-reflex changes were observed from the beginning of the learning process up to when subjects reached asymptotic performance on the motor task. Changes also persisted for >60 s after motor activity ceased. Such findings suggest that the excitability in some spinal reflex circuits is altered during the implicit learning process of a new motor sequence.
Explicit and Implicit Processes Constitute the Fast and Slow Processes of Sensorimotor Learning.
McDougle, Samuel D; Bond, Krista M; Taylor, Jordan A
2015-07-01
A popular model of human sensorimotor learning suggests that a fast process and a slow process work in parallel to produce the canonical learning curve (Smith et al., 2006). Recent evidence supports the subdivision of sensorimotor learning into explicit and implicit processes that simultaneously subserve task performance (Taylor et al., 2014). We set out to test whether these two accounts of learning processes are homologous. Using a recently developed method to assay explicit and implicit learning directly in a sensorimotor task, along with a computational modeling analysis, we show that the fast process closely resembles explicit learning and the slow process approximates implicit learning. In addition, we provide evidence for a subdivision of the slow/implicit process into distinct manifestations of motor memory. We conclude that the two-state model of motor learning is a close approximation of sensorimotor learning, but it is unable to describe adequately the various implicit learning operations that forge the learning curve. Our results suggest that a wider net be cast in the search for the putative psychological mechanisms and neural substrates underlying the multiplicity of processes involved in motor learning. Copyright © 2015 the authors 0270-6474/15/359568-12$15.00/0.
Explicit and Implicit Processes Constitute the Fast and Slow Processes of Sensorimotor Learning
Bond, Krista M.; Taylor, Jordan A.
2015-01-01
A popular model of human sensorimotor learning suggests that a fast process and a slow process work in parallel to produce the canonical learning curve (Smith et al., 2006). Recent evidence supports the subdivision of sensorimotor learning into explicit and implicit processes that simultaneously subserve task performance (Taylor et al., 2014). We set out to test whether these two accounts of learning processes are homologous. Using a recently developed method to assay explicit and implicit learning directly in a sensorimotor task, along with a computational modeling analysis, we show that the fast process closely resembles explicit learning and the slow process approximates implicit learning. In addition, we provide evidence for a subdivision of the slow/implicit process into distinct manifestations of motor memory. We conclude that the two-state model of motor learning is a close approximation of sensorimotor learning, but it is unable to describe adequately the various implicit learning operations that forge the learning curve. Our results suggest that a wider net be cast in the search for the putative psychological mechanisms and neural substrates underlying the multiplicity of processes involved in motor learning. PMID:26134640
Snow, Nicholas J.; Mang, Cameron S.; Roig, Marc; Boyd, Lara A.
2016-01-01
Introduction There is evidence for beneficial effects of acute and long-term exercise interventions on several forms of memory, including procedural motor learning. In the present study we examined how performing a single bout of continuous moderate intensity aerobic exercise would impact motor skill acquisition and retention in young healthy adults, compared to a period of rest. We hypothesized that exercise would improve motor skill acquisition and retention, compared to motor practice alone. Materials and Methods Sixteen healthy adults completed sessions of aerobic exercise or seated rest that were immediately followed by practice of a novel motor task (practice). Exercise consisted of 30 minutes of continuous cycling at 60% peak O2 uptake. Twenty-four hours after practice, we assessed motor learning with a no-exercise retention test (retention). We also quantified changes in offline motor memory consolidation, which occurred between practice and retention (offline). Tracking error was separated into indices of temporal precision and spatial accuracy. Results There were no differences between conditions in the timing of movements during practice (p = 0.066), at retention (p = 0.761), or offline (p = 0.966). However, the exercise condition enabled participants to maintain spatial accuracy during practice (p = 0.477); whereas, following rest performance diminished (p = 0.050). There were no significant differences between conditions at retention (p = 0.532) or offline (p = 0.246). Discussion An acute bout of moderate-intensity aerobic exercise facilitated the maintenance of motor performance during skill acquisition, but did not influence motor learning. Given past work showing that pairing high intensity exercise with skilled motor practice benefits learning, it seems plausible that intensity is a key modulator of the effects of acute aerobic exercise on changes in complex motor behavior. Further work is necessary to establish a dose-response relationship between aerobic exercise and motor learning. PMID:26901664
Gonzalez, Raul; Jacobus, Joanna; Amatya, Anup K.; Quartana, Phillip J.; Vassileva, Jasmin; Martin, Eileen M.
2008-01-01
HIV and drugs of abuse affect common neural systems underlying procedural memory, including the striatum. We compared performance of 48 HIV seropositive (HIV+) and 48 HIV seronegative (HIV−) participants with history of cocaine and/or heroin dependence across multiple Trial Blocks of three procedural learning (PL) tasks: Rotary Pursuit (RPT), Mirror Star Tracing (MST), and Weather Prediction (WPT). Groups were well matched on demographic, psychiatric, and substance use parameters, and all participants were verified abstinent from drugs. Mixed model ANOVAs revealed that the HIV+ group performed more poorly across all tasks, with a significant main effect of HIV serostatus observed on the MST and a trend toward significance obtained for the RPT. No significant differences were observed on the WPT. Both groups demonstrated significant improvements in performance across all three PL tasks. Importantly, no significant Serostatus X Trial Block interactions were observed on any task. Thus, the HIV+ group tended to perform worse than the HIV− group across all trial blocks of PL tasks with motor demands, but showed no differences in their rate of improvement across all tasks. These findings are consistent with HIV-associated deficits in complex motor skills, but not in procedural learning. PMID:18999351
Cerebellar-M1 Connectivity Changes Associated with Motor Learning Are Somatotopic Specific.
Spampinato, Danny A; Block, Hannah J; Celnik, Pablo A
2017-03-01
One of the functions of the cerebellum in motor learning is to predict and account for systematic changes to the body or environment. This form of adaptive learning is mediated by plastic changes occurring within the cerebellar cortex. The strength of cerebellar-to-cerebral pathways for a given muscle may reflect aspects of cerebellum-dependent motor adaptation. These connections with motor cortex (M1) can be estimated as cerebellar inhibition (CBI): a conditioning pulse of transcranial magnetic stimulation delivered to the cerebellum before a test pulse over motor cortex. Previously, we have demonstrated that changes in CBI for a given muscle representation correlate with learning a motor adaptation task with the involved limb. However, the specificity of these effects is unknown. Here, we investigated whether CBI changes in humans are somatotopy specific and how they relate to motor adaptation. We found that learning a visuomotor rotation task with the right hand changed CBI, not only for the involved first dorsal interosseous of the right hand, but also for an uninvolved right leg muscle, the tibialis anterior, likely related to inter-effector transfer of learning. In two follow-up experiments, we investigated whether the preparation of a simple hand or leg movement would produce a somatotopy-specific modulation of CBI. We found that CBI changes only for the effector involved in the movement. These results indicate that learning-related changes in cerebellar-M1 connectivity reflect a somatotopy-specific interaction. Modulation of this pathway is also present in the context of interlimb transfer of learning. SIGNIFICANCE STATEMENT Connectivity between the cerebellum and motor cortex is a critical pathway for the integrity of everyday movements and understanding the somatotopic specificity of this pathway in the context of motor learning is critical to advancing the efficacy of neurorehabilitation. We found that adaptive learning with the hand affects cerebellar-motor cortex connectivity, not only for the trained hand, but also for an untrained leg muscle, an effect likely related to intereffector transfer of learning. Furthermore, we introduce a novel method to measure cerebellar-motor cortex connectivity during movement preparation. With this technique, we show that, outside the context of learning, modulation of cerebellar-motor cortex connectivity is somatotopically specific to the effector being moved. Copyright © 2017 the authors 0270-6474/17/372377-10$15.00/0.
Ioffe, M E; Ustinova, K I; Chernikova, L A; Kulikov, M A
2006-01-01
Supervised learning of different postural tasks in patients with lesions of the motor cortex or pyramidal system (poststroke hemiparesis: 20 patients), nigro-striatal system (Parkinson's disease: 33 patients) and cerebellum (spinocerebellar ataxia: 37 patients) was studied. A control group consisted of 13 healthy subjects. The subjects stood on a force platform and were trained to change the position of the center of pressure (CP) presented as a cursor on a monitor screen in front of the patient. Subjects were instructed to align the CP with the target and then move the target by shifting the CP in the indicated direction. Two different tasks were used. In "Balls", the target (a ball) position varied randomly, so the subject learned a general strategy of voluntary CP control. In "Bricks", the subject had to always move the target in a single direction (downward) from the top to the bottom of the screen, so that a precise postural coordination had to be learned. The training consisted of 10 sessions for each task. The number of correctly performed trials for a session (2 min for each task) was scored. The voluntary control of the CP position was initially impaired in all groups of patients in both tasks. In "Balls", there were no differences between the groups of the patients on the first day. The learning course was somewhat better in hemiparetic patients than in the other groups. In "Bricks", the initial deficit was greater in the groups of parkinsonian and cerebellar patients than in hemiparetic patients. However, learning was more efficient in parkinsonian than in hemiparetic and cerebellar patients. After 10 days of training, the hemiparetic and cerebellar patients completed the acquisition at a certain level whereas the parkinsonian patients showed the ability for further improvement. The results suggest that motor cortex, cerebellum, and basal ganglia are involved in voluntary control of posture and learning different postural tasks. However, these structures play different roles in postural control and learning: basal ganglia are mainly involved in learning a general strategy of CP control while the function of the motor cortex chiefly concerns learning a specific CP trajectory. The cerebellum is involved in both kinds of learning.
A shared resource between declarative memory and motor memory.
Keisler, Aysha; Shadmehr, Reza
2010-11-03
The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and nondeclarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/nondeclarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system.
A shared resource between declarative memory and motor memory
Keisler, Aysha; Shadmehr, Reza
2010-01-01
The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and non-declarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/non-declarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system. PMID:21048140
Borich, Michael R; Brown, Katlyn E; Boyd, Lara A
2014-07-01
Imaging advances allow investigation of white matter after stroke; a growing body of literature has shown links between diffusion-based measures of white matter microstructure and motor function. However, the relationship between these measures and motor skill learning has not been considered in individuals with stroke. The aim of this study was to investigate the relationships between posttraining white matter microstructural status, as indexed by diffusion tensor imaging within the ipsilesional posterior limb of the internal capsule (PLIC), and learning of a novel motor task in individuals with chronic stroke. A total of 13 participants with chronic stroke and 9 healthy controls practiced a visuomotor pursuit task across 5 sessions. Change in motor behavior associated with learning was indexed by comparing baseline performance with a delayed retention test. Fractional anisotropy (FA) indexed at the retention test was the primary diffusion tensor imaging-derived outcome measure. In individuals with chronic stroke, we discovered an association between posttraining ipsilesional PLIC FA and the magnitude of change associated with motor learning; hierarchical multiple linear regression analyses revealed that the combination of age, time poststroke, and ipsilesional PLIC FA posttraining was associated with motor learning-related change (R = 0.649; P = 0.02). Baseline motor performance was not related to posttraining ipsilesional PLIC FA. Diffusion characteristics of posttraining ipsilesional PLIC were linked to the magnitude of change in skilled motor behavior. These results imply that the microstructural properties of regional white matter indexed by diffusion behavior may be an important factor to consider when determining potential response to rehabilitation in persons with stroke. (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A59) for more insights from the authors.
Saa, Jaime F Delgado; Çetin, Müjdat
2012-04-01
We consider the problem of classification of imaginary motor tasks from electroencephalography (EEG) data for brain-computer interfaces (BCIs) and propose a new approach based on hidden conditional random fields (HCRFs). HCRFs are discriminative graphical models that are attractive for this problem because they (1) exploit the temporal structure of EEG; (2) include latent variables that can be used to model different brain states in the signal; and (3) involve learned statistical models matched to the classification task, avoiding some of the limitations of generative models. Our approach involves spatial filtering of the EEG signals and estimation of power spectra based on autoregressive modeling of temporal segments of the EEG signals. Given this time-frequency representation, we select certain frequency bands that are known to be associated with execution of motor tasks. These selected features constitute the data that are fed to the HCRF, parameters of which are learned from training data. Inference algorithms on the HCRFs are used for the classification of motor tasks. We experimentally compare this approach to the best performing methods in BCI competition IV as well as a number of more recent methods and observe that our proposed method yields better classification accuracy.
Practice reduces task relevant variance modulation and forms nominal trajectory
NASA Astrophysics Data System (ADS)
Osu, Rieko; Morishige, Ken-Ichi; Nakanishi, Jun; Miyamoto, Hiroyuki; Kawato, Mitsuo
2015-12-01
Humans are capable of achieving complex tasks with redundant degrees of freedom. Much attention has been paid to task relevant variance modulation as an indication of online feedback control strategies to cope with motor variability. Meanwhile, it has been discussed that the brain learns internal models of environments to realize feedforward control with nominal trajectories. Here we examined trajectory variance in both spatial and temporal domains to elucidate the relative contribution of these control schemas. We asked subjects to learn reaching movements with multiple via-points, and found that hand trajectories converged to stereotyped trajectories with the reduction of task relevant variance modulation as learning proceeded. Furthermore, variance reduction was not always associated with task constraints but was highly correlated with the velocity profile. A model assuming noise both on the nominal trajectory and motor command was able to reproduce the observed variance modulation, supporting an expression of nominal trajectories in the brain. The learning-related decrease in task-relevant modulation revealed a reduction in the influence of optimal feedback around the task constraints. After practice, the major part of computation seems to be taken over by the feedforward controller around the nominal trajectory with feedback added only when it becomes necessary.
Lauber, Benedikt; Franke, Steffen; Taube, Wolfgang; Gollhofer, Albert
2017-04-07
Increasing evidence suggests that cardiovascular exercise has positive effects on motor memory consolidation. In this study, we investigated whether a single session of high-intensity interval training (HIIT) mitigates the effects of practicing an interfering motor task. Furthermore, learning and interference effects were assessed in the actively trained and untrained limb as it is known that unilateral motor learning can cause bilateral adaptations. Subjects performed a ballistic training and then the HIIT either before (HIIT_before) or after (HIIT_after) practicing an interfering accuracy task (AT). The control group (No_HIIT) did not participate in the HIIT but rested instead. Performance in the ballistic task (BT) was tested before and after the ballistic training, after the exercise and practice of the AT and 24h later. After ballistic training, all groups showed comparable increases in performance in the trained and untrained limb. Despite the practice of the AT, HIIT_before maintained their BT performance after the high-intensity interval training whereas HIIT_after (trend) & No_HIIT showed prominent interference effects. After 24h, HIIT_before still did not show any interference effects but further improved ballistic motor performance. HIIT_after counteracted the interference resulting in a comparable BT performance after 24h than directly after the ballistic training while No_HIIT had a significantly lower BT performance in the retention test. The results were similar in the trained and untrained limb. The current results imply that a single session of cardiovascular exercise can prevent motor interference in the trained and untrained hemisphere. Overall learning was best, and interference least, when HIIT was performed before the interfering motor task. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Malhotra, Neha; Poolton, Jamie M; Wilson, Mark R; Fan, Joe K M; Masters, Rich S W
2014-01-01
Identifying personality factors that account for individual differences in surgical training and performance has practical implications for surgical education. Movement-specific reinvestment is a potentially relevant personality factor that has a moderating effect on laparoscopic performance under time pressure. Movement-specific reinvestment has 2 dimensions, which represent an individual's propensity to consciously control movements (conscious motor processing) or to consciously monitor their 'style' of movement (movement self-consciousness). This study aimed at investigating the moderating effects of the 2 dimensions of movement-specific reinvestment in the learning and updating (cross-handed technique) of laparoscopic skills. Medical students completed the Movement-Specific Reinvestment Scale, a psychometric assessment tool that evaluates the conscious motor processing and movement self-consciousness dimensions of movement-specific reinvestment. They were then trained to a criterion level of proficiency on a fundamental laparoscopic skills task and were tested on a novel cross-handed technique. Completion times were recorded for early-learning, late-learning, and cross-handed trials. Propensity for movement self-consciousness but not conscious motor processing was a significant predictor of task completion times both early (p = 0.036) and late (p = 0.002) in learning, but completion times during the cross-handed trials were predicted by the propensity for conscious motor processing (p = 0.04) rather than movement self-consciousness (p = 0.21). Higher propensity for movement self-consciousness is associated with slower performance times on novel and well-practiced laparoscopic tasks. For complex surgical techniques, however, conscious motor processing plays a more influential role in performance than movement self-consciousness. The findings imply that these 2 dimensions of movement-specific reinvestment have a differential influence in the learning and updating of laparoscopic skills. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Adaptive robotic control driven by a versatile spiking cerebellar network.
Casellato, Claudia; Antonietti, Alberto; Garrido, Jesus A; Carrillo, Richard R; Luque, Niceto R; Ros, Eduardo; Pedrocchi, Alessandra; D'Angelo, Egidio
2014-01-01
The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.
Incidental Learning of S-R Contingencies in the Masked Prime Task
ERIC Educational Resources Information Center
Schlaghecken, Friederike; Blagrove, Elisabeth; Maylor, Elizabeth A.
2007-01-01
Subliminal motor priming effects in the masked prime paradigm can only be obtained when primes are part of the task set. In 2 experiments, the authors investigated whether the relevant task set feature needs to be explicitly instructed or could be extracted automatically in an incidental learning paradigm. Primes and targets were symmetrical…
Kleynen, Melanie; Braun, Susy M.; Rasquin, Sascha M. C.; Bleijlevens, Michel H. C.; Lexis, Monique A. S.; Halfens, Jos; Wilson, Mark R.; Masters, Rich S. W.; Beurskens, Anna J.
2015-01-01
Background A variety of options and techniques for causing implicit and explicit motor learning have been described in the literature. The aim of the current paper was to provide clearer guidance for practitioners on how to apply motor learning in practice by exploring experts’ opinions and experiences, using the distinction between implicit and explicit motor learning as a conceptual departure point. Methods A survey was designed to collect and aggregate informed opinions and experiences from 40 international respondents who had demonstrable expertise related to motor learning in practice and/or research. The survey was administered through an online survey tool and addressed potential options and learning strategies for applying implicit and explicit motor learning. Responses were analysed in terms of consensus (≥ 70%) and trends (≥ 50%). A summary figure was developed to illustrate a taxonomy of the different learning strategies and options indicated by the experts in the survey. Results Answers of experts were widely distributed. No consensus was found regarding the application of implicit and explicit motor learning. Some trends were identified: Explicit motor learning can be promoted by using instructions and various types of feedback, but when promoting implicit motor learning, instructions and feedback should be restricted. Further, for implicit motor learning, an external focus of attention should be considered, as well as practicing the entire skill. Experts agreed on three factors that influence motor learning choices: the learner’s abilities, the type of task, and the stage of motor learning (94.5%; n = 34/36). Most experts agreed with the summary figure (64.7%; n = 22/34). Conclusion The results provide an overview of possible ways to cause implicit or explicit motor learning, signposting examples from practice and factors that influence day-to-day motor learning decisions. PMID:26296203
Yoo, Seung-Schik; Lee, Jong-Hwan; O’Leary, Heather; Panych, Lawrence P.; Jolesz, Ferenc A.
2009-01-01
We report the long-term effect of real-time functional MRI (rtfMRI) training on voluntary regulation of the level of activation from a hand motor area. During the performance of a motor imagery task of a right hand, blood-oxygenation-level-dependent (BOLD) signal originating from a primary motor area was presented back to the subject in real-time. Demographically matched individuals also received the same procedure without valid feedback information. Followed by the initial rtfMRI sessions, both groups underwent two-week long, daily-practice of the task. Off-line data analysis revealed that the individuals in the experimental group were able to increase the level of BOLD signal from the regulatory target to a greater degree compared to the control group. Furthermore, the learned level of activation was maintained after the two-week period, with the recruitment of additional neural circuitries such as the hippocampus and the limbo-thalamo-cortical pathway. The activation obtained from the control group, in the absence of proper feedback, was indifferent across the training conditions. The level of BOLD activity from the target regulatory region was positively correlated with a self evaluative score within the experimental group, while the majority of control subjects had difficulty adopting a strategy to attain the desired level of functional regulation. Our results suggest that rtfMRI helped individuals learn how to increase region-specific cortical activity associated with a motor imagery task, and the level of increased activation in motor areas was consolidated after the two-week self-practice period, with the involvement of neural circuitries implicated in motor skill learning. PMID:19526048
Motor Learning in Stroke: Trained Patients Are Not Equal to Untrained Patients With Less Impairment
Hardwick, Robert M; Rajan, Vikram A; Bastian, Amy J; Krakauer, John W; Celnik, Pablo A
2017-02-01
Stroke rehabilitation assumes motor learning contributes to motor recovery, yet motor learning in stroke has received little systematic investigation. Here we aimed to illustrate that despite matching levels of performance on a task, a trained patient should not be considered equal to an untrained patient with less impairment. We examined motor learning in healthy control participants and groups of stroke survivors with mild-to-moderate or moderate-to-severe motor impairment. Participants performed a series of isometric contractions of the elbow flexors to navigate an on-screen cursor to different targets, and trained to perform this task over a 4-day period. The speed-accuracy trade-off function (SAF) was assessed for each group, controlling for differences in self-selected movement speeds between individuals. The initial SAF for each group was proportional to their impairment. All groups were able to improve their performance through skill acquisition. Interestingly, training led the moderate-to-severe group to match the untrained (baseline) performance of the mild-to-moderate group, while the trained mild-to-moderate group matched the untrained (baseline) performance of the controls. Critically, this did not make the two groups equivalent; they differed in their capacity to improve beyond this matched performance level. Specifically, the trained groups had reached a plateau, while the untrained groups had not. Despite matching levels of performance on a task, a trained patient is not equal to an untrained patient with less impairment. This has important implications for decisions both on the focus of rehabilitation efforts for chronic stroke, as well as for returning to work and other activities.
Predictive Movements and Human Reinforcement Learning of Sequential Action
ERIC Educational Resources Information Center
de Kleijn, Roy; Kachergis, George; Hommel, Bernhard
2018-01-01
Sequential action makes up the bulk of human daily activity, and yet much remains unknown about how people learn such actions. In one motor learning paradigm, the serial reaction time (SRT) task, people are taught a consistent sequence of button presses by cueing them with the next target response. However, the SRT task only records keypress…
Subiaul, Francys; Patterson, Eric M; Schilder, Brian; Renner, Elizabeth; Barr, Rachel
2015-11-01
In contrast to other primates, human children's imitation performance goes from low to high fidelity soon after infancy. Are such changes associated with the development of other forms of learning? We addressed this question by testing 215 children (26-59 months) on two social conditions (imitation, emulation) - involving a demonstration - and two asocial conditions (trial-and-error, recall) - involving individual learning - using two touchscreen tasks. The tasks required responding to either three different pictures in a specific picture order (Cognitive: Airplane→Ball→Cow) or three identical pictures in a specific spatial order (Motor-Spatial: Up→Down→Right). There were age-related improvements across all conditions and imitation, emulation and recall performance were significantly better than trial-and-error learning. Generalized linear models demonstrated that motor-spatial imitation fidelity was associated with age and motor-spatial emulation performance, but cognitive imitation fidelity was only associated with age. While this study provides evidence for multiple imitation mechanisms, the development of one of those mechanisms - motor-spatial imitation - may be bootstrapped by the development of another social learning skill - motor-spatial emulation. Together, these findings provide important clues about the development of imitation, which is arguably a distinctive feature of the human species. © 2014 John Wiley & Sons Ltd.
Salles, José Inácio; Bastos, Victor Hugo; Cunha, Marlo; Machado, Dionis; Cagy, Maurício; Furtado, Vernon; Basile, Luis Fernando; Piedade, Roberto; Ribeiro, Pedro
2006-03-01
The sedative effects of bromazepam on cognitive and performance have been widely investigated. A number of different approaches have assessed the influence of bromazepam when individuals are engaged to a motor task. In this context, the present study aimed to investigate electrophysiological changes when individuals were exposed to a typewriting task after taking 6 mg of bromazepam. qEEG data were simultaneously recorded during the task. In particular, relative power in delta band (0.5-3.5 Hz) was analyzed. Time of execution and errors during the task were registered as behavioral variables. The experimental group, bromazepam 6 mg, showed a better motor performance and higher relative power than control individuals (placebo). These results suggest that the use of bromazepam reduces anxiety levels as expected and thus, produces an increment in motor performance.
Learning tactile skills through curious exploration
Pape, Leo; Oddo, Calogero M.; Controzzi, Marco; Cipriani, Christian; Förster, Alexander; Carrozza, Maria C.; Schmidhuber, Jürgen
2012-01-01
We present curiosity-driven, autonomous acquisition of tactile exploratory skills on a biomimetic robot finger equipped with an array of microelectromechanical touch sensors. Instead of building tailored algorithms for solving a specific tactile task, we employ a more general curiosity-driven reinforcement learning approach that autonomously learns a set of motor skills in absence of an explicit teacher signal. In this approach, the acquisition of skills is driven by the information content of the sensory input signals relative to a learner that aims at representing sensory inputs using fewer and fewer computational resources. We show that, from initially random exploration of its environment, the robotic system autonomously develops a small set of basic motor skills that lead to different kinds of tactile input. Next, the system learns how to exploit the learned motor skills to solve supervised texture classification tasks. Our approach demonstrates the feasibility of autonomous acquisition of tactile skills on physical robotic platforms through curiosity-driven reinforcement learning, overcomes typical difficulties of engineered solutions for active tactile exploration and underactuated control, and provides a basis for studying developmental learning through intrinsic motivation in robots. PMID:22837748
Gofer-Levi, Moran; Silberg, Tamar; Brezner, Amichai; Vakil, Eli
2013-11-01
Skill learning (SL) is learning as a result of repeated exposure and practice, which encompasses independent explicit (response to instructions) and implicit (response to hidden regularities) processes. Little is known about the effects of developmental disorders, such as Cerebral Palsy (CP), on the ability to acquire new skills. We compared performance of CP and typically developing (TD) children and adolescents in completing the serial reaction time (SRT) task, which is a motor sequence learning task, and examined the impact of various factors on this performance as indicative of the ability to acquire motor skills. While both groups improved in performance, participants with CP were significantly slower than TD controls and did not learn the implicit sequence. Our results indicate that SL in children and adolescents with CP is qualitatively and quantitatively different than that of their peers. Understanding the unique aspects of SL in children and adolescents with CP might help plan appropriate and efficient interventions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Stöckel, Tino; Weigelt, Matthias
2012-01-01
Findings from neurosciences indicate that the two brain hemispheres are specialised for the processing of distinct movement features. How this knowledge can be useful in motor learning remains unclear. Two experiments were conducted to investigate the influence of initial practice with the dominant vs non-dominant hand on the acquisition of novel throwing skills. Within a transfer design two groups practised a novel motor task with the same amount of practice on each hand, but in opposite hand-order. In Experiment 1, participants acquired the position throw in basketball, which places high demands on throwing accuracy. Participants practising this task with their non-dominant hand first, before changing to the dominant hand, showed better skill acquisition than participants practising in opposite order. In Experiment 2 participants learned the overarm throw in team handball, which requires great throwing strength. Participants initially practising with their dominant hand benefited more from practice than participants beginning with their non-dominant hand. These results indicate that spatial accuracy tasks are learned better after initial practice with the non-dominant hand, whereas initial practice with the dominant hand is more efficient for maximum force production tasks. The effects are discussed in terms of brain lateralisation and bilateral practice schedules.
Motor Learning Enhances Use-Dependent Plasticity
2017-01-01
Motor behaviors are shaped not only by current sensory signals but also by the history of recent experiences. For instance, repeated movements toward a particular target bias the subsequent movements toward that target direction. This process, called use-dependent plasticity (UDP), is considered a basic and goal-independent way of forming motor memories. Most studies consider movement history as the critical component that leads to UDP (Classen et al., 1998; Verstynen and Sabes, 2011). However, the effects of learning (i.e., improved performance) on UDP during movement repetition have not been investigated. Here, we used transcranial magnetic stimulation in two experiments to assess plasticity changes occurring in the primary motor cortex after individuals repeated reinforced and nonreinforced actions. The first experiment assessed whether learning a skill task modulates UDP. We found that a group that successfully learned the skill task showed greater UDP than a group that did not accumulate learning, but made comparable repeated actions. The second experiment aimed to understand the role of reinforcement learning in UDP while controlling for reward magnitude and action kinematics. We found that providing subjects with a binary reward without visual feedback of the cursor led to increased UDP effects. Subjects in the group that received comparable reward not associated with their actions maintained the previously induced UDP. Our findings illustrate how reinforcing consistent actions strengthens use-dependent memories and provide insight into operant mechanisms that modulate plastic changes in the motor cortex. SIGNIFICANCE STATEMENT Performing consistent motor actions induces use-dependent plastic changes in the motor cortex. This plasticity reflects one of the basic forms of human motor learning. Past studies assumed that this form of learning is exclusively affected by repetition of actions. However, here we showed that success-based reinforcement signals could affect the human use-dependent plasticity (UDP) process. Our results indicate that learning augments and interacts with UDP. This effect is important to the understanding of the interplay between the different forms of motor learning and suggests that reinforcement is not only important to learning new behaviors, but can shape our subsequent behavior via its interaction with UDP. PMID:28143961
Robert, Maxime T; Sambasivan, Krithika; Levin, Mindy F
2017-01-01
Improvment of upper limb motor skills occurs through motor learning that can be enhanced by providing extrinsic feedback. Different types and frequencies of feedback are discussed but specific guidelines for use of feedback for motor learning in typically-developing (TD) children and children with Cerebral Palsy (CP) are not available. Identify the most effective modalities and frequencies of feedback for improving upper limb motor skills in TD children and children with CP. Ovid MEDLINE, Cochrane, PEDro and PubMed-NCBI were searched from 1950 to December 2015 to identify English-language articles addressing the role of extrinsic feedback on upper limb motor learning in TD children and children with CP. Nine studies were selected with a total of 243 TD children and 102 children with CP. Study quality was evaluated using the Downs and Black scale and levels of evidence were determined with Sackett's quality ratings. There was a lack of consistency in the modalities and frequencies of feedback delivery used to improve motor learning in TD children and in children with CP. Moreover, the complexity of the task to be learned influenced the degree of motor learning achieved. A better understanding of the influence of feedback on motor learning is needed to optimize motor skill acquisition in children with CP.
Aerobic exercise enhances neural correlates of motor skill learning.
Singh, Amaya M; Neva, Jason L; Staines, W Richard
2016-03-15
Repetitive, in-phase bimanual motor training tasks can expand the excitable cortical area of the trained muscles. Recent evidence suggests that an acute bout of moderate-intensity aerobic exercise can enhance the induction of rapid motor plasticity at the motor hotspot. However, these changes have not been investigated throughout the entire cortical representation. Furthermore, it is unclear how exercise-induced changes in excitability may relate to motor performance. We investigated whether aerobic exercise could enhance the neural correlates of motor learning. We hypothesized that the combination of exercise and training would increase the excitable cortical area to a greater extent than either exercise or training alone, and that the addition of exercise would enhance performance on a motor training task. 25 young, healthy, right-handed individuals were recruited and divided into two groups and three experimental conditions. The exercise group performed exercise alone (EX) and exercise followed by training (EXTR) while the training group performed training alone (TR). The combination of exercise and training increased excitability within the cortical map of the trained muscle to a greater extent than training alone. However, there was no difference in performance between the two groups. These results indicate that exercise may enhance the cortical adaptations to motor skill learning. Copyright © 2015 Elsevier B.V. All rights reserved.
Virtual environments for motor rehabilitation: review.
Holden, Maureen K
2005-06-01
In this paper, the current "state of the art" for virtual reality (VR) applications in the field of motor rehabilitation is reviewed. The paper begins with a brief overview of available equipment options. Next, a discussion of the scientific rationale for use of VR in motor rehabilitation is provided. Finally, the major portion of the paper describes the various VR systems that have been developed for use with patients, and the results of clinical studies reported to date in the literature. Areas covered include stroke rehabilitation (upper and lower extremity training, spatial and perceptual-motor training), acquired brain injury, Parkinson's disease, orthopedic rehabilitation, balance training, wheelchair mobility and functional activities of daily living training, and the newly developing field of telerehabilitation. Four major findings emerge from these studies: (1) people with disabilities appear capable of motor learning within virtual environments; (2) movements learned by people with disabilities in VR transfer to real world equivalent motor tasks in most cases, and in some cases even generalize to other untrained tasks; (3) in the few studies (n = 5) that have compared motor learning in real versus virtual environments, some advantage for VR training has been found in all cases; and (4) no occurrences of cybersickness in impaired populations have been reported to date in experiments where VR has been used to train motor abilities.
Young, Sonia N; VanWye, William R; Wallmann, Harvey W
2018-06-25
To describe the use of sport simulation activities as a form of implicit motor learning training with a geriatric former athlete following a stroke. An active 76-year-old former professional male softball player presented to outpatient physical therapy with medical history of right stroke with left hemiparesis 2 weeks following onset of symptoms of impaired balance, coordination, gait, and motor planning. Initial physical therapy included gait, balance, and coordination training. Additional sport-related balance and coordination activities were later added to the treatment plan. After approximately 3 weeks of treatment, the patient was able to return to work and had dramatically improved balance, coordination, and gait with sport simulation activities. Implicit motor learning techniques were incorporated through sport and job task simulation activities along with task-oriented neuromuscular reeducation. The patient demonstrated improvements with gait, balance, gross motor function, and decreased fall risk.
Tissue Plasminogen Activator Induction in Purkinje Neurons After Cerebellar Motor Learning
NASA Astrophysics Data System (ADS)
Seeds, Nicholas W.; Williams, Brian L.; Bickford, Paula C.
1995-12-01
The cerebellar cortex is implicated in the learning of complex motor skills. This learning may require synaptic remodeling of Purkinje cell inputs. An extracellular serine protease, tissue plasminogen activator (tPA), is involved in remodeling various nonneural tissues and is associated with developing and regenerating neurons. In situ hybridization showed that expression of tPA messenger RNA was increased in the Purkinje neurons of rats within an hour of their being trained for a complex motor task. Antibody to tPA also showed the induction of tPA protein associated with cerebellar Purkinje cells. Thus, the induction of tPA during motor learning may play a role in activity-dependent synaptic plasticity.
Does self-efficacy mediate transfer effects in the learning of easy and difficult motor skills?
Stevens, David; Anderson, David I; O'Dwyer, Nicholas J; Mark Williams, A
2012-09-01
The effect of task difficulty on inter-task transfer is a classic issue in motor learning. We examined the relation between self-efficacy and transfer of learning after practicing different versions of a stick balancing task. Practicing the same task or an easier version led to significant pre- to post-test transfer of learning, whereas practicing a more difficult version did not. Self-efficacy increased modestly from pre- to post-test with easy practice, but decreased significantly with difficult practice. In addition, self-efficacy immediately prior to the post-test was significantly lower after difficult practice than easy or intermediate practice. Self-efficacy immediately prior to the post-test, performance at the end of practice, and pre-test performance explained 75% of the variance in post-test performance. The mediating role of self-efficacy on transfer of learning offers an alternative explanation for recent findings on the superiority of easy-to-difficult transfer and may help clarify inconsistencies in earlier research. Copyright © 2012 Elsevier Inc. All rights reserved.
Implicit and explicit motor learning: Application to children with Autism Spectrum Disorder (ASD).
Izadi-Najafabadi, Sara; Mirzakhani-Araghi, Navid; Miri-Lavasani, Negar; Nejati, Vahid; Pashazadeh-Azari, Zahra
2015-12-01
This study aims to determine whether children with Autism Spectrum Disorder (ASD) are capable of learning a motor skill both implicitly and explicitly. In the present study, 30 boys with ASD, aged 7-11 with IQ average of 81.2, were compared with 32 typical IQ- and age-matched boys on their performance on a serial reaction time task (SRTT). Children were grouped by ASD and typical children and by implicit and explicit learning groups for the SRTT. Implicit motor learning occurred in both children with ASD (p=.02) and typical children (p=.01). There were no significant differences between groups (p=.39). However, explicit motor learning was only observed in typical children (p=.01) not children with ASD (p=.40). There was a significant difference between groups for explicit learning (p=.01). The results of our study showed that implicit motor learning is not affected in children with ASD. Implications for implicit and explicit learning are applied to the CO-OP approach of motor learning with children with ASD. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stöckel, Tino; Summers, Jeffery J.; Hinder, Mark R.
2015-01-01
Intermittent theta burst stimulation (iTBS) has the potential to enhance corticospinal excitability (CSE) and subsequent motor learning. However, the effects of iTBS following motor learning are unknown. The purpose of the present study was to explore the effect of iTBS on CSE and performance following motor learning. Therefore twenty-four healthy participants practiced a ballistic motor task for a total of 150 movements. iTBS was subsequently applied to the trained motor cortex (STIM group) or the vertex (SHAM group). Performance and CSE were assessed before motor learning and before and after iTBS. Training significantly increased performance and CSE in both groups. In STIM group participants, subsequent iTBS significantly reduced motor performance with smaller reductions in CSE. CSE changes as a result of motor learning were negatively correlated with both the CSE changes and performance changes as a result of iTBS. No significant effects of iTBS were found for SHAM group participants. We conclude that iTBS has the potential to degrade prior motor learning as a function of training-induced CSE changes. That means the expected LTP-like effects of iTBS are reversed following motor learning. PMID:26167305
Stöckel, Tino; Summers, Jeffery J; Hinder, Mark R
2015-01-01
Intermittent theta burst stimulation (iTBS) has the potential to enhance corticospinal excitability (CSE) and subsequent motor learning. However, the effects of iTBS following motor learning are unknown. The purpose of the present study was to explore the effect of iTBS on CSE and performance following motor learning. Therefore twenty-four healthy participants practiced a ballistic motor task for a total of 150 movements. iTBS was subsequently applied to the trained motor cortex (STIM group) or the vertex (SHAM group). Performance and CSE were assessed before motor learning and before and after iTBS. Training significantly increased performance and CSE in both groups. In STIM group participants, subsequent iTBS significantly reduced motor performance with smaller reductions in CSE. CSE changes as a result of motor learning were negatively correlated with both the CSE changes and performance changes as a result of iTBS. No significant effects of iTBS were found for SHAM group participants. We conclude that iTBS has the potential to degrade prior motor learning as a function of training-induced CSE changes. That means the expected LTP-like effects of iTBS are reversed following motor learning.
Toy Story: Illustrating Gender Differences in a Motor Skills Task
ERIC Educational Resources Information Center
Knight, Jennifer L.; Hebl, Michelle R.; Mendoza, Miriam
2004-01-01
To challenge students' stereotypes about gendered performance on motor skills tasks, we developed a classroom active learning demonstration. Four 3-person, same-gender teams received either a Barbie(r) doll or a Transformer(r), and team members dressed the Barbie or manipulated the Transformer from a tank to a robot as quickly as possible, with…
ERIC Educational Resources Information Center
Iani, Cristina; Rubichi, Sandro; Ferraro, Luca; Nicoletti, Roberto; Gallese, Vittorio
2013-01-01
We assessed whether observational learning in perceptual-motor tasks is affected by the visibility of an action producing perceived environmental effects and by the observer's possibility to act during observation. To this end, we conducted three experiments in which participants were required to observe a spatial compatibility task in which only…
Enhanced Muscle Afferent Signals during Motor Learning in Humans.
Dimitriou, Michael
2016-04-25
Much has been revealed concerning human motor learning at the behavioral level [1, 2], but less is known about changes in the involved neural circuits and signals. By examining muscle spindle responses during a classic visuomotor adaptation task [3-6] performed by fully alert humans, I found substantial modulation of sensory afferent signals as a function of adaptation state. Specifically, spindle control was independent of concurrent muscle activity but was specific to movement direction (representing muscle lengthening versus shortening) and to different stages of learning. Increased spindle afferent responses to muscle stretch occurring early during learning reflected individual error size and were negatively related to subsequent antagonist activity (i.e., 60-80 ms thereafter). Relative increases in tonic afferent output early during learning were predictive of the subjects' adaptation rate. I also found that independent spindle control during sensory realignment (the "washout" stage) induced afferent signal "linearization" with respect to muscle length (i.e., signals were more tuned to hand position). The results demonstrate for the first time that motor learning also involves independent and state-related modulation of sensory mechanoreceptor signals. The current findings suggest that adaptive motor performance also relies on the independent control of sensors, not just of muscles. I propose that the "γ" motor system innervating spindles acts to facilitate the acquisition and extraction of task-relevant information at the early stages of sensorimotor adaptation. This designates a more active and targeted role for the human proprioceptive system during motor learning. Copyright © 2016 Elsevier Ltd. All rights reserved.
King, Bradley R.; Fogel, Stuart M.; Albouy, Geneviève; Doyon, Julien
2013-01-01
As the world's population ages, a deeper understanding of the relationship between aging and motor learning will become increasingly relevant in basic research and applied settings. In this context, this review aims to address the effects of age on motor sequence learning (MSL) and motor adaptation (MA) with respect to behavioral, neurological, and neuroimaging findings. Previous behavioral research investigating the influence of aging on motor learning has consistently reported the following results. First, the initial acquisition of motor sequences is not altered, except under conditions of increased task complexity. Second, older adults demonstrate deficits in motor sequence memory consolidation. And, third, although older adults demonstrate deficits during the exposure phase of MA paradigms, the aftereffects following removal of the sensorimotor perturbation are similar to young adults, suggesting that the adaptive ability of older adults is relatively intact. This paper will review the potential neural underpinnings of these behavioral results, with a particular emphasis on the influence of age-related dysfunctions in the cortico-striatal system on motor learning. PMID:23616757
Sensorimotor Learning in a Computerized Athletic Training Battery.
Krasich, Kristina; Ramger, Ben; Holton, Laura; Wang, Lingling; Mitroff, Stephen R; Gregory Appelbaum, L
2016-01-01
Sensorimotor abilities are crucial for performance in athletic, military, and other occupational activities, and there is great interest in understanding learning in these skills. Here, behavioral performance was measured over three days as twenty-seven participants practiced multiple sessions on the Nike SPARQ Sensory Station (Nike, Inc., Beaverton, Oregon), a computerized visual and motor assessment battery. Wrist-worn actigraphy was recorded to monitor sleep-wake cycles. Significant learning was observed in tasks with high visuomotor control demands but not in tasks of visual sensitivity. Learning was primarily linear, with up to 60% improvement, but did not relate to sleep quality in this normal-sleeping population. These results demonstrate differences in the rate and capacity for learning across perceptual and motor domains, indicating potential targets for sensorimotor training interventions.
Motor learning processes: an electrophysiologic perspective.
Velasques, Bruna; Ferreira, Camila; Teixeira, Silmar Silva; Furtado, Vernon; Mendes, Elizabeth; Basile, Luis; Cagy, Mauricio; Piedade, Roberto; Ribeiro, Pedro
2007-12-01
The goal of the present study was to investigate electrophysiologic, qEEG, changes when individuals were exposed to a motor task. Subjects brain electrical activity was analyzed before and after the typewriting training task. For the neurophysiological variable asymmetry, a paired t-test was performed to compare each moment, pre and post-task, in the beta bands. The findings showed a change for the qEEG variable in each scalp site, F3/F4; C3/C4 and P3/P4. These results suggest an adaptation of pre-frontal, sensory-motor and parietal cortex, as a consequence of the typewriting training.
Analogy motor learning by young children: a study of rope skipping.
Tse, Andy C Y; Fong, Shirley S M; Wong, Thomson W L; Masters, Rich
2017-03-01
Research in psychology suggests that provision of an instruction by analogy can enhance acquisition and understanding of knowledge. Limited research has been conducted to test this proposition in motor learning by children. The purpose of the present study was to examine the feasibility of analogy instructions in motor skill acquisition by children. Thirty-two children were randomly assigned to one of the two instruction protocols: analogy and explicit instruction protocols for a two-week rope skipping training. Each participant completed a pretest (Lesson 1), three practice sessions (Lesson 2-4), a posttest and a secondary task test (Lesson 5). Children in the analogy protocol displayed better rope skip performance than those in the explicit instruction protocol (p < .001). Moreover, a cognitive secondary task test indicated that children in the analogy protocol performed more effectively, whereas children in the explicit protocol displayed decrements in performance. Analogy learning may aid children to acquire complex motor skills, and have potential benefits related to reduced cognitive processing requirements.
Using noise to shape motor learning
Kording, Konrad P.; Mussa-Ivaldi, Ferdinando A.
2016-01-01
Each of our movements is selected from any number of alternative movements. Some studies have shown evidence that the central nervous system (CNS) chooses to make the specific movements that are least affected by motor noise. Previous results showing that the CNS has a natural tendency to minimize the effects of noise make the direct prediction that if the relationship between movements and noise were to change, the specific movements people learn to make would also change in a predictable manner. Indeed, this has been shown for well-practiced movements such as reaching. Here, we artificially manipulated the relationship between movements and visuomotor noise by adding noise to a motor task in a novel redundant geometry such that there arose a single control policy that minimized the noise. This allowed us to see whether, for a novel motor task, people could learn the specific control policy that minimized noise or would need to employ other compensation strategies to overcome the added noise. As predicted, subjects were able to learn movements that were biased toward the specific ones that minimized the noise, suggesting not only that the CNS can learn to minimize the effects of noise in a novel motor task but also that artificial visuomotor noise can be a useful tool for teaching people to make specific movements. Using noise as a teaching signal promises to be useful for rehabilitative therapies and movement training with human-machine interfaces. NEW & NOTEWORTHY Many theories argue that we choose to make the specific movements that minimize motor noise. Here, by changing the relationship between movements and noise, we show that people actively learn to make movements that minimize noise. This not only provides direct evidence for the theories of noise minimization but presents a way to use noise to teach specific movements to improve rehabilitative therapies and human-machine interface control. PMID:27881721
Using noise to shape motor learning.
Thorp, Elias B; Kording, Konrad P; Mussa-Ivaldi, Ferdinando A
2017-02-01
Each of our movements is selected from any number of alternative movements. Some studies have shown evidence that the central nervous system (CNS) chooses to make the specific movements that are least affected by motor noise. Previous results showing that the CNS has a natural tendency to minimize the effects of noise make the direct prediction that if the relationship between movements and noise were to change, the specific movements people learn to make would also change in a predictable manner. Indeed, this has been shown for well-practiced movements such as reaching. Here, we artificially manipulated the relationship between movements and visuomotor noise by adding noise to a motor task in a novel redundant geometry such that there arose a single control policy that minimized the noise. This allowed us to see whether, for a novel motor task, people could learn the specific control policy that minimized noise or would need to employ other compensation strategies to overcome the added noise. As predicted, subjects were able to learn movements that were biased toward the specific ones that minimized the noise, suggesting not only that the CNS can learn to minimize the effects of noise in a novel motor task but also that artificial visuomotor noise can be a useful tool for teaching people to make specific movements. Using noise as a teaching signal promises to be useful for rehabilitative therapies and movement training with human-machine interfaces. Many theories argue that we choose to make the specific movements that minimize motor noise. Here, by changing the relationship between movements and noise, we show that people actively learn to make movements that minimize noise. This not only provides direct evidence for the theories of noise minimization but presents a way to use noise to teach specific movements to improve rehabilitative therapies and human-machine interface control. Copyright © 2017 the American Physiological Society.
Aznárez-Sanado, Maite; Fernández-Seara, Maria A; Loayza, Francis R; Pastor, Maria A
2013-03-01
To elucidate differences in activity and connectivity during early learning due to the performing hand. Twenty right-handed subjects were recruited. The neural correlates of explicit visuospatial learning executed with the right, the left hand, and bimanually were investigated using functional magnetic resonance imaging. Connectivity analyses were carried out using the psychophysiological interactions model, considering right and left anterior putamen as index regions. A common neural network was found for the three tasks during learning. Main activity increases were located in posterior cingulate cortex, supplementary motor area, parietal cortex, anterior putamen, and cerebellum (IV-V), whereas activity decrements were observed in prefrontal regions. However, the left hand task showed a greater recruitment of left hippocampal areas when compared with the other tasks. In addition, enhanced connectivity between the right anterior putamen and motor cortical and cerebellar regions was found for the left hand when compared with the right hand task. An additional recruitment of brain regions and increased striato-cortical and striato-cerebellar functional connections is needed when early learning is performed with the nondominant hand. In addition, access to brain resources during learning may be directed by the dominant hand in the bimanual task. Copyright © 2012 Wiley Periodicals, Inc.
Butler, Andrew J; James, Thomas W; James, Karin Harman
2011-11-01
Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent perception and recognition of associations among multiple senses has not been investigated. Twenty participants were included in an fMRI study that explored the impact of active motor learning on subsequent processing of unisensory and multisensory stimuli. Participants were exposed to visuo-motor associations between novel objects and novel sounds either through self-generated actions on the objects or by observing an experimenter produce the actions. Immediately after exposure, accuracy, RT, and BOLD fMRI measures were collected with unisensory and multisensory stimuli in associative perception and recognition tasks. Response times during audiovisual associative and unisensory recognition were enhanced by active learning, as was accuracy during audiovisual associative recognition. The difference in motor cortex activation between old and new associations was greater for the active than the passive group. Furthermore, functional connectivity between visual and motor cortices was stronger after active learning than passive learning. Active learning also led to greater activation of the fusiform gyrus during subsequent unisensory visual perception. Finally, brain regions implicated in audiovisual integration (e.g., STS) showed greater multisensory gain after active learning than after passive learning. Overall, the results show that active motor learning modulates the processing of multisensory associations.
Kaminski, Elisabeth; Hoff, Maike; Rjosk, Viola; Steele, Christopher J.; Gundlach, Christopher; Sehm, Bernhard; Villringer, Arno; Ragert, Patrick
2017-01-01
Older adults frequently experience a decrease in balance control that leads to increased numbers of falls, injuries and hospitalization. Therefore, evaluating older adults’ ability to maintain balance and examining new approaches to counteract age-related decline in balance control is of great importance for fall prevention and healthy aging. Non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS) have been shown to beneficially influence motor behavior and motor learning. In the present study, we investigated the influence of tDCS applied over the leg area of the primary motor cortex (M1) on balance task learning of healthy elderly in a dynamic balance task (DBT). In total, 30 older adults were enrolled in a cross-sectional, randomized design including two consecutive DBT training sessions. Only during the first DBT session, either 20 min of anodal tDCS (a-tDCS) or sham tDCS (s-tDCS) were applied and learning improvement was compared between the two groups. Our data showed that both groups successfully learned to perform the DBT on both training sessions. Interestingly, between-group analyses revealed no difference between the a-tDCS and the s-tDCS group regarding their level of task learning. These results indicate that the concurrent application of tDCS over M1 leg area did not elicit DBT learning enhancement in our study cohort. However, a regression analysis revealed that DBT performance can be predicted by the kinematic profile of the movement, a finding that may provide new insights for individualized approaches of treating balance and gait disorders. PMID:28197085
Kaminski, Elisabeth; Hoff, Maike; Rjosk, Viola; Steele, Christopher J; Gundlach, Christopher; Sehm, Bernhard; Villringer, Arno; Ragert, Patrick
2017-01-01
Older adults frequently experience a decrease in balance control that leads to increased numbers of falls, injuries and hospitalization. Therefore, evaluating older adults' ability to maintain balance and examining new approaches to counteract age-related decline in balance control is of great importance for fall prevention and healthy aging. Non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS) have been shown to beneficially influence motor behavior and motor learning. In the present study, we investigated the influence of tDCS applied over the leg area of the primary motor cortex (M1) on balance task learning of healthy elderly in a dynamic balance task (DBT). In total, 30 older adults were enrolled in a cross-sectional, randomized design including two consecutive DBT training sessions. Only during the first DBT session, either 20 min of anodal tDCS (a-tDCS) or sham tDCS (s-tDCS) were applied and learning improvement was compared between the two groups. Our data showed that both groups successfully learned to perform the DBT on both training sessions. Interestingly, between-group analyses revealed no difference between the a-tDCS and the s-tDCS group regarding their level of task learning. These results indicate that the concurrent application of tDCS over M1 leg area did not elicit DBT learning enhancement in our study cohort. However, a regression analysis revealed that DBT performance can be predicted by the kinematic profile of the movement, a finding that may provide new insights for individualized approaches of treating balance and gait disorders.
Mild cognitive impairment affects motor control and skill learning.
Wu, Qiaofeng; Chan, John S Y; Yan, Jin H
2016-02-01
Mild cognitive impairment (MCI) is a transitional phase between normal cognitive aging and dementia. As the world population is aging rapidly, more MCI patients will be identified, posing significant problems to society. Normal aging is associated with cognitive and motor decline, and MCI brings additional impairments. Compared to healthy older adults, MCI patients show poorer motor control in a variety of tasks. Efficient motor control and skill learning are essential for occupational and leisure purposes; degradation of motor behaviors in MCI patients often adversely affects their health and quality of life. In this article, we first define MCI and describe its pathology and neural correlates. After this, we review cognitive changes and motor control and skill learning in normal aging. This section is followed by a discussion of MCI-related degradation of motor behaviors. Finally, we propose that multicomponent interventions targeting both cognitive and motor domains can improve MCI patients' motor functions. Future research directions are also raised.
ERIC Educational Resources Information Center
Roth, Daphne Ari-Even; Kishon-Rabin, Liat; Hildesheimer, Minka; Karni, Avi
2005-01-01
Large gains in performance, evolving hours after practice has terminated, were reported in a number of visual and some motor learning tasks, as well as recently in an auditory nonverbal discrimination task. It was proposed that these gains reflect a latent phase of experience-triggered memory consolidation in human skill learning. It is not clear,…
Working Memory Capacity Limits Motor Learning When Implementing Multiple Instructions
Buszard, Tim; Farrow, Damian; Verswijveren, Simone J. J. M.; Reid, Machar; Williams, Jacqueline; Polman, Remco; Ling, Fiona Chun Man; Masters, Rich S. W.
2017-01-01
Although it is generally accepted that certain practice conditions can place large demands on working memory (WM) when performing and learning a motor skill, the influence that WM capacity has on the acquisition of motor skills remains unsubstantiated. This study examined the role of WM capacity in a motor skill practice context that promoted WM involvement through the provision of explicit instructions. A cohort of 90 children aged 8 to 10 years were assessed on measures of WM capacity and attention. Children who scored in the lowest and highest thirds on the WM tasks were allocated to lower WM capacity (n = 24) and higher WM capacity (n = 24) groups, respectively. The remaining 42 participants did not participate in the motor task. The motor task required children to practice basketball shooting for 240 trials in blocks of 20 shots, with pre- and post-tests occurring before and after the intervention. A retention test was administered 1 week after the post-test. Prior to every practice block, children were provided with five explicit instructions that were specific to the technique of shooting a basketball. Results revealed that the higher WM capacity group displayed consistent improvements from pre- to post-test and through to the retention test, while the opposite effect occurred in the lower WM capacity group. This implies that the explicit instructions had a negative influence on learning by the lower WM capacity children. Results are discussed in relation to strategy selection for dealing with instructions and the role of attention control. PMID:28878701
Auditory-Perceptual Learning Improves Speech Motor Adaptation in Children
Shiller, Douglas M.; Rochon, Marie-Lyne
2015-01-01
Auditory feedback plays an important role in children’s speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback, however it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5–7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children’s ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation. PMID:24842067
ERIC Educational Resources Information Center
Chatoupis, Constantine C.; Vagenas, George
2017-01-01
We investigated the effectiveness of two teaching formats that fall under the canopy of Mosston and Ashworth's (2008) practice style, on fifth grade students' motor skill performance and task engagement. Both formats are also known as station teaching or learning centers. In the teacher-rotated format (TR), the teacher decides the amount of time…
Elangovan, Naveen; Cappello, Leonardo; Masia, Lorenzo; Aman, Joshua; Konczak, Jürgen
2017-12-06
Proprioceptive function can become enhanced during motor learning. Yet, we have incomplete knowledge to what extent proprioceptive function is trainable and how a training that enhances proprioception may influence performance in untrained motor skills. To address this knowledge gap, healthy young adults (N = 14) trained in a visuomotor task that required learners to make increasingly accurate wrist movements. Using a robotic exoskeleton coupled with a virtual visual environment, participants tilted a virtual table through continuous wrist flexion/extension movements with the goal to position a rolling ball on table into a target. With learning progress, the level of difficulty increased by altering the virtual ball mechanics and the gain between joint movement and ball velocity. Before and after training, wrist position sense acuity and spatial movement accuracy in an untrained, discrete wrist-pointing task was assessed using the same robot. All participants showed evidence of proprioceptive-motor learning. Mean position sense discrimination threshold improved by 34%. Wrist movement accuracy in the untrained pointing task improved by 27% in 13/14 participants. This demonstrates that a short sensorimotor training challenging proprioception can a) effectively enhance proprioceptive acuity and b) improve the accuracy of untrained movement. These findings provide a scientific basis for applying such somatosensory-based motor training to clinical populations with known proprioceptive dysfunction to enhance sensorimotor performance.
Singh, Puneet; Jana, Sumitash; Ghosal, Ashitava; Murthy, Aditya
2016-12-13
The number of joints and muscles in a human arm is more than what is required for reaching to a desired point in 3D space. Although previous studies have emphasized how such redundancy and the associated flexibility may play an important role in path planning, control of noise, and optimization of motion, whether and how redundancy might promote motor learning has not been investigated. In this work, we quantify redundancy space and investigate its significance and effect on motor learning. We propose that a larger redundancy space leads to faster learning across subjects. We observed this pattern in subjects learning novel kinematics (visuomotor adaptation) and dynamics (force-field adaptation). Interestingly, we also observed differences in the redundancy space between the dominant hand and nondominant hand that explained differences in the learning of dynamics. Taken together, these results provide support for the hypothesis that redundancy aids in motor learning and that the redundant component of motor variability is not noise.
Exploration of joint redundancy but not task space variability facilitates supervised motor learning
Singh, Puneet; Jana, Sumitash; Ghosal, Ashitava; Murthy, Aditya
2016-01-01
The number of joints and muscles in a human arm is more than what is required for reaching to a desired point in 3D space. Although previous studies have emphasized how such redundancy and the associated flexibility may play an important role in path planning, control of noise, and optimization of motion, whether and how redundancy might promote motor learning has not been investigated. In this work, we quantify redundancy space and investigate its significance and effect on motor learning. We propose that a larger redundancy space leads to faster learning across subjects. We observed this pattern in subjects learning novel kinematics (visuomotor adaptation) and dynamics (force-field adaptation). Interestingly, we also observed differences in the redundancy space between the dominant hand and nondominant hand that explained differences in the learning of dynamics. Taken together, these results provide support for the hypothesis that redundancy aids in motor learning and that the redundant component of motor variability is not noise. PMID:27911808
Knowledge of Results after Good Trials Enhances Learning in Older Adults
ERIC Educational Resources Information Center
Chiviacowsky, Suzete; Wulf, Gabriele; Wally, Raquel; Borges, Thiago
2009-01-01
In recent years, some researchers have examined motor learning in older adults. Some of these studies have specifically looked at the effectiveness of different manipulations of extrinsic feedback, or knowledge of results (KR). Given that many motor tasks may already be more challenging for older adults compared to younger adults, making KR more…
ERIC Educational Resources Information Center
Bottary, Ryan; Sonni, Akshata; Wright, David; Spencer, Rebecca M. C.
2016-01-01
Sleep enhances motor sequence learning (MSL) in young adults by concatenating subsequences ("chunks") formed during skill acquisition. To examine whether this process is reduced in aging, we assessed performance changes on the MSL task following overnight sleep or daytime wake in healthy young and older adults. Young adult performance…
BDNF Val66Met but not transcranial direct current stimulation affects motor learning after stroke.
van der Vliet, Rick; Ribbers, Gerard M; Vandermeeren, Yves; Frens, Maarten A; Selles, Ruud W
tDCS is a non-invasive neuromodulation technique that has been reported to improve motor skill learning after stroke. However, the contribution of tDCS to motor skill learning has only been investigated in a small number of studies. In addition, it is unclear if tDCS effects are mediated by activity-dependent BDNF release and dependent on timing of tDCS relative to training. Investigate the role of activity-dependent BDNF release and timing of tDCS relative to training in motor skill learning. Double-blind, between-subjects randomized controlled trial of circuit tracing task improvement (ΔMotor skill) in 80 chronic stroke patients who underwent tDCS and were genotyped for BDNF Val66Met. Patients received either short-lasting tDCS (20 min) during training (short-lasting online group), long-lasting tDCS (10 min-25 min break - 10 min) one day before training (long-lasting offline group), short-lasting tDCS one day before training (short-lasting offline group), or sham tDCS. ΔMotor skill was defined as the skill difference on the circuit tracing task between day one and day nine of the study. Having at least one BDNF Met allele was found to diminish ΔMotor skill (β BDNF,Met = -0.217 95%HDI = [-0.431 -0.0116]), indicating activity-dependent BDNF release is important for motor skill learning after stroke. However, none of the tDCS protocols affected ΔMotor skill (β Short-lasting,online = 0.0908 95%HDI = [-0.227 0.403]; β Long-lasting,offline = 0.0242 95%HDI = [-0.292 0.349]; β Short-lasting,offline = -0.108 95%HDI = [-0.433 0.210]). BDNF Val66Met is a determinant of motor skill learning after stroke and could be important for prognostic models. tDCS does not modulate motor skill learning in our study and might be less effective than previously assumed. Copyright © 2017 Elsevier Inc. All rights reserved.
Husain, Masud; Wiestler, Tobias; Diedrichsen, Jörn
2014-01-01
Complex manual tasks—everything from buttoning up a shirt to playing the piano—fundamentally involve two components: (1) generating specific patterns of muscle activity (here, termed “synergies”); and (2) stringing these into purposeful sequences. Although transcranial direct current stimulation (tDCS) of the primary motor cortex (M1) has been found to increase the learning of motor sequences, it is unknown whether it can similarly facilitate motor synergy learning. Here, we determined the effects of tDCS on the learning of motor synergies using a novel hand configuration task that required the production of difficult muscular activation patterns. Bihemispheric tDCS was applied to M1 of healthy, right-handed human participants during 4 d of repetitive left-hand configuration training in a double-blind design. tDCS augmented synergy learning, leading subsequently to faster and more synchronized execution. This effect persisted for at least 4 weeks after training. Qualitatively similar tDCS-associated improvements occurred during training of finger sequences in a separate subject cohort. We additionally determined whether tDCS only improved the acquisition of motor memories for specific synergies/sequences or whether it also facilitated more general parts of the motor representations, which could be transferred to novel movements. Critically, we observed that tDCS effects generalized to untrained hand configurations and untrained finger sequences (i.e., were nonspecific), as well as to the untrained hand (i.e., were effector-independent). Hence, bihemispheric tDCS may be a promising adjunct to neurorehabilitative training regimes, in which broad transfer to everyday tasks is highly desirable. PMID:24431461
Somatosensory Contribution to the Initial Stages of Human Motor Learning
Bernardi, Nicolò F.; Darainy, Mohammad
2015-01-01
The early stages of motor skill acquisition are often marked by uncertainty about the sensory and motor goals of the task, as is the case in learning to speak or learning the feel of a good tennis serve. Here we present an experimental model of this early learning process, in which targets are acquired by exploration and reinforcement rather than sensory error. We use this model to investigate the relative contribution of motor and sensory factors to human motor learning. Participants make active reaching movements or matched passive movements to an unseen target using a robot arm. We find that learning through passive movements paired with reinforcement is comparable with learning associated with active movement, both in terms of magnitude and durability, with improvements due to training still observable at a 1 week retest. Motor learning is also accompanied by changes in somatosensory perceptual acuity. No stable changes in motor performance are observed for participants that train, actively or passively, in the absence of reinforcement, or for participants who are given explicit information about target position in the absence of somatosensory experience. These findings indicate that the somatosensory system dominates learning in the early stages of motor skill acquisition. SIGNIFICANCE STATEMENT The research focuses on the initial stages of human motor learning, introducing a new experimental model that closely approximates the key features of motor learning outside of the laboratory. The finding indicates that it is the somatosensory system rather than the motor system that dominates learning in the early stages of motor skill acquisition. This is important given that most of our computational models of motor learning are based on the idea that learning is motoric in origin. This is also a valuable finding for rehabilitation of patients with limited mobility as it shows that reinforcement in conjunction with passive movement results in benefits to motor learning that are as great as those observed for active movement training. PMID:26490869
Effects of tDCS on Bimanual Motor Skills: A Brief Review
Pixa, Nils H.; Pollok, Bettina
2018-01-01
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that allows the modulation of cortical excitability as well as neuroplastic reorganization using a weak constant current applied through the skull on the cerebral cortex. TDCS has been found to improve motor performance in general and motor learning in particular. However, these effects have been reported almost exclusively for unimanual motor tasks such as serial reaction time tasks, adaptation tasks, or visuo-motor tracking. Despite the importance of bimanual actions in most activities of daily living, only few studies have investigated the effects of tDCS on bimanual motor skills. The objectives of this review article are: (i) to provide a concise overview of the few existing studies in this area; and (ii) to discuss the effects of tDCS on bimanual motor skills in healthy volunteers and patients suffering from neurological diseases. Despite considerable variations in stimulation protocols, the bimanual tasks employed, and study designs, the data suggest that tDCS has the potential to enhance bimanual motor skills. The findings imply that the effects of tDCS vary with task demands, such as complexity and the level of expertise of the participating volunteers. Nevertheless, optimized stimulation protocols tailored to bimanual tasks and individual performance considering the underlying neural substrates of task execution are required in order to probe the effectiveness of tDCS in greater detail, thus creating an opportunity to support motor recovery in neuro-rehabilitation. PMID:29670514
Effects of tDCS on Bimanual Motor Skills: A Brief Review.
Pixa, Nils H; Pollok, Bettina
2018-01-01
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that allows the modulation of cortical excitability as well as neuroplastic reorganization using a weak constant current applied through the skull on the cerebral cortex. TDCS has been found to improve motor performance in general and motor learning in particular. However, these effects have been reported almost exclusively for unimanual motor tasks such as serial reaction time tasks, adaptation tasks, or visuo-motor tracking. Despite the importance of bimanual actions in most activities of daily living, only few studies have investigated the effects of tDCS on bimanual motor skills. The objectives of this review article are: (i) to provide a concise overview of the few existing studies in this area; and (ii) to discuss the effects of tDCS on bimanual motor skills in healthy volunteers and patients suffering from neurological diseases. Despite considerable variations in stimulation protocols, the bimanual tasks employed, and study designs, the data suggest that tDCS has the potential to enhance bimanual motor skills. The findings imply that the effects of tDCS vary with task demands, such as complexity and the level of expertise of the participating volunteers. Nevertheless, optimized stimulation protocols tailored to bimanual tasks and individual performance considering the underlying neural substrates of task execution are required in order to probe the effectiveness of tDCS in greater detail, thus creating an opportunity to support motor recovery in neuro-rehabilitation.
Obayashi, Chihiro; Tamei, Tomoya; Shibata, Tomohiro
2014-05-01
This paper proposes a novel robotic trainer for motor skill learning. It is user-adaptive inspired by the assist-as-needed principle well known in the field of physical therapy. Most previous studies in the field of the robotic assistance of motor skill learning have used predetermined desired trajectories, and it has not been examined intensively whether these trajectories were optimal for each user. Furthermore, the guidance hypothesis states that humans tend to rely too much on external assistive feedback, resulting in interference with the internal feedback necessary for motor skill learning. A few studies have proposed a system that adjusts its assistive strength according to the user's performance in order to prevent the user from relying too much on the robotic assistance. There are, however, problems in these studies, in that a physical model of the user's motor system is required, which is inherently difficult to construct. In this paper, we propose a framework for a robotic trainer that is user-adaptive and that neither requires a specific desired trajectory nor a physical model of the user's motor system, and we achieve this using model-free reinforcement learning. We chose dart-throwing as an example motor-learning task as it is one of the simplest throwing tasks, and its performance can easily be and quantitatively measured. Training experiments with novices, aiming at maximizing the score with the darts and minimizing the physical robotic assistance, demonstrate the feasibility and plausibility of the proposed framework. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sigrist, Roland; Rauter, Georg; Marchal-Crespo, Laura; Riener, Robert; Wolf, Peter
2015-03-01
Concurrent augmented feedback has been shown to be less effective for learning simple motor tasks than for complex tasks. However, as mostly artificial tasks have been investigated, transfer of results to tasks in sports and rehabilitation remains unknown. Therefore, in this study, the effect of different concurrent feedback was evaluated in trunk-arm rowing. It was then investigated whether multimodal audiovisual and visuohaptic feedback are more effective for learning than visual feedback only. Naïve subjects (N = 24) trained in three groups on a highly realistic virtual reality-based rowing simulator. In the visual feedback group, the subject's oar was superimposed to the target oar, which continuously became more transparent when the deviation between the oars decreased. Moreover, a trace of the subject's trajectory emerged if deviations exceeded a threshold. The audiovisual feedback group trained with oar movement sonification in addition to visual feedback to facilitate learning of the velocity profile. In the visuohaptic group, the oar movement was inhibited by path deviation-dependent braking forces to enhance learning of spatial aspects. All groups significantly decreased the spatial error (tendency in visual group) and velocity error from baseline to the retention tests. Audiovisual feedback fostered learning of the velocity profile significantly more than visuohaptic feedback. The study revealed that well-designed concurrent feedback fosters complex task learning, especially if the advantages of different modalities are exploited. Further studies should analyze the impact of within-feedback design parameters and the transferability of the results to other tasks in sports and rehabilitation.
Effect of tonic pain on motor acquisition and retention while learning to reach in a force field.
Lamothe, Mélanie; Roy, Jean-Sébastien; Bouffard, Jason; Gagné, Martin; Bouyer, Laurent J; Mercier, Catherine
2014-01-01
Most patients receiving intensive rehabilitation to improve their upper limb function experience pain. Despite this, the impact of pain on the ability to learn a specific motor task is still unknown. The aim of this study was to determine whether the presence of experimental tonic pain interferes with the acquisition and retention stages of motor learning associated with training in a reaching task. Twenty-nine healthy subjects were randomized to either a Control or Pain Group (receiving topical capsaicin cream on the upper arm during training on Day 1). On two consecutive days, subjects made ballistic movements towards two targets (NEAR/FAR) using a robotized exoskeleton. On Day 1, the task was performed without (baseline) and with a force field (adaptation). The adaptation task was repeated on Day 2. Task performance was assessed using index distance from the target at the end of the reaching movement. Motor planning was assessed using initial angle of deviation of index trajectory from a straight line to the target. Results show that tonic pain did not affect baseline reaching. Both groups improved task performance across time (p<0.001), but the Pain group showed a larger final error (under-compensation) than the Control group for the FAR target (p = 0.030) during both acquisition and retention. Moreover, a Group x Time interaction (p = 0.028) was observed on initial angle of deviation, suggesting that subjects with Pain made larger adjustments in the feedforward component of the movement over time. Interestingly, behaviour of the Pain group was very stable from the end of Day 1 (with pain) to the beginning of Day 2 (pain-free), indicating that the differences observed could not solely be explained by the impact of pain on immediate performance. This suggests that if people learn to move differently in the presence of pain, they might maintain this altered strategy over time.
Self-Control of Haptic Assistance for Motor Learning: Influences of Frequency and Opinion of Utility
Williams, Camille K.; Tseung, Victrine; Carnahan, Heather
2017-01-01
Studies of self-controlled practice have shown benefits when learners controlled feedback schedule, use of assistive devices and task difficulty, with benefits attributed to information processing and motivational advantages of self-control. Although haptic assistance serves as feedback, aids task performance and modifies task difficulty, researchers have yet to explore whether self-control over haptic assistance could be beneficial for learning. We explored whether self-control of haptic assistance would be beneficial for learning a tracing task. Self-controlled participants selected practice blocks on which they would receive haptic assistance, while participants in a yoked group received haptic assistance on blocks determined by a matched self-controlled participant. We inferred learning from performance on retention tests without haptic assistance. From qualitative analysis of open-ended questions related to rationales for/experiences of the haptic assistance that was chosen/provided, themes emerged regarding participants’ views of the utility of haptic assistance for performance and learning. Results showed that learning was directly impacted by the frequency of haptic assistance for self-controlled participants only and view of haptic assistance. Furthermore, self-controlled participants’ views were significantly associated with their requested haptic assistance frequency. We discuss these findings as further support for the beneficial role of self-controlled practice for motor learning. PMID:29255438
Huau, Andréa; Velay, Jean-Luc; Jover, Marianne
2015-08-01
The aim of the present study was to analyze handwriting difficulties in children with developmental coordination disorder (DCD) and investigate the hypothesis that a deficit in procedural learning could help to explain them. The experimental set-up was designed to compare the performances of children with DCD with those of a non-DCD group on tasks that rely on motor learning in different ways, namely handwriting and learning a new letter. Ten children with DCD and 10 non-DCD children, aged 8-10 years, were asked to perform handwriting tasks (letter/word/sentence; normal/fast), and a learning task (new letter) on a graphic tablet. The BHK concise assessment scale for children's handwriting was used to evaluate their handwriting quality. Results showed that both the handwriting and learning tasks differentiated between the groups. Furthermore, when speed or length constraints were added, handwriting was more impaired in children with DCD than in non-DCD children. Greater intra-individual variability was observed in the group of children with DCD, arguing in favor of a deficit in motor pattern stabilization. The results of this study could support both the hypothesis of a deficit in procedural learning and the hypothesis of neuromotor noise in DCD. Copyright © 2015 Elsevier B.V. All rights reserved.
Virtual reality applications for motor rehabilitation after stroke.
Sisto, Sue Ann; Forrest, Gail F; Glendinning, Diana
2002-01-01
Hemiparesis is the primary physical impairment underlying functional disability after stroke. A goal of rehabilitation is to enhance motor skill acquisition, which is a direct result of practice. However, frequency and duration of practice are limited in rehabilitation. Virtual reality (VR) is a computer technology that simulates real-life learning while providing augmented feedback and increased frequency, duration, and intensity of practiced tasks. The rate and extent of relearning of motor tasks could affect the duration, effectiveness, and cost of patient care. The purpose of this article is to review the use of VR training for motor rehabilitation after stroke.
Causby, Ryan S; McDonnell, Michelle N; Reed, Lloyd; Hillier, Susan L
2016-12-05
The process of using a scalpel, like all other motor activities, is dependent upon the successful integration of afferent (sensory), cognitive and efferent (motor) processes. During learning of these skills, even if motor practice is carefully monitored there is still an inherent risk involved. It is also possible that this strategy could reinforce high levels of anxiety experienced by the student and affect student self-efficacy, causing detrimental effects on motor learning. An alternative training strategy could be through targeting sensory rather than motor processes. Second year podiatry students who were about to commence learning scalpel skills were recruited. Participants were randomly allocated into sensory awareness training (Sensory), additional motor practice (Motor) or usual teaching only (Control) groups. Participants were then evaluated on psychological measures (Intrinsic Motivation Inventory) and dexterity measures (Purdue Pegboard, Grooved Pegboard Test and a grip-lift task). A total of 44 participants were included in the study. There were no baseline differences or significant differences between the three groups over time on the Perceived Competence, Effort/ Importance or Pressure/ Tension, psychological measures. All groups showed a significant increase in Perceived Competence over time (F 1,41 = 13.796, p = 0.001). Only one variable for the grip-lift task (Preload Duration for the non-dominant hand) showed a significant difference over time between the groups (F 2,41 = 3.280, p = 0.038), specifically, Motor and Control groups. The use of sensory awareness training, or additional motor practice did not provide a more effective alternative compared with usual teaching. Further research may be warranted using more engaged training, provision of supervision and greater participant numbers. Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN12616001428459 . Registered 13 th October 2016. Registered Retrospectively.
Casellato, Claudia; Antonietti, Alberto; Garrido, Jesus A; Ferrigno, Giancarlo; D'Angelo, Egidio; Pedrocchi, Alessandra
2015-01-01
The cerebellum plays a crucial role in motor learning and it acts as a predictive controller. Modeling it and embedding it into sensorimotor tasks allows us to create functional links between plasticity mechanisms, neural circuits and behavioral learning. Moreover, if applied to real-time control of a neurorobot, the cerebellar model has to deal with a real noisy and changing environment, thus showing its robustness and effectiveness in learning. A biologically inspired cerebellar model with distributed plasticity, both at cortical and nuclear sites, has been used. Two cerebellum-mediated paradigms have been designed: an associative Pavlovian task and a vestibulo-ocular reflex, with multiple sessions of acquisition and extinction and with different stimuli and perturbation patterns. The cerebellar controller succeeded to generate conditioned responses and finely tuned eye movement compensation, thus reproducing human-like behaviors. Through a productive plasticity transfer from cortical to nuclear sites, the distributed cerebellar controller showed in both tasks the capability to optimize learning on multiple time-scales, to store motor memory and to effectively adapt to dynamic ranges of stimuli.
Use of rhythm in acquisition of a computer-generated tracking task.
Fulop, A C; Kirby, R H; Coates, G D
1992-08-01
This research assessed whether rhythm aids acquisition of motor skills by providing cues for the timing of those skills. Rhythms were presented to participants visually or visually with auditory cues. It was hypothesized that the auditory cues would facilitate recognition and learning of the rhythms. The three timing principles of rhythms were also explored. It was hypothesized that rhythms that satisfied all three timing principles would be more beneficial in learning a skill than rhythms that did not satisfy the principles. Three groups learned three different rhythms by practicing a tracking task. After training, participants attempted to reproduce the tracks from memory. Results suggest that rhythms do help in learning motor skills but different sets of timing principles explain perception of rhythm in different modalities.
Kasuga, Shoko; Ushiba, Junichi
2014-01-01
Humans have a flexible motor ability to adapt their movements to changes in the internal/external environment. For example, using arm-reaching tasks, a number of studies experimentally showed that participants adapt to a novel visuomotor environment. These results helped develop computational models of motor learning implemented in the central nervous system. Despite the importance of such experimental paradigms for exploring the mechanisms of motor learning, because of the cost and preparation time, most students are unable to participate in such experiments. Therefore, in the current study, to help students better understand motor learning theories, we developed a simple finger-reaching experimental system using commonly used laptop PC components with an open-source programming language (Processing Motor Learning Toolkit: PMLT). We found that compared to a commercially available robotic arm-reaching device, our PMLT accomplished similar learning goals (difference in the error reduction between the devices, P = 0.10). In addition, consistent with previous reports from visuomotor learning studies, the participants showed after-effects indicating an adaptation of the motor learning system. The results suggest that PMLT can serve as a new experimental system for an undergraduate laboratory exercise of motor learning theories with minimal time and cost for instructors.
Cognitive ability predicts motor learning on a virtual reality game in patients with TBI.
O'Neil, Rochelle L; Skeel, Reid L; Ustinova, Ksenia I
2013-01-01
Virtual reality games and simulations have been utilized successfully for motor rehabilitation of individuals with traumatic brain injury (TBI). Little is known, however, how TBI-related cognitive decline affects learning of motor tasks in virtual environments. To fill this gap, we examined learning within a virtual reality game involving various reaching motions in 14 patients with TBI and 15 healthy individuals with different cognitive abilities. All participants practiced ten 90-second gaming trials to assess various aspects of motor learning. Cognitive abilities were assessed with a battery of tests including measures of memory, executive functioning, and visuospatial ability. Overall, participants with TBI showed both reduced performance and a slower learning rate in the virtual reality game compared to healthy individuals. Numerous correlations between overall performance and several of the cognitive ability domains were revealed for both the patient and control groups, with the best predictor being overall cognitive ability. The results may provide a starting point for rehabilitation programs regarding which cognitive domains interact with motor learning.
Heritability of motor control and motor learning
Missitzi, Julia; Gentner, Reinhard; Misitzi, Angelica; Geladas, Nickos; Politis, Panagiotis; Klissouras, Vassilis; Classen, Joseph
2013-01-01
Abstract The aim of this study was to elucidate the relative contribution of genes and environment on individual differences in motor control and acquisition of a force control task, in view of recent association studies showing that several candidate polymorphisms may have an effect on them. Forty‐four healthy female twins performed brisk isometric abductions with their right thumb. Force was recorded by a transducer and fed back to the subject on a computer screen. The task was to place the tracing of the peak force in a force window defined between 30% and 40% of the subject's maximum force, as determined beforehand. The initial level of proficiency was defined as the number of attempts reaching the force window criterion within the first 100 trials. The difference between the number of successful trials within the last and the first 100 trials was taken as a measure of motor learning. For motor control, defined by the initial level of proficiency, the intrapair differences in monozygotic (MZ) and dizygotic (DZ) twins were 6.8 ± 7.8 and 13.8 ± 8.4, and the intrapair correlations 0.77 and 0.39, respectively. Heritability was estimated at 0.68. Likewise for motor learning intrapair differences in the increment of the number of successful trials in MZ and DZ twins were 5.4 ± 5.2 and 12.8 ± 7, and the intrapair correlations 0.58 and 0.19. Heritability reached 0.70. The present findings suggest that heredity accounts for a major part of existing differences in motor control and motor learning, but uncertainty remains which gene polymorphisms may be responsible. PMID:24744865
Furlan, Leonardo; Sterr, Annette
2018-01-01
Motor learning studies face the challenge of differentiating between real changes in performance and random measurement error. While the traditional p -value-based analyses of difference (e.g., t -tests, ANOVAs) provide information on the statistical significance of a reported change in performance scores, they do not inform as to the likely cause or origin of that change, that is, the contribution of both real modifications in performance and random measurement error to the reported change. One way of differentiating between real change and random measurement error is through the utilization of the statistics of standard error of measurement (SEM) and minimal detectable change (MDC). SEM is estimated from the standard deviation of a sample of scores at baseline and a test-retest reliability index of the measurement instrument or test employed. MDC, in turn, is estimated from SEM and a degree of confidence, usually 95%. The MDC value might be regarded as the minimum amount of change that needs to be observed for it to be considered a real change, or a change to which the contribution of real modifications in performance is likely to be greater than that of random measurement error. A computer-based motor task was designed to illustrate the applicability of SEM and MDC to motor learning research. Two studies were conducted with healthy participants. Study 1 assessed the test-retest reliability of the task and Study 2 consisted in a typical motor learning study, where participants practiced the task for five consecutive days. In Study 2, the data were analyzed with a traditional p -value-based analysis of difference (ANOVA) and also with SEM and MDC. The findings showed good test-retest reliability for the task and that the p -value-based analysis alone identified statistically significant improvements in performance over time even when the observed changes could in fact have been smaller than the MDC and thereby caused mostly by random measurement error, as opposed to by learning. We suggest therefore that motor learning studies could complement their p -value-based analyses of difference with statistics such as SEM and MDC in order to inform as to the likely cause or origin of any reported changes in performance.
Forelimb training drives transient map reorganization in ipsilateral motor cortex
Pruitt, David T.; Schmid, Ariel N.; Danaphongse, Tanya T.; Flanagan, Kate E.; Morrison, Robert A.; Kilgard, Michael P.; Rennaker, Robert L.; Hays, Seth A.
2016-01-01
Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. PMID:27392641
Forelimb training drives transient map reorganization in ipsilateral motor cortex.
Pruitt, David T; Schmid, Ariel N; Danaphongse, Tanya T; Flanagan, Kate E; Morrison, Robert A; Kilgard, Michael P; Rennaker, Robert L; Hays, Seth A
2016-10-15
Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. Copyright © 2016 Elsevier B.V. All rights reserved.
Sale, Martin V.; Ridding, Michael C.; Nordstrom, Michael A.
2013-01-01
Repetitive performance of a task can result in learning. The neural mechanisms underpinning such use-dependent plasticity are influenced by several neuromodulators. Variations in neuromodulator levels may contribute to the variability in performance outcomes following training. Circulating levels of the neuromodulator cortisol change throughout the day. High cortisol levels inhibit neuroplasticity induced with a transcranial magnetic stimulation (TMS) paradigm that has similarities to use-dependent plasticity. The present study investigated whether performance changes following a motor training task are modulated by time of day and/or changes in endogenous cortisol levels. Motor training involving 30 minutes of repeated maximum left thumb abduction was undertaken by twenty-two participants twice, once in the morning (8 AM) and once in the evening (8 PM) on separate occasions. Saliva was assayed for cortisol concentration. Motor performance, quantified by measuring maximum left thumb abduction acceleration, significantly increased by 28% following training. Neuroplastic changes in corticomotor excitability of abductor pollicis brevis, quantified with TMS, increased significantly by 23% following training. Training-related motor performance improvements and neuroplasticity were unaffected by time of day and salivary cortisol concentration. Although similar neural elements and processes contribute to motor learning, training-induced neuroplasticity, and TMS-induced neuroplasticity, our findings suggest that the influence of time of day and cortisol differs for these three interventions. PMID:23577271
Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation
Rioult-Pedotti, Mengia-Seraina; Pekanovic, Ana; Atiemo, Clement Osei; Marshall, John; Luft, Andreas Rüdiger
2015-01-01
Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease. PMID:25938462
Plasticity in the Human Speech Motor System Drives Changes in Speech Perception
Lametti, Daniel R.; Rochet-Capellan, Amélie; Neufeld, Emily; Shiller, Douglas M.
2014-01-01
Recent studies of human speech motor learning suggest that learning is accompanied by changes in auditory perception. But what drives the perceptual change? Is it a consequence of changes in the motor system? Or is it a result of sensory inflow during learning? Here, subjects participated in a speech motor-learning task involving adaptation to altered auditory feedback and they were subsequently tested for perceptual change. In two separate experiments, involving two different auditory perceptual continua, we show that changes in the speech motor system that accompany learning drive changes in auditory speech perception. Specifically, we obtained changes in speech perception when adaptation to altered auditory feedback led to speech production that fell into the phonetic range of the speech perceptual tests. However, a similar change in perception was not observed when the auditory feedback that subjects' received during learning fell into the phonetic range of the perceptual tests. This indicates that the central motor outflow associated with vocal sensorimotor adaptation drives changes to the perceptual classification of speech sounds. PMID:25080594
Neural substrates of visuomotor learning based on improved feedback control and prediction
Grafton, Scott T.; Schmitt, Paul; Horn, John Van; Diedrichsen, Jörn
2008-01-01
Motor skills emerge from learning feedforward commands as well as improvements in feedback control. These two components of learning were investigated in a compensatory visuomotor tracking task on a trial-by-trial basis. Between trial learning was characterized with a state-space model to provide smoothed estimates of feedforward and feedback learning, separable from random fluctuations in motor performance and error. The resultant parameters were correlated with brain activity using magnetic resonance imaging. Learning related to the generation of a feedforward command correlated with activity in dorsal premotor cortex, inferior parietal lobule, supplementary motor area and cingulate motor area, supporting a role of these areas in retrieving and executing a predictive motor command. Modulation of feedback control was associated with activity in bilateral posterior superior parietal lobule as well as right ventral premotor cortex. Performance error correlated with activity in a widespread cortical and subcortical network including bilateral parietal, premotor and rostral anterior cingulate cortex as well as the cerebellar cortex. Finally, trial-by-trial changes of kinematics, as measured by mean absolute hand acceleration, correlated with activity in motor cortex and anterior cerebellum. The results demonstrate that incremental, learning dependent changes can be modeled on a trial-by-trial basis and neural substrates for feedforward control of novel motor programs are localized to secondary motor areas. PMID:18032069
A dual-learning paradigm can simultaneously train multiple characteristics of walking
Toliver, Alexis; Bastian, Amy J.
2016-01-01
Impairments in human motor patterns are complex: what is often observed as a single global deficit (e.g., limping when walking) is actually the sum of several distinct abnormalities. Motor adaptation can be useful to teach patients more normal motor patterns, yet conventional training paradigms focus on individual features of a movement, leaving others unaddressed. It is known that under certain conditions, distinct movement components can be simultaneously adapted without interference. These previous “dual-learning” studies focused solely on short, planar reaching movements, yet it is unknown whether these findings can generalize to a more complex behavior like walking. Here we asked whether a dual-learning paradigm, incorporating two distinct motor adaptation tasks, can be used to simultaneously train multiple components of the walking pattern. We developed a joint-angle learning task that provided biased visual feedback of sagittal joint angles to increase peak knee or hip flexion during the swing phase of walking. Healthy, young participants performed this task independently or concurrently with another locomotor adaptation task, split-belt treadmill adaptation, where subjects adapted their step length symmetry. We found that participants were able to successfully adapt both components of the walking pattern simultaneously, without interference, and at the same rate as adapting either component independently. This leads us to the interesting possibility that combining rehabilitation modalities within a single training session could be used to help alleviate multiple deficits at once in patients with complex gait impairments. PMID:26961100
The influence of focused-attention meditation states on the cognitive control of sequence learning.
Chan, Russell W; Immink, Maarten A; Lushington, Kurt
2017-10-01
Cognitive control processes influence how motor sequence information is utilised and represented. Since cognitive control processes are shared amongst goal-oriented tasks, motor sequence learning and performance might be influenced by preceding cognitive tasks such as focused-attention meditation (FAM). Prior to a serial reaction time task (SRTT), participants completed either a single-session of FAM, a single-session of FAM followed by delay (FAM+) or no meditation (CONTROL). Relative to CONTROL, FAM benefitted performance in early, random-ordered blocks. However, across subsequent sequence learning blocks, FAM+ supported the highest levels of performance improvement resulting in superior performance at the end of the SRTT. Performance following FAM+ demonstrated greater reliance on embedded sequence structures than FAM. These findings illustrate that increased top-down control immediately after FAM biases the implementation of stimulus-based planning. Introduction of a delay following FAM relaxes top-down control allowing for implementation of response-based planning resulting in sequence learning benefits. Copyright © 2017 Elsevier Inc. All rights reserved.
Stöckel, Tino; Wang, Jinsung
2011-11-01
Interlimb transfer of motor learning, indicating an improvement in performance with one limb following training with the other, often occurs asymmetrically (i.e., from non-dominant to dominant limb or vice versa, but not both). In the present study, we examined whether interlimb transfer of the same motor task could occur asymmetrically and in opposite directions (i.e., from right to left leg vs. left to right leg) depending on individuals' conception of the task. Two experimental conditions were tested: In a dynamic control condition, the process of learning was facilitated by providing the subjects with a type of information that forced them to focus on dynamic features of a given task (force impulse); and in a spatial control condition, it was done with another type of information that forced them to focus on visuomotor features of the same task (distance). Both conditions employed the same leg extension task. In addition, a fully-crossed transfer paradigm was used in which one group of subjects initially practiced with the right leg and were tested with the left leg for a transfer test, while the other group used the two legs in the opposite order. The results showed that the direction of interlimb transfer varied depending on the condition, such that the right and the left leg benefited from initial training with the opposite leg only in the spatial and the dynamic condition, respectively. Our finding suggests that manipulating the conception of a leg extension task has a substantial influence on the pattern of interlimb transfer in such a way that the direction of transfer can even be opposite depending on whether the task is conceived as a dynamic or spatial control task. Copyright © 2011 Elsevier Inc. All rights reserved.
The 50s cliff: a decline in perceptuo-motor learning, not a deficit in visual motion perception.
Ren, Jie; Huang, Shaochen; Zhang, Jiancheng; Zhu, Qin; Wilson, Andrew D; Snapp-Childs, Winona; Bingham, Geoffrey P
2015-01-01
Previously, we measured perceptuo-motor learning rates across the lifespan and found a sudden drop in learning rates between ages 50 and 60, called the "50s cliff." The task was a unimanual visual rhythmic coordination task in which participants used a joystick to oscillate one dot in a display in coordination with another dot oscillated by a computer. Participants learned to produce a coordination with a 90° relative phase relation between the dots. Learning rates for participants over 60 were half those of younger participants. Given existing evidence for visual motion perception deficits in people over 60 and the role of visual motion perception in the coordination task, it remained unclear whether the 50s cliff reflected onset of this deficit or a genuine decline in perceptuo-motor learning. The current work addressed this question. Two groups of 12 participants in each of four age ranges (20s, 50s, 60s, 70s) learned to perform a bimanual coordination of 90° relative phase. One group trained with only haptic information and the other group with both haptic and visual information about relative phase. Both groups were tested in both information conditions at baseline and post-test. If the 50s cliff was caused by an age dependent deficit in visual motion perception, then older participants in the visual group should have exhibited less learning than those in the haptic group, which should not exhibit the 50s cliff, and older participants in both groups should have performed less well when tested with visual information. Neither of these expectations was confirmed by the results, so we concluded that the 50s cliff reflects a genuine decline in perceptuo-motor learning with aging, not the onset of a deficit in visual motion perception.
Changes in Information Processing with Aging: Implications for Teaching Motor Skills.
ERIC Educational Resources Information Center
Anshel, Mark H.
Although there are marked individual differences in the effect of aging on learning and performing motor skills, there is agreement that humans process information less efficiently with advanced age. Significant decrements have been found specifically with motor tasks that are characterized as externally-paced, rapid, complex, and requiring rapid…
Kaplan, Janna; Ventura, Joel; Bakshi, Avijit; Pierobon, Alberto; Lackner, James R; DiZio, Paul
2017-01-01
Our goal was to determine how sleep deprivation, nauseogenic motion, and a combination of motion and sleep deprivation affect cognitive vigilance, visual-spatial perception, motor learning and retention, and balance. We exposed four groups of subjects to different combinations of normal 8h sleep or 4h sleep for two nights combined with testing under stationary conditions or during 0.28Hz horizontal linear oscillation. On the two days following controlled sleep, all subjects underwent four test sessions per day that included evaluations of fatigue, motion sickness, vigilance, perceptual discrimination, perceptual learning, motor performance and learning, and balance. Sleep loss and exposure to linear oscillation had additive or multiplicative relationships to sleepiness, motion sickness severity, decreases in vigilance and in perceptual discrimination and learning. Sleep loss also decelerated the rate of adaptation to motion sickness over repeated sessions. Sleep loss degraded the capacity to compensate for novel robotically induced perturbations of reaching movements but did not adversely affect adaptive recovery of accurate reaching. Overall, tasks requiring substantial attention to cognitive and motor demands were degraded more than tasks that were more automatic. Our findings indicate that predicting performance needs to take into account in addition to sleep loss, the attentional demands and novelty of tasks, the motion environment in which individuals will be performing and their prior susceptibility to motion sickness during exposure to provocative motion stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Implicit contextual learning in prodromal and early stage Huntington's disease patients.
van Asselen, Marieke; Almeida, Inês; Júlio, Filipa; Januário, Cristina; Campos, Elzbieta Bobrowicz; Simões, Mário; Castelo-Branco, Miguel
2012-07-01
Huntington's disease (HD) is a genetic neurodegenerative disorder affecting the basal ganglia. These subcortical structures are particularly important for motor functions, response selection and implicit learning. In the current study, we have assessed prodromal and symptomatic HD participants with an implicit contextual learning task that is not based on motor learning, but on a purely visual implicit learning mechanism. We used an implicit contextual learning task in which subjects need to locate a target among several distractors. In half of the trials, the positions of the distractors and target stimuli were repeated. By memorizing this contextual information, attention can be guided faster to the target stimulus. Nine symptomatic HD participants, 16 prodromal HD participants and 22 control subjects were included. We found that the responses of the control subjects were faster for the repeated trials than for the new trials, indicating that their visual search was facilitated when repeated contextual information was present. In contrast, no difference in response times between the repeated and new trials was found for the symptomatic and prodromal HD participants. The results of the current study indicate that both prodromal and symptomatic HD participants are impaired on an implicit contextual learning task.
Interlimb transfer of motor skill learning during walking: No evidence for asymmetric transfer.
Krishnan, Chandramouli; Ranganathan, Rajiv; Tetarbe, Manik
2017-07-01
Several studies have shown that learning a motor skill in one limb can transfer to the opposite limb-a phenomenon called as interlimb transfer. The transfer of motor skills between limbs, however, has shown to be asymmetric, where one side benefits to a greater extent than the other. While this phenomenon has been well-documented in the upper-extremity, evidence for interlimb transfer in the lower-extremity is limited and mixed. This study investigated the extent of interlimb transfer during walking, and tested whether this transfer was asymmetric using a foot trajectory-tracking paradigm that has been specifically used for gait rehabilitation. The paradigm involved learning a new gait pattern which required greater hip and knee flexion during the swing phase of the gait while walking on a treadmill. Twenty young adults were randomized into two equal groups, where one group (right-to-left: RL) practiced the task initially with the dominant right leg and the other group (left-to-right: LR) practiced the task initially with their non-dominant left leg. After training, both groups practiced the task with their opposite leg to test the transfer effects. The changes in tracking error on each leg were computed to quantify learning and transfer effects. The results indicated that practice with one leg improved the motor performance of the other leg; however, the amount of transfer was similar across groups, indicating that there was no asymmetry in transfer. This finding is contradictory to most upper-extremity studies (where asymmetric transfer has been reported) and points out that both differences in neural processes and types of tasks may mediate interlimb transfer. Copyright © 2017 Elsevier B.V. All rights reserved.
Alaverdashvili, Mariam; Paterson, Phyllis G.
2017-01-01
Synchrotron-based X-ray fluorescence imaging (XFI) of zinc (Zn) has been recently implemented to understand the efficiency of various therapeutic interventions targeting post-stroke neuroprotection and neuroplasticity. However, it is uncertain if micro XFI can resolve neuroplasticity-induced changes. Thus, we explored if learning-associated behavioral changes would be accompanied by changes in cortical Zn concentration measured by XFI in healthy adult rats. Proficiency in a skilled reach-to-eat task during early and late stages of motor learning served as a functional measure of neuroplasticity. c-Fos protein and vesicular Zn expression were employed as indirect neuronal measures of brain plasticity. A total Zn map (20 × 20 × 30 μm3 resolution) generated by micro XFI failed to reflect increases in either c-Fos or vesicular Zn in the motor cortex contralateral to the trained forelimb or improved proficiency in the skilled reaching task. Remarkably, vesicular Zn increased in the late stage of motor learning along with a concurrent decrease in the number of c-fos-ip neurons relative to the early stage of motor learning. This inverse dynamics of c-fos and vesicular Zn level as the motor skill advances suggest that a qualitatively different neural population, comprised of fewer active but more efficiently connected neurons, supports a skilled action in the late versus early stage of motor learning. The lack of sensitivity of the XFI-generated Zn map to visualize the plasticity-associated changes in vesicular Zn suggests that the Zn level measured by micro XFI should not be used as a surrogate marker of neuroplasticity in response to the acquisition of skilled motor actions. Nanoscopic XFI could be explored in future as a means of imaging these subtle physiological changes. PMID:27840249
[Proceeding memory in Alzheimer's disease].
Arroyo-Anlló, Eva Ma; Chamorro-Sánchez, Jorge; Díaz-Marta, Juan Poveda; Gil, Roger
2013-01-01
Procedural learning can acquire or develop skills through performance and repetition of a task unconsciously or unintentionally. Procedural skills are considered as the cornerstone in the neuropsychological rehabilitation to promote the autonomy of patients with brain damage, as those with Alzheimer's disease. This review presents data about procedural skills in Alzheimer's disease. Over the past three decades, we have found 40 articles studying various procedural skills in the Alzheimer's disease: motor, perceptual-motor, cognitive, perceptual-cognitive and those developed through serial reaction-time paradigm. We analyzed every study evaluating a procedural skill, indicating the used task and preservation or no preservation of procedural learning. Overall, most of the papers published describe conservation of learning procedures or relatively conserved in Alzheimer's disease, which could be used to promote patient autonomy.
Callan, Daniel E; Terzibas, Cengiz; Cassel, Daniel B; Callan, Akiko; Kawato, Mitsuo; Sato, Masa-Aki
2013-05-15
In this fMRI study we investigate neural processes related to the action observation network using a complex perceptual-motor task in pilots and non-pilots. The task involved landing a glider (using aileron, elevator, rudder, and dive brake) as close to a target as possible, passively observing a replay of one's own previous trial, passively observing a replay of an expert's trial, and a baseline do nothing condition. The objective of this study is to investigate two types of motor simulation processes used during observation of action: imitation based motor simulation and error-feedback based motor simulation. It has been proposed that the computational neurocircuitry of the cortex is well suited for unsupervised imitation based learning, whereas, the cerebellum is well suited for error-feedback based learning. Consistent with predictions, pilots (to a greater extent than non-pilots) showed significant differential activity when observing an expert landing the glider in brain regions involved with imitation based motor simulation (including premotor cortex PMC, inferior frontal gyrus IFG, anterior insula, parietal cortex, superior temporal gyrus, and middle temporal MT area) than when observing one's own previous trial which showed significant differential activity in the cerebellum (only for pilots) thought to be concerned with error-feedback based motor simulation. While there was some differential brain activity for pilots in regions involved with both Execution and Observation of the flying task (potential Mirror System sites including IFG, PMC, superior parietal lobule) the majority was adjacent to these areas (Observation Only Sites) (predominantly in PMC, IFG, and inferior parietal loblule). These regions showing greater activity for observation than for action may be involved with processes related to motor-based representational transforms that are not necessary when actually carrying out the task. Copyright © 2013 Elsevier Inc. All rights reserved.
Explicit pre-training instruction does not improve implicit perceptual-motor sequence learning
Sanchez, Daniel J.; Reber, Paul J.
2012-01-01
Memory systems theory argues for separate neural systems supporting implicit and explicit memory in the human brain. Neuropsychological studies support this dissociation, but empirical studies of cognitively healthy participants generally observe that both kinds of memory are acquired to at least some extent, even in implicit learning tasks. A key question is whether this observation reflects parallel intact memory systems or an integrated representation of memory in healthy participants. Learning of complex tasks in which both explicit instruction and practice is used depends on both kinds of memory, and how these systems interact will be an important component of the learning process. Theories that posit an integrated, or single, memory system for both types of memory predict that explicit instruction should contribute directly to strengthening task knowledge. In contrast, if the two types of memory are independent and acquired in parallel, explicit knowledge should have no direct impact and may serve in a “scaffolding” role in complex learning. Using an implicit perceptual-motor sequence learning task, the effect of explicit pre-training instruction on skill learning and performance was assessed. Explicit pre-training instruction led to robust explicit knowledge, but sequence learning did not benefit from the contribution of pre-training sequence memorization. The lack of an instruction benefit suggests that during skill learning, implicit and explicit memory operate independently. While healthy participants will generally accrue parallel implicit and explicit knowledge in complex tasks, these types of information appear to be separately represented in the human brain consistent with multiple memory systems theory. PMID:23280147
Mizuguchi, Nobuaki; Katayama, Takashi; Kanosue, Kazuyuki
2018-02-10
The effect of cerebellar transcranial direct current stimulation (tDCS) on motor performance remains controversial. Some studies suggest that the effect of tDCS depends upon task-difficulty and individual level of task performance. Here, we investigated whether the effect of cerebellar tDCS on the motor performance depends upon the individual's level of performance. Twenty-four naïve participants practiced dart throwing while receiving a 2-mA cerebellar tDCS for 20 min under three stimulus conditions (anodal-, cathodal-, and sham-tDCS) on separate days with a double-blind, counter-balanced cross-over design. Task performance was assessed by measuring the distance between the center of the bull's eye and the dart's position. Although task performance tended to improve throughout the practice under all stimulus conditions, improvement within a given day was not significant as compared to the first no-stimulus block. In addition, improvement did not differ among stimulation conditions. However, the magnitude of improvement was associated with an individual's level of task performance only under cathodal tDCS condition (p < 0.05). This resulted in a significant performance improvement only for the sub-group of participants with lower performance levels as compared to that with sham-tDCS (p < 0.05). These findings suggest that the facilitation effect of cerebellar cathodal tDCS on motor skill learning of complex whole-body movements depends on the level of an individual's task performance. Thus, cerebellar tDCS would facilitate learning of a complex motor skill task only in a subset of individuals. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Bonzano, Laura; Tacchino, Andrea; Roccatagliata, Luca; Mancardi, Giovanni Luigi; Abbruzzese, Giovanni; Bove, Marco
2011-02-01
Training one hand on a motor task results in performance improvements in the other hand, also when stimuli are randomly presented (nonspecific transfer). Corpus callosum (CC) is the main structure involved in interhemispheric information transfer; CC pathology occurs in patients with multiple sclerosis (PwMS) and is related to altered performance of tasks requiring interhemispheric transfer of sensorimotor information. To investigate the role of CC in nonspecific transfer during a pure motor reaction-time task, we combined motor behavior with diffusion tensor imaging analysis in PwMS. Twenty-two PwMS and 10 controls, all right-handed, were asked to respond to random stimuli with appropriate finger opposition movements with the right (learning) and then the left (transfer) hand. PwMS were able to improve motor performance reducing response times with practice with a trend similar to controls and preserved the ability to transfer the acquired motor information from the learning to the transfer hand. A higher variability in the transfer process, indicated by a significantly larger standard deviation of mean nonspecific transfer, was found in the PwMS group with respect to the control group, suggesting the presence of subtle impairments in interhemispheric communication in some patients. Then, we correlated the amount of nonspecific transfer with mean fractional anisotropy (FA) values, indicative of microstructural damage, obtained in five CC subregions identified on PwMS's FA maps. A significant correlation was found only in the subregion including posterior midbody (Pearson's r = 0.74, P = 0.003), which thus seems to be essential for the interhemispheric transfer of information related to pure sensorimotor tasks. Copyright © 2010 Wiley-Liss, Inc.
Links between motor control and classroom behaviors: Moderation by low birth weight
Razza, Rachel A.; Martin, Anne; Brooks-Gunn, Jeanne
2016-01-01
It is unclear from past research on effortful control whether one of its components, motor control, independently contributes to adaptive classroom behaviors. The goal of this study was to identify associations between early motor control, measured by the walk-a-line task at age 3, and teacher-reported learning-related behaviors (approaches to learning and attention problems) and behavior problems in kindergarten classrooms. Models tested whether children who were vulnerable to poorer learning behaviors and more behavior problems due to having been born low birth weight benefited more, less, or the same as other children from better motor control. Data were drawn from the national Fragile Families and Child-Wellbeing Study (n = 751). Regression models indicated that motor control was significantly associated with better approaches to learning and fewer behavior problems. Children who were low birth weight benefitted more than normal birth weight children from better motor control with respect to their approaches to learning, but equally with respect to behavior problems. Additionally, for low but not normal birth weight children, better motor control predicted fewer attention problems. These findings suggest that motor control follows a compensatory model of development for low birth weight children and classroom behaviors. PMID:27594776
Di Nota, Paula M; Levkov, Gabriella; Bar, Rachel; DeSouza, Joseph F X
2016-07-01
The lateral occipitotemporal cortex (LOTC) is comprised of subregions selectively activated by images of human bodies (extrastriate body area, EBA), objects (lateral occipital complex, LO), and motion (MT+). However, their role in motor imagery and movement processing is unclear, as are the influences of learning and expertise on its recruitment. The purpose of our study was to examine putative changes in LOTC activation during action processing following motor learning of novel choreography in professional ballet dancers. Subjects were scanned with functional magnetic resonance imaging up to four times over 34 weeks and performed four tasks: viewing and visualizing a newly learned ballet dance, visualizing a dance that was not being learned, and movement of the foot. EBA, LO, and MT+ were activated most while viewing dance compared to visualization and movement. Significant increases in activation were observed over time in left LO only during visualization of the unlearned dance, and all subregions were activated bilaterally during the viewing task after 34 weeks of performance, suggesting learning-induced plasticity. Finally, we provide novel evidence for modulation of EBA with dance experience during the motor task, with significant activation elicited in a comparison group of novice dancers only. These results provide a composite of LOTC activation during action processing of newly learned ballet choreography and movement of the foot. The role of these areas is confirmed as primarily subserving observation of complex sequences of whole-body movement, with new evidence for modification by experience and over the course of real world ballet learning.
The NMDA receptor partial agonist d-cycloserine does not enhance motor learning.
Günthner, Jan; Scholl, Jacqueline; Favaron, Elisa; Harmer, Catherine J; Johansen-Berg, Heidi; Reinecke, Andrea
2016-10-01
There has recently been increasing interest in pharmacological manipulations that could potentially enhance exposure-based cognitive behaviour therapy for anxiety disorders. One such medication is the partial NMDA agonist d-cycloserine. It has been suggested that d-cycloserine enhances cognitive behaviour therapy by making learning faster. While animal studies have supported this view of the drug accelerating learning, evidence in human studies has been mixed. We therefore designed an experiment to measure the effects of d-cycloserine on human motor learning. Fifty-four healthy human volunteers were randomly assigned to a single dose of 250mg d-cycloserine versus placebo in a double-blind design. They then performed a motor sequence learning task. D-cycloserine did not increase the speed of motor learning or the overall amount learnt. However, we noted that participants on d-cycloserine tended to respond more carefully (shifting towards slower, but more correct responses). The results suggest that d-cycloserine does not exert beneficial effects on psychological treatments via mechanisms involved in motor learning. Further studies are needed to clarify the influence on other cognitive mechanisms. © The Author(s) 2016.
Implicit learning and emotional responses in nine-month-old infants.
Angulo-Barroso, Rosa M; Peciña, Susana; Lin, Xu; Li, Mingyan; Sturza, Julia; Shao, Jie; Lozoff, Betsy
2017-08-01
To study the interplay between motor learning and emotional responses of young infants, we developed a contingent learning paradigm that included two related, difficult, operant tasks. We also coded facial expression to characterise emotional response to learning. In a sample of nine-month-old healthy Chinese infants, 44.7% achieved learning threshold during this challenging arm-conditioning test. Some evidence of learning was observed at the beginning of the second task. The lowest period of negative emotions coincided with the period of maximum movement responses after the initiation of the second task, and movement responses negatively correlated with the frequency of negative emotions. Positive emotions, while generally low throughout the task, increased during peak performance especially for learners. Peak frequency of movement responses was positively correlated with the frequency of positive emotions. Despite the weak evidence of learning this difficult task, our results from the learners would suggest that increasing positive emotions, and perhaps down-regulating negative emotional responses, may be important for improving performance and learning a complex operant task in infancy. Further studies are necessary to determine the role of emotions in learning difficult tasks in infancy.
Sub-processes of motor learning revealed by a robotic manipulandum for rodents.
Lambercy, O; Schubring-Giese, M; Vigaru, B; Gassert, R; Luft, A R; Hosp, J A
2015-02-01
Rodent models are widely used to investigate neural changes in response to motor learning. Usually, the behavioral readout of motor learning tasks used for this purpose is restricted to a binary measure of performance (i.e. "successful" movement vs. "failure"). Thus, the assignability of research in rodents to concepts gained in human research - implying diverse internal models that constitute motor learning - is still limited. To solve this problem, we recently introduced a three-degree-of-freedom robotic platform designed for rats (the ETH-Pattus) that combines an accurate behavioral readout (in the form of kinematics) with the possibility to invasively assess learning related changes within the brain (e.g. by performing immunohistochemistry or electrophysiology in acute slice preparations). Here, we validate this platform as a tool to study motor learning by establishing two forelimb-reaching paradigms that differ in degree of skill. Both conditions can be precisely differentiated in terms of their temporal pattern and performance levels. Based on behavioral data, we hypothesize the presence of several sub-processes contributing to motor learning. These share close similarities with concepts gained in humans or primates. Copyright © 2014 Elsevier B.V. All rights reserved.
Krok, Anne C.; Xu, Jian; Contractor, Anis; McGehee, Daniel S.; Zhuang, Xiaoxi
2016-01-01
Although dopamine receptor antagonism has long been associated with impairments in motor performance, more recent studies have shown that dopamine D2 receptor (D2R) antagonism, paired with a motor task, not only impairs motor performance concomitant with the pharmacodynamics of the drug, but also impairs future motor performance once antagonism has been relieved. We have termed this phenomenon “aberrant motor learning” and have suggested that it may contribute to motor symptoms in movement disorders such as Parkinson's disease (PD). Here, we show that chronic nicotine (cNIC), but not acute nicotine, treatment mitigates the acquisition of D2R-antagonist-induced aberrant motor learning in mice. Although cNIC mitigates D2R-mediated aberrant motor learning, cNIC has no effect on D1R-mediated motor learning. β2-containing nicotinic receptors in dopamine neurons likely mediate the protective effect of cNIC against aberrant motor learning, because selective deletion of β2 nicotinic subunits in dopamine neurons reduced D2R-mediated aberrant motor learning. Finally, both cNIC treatment and β2 subunit deletion blunted postsynaptic responses to D2R antagonism. These results suggest that a chronic decrease in function or a downregulation of β2-containing nicotinic receptors protects the striatal network against aberrant plasticity and aberrant motor learning induced by motor experience under dopamine deficiency. SIGNIFICANCE STATEMENT Increasingly, aberrant plasticity and aberrant learning are recognized as contributing to the development and progression of movement disorders. Here, we show that chronic nicotine (cNIC) treatment or specific deletion of β2 nicotinic receptor subunits in dopamine neurons mitigates aberrant motor learning induced by dopamine D2 receptor (D2R) blockade in mice. Moreover, both manipulations also reduced striatal dopamine release and blunt postsynaptic responses to D2R antagonists. These results suggest that chronic downregulation of function and/or receptor expression of β2-containing nicotinic receptors alters presynaptic and postsynaptic striatal signaling to protect against aberrant motor learning. Moreover, these results suggest that cNIC treatment may alleviate motor symptoms and/or delay the deterioration of motor function in movement disorders by blocking aberrant motor learning. PMID:27170121
Cabral-Sequeira, Audrey Sartori; Coelho, Daniel Boari; Teixeira, Luis Augusto
2016-06-01
This experiment was designed to evaluate the effects of pure motor imagery training (MIT) and its combination with physical practice on learning an aiming task with the more affected arm in adolescents suffering from cerebral palsy. Effect of MIT was evaluated as a function of side of hemiparesis. The experiment was accomplished by 11- to 16-year-old participants (M = 13.58 years), who suffered left (n = 16) or right (n = 15) mild hemiparesis. They were exposed to pure MIT (day 1) followed by physical practice (day 2) on an aiming task demanding movement accuracy and speed. Posttraining movement kinematics of the group receiving MIT were compared with movement kinematics of the control group after receiving recreational activities (day 1) and physical practice (day 2). Kinematic analysis showed that MIT led to decreased movement time and straighter hand displacements to the target. Performance achievements from MIT were increased with further physical practice, leading to enhanced effects on motor learning. Retention evaluation indicated that performance improvement from pure MIT and its combination with physical practice were stable over time. Performance achievements were equivalent between adolescents with either right or left hemiparesis, suggesting similar capacity between these groups to achieve performance improvement from pure imagery training and from its association with physical practice. Our results suggest that motor imagery training is a procedure potentially useful to increase motor learning achievements in individuals suffering from cerebral palsy.
Predicting future learning from baseline network architecture.
Mattar, Marcelo G; Wymbs, Nicholas F; Bock, Andrew S; Aguirre, Geoffrey K; Grafton, Scott T; Bassett, Danielle S
2018-05-15
Human behavior and cognition result from a complex pattern of interactions between brain regions. The flexible reconfiguration of these patterns enables behavioral adaptation, such as the acquisition of a new motor skill. Yet, the degree to which these reconfigurations depend on the brain's baseline sensorimotor integration is far from understood. Here, we asked whether spontaneous fluctuations in sensorimotor networks at baseline were predictive of individual differences in future learning. We analyzed functional MRI data from 19 participants prior to six weeks of training on a new motor skill. We found that visual-motor connectivity was inversely related to learning rate: sensorimotor autonomy at baseline corresponded to faster learning in the future. Using three additional scans, we found that visual-motor connectivity at baseline is a relatively stable individual trait. These results suggest that individual differences in motor skill learning can be predicted from sensorimotor autonomy at baseline prior to task execution. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Yasuda, Kazuhiro; Saichi, Kenta; Iwata, Hiroyasu
2018-01-01
Falls and fall-induced injuries are major global public health problems, and sensory input impairment in older adults results in significant limitations in feedback-type postural control. A haptic-based biofeedback (BF) system can be used for augmenting somatosensory input in older adults, and the application of this BF system can increase the objectivity of the feedback and encourage comparison with that provided by a trainer. Nevertheless, an optimal BF system that focuses on interpersonal feedback for balance training in older adults has not been proposed. Thus, we proposed a haptic-based perception-empathy BF system that provides information regarding the older adult's center-of-foot pressure pattern to the trainee and trainer for refining the motor learning effect. The first objective of this study was to examine the effect of this balance training regimen in healthy older adults performing a postural learning task. Second, this study aimed to determine whether BF training required high cognitive load to clarify its practicability in real-life settings. Twenty older adults were assigned to two groups: BF and control groups. Participants in both groups tried balance training in the single-leg stance while performing a cognitive task (i.e., serial subtraction task). Retention was tested 24 h later. Testing comprised balance performance measures (i.e., 95% confidence ellipse area and mean velocity of sway) and dual-task performance (number of responses and correct answers). Measurements of postural control using a force plate revealed that the stability of the single-leg stance was significantly lower in the BF group than in the control group during the balance task. The BF group retained the improvement in the 95% confidence ellipse area 24 h after the retention test. Results of dual-task performance during the balance task were not different between the two groups. These results confirmed the potential benefit of the proposed balance training regimen in designing successful motor learning programs for preventing falls in older adults. PMID:29868597
Yasuda, Kazuhiro; Saichi, Kenta; Iwata, Hiroyasu
2018-01-01
Falls and fall-induced injuries are major global public health problems, and sensory input impairment in older adults results in significant limitations in feedback-type postural control. A haptic-based biofeedback (BF) system can be used for augmenting somatosensory input in older adults, and the application of this BF system can increase the objectivity of the feedback and encourage comparison with that provided by a trainer. Nevertheless, an optimal BF system that focuses on interpersonal feedback for balance training in older adults has not been proposed. Thus, we proposed a haptic-based perception-empathy BF system that provides information regarding the older adult's center-of-foot pressure pattern to the trainee and trainer for refining the motor learning effect. The first objective of this study was to examine the effect of this balance training regimen in healthy older adults performing a postural learning task. Second, this study aimed to determine whether BF training required high cognitive load to clarify its practicability in real-life settings. Twenty older adults were assigned to two groups: BF and control groups. Participants in both groups tried balance training in the single-leg stance while performing a cognitive task (i.e., serial subtraction task). Retention was tested 24 h later. Testing comprised balance performance measures (i.e., 95% confidence ellipse area and mean velocity of sway) and dual-task performance (number of responses and correct answers). Measurements of postural control using a force plate revealed that the stability of the single-leg stance was significantly lower in the BF group than in the control group during the balance task. The BF group retained the improvement in the 95% confidence ellipse area 24 h after the retention test. Results of dual-task performance during the balance task were not different between the two groups. These results confirmed the potential benefit of the proposed balance training regimen in designing successful motor learning programs for preventing falls in older adults.
Yang, Byung Il; Song, Bo Kyoung; Joung, Sang Mi
2017-01-01
[Purpose] The purpose of this study was to determine whether two-handed task training is effective on motor learning of injured cerebral cortex activation and upper extremity function recovery after stroke. [Subjects and Methods] Two hemiplegic subjects participated in this study: one patient was affected on the dominant side of the body and the other was affected on the non-dominant side of the body, and both scored in the range of 58–66 in the Fugl-Meyer assessment. The excitability of the corticospinal tract and Manual Function Test were examined. [Results] The excitability of the corticospinal tract and the Manual Function Test showed significant differences in the activation of both sides of the cerebral cortex and in the variation in learning effect of upper extremity motor function recovery in patients with hemiplegic non-dominant hand (left). [Conclusion] The results suggested that two-handed task training had a different influence on dominant hand (right) and non-dominant hand (left) motor recovery. PMID:28210051
Delayed benefit of naps on motor learning in preschool children.
Desrochers, Phillip C; Kurdziel, Laura B F; Spencer, Rebecca M C
2016-03-01
Sleep benefits memory consolidation across a variety of domains in young adults. However, while declarative memories benefit from sleep in young children, such improvements are not consistently seen for procedural skill learning. Here we examined whether performance improvements on a procedural task, although not immediately observed, are evident after a longer delay when augmented by overnight sleep (24 h after learning). We trained 47 children, aged 33-71 months, on a serial reaction time task and, using a within-subject design, evaluated performance at three time points: immediately after learning, after a daytime nap (nap condition) or equivalent wake opportunity (wake condition), and 24 h after learning. Consistent with previous studies, performance improvements following the nap did not differ from performance improvements following an equivalent interval spent awake. However, significant benefits of the nap were found when performance was assessed 24 h after learning. This research demonstrates that motor skill learning is benefited by sleep, but that this benefit is only evident after an extended period of time.
Lagas, Alice K.; Black, Joanna M.; Byblow, Winston D.; Fleming, Melanie K.; Goodman, Lucy K.; Kydd, Robert R.; Russell, Bruce R.; Stinear, Cathy M.; Thompson, Benjamin
2016-01-01
The selective serotonin reuptake inhibitor fluoxetine significantly enhances adult visual cortex plasticity within the rat. This effect is related to decreased gamma-aminobutyric acid (GABA) mediated inhibition and identifies fluoxetine as a potential agent for enhancing plasticity in the adult human brain. We tested the hypothesis that fluoxetine would enhance visual perceptual learning of a motion direction discrimination (MDD) task in humans. We also investigated (1) the effect of fluoxetine on visual and motor cortex excitability and (2) the impact of increased GABA mediated inhibition following a single dose of triazolam on post-training MDD task performance. Within a double blind, placebo controlled design, 20 healthy adult participants completed a 19-day course of fluoxetine (n = 10, 20 mg per day) or placebo (n = 10). Participants were trained on the MDD task over the final 5 days of fluoxetine administration. Accuracy for the trained MDD stimulus and an untrained MDD stimulus configuration was assessed before and after training, after triazolam and 1 week after triazolam. Motor and visual cortex excitability were measured using transcranial magnetic stimulation. Fluoxetine did not enhance the magnitude or rate of perceptual learning and full transfer of learning to the untrained stimulus was observed for both groups. After training was complete, trazolam had no effect on trained task performance but significantly impaired untrained task performance. No consistent effects of fluoxetine on cortical excitability were observed. The results do not support the hypothesis that fluoxetine can enhance learning in humans. However, the specific effect of triazolam on MDD task performance for the untrained stimulus suggests that learning and learning transfer rely on dissociable neural mechanisms. PMID:27807412
To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?
Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; van der Lubbe, Rob
2016-01-01
Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and motor imagery trials. Additionally, learning effects were compared between participants with an explicit motor imagery instruction and a control group. A Go/NoGo discrete sequence production (DSP) task was employed, wherein a five-stimulus sequence presented on each trial indicated the required sequence of finger movements after a Go signal. In the case of a NoGo signal, participants either had to imagine carrying out the response sequence (the motor imagery group), or the response sequence had to be withheld (the control group). Two practice days were followed by a final test day on which all sequences had to be executed. Learning effects were assessed by computing response times (RTs) and the percentages of correct responses (PCs). The electroencephalogram (EEG ) was additionally measured on this test day to examine whether motor preparation and the involvement of visual short term memory (VST M) depended on the amount of physical/mental practice. Accuracy data indicated strong learning effects. However, a substantial amount of physical practice was required to reach an optimal speed. EEG results suggest the involvement of VST M for sequences that had less or no physical practice in both groups. The absence of differences between the motor imagery and the control group underlines the possibility that motor preparation may actually resemble motor imagery. PMID:28154614
To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?
Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; van der Lubbe, Rob
2016-01-01
Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and motor imagery trials. Additionally, learning effects were compared between participants with an explicit motor imagery instruction and a control group. A Go/NoGo discrete sequence production (DSP) task was employed, wherein a five-stimulus sequence presented on each trial indicated the required sequence of finger movements after a Go signal. In the case of a NoGo signal, participants either had to imagine carrying out the response sequence (the motor imagery group), or the response sequence had to be withheld (the control group). Two practice days were followed by a final test day on which all sequences had to be executed. Learning effects were assessed by computing response times (RTs) and the percentages of correct responses (PCs). The electroencephalogram (EEG ) was additionally measured on this test day to examine whether motor preparation and the involvement of visual short term memory (VST M) depended on the amount of physical/mental practice. Accuracy data indicated strong learning effects. However, a substantial amount of physical practice was required to reach an optimal speed. EEG results suggest the involvement of VST M for sequences that had less or no physical practice in both groups. The absence of differences between the motor imagery and the control group underlines the possibility that motor preparation may actually resemble motor imagery.
Jeunet, Camille; Jahanpour, Emilie; Lotte, Fabien
2016-06-01
While promising, electroencephaloraphy based brain-computer interfaces (BCIs) are barely used due to their lack of reliability: 15% to 30% of users are unable to control a BCI. Standard training protocols may be partly responsible as they do not satisfy recommendations from psychology. Our main objective was to determine in practice to what extent standard training protocols impact users' motor imagery based BCI (MI-BCI) control performance. We performed two experiments. The first consisted in evaluating the efficiency of a standard BCI training protocol for the acquisition of non-BCI related skills in a BCI-free context, which enabled us to rule out the possible impact of BCIs on the training outcome. Thus, participants (N = 54) were asked to perform simple motor tasks. The second experiment was aimed at measuring the correlations between motor tasks and MI-BCI performance. The ten best and ten worst performers of the first study were recruited for an MI-BCI experiment during which they had to learn to perform two MI tasks. We also assessed users' spatial ability and pre-training μ rhythm amplitude, as both have been related to MI-BCI performance in the literature. Around 17% of the participants were unable to learn to perform the motor tasks, which is close to the BCI illiteracy rate. This suggests that standard training protocols are suboptimal for skill teaching. No correlation was found between motor tasks and MI-BCI performance. However, spatial ability played an important role in MI-BCI performance. In addition, once the spatial ability covariable had been controlled for, using an ANCOVA, it appeared that participants who faced difficulty during the first experiment improved during the second while the others did not. These studies suggest that (1) standard MI-BCI training protocols are suboptimal for skill teaching, (2) spatial ability is confirmed as impacting on MI-BCI performance, and (3) when faced with difficult pre-training, subjects seemed to explore more strategies and therefore learn better.
Henz, Diana; John, Alexander; Merz, Christian; Schöllhorn, Wolfgang I.
2018-01-01
A large body of research has shown superior learning rates in variable practice compared to repetitive practice. More specifically, this has been demonstrated in the contextual interference (CI) and in the differential learning (DL) approach that are both representatives of variable practice. Behavioral studies have indicate different learning processes in CI and DL. Aim of the present study was to examine immediate post-task effects on electroencephalographic (EEG) brain activation patterns after CI and DL protocols that reveal underlying neural processes at the early stage of motor consolidation. Additionally, we tested two DL protocols (gradual DL, chaotic DL) to examine the effect of different degrees of stochastic fluctuations within the DL approach with a low degree of fluctuations in gradual DL and a high degree of fluctuations in chaotic DL. Twenty-two subjects performed badminton serves according to three variable practice protocols (CI, gradual DL, chaotic DL), and a repetitive learning protocol in a within-subjects design. Spontaneous EEG activity was measured before, and immediately after each 20-min practice session from 19 electrodes. Results showed distinguishable neural processes after CI, DL, and repetitive learning. Increases in EEG theta and alpha power were obtained in somatosensory regions (electrodes P3, P7, Pz, P4, P8) in both DL conditions compared to CI, and repetitive learning. Increases in theta and alpha activity in motor areas (electrodes C3, Cz, C4) were found after chaotic DL compared to gradual DL, and CI. Anterior areas (electrodes F3, F7, Fz, F4, F8) showed increased activity in the beta and gamma bands after CI. Alpha activity was increased in occipital areas (electrodes O1, O2) after repetitive learning. Post-task EEG brain activation patterns suggest that DL stimulates the somatosensory and motor system, and engages more regions of the cortex than repetitive learning due to a tighter stimulation of the motor and somatosensory system during DL practice. CI seems to activate specifically executively controlled processing in anterior brain areas. We discuss the obtained patterns of post-training EEG traces as evidence for different underlying neural processes in CI, DL, and repetitive learning at the early stage of motor learning. PMID:29445334
Acute effects of aerobic exercise promote learning
Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo
2016-01-01
The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity–induced plasticity with specific cognitive training–induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity. PMID:27146330
Effects of generic versus non-generic feedback on motor learning in children.
Chiviacowsky, Suzete; Drews, Ricardo
2014-01-01
Non-generic feedback refers to a specific event and implies that performance is malleable, while generic feedback implies that task performance reflects an inherent ability. The present study examined the influences of generic versus non-generic feedback on motor performance and learning in 10-year-old children. In the first experiment, using soccer ball kicking at a target as a task, providing participants with generic feedback resulted in worse performance than providing non-generic feedback, after both groups received negative feedback. The second experiment measured more permanent effects. Results of a retention test, performed one day after practicing a throwing task, showed that participants who received non-generic feedback during practice outperformed the generic feedback group, after receiving a negative feedback statement. The findings demonstrate the importance of the wording of feedback. Even though different positive feedback statements may not have an immediate influence on performance, they can affect performance, and presumably individuals' motivation, when performance is (purportedly) poor. Feedback implying that performance is malleable, rather than due to an inherent ability, seems to have the potential to inoculate learners against setbacks--a situation frequently encountered in the context of motor performance and learning.
Effects of Generic versus Non-Generic Feedback on Motor Learning in Children
Chiviacowsky, Suzete; Drews, Ricardo
2014-01-01
Non-generic feedback refers to a specific event and implies that performance is malleable, while generic feedback implies that task performance reflects an inherent ability. The present study examined the influences of generic versus non-generic feedback on motor performance and learning in 10-year-old children. In the first experiment, using soccer ball kicking at a target as a task, providing participants with generic feedback resulted in worse performance than providing non-generic feedback, after both groups received negative feedback. The second experiment measured more permanent effects. Results of a retention test, performed one day after practicing a throwing task, showed that participants who received non-generic feedback during practice outperformed the generic feedback group, after receiving a negative feedback statement. The findings demonstrate the importance of the wording of feedback. Even though different positive feedback statements may not have an immediate influence on performance, they can affect performance, and presumably individuals' motivation, when performance is (purportedly) poor. Feedback implying that performance is malleable, rather than due to an inherent ability, seems to have the potential to inoculate learners against setbacks – a situation frequently encountered in the context of motor performance and learning. PMID:24523947
Learning fast accurate movements requires intact frontostriatal circuits
Shabbott, Britne; Ravindran, Roshni; Schumacher, Joseph W.; Wasserman, Paula B.; Marder, Karen S.; Mazzoni, Pietro
2013-01-01
The basal ganglia are known to play a crucial role in movement execution, but their importance for motor skill learning remains unclear. Obstacles to our understanding include the lack of a universally accepted definition of motor skill learning (definition confound), and difficulties in distinguishing learning deficits from execution impairments (performance confound). We studied how healthy subjects and subjects with a basal ganglia disorder learn fast accurate reaching movements. We addressed the definition and performance confounds by: (1) focusing on an operationally defined core element of motor skill learning (speed-accuracy learning), and (2) using normal variation in initial performance to separate movement execution impairment from motor learning abnormalities. We measured motor skill learning as performance improvement in a reaching task with a speed-accuracy trade-off. We compared the performance of subjects with Huntington's disease (HD), a neurodegenerative basal ganglia disorder, to that of premanifest carriers of the HD mutation and of control subjects. The initial movements of HD subjects were less skilled (slower and/or less accurate) than those of control subjects. To factor out these differences in initial execution, we modeled the relationship between learning and baseline performance in control subjects. Subjects with HD exhibited a clear learning impairment that was not explained by differences in initial performance. These results support a role for the basal ganglia in both movement execution and motor skill learning. PMID:24312037
A neurocomputational theory of how explicit learning bootstraps early procedural learning.
Paul, Erick J; Ashby, F Gregory
2013-01-01
It is widely accepted that human learning and memory is mediated by multiple memory systems that are each best suited to different requirements and demands. Within the domain of categorization, at least two systems are thought to facilitate learning: an explicit (declarative) system depending largely on the prefrontal cortex, and a procedural (non-declarative) system depending on the basal ganglia. Substantial evidence suggests that each system is optimally suited to learn particular categorization tasks. However, it remains unknown precisely how these systems interact to produce optimal learning and behavior. In order to investigate this issue, the present research evaluated the progression of learning through simulation of categorization tasks using COVIS, a well-known model of human category learning that includes both explicit and procedural learning systems. Specifically, the model's parameter space was thoroughly explored in procedurally learned categorization tasks across a variety of conditions and architectures to identify plausible interaction architectures. The simulation results support the hypothesis that one-way interaction between the systems occurs such that the explicit system "bootstraps" learning early on in the procedural system. Thus, the procedural system initially learns a suboptimal strategy employed by the explicit system and later refines its strategy. This bootstrapping could be from cortical-striatal projections that originate in premotor or motor regions of cortex, or possibly by the explicit system's control of motor responses through basal ganglia-mediated loops.
Incidental Learning of Rewarded Associations Bolsters Learning on an Associative Task
ERIC Educational Resources Information Center
Freedberg, Michael; Schacherer, Jonathan; Hazeltine, Eliot
2016-01-01
Reward has been shown to change behavior as a result of incentive learning (by motivating the individual to increase their effort) and instrumental learning (by increasing the frequency of a particular behavior). However, Palminteri et al. (2011) demonstrated that reward can also improve the incidental learning of a motor skill even when…
Silasi, Gergely; Boyd, Jamie D; Bolanos, Federico; LeDue, Jeff M; Scott, Stephen H; Murphy, Timothy H
2018-01-01
Skilled forelimb function in mice is traditionally studied through behavioral paradigms that require extensive training by investigators and are limited by the number of trials individual animals are able to perform within a supervised session. We developed a skilled lever positioning task that mice can perform within their home cage. The task requires mice to use their forelimb to precisely hold a lever mounted on a rotary encoder within a rewarded position to dispense a water reward. A Raspberry Pi microcomputer is used to record lever position during trials and to control task parameters, thus making this low-footprint apparatus ideal for use within animal housing facilities. Custom Python software automatically increments task difficulty by requiring a longer hold duration, or a more accurate hold position, to dispense a reward. The performance of individual animals within group-housed mice is tracked through radio-frequency identification implants, and data stored on the microcomputer may be accessed remotely through an active internet connection. Mice continuously engage in the task for over 2.5 mo and perform ~500 trials/24 h. Mice required ~15,000 trials to learn to hold the lever within a 10° range for 1.5 s and were able to further refine movement accuracy by limiting their error to a 5° range within each trial. These results demonstrate the feasibility of autonomously training group-housed mice on a forelimb motor task. This paradigm may be used in the future to assess functional recovery after injury or cortical reorganization induced by self-directed motor learning. NEW & NOTEWORTHY We developed a low-cost system for fully autonomous training of group-housed mice on a forelimb motor task. We demonstrate the feasibility of tracking both end-point, as well as kinematic performance of individual mice, with each performing thousands of trials over 2.5 mo. The task is run and controlled by a Raspberry Pi microcomputer, which allows for cages to be monitored remotely through an active internet connection.
Meehan, Sean K.; Randhawa, Bubblepreet; Wessel, Brenda; Boyd, Lara A.
2010-01-01
Implicit motor learning is preserved after stroke, but how the brain compensates for damage to facilitate learning is unclear. We used a random effects analysis to determine how stroke alters patterns of brain activity during implicit sequence-specific motor learning as compared to general improvements in motor control. Nine healthy participants and 9 individuals with chronic, right focal sub-cortical stroke performed a continuous joystick-based tracking task during an initial fMRI session, over 5 days of practice, and a retention test during a separate fMRI session. Sequence-specific implicit motor learning was differentiated from general improvements in motor control by comparing tracking performance on a novel, repeated tracking sequences during early practice and again at the retention test. Both groups demonstrated implicit sequence-specific motor learning at the retention test, yet substantial differences were apparent. At retention, healthy control participants demonstrated increased BOLD response in left dorsal premotor cortex (BA 6) but decreased BOLD response left dorsolateral prefrontal cortex (DLPFC; BA 9) during repeated sequence tracking. In contrast, at retention individuals with stroke did not show this reduction in DLPFC during repeated tracking. Instead implicit sequence-specific motor learning and general improvements in motor control were associated with increased BOLD response in the left middle frontal gyrus BA 8, regardless of sequence type after stroke. These data emphasize the potential importance of a prefrontal-based attentional network for implicit motor learning after stroke. The present study is the first to highlight the importance of the prefrontal cortex for implicit sequence-specific motor learning after stroke. PMID:20725908
Van Ooteghem, Karen; Frank, James S.; Allard, Fran; Horak, Fay B
2011-01-01
Postural motor learning for dynamic balance tasks has been demonstrated in healthy older adults (Van Ooteghem et al. 2009). The purpose of this study was to investigate the type of knowledge (general or specific) obtained with balance training in this age group and to examine whether embedding perturbation regularities within a balance task masks specific learning. Two groups of older adults maintained balance on a constant frequency-variable amplitude oscillating platform. One group was trained using an embedded sequence (ES) protocol which contained the same 15-s sequence of variable amplitude oscillations in the middle of each trial. A second group was trained using a looped sequence (LS) protocol which contained a 15-s sequence repeated three times to form each trial. All trials were 45-s. Participants were not informed of any repetition. To examine learning, participants performed a retention test following a 24-h delay. LS participants also completed a transfer task. Specificity of learning was examined by comparing performance for repeated versus random sequences (ES) and training versus transfer sequences (LS). Performance was measured by deriving spatial and temporal measures of whole body centre of mass (COM), and trunk orientation. Both groups improved performance with practice as characterized by reduced COM displacement, improved COM-platform phase relationships, and decreased angular trunk motion. Improvements were also characterized by general rather than specific postural motor learning. These findings are similar to young adults (Van Ooteghem et al. 2008) and indicate that age does not influence the type of learning which occurs for balance control. PMID:20544184
Katnani, Husam A; Patel, Shaun R; Kwon, Churl-Su; Abdel-Aziz, Samer; Gale, John T; Eskandar, Emad N
2016-01-04
The primate brain has the remarkable ability of mapping sensory stimuli into motor behaviors that can lead to positive outcomes. We have previously shown that during the reinforcement of visual-motor behavior, activity in the caudate nucleus is correlated with the rate of learning. Moreover, phasic microstimulation in the caudate during the reinforcement period was shown to enhance associative learning, demonstrating the importance of temporal specificity to manipulate learning related changes. Here we present evidence that extends upon our previous finding by demonstrating that temporally coordinated phasic deep brain stimulation across both the nucleus accumbens and caudate can further enhance associative learning. Monkeys performed a visual-motor associative learning task and received stimulation at time points critical to learning related changes. Resulting performance revealed an enhancement in the rate, ceiling, and reaction times of learning. Stimulation of each brain region alone or at different time points did not generate the same effect.
Motor-Skill Learning in an Insect Inspired Neuro-Computational Control System
Arena, Eleonora; Arena, Paolo; Strauss, Roland; Patané, Luca
2017-01-01
In nature, insects show impressive adaptation and learning capabilities. The proposed computational model takes inspiration from specific structures of the insect brain: after proposing key hypotheses on the direct involvement of the mushroom bodies (MBs) and on their neural organization, we developed a new architecture for motor learning to be applied in insect-like walking robots. The proposed model is a nonlinear control system based on spiking neurons. MBs are modeled as a nonlinear recurrent spiking neural network (SNN) with novel characteristics, able to memorize time evolutions of key parameters of the neural motor controller, so that existing motor primitives can be improved. The adopted control scheme enables the structure to efficiently cope with goal-oriented behavioral motor tasks. Here, a six-legged structure, showing a steady-state exponentially stable locomotion pattern, is exposed to the need of learning new motor skills: moving through the environment, the structure is able to modulate motor commands and implements an obstacle climbing procedure. Experimental results on a simulated hexapod robot are reported; they are obtained in a dynamic simulation environment and the robot mimicks the structures of Drosophila melanogaster. PMID:28337138
What Do Eye Gaze Metrics Tell Us about Motor Imagery?
Poiroux, Elodie; Cavaro-Ménard, Christine; Leruez, Stéphanie; Lemée, Jean Michel; Richard, Isabelle; Dinomais, Mickael
2015-01-01
Many of the brain structures involved in performing real movements also have increased activity during imagined movements or during motor observation, and this could be the neural substrate underlying the effects of motor imagery in motor learning or motor rehabilitation. In the absence of any objective physiological method of measurement, it is currently impossible to be sure that the patient is indeed performing the task as instructed. Eye gaze recording during a motor imagery task could be a possible way to "spy" on the activity an individual is really engaged in. The aim of the present study was to compare the pattern of eye movement metrics during motor observation, visual and kinesthetic motor imagery (VI, KI), target fixation, and mental calculation. Twenty-two healthy subjects (16 females and 6 males), were required to perform tests in five conditions using imagery in the Box and Block Test tasks following the procedure described by Liepert et al. Eye movements were analysed by a non-invasive oculometric measure (SMI RED250 system). Two parameters describing gaze pattern were calculated: the index of ocular mobility (saccade duration over saccade + fixation duration) and the number of midline crossings (i.e. the number of times the subjects gaze crossed the midline of the screen when performing the different tasks). Both parameters were significantly different between visual imagery and kinesthesic imagery, visual imagery and mental calculation, and visual imagery and target fixation. For the first time we were able to show that eye movement patterns are different during VI and KI tasks. Our results suggest gaze metric parameters could be used as an objective unobtrusive approach to assess engagement in a motor imagery task. Further studies should define how oculomotor parameters could be used as an indicator of the rehabilitation task a patient is engaged in.
Capacity to improve fine motor skills in Williams syndrome.
Berencsi, A; Gombos, F; Kovács, I
2016-10-01
Individuals with Williams syndrome (WS) are known to have difficulties in carrying out fine motor movements; however, a detailed behavioural profile of WS in this domain is still missing. It is also unknown how great the capacity to improve these skills with focused and extensive practice is. We studied initial performance and learning capacity in a sequential finger tapping (FT) task in WS and in typical development. Improvement in the FT task has been shown to be sleep dependent. WS subjects participating in the current study have also participated in earlier polysomnography studies, although not directly related to learning. WS participants presented with great individual variability. In addition to generally poor initial performance, learning capacity was also greatly limited in WS. We found indications that reduced sleep efficiency might contribute to this limitation. Estimating motor learning capacity and the depth of sleep disorder in a larger sample of WS individuals might reveal important relationships between sleep and learning, and contribute to efficient intervention methods improving skill acquisition in WS. © 2016 The Authors. Journal of Intellectual Disability Research published by MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
Hayashibe, Mitsuhiro; Shimoda, Shingo
2014-01-01
A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach. PMID:24616695
Hayashibe, Mitsuhiro; Shimoda, Shingo
2014-01-01
A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach.
ERIC Educational Resources Information Center
Joseph, Daniel P.
This study examined the effects of Knowledge of Results, Knowledge of Performance and a combination of the two in the learning of a novel motor task by totally blind subjects. Thirty-three totally blind subjects tossed a velcro ball dart at a target while receiving augmented verbal information feedback. Each subject completed three learning…
Steinberg, Fabian; Pixa, Nils Henrik; Doppelmayr, Michael
2016-01-01
Mirror training therapy is a promising tool to initiate neural plasticity and facilitate the recovery process of motor skills after diseases such as stroke or hemiparesis by improving the intermanual transfer of fine motor skills in healthy people as well as in patients. This study evaluated whether these augmented performance improvements by mirror visual feedback (MVF) could be used for learning a sport-specific skill and if the effects are modulated by skill level. A sample of 39 young, healthy, and experienced basketball and handball players and 41 novices performed a stationary basketball dribble task at a mirror box in a standing position and received either MVF or direct feedback. After four training days using only the right hand, performance of both hands improved from pre- to posttest measurements. Only the left hand (untrained) performance of the experienced participants receiving MVF was more pronounced than for the control group. This indicates that intermanual motor transfer can be improved by MVF in a sport-specific task. However, this effect cannot be generalized to motor learning per se since it is modulated by individuals' skill level, a factor that might be considered in mirror therapy research.
Pixa, Nils Henrik; Doppelmayr, Michael
2016-01-01
Mirror training therapy is a promising tool to initiate neural plasticity and facilitate the recovery process of motor skills after diseases such as stroke or hemiparesis by improving the intermanual transfer of fine motor skills in healthy people as well as in patients. This study evaluated whether these augmented performance improvements by mirror visual feedback (MVF) could be used for learning a sport-specific skill and if the effects are modulated by skill level. A sample of 39 young, healthy, and experienced basketball and handball players and 41 novices performed a stationary basketball dribble task at a mirror box in a standing position and received either MVF or direct feedback. After four training days using only the right hand, performance of both hands improved from pre- to posttest measurements. Only the left hand (untrained) performance of the experienced participants receiving MVF was more pronounced than for the control group. This indicates that intermanual motor transfer can be improved by MVF in a sport-specific task. However, this effect cannot be generalized to motor learning per se since it is modulated by individuals' skill level, a factor that might be considered in mirror therapy research. PMID:27642526
Kaminski, Elisabeth; Hoff, Maike; Sehm, Bernhard; Taubert, Marco; Conde, Virginia; Steele, Christopher J; Villringer, Arno; Ragert, Patrick
2013-09-27
The aim of the study was to investigate tDCS effects on motor skill learning in a complex whole body dynamic balance task (DBT). We hypothesized that tDCS over the supplementary motor area (SMA), a region that is known to be involved in the control of multi-joint whole body movements, will result in polarity specific changes in DBT learning. In a randomized sham-controlled, double-blinded parallel design, we applied 20 min of tDCS over the supplementary motor area (SMA) and prefrontal cortex (PFC) while subjects performed a DBT. Anodal tDCS over SMA with the cathode placed over contralateral PFC impaired motor skill learning of the DBT compared to sham. This effect was still present on the second day of training. Reversing the polarity (cathode over SMA, anode over PFC) did not affect motor skill learning neither on the first nor on the second day of training. To better disentangle whether the impaired motor skill learning was due to a modulation of SMA or PFC, we performed an additional control experiment. Here, we applied anodal tDCS over SMA together with a larger and presumably more ineffective electrode (cathode) over PFC. Interestingly this alternative tDCS electrode setup did not affect the outcome of DBT learning. Our results provide novel evidence that a modulation of the (right) PFC seems to impair complex multi-joint motor skill learning. Hence, future studies should take the positioning of both tDCS electrodes into account when investigating complex motor skill learning. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Shuggi, Isabelle M; Oh, Hyuk; Shewokis, Patricia A; Gentili, Rodolphe J
2017-09-30
The assessment of mental workload can inform attentional resource allocation during task performance that is essential for understanding the underlying principles of human cognitive-motor behavior. While many studies have focused on mental workload in relation to human performance, a modest body of work has examined it in a motor practice/learning context without considering individual variability. Thus, this work aimed to examine mental workload by employing the NASA TLX as well as the changes in motor performance resulting from the practice of a novel reaching task. Two groups of participants practiced a reaching task at a high and low nominal difficulty during which a group-level analysis assessed the mental workload, motor performance and motor improvement dynamics. A secondary cluster analysis was also conducted to identify specific individual patterns of cognitive-motor responses. Overall, both group- and cluster-level analyses revealed that: (i) all participants improved their performance throughout motor practice, and (ii) an increase in mental workload was associated with a reduction of the quality of motor performance along with a slower rate of motor improvement. The results are discussed in the context of the optimal challenge point framework and in particular it is proposed that under the experimental conditions employed here, functional task difficulty: (i) would possibly depend on an individuals' information processing capabilities, and (ii) could be indexed by the level of mental workload which, when excessively heightened can decrease the quality of performance and more generally result in delayed motor improvements. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
The Sensorimotor System Can Sculpt Behaviorally Relevant Representations for Motor Learning
2016-01-01
Abstract The coordinate system in which humans learn novel motor skills is controversial. The representation of sensorimotor skills has been extensively studied by examining generalization after learning perturbations specifically designed to be ambiguous as to their coordinate system. Recent studies have found that learning is not represented in any simple coordinate system and can potentially be accounted for by a mixed representation. Here, instead of probing generalization, which has led to conflicting results, we examine whether novel dynamics can be learned when explicitly and unambiguously presented in particular coordinate systems. Subjects performed center–out reaches to targets in the presence of a force field, while varying the orientation of their hand (i.e., the wrist angle) across trials. Different groups of subjects experienced force fields that were explicitly presented either in Cartesian coordinates (field independent of hand orientation), in object coordinates (field rotated with hand orientation), or in anti-object coordinates (field rotated counter to hand orientation). Subjects learned to represent the dynamics when presented in either Cartesian or object coordinates, learning these as well as an ambiguous force field. However, learning was slower for the object-based dynamics and substantially impaired for the anti-object presentation. Our results show that the motor system is able to tune its representation to at least two natural coordinate systems but is impaired when the representation of the task does not correspond to a behaviorally relevant coordinate system. Our results show that the motor system can sculpt its representation through experience to match those of natural tasks. PMID:27588304
Wulf, Gabriele; Lewthwaite, Rebecca
2016-10-01
Effective motor performance is important for surviving and thriving, and skilled movement is critical in many activities. Much theorizing over the past few decades has focused on how certain practice conditions affect the processing of task-related information to affect learning. Yet, existing theoretical perspectives do not accommodate significant recent lines of evidence demonstrating motivational and attentional effects on performance and learning. These include research on (a) conditions that enhance expectancies for future performance, (b) variables that influence learners' autonomy, and (c) an external focus of attention on the intended movement effect. We propose the OPTIMAL (Optimizing Performance through Intrinsic Motivation and Attention for Learning) theory of motor learning. We suggest that motivational and attentional factors contribute to performance and learning by strengthening the coupling of goals to actions. We provide explanations for the performance and learning advantages of these variables on psychological and neuroscientific grounds. We describe a plausible mechanism for expectancy effects rooted in responses of dopamine to the anticipation of positive experience and temporally associated with skill practice. Learner autonomy acts perhaps largely through an enhanced expectancy pathway. Furthermore, we consider the influence of an external focus for the establishment of efficient functional connections across brain networks that subserve skilled movement. We speculate that enhanced expectancies and an external focus propel performers' cognitive and motor systems in productive "forward" directions and prevent "backsliding" into self- and non-task focused states. Expected success presumably breeds further success and helps consolidate memories. We discuss practical implications and future research directions.
Gating of neural error signals during motor learning
Kimpo, Rhea R; Rinaldi, Jacob M; Kim, Christina K; Payne, Hannah L; Raymond, Jennifer L
2014-01-01
Cerebellar climbing fiber activity encodes performance errors during many motor learning tasks, but the role of these error signals in learning has been controversial. We compared two motor learning paradigms that elicited equally robust putative error signals in the same climbing fibers: learned increases and decreases in the gain of the vestibulo-ocular reflex (VOR). During VOR-increase training, climbing fiber activity on one trial predicted changes in cerebellar output on the next trial, and optogenetic activation of climbing fibers to mimic their encoding of performance errors was sufficient to implant a motor memory. In contrast, during VOR-decrease training, there was no trial-by-trial correlation between climbing fiber activity and changes in cerebellar output, and climbing fiber activation did not induce VOR-decrease learning. Our data suggest that the ability of climbing fibers to induce plasticity can be dynamically gated in vivo, even under conditions where climbing fibers are robustly activated by performance errors. DOI: http://dx.doi.org/10.7554/eLife.02076.001 PMID:24755290
Dealing with delays does not transfer across sensorimotor tasks.
de la Malla, Cristina; López-Moliner, Joan; Brenner, Eli
2014-10-09
It is known that people can learn to deal with delays between their actions and the consequences of such actions. We wondered whether they do so by adjusting their anticipations about the sensory consequences of their actions or whether they simply learn to move in certain ways when performing specific tasks. To find out, we examined details of how people learn to intercept a moving target with a cursor that follows the hand with a delay and examined the transfer of learning between this task and various other tasks that require temporal precision. Subjects readily learned to intercept the moving target with the delayed cursor. The compensation for the delay generalized across modifications of the task, so subjects did not simply learn to move in a certain way in specific circumstances. The compensation did not generalize to completely different timing tasks, so subjects did not generally expect the consequences of their motor commands to be delayed. We conclude that people specifically learn to control the delayed visual consequences of their actions to perform certain tasks. © 2014 ARVO.
Temporal course of gene expression during motor memory formation in primary motor cortex of rats.
Hertler, B; Buitrago, M M; Luft, A R; Hosp, J A
2016-12-01
Motor learning is associated with plastic reorganization of neural networks in primary motor cortex (M1) that depends on changes in gene expression. Here, we investigate the temporal profile of these changes during motor memory formation in response to a skilled reaching task in rats. mRNA-levels were measured 1h, 7h and 24h after the end of a training session using microarray technique. To assure learning specificity, trained animals were compared to a control group. In response to motor learning, genes are sequentially regulated with high time-point specificity and a shift from initial suppression to later activation. The majority of regulated genes can be linked to learning-related plasticity. In the gene-expression cascade following motor learning, three different steps can be defined: (1) an initial suppression of genes influencing gene transcription. (2) Expression of genes that support translation of mRNA in defined compartments. (3) Expression of genes that immediately mediates plastic changes. Gene expression peaks after 24h - this is a much slower time-course when compared to hippocampus-dependent learning, where peaks of gene-expression can be observed 6-12h after training ended. Copyright © 2016 Elsevier Inc. All rights reserved.
Learning-induced Dependence of Neuronal Activity in Primary Motor Cortex on Motor Task Condition.
Cai, X; Shimansky, Y; He, Jiping
2005-01-01
A brain-computer interface (BCI) system such as a cortically controlled robotic arm must have a capacity of adjusting its function to a specific environmental condition. We studied this capacity in non-human primates based on chronic multi-electrode recording from the primary motor cortex of a monkey during the animal's performance of a center-out 3D reaching task and adaptation to external force perturbations. The main condition-related feature of motor cortical activity observed before the onset of force perturbation was a phasic raise of activity immediately before the perturbation onset. This feature was observed during a series of perturbation trials, but were absent under no perturbations. After adaptation has been completed, it usually was taking the subject only one trial to recognize a change in the condition to switch the neuronal activity accordingly. These condition-dependent features of neuronal activity can be used by a BCI for recognizing a change in the environmental condition and making corresponding adjustments, which requires that the BCI-based control system possess such advanced properties of the neural motor control system as capacity to learn and adapt.
Vazquez, Alejandro; Statton, Matthew A.; Busgang, Stefanie A.
2015-01-01
Motor learning during reaching not only recalibrates movement but can also lead to small but consistent changes in the sense of arm position. Studies have suggested that this sensory effect may be the result of recalibration of a forward model that associates motor commands with their sensory consequences. Here we investigated whether similar perceptual changes occur in the lower limbs after learning a new walking pattern on a split-belt treadmill—a task that critically involves proprioception. Specifically, we studied how this motor learning task affects perception of leg speed during walking, perception of leg position during standing or walking, and perception of contact force during stepping. Our results show that split-belt adaptation leads to robust motor aftereffects and alters the perception of leg speed during walking. This is specific to the direction of walking that was trained during adaptation (i.e., backward or forward). The change in leg speed perception accounts for roughly half of the observed motor aftereffect. In contrast, split-belt adaptation does not alter the perception of leg position during standing or walking and does not change the perception of stepping force. Our results demonstrate that there is a recalibration of a sensory percept specific to the domain of the perturbation that was applied during walking (i.e., speed but not position or force). Furthermore, the motor and sensory consequences of locomotor adaptation may be linked, suggesting overlapping mechanisms driving changes in the motor and sensory domains. PMID:26424576
Macedonia, Manuela; Mueller, Karsten
2016-01-01
Vocabulary learning in a second language is enhanced if learners enrich the learning experience with self-performed iconic gestures. This learning strategy is called enactment. Here we explore how enacted words are functionally represented in the brain and which brain regions contribute to enhance retention. After an enactment training lasting 4 days, participants performed a word recognition task in the functional Magnetic Resonance Imaging (fMRI) scanner. Data analysis suggests the participation of different and partially intertwined networks that are engaged in higher cognitive processes, i.e., enhanced attention and word recognition. Also, an experience-related network seems to map word representation. Besides core language regions, this latter network includes sensory and motor cortices, the basal ganglia, and the cerebellum. On the basis of its complexity and the involvement of the motor system, this sensorimotor network might explain superior retention for enactment. PMID:27445918
Transfer of motor learning from virtual to natural environments in individuals with cerebral palsy.
de Mello Monteiro, Carlos Bandeira; Massetti, Thais; da Silva, Talita Dias; van der Kamp, John; de Abreu, Luiz Carlos; Leone, Claudio; Savelsbergh, Geert J P
2014-10-01
With the growing accessibility of computer-assisted technology, rehabilitation programs for individuals with cerebral palsy (CP) increasingly use virtual reality environments to enhance motor practice. Thus, it is important to examine whether performance improvements in the virtual environment generalize to the natural environment. To examine this issue, we had 64 individuals, 32 of which were individuals with CP and 32 typically developing individuals, practice two coincidence-timing tasks. In the more tangible button-press task, the individuals were required to 'intercept' a falling virtual object at the moment it reached the interception point by pressing a key. In the more abstract, less tangible task, they were instructed to 'intercept' the virtual object by making a hand movement in a virtual environment. The results showed that individuals with CP timed less accurate than typically developing individuals, especially for the more abstract task in the virtual environment. The individuals with CP did-as did their typically developing peers-improve coincidence timing with practice on both tasks. Importantly, however, these improvements were specific to the practice environment; there was no transfer of learning. It is concluded that the implementation of virtual environments for motor rehabilitation in individuals with CP should not be taken for granted but needs to be considered carefully. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rauter, Georg; Sigrist, Roland; Riener, Robert; Wolf, Peter
2015-01-01
In literature, the effectiveness of haptics for motor learning is controversially discussed. Haptics is believed to be effective for motor learning in general; however, different types of haptic control enhance different movement aspects. Thus, in dependence on the movement aspects of interest, one type of haptic control may be effective whereas another one is not. Therefore, in the current work, it was investigated if and how different types of haptic controllers affect learning of spatial and temporal movement aspects. In particular, haptic controllers that enforce active participation of the participants were expected to improve spatial aspects. Only haptic controllers that provide feedback about the task's velocity profile were expected to improve temporal aspects. In a study on learning a complex trunk-arm rowing task, the effect of training with four different types of haptic control was investigated: position control, path control, adaptive path control, and reactive path control. A fifth group (control) trained with visual concurrent augmented feedback. As hypothesized, the position controller was most effective for learning of temporal movement aspects, while the path controller was most effective in teaching spatial movement aspects of the rowing task. Visual feedback was also effective for learning temporal and spatial movement aspects.
Active learning: learning a motor skill without a coach.
Huang, Vincent S; Shadmehr, Reza; Diedrichsen, Jörn
2008-08-01
When we learn a new skill (e.g., golf) without a coach, we are "active learners": we have to choose the specific components of the task on which to train (e.g., iron, driver, putter, etc.). What guides our selection of the training sequence? How do choices that people make compare with choices made by machine learning algorithms that attempt to optimize performance? We asked subjects to learn the novel dynamics of a robotic tool while moving it in four directions. They were instructed to choose their practice directions to maximize their performance in subsequent tests. We found that their choices were strongly influenced by motor errors: subjects tended to immediately repeat an action if that action had produced a large error. This strategy was correlated with better performance on test trials. However, even when participants performed perfectly on a movement, they did not avoid repeating that movement. The probability of repeating an action did not drop below chance even when no errors were observed. This behavior led to suboptimal performance. It also violated a strong prediction of current machine learning algorithms, which solve the active learning problem by choosing a training sequence that will maximally reduce the learner's uncertainty about the task. While we show that these algorithms do not provide an adequate description of human behavior, our results suggest ways to improve human motor learning by helping people choose an optimal training sequence.
Parkington, Karisa B; Clements, Rebecca J; Landry, Oriane; Chouinard, Philippe A
2015-10-01
We examined how performance on an associative learning task changes in a sample of undergraduate students as a function of their autism-spectrum quotient (AQ) score. The participants, without any prior knowledge of the Japanese language, learned to associate hiragana characters with button responses. In the novel condition, 50 participants learned visual-motor associations without any prior exposure to the stimuli's visual attributes. In the familiar condition, a different set of 50 participants completed a session in which they first became familiar with the stimuli's visual appearance prior to completing the visual-motor association learning task. Participants with higher AQ scores had a clear advantage in the novel condition; the amount of training required reaching learning criterion correlated negatively with AQ. In contrast, participants with lower AQ scores had a clear advantage in the familiar condition; the amount of training required to reach learning criterion correlated positively with AQ. An examination of how each of the AQ subscales correlated with these learning patterns revealed that abilities in visual discrimination-which is known to depend on the visual ventral-stream system-may have afforded an advantage in the novel condition for the participants with the higher AQ scores, whereas abilities in attention switching-which are known to require mechanisms in the prefrontal cortex-may have afforded an advantage in the familiar condition for the participants with the lower AQ scores.
ERIC Educational Resources Information Center
Spencer, Rebecca M. C.; Ivry, Richard B.
2009-01-01
Cerebellar pathology is associated with impairments on a range of motor learning tasks including sequence learning. However, various lines of evidence are at odds with the idea that the cerebellum plays a central role in the associative processes underlying sequence learning. Behavioral studies indicate that sequence learning, at least with short…
Huertas, E; Bühler, K-M; Echeverry-Alzate, V; Giménez, T; López-Moreno, J A
2012-08-01
Genetic variants that are related to the dopaminergic system have been frequently found to be associated with various neurological and mental disorders. Here, we studied the relationships between some of these genetic variants and some cognitive and psychophysiological processes that are implicated in such disorders. Two single nucleotide polymorphisms were chosen: one in the dopamine D2 receptor gene (rs6277-C957T) and one in the catechol-O-methyltransferase gene (rs4680-Val158Met), which is involved in the metabolic degradation of dopamine. The performance of participants on two long-term memory tasks was assessed: free recall (declarative memory) and mirror drawing (procedural motor learning). Heart rate (HR) was also monitored during the initial trials of the mirror-drawing task, which is considered to be a laboratory middle-stress generator (moderate stress), and during a rest period (low stress). Data were collected from 213 healthy Caucasian university students. The C957T C homozygous participants showed more rapid learning than the T allele carriers in the procedural motor learning task and smaller differences in HR between the moderate- and the low-stress conditions. These results provide useful information regarding phenotypic variance in both healthy individuals and patients. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.
Motor learning and cross-limb transfer rely upon distinct neural adaptation processes.
Stöckel, Tino; Carroll, Timothy J; Summers, Jeffery J; Hinder, Mark R
2016-08-01
Performance benefits conferred in the untrained limb after unilateral motor practice are termed cross-limb transfer. Although the effect is robust, the neural mechanisms remain incompletely understood. In this study we used noninvasive brain stimulation to reveal that the neural adaptations that mediate motor learning in the trained limb are distinct from those that underlie cross-limb transfer to the opposite limb. Thirty-six participants practiced a ballistic motor task with their right index finger (150 trials), followed by intermittent theta-burst stimulation (iTBS) applied to the trained (contralateral) primary motor cortex (cM1 group), the untrained (ipsilateral) M1 (iM1 group), or the vertex (sham group). After stimulation, another 150 training trials were undertaken. Motor performance and corticospinal excitability were assessed before motor training, pre- and post-iTBS, and after the second training bout. For all groups, training significantly increased performance and excitability of the trained hand, and performance, but not excitability, of the untrained hand, indicating transfer at the level of task performance. The typical facilitatory effect of iTBS on MEPs was reversed for cM1, suggesting homeostatic metaplasticity, and prior performance gains in the trained hand were degraded, suggesting that iTBS interfered with learning. In stark contrast, iM1 iTBS facilitated both performance and excitability for the untrained hand. Importantly, the effects of cM1 and iM1 iTBS on behavior were exclusive to the hand contralateral to stimulation, suggesting that adaptations within the untrained M1 contribute to cross-limb transfer. However, the neural processes that mediate learning in the trained hemisphere vs. transfer in the untrained hemisphere appear distinct. Copyright © 2016 the American Physiological Society.
Motor learning and cross-limb transfer rely upon distinct neural adaptation processes
Carroll, Timothy J.; Summers, Jeffery J.; Hinder, Mark R.
2016-01-01
Performance benefits conferred in the untrained limb after unilateral motor practice are termed cross-limb transfer. Although the effect is robust, the neural mechanisms remain incompletely understood. In this study we used noninvasive brain stimulation to reveal that the neural adaptations that mediate motor learning in the trained limb are distinct from those that underlie cross-limb transfer to the opposite limb. Thirty-six participants practiced a ballistic motor task with their right index finger (150 trials), followed by intermittent theta-burst stimulation (iTBS) applied to the trained (contralateral) primary motor cortex (cM1 group), the untrained (ipsilateral) M1 (iM1 group), or the vertex (sham group). After stimulation, another 150 training trials were undertaken. Motor performance and corticospinal excitability were assessed before motor training, pre- and post-iTBS, and after the second training bout. For all groups, training significantly increased performance and excitability of the trained hand, and performance, but not excitability, of the untrained hand, indicating transfer at the level of task performance. The typical facilitatory effect of iTBS on MEPs was reversed for cM1, suggesting homeostatic metaplasticity, and prior performance gains in the trained hand were degraded, suggesting that iTBS interfered with learning. In stark contrast, iM1 iTBS facilitated both performance and excitability for the untrained hand. Importantly, the effects of cM1 and iM1 iTBS on behavior were exclusive to the hand contralateral to stimulation, suggesting that adaptations within the untrained M1 contribute to cross-limb transfer. However, the neural processes that mediate learning in the trained hemisphere vs. transfer in the untrained hemisphere appear distinct. PMID:27169508
Is Motor Learning Mediated by tDCS Intensity?
van den Berg, Femke E.; Nitsche, Michael A.; Thijs, Herbert; Wenderoth, Nicole; Meesen, Raf L. J.
2013-01-01
Although tDCS has been shown to improve motor learning, previous studies reported rather small effects. Since physiological effects of tDCS depend on intensity, the present study evaluated this parameter in order to enhance the effect of tDCS on skill acquisition. The effect of different stimulation intensities of anodal tDCS (atDCS) was investigated in a double blind, sham controlled crossover design. In each condition, thirteen healthy subjects were instructed to perform a unimanual motor (sequence) learning task. Our results showed (1) a significant increase in the slope of the learning curve and (2) a significant improvement in motor performance at retention for 1.5 mA atDCS as compared to sham tDCS. No significant differences were reported between 1 mA atDCS and sham tDCS; and between 1.5 mA atDCS and 1 mA atDCS. PMID:23826272
Building a Framework for a Dual Task Taxonomy
McIsaac, Tara L.; Lamberg, Eric M.; Muratori, Lisa M.
2015-01-01
The study of dual task interference has gained increasing attention in the literature for the past 35 years, with six MEDLINE citations in 1979 growing to 351 citations indexed in 2014 and a peak of 454 cited papers in 2013. Increasingly, researchers are examining dual task cost in individuals with pathology, including those with neurodegenerative diseases. While the influence of these papers has extended from the laboratory to the clinic, the field has evolved without clear definitions of commonly used terms and with extreme variations in experimental procedures. As a result, it is difficult to examine the interference literature as a single body of work. In this paper we present a new taxonomy for classifying cognitive-motor and motor-motor interference within the study of dual task behaviors that connects traditional concepts of learning and principles of motor control with current issues of multitasking analysis. As a first step in the process we provide an operational definition of dual task, distinguishing it from a complex single task. We present this new taxonomy, inclusive of both cognitive and motor modalities, as a working model; one that we hope will generate discussion and create a framework from which one can view previous studies and develop questions of interest. PMID:25961027
Pessiglione, Mathias; Guehl, Dominique; Hirsch, Etienne C; Féger, Jean; Tremblay, Léon
2004-01-01
Parkinson's disease (PD) is characterized by motor symptoms, usually accompanied by cognitive deficits. The question addressed in this study is whether complexity of routine actions can exacerbate parkinsonian disorders that are often considered to be motor symptoms. To examine this question, we trained four vervet monkeys (Cercopithecus aethiops) to perform three multiple-choice retrieval tasks. In order of ascending complexity, rewards were freely available (task 1), covered with transparent sliding plaques (task 2), and covered with opaque sliding plaques cued by symbols (task 3). Thus, from task 1 to task 2 we added a motor difficulty--the recall of context-adapted movement; and from task 2 to task 3 we added a cognitive difficulty: the recall of symbol-reward associations. The more complex the task, the longer it took to learn, but after extensive training the performance was stable in all tasks, with similar retrieval durations. The monkeys then received systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injections (0.3-0.4 mg/kg) every 4-7 days, until the first motor symptoms appeared. In the course of MPTP intoxication, the behavioural performance declined while the motor symptoms were absent or mild--the retrieval duration increased, and non-initiated choices and hesitations between choices became frequent. Interestingly, this decline was in proportion to task complexity, and was particularly pronounced with the cognitive difficulty. Furthermore, freezing appeared only with the cognitive difficulty. We therefore suggest that everyday cognitive difficulties may exacerbate hypokinesia (lack of initiation, abnormal slowness) and executive disorders (hesitations, freezing) in the early stages of human PD.
Perception as a Route for Motor Skill Learning: Perspectives from Neuroscience.
Ossmy, Ori; Mukamel, Roy
2018-04-22
Learning a motor skill requires physical practice that engages neural networks involved in movement. These networks have also been found to be engaged during perception of sensory signals associated with actions. Nonetheless, despite extensive evidence for the existence of such sensory-evoked neural activity in motor pathways, much less is known about their contribution to learning and actual changes in behavior. Primate studies usually involve an overlearned task while studies in humans have largely focused on characterizing activity of the action observation network (AON) in the context of action understanding, theory of mind, and social interactions. Relatively few studies examined neural plasticity induced by perception and its role in transfer of motor knowledge. Here, we review this body of literature and point to future directions for the development of alternative, physiologically grounded ways in which sensory signals could be harnessed to improve motor skills. Copyright © 2018. Published by Elsevier Ltd.
Fu, Kin Chung Denny; Dalla Libera, Fabio; Ishiguro, Hiroshi
2015-10-08
In the field of human motor control, the motor synergy hypothesis explains how humans simplify body control dimensionality by coordinating groups of muscles, called motor synergies, instead of controlling muscles independently. In most applications of motor synergies to low-dimensional control in robotics, motor synergies are extracted from given optimal control signals. In this paper, we address the problems of how to extract motor synergies without optimal data given, and how to apply motor synergies to achieve low-dimensional task-space tracking control of a human-like robotic arm actuated by redundant muscles, without prior knowledge of the robot. We propose to extract motor synergies from a subset of randomly generated reaching-like movement data. The essence is to first approximate the corresponding optimal control signals, using estimations of the robot's forward dynamics, and to extract the motor synergies subsequently. In order to avoid modeling difficulties, a learning-based control approach is adopted such that control is accomplished via estimations of the robot's inverse dynamics. We present a kernel-based regression formulation to estimate the forward and the inverse dynamics, and a sliding controller in order to cope with estimation error. Numerical evaluations show that the proposed method enables extraction of motor synergies for low-dimensional task-space control.
Acai fruit improves motor and cognitive function in aged rats
USDA-ARS?s Scientific Manuscript database
Aged rats show impaired performance on motor and cognitive tasks that require the use of spatial learning and memory. In previous studies, we have shown the beneficial effects of various berry fruits (blueberries, strawberries, and blackberries) in reversing age-related deficits in behavioral and ne...
Transformation of Cortex-wide Emergent Properties during Motor Learning.
Makino, Hiroshi; Ren, Chi; Liu, Haixin; Kim, An Na; Kondapaneni, Neehar; Liu, Xin; Kuzum, Duygu; Komiyama, Takaki
2017-05-17
Learning involves a transformation of brain-wide operation dynamics. However, our understanding of learning-related changes in macroscopic dynamics is limited. Here, we monitored cortex-wide activity of the mouse brain using wide-field calcium imaging while the mouse learned a motor task over weeks. Over learning, the sequential activity across cortical modules became temporally more compressed, and its trial-by-trial variability decreased. Moreover, a new flow of activity emerged during learning, originating from premotor cortex (M2), and M2 became predictive of the activity of many other modules. Inactivation experiments showed that M2 is critical for the post-learning dynamics in the cortex-wide activity. Furthermore, two-photon calcium imaging revealed that M2 ensemble activity also showed earlier activity onset and reduced variability with learning, which was accompanied by changes in the activity-movement relationship. These results reveal newly emergent properties of macroscopic cortical dynamics during motor learning and highlight the importance of M2 in controlling learned movements. Copyright © 2017 Elsevier Inc. All rights reserved.
Ambrus, Géza Gergely; Chaieb, Leila; Stilling, Roman; Rothkegel, Holger; Antal, Andrea; Paulus, Walter
2016-03-11
The measurement of the motor evoked potential (MEP) amplitudes using single pulse transcranial magnetic stimulation (TMS) is a common method to observe changes in motor cortical excitability. The level of cortical excitability has been shown to change during motor learning. Conversely, motor learning can be improved by using anodal transcranial direct current stimulation (tDCS). In the present study, we aimed to monitor cortical excitability changes during an implicit motor learning paradigm, a version of the serial reaction time task (SRTT). Responses from the first dorsal interosseous (FDI) and forearm flexor (FLEX) muscles were recorded before, during and after the performance of the SRTT. Online measurements were combined with anodal, cathodal or sham tDCS for the duration of the SRTT. Negative correlations between the amplitude of online FDI MEPs and SRTT reaction times (RTs) were observed across the learning blocks in the cathodal condition (higher average MEP amplitudes associated with lower RTs) but no significant differences in the anodal and sham conditions. tDCS did not have an impact on SRTT performance, as would be predicted based on previous studies. The offline before-after SRTT MEP amplitudes showed an increase after anodal and a tendency to decrease after cathodal stimulation, but these changes were not significant. The combination of different interventions during tDCS might result in reduced efficacy of the stimulation that in future studies need further attention. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Human θ burst stimulation enhances subsequent motor learning and increases performance variability.
Teo, James T H; Swayne, Orlando B C; Cheeran, Binith; Greenwood, Richard J; Rothwell, John C
2011-07-01
Intermittent theta burst stimulation (iTBS) transiently increases motor cortex excitability in healthy humans by a process thought to involve synaptic long-term potentiation (LTP), and this is enhanced by nicotine. Acquisition of a ballistic motor task is likewise accompanied by increased excitability and presumed intracortical LTP. Here, we test how iTBS and nicotine influences subsequent motor learning. Ten healthy subjects participated in a double-blinded placebo-controlled trial testing the effects of iTBS and nicotine. iTBS alone increased the rate of learning but this increase was blocked by nicotine. We then investigated factors other than synaptic strengthening that may play a role. Behavioral analysis and modeling suggested that iTBS increased performance variability, which correlated with learning outcome. A control experiment confirmed the increase in motor output variability by showing that iTBS increased the dispersion of involuntary transcranial magnetic stimulation-evoked thumb movements. We suggest that in addition to the effect on synaptic plasticity, iTBS may have facilitated performance by increasing motor output variability; nicotine negated this effect on variability perhaps via increasing the signal-to-noise ratio in cerebral cortex.
Perceptual learning in sensorimotor adaptation.
Darainy, Mohammad; Vahdat, Shahabeddin; Ostry, David J
2013-11-01
Motor learning often involves situations in which the somatosensory targets of movement are, at least initially, poorly defined, as for example, in learning to speak or learning the feel of a proper tennis serve. Under these conditions, motor skill acquisition presumably requires perceptual as well as motor learning. That is, it engages both the progressive shaping of sensory targets and associated changes in motor performance. In the present study, we test the idea that perceptual learning alters somatosensory function and in so doing produces changes to human motor performance and sensorimotor adaptation. Subjects in these experiments undergo perceptual training in which a robotic device passively moves the subject's arm on one of a set of fan-shaped trajectories. Subjects are required to indicate whether the robot moved the limb to the right or the left and feedback is provided. Over the course of training both the perceptual boundary and acuity are altered. The perceptual learning is observed to improve both the rate and extent of learning in a subsequent sensorimotor adaptation task and the benefits persist for at least 24 h. The improvement in the present studies varies systematically with changes in perceptual acuity and is obtained regardless of whether the perceptual boundary shift serves to systematically increase or decrease error on subsequent movements. The beneficial effects of perceptual training are found to be substantially dependent on reinforced decision-making in the sensory domain. Passive-movement training on its own is less able to alter subsequent learning in the motor system. Overall, this study suggests perceptual learning plays an integral role in motor learning.
Domain-general sequence learning deficit in specific language impairment.
Lukács, Agnes; Kemény, Ferenc
2014-05-01
Grammar-specific accounts of specific language impairment (SLI) have been challenged by recent claims that language problems are a consequence of impairments in domain-general mechanisms of learning that also play a key role in the process of language acquisition. Our studies were designed to test the generality and nature of this learning deficit by focusing on both sequential and nonsequential, and on verbal and nonverbal, domains. Twenty-nine children with SLI were compared with age-matched typically developing (TD) control children using (a) a serial reaction time task (SRT), testing the learning of motor sequences; (b) an artificial grammar learning (AGL) task, testing the extraction of regularities from auditory sequences; and (c) a weather prediction task (WP), testing probabilistic category learning in a nonsequential task. For the 2 sequence learning tasks, a significantly smaller proportion of children showed evidence of learning in the SLI than in the TD group (χ2 tests, p < .001 for the SRT task, p < .05 for the AGL task), whereas the proportion of learners on the WP task was the same in the 2 groups. The level of learning for SLI learners was comparable with that of TD children on all tasks (with great individual variation). Taken together, these findings suggest that domain-general processes of implicit sequence learning tend to be impaired in SLI. Further research is needed to clarify the relationship of deficits in implicit learning and language.
Altermann, Caroline D. C.; Martins, Alexandre S.; Carpes, Felipe P.; Mello-Carpes, Pâmela B.
2014-01-01
Background With aging, it is important to maintain cognitive and motor functions to ensure autonomy and quality of life. During the acquisition of motor skills, it is necessary for the elderly to understand the purpose of the proposed activities. Physical and mental practice, as well as demonstrations, are strategies used to learn movements. Objectives To investigate the influence of mental practice and the observation of movement on motor memory and to understand the relationship between cognitive function and motor performance in the execution of a sequence of digital movements in the elderly. Method This was a cross-sectional study conducted with 45 young and 45 aged subjects. The instruments used were Mini-Mental State Examination (MMSE), Manual Preference Inventory and a Digital Motor Task (composed of a training of a sequence of movements, an interval and a test phase). The subjects were divided into three subgroups: control, mental practice and observation of movement. Results The elderly depend more strongly on mental practice for the acquisition of a motor memory. In comparing the performances of people in different age groups, we found that in the elderly, there was a negative correlation between the MMSE score and the execution time as well as the number of errors in the motor task. Conclusions For the elderly, mental practice can advantage motor performance. Also, there is a significant relationship between cognitive function, learning and the execution of new motor skills. PMID:24839046
Santos Monteiro, Thiago; Beets, Iseult A M; Boisgontier, Matthieu P; Gooijers, Jolien; Pauwels, Lisa; Chalavi, Sima; King, Brad; Albouy, Geneviève; Swinnen, Stephan P
2017-10-01
To study age-related differences in neural activation during motor learning, functional magnetic resonance imaging scans were acquired from 25 young (mean 21.5-year old) and 18 older adults (mean 68.6-year old) while performing a bimanual coordination task before (pretest) and after (posttest) a 2-week training intervention on the task. We studied whether task-related brain activity and training-induced brain activation changes differed between age groups, particularly with respect to the hyperactivation typically observed in older adults. Findings revealed that older adults showed lower performance levels than younger adults but similar learning capability. At the cerebral level, the task-related hyperactivation in parietofrontal areas and underactivation in subcortical areas observed in older adults were not differentially modulated by the training intervention. However, brain activity related to task planning and execution decreased from pretest to posttest in temporo-parieto-frontal areas and subcortical areas in both age groups, suggesting similar processes of enhanced activation efficiency with advanced skill level. Furthermore, older adults who displayed higher activity in prefrontal regions at pretest demonstrated larger training-induced performance gains. In conclusion, in spite of prominent age-related brain activation differences during movement planning and execution, the mechanisms of learning-related reduction of brain activation appear to be similar in both groups. Importantly, cerebral activity during early learning can differentially predict the amplitude of the training-induced performance benefit between young and older adults. Copyright © 2017 Elsevier Inc. All rights reserved.
Portella, Claudio Elidio; Silva, Julio Guilherme; Bastos, Victor Hugo; Machado, Dionis; Cunha, Marlo; Cagy, Maurício; Basile, Luis; Piedade, Roberto; Ribeiro, Pedro
2006-06-01
The objective of the present study was to evaluate attentional, motor and electroencephalographic (EEG) parameters during a procedural task when subjects have ingested 6 mg of bromazepam. The sample consisted of 26 healthy subjects, male or female, between 19 and 36 years of age. The control (placebo) and experimental (bromazepam 6 mg) groups were submitted to a typewriting task in a randomized, double-blind design. The findings did not show significant differences in attentional and motor measures between groups. Coherence measures (qEEG) were evaluated between scalp regions, in theta, alpha and beta bands. A first analysis revealed a main effect for condition (Anova 2-way--condition versus blocks). A second Anova 2-way (condition versus scalp regions) showed a main effect for both factors. The coherence measure was not a sensitive tool at demonstrating differences between cortical areas as a function of procedural learning.
Untrivial Pursuit: Measuring Motor Procedures Learning in Children with Autism.
Sparaci, Laura; Formica, Domenico; Lasorsa, Francesca Romana; Mazzone, Luigi; Valeri, Giovanni; Vicari, Stefano
2015-08-01
Numerous studies have underscored prevalence of motor impairments in children with autism spectrum disorders (ASD), but only few of them have analyzed motor strategies exploited by ASD children when learning a new motor procedure. To evaluate motor procedure learning and performance strategies in both ASD and typically developing (TD) children, we built a virtual pursuit rotor (VPR) task, requiring tracking a moving target on a computer screen using a digitalized pen and tablet. Procedural learning was measured as increased time on target (TT) across blocks of trials on the same day and consolidation was assessed after a 24-hour rest. The program and the experimental setting (evaluated in a first experiment considering two groups of TD children) allowed also measures of continuous time on target (CTT), distance from target (DT) and distance from path (DP), as well as 2D reconstructions of children's trajectories. Results showed that the VPR was harder for children with ASD than for TD controls matched for chronological age and intelligence quotient, but both groups displayed comparable motor procedure learning (i.e., similarly incremented their TT). However, closer analysis of CTT, DT, and DP as well as 2D trajectories, showed different motor performance strategies in ASD, highlighting difficulties in overall actions planning. Data underscore the need for deeper investigations of motor strategies exploited by children with ASD when learning a new motor procedure. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Van Ooteghem, Karen; Frank, James S; Allard, Fran; Horak, Fay B
2010-08-01
Postural motor learning for dynamic balance tasks has been demonstrated in healthy older adults (Van Ooteghem et al. in Exp Brain Res 199(2):185-193, 2009). The purpose of this study was to investigate the type of knowledge (general or specific) obtained with balance training in this age group and to examine whether embedding perturbation regularities within a balance task masks specific learning. Two groups of older adults maintained balance on a translating platform that oscillated with variable amplitude and constant frequency. One group was trained using an embedded-sequence (ES) protocol which contained the same 15-s sequence of variable amplitude oscillations in the middle of each trial. A second group was trained using a looped-sequence (LS) protocol which contained a 15-s sequence repeated three times to form each trial. All trials were 45 s. Participants were not informed of any repetition. To examine learning, participants performed a retention test following a 24-h delay. LS participants also completed a transfer task. Specificity of learning was examined by comparing performance for repeated versus random sequences (ES) and training versus transfer sequences (LS). Performance was measured by deriving spatial and temporal measures of whole body center of mass (COM) and trunk orientation. Both groups improved performance with practice as characterized by reduced COM displacement, improved COM-platform phase relationships, and decreased angular trunk motion. Furthermore, improvements reflected general rather than specific postural motor learning regardless of training protocol (ES or LS). This finding is similar to young adults (Van Ooteghem et al. in Exp Brain Res 187(4):603-611, 2008) and indicates that age does not influence the type of learning which occurs for balance control.
Proactive and retroactive transfer of middle age adults in a sequential motor learning task.
Verneau, Marion; van der Kamp, John; Savelsbergh, Geert J P; de Looze, Michiel P
2015-03-01
We assessed the effects of aging in the transfer of motor learning in a sequential manual assembly task that is representative for real working conditions. On two different days, young (18-30 years) and middle-aged adults (50-65 years) practiced to build two products that consisted of the same six components but which had to be assembled in a partly different order. Assembly accuracy and movement time during tests, which were performed before and after the practice sessions, were compared to determine proactive and retroactive transfer. The results showed proactive facilitation (i.e., benefits from having learned the first product on learning the second one) in terms of an overall shortening of movement time in both age-groups. In addition, only the middle-aged adults were found to show sequence-specific proactive facilitation, in which the shortening of movement time was limited to components that had the same the order in the two products. Most likely, however, the sequence-specific transfer was an epiphenomenon of the comparatively low rate of learning among the middle-aged adults. The results, however, did reveal genuine differences between the groups for retroactive transfer (i.e., effects from learning the second product on performance of the first). Middle-aged adults tended to show more pronounced retroactive interference in terms of a general decrease in accuracy, while younger adults showed sequence-specific retroactive facilitation (i.e., shortening of movement times for components that had the same order in the two products), but only when they were fully accurate. Together this suggests that in the learning of sequential motor tasks the effects of age are more marked for retroactive transfer than for proactive transfer. Copyright © 2015 Elsevier B.V. All rights reserved.
Elnady, Ahmed Mohamed; Zhang, Xin; Xiao, Zhen Gang; Yong, Xinyi; Randhawa, Bubblepreet Kaur; Boyd, Lara; Menon, Carlo
2015-01-01
Traditional, hospital-based stroke rehabilitation can be labor-intensive and expensive. Furthermore, outcomes from rehabilitation are inconsistent across individuals and recovery is hard to predict. Given these uncertainties, numerous technological approaches have been tested in an effort to improve rehabilitation outcomes and reduce the cost of stroke rehabilitation. These techniques include brain-computer interface (BCI), robotic exoskeletons, functional electrical stimulation (FES), and proprioceptive feedback. However, to the best of our knowledge, no studies have combined all these approaches into a rehabilitation platform that facilitates goal-directed motor movements. Therefore, in this paper, we combined all these technologies to test the feasibility of using a BCI-driven exoskeleton with FES (robotic training device) to facilitate motor task completion among individuals with stroke. The robotic training device operated to assist a pre-defined goal-directed motor task. Because it is hard to predict who can utilize this type of technology, we considered whether the ability to adapt skilled movements with proprioceptive feedback would predict who could learn to control a BCI-driven robotic device. To accomplish this aim, we developed a motor task that requires proprioception for completion to assess motor-proprioception ability. Next, we tested the feasibility of robotic training system in individuals with chronic stroke (n = 9) and found that the training device was well tolerated by all the participants. Ability on the motor-proprioception task did not predict the time to completion of the BCI-driven task. Both participants who could accurately target (n = 6) and those who could not (n = 3), were able to learn to control the BCI device, with each BCI trial lasting on average 2.47 min. Our results showed that the participants' ability to use proprioception to control motor output did not affect their ability to use the BCI-driven exoskeleton with FES. Based on our preliminary results, we show that our robotic training device has potential for use as therapy for a broad range of individuals with stroke.
Elnady, Ahmed Mohamed; Zhang, Xin; Xiao, Zhen Gang; Yong, Xinyi; Randhawa, Bubblepreet Kaur; Boyd, Lara; Menon, Carlo
2015-01-01
Traditional, hospital-based stroke rehabilitation can be labor-intensive and expensive. Furthermore, outcomes from rehabilitation are inconsistent across individuals and recovery is hard to predict. Given these uncertainties, numerous technological approaches have been tested in an effort to improve rehabilitation outcomes and reduce the cost of stroke rehabilitation. These techniques include brain–computer interface (BCI), robotic exoskeletons, functional electrical stimulation (FES), and proprioceptive feedback. However, to the best of our knowledge, no studies have combined all these approaches into a rehabilitation platform that facilitates goal-directed motor movements. Therefore, in this paper, we combined all these technologies to test the feasibility of using a BCI-driven exoskeleton with FES (robotic training device) to facilitate motor task completion among individuals with stroke. The robotic training device operated to assist a pre-defined goal-directed motor task. Because it is hard to predict who can utilize this type of technology, we considered whether the ability to adapt skilled movements with proprioceptive feedback would predict who could learn to control a BCI-driven robotic device. To accomplish this aim, we developed a motor task that requires proprioception for completion to assess motor-proprioception ability. Next, we tested the feasibility of robotic training system in individuals with chronic stroke (n = 9) and found that the training device was well tolerated by all the participants. Ability on the motor-proprioception task did not predict the time to completion of the BCI-driven task. Both participants who could accurately target (n = 6) and those who could not (n = 3), were able to learn to control the BCI device, with each BCI trial lasting on average 2.47 min. Our results showed that the participants’ ability to use proprioception to control motor output did not affect their ability to use the BCI-driven exoskeleton with FES. Based on our preliminary results, we show that our robotic training device has potential for use as therapy for a broad range of individuals with stroke. PMID:25870554
Motor learning characterization in people with autism spectrum disorder: A systematic review
de Moraes, Íbis Ariana Peña; Massetti, Thais; Crocetta, Tânia Brusque; da Silva, Talita Dias; de Menezes, Lilian Del Ciello; Monteiro, Carlos Bandeira de Mello; Magalhães, Fernando Henrique
2017-01-01
ABSTRACT Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder primarily characterized by deficits in social interaction, communication and implicit skill learning. OBJECTIVE: To analyse the results of research on "motor learning" and the means used for measuring "autistic disorder". METHODS: A systematic literature search was done using Medline/PubMed, Web of Science, BVS (virtual health library), and PsycINFO. We included articles that contained the keywords "autism" and "motor learning". The variables considered were the methodological aspects; results presented, and the methodological quality of the studies. RESULTS: A total of 42 studies were identified; 33 articles were excluded because they did not meet the inclusion criteria. Data were extracted from nine eligible studies and summarized. CONCLUSION: We concluded that although individuals with ASD showed performance difficulties in different memory and motor learning tasks, acquisition of skills still takes place in this population; however, this skill acquisition is related to heterogeneous events, occurring without the awareness of the individual. PMID:29213525
Kantak, Shailesh S; Mummidisetty, Chaithanya K; Stinear, James W
2012-09-01
Implicit and explicit memory systems for motor skills compete with each other during and after motor practice. Primary motor cortex (M1) is known to be engaged during implicit motor learning, while dorsal premotor cortex (PMd) is critical for explicit learning. To elucidate the neural substrates underlying the interaction between implicit and explicit memory systems, adults underwent a randomized crossover experiment of anodal transcranial direct current stimulation (AtDCS) applied over M1, PMd or sham stimulation during implicit motor sequence (serial reaction time task, SRTT) practice. We hypothesized that M1-AtDCS during practice will enhance online performance and offline learning of the implicit motor sequence. In contrast, we also hypothesized that PMd-AtDCS will attenuate performance and retention of the implicit motor sequence. Implicit sequence performance was assessed at baseline, at the end of acquisition (EoA), and 24 h after practice (retention test, RET). M1-AtDCS during practice significantly improved practice performance and supported offline stabilization compared with Sham tDCS. Performance change from EoA to RET revealed that PMd-AtDCS during practice attenuated offline stabilization compared with M1-AtDCS and sham stimulation. The results support the role of M1 in implementing online performance gains and offline stabilization for implicit motor sequence learning. In contrast, enhancing the activity within explicit motor memory network nodes such as the PMd during practice may be detrimental to offline stabilization of the learned implicit motor sequence. These results support the notion of competition between implicit and explicit motor memory systems and identify underlying neural substrates that are engaged in this competition. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Improved motor sequence retention by motionless listening.
Lahav, Amir; Katz, Tal; Chess, Roxanne; Saltzman, Elliot
2013-05-01
This study examined the effect of listening to a newly learned musical piece on subsequent motor retention of the piece. Thirty-six non-musicians were trained to play an unfamiliar melody on a piano keyboard. Next, they were randomly assigned to participate in three follow-up listening sessions over 1 week. Subjects who, during their listening sessions, listened to the same initial piece showed significant improvements in motor memory and retention of the piece despite the absence of physical practice. These improvements included increased pitch accuracy, time accuracy, and dynamic intensity of key pressing. Similar improvements, though to a lesser degree, were observed in subjects who, during their listening sessions, were distracted by another task. Control subjects, who after learning the piece had listened to nonmusical sounds, showed impaired motoric retention of the piece at 1 week from the initial acquisition day. These results imply that motor sequences can be established in motor memory without direct access to motor-related information. In addition, the study revealed that the listening-induced improvements did not generalize to the learning of a new musical piece composed of the same notes as the initial piece learned, limiting the effects to musical motor sequences that are already part of the individual's motor repertoire.
A model for the transfer of perceptual-motor skill learning in human behaviors.
Rosalie, Simon M; Müller, Sean
2012-09-01
This paper presents a preliminary model that outlines the mechanisms underlying the transfer of perceptual-motor skill learning in sport and everyday tasks. Perceptual-motor behavior is motivated by performance demands and evolves over time to increase the probability of success through adaptation. Performance demands at the time of an event create a unique transfer domain that specifies a range of potentially successful actions. Transfer comprises anticipatory subconscious and conscious mechanisms. The model also outlines how transfer occurs across a continuum, which depends on the individual's expertise and contextual variables occurring at the incidence of transfer
Constraints of Motor Skill Acquisition: Implications for Teaching and Learning.
ERIC Educational Resources Information Center
Hamilton, Michelle L.; Pankey, Robert; Kinnunen, David
This article presents various solutions to possible problems associated with providing skill-based instruction in physical education. It explores and applies Newell's (1986) constraints model to the analysis and teaching of motor skills in physical education, describing the role of individual, task, and environmental constraints in physical…
Schaefer, Sydney Y; Lang, Catherine E
2012-01-01
Theories of motor learning predict that training a movement reduces the amount of attention needed for its performance (i.e., more automatic). If training one movement transfers, then the amount of attention needed for performing a second movement should also be reduced, as measured under dual task conditions. The authors' purpose was to test whether dual task paradigms are feasible for detecting transfer of training between two naturalistic movements. Immediately following motor training, subjects improved performance of a second untrained movement under single and dual task conditions. Subjects with no training did not. Improved performance in the untrained movement was likely due to transfer, and suggests that dual tasks may be feasible for detecting transfer between naturalistic actions.
Trial-by-trial adaptation of movements during mental practice under force field.
Anwar, Muhammad Nabeel; Khan, Salman Hameed
2013-01-01
Human nervous system tries to minimize the effect of any external perturbing force by bringing modifications in the internal model. These modifications affect the subsequent motor commands generated by the nervous system. Adaptive compensation along with the appropriate modifications of internal model helps in reducing human movement errors. In the current study, we studied how motor imagery influences trial-to-trial learning in a robot-based adaptation task. Two groups of subjects performed reaching movements with or without motor imagery in a velocity-dependent force field. The results show that reaching movements performed with motor imagery have relatively a more focused generalization pattern and a higher learning rate in training direction.
Focus of Attention in Children's Motor Learning: Examining the Role of Age and Working Memory.
Brocken, J E A; Kal, E C; van der Kamp, J
2016-01-01
The authors investigated the relative effectiveness of different attentional focus instructions on motor learning in primary school children. In addition, we explored whether the effect of attentional focus on motor learning was influenced by children's age and verbal working memory capacity. Novice 8-9-year old children (n = 30) and 11-12-year-old children (n = 30) practiced a golf putting task. For each age group, half the participants received instructions to focus (internally) on the swing of their arm, while the other half was instructed to focus (externally) on the swing of the club. Children's verbal working memory capacity was assessed with the Automated Working Memory Assessment. Consistent with many reports on adult's motor learning, children in the external groups demonstrated greater improvements in putting accuracy than children who practiced with an internal focus. This effect was similar across age groups. Verbal working memory capacity was not found to be predictive of motor learning, neither for children in the internal focus groups nor for children in the external focus groups. In conclusion, primary school children's motor learning is enhanced by external focus instructions compared to internal focus instructions. The purported modulatory roles of children's working memory, attentional capacity, or focus preferences require further investigation.
An error-tuned model for sensorimotor learning
Sadeghi, Mohsen; Wolpert, Daniel M.
2017-01-01
Current models of sensorimotor control posit that motor commands are generated by combining multiple modules which may consist of internal models, motor primitives or motor synergies. The mechanisms which select modules based on task requirements and modify their output during learning are therefore critical to our understanding of sensorimotor control. Here we develop a novel modular architecture for multi-dimensional tasks in which a set of fixed primitives are each able to compensate for errors in a single direction in the task space. The contribution of the primitives to the motor output is determined by both top-down contextual information and bottom-up error information. We implement this model for a task in which subjects learn to manipulate a dynamic object whose orientation can vary. In the model, visual information regarding the context (the orientation of the object) allows the appropriate primitives to be engaged. This top-down module selection is implemented by a Gaussian function tuned for the visual orientation of the object. Second, each module's contribution adapts across trials in proportion to its ability to decrease the current kinematic error. Specifically, adaptation is implemented by cosine tuning of primitives to the current direction of the error, which we show to be theoretically optimal for reducing error. This error-tuned model makes two novel predictions. First, interference should occur between alternating dynamics only when the kinematic errors associated with each oppose one another. In contrast, dynamics which lead to orthogonal errors should not interfere. Second, kinematic errors alone should be sufficient to engage the appropriate modules, even in the absence of contextual information normally provided by vision. We confirm both these predictions experimentally and show that the model can also account for data from previous experiments. Our results suggest that two interacting processes account for module selection during sensorimotor control and learning. PMID:29253869
Regaining motor control in musician's dystonia by restoring sensorimotor organization.
Rosenkranz, Karin; Butler, Katherine; Williamon, Aaron; Rothwell, John C
2009-11-18
Professional musicians are an excellent model of long-term motor learning effects on structure and function of the sensorimotor system. However, intensive motor skill training has been associated with task-specific deficiency in hand motor control, which has a higher prevalence among musicians (musician's dystonia) than in the general population. Using a transcranial magnetic stimulation paradigm, we previously found an expanded spatial integration of proprioceptive input into the hand motor cortex [sensorimotor organization (SMO)] in healthy musicians. In musician's dystonia, however, this expansion was even larger. Whereas motor skills of musicians are likely to be supported by a spatially expanded SMO, we hypothesized that in musician's dystonia this might have developed too far and now disrupts rather than assists task-specific motor control. If so, motor control should be regained by reversing the excessive reorganization in musician's dystonia. Here, we test this hypothesis and show that a 15 min intervention with proprioceptive input (proprioceptive training) restored SMO in pianists with musician's dystonia to the pattern seen in healthy pianists. Crucially, task-specific motor control improved significantly and objectively as measured with a MIDI (musical instrument digital interface) piano, and the amount of behavioral improvement was significantly correlated to the degree of sensorimotor reorganization. In healthy pianists and nonmusicians, the SMO and motor performance remained essentially unchanged. These findings suggest that the differentiation of SMO in the hand motor cortex and the degree of motor control of intensively practiced tasks are significantly linked and finely balanced. Proprioceptive training restored this balance in musician's dystonia to the behaviorally beneficial level of healthy musicians.
Zanghi, Brian M; Araujo, Joseph; Milgram, Norton W
2015-05-01
Cognition in dogs, like in humans, is not a unitary process. Some functions, such as simple discrimination learning, are relatively insensitive to age; others, such as visuospatial learning can provide behavioral biomarkers of age. The present experiment sought to further establish the relationship between various cognitive domains, namely visuospatial memory, object discrimination learning (ODL), and selective attention (SA). In addition, we also set up a task to assess motor learning (ML). Thirty-six beagles (9-16 years) performed a variable delay non-matching to position (vDNMP) task using two objects with 20- and 90-s delay and were divided into three groups based on a combined score (HMP = 88-93 % accuracy [N = 12]; MMP = 79-86 % accuracy [N = 12]; LMP = 61-78 % accuracy [N = 12]). Variable object oddity task was used to measure ODL (correct or incorrect object) and SA (0-3 incorrect distractor objects with same [SA-same] or different [SA-diff] correct object as ODL). ML involved reaching various distances (0-15 cm). Age did not differ between memory groups (mean 11.6 years). ODL (ANOVA P = 0.43), or SA-same and SA-different (ANOVA P = 0.96), performance did not differ between the three vDNMP groups, although mean errors during ODL was numerically higher for LMP dogs. Errors increased (P < 0.001) for all dogs with increasing number of distractor objects during both SA tasks. vDNMP groups remained different (ANOVA P < 0.001) when re-tested with vDNMP task 42 days later. Maximum ML distance did not differ between vDNMP groups (ANOVA P = 0.96). Impaired short-term memory performance in aged dogs does not appear to predict performance of cognitive domains associated with object learning, SA, or maximum ML distance.
Sleep stages, memory and learning.
Dotto, L
1996-01-01
Learning and memory can be impaired by sleep loss during specific vulnerable "windows" for several days after new tasks have been learned. Different types of tasks are differentially vulnerable to the loss of different stages of sleep. Memory required to perform cognitive procedural tasks is affected by the loss of rapid-eye-movement (REM) sleep on the first night after learning occurs and again on the third night after learning. REM-sleep deprivation on the second night after learning does not produce memory deficits. Declarative memory, which is used for the recall of specific facts, is not similarly affected by REM-sleep loss. The learning of procedural motor tasks, including those required in many sports, is impaired by the loss of stage 2 sleep, which occurs primarily in the early hours of the morning. These findings have implications for the academic and athletic performance of students and for anyone whose work involves ongoing learning and demands high standards of performance. Images p1194-a PMID:8612256
McGregor, Heather R; Gribble, Paul L
2015-07-01
Motor learning occurs not only through direct first-hand experience but also through observation (Mattar AA, Gribble PL. Neuron 46: 153-160, 2005). When observing the actions of others, we activate many of the same brain regions involved in performing those actions ourselves (Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL. J Cogn Neurosci 22: 1493-1503, 2010). Links between neural systems for vision and action have been reported in neurophysiological (Strafella AP, Paus T. Neuroreport 11: 2289-2292, 2000; Watkins KE, Strafella AP, Paus T. Neuropsychologia 41: 989-994, 2003), brain imaging (Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ. Eur J Neurosci 13: 400-404, 2001; Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Science 286: 2526-2528, 1999), and eye tracking (Flanagan JR, Johansson RS. Nature 424: 769-771, 2003) studies. Here we used a force field learning paradigm coupled with resting-state fMRI to investigate the brain areas involved in motor learning by observing. We examined changes in resting-state functional connectivity (FC) after an observational learning task and found a network consisting of V5/MT, cerebellum, and primary motor and somatosensory cortices in which changes in FC were correlated with the amount of motor learning achieved through observation, as assessed behaviorally after resting-state fMRI scans. The observed FC changes in this network are not due to visual attention to motion or observation of movement errors but rather are specifically linked to motor learning. These results support the idea that brain networks linking action observation and motor control also facilitate motor learning. Copyright © 2015 the American Physiological Society.
McGregor, Heather R.
2015-01-01
Motor learning occurs not only through direct first-hand experience but also through observation (Mattar AA, Gribble PL. Neuron 46: 153–160, 2005). When observing the actions of others, we activate many of the same brain regions involved in performing those actions ourselves (Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL. J Cogn Neurosci 22: 1493–1503, 2010). Links between neural systems for vision and action have been reported in neurophysiological (Strafella AP, Paus T. Neuroreport 11: 2289–2292, 2000; Watkins KE, Strafella AP, Paus T. Neuropsychologia 41: 989–994, 2003), brain imaging (Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ. Eur J Neurosci 13: 400–404, 2001; Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Science 286: 2526–2528, 1999), and eye tracking (Flanagan JR, Johansson RS. Nature 424: 769–771, 2003) studies. Here we used a force field learning paradigm coupled with resting-state fMRI to investigate the brain areas involved in motor learning by observing. We examined changes in resting-state functional connectivity (FC) after an observational learning task and found a network consisting of V5/MT, cerebellum, and primary motor and somatosensory cortices in which changes in FC were correlated with the amount of motor learning achieved through observation, as assessed behaviorally after resting-state fMRI scans. The observed FC changes in this network are not due to visual attention to motion or observation of movement errors but rather are specifically linked to motor learning. These results support the idea that brain networks linking action observation and motor control also facilitate motor learning. PMID:25995349
Kato, Shigeki; Kuramochi, Masahito; Kobayashi, Kenta; Fukabori, Ryoji; Okada, Kana; Uchigashima, Motokazu; Watanabe, Masahiko; Tsutsui, Yuji; Kobayashi, Kazuto
2011-11-23
The dorsal striatum receives converging excitatory inputs from diverse brain regions, including the cerebral cortex and the intralaminar/midline thalamic nuclei, and mediates learning processes contributing to instrumental motor actions. However, the roles of each striatal input pathway in these learning processes remain uncertain. We developed a novel strategy to target specific neural pathways and applied this strategy for studying behavioral roles of the pathway originating from the parafascicular nucleus (PF) and projecting to the dorsolateral striatum. A highly efficient retrograde gene transfer vector encoding the recombinant immunotoxin (IT) receptor was injected into the dorsolateral striatum in mice to express the receptor in neurons innervating the striatum. IT treatment into the PF of the vector-injected animals caused a selective elimination of neurons of the PF-derived thalamostriatal pathway. The elimination of this pathway impaired the response selection accuracy and delayed the motor response in the acquisition of a visual cue-dependent discrimination task. When the pathway elimination was induced after learning acquisition, it disturbed the response accuracy in the task performance with no apparent change in the response time. The elimination did not influence spontaneous locomotion, methamphetamine-induced hyperactivity, and motor skill learning that demand the function of the dorsal striatum. These results demonstrate that thalamostriatal projection derived from the PF plays essential roles in the acquisition and execution of discrimination learning in response to sensory stimulus. The temporal difference in the pathway requirement for visual discrimination suggests a stage-specific role of thalamostriatal pathway in the modulation of response time of learned motor actions.
Emken, Jeremy L; Benitez, Raul; Reinkensmeyer, David J
2007-03-28
A prevailing paradigm of physical rehabilitation following neurologic injury is to "assist-as-needed" in completing desired movements. Several research groups are attempting to automate this principle with robotic movement training devices and patient cooperative algorithms that encourage voluntary participation. These attempts are currently not based on computational models of motor learning. Here we assume that motor recovery from a neurologic injury can be modelled as a process of learning a novel sensory motor transformation, which allows us to study a simplified experimental protocol amenable to mathematical description. Specifically, we use a robotic force field paradigm to impose a virtual impairment on the left leg of unimpaired subjects walking on a treadmill. We then derive an "assist-as-needed" robotic training algorithm to help subjects overcome the virtual impairment and walk normally. The problem is posed as an optimization of performance error and robotic assistance. The optimal robotic movement trainer becomes an error-based controller with a forgetting factor that bounds kinematic errors while systematically reducing its assistance when those errors are small. As humans have a natural range of movement variability, we introduce an error weighting function that causes the robotic trainer to disregard this variability. We experimentally validated the controller with ten unimpaired subjects by demonstrating how it helped the subjects learn the novel sensory motor transformation necessary to counteract the virtual impairment, while also preventing them from experiencing large kinematic errors. The addition of the error weighting function allowed the robot assistance to fade to zero even though the subjects' movements were variable. We also show that in order to assist-as-needed, the robot must relax its assistance at a rate faster than that of the learning human. The assist-as-needed algorithm proposed here can limit error during the learning of a dynamic motor task. The algorithm encourages learning by decreasing its assistance as a function of the ongoing progression of movement error. This type of algorithm is well suited for helping people learn dynamic tasks for which large kinematic errors are dangerous or discouraging, and thus may prove useful for robot-assisted movement training of walking or reaching following neurologic injury.
NASA Astrophysics Data System (ADS)
Jeunet, Camille; Jahanpour, Emilie; Lotte, Fabien
2016-06-01
Objective. While promising, electroencephaloraphy based brain-computer interfaces (BCIs) are barely used due to their lack of reliability: 15% to 30% of users are unable to control a BCI. Standard training protocols may be partly responsible as they do not satisfy recommendations from psychology. Our main objective was to determine in practice to what extent standard training protocols impact users’ motor imagery based BCI (MI-BCI) control performance. Approach. We performed two experiments. The first consisted in evaluating the efficiency of a standard BCI training protocol for the acquisition of non-BCI related skills in a BCI-free context, which enabled us to rule out the possible impact of BCIs on the training outcome. Thus, participants (N = 54) were asked to perform simple motor tasks. The second experiment was aimed at measuring the correlations between motor tasks and MI-BCI performance. The ten best and ten worst performers of the first study were recruited for an MI-BCI experiment during which they had to learn to perform two MI tasks. We also assessed users’ spatial ability and pre-training μ rhythm amplitude, as both have been related to MI-BCI performance in the literature. Main results. Around 17% of the participants were unable to learn to perform the motor tasks, which is close to the BCI illiteracy rate. This suggests that standard training protocols are suboptimal for skill teaching. No correlation was found between motor tasks and MI-BCI performance. However, spatial ability played an important role in MI-BCI performance. In addition, once the spatial ability covariable had been controlled for, using an ANCOVA, it appeared that participants who faced difficulty during the first experiment improved during the second while the others did not. Significance. These studies suggest that (1) standard MI-BCI training protocols are suboptimal for skill teaching, (2) spatial ability is confirmed as impacting on MI-BCI performance, and (3) when faced with difficult pre-training, subjects seemed to explore more strategies and therefore learn better.
Neural correlates of learning in an electrocorticographic motor-imagery brain-computer interface
Blakely, Tim M.; Miller, Kai J.; Rao, Rajesh P. N.; Ojemann, Jeffrey G.
2014-01-01
Human subjects can learn to control a one-dimensional electrocorticographic (ECoG) brain-computer interface (BCI) using modulation of primary motor (M1) high-gamma activity (signal power in the 75–200 Hz range). However, the stability and dynamics of the signals over the course of new BCI skill acquisition have not been investigated. In this study, we report 3 characteristic periods in evolution of the high-gamma control signal during BCI training: initial, low task accuracy with corresponding low power modulation in the gamma spectrum, followed by a second period of improved task accuracy with increasing average power separation between activity and rest, and a final period of high task accuracy with stable (or decreasing) power separation and decreasing trial-to-trial variance. These findings may have implications in the design and implementation of BCI control algorithms. PMID:25599079
Effect of Auditory Constraints on Motor Performance Depends on Stage of Recovery Post-Stroke
Aluru, Viswanath; Lu, Ying; Leung, Alan; Verghese, Joe; Raghavan, Preeti
2014-01-01
In order to develop evidence-based rehabilitation protocols post-stroke, one must first reconcile the vast heterogeneity in the post-stroke population and develop protocols to facilitate motor learning in the various subgroups. The main purpose of this study is to show that auditory constraints interact with the stage of recovery post-stroke to influence motor learning. We characterized the stages of upper limb recovery using task-based kinematic measures in 20 subjects with chronic hemiparesis. We used a bimanual wrist extension task, performed with a custom-made wrist trainer, to facilitate learning of wrist extension in the paretic hand under four auditory conditions: (1) without auditory cueing; (2) to non-musical happy sounds; (3) to self-selected music; and (4) to a metronome beat set at a comfortable tempo. Two bimanual trials (15 s each) were followed by one unimanual trial with the paretic hand over six cycles under each condition. Clinical metrics, wrist and arm kinematics, and electromyographic activity were recorded. Hierarchical cluster analysis with the Mahalanobis metric based on baseline speed and extent of wrist movement stratified subjects into three distinct groups, which reflected their stage of recovery: spastic paresis, spastic co-contraction, and minimal paresis. In spastic paresis, the metronome beat increased wrist extension, but also increased muscle co-activation across the wrist. In contrast, in spastic co-contraction, no auditory stimulation increased wrist extension and reduced co-activation. In minimal paresis, wrist extension did not improve under any condition. The results suggest that auditory task constraints interact with stage of recovery during motor learning after stroke, perhaps due to recruitment of distinct neural substrates over the course of recovery. The findings advance our understanding of the mechanisms of progression of motor recovery and lay the foundation for personalized treatment algorithms post-stroke. PMID:25002859
Kerr, Abigail L.; Tennant, Kelly A.
2014-01-01
Mouse models have become increasingly popular in the field of behavioral neuroscience, and specifically in studies of experimental stroke. As models advance, it is important to develop sensitive behavioral measures specific to the mouse. The present protocol describes a skilled motor task for use in mouse models of stroke. The Pasta Matrix Reaching Task functions as a versatile and sensitive behavioral assay that permits experimenters to collect accurate outcome data and manipulate limb use to mimic human clinical phenomena including compensatory strategies (i.e., learned non-use) and focused rehabilitative training. When combined with neuroanatomical tools, this task also permits researchers to explore the mechanisms that support behavioral recovery of function (or lack thereof) following stroke. The task is both simple and affordable to set up and conduct, offering a variety of training and testing options for numerous research questions concerning functional outcome following injury. Though the task has been applied to mouse models of stroke, it may also be beneficial in studies of functional outcome in other upper extremity injury models. PMID:25045916
Casnar, Christy L; Janke, Kelly M; van der Fluit, Faye; Brei, Natalie G; Klein-Tasman, Bonita P
2014-01-01
Neurofibromatosis type 1 (NF1) is one of the most common genetic disorders presenting in approximately 1 in 3,500 live births. NF1 is a highly variable condition with a large number of complications. A common complication is neuropsychological problems, including developmental delays and learning difficulties that affect as many as 60% of patients. Research has suggested that school-aged children with NF1 often have poorer fine motor skills and are at greater risk for attention difficulties than the general population. Thirty-eight children with NF1 and 23 unaffected children between the ages of 4 and 6 years, who are enrolled in a study of early development in NF1, were included in the present study. Varying levels of fine motor functioning were examined (simple to complex fine motor tasks). For children with NF1, significant difficulties were demonstrated on lab-based mid-level and complex fine motor tasks, even after controlling for nonverbal reasoning abilities, but not on simple fine motor tasks. Parental report also indicated difficulties in everyday adaptive fine motor functioning. No significant correlations were found between complex fine motor ability and attention difficulties. This study provides much needed descriptive data on the early emergence of fine motor difficulties and attention difficulties in young children with NF1.
Massetti, Thais; Fávero, Francis Meire; Menezes, Lilian Del Ciello de; Alvarez, Mayra Priscila Boscolo; Crocetta, Tânia Brusque; Guarnieri, Regiani; Nunes, Fátima L S; Monteiro, Carlos Bandeira de Mello; Silva, Talita Dias da
2018-04-01
To evaluate whether people with Duchenne muscular dystrophy (DMD) practicing a task in a virtual environment could improve performance given a similar task in a real environment, as well as distinguishing whether there is transference between performing the practice in virtual environment and then a real environment and vice versa. Twenty-two people with DMD were evaluated and divided into two groups. The goal was to reach out and touch a red cube. Group A began with the real task and had to touch a real object, and Group B began with the virtual task and had to reach a virtual object using the Kinect system. ANOVA showed that all participants decreased the movement time from the first (M = 973 ms) to the last block of acquisition (M = 783 ms) in both virtual and real tasks and motor learning could be inferred by the short-term retention and transfer task (with increasing distance of the target). However, the evaluation of task performance demonstrated that the virtual task provided an inferior performance when compared to the real task in all phases of the study, and there was no effect for sequence. Both virtual and real tasks promoted improvement of performance in the acquisition phase, short-term retention, and transfer. However, there was no transference of learning between environments. In conclusion, it is recommended that the use of virtual environments for individuals with DMD needs to be considered carefully.
Kaipa, Ramesh; Jones, Richard D; Robb, Michael P
2016-07-01
The benefits of different practice conditions in limb-based rehabilitation of motor disorders are well documented. Conversely, the role of practice structure in the treatment of motor-based speech disorders has only been minimally investigated. Considering this limitation, the current study aimed to investigate the effectiveness of selected practice conditions in spatial and temporal learning of novel speech utterances in individuals with Parkinson's disease (PD). Participants included 16 individuals with PD who were randomly and equally assigned to constant, variable, random, and blocked practice conditions. Participants in all four groups practiced a speech phrase for two consecutive days, and reproduced the speech phrase on the third day without further practice or feedback. There were no significant differences (p > 0.05) between participants across the four practice conditions with respect to either spatial or temporal learning of the speech phrase. Overall, PD participants demonstrated diminished spatial and temporal learning in comparison to healthy controls. Tests of strength of association between participants' demographic/clinical characteristics and speech-motor learning outcomes did not reveal any significant correlations. The findings from the current study suggest that repeated practice facilitates speech-motor learning in individuals with PD irrespective of the type of practice. Clinicians need to be cautious in applying practice conditions to treat speech deficits associated with PD based on the findings of non-speech-motor learning tasks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neurons in primary motor cortex engaged during action observation.
Dushanova, Juliana; Donoghue, John
2010-01-01
Neurons in higher cortical areas appear to become active during action observation, either by mirroring observed actions (termed mirror neurons) or by eliciting mental rehearsal of observed motor acts. We report the existence of neurons in the primary motor cortex (M1), an area that is generally considered to initiate and guide movement performance, responding to viewed actions. Multielectrode recordings in monkeys performing or observing a well-learned step-tracking task showed that approximately half of the M1 neurons that were active when monkeys performed the task were also active when they observed the action being performed by a human. These 'view' neurons were spatially intermingled with 'do' neurons, which are active only during movement performance. Simultaneously recorded 'view' neurons comprised two groups: approximately 38% retained the same preferred direction (PD) and timing during performance and viewing, and the remainder (62%) changed their PDs and time lag during viewing as compared with performance. Nevertheless, population activity during viewing was sufficient to predict the direction and trajectory of viewed movements as action unfolded, although less accurately than during performance. 'View' neurons became less active and contained poorer representations of action when only subcomponents of the task were being viewed. M1 'view' neurons thus appear to reflect aspects of a learned movement when observed in others, and form part of a broadly engaged set of cortical areas routinely responding to learned behaviors. These findings suggest that viewing a learned action elicits replay of aspects of M1 activity needed to perform the observed action, and could additionally reflect processing related to understanding, learning or mentally rehearsing action.
Temperature dependency in motor skill learning.
Immink, Maarten A; Wright, David L; Barnes, William S
2012-01-01
The present study investigated the role of temperature as a contextual condition for motor skill learning. Precision grip task training occurred while forearm cutaneous temperature was either heated (40-45 °C) or cooled (10-15 °C). At test, temperature was either reinstated or changed. Performance was comparable between training conditions while at test, temperature changes decreased accuracy, especially after hot training conditions. After cold training, temperature change deficits were only evident when concurrent force feedback was presented. These findings are the first evidence of localized temperature dependency in motor skill learning in humans. Results are not entirely accounted for by a context-dependent memory explanation and appear to represent an interaction of neuromuscular and sensory processes with the temperature present during training and test.
Hirano, Tomoo; Yamazaki, Yoshito; Nakamura, Yoji
2016-02-01
Long-term depression (LTD) at excitatory synapses between parallel fibers and a Purkinje cell has been regarded as a critical cellular mechanism for motor learning. However, it was demonstrated that normal motor learning occurs under LTD suppression, suggesting that cerebellar plasticity mechanisms other than LTD also contribute to motor learning. One candidate for such plasticity is rebound potentiation (RP), which is long-term potentiation at inhibitory synapses between a stellate cell and a Purkinje cell. Both LTD and RP are induced by the increase in postsynaptic Ca(2+) concentration, and work to suppress the activity of a Purkinje cell. Thus, LTD and RP might work synergistically, and one might compensate defects of the other. RP induction is dependent on the interaction between GABAA receptor and GABAA receptor binding protein (GABARAP). Transgenic mice expressing a peptide which inhibits binding of GABARAP and GABAA receptor only in Purkinje cells show defects in both RP and adaptation of vestibulo-ocular reflex (VOR), a motor learning paradigm. However, another example of motor learning, adaptation of optokinetic response (OKR), is normal in the transgenic mice. Both VOR and OKR are reflex eye movements suppressing the slip of visual image on the retina during head movement. Previously, we reported that delphilin knockout mice show facilitated LTD induction and enhanced OKR adaptation, but we recently found that VOR adaptation was not enhanced in the knockout mice. These results together suggest that animals might use LTD and RP differently depending on motor learning tasks.
Reorganization of corticospinal output during motor learning
Peters, Andrew J.; Lee, Jun; Hedrick, Nathan G.; O’Neil, Keelin; Komiyama, Takaki
2017-01-01
Motor learning is accompanied by widespread changes within the motor cortex, but it is unknown whether these changes are ultimately funneled through a stable corticospinal output channel or if the corticospinal output itself is plastic. We investigated the consistency of the relationship between corticospinal neuron activity and movement through in vivo two-photon calcium imaging in mice learning a lever-press task. Corticospinal neurons exhibited heterogeneous correlations with movement, with the majority of movement-modulated neurons decreasing activity during movement. Individual cells changed their activity across days which led to novel associations between corticospinal activity and movement. Unlike previous observations in layer 2/3, activity accompanying learned movements did not become more consistent with learning, and instead the activity of dissimilar movements became more decorrelated. These results indicate that the relationship between corticospinal activity and movement is dynamic, and the types of activity and plasticity are different from and possibly complementary to layer 2/3. PMID:28671694
Engaging Environments Enhance Motor Skill Learning in a Computer Gaming Task.
Lohse, Keith R; Boyd, Lara A; Hodges, Nicola J
2016-01-01
Engagement during practice can motivate a learner to practice more, hence having indirect effects on learning through increased practice. However, it is not known whether engagement can also have a direct effect on learning when the amount of practice is held constant. To address this question, 40 participants played a video game that contained an embedded repeated sequence component, under either highly engaging conditions (the game group) or mechanically identical but less engaging conditions (the sterile group). The game environment facilitated retention over a 1-week interval. Specifically, the game group improved in both speed and accuracy for random and repeated trials, suggesting a general motor-related improvement, rather than a specific influence of engagement on implicit sequence learning. These data provide initial evidence that increased engagement during practice has a direct effect on generalized learning, improving retention and transfer of a complex motor skill.
REM sleep selectively prunes and maintains new synapses in development and learning.
Li, Wei; Ma, Lei; Yang, Guang; Gan, Wen-Biao
2017-03-01
The functions and underlying mechanisms of rapid eye movement (REM) sleep remain unclear. Here we show that REM sleep prunes newly formed postsynaptic dendritic spines of layer 5 pyramidal neurons in the mouse motor cortex during development and motor learning. This REM sleep-dependent elimination of new spines facilitates subsequent spine formation during development and when a new motor task is learned, indicating a role for REM sleep in pruning to balance the number of new spines formed over time. Moreover, REM sleep also strengthens and maintains newly formed spines, which are critical for neuronal circuit development and behavioral improvement after learning. We further show that dendritic calcium spikes arising during REM sleep are important for pruning and strengthening new spines. Together, these findings indicate that REM sleep has multifaceted functions in brain development, learning and memory consolidation by selectively eliminating and maintaining newly formed synapses via dendritic calcium spike-dependent mechanisms.
Speech Motor Sequence Learning: Acquisition and Retention in Parkinson Disease and Normal Aging.
Whitfield, Jason A; Goberman, Alexander M
2017-06-10
The aim of the current investigation was to examine speech motor sequence learning in neurologically healthy younger adults, neurologically healthy older adults, and individuals with Parkinson disease (PD) over a 2-day period. A sequential nonword repetition task was used to examine learning over 2 days. Participants practiced a sequence of 6 monosyllabic nonwords that was retested following nighttime sleep. The speed and accuracy of the nonword sequence were measured, and learning was inferred by examining performance within and between sessions. Though all groups exhibited comparable improvements of the nonword sequence performance during the initial session, between-session retention of the nonword sequence differed between groups. Younger adult controls exhibited offline gains, characterized by an increase in the speed and accuracy of nonword sequence performance across sessions, whereas older adults exhibited stable between-session performance. Individuals with PD exhibited offline losses, marked by an increase in sequence duration between sessions. The current results demonstrate that both PD and normal aging affect retention of speech motor learning. Furthermore, these data suggest that basal ganglia dysfunction associated with PD may affect the later stages of speech motor learning. Findings from the current investigation are discussed in relation to studies examining consolidation of nonspeech motor learning.
Robotic neurorehabilitation: a computational motor learning perspective
Huang, Vincent S; Krakauer, John W
2009-01-01
Conventional neurorehabilitation appears to have little impact on impairment over and above that of spontaneous biological recovery. Robotic neurorehabilitation has the potential for a greater impact on impairment due to easy deployment, its applicability across of a wide range of motor impairment, its high measurement reliability, and the capacity to deliver high dosage and high intensity training protocols. We first describe current knowledge of the natural history of arm recovery after stroke and of outcome prediction in individual patients. Rehabilitation strategies and outcome measures for impairment versus function are compared. The topics of dosage, intensity, and time of rehabilitation are then discussed. Robots are particularly suitable for both rigorous testing and application of motor learning principles to neurorehabilitation. Computational motor control and learning principles derived from studies in healthy subjects are introduced in the context of robotic neurorehabilitation. Particular attention is paid to the idea of context, task generalization and training schedule. The assumptions that underlie the choice of both movement trajectory programmed into the robot and the degree of active participation required by subjects are examined. We consider rehabilitation as a general learning problem, and examine it from the perspective of theoretical learning frameworks such as supervised and unsupervised learning. We discuss the limitations of current robotic neurorehabilitation paradigms and suggest new research directions from the perspective of computational motor learning. PMID:19243614
A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing
NASA Astrophysics Data System (ADS)
Shao, Si-Yu; Sun, Wen-Jun; Yan, Ru-Qiang; Wang, Peng; Gao, Robert X.
2017-11-01
Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing working status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by-layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierarchical representations, which are suitable for fault classification, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition.
Verburgh, L; Scherder, E J A; van Lange, P A M; Oosterlaan, J
2016-09-01
In sports, fast and accurate execution of movements is required. It has been shown that implicitly learned movements might be less vulnerable than explicitly learned movements to stressful and fast changing circumstances that exist at the elite sports level. The present study provides insight in explicit and implicit motor learning in youth soccer players with different expertise levels. Twenty-seven youth elite soccer players and 25 non-elite soccer players (aged 10-12) performed a serial reaction time task (SRTT). In the SRTT, one of the sequences must be learned explicitly, the other was implicitly learned. No main effect of group was found for implicit and explicit learning on mean reaction time (MRT) and accuracy. However, for MRT, an interaction was found between learning condition, learning phase and group. Analyses showed no group effects for the explicit learning condition, but youth elite soccer players showed better learning in the implicit learning condition. In particular, during implicit motor learning youth elite soccer showed faster MRTs in the early learning phase and earlier reached asymptote performance in terms of MRT. Present findings may be important for sports because children with superior implicit learning abilities in early learning phases may be able to learn more (durable) motor skills in a shorter time period as compared to other children.
ERIC Educational Resources Information Center
Toumpaniari, Konstantina; Loyens, Sofie; Mavilidi, Myrto-Foteini; Paas, Fred
2015-01-01
Research has demonstrated that physical activity involving gross motor activities can lead to better cognitive functioning and higher academic achievement scores. In addition, research within the theoretical framework of embodied cognition has shown that embodying knowledge through the use of more subtle motor activities, such as task-relevant…
Planning-related motor processes underlie mental practice and imitation learning.
Bach, Patric; Allami, Bassem Khalaf; Tucker, Mike; Ellis, Rob
2014-06-01
It is still controversial whether mental practice-the internal rehearsal of movements to improve later performance-relies on processes engaged during physical motor performance and, if so, which processes these are. We report data from 5 experiments, in which participants mentally practiced complex rhythms with either feet or hands while using the same or different body parts to respond to unrelated sounds. We found that responses were impaired for those body parts that were concurrently used in mental practice, suggesting a binding of body-part-specific motor processes to action plans. This result was found when participants mentally trained to memorize the rhythms, to merely improve their performance, when mental practice and execution directly followed one another and when separated by a different task. Finally, it was found irrespective of whether participants practiced on the basis of a symbolic rhythm description and when they practiced by watching somebody perform the rhythms (imitation learning). The effect was eliminated only when the requirement for mental practice was eliminated from the task while keeping visual stimulation identical. These data link mental practice not to execution but planning related motor processes and reveal that these planning processes underlie both mental practice and imitation learning. PsycINFO Database Record (c) 2014 APA, all rights reserved.
A Mirror Therapy-Based Action Observation Protocol to Improve Motor Learning After Stroke.
Harmsen, Wouter J; Bussmann, Johannes B J; Selles, Ruud W; Hurkmans, Henri L P; Ribbers, Gerard M
2015-07-01
Mirror therapy is a priming technique to improve motor function of the affected arm after stroke. To investigate whether a mirror therapy-based action observation (AO) protocol contributes to motor learning of the affected arm after stroke. A total of 37 participants in the chronic stage after stroke were randomly allocated to the AO or control observation (CO) group. Participants were instructed to perform an upper-arm reaching task as fast and as fluently as possible. All participants trained the upper-arm reaching task with their affected arm alternated with either AO or CO. Participants in the AO group observed mirrored video tapes of reaching movements performed by their unaffected arm, whereas participants in the CO group observed static photographs of landscapes. The experimental condition effect was investigated by evaluating the primary outcome measure: movement time (in seconds) of the reaching movement, measured by accelerometry. Movement time decreased significantly in both groups: 18.3% in the AO and 9.1% in the CO group. Decrease in movement time was significantly more in the AO compared with the CO group (mean difference = 0.14 s; 95% confidence interval = 0.02, 0.26; P = .026). The present study showed that a mirror therapy-based AO protocol contributes to motor learning after stroke. © The Author(s) 2014.
Valkenborghs, Sarah R; Visser, Milanka M; Dunn, Ashlee; Erickson, Kirk I; Nilsson, Michael; Callister, Robin; van Vliet, Paulette
2017-09-01
Motor function may be enhanced if aerobic exercise is paired with motor training. One potential mechanism is that aerobic exercise increases levels of brain-derived neurotrophic factor (BDNF), which is important in neuroplasticity and involved in motor learning and motor memory consolidation. This study will examine the feasibility of a parallel-group assessor-blinded randomised controlled trial investigating whether task-specific training preceded by aerobic exercise improves upper limb function more than task-specific training alone, and determine the effect size of changes in primary outcome measures. People with upper limb motor dysfunction after stroke will be allocated to either task-specific training or aerobic exercise and consecutive task-specific training. Both groups will perform 60 hours of task-specific training over 10 weeks, comprised of 3 × 1 hour sessions per week with a therapist and 3 × 1 hours of home-based self-practice per week. The combined intervention group will also perform 30 minutes of aerobic exercise (70-85%HR max ) immediately prior to the 1 hour of task-specific training with the therapist. Recruitment, adherence, retention, participant acceptability, and adverse events will be recorded. Clinical outcome measures will be performed pre-randomisation at baseline, at completion of the training program, and at 1 and 6 months follow-up. Primary clinical outcome measures will be the Action Research Arm Test (ARAT) and the Wolf Motor Function Test (WMFT). If aerobic exercise prior to task-specific training is acceptable, and a future phase 3 randomised controlled trial seems feasible, it should be pursued to determine the efficacy of this combined intervention for people after stroke.
Reduced Mental Load in Learning a Motor Visual Task with Virtual 3D Method
ERIC Educational Resources Information Center
Dan, A.; Reiner, M.
2018-01-01
Distance learning is expanding rapidly, fueled by the novel technologies for shared recorded teaching sessions on the Web. Here, we ask whether 3D stereoscopic (3DS) virtual learning environment teaching sessions are more compelling than typical two-dimensional (2D) video sessions and whether this type of teaching results in superior learning. The…
Ranganathan, Rajiv; Krishnan, Chandramouli; Dhaher, Yasin Y.; Rymer, William Z.
2018-01-01
The motor module hypothesis in motor control proposes that the nervous system can simplify the problem of controlling a large number of muscles in human movement by grouping muscles into a smaller number of modules. Here, we tested one prediction of the modular organization hypothesis by examining whether there is preferential exploration along these motor modules during the learning of a new gait pattern. Healthy college-aged participants learned a new gait pattern which required increased hip and knee flexion during the swing phase while walking in a lower-extremity robot (Lokomat). The new gait pattern was displayed as a foot trajectory in the sagittal plane and participants attempted to match their foot trajectory to this template. We recorded EMG from 8 lower-extremity muscles and we extracted motor modules during both baseline walking and target-tracking using non-negative matrix factorization (NMF). Results showed increased trajectory variability in the first block of learning, indicating that participants were engaged in exploratory behavior. Critically, when we examined the muscle activity during this exploratory phase, we found that the composition of motor modules changed significantly within the first few strides of attempting the new gait pattern. The lack of persistence of the motor modules under even short time scales suggests that motor modules extracted during locomotion may be more indicative of correlated muscle activity induced by the task constraints of walking, rather than reflecting a modular control strategy. PMID:26916510
Transfer of learned perception of sensorimotor simultaneity.
Pesavento, Michael J; Schlag, John
2006-10-01
Synchronizing a motor response to a predictable sensory stimulus, like a periodic flash or click, relies on feedback (somesthetic, auditory, visual, or other) from the motor response. Practically, this results in a small (<50 ms) asynchrony in which the motor response leads the sensory event. Here we show that the perceived simultaneity in a coincidence-anticipation task (line crossing) is affected by changing the perceived simultaneity in a different task (pacing). In the pace task, human subjects were instructed to press a key in perfect synchrony with a red square flashed every second. In training sessions, feedback was provided by flashing a blue square with each key press, below the red square. There were two types of training pace sessions: one in which the feedback was provided with no delay, the other (adapting), in which the feedback was progressively delayed (up to 100 ms). Subjects' asynchrony was unchanged in the first case, but it was significantly increased in the pace task with delay. In the coincidence-anticipation task, a horizontally moving vertical bar crossed a vertical line in the middle of a screen. Subjects were instructed to press a key exactly when the bar crossed the line. They were given no feedback on their performance. Asynchrony on the line-crossing task was tested after the training pace task with feedback. We found that this asynchrony to be significantly increased even though there never was any feedback on the coincidence-anticipation task itself. Subjects were not aware that their sensorimotor asynchrony had been lengthened (sometimes doubled). We conclude that perception of simultaneity in a sensorimotor task is learned. If this perception is caused by coincidence of signals in the brain, the timing of these signals depends on something-acquired by experience-more adaptable than physiological latencies.
Modifying Softball for Maximizing Learning Outcomes in Physical Education
ERIC Educational Resources Information Center
Brian, Ali; Ward, Phillip; Goodway, Jacqueline D.; Sutherland, Sue
2014-01-01
Softball is taught in many physical education programs throughout the United States. This article describes modifications that maximize learning outcomes and that address the National Standards and safety recommendations. The modifications focus on tasks and equipment, developmentally appropriate motor-skill acquisition, increasing number of…
The Effect of Practice Schedule on Context-Dependent Learning.
Lee, Ya-Yun; Fisher, Beth E
2018-03-02
It is well established that random practice compared to blocked practice enhances motor learning. Additionally, while information in the environment may be incidental, learning is also enhanced when an individual performs a task within the same environmental context in which the task was originally practiced. This study aimed to disentangle the effects of practice schedule and incidental/environmental context on motor learning. Participants practiced three finger sequences under either a random or blocked practice schedule. Each sequence was associated with specific incidental context (i.e., color and location on the computer screen) during practice. The participants were tested under the conditions when the sequence-context associations remained the same or were changed from that of practice. When the sequence-context association was changed, the participants who practiced under blocked schedule demonstrated greater performance decrement than those who practiced under random schedule. The findings suggested that those participants who practiced under random schedule were more resistant to the change of environmental context.
Schaefer, Sydney Y.; Lang, Catherine E.
2012-01-01
Theories of motor learning predict that training a movement reduces the amount of attention needed for its performance (i.e. more automatic). If training one movement transfers, then the amount of attention needed for performing a second movement should also be reduced, as measured under dual task conditions. The purpose of this study was to test whether dual task paradigms are feasible for detecting transfer of training between two naturalistic movements. Immediately following motor training, subjects improved performance of a second untrained movement under both single and dual task conditions. Subjects with no training did not. Improved performance in the untrained movement was likely due to transfer, and suggests that dual tasks may be feasible for detecting transfer between naturalistic actions. PMID:22934682
Basak, Chandramallika; Voss, Michelle W.; Erickson, Kirk I.; Boot, Walter R.; Kramer, Arthur F.
2015-01-01
Previous studies have found that differences in brain volume among older adults predict performance in laboratory tasks of executive control, memory, and motor learning. In the present study we asked whether regional differences in brain volume as assessed by the application of a voxel-based morphometry technique on high resolution MRI would also be useful in predicting the acquisition of skill in complex tasks, such as strategy-based video games. Twenty older adults were trained for over 20 hours to play Rise of Nations, a complex real-time strategy game. These adults showed substantial improvements over the training period in game performance. MRI scans obtained prior to training revealed that the volume of a number of brain regions, which have been previously associated with subsets of the trained skills, predicted a substantial amount of variance in learning on the complex game. Thus, regional differences in brain volume can predict learning in complex tasks that entail the use of a variety of perceptual, cognitive and motor processes. PMID:21546146
Basak, Chandramallika; Voss, Michelle W; Erickson, Kirk I; Boot, Walter R; Kramer, Arthur F
2011-08-01
Previous studies have found that differences in brain volume among older adults predict performance in laboratory tasks of executive control, memory, and motor learning. In the present study we asked whether regional differences in brain volume as assessed by the application of a voxel-based morphometry technique on high resolution MRI would also be useful in predicting the acquisition of skill in complex tasks, such as strategy-based video games. Twenty older adults were trained for over 20 h to play Rise of Nations, a complex real-time strategy game. These adults showed substantial improvements over the training period in game performance. MRI scans obtained prior to training revealed that the volume of a number of brain regions, which have been previously associated with subsets of the trained skills, predicted a substantial amount of variance in learning on the complex game. Thus, regional differences in brain volume can predict learning in complex tasks that entail the use of a variety of perceptual, cognitive and motor processes. Copyright © 2011 Elsevier Inc. All rights reserved.
Blumen, Helena M; Gopher, Daniel; Steinerman, Joshua R; Stern, Yaakov
2010-01-01
This study examined if and how cognitively healthy older adults can learn to play a complex computer-based action game called the Space Fortress (SF) as a function of training instructions [Standard vs. Emphasis Change (EC); e.g., Gopher et al., 1989] and basic motor ability. A total of 35 cognitively healthy older adults completed a 3-month SF training program with three SF sessions weekly. Twelve 3-min games were played during each session. Basic motor ability was assessed with an aiming task, which required rapidly rotating a spaceship to shoot targets. Older adults showed improved performance on the SF task over time, but did not perform at the same level as younger adults. Unlike studies of younger adults, overall SF performance in older adults was greater following standard instructions than following EC instructions. However, this advantage was primarily due to collecting more bonus points and not - the primary goal of the game - shooting and destroying the fortress, which in contrast benefited from EC instructions. Basic motor ability was low and influenced many different aspects of SF game learning, often interacted with learning rate, and influenced overall SF performance. These findings show that older adults can be trained to deal with the complexity of the SF task but that overall SF performance, and the ability to capitalize on EC instructions, differs when a basic ability such as motor control is low. Hence, the development of this training program as a cognitive intervention that can potentially compensate for age-related cognitive decline should consider that basic motor ability can interact with the efficiency of training instructions that promote the use of cognitive control (e.g., EC instructions) - and the confluence between such basic abilities and higher-level cognitive control abilities should be further examined.
Blumen, Helena M.; Gopher, Daniel; Steinerman, Joshua R.; Stern, Yaakov
2010-01-01
This study examined if and how cognitively healthy older adults can learn to play a complex computer-based action game called the Space Fortress (SF) as a function of training instructions [Standard vs. Emphasis Change (EC); e.g., Gopher et al., 1989] and basic motor ability. A total of 35 cognitively healthy older adults completed a 3-month SF training program with three SF sessions weekly. Twelve 3-min games were played during each session. Basic motor ability was assessed with an aiming task, which required rapidly rotating a spaceship to shoot targets. Older adults showed improved performance on the SF task over time, but did not perform at the same level as younger adults. Unlike studies of younger adults, overall SF performance in older adults was greater following standard instructions than following EC instructions. However, this advantage was primarily due to collecting more bonus points and not – the primary goal of the game – shooting and destroying the fortress, which in contrast benefited from EC instructions. Basic motor ability was low and influenced many different aspects of SF game learning, often interacted with learning rate, and influenced overall SF performance. These findings show that older adults can be trained to deal with the complexity of the SF task but that overall SF performance, and the ability to capitalize on EC instructions, differs when a basic ability such as motor control is low. Hence, the development of this training program as a cognitive intervention that can potentially compensate for age-related cognitive decline should consider that basic motor ability can interact with the efficiency of training instructions that promote the use of cognitive control (e.g., EC instructions) – and the confluence between such basic abilities and higher-level cognitive control abilities should be further examined. PMID:21120135
Frontal lobe activation during object alternation acquisition.
Zald, David H; Curtis, Clayton; Chernitsky, Laura A; Pardo, José V
2005-01-01
Object alternation (OA) tasks are increasingly used as probes of ventral prefrontal functioning in humans. In the most common variant of the OA task, subjects must deduce the task rule through trial-and-error learning. To examine the neural correlates of OA acquisition, the authors measured regional cerebral blood flow with positron emission tomography while subjects acquired an OA task, performed a sensorimotor control condition, or performed already learned and practiced OA. As expected, activations emerged in the ventral prefrontal cortex. However, activation of the presupplemental motor area was more closely associated with successful task performance. The authors suggest that areas beyond the ventral prefrontal cortex are critically involved in OA acquisition. 2005 APA
Wang, Xue; Casadio, Maura; Weber, Kenneth A; Mussa-Ivaldi, Ferdinando A; Parrish, Todd B
2014-03-01
The purpose of this study is to identify white matter microstructure changes following bilateral upper extremity motor skill training to increase our understanding of learning-induced structural plasticity and enhance clinical strategies in physical rehabilitation. Eleven healthy subjects performed two visuo-spatial motor training tasks over 9 sessions (2-3 sessions per week). Subjects controlled a cursor with bilateral simultaneous movements of the shoulders and upper arms using a body machine interface. Before the start and within 2days of the completion of training, whole brain diffusion tensor MR imaging data were acquired. Motor training increased fractional anisotropy (FA) values in the posterior and anterior limbs of the internal capsule, the corona radiata, and the body of the corpus callosum by 4.19% on average indicating white matter microstructure changes induced by activity-dependent modulation of axon number, axon diameter, or myelin thickness. These changes may underlie the functional reorganization associated with motor skill learning. Copyright © 2013 Elsevier Inc. All rights reserved.
[Electroencephalography measures in motor skill learning and effects of bromazepam].
Bastos, Victor Hugo; Machado, Dionis; Cunha, Marlo; Portella, Claudio Elidio; Cagy, Maurício; Furtado, Vernon; Piedade, Roberto; Ribeiro, Pedro
2005-06-01
Neuromodulators change brain's neural circuitry. Bromazepam is often been used in the pharmacological treatment of anxiety disorders. Few papers links this anxiolytic to motor tasks. The purpose of this study was to examine motor and electrophysiological changes produced by administration of bromazepam in differents doses (3 and 6 mg). The sample consisted of 39 healthy individuals, of both sexes, between 20 and 30 years of age. The control (placebo) and experimental (bromazepam 3mg and bromazepam 6 mg) groups were submitted to a typewriting task, in a randomized, double-blind design. The results did not reveal differences on score and time of the attention test. In the comportamental analysis was noticed blocks as main effect to behavioral variables (time and mistakes in the task). Electrophysiological data showed significants interactions to: laterally/condition/moment; laterally/condition; laterally/moment; condition/moment; condition/site.
Motor performance of individuals with cerebral palsy in a virtual game using a mobile phone.
de Paula, Juliana Nobre; de Mello Monteiro, Carlos Bandeira; da Silva, Talita Dias; Capelini, Camila Miliani; de Menezes, Lilian Del Cielo; Massetti, Thais; Tonks, James; Watson, Suzanna; Nicolai Ré, Alessandro Hervaldo
2017-11-01
Cerebral palsy (CP) is a permanent disorder of movement, muscle tone or posture that is caused by damage to the immature and developing brain. Research has shown that Virtual Reality (VR) technology can be used in rehabilitation to support the acquisition of motor skills and the achievement of functional tasks. The aim of this study was to explore for improvements in the performance of individuals with CP with practice in the use of a virtual game on a mobile phone and to compare their performance with that of the control group. Twenty-five individuals with CP were matched for age and sex with twenty-five, typically developing individuals. Participants were asked to complete a VR maze task as fast as possible on a mobile phone. All participants performed 20 repetitions in the acquisition phase, five repetitions for retention and five more repetitions for transfer tests, in order to evaluate motor learning from the task. The CP group improved their performance in the acquisition phase and maintained the performance, which was shown by the retention test; in addition, they were able to transfer the performance acquired in an opposite maze path. The CP group had longer task-execution compared to the control group for all phases of the study. Individuals with cerebral palsy were able to learn a virtual reality game (maze task) using a mobile phone, and despite their differences from the control group, this kind of device offers new possibilities for use to improve function. Implications for rehabilitation A virtual game on a mobile phone can enable individuals with Cerebral Palsy (CP) to improve performance. This illustrates the potential for use of mobile phone games to improve function. Individuals with CP had poorer performance than individuals without CP, but they demonstrated immediate improvements from using a mobile phone device. Individuals with CP were able to transfer their skills to a similar task indicating that they were able to learn these motor skills by using a mobile phone game.
Telgen, Sebastian; Parvin, Darius; Diedrichsen, Jörn
2014-10-08
Motor learning tasks are often classified into adaptation tasks, which involve the recalibration of an existing control policy (the mapping that determines both feedforward and feedback commands), and skill-learning tasks, requiring the acquisition of new control policies. We show here that this distinction also applies to two different visuomotor transformations during reaching in humans: Mirror-reversal (left-right reversal over a mid-sagittal axis) of visual feedback versus rotation of visual feedback around the movement origin. During mirror-reversal learning, correct movement initiation (feedforward commands) and online corrections (feedback responses) were only generated at longer latencies. The earliest responses were directed into a nonmirrored direction, even after two training sessions. In contrast, for visual rotation learning, no dependency of directional error on reaction time emerged, and fast feedback responses to visual displacements of the cursor were immediately adapted. These results suggest that the motor system acquires a new control policy for mirror reversal, which initially requires extra processing time, while it recalibrates an existing control policy for visual rotations, exploiting established fast computational processes. Importantly, memory for visual rotation decayed between sessions, whereas memory for mirror reversals showed offline gains, leading to better performance at the beginning of the second session than in the end of the first. With shifts in time-accuracy tradeoff and offline gains, mirror-reversal learning shares common features with other skill-learning tasks. We suggest that different neuronal mechanisms underlie the recalibration of an existing versus acquisition of a new control policy and that offline gains between sessions are a characteristic of latter. Copyright © 2014 the authors 0270-6474/14/3413768-12$15.00/0.
Weinmann, Oliver; Kellner, Yves; Yu, Xinzhu; Vicente, Raul; Gullo, Miriam; Kasper, Hansjörg; Lussi, Karin; Ristic, Zorica; Luft, Andreas R.; Rioult-Pedotti, Mengia; Zuo, Yi; Zagrebelsky, Marta; Schwab, Martin E.
2014-01-01
The membrane protein Nogo-A is known as an inhibitor of axonal outgrowth and regeneration in the CNS. However, its physiological functions in the normal adult CNS remain incompletely understood. Here, we investigated the role of Nogo-A in cortical synaptic plasticity and motor learning in the uninjured adult rodent motor cortex. Nogo-A and its receptor NgR1 are present at cortical synapses. Acute treatment of slices with function-blocking antibodies (Abs) against Nogo-A or against NgR1 increased long-term potentiation (LTP) induced by stimulation of layer 2/3 horizontal fibers. Furthermore, anti-Nogo-A Ab treatment increased LTP saturation levels, whereas long-term depression remained unchanged, thus leading to an enlarged synaptic modification range. In vivo, intrathecal application of Nogo-A-blocking Abs resulted in a higher dendritic spine density at cortical pyramidal neurons due to an increase in spine formation as revealed by in vivo two-photon microscopy. To investigate whether these changes in synaptic plasticity correlate with motor learning, we trained rats to learn a skilled forelimb-reaching task while receiving anti-Nogo-A Abs. Learning of this cortically controlled precision movement was improved upon anti-Nogo-A Ab treatment. Our results identify Nogo-A as an influential molecular modulator of synaptic plasticity and as a regulator for learning of skilled movements in the motor cortex. PMID:24966370
Movement Pattern and Parameter Learning in Children: Effects of Feedback Frequency
ERIC Educational Resources Information Center
Goh, Hui-Ting; Kantak, Shailesh S.; Sullivan, Katherine J.
2012-01-01
Reduced feedback during practice has been shown to be detrimental to movement accuracy in children but not in young adults. We hypothesized that the reduced accuracy is attributable to reduced movement parameter learning, but not pattern learning, in children. A rapid arm movement task that required the acquisition of a motor pattern scaled to…
Korman, Maria; Herling, Zohar; Levy, Ishay; Egbarieh, Nebal; Engel-Yeger, Batya; Karni, Avi
2017-04-01
Although a ubiquitous situation, it is not clear how effective is a learning experience when task-irrelevant, sensory noise occurs in the background. Here, young adults were trained on the finger opposition sequence task, in a well-established training and testing protocol affording measures for online as well as off-line learning. During the training session, one group experienced a minor background vibratory stimulation to the trunk by the means of vibrating cushion, while the second group experienced recorded sound vibrations. A control group was trained with no extra sensory stimulation. Sensory stimulation during training had no effect on the online within-session gains, but dampened the expression of the off-line, consolidation phase, gains in the two sensory stimulation groups. These results suggest that background sensory stimulation can selectively modify off-line, procedural memory consolidation processes, despite well-preserved on-line learning. Classical studies have shown that neural plasticity in sensory systems is modulated by motor input. The current results extend this notion and suggest that some types of task-irrelevant sensory stimulation, concurrent with motor training, may constitute a 'gating' factor - modulating the triggering of long-term procedural memory consolidation processes. Thus, vibratory stimulation may be considered as a behavioral counterpart of pharmacological interventions that do not interfere with short term neural plasticity but block long-term plasticity. Copyright © 2017 Elsevier Inc. All rights reserved.
Williams, Camille K.; Tremblay, Luc; Carnahan, Heather
2016-01-01
Researchers in the domain of haptic training are now entering the long-standing debate regarding whether or not it is best to learn a skill by experiencing errors. Haptic training paradigms provide fertile ground for exploring how various theories about feedback, errors and physical guidance intersect during motor learning. Our objective was to determine how error minimizing, error augmenting and no haptic feedback while learning a self-paced curve-tracing task impact performance on delayed (1 day) retention and transfer tests, which indicate learning. We assessed performance using movement time and tracing error to calculate a measure of overall performance – the speed accuracy cost function. Our results showed that despite exhibiting the worst performance during skill acquisition, the error augmentation group had significantly better accuracy (but not overall performance) than the error minimization group on delayed retention and transfer tests. The control group’s performance fell between that of the two experimental groups but was not significantly different from either on the delayed retention test. We propose that the nature of the task (requiring online feedback to guide performance) coupled with the error augmentation group’s frequent off-target experience and rich experience of error-correction promoted information processing related to error-detection and error-correction that are essential for motor learning. PMID:28082937
Learning stochastic reward distributions in a speeded pointing task.
Seydell, Anna; McCann, Brian C; Trommershäuser, Julia; Knill, David C
2008-04-23
Recent studies have shown that humans effectively take into account task variance caused by intrinsic motor noise when planning fast hand movements. However, previous evidence suggests that humans have greater difficulty accounting for arbitrary forms of stochasticity in their environment, both in economic decision making and sensorimotor tasks. We hypothesized that humans can learn to optimize movement strategies when environmental randomness can be experienced and thus implicitly learned over several trials, especially if it mimics the kinds of randomness for which subjects might have generative models. We tested the hypothesis using a task in which subjects had to rapidly point at a target region partly covered by three stochastic penalty regions introduced as "defenders." At movement completion, each defender jumped to a new position drawn randomly from fixed probability distributions. Subjects earned points when they hit the target, unblocked by a defender, and lost points otherwise. Results indicate that after approximately 600 trials, subjects approached optimal behavior. We further tested whether subjects simply learned a set of stimulus-contingent motor plans or the statistics of defenders' movements by training subjects with one penalty distribution and then testing them on a new penalty distribution. Subjects immediately changed their strategy to achieve the same average reward as subjects who had trained with the second penalty distribution. These results indicate that subjects learned the parameters of the defenders' jump distributions and used this knowledge to optimally plan their hand movements under conditions involving stochastic rewards and penalties.
ERIC Educational Resources Information Center
Niswander, Virginia
1983-01-01
Perceptual motor dysfunctions may not allow children with learning and behavior problems to perform as most children do. A successful art activity for these children is construction using wood scraps. (SR)
Interactive visuo-motor therapy system for stroke rehabilitation.
Eng, Kynan; Siekierka, Ewa; Pyk, Pawel; Chevrier, Edith; Hauser, Yves; Cameirao, Monica; Holper, Lisa; Hägni, Karin; Zimmerli, Lukas; Duff, Armin; Schuster, Corina; Bassetti, Claudio; Verschure, Paul; Kiper, Daniel
2007-09-01
We present a virtual reality (VR)-based motor neurorehabilitation system for stroke patients with upper limb paresis. It is based on two hypotheses: (1) observed actions correlated with self-generated or intended actions engage cortical motor observation, planning and execution areas ("mirror neurons"); (2) activation in damaged parts of motor cortex can be enhanced by viewing mirrored movements of non-paretic limbs. We postulate that our approach, applied during the acute post-stroke phase, facilitates motor re-learning and improves functional recovery. The patient controls a first-person view of virtual arms in tasks varying from simple (hitting objects) to complex (grasping and moving objects). The therapist adjusts weighting factors in the non-paretic limb to move the paretic virtual limb, thereby stimulating the mirror neuron system and optimizing patient motivation through graded task success. We present the system's neuroscientific background, technical details and preliminary results.
Flexible explicit but rigid implicit learning in a visuomotor adaptation task
Bond, Krista M.
2015-01-01
There is mounting evidence for the idea that performance in a visuomotor rotation task can be supported by both implicit and explicit forms of learning. The implicit component of learning has been well characterized in previous experiments and is thought to arise from the adaptation of an internal model driven by sensorimotor prediction errors. However, the role of explicit learning is less clear, and previous investigations aimed at characterizing the explicit component have relied on indirect measures such as dual-task manipulations, posttests, and descriptive computational models. To address this problem, we developed a new method for directly assaying explicit learning by having participants verbally report their intended aiming direction on each trial. While our previous research employing this method has demonstrated the possibility of measuring explicit learning over the course of training, it was only tested over a limited scope of manipulations common to visuomotor rotation tasks. In the present study, we sought to better characterize explicit and implicit learning over a wider range of task conditions. We tested how explicit and implicit learning change as a function of the specific visual landmarks used to probe explicit learning, the number of training targets, and the size of the rotation. We found that explicit learning was remarkably flexible, responding appropriately to task demands. In contrast, implicit learning was strikingly rigid, with each task condition producing a similar degree of implicit learning. These results suggest that explicit learning is a fundamental component of motor learning and has been overlooked or conflated in previous visuomotor tasks. PMID:25855690
Children benefit differently from night- and day-time sleep in motor learning.
Yan, Jin H
2017-08-01
Motor skill acquisition occurs while practicing (on-line) and when asleep or awake (off-line). However, developmental questions still remain about whether children of various ages benefit similarly or differentially from night- and day-time sleeping. The likely circadian effects (time-of-day) and the possible between-test-interference (order effects) associated with children's off-line motor learning are currently unknown. Therefore, this study examines the contributions of over-night sleeping and mid-day napping to procedural skill learning. One hundred and eight children were instructed to practice a finger sequence task using computer keyboards. After an equivalent 11-h interval in one of the three states (sleep, nap, wakefulness), children performed the same sequence in retention tests and a novel sequence in transfer tests. Changes in the movement time and sequence accuracy were evaluated between ages (6-7, 8-9, 10-11years) during practice, and from skill training to retrievals across three states. Results suggest that night-time sleeping and day-time napping improved the tapping speed, especially for the 6-year-olds. The circadian factor did not affect off-line motor learning in children. The interference between the two counter-balanced retrieval tests was not found for the off-line motor learning. This research offers possible evidence about the age-related motor learning characteristics in children and a potential means for enhancing developmental motor skills. The dynamics between age, experience, memory formation, and the theoretical implications of motor skill acquisition are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Optimized Motor Imagery Paradigm Based on Imagining Chinese Characters Writing Movement.
Qiu, Zhaoyang; Allison, Brendan Z; Jin, Jing; Zhang, Yu; Wang, Xingyu; Li, Wei; Cichocki, Andrzej
2017-07-01
motor imagery (MI) is a mental representation of motor behavior. The MI-based brain computer interfaces (BCIs) can provide communication for the physically impaired. The performance of MI-based BCI mainly depends on the subject's ability to self-modulate electroencephalogram signals. Proper training can help naive subjects learn to modulate brain activity proficiently. However, training subjects typically involve abstract motor tasks and are time-consuming. to improve the performance of naive subjects during motor imagery, a novel paradigm was presented that would guide naive subjects to modulate brain activity effectively. In this new paradigm, pictures of the left or right hand were used as cues for subjects to finish the motor imagery task. Fourteen healthy subjects (11 male, aged 22-25 years, and mean 23.6±1.16) participated in this study. The task was to imagine writing a Chinese character. Specifically, subjects could imagine hand movements corresponding to the sequence of writing strokes in the Chinese character. This paradigm was meant to find an effective and familiar action for most Chinese people, to provide them with a specific, extensively practiced task and help them modulate brain activity. results showed that the writing task paradigm yielded significantly better performance than the traditional arrow paradigm (p < 0.001). Questionnaire replies indicated that most subjects thought that the new paradigm was easier. the proposed new motor imagery paradigm could guide subjects to help them modulate brain activity effectively. Results showed that there were significant improvements using new paradigm, both in classification accuracy and usability.
The Intention Superiority Effect in Motor Skill Learning
ERIC Educational Resources Information Center
Badets, Arnaud; Blandin, Yannick; Bouquet, Cedric A.; Shea, Charles H.
2006-01-01
Three experiments were conducted to determine if the intention to perform motor sequences in the future results in similar patterns of activation and inhibition as observed for verbal scripts. In Experiments 1 and 2, intention was induced by informing one group that they would be tested on the tasks following acquisition; the other group was not…
Protein Synthesis Inhibition Blocks Consolidation of an Acrobatic Motor Skill
ERIC Educational Resources Information Center
Kaelin-Lang, Alain; Dichgans, Johannes; Schulz, Jorg B.; Luft, Andreas R.; Buitrago, Manuel M.
2004-01-01
To investigate whether motor skill learning depends on de novo protein synthesis, adult rats were trained in an acrobatic locomotor task (accelerating rotarod) for 7 d. Animals were systemically injected with cycloheximide (CHX, 0.5 mg/kg, i.p.) 1 h before sessions 1 and 2 or sessions 2 and 3. Control rats received vehicle injections before…
ERIC Educational Resources Information Center
Mills, Brett D.
This paper examines eight studies that utilized film or videotape to enhance motor performance through modeling or self-examination of performance. The studies, dating as far back as 1944, dealt with learning bowling, golf, basketball, throwing, gymnastics, racquetball, and other motor tasks. For each study, the paper outlines the problem, the…
Grossberg, Stephen; Palma, Jesse; Versace, Massimiliano
2015-01-01
Freely behaving organisms need to rapidly calibrate their perceptual, cognitive, and motor decisions based on continuously changing environmental conditions. These plastic changes include sharpening or broadening of cognitive and motor attention and learning to match the behavioral demands that are imposed by changing environmental statistics. This article proposes that a shared circuit design for such flexible decision-making is used in specific cognitive and motor circuits, and that both types of circuits use acetylcholine to modulate choice selectivity. Such task-sensitive control is proposed to control thalamocortical choice of the critical features that are cognitively attended and that are incorporated through learning into prototypes of visual recognition categories. A cholinergically-modulated process of vigilance control determines if a recognition category and its attended features are abstract (low vigilance) or concrete (high vigilance). Homologous neural mechanisms of cholinergic modulation are proposed to focus attention and learn a multimodal map within the deeper layers of superior colliculus. This map enables visual, auditory, and planned movement commands to compete for attention, leading to selection of a winning position that controls where the next saccadic eye movement will go. Such map learning may be viewed as a kind of attentive motor category learning. The article hereby explicates a link between attention, learning, and cholinergic modulation during decision making within both cognitive and motor systems. Homologs between the mammalian superior colliculus and the avian optic tectum lead to predictions about how multimodal map learning may occur in the mammalian and avian brain and how such learning may be modulated by acetycholine.
Grossberg, Stephen; Palma, Jesse; Versace, Massimiliano
2016-01-01
Freely behaving organisms need to rapidly calibrate their perceptual, cognitive, and motor decisions based on continuously changing environmental conditions. These plastic changes include sharpening or broadening of cognitive and motor attention and learning to match the behavioral demands that are imposed by changing environmental statistics. This article proposes that a shared circuit design for such flexible decision-making is used in specific cognitive and motor circuits, and that both types of circuits use acetylcholine to modulate choice selectivity. Such task-sensitive control is proposed to control thalamocortical choice of the critical features that are cognitively attended and that are incorporated through learning into prototypes of visual recognition categories. A cholinergically-modulated process of vigilance control determines if a recognition category and its attended features are abstract (low vigilance) or concrete (high vigilance). Homologous neural mechanisms of cholinergic modulation are proposed to focus attention and learn a multimodal map within the deeper layers of superior colliculus. This map enables visual, auditory, and planned movement commands to compete for attention, leading to selection of a winning position that controls where the next saccadic eye movement will go. Such map learning may be viewed as a kind of attentive motor category learning. The article hereby explicates a link between attention, learning, and cholinergic modulation during decision making within both cognitive and motor systems. Homologs between the mammalian superior colliculus and the avian optic tectum lead to predictions about how multimodal map learning may occur in the mammalian and avian brain and how such learning may be modulated by acetycholine. PMID:26834535
Romano, Jennifer C; Howard, James H; Howard, Darlene V
2010-05-01
Procedural skills such as riding a bicycle and playing a musical instrument play a central role in daily life. Such skills are learned gradually and are retained throughout life. The present study investigated 1-year retention of procedural skill in a version of the widely used serial reaction time task (SRTT) in young and older motor-skill experts and older controls in two experiments. The young experts were college-age piano and action video-game players, and the older experts were piano players. Previous studies have reported sequence-specific skill retention in the SRTT as long as 2 weeks but not at 1 year. Results indicated that both young and older experts and older non-experts revealed sequence-specific skill retention after 1 year with some evidence that general motor skill was retained as well. These findings are consistent with theoretical accounts of procedural skill learning such as the procedural reinstatement theory as well as with previous studies of retention of other motor skills.
Wadden, Katie P.; Woodward, Todd S.; Metzak, Paul D.; Lavigne, Katie M.; Lakhani, Bimal; Auriat, Angela M.; Boyd, Lara A.
2015-01-01
Following stroke, functional networks reorganize and the brain demonstrates widespread alterations in cortical activity. Implicit motor learning is preserved after stroke. However the manner in which brain reorganization occurs, and how it supports behaviour within the damaged brain remains unclear. In this functional magnetic resonance imaging (fMRI) study, we evaluated whole brain patterns of functional connectivity during the performance of an implicit tracking task at baseline and retention, following 5 days of practice. Following motor practice, a significant difference in connectivity within a motor network, consisting of bihemispheric activation of the sensory and motor cortices, parietal lobules, cerebellar and occipital lobules, was observed at retention. Healthy subjects demonstrated greater activity within this motor network during sequence learning compared to random practice. The stroke group did not show the same level of functional network integration, presumably due to the heterogeneity of functional reorganization following stroke. In a secondary analysis, a binary mask of the functional network activated from the aforementioned whole brain analyses was created to assess within-network connectivity, decreasing the spatial distribution and large variability of activation that exists within the lesioned brain. The stroke group demonstrated reduced clusters of connectivity within the masked brain regions as compared to the whole brain approach. Connectivity within this smaller motor network correlated with repeated sequence performance on the retention test. Increased functional integration within the motor network may be an important neurophysiological predictor of motor learning-related change in individuals with stroke. PMID:25757996
Effects of training pre-movement sensorimotor rhythms on behavioral performance
NASA Astrophysics Data System (ADS)
McFarland, Dennis J.; Sarnacki, William A.; Wolpaw, Jonathan R.
2015-12-01
Objective. Brain-computer interface (BCI) technology might contribute to rehabilitation of motor function. This speculation is based on the premise that modifying the electroencephalographic (EEG) activity will modify behavior, a proposition for which there is limited empirical data. The present study asked whether learned modulation of pre-movement sensorimotor rhythm (SMR) activity can affect motor performance in normal human subjects. Approach. Eight individuals first performed a joystick-based cursor-movement task with variable warning periods. Targets appeared randomly on a video monitor and subjects moved the cursor to the target and pressed a select button within 2 s. SMR features in the pre-movement EEG that correlated with performance speed and accuracy were identified. The subjects then learned to increase or decrease these features to control a two-target BCI task. Following successful BCI training, they were asked to increase or decrease SMR amplitude in order to initiate the joystick task. Main results. After BCI training, pre-movement SMR amplitude was correlated with performance in subjects with initial poor performance: lower amplitude was associated with faster and more accurate movement. The beneficial effect on performance of lower SMR amplitude was greater in subjects with lower initial performance levels. Significance. These results indicate that BCI-based SMR training can affect a standard motor behavior. They provide a rationale for studies that integrate such training into rehabilitation protocols and examine its capacity to enhance restoration of useful motor function.
Ajemian, Robert; D’Ausilio, Alessandro; Moorman, Helene; Bizzi, Emilio
2013-01-01
During the process of skill learning, synaptic connections in our brains are modified to form motor memories of learned sensorimotor acts. The more plastic the adult brain is, the easier it is to learn new skills or adapt to neurological injury. However, if the brain is too plastic and the pattern of synaptic connectivity is constantly changing, new memories will overwrite old memories, and learning becomes unstable. This trade-off is known as the stability–plasticity dilemma. Here a theory of sensorimotor learning and memory is developed whereby synaptic strengths are perpetually fluctuating without causing instability in motor memory recall, as long as the underlying neural networks are sufficiently noisy and massively redundant. The theory implies two distinct stages of learning—preasymptotic and postasymptotic—because once the error drops to a level comparable to that of the noise-induced error, further error reduction requires altered network dynamics. A key behavioral prediction derived from this analysis is tested in a visuomotor adaptation experiment, and the resultant learning curves are modeled with a nonstationary neural network. Next, the theory is used to model two-photon microscopy data that show, in animals, high rates of dendritic spine turnover, even in the absence of overt behavioral learning. Finally, the theory predicts enhanced task selectivity in the responses of individual motor cortical neurons as the level of task expertise increases. From these considerations, a unique interpretation of sensorimotor memory is proposed—memories are defined not by fixed patterns of synaptic weights but, rather, by nonstationary synaptic patterns that fluctuate coherently. PMID:24324147
Probabilistic motor sequence learning in a virtual reality serial reaction time task.
Sense, Florian; van Rijn, Hedderik
2018-01-01
The serial reaction time task is widely used to study learning and memory. The task is traditionally administered by showing target positions on a computer screen and collecting responses using a button box or keyboard. By comparing response times to random or sequenced items or by using different transition probabilities, various forms of learning can be studied. However, this traditional laboratory setting limits the number of possible experimental manipulations. Here, we present a virtual reality version of the serial reaction time task and show that learning effects emerge as expected despite the novel way in which responses are collected. We also show that response times are distributed as expected. The current experiment was conducted in a blank virtual reality room to verify these basic principles. For future applications, the technology can be used to modify the virtual reality environment in any conceivable way, permitting a wide range of previously impossible experimental manipulations.
van Ede, Freek
2017-01-01
Beta and gamma oscillations are the dominant oscillatory activity in the human motor cortex (M1). However, their physiological basis and precise functional significance remain poorly understood. Here, we used transcranial magnetic stimulation (TMS) to examine the physiological basis and behavioral relevance of driving beta and gamma oscillatory activity in the human M1 using transcranial alternating current stimulation (tACS). tACS was applied using a sham-controlled crossover design at individualized intensity for 20 min and TMS was performed at rest (before, during, and after tACS) and during movement preparation (before and after tACS). We demonstrated that driving gamma frequency oscillations using tACS led to a significant, duration-dependent decrease in local resting-state GABAA inhibition, as quantified by short interval intracortical inhibition. The magnitude of this effect was positively correlated with the magnitude of GABAA decrease during movement preparation, when gamma activity in motor circuitry is known to increase. In addition, gamma tACS-induced change in GABAA inhibition was closely related to performance in a motor learning task such that subjects who demonstrated a greater increase in GABAA inhibition also showed faster short-term learning. The findings presented here contribute to our understanding of the neurophysiological basis of motor rhythms and suggest that tACS may have similar physiological effects to endogenously driven local oscillatory activity. Moreover, the ability to modulate local interneuronal circuits by tACS in a behaviorally relevant manner provides a basis for tACS as a putative therapeutic intervention. SIGNIFICANCE STATEMENT Gamma oscillations have a vital role in motor control. Using a combined tACS-TMS approach, we demonstrate that driving gamma frequency oscillations modulates GABAA inhibition in the human motor cortex. Moreover, there is a clear relationship between the change in magnitude of GABAA inhibition induced by tACS and the magnitude of GABAA inhibition observed during task-related synchronization of oscillations in inhibitory interneuronal circuits, supporting the hypothesis that tACS engages endogenous oscillatory circuits. We also show that an individual's physiological response to tACS is closely related to their ability to learn a motor task. These findings contribute to our understanding of the neurophysiological basis of motor rhythms and their behavioral relevance and offer the possibility of developing tACS as a therapeutic tool. PMID:28348136
[Effects of Bromazepam in qEEG by type writing].
Machado, Dionis; Bastos, Victor Hugo; Cunha, Marlo; Furtado, Vernon; Cagy, Maurício; Piedade, Roberto; Ribeiro, Pedro
2005-06-01
The efficiency with which an information is processed by the brain's neural circuitry can be altered by neuromodulators. The use of Bromazepam in the pharmacological treatment of anxiety disorders is due to its anxiolytic property. However, the effects of this benzodiazepine in motor learning tasks are not entirely understood. In this context, the goal of this study was to assess the effects of Bromazepam (6 mg) on psychophysiological, behavioral, and electrophysiological variables, during the process of learning a motor task. The sample consisted of 26 healthy individuals, of both sexes, between 19 and 36 years of age. The control (placebo) and experimental (Bromazepam 6 mg) groups were submitted to a typewriting task, in a randomized, double-blind design. The results did not reveal differences for phychophysiological and behavioral variables between the groups. Statistical tests pointed out to an interaction between condition and moment, and a hemisphere main effect, i.e. a reduction of relative power in the right hemisphere. This reduction suggests a specialization of the neural circuitry in the hemisphere contralateral to the finger used in the task. Such reduction is independent from the drug administration.
Implicit visual learning and the expression of learning.
Haider, Hilde; Eberhardt, Katharina; Kunde, Alexander; Rose, Michael
2013-03-01
Although the existence of implicit motor learning is now widely accepted, the findings concerning perceptual implicit learning are ambiguous. Some researchers have observed perceptual learning whereas other authors have not. The review of the literature provides different reasons to explain this ambiguous picture, such as differences in the underlying learning processes, selective attention, or differences in the difficulty to express this knowledge. In three experiments, we investigated implicit visual learning within the original serial reaction time task. We used different response devices (keyboard vs. mouse) in order to manipulate selective attention towards response dimensions. Results showed that visual and motor sequence learning differed in terms of RT-benefits, but not in terms of the amount of knowledge assessed after training. Furthermore, visual sequence learning was modulated by selective attention. However, the findings of all three experiments suggest that selective attention did not alter implicit but rather explicit learning processes. Copyright © 2012 Elsevier Inc. All rights reserved.
Klahr, Ana C; Fagan, Kelly; Aziz, Jasmine R; John, Roseleen; Colbourne, Frederick
2018-06-01
Therapeutic hypothermia (TH) mitigates neuronal injury in models of ischemic stroke. Although this therapy is meant for injured tissue, most protocols cool the whole body, including the contralesional hemisphere. Neuroplasticity responses within this hemisphere can affect functional outcome. Thus, cooling the contralesional hemisphere serves no clear neuroprotective function and may instead be detrimental. In this study, we cooled the contralesional hemisphere to determine whether this harms behavioral recovery after cortical injury in rats. All rats were trained on skilled reaching and walking tasks. Rats then received a motor cortex insult contralateral to their dominant paw after which they were randomly assigned to focal contralesional TH (∼33°C) for 1-48, 1-97, or 48-96 hours postinjury, or to a normothermic control group. Contralesional cooling did not impact lesion volume (p = 0.371) and had minimal impact on neurological outcome of the impaired limb. However, rats cooled early were significantly less likely to shift paw preference to the unimpaired paw (p ≤ 0.043), suggesting that cooling reduced learned nonuse. In a second experiment, we tested whether cooling impaired learning of the skilled reaching task in naive rats. Localized TH applied to the hemisphere contralateral or ipsilateral to the preferred paw did not impair learning (p ≥ 0.677) or dendritic branching/length in the motor cortex (p ≥ 0.105). In conclusion, localized TH did not impair learning or plasticity in the absence of neural injury, but contralesional TH may reduce unwanted shifts in limb preference after stroke.
Hadj-Bouziane, Fadila; Benatru, Isabelle; Brovelli, Andrea; Klinger, Hélène; Thobois, Stéphane; Broussolle, Emmanuel; Boussaoud, Driss; Meunier, Martine
2013-01-01
The present behavioral study re-addresses the question of habit learning in Parkinson's disease (PD). Patients were early onset, non-demented, dopa-responsive, candidates for surgical treatment, similar to those we found earlier as suffering greater dopamine depletion in the putamen than in the caudate nucleus. The task was the same conditional associative learning task as that used previously in monkeys and healthy humans to unveil the striatum involvement in habit learning. Sixteen patients and 20 age- and education-matched healthy control subjects learned sets of 3 visuo-motor associations between complex patterns and joystick displacements during two testing sessions separated by a few hours. We distinguished errors preceding vs. following the first correct response to compare patients' performance during the earliest phase of learning dominated by goal-directed actions with that observed later on, when responses start to become habitual. The disease significantly retarded both learning phases, especially in patients under 60 years of age. However, only the late phase deficit was disease severity-dependent and persisted on the second testing session. These findings provide the first corroboration in Parkinson patients of two ideas well-established in the animal literature. The first is the idea that associating visual stimuli to motor acts is a form of habit learning that engages the striatum. It is confirmed here by the global impairment in visuo-motor learning induced by PD. The second idea is that goal-directed behaviors are predominantly caudate-dependent whereas habitual responses are primarily putamen-dependent. At the advanced PD stages tested here, dopamine depletion is greater in the putamen than in the caudate nucleus. Accordingly, the late phase of learning corresponding to the emergence of habitual responses was more vulnerable to the disease than the early phase dominated by goal-directed actions. PMID:23386815
ERIC Educational Resources Information Center
Piemonte, Maria Elisa Pimentel; Kopczynski, Marcos Cammarosano; Voos, Mariana Callil; Miranda, Camila Souza; Oliveira, Tatiana de Paula
2015-01-01
Background: Online sensory feedback has been considered fundamental for motor learning. The sensory inputs experienced in previous attempts can be processed and compared to allow the online refinement of subsequent attempts, resulting on performance improvement. However, numerous studies have provided direct and indirect evidence that learning new…
Taube, Wolfgang; Lorch, Michael; Zeiter, Sibylle; Keller, Martin
2014-01-01
For consciously performed motor tasks executed in a defined and constant way, both motor imagery (MI) and action observation (AO) have been shown to promote motor learning. It is not known whether these forms of non-physical training also improve motor actions when these actions have to be variably applied in an unstable and unpredictable environment. The present study therefore investigated the influence of MI balance training (MI_BT) and a balance training combining AO and MI (AO+MI_BT) on postural control of undisturbed and disturbed upright stance on unstable ground. As spinal reflex excitability after classical (i.e., physical) balance training (BT) is generally decreased, we tested whether non-physical BT also has an impact on spinal reflex circuits. Thirty-six participants were randomly allocated into an MI_BT group, in which participants imagined postural exercises, an AO+MI_BT group, in which participants observed videos of other people performing balance exercises and imagined being the person in the video, and a non-active control group (CON). Before and after 4 weeks of non-physical training, balance performance was assessed on a free-moving platform during stance without perturbation and during perturbed stance. Soleus H-reflexes were recorded during stable and unstable stance. The post-measurement revealed significantly decreased postural sway during undisturbed and disturbed stance after both MI_BT and AO+MI_BT. Spinal reflex excitability remained unchanged. This is the first study showing that non-physical training (MI_BT and AO+MI_BT) not only promotes motor learning of “rigid” postural tasks but also improves performance of highly variable and unpredictable balance actions. These findings may be relevant to improve postural control and thus reduce the risk of falls in temporarily immobilized patients. PMID:25538598
Motor learning and modulation of prefrontal cortex: an fNIRS assessment
NASA Astrophysics Data System (ADS)
Ono, Yumie; Noah, Jack Adam; Zhang, Xian; Nomoto, Yasunori; Suzuki, Tatsuya; Shimada, Sotaro; Tachibana, Atsumichi; Bronner, Shaw; Hirsch, Joy
2015-12-01
Objective. Prefrontal hemodynamic responses are observed during performance of motor tasks. Using a dance video game (DVG), a complex motor task that requires temporally accurate footsteps with given visual and auditory cues, we investigated whether 20 h of DVG training modified hemodynamic responses of the prefrontal cortex in six healthy young adults. Approach. Fronto-temporal activity during actual DVG play was measured using functional near-infrared spectroscopy (fNIRS) pre- and post-training. To evaluate the training-induced changes in the time-courses of fNIRS signals, we employed a regression analysis using the task-specific template fNIRS signals that were generated from alternate well-trained and/or novice DVG players. The HRF was also separately incorporated as a template to construct an alternate regression model. Change in coefficients for template functions at pre- and post- training were determined and compared among different models. Main results. Training significantly increased the motor performance using the number of temporally accurate steps in the DVG as criteria. The mean oxygenated hemoglobin (ΔoxyHb) waveform changed from an activation above baseline pattern to that of a below baseline pattern. Participants showed significantly decreased coefficients for regressors of the ΔoxyHb response of novice players and HRF. The model using ΔoxyHb responses from both well-trained and novice players of DVG as templates showed the best fit for the ΔoxyHb responses of the participants at both pre- and post-training when analyzed with Akaike information criteria. Significance. These results suggest that the coefficients for the template ΔoxyHb responses of the novice players are sensitive indicators of motor learning during the initial stage of training and thus clinically useful to determine the improvement in motor performance when patients are engaged in a specific rehabilitation program.
Emken, Jeremy L; Benitez, Raul; Reinkensmeyer, David J
2007-01-01
Background A prevailing paradigm of physical rehabilitation following neurologic injury is to "assist-as-needed" in completing desired movements. Several research groups are attempting to automate this principle with robotic movement training devices and patient cooperative algorithms that encourage voluntary participation. These attempts are currently not based on computational models of motor learning. Methods Here we assume that motor recovery from a neurologic injury can be modelled as a process of learning a novel sensory motor transformation, which allows us to study a simplified experimental protocol amenable to mathematical description. Specifically, we use a robotic force field paradigm to impose a virtual impairment on the left leg of unimpaired subjects walking on a treadmill. We then derive an "assist-as-needed" robotic training algorithm to help subjects overcome the virtual impairment and walk normally. The problem is posed as an optimization of performance error and robotic assistance. The optimal robotic movement trainer becomes an error-based controller with a forgetting factor that bounds kinematic errors while systematically reducing its assistance when those errors are small. As humans have a natural range of movement variability, we introduce an error weighting function that causes the robotic trainer to disregard this variability. Results We experimentally validated the controller with ten unimpaired subjects by demonstrating how it helped the subjects learn the novel sensory motor transformation necessary to counteract the virtual impairment, while also preventing them from experiencing large kinematic errors. The addition of the error weighting function allowed the robot assistance to fade to zero even though the subjects' movements were variable. We also show that in order to assist-as-needed, the robot must relax its assistance at a rate faster than that of the learning human. Conclusion The assist-as-needed algorithm proposed here can limit error during the learning of a dynamic motor task. The algorithm encourages learning by decreasing its assistance as a function of the ongoing progression of movement error. This type of algorithm is well suited for helping people learn dynamic tasks for which large kinematic errors are dangerous or discouraging, and thus may prove useful for robot-assisted movement training of walking or reaching following neurologic injury. PMID:17391527
Motor learning and consolidation: the case of visuomotor rotation.
Krakauer, John W
2009-01-01
Adaptation to visuomotor rotation is a particular form of motor learning distinct from force-field adaptation, sequence learning, and skill learning. Nevertheless, study of adaptation to visuomotor rotation has yielded a number of findings and principles that are likely of general importance to procedural learning and memory. First, rotation learning is implicit and appears to proceed through reduction in a visual prediction error generated by a forward model, such implicit adaptation occurs even when it is in conflict with an explicit task goal. Second, rotation learning is subject to different forms of interference: retrograde, anterograde through aftereffects, and contextual blocking of retrieval. Third, opposite rotations can be recalled within a short time interval without interference if implicit contextual cues (effector change) rather than explicit cues (color change) are used. Fourth, rotation learning consolidates both over time and with increased initial training (saturation learning).
NASA Astrophysics Data System (ADS)
Zhang, Hang; Yao, Li; Long, Zhiying
2011-03-01
Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.
Procedural Learning in Children With Developmental Coordination, Reading, and Attention Disorders.
Magallón, Sara; Crespo-Eguílaz, Nerea; Narbona, Juan
2015-10-01
The aim is to assess repetition-based learning of procedures in children with developmental coordination disorder (DCD), reading disorder (RD) and attention-deficit hyperactivity disorder (ADHD). Participants included 187 children, studied in 4 groups: (a) DCD comorbid with RD and ADHD (DCD+RD+ADHD) (n = 30); (b) RD comorbid with ADHD (RD+ADHD) (n = 48); (c) ADHD (n = 19); and typically developing children (control group) (n = 90). Two procedural learning tasks were used: Assembly learning and Mirror drawing. Children were tested on 4 occasions for each task: 3 trials were consecutive and the fourth trial was performed after an interference task. Task performance by DCD+RD+ADHD children improved with training (P < .05); however, the improvement was significantly lower than that achieved by the other groups (RD+ADHD, ADHD and controls) (P < .05). In conclusion, children with DCD+RD+ADHD improve in their use of cognitive-motor procedures over a short training period. Aims of intervention in DCD+RD+ADHD should be based on individual learning abilities. © The Author(s) 2015.
Association of physical fitness and fatness with cognitive function in women with fibromyalgia.
Soriano-Maldonado, Alberto; Artero, Enrique G; Segura-Jiménez, Víctor; Aparicio, Virgina A; Estévez-López, Fernando; Álvarez-Gallardo, Inmaculada C; Munguía-Izquierdo, Diego; Casimiro-Andújar, Antonio J; Delgado-Fernández, Manuel; Ortega, Francisco B
2016-09-01
This study assessed the association of fitness and fatness with cognitive function in women with fibromyalgia, and the independent influence of their single components on cognitive tasks. A total of 468 women with fibromyalgia were included. Speed of information processing and working memory (Paced Auditory Serial Addition Task), as well as immediate and delayed recall, verbal learning and delayed recognition (Rey Auditory Verbal Learning Test) were assessed. Aerobic fitness, muscle strength, flexibility and motor agility were assessed with the Senior Fitness Test battery. Body mass index, percent body fat, fat-mass index and waist circumference were measured. Aerobic fitness was associated with attention and working memory (all, p < 0.05). All fitness components were generally associated with delayed recall, verbal learning and delayed recognition (all, p < 0.05). Aerobic fitness showed the most powerful association with attention, working memory, delayed recall and verbal learning, while motor agility was the most powerful indicator of delayed recognition. None of the fatness parameters were associated with any of the outcomes (all, p > 0.05). Our results suggest that fitness, but not fatness, is associated with cognitive function in women with fibromyalgia. Aerobic fitness appears to be the most powerful fitness component regarding the cognitive tasks evaluated.
REM sleep selectively prunes and maintains new synapses in development and learning
Li, Wei; Ma, Lei; Yang, Guang; Gan, Wenbiao
2017-01-01
The functions and underlying mechanisms of rapid eye movement (REM) sleep remain unclear. Here we show that REM sleep prunes newly-formed postsynaptic dendritic spines of layer 5 pyramidal neurons in the mouse motor cortex during development and motor learning. This REM sleep-dependent elimination of new spines facilitates subsequent spine formation in development and when a new motor task is learned, indicating a role of REM sleep in pruning to balance the number of new spines formed over time. In addition, REM sleep also strengthens and maintains some newly-formed spines that are critical for neuronal circuit development and behavioral improvement after learning. We further show that dendritic calcium spikes arising during REM sleep are important for pruning and strengthening of new spines. Together, these findings indicate that REM sleep has multifaceted functions in brain development, learning, and memory consolidation by selectively eliminating and maintaining newly-formed synapses via dendritic calcium spike-dependent mechanisms. PMID:28092659
Agostino, Rocco; Iezzi, Ennio; Dinapoli, Loredana; Suppa, Antonio; Conte, Antonella; Berardelli, Alfredo
2008-08-01
In this paper we investigated the effects of intermittent theta-burst stimulation (iTBS) applied to the primary motor cortex on practice-related changes in motor performance. Seventeen healthy subjects underwent two experimental sessions, one testing real iTBS and the other testing sham iTBS. Before and after both iTBS sessions, the subjects practiced fast right index-finger abductions for a few minutes. As measures of cortical excitability we calculated resting motor threshold and motor-evoked potential amplitude. As measures of practice-related changes we evaluated the mean movement amplitude, peak velocity and peak acceleration values for each block. When subjects practiced the movement task, the three variables measuring practice-related changes improved to a similar extent during real and sham iTBS whereas cortical excitability increased only during real iTBS. In a further group of five healthy subjects we investigated the effect of real and sham iTBS on changes in motor performance after a longer task practice and found no significant changes in motor performance and retention after real and sham iTBS. From our results overall we conclude that in healthy subjects iTBS applied to the primary motor cortex leaves practice-related changes in an index finger abduction task unaffected. We suggest that iTBS delivered over the primary motor cortex is insufficient to alter motor performance because early motor learning probably engages a wide cortical and subcortical network.
Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses.
Ramos-Murguialday, Ander; Schürholz, Markus; Caggiano, Vittorio; Wildgruber, Moritz; Caria, Andrea; Hammer, Eva Maria; Halder, Sebastian; Birbaumer, Niels
2012-01-01
Brain computer interface (BCI) technology has been proposed for motor neurorehabilitation, motor replacement and assistive technologies. It is an open question whether proprioceptive feedback affects the regulation of brain oscillations and therefore BCI control. We developed a BCI coupled on-line with a robotic hand exoskeleton for flexing and extending the fingers. 24 healthy participants performed five different tasks of closing and opening the hand: (1) motor imagery of the hand movement without any overt movement and without feedback, (2) motor imagery with movement as online feedback (participants see and feel their hand, with the exoskeleton moving according to their brain signals, (3) passive (the orthosis passively opens and closes the hand without imagery) and (4) active (overt) movement of the hand and rest. Performance was defined as the difference in power of the sensorimotor rhythm during motor task and rest and calculated offline for different tasks. Participants were divided in three groups depending on the feedback receiving during task 2 (the other tasks were the same for all participants). Group 1 (n = 9) received contingent positive feedback (participants' sensorimotor rhythm (SMR) desynchronization was directly linked to hand orthosis movements), group 2 (n = 8) contingent "negative" feedback (participants' sensorimotor rhythm synchronization was directly linked to hand orthosis movements) and group 3 (n = 7) sham feedback (no link between brain oscillations and orthosis movements). We observed that proprioceptive feedback (feeling and seeing hand movements) improved BCI performance significantly. Furthermore, in the contingent positive group only a significant motor learning effect was observed enhancing SMR desynchronization during motor imagery without feedback in time. Furthermore, we observed a significantly stronger SMR desynchronization in the contingent positive group compared to the other groups during active and passive movements. To summarize, we demonstrated that the use of contingent positive proprioceptive feedback BCI enhanced SMR desynchronization during motor tasks.
ERIC Educational Resources Information Center
Todor, John I.
The author presents an overview of Pascual-Leone's Theory of Constructive Operators, a process-structural theory based upon Piagetian constructs which has evolved to both explain and predict the temporal unfolding of behavior. An application is made of the theory to the demands of a discrete motor task and prediction of (a) the minimal age…
ERIC Educational Resources Information Center
Blank, Rainer
2012-01-01
Developmental coordination disorder (DCD) is a condition characterized by difficulty in the development of motor coordination and learning new motor skills. It impacts on a child's ability to carry out everyday tasks such as getting dressed, using cutlery, writing or drawing, running, and playing sport. It is not due to any intellectual difficulty…
ERIC Educational Resources Information Center
Chatoupis, Constantine
2015-01-01
Mosston and Ashworth's (2008) reciprocal style of teaching gives learners the opportunity to work in pairs to support each other's learning (one practices a task and the other gives feedback). The effects of pairing learners by companionship (friend and nonacquaintance) on 8-year-old children's motor skill performance and comfort levels were…
Sangster Jokić, Claire A; Whitebread, David
2016-11-01
Children with developmental coordination disorder (DCD) experience difficulty learning and performing everyday motor tasks due to poor motor coordination. Recent research applying a cognitive learning paradigm has argued that children with DCD have less effective cognitive and metacognitive skills with which to effectively acquire motor skills. However, there is currently limited research examining individual differences in children's use of self-regulatory and metacognitive skill during motor learning. This exploratory study aimed to compare the self-regulatory performance of children with and without DCD. Using a mixed methods approach, this study observed and compared the self-regulatory behavior of 15 children with and without DCD, aged between 7 and 9 years, during socially mediated motor practice. Observation was conducted using a quantitative coding scheme and qualitative analysis of video-recorded sessions. This paper will focus on the results of quantitative analysis, while data arising from the qualitative analysis will be used to support quantitative findings. In general, findings indicate that children with DCD exhibit less independent and more ineffective self-regulatory skill during motor learning than their typically developing peers. In addition, children with DCD rely more heavily on external support for effective regulation and are more likely to exhibit negative patterns of motivational regulation. These findings provide further support for the notion that children with DCD experience difficulty effectively self-regulating motor learning. Implications for practice and directions for future research are discussed.
López-Alonso, Virginia; Cheeran, Binith; Fernández-del-Olmo, Miguel
2015-01-01
Cortical plasticity plays a key role in motor learning (ML). Non-invasive brain stimulation (NIBS) paradigms have been used to modulate plasticity in the human motor cortex in order to facilitate ML. However, little is known about the relationship between NIBS-induced plasticity over M1 and ML capacity. NIBS-induced MEP changes are related to ML capacity. 56 subjects participated in three NIBS (paired associative stimulation, anodal transcranial direct current stimulation and intermittent theta-burst stimulation), and in three lab-based ML task (serial reaction time, visuomotor adaptation and sequential visual isometric pinch task) sessions. After clustering the patterns of response to the different NIBS protocols, we compared the ML variables between the different patterns found. We used regression analysis to explore further the relationship between ML capacity and summary measures of the MEPs change. We ran correlations with the "responders" group only. We found no differences in ML variables between clusters. Greater response to NIBS protocols may be predictive of poor performance within certain blocks of the VAT. "Responders" to AtDCS and to iTBS showed significantly faster reaction times than "non-responders." However, the physiological significance of these results is uncertain. MEP changes induced in M1 by PAS, AtDCS and iTBS appear to have little, if any, association with the ML capacity tested with the SRTT, the VAT and the SVIPT. However, cortical excitability changes induced in M1 by AtDCS and iTBS may be related to reaction time and retention of newly acquired skills in certain motor learning tasks. Copyright © 2015 Elsevier Inc. All rights reserved.
Learning by observation: insights from Williams syndrome.
Foti, Francesca; Menghini, Deny; Mandolesi, Laura; Federico, Francesca; Vicari, Stefano; Petrosini, Laura
2013-01-01
Observing another person performing a complex action accelerates the observer's acquisition of the same action and limits the time-consuming process of learning by trial and error. Observational learning makes an interesting and potentially important topic in the developmental domain, especially when disorders are considered. The implications of studies aimed at clarifying whether and how this form of learning is spared by pathology are manifold. We focused on a specific population with learning and intellectual disabilities, the individuals with Williams syndrome. The performance of twenty-eight individuals with Williams syndrome was compared with that of mental age- and gender-matched thirty-two typically developing children on tasks of learning of a visuo-motor sequence by observation or by trial and error. Regardless of the learning modality, acquiring the correct sequence involved three main phases: a detection phase, in which participants discovered the correct sequence and learned how to perform the task; an exercise phase, in which they reproduced the sequence until performance was error-free; an automatization phase, in which by repeating the error-free sequence they became accurate and speedy. Participants with Williams syndrome beneficiated of observational training (in which they observed an actor detecting the visuo-motor sequence) in the detection phase, while they performed worse than typically developing children in the exercise and automatization phases. Thus, by exploiting competencies learned by observation, individuals with Williams syndrome detected the visuo-motor sequence, putting into action the appropriate procedural strategies. Conversely, their impaired performances in the exercise phases appeared linked to impaired spatial working memory, while their deficits in automatization phases to deficits in processes increasing efficiency and speed of the response. Overall, observational experience was advantageous for acquiring competencies, since it primed subjects' interest in the actions to be performed and functioned as a catalyst for executed action.
Schambra, Heidi M.; Abe, Mitsunari; Luckenbaugh, David A.; Reis, Janine; Krakauer, John W.
2011-01-01
Convergent findings point to a left-sided specialization for the representation of learned actions in right-handed humans, but it is unknown whether analogous hemispheric specialization exists for motor skill learning. In the present study, we explored this question by comparing the effects of anodal transcranial direct current stimulation (tDCS) over either left or right motor cortex (M1) on motor skill learning in either hand, using a tDCS montage to better isolate stimulation to one hemisphere. Results were compared with those previously found with a montage more commonly used in the field. Six groups trained for three sessions on a visually guided sequential pinch force modulation task with their right or left hand and received right M1, left M1, or sham tDCS. A linear mixed-model analysis for motor skill showed a significant main effect for stimulation group (left M1, right M1, sham) but not for hand (right, left) or their interaction. Left M1 tDCS induced significantly greater skill learning than sham when hand data were combined, a result consistent not only with the hypothesized left hemisphere specialization for motor skill learning but also with possible increased left M1 responsiveness to tDCS. The unihemispheric montage effect size was one-half that of the more common montage, and subsequent power analysis indicated that 75 subjects per group would be needed to detect differences seen with only 12 subjects with the customary bihemispheric montage. PMID:21613597
The cerebellum and visual perceptual learning: evidence from a motion extrapolation task.
Deluca, Cristina; Golzar, Ashkan; Santandrea, Elisa; Lo Gerfo, Emanuele; Eštočinová, Jana; Moretto, Giuseppe; Fiaschi, Antonio; Panzeri, Marta; Mariotti, Caterina; Tinazzi, Michele; Chelazzi, Leonardo
2014-09-01
Visual perceptual learning is widely assumed to reflect plastic changes occurring along the cerebro-cortical visual pathways, including at the earliest stages of processing, though increasing evidence indicates that higher-level brain areas are also involved. Here we addressed the possibility that the cerebellum plays an important role in visual perceptual learning. Within the realm of motor control, the cerebellum supports learning of new skills and recalibration of motor commands when movement execution is consistently perturbed (adaptation). Growing evidence indicates that the cerebellum is also involved in cognition and mediates forms of cognitive learning. Therefore, the obvious question arises whether the cerebellum might play a similar role in learning and adaptation within the perceptual domain. We explored a possible deficit in visual perceptual learning (and adaptation) in patients with cerebellar damage using variants of a novel motion extrapolation, psychophysical paradigm. Compared to their age- and gender-matched controls, patients with focal damage to the posterior (but not the anterior) cerebellum showed strongly diminished learning, in terms of both rate and amount of improvement over time. Consistent with a double-dissociation pattern, patients with focal damage to the anterior cerebellum instead showed more severe clinical motor deficits, indicative of a distinct role of the anterior cerebellum in the motor domain. The collected evidence demonstrates that a pure form of slow-incremental visual perceptual learning is crucially dependent on the intact cerebellum, bearing the notion that the human cerebellum acts as a learning device for motor, cognitive and perceptual functions. We interpret the deficit in terms of an inability to fine-tune predictive models of the incoming flow of visual perceptual input over time. Moreover, our results suggest a strong dissociation between the role of different portions of the cerebellum in motor versus non-motor functions, with only the posterior lobe being responsible for learning in the perceptual domain. Copyright © 2014. Published by Elsevier Ltd.
Kwon, Yong Hyun; Kwon, Jung Won; Lee, Myoung Hee
2015-01-01
[Purpose] The purpose of the current study was to compare the effectiveness of motor sequential learning according to two different types of practice schedules, distributed practice schedule (two 12-hour inter-trial intervals) and massed practice schedule (two 10-minute inter-trial intervals) using a serial reaction time (SRT) task. [Subjects and Methods] Thirty healthy subjects were recruited and then randomly and evenly assigned to either the distributed practice group or the massed practice group. All subjects performed three consecutive sessions of the SRT task following one of the two different types of practice schedules. Distributed practice was scheduled for two 12-hour inter-session intervals including sleeping time, whereas massed practice was administered for two 10-minute inter-session intervals. Response time (RT) and response accuracy (RA) were measured in at pre-test, mid-test, and post-test. [Results] For RT, univariate analysis demonstrated significant main effects in the within-group comparison of the three tests as well as the interaction effect of two groups × three tests, whereas the between-group comparison showed no significant effect. The results for RA showed no significant differences in neither the between-group comparison nor the interaction effect of two groups × three tests, whereas the within-group comparison of the three tests showed a significant main effect. [Conclusion] Distributed practice led to enhancement of motor skill acquisition at the first inter-session interval as well as at the second inter-interval the following day, compared to massed practice. Consequentially, the results of this study suggest that a distributed practice schedule can enhance the effectiveness of motor sequential learning in 1-day learning as well as for two days learning formats compared to massed practice. PMID:25931727
Huang, Pei; Tan, Yu-Yan; Liu, Dong-Qiang; Herzallah, Mohammad M; Lapidow, Elizabeth; Wang, Ying; Zang, Yu-Feng; Gluck, Mark A; Chen, Sheng-Di
2017-07-01
Asymmetric onset of motor symptoms in PD can affect cognitive function. We examined whether motor-symptom laterality could affect feedback-based associative learning and explored its underlying neural mechanism by functional magnetic resonance imaging in PD patients. We recruited 63 early-stage medication-naïve PD patients (29 left-onset medication-naïve patients, 34 right-onset medication-naïve patients) and 38 matched normal controls. Subjects completed an acquired equivalence task (including acquisition, retention, and generalization) and resting-state functional magnetic resonance imaging scans. Learning accuracy and response time in each phase of the task were recorded for behavioral measures. Regional homogeneity was used to analyze resting-state functional magnetic resonance imaging data, with regional homogeneity lateralization to evaluate hemispheric functional asymmetry in the striatum. Left-onset patients made significantly more errors in acquisition (feedback-based associative learning) than right-onset patients and normal controls, whereas right-onset patients performed as well as normal controls. There was no significant difference among these three groups in the accuracy of either retention or generalization phase. The three groups did not show significant differences in response time. In the left-onset group, there was an inverse relationship between acquisition errors and regional homogeneity in the right dorsal rostral putamen. There were no significant regional homogeneity changes in either the left or the right dorsal rostral putamen in right-onset patients when compared to controls. Motor-symptom laterality could affect feedback-based associative learning in PD, with left-onset medication-naïve patients being selectively impaired. Dysfunction in the right dorsal rostral putamen may underlie the observed deficit in associative learning in patients with left-sided onset.© 2016 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.
Pushing the Limits of Imagination: Mental Practice for Learning Sequences
ERIC Educational Resources Information Center
Wohldmann, Erica L.; Healy, Alice F.; Bourne, Lyle E., Jr.
2007-01-01
In 2 experiments, the efficacy of motor imagery for learning to type number sequences was examined. Adults practiced typing 4-digit numbers. Then, during subsequent training, they either typed in the same or a different location, imagined typing, merely looked at each number, or performed an irrelevant task. Repetition priming (faster responses…
High Bar Swing Performance in Novice Adults: Effects of Practice and Talent
ERIC Educational Resources Information Center
Busquets, Albert; Marina, Michel; Irurtia, Alfredo; Ranz, Daniel; Angulo-Barroso, Rosa M.
2011-01-01
An individual's a priori talent can affect movement performance during learning. Also, task requirements and motor-perceptual factors are critical to the learning process. This study describes changes in high bar swing performance after a 2-month practice period. Twenty-five novice participants were divided by a priori talent level…
Explicit Pre-Training Instruction Does Not Improve Implicit Perceptual-Motor Sequence Learning
ERIC Educational Resources Information Center
Sanchez, Daniel J.; Reber, Paul J.
2013-01-01
Memory systems theory argues for separate neural systems supporting implicit and explicit memory in the human brain. Neuropsychological studies support this dissociation, but empirical studies of cognitively healthy participants generally observe that both kinds of memory are acquired to at least some extent, even in implicit learning tasks. A key…
Learning and Control Model of the Arm for Loading
NASA Astrophysics Data System (ADS)
Kim, Kyoungsik; Kambara, Hiroyuki; Shin, Duk; Koike, Yasuharu
We propose a learning and control model of the arm for a loading task in which an object is loaded onto one hand with the other hand, in the sagittal plane. Postural control during object interactions provides important points to motor control theories in terms of how humans handle dynamics changes and use the information of prediction and sensory feedback. For the learning and control model, we coupled a feedback-error-learning scheme with an Actor-Critic method used as a feedback controller. To overcome sensory delays, a feedforward dynamics model (FDM) was used in the sensory feedback path. We tested the proposed model in simulation using a two-joint arm with six muscles, each with time delays in muscle force generation. By applying the proposed model to the loading task, we showed that motor commands started increasing, before an object was loaded on, to stabilize arm posture. We also found that the FDM contributes to the stabilization by predicting how the hand changes based on contexts of the object and efferent signals. For comparison with other computational models, we present the simulation results of a minimum-variance model.
Remote limb ischemic conditioning enhances motor learning in healthy humans
Cherry-Allen, Kendra M.; Gidday, Jeff M.; Lee, Jin-Moo; Hershey, Tamara
2015-01-01
Brief bouts of sublethal ischemia have been shown to protect exposed tissue (ischemic conditioning) and tissues at remote sites (remote ischemic conditioning) against subsequent ischemic challenges. Given that the mechanisms of this protective phenomenon are multifactorial and epigenetic, we postulated that remote limb ischemic conditioning (RLIC) might enhance mechanisms responsible for neural plasticity, and thereby facilitate learning. Specifically, we hypothesized that conditioning of the nervous system with RLIC, achieved through brief repetitive limb ischemia prior to training, would facilitate the neurophysiological processes of learning, thus making training more effective and more long-lasting. Eighteen healthy adults participated in this study; nine were randomly allocated to RLIC and nine to sham conditioning. All subjects underwent seven consecutive weekday sessions and 2-wk and 4-wk follow-up sessions. We found that RLIC resulted in significantly greater motor learning and longer retention of motor performance gains in healthy adults. Changes in motor performance do not appear to be due to a generalized increase in muscle activation or muscle strength and were not associated with changes in serum brain-derived neurotrophic factor (BDNF) concentration. Of note, RLIC did not enhance cognitive learning on a hippocampus-dependent task. While future research is needed to establish optimal conditioning and training parameters, this inexpensive, clinically feasible paradigm might ultimately be implemented to enhance motor learning in individuals undergoing neuromuscular rehabilitation for brain injury and other pathological conditions. PMID:25867743
Thomas, Jennifer D; O'Neill, Teresa M; Dominguez, Hector D
2004-01-01
Prenatal alcohol exposure can disrupt brain development, leading to a variety of behavioral alterations including learning deficits, hyperactivity, and motor dysfunction. We have been investigating the possibility that perinatal choline supplementation may effectively reduce the severity of alcohol's adverse effects on behavioral development. We previously reported that perinatal choline supplementation can ameliorate alcohol-induced learning deficits and hyperactivity in rats exposed to alcohol during development. The present study examined whether perinatal choline supplementation could also reduce the severity of motor deficits induced by alcohol exposure during the third trimester equivalent brain growth spurt. Male neonatal rats were assigned to one of three treatment groups. One group was exposed to alcohol (6.6 g/kg/day) from postnatal days (PD) 4 to 9 via an artificial rearing procedure. Artificially and normally reared control groups were included. One half of subjects from each treatment received daily subcutaneous injections of a choline chloride solution from PD 4 to 30, whereas the other half received saline vehicle injections. On PD 35-37, subjects were tested on a parallel bar motor task, which requires both balance and fine motor coordination. Ethanol-exposed subjects exhibited significant motor impairments compared to both control groups whose performance did not differ significantly from one another. Perinatal choline treatment did not affect motor performance in either ethanol or control subjects. These data indicate that the beneficial effects of perinatal choline supplementation in ethanol-treated subjects are task specific and suggest that choline is more effective in mitigating cognitive deficits compared to motor deficits associated with developmental alcohol exposure.
Cognitive-motor integration deficits in young adult athletes following concussion.
Brown, Jeffrey A; Dalecki, Marc; Hughes, Cindy; Macpherson, Alison K; Sergio, Lauren E
2015-01-01
The ability to perform visually-guided motor tasks requires the transformation of visual information into programmed motor outputs. When the guiding visual information does not align spatially with the motor output, the brain processes rules to integrate the information for an appropriate motor response. Here, we look at how performance on such tasks is affected in young adult athletes with concussion history. Participants displaced a cursor from a central to peripheral targets on a vertical display by sliding their finger along a touch sensitive screen in one of two spatial planes. The addition of a memory component, along with variations in cursor feedback increased task complexity across conditions. Significant main effects between participants with concussion history and healthy controls without concussion history were observed in timing and accuracy measures. Importantly, the deficits were distinctly more pronounced for participants with concussion history compared to healthy controls, especially when the brain had to control movements having two levels of decoupling between vision and action. A discriminant analysis correctly classified athletes with a history of concussion based on task performance with an accuracy of 94 %, despite the majority of these athletes being rated asymptomatic by current standards. These findings correspond to our previous work with adults at risk of developing dementia, and support the use of cognitive motor integration as an enhanced assessment tool for those who may have mild brain dysfunction. Such a task may provide a more sensitive metric of performance relevant to daily function than what is currently in use, to assist in return to play/work/learn decisions.
Dopaminergic influences on formation of a motor memory.
Flöel, Agnes; Breitenstein, Caterina; Hummel, Friedhelm; Celnik, Pablo; Gingert, Christian; Sawaki, Lumy; Knecht, Stefan; Cohen, Leonardo G
2005-07-01
The ability of the central nervous system to form motor memories, a process contributing to motor learning and skill acquisition, decreases with age. Dopaminergic activity, one of the mechanisms implicated in memory formation, experiences a similar decline with aging. It is possible that restoring dopaminergic function in elderly adults could lead to improved formation of motor memories with training. We studied the influence of a single oral dose of levodopa (100mg) administered preceding training on the ability to encode an elementary motor memory in the primary motor cortex of elderly and young healthy volunteers in a randomized, double-blind, placebo-controlled design. Attention to the task and motor training kinematics were comparable across age groups and sessions. In young subjects, encoding a motor memory under placebo was more prominent than in older subjects, and the encoding process was accelerated by intake of levodopa. In the elderly group, diminished motor memory encoding under placebo was enhanced by intake of levodopa to levels present in younger subjects. Therefore, upregulation of dopaminergic activity accelerated memory formation in young subjects and restored the ability to form a motor memory in elderly subjects; possible mechanisms underlying the beneficial effects of dopaminergic agents on motor learning in neurorehabilitation.
Chambaron, Stéphanie; Ginhac, Dominique; Perruchet, Pierre
2008-05-01
Serial reaction time tasks and, more generally, the visual-motor sequential paradigms are increasingly popular tools in a variety of research domains, from studies on implicit learning in laboratory contexts to the assessment of residual learning capabilities of patients in clinical settings. A consequence of this success, however, is the increased variability in paradigms and the difficulty inherent in respecting the methodological principles that two decades of experimental investigations have made more and more stringent. The purpose of the present article is to address those problems. We present a user-friendly application that simplifies running classical experiments, but is flexible enough to permit a broad range of nonstandard manipulations for more specific objectives. Basic methodological guidelines are also provided, as are suggestions for using the software to explore unconventional directions of research. The most recent version of gSRT-Soft may be obtained for free by contacting the authors.
Isolating Visual and Proprioceptive Components of Motor Sequence Learning in ASD.
Sharer, Elizabeth A; Mostofsky, Stewart H; Pascual-Leone, Alvaro; Oberman, Lindsay M
2016-05-01
In addition to defining impairments in social communication skills, individuals with autism spectrum disorder (ASD) also show impairments in more basic sensory and motor skills. Development of new skills involves integrating information from multiple sensory modalities. This input is then used to form internal models of action that can be accessed when both performing skilled movements, as well as understanding those actions performed by others. Learning skilled gestures is particularly reliant on integration of visual and proprioceptive input. We used a modified serial reaction time task (SRTT) to decompose proprioceptive and visual components and examine whether patterns of implicit motor skill learning differ in ASD participants as compared with healthy controls. While both groups learned the implicit motor sequence during training, healthy controls showed robust generalization whereas ASD participants demonstrated little generalization when visual input was constant. In contrast, no group differences in generalization were observed when proprioceptive input was constant, with both groups showing limited degrees of generalization. The findings suggest, when learning a motor sequence, individuals with ASD tend to rely less on visual feedback than do healthy controls. Visuomotor representations are considered to underlie imitative learning and action understanding and are thereby crucial to social skill and cognitive development. Thus, anomalous patterns of implicit motor learning, with a tendency to discount visual feedback, may be an important contributor in core social communication deficits that characterize ASD. Autism Res 2016, 9: 563-569. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Transcranial Direct Current Stimulation Modulates Neuronal Activity and Learning in Pilot Training
Choe, Jaehoon; Coffman, Brian A.; Bergstedt, Dylan T.; Ziegler, Matthias D.; Phillips, Matthew E.
2016-01-01
Skill acquisition requires distributed learning both within (online) and across (offline) days to consolidate experiences into newly learned abilities. In particular, piloting an aircraft requires skills developed from extensive training and practice. Here, we tested the hypothesis that transcranial direct current stimulation (tDCS) can modulate neuronal function to improve skill learning and performance during flight simulator training of aircraft landing procedures. Thirty-two right-handed participants consented to participate in four consecutive daily sessions of flight simulation training and received sham or anodal high-definition-tDCS to the right dorsolateral prefrontal cortex (DLPFC) or left motor cortex (M1) in a randomized, double-blind experiment. Continuous electroencephalography (EEG) and functional near infrared spectroscopy (fNIRS) were collected during flight simulation, n-back working memory, and resting-state assessments. tDCS of the right DLPFC increased midline-frontal theta-band activity in flight and n-back working memory training, confirming tDCS-related modulation of brain processes involved in executive function. This modulation corresponded to a significantly different online and offline learning rates for working memory accuracy and decreased inter-subject behavioral variability in flight and n-back tasks in the DLPFC stimulation group. Additionally, tDCS of left M1 increased parietal alpha power during flight tasks and tDCS to the right DLPFC increased midline frontal theta-band power during n-back and flight tasks. These results demonstrate a modulation of group variance in skill acquisition through an increasing in learned skill consistency in cognitive and real-world tasks with tDCS. Further, tDCS performance improvements corresponded to changes in electrophysiological and blood-oxygenation activity of the DLPFC and motor cortices, providing a stronger link between modulated neuronal function and behavior. PMID:26903841
Dynamics of EEG functional connectivity during statistical learning.
Tóth, Brigitta; Janacsek, Karolina; Takács, Ádám; Kóbor, Andrea; Zavecz, Zsófia; Nemeth, Dezso
2017-10-01
Statistical learning is a fundamental mechanism of the brain, which extracts and represents regularities of our environment. Statistical learning is crucial in predictive processing, and in the acquisition of perceptual, motor, cognitive, and social skills. Although previous studies have revealed competitive neurocognitive processes underlying statistical learning, the neural communication of the related brain regions (functional connectivity, FC) has not yet been investigated. The present study aimed to fill this gap by investigating FC networks that promote statistical learning in humans. Young adults (N=28) performed a statistical learning task while 128-channels EEG was acquired. The task involved probabilistic sequences, which enabled to measure incidental/implicit learning of conditional probabilities. Phase synchronization in seven frequency bands was used to quantify FC between cortical regions during the first, second, and third periods of the learning task, respectively. Here we show that statistical learning is negatively correlated with FC of the anterior brain regions in slow (theta) and fast (beta) oscillations. These negative correlations increased as the learning progressed. Our findings provide evidence that dynamic antagonist brain networks serve a hallmark of statistical learning. Copyright © 2017 Elsevier Inc. All rights reserved.
McCaskie, Andrew W; Kenny, Dianna T; Deshmukh, Sandeep
2011-05-02
Trainee surgeons must acquire expert status in the context of reduced hours, reduced operating room time and the need to learn complex skills involving screen-mediated techniques, computers and robotics. Ever more sophisticated surgical simulation strategies have been helpful in providing surgeons with the opportunity to practise, but not all of these strategies are widely available. Similarities in the motor skills required in skilled musical performance and surgery suggest that models of music learning, and particularly skilled motor development, may be applicable in training surgeons. More attention should be paid to factors associated with optimal arousal and optimal performance in surgical training - lessons learned from helping anxious musicians optimise performance and manage anxiety may also be transferable to trainee surgeons. The ways in which the trainee surgeon moves from novice to expert need to be better understood so that this process can be expedited using current knowledge in other disciplines requiring the performance of complex fine motor tasks with high cognitive load under pressure.