Variation in motor output and motor performance in a centrally generated motor pattern
Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.
2014-01-01
Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved. PMID:24717348
Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment
Mantilla, Carlos B.; Seven, Yasin B.; Sieck, Gary C.
2014-01-01
Motor units are the final element of neuromotor control. In manner analogous to the organization of neuromotor control in other skeletal muscles, diaphragm motor units comprise phrenic motoneurons located in the cervical spinal cord that innervate the diaphragm muscle, the main inspiratory muscle in mammals. Diaphragm motor units play a primary role in sustaining ventilation, but are also active in other non-ventilatory behaviors, including coughing, sneezing, vomiting, defecation and parturition. Diaphragm muscle fibers comprise all fiber types. Thus, diaphragm motor units display substantial differences in contractile and fatigue properties, but importantly properties of the motoneuron and muscle fibers within a motor unit are matched. As in other skeletal muscles, diaphragm motor units are recruited in order such that motor units that display greater fatigue resistance are recruited earlier and more often than more fatigable motor units. The properties of the motor unit population are critical determinants of the function of a skeletal muscle across the range of possible motor tasks. Accordingly, fatigue-resistant motor units are sufficient to generate the forces necessary for ventilatory behaviors whereas more fatigable units are only activated during expulsive behaviors important for airway clearance. Neuromotor control of diaphragm motor units may reflect selective inputs from distinct pattern generators distributed according to the motor unit properties necessary to accomplish these different motor tasks. In contrast, widely-distributed inputs to phrenic motoneurons from various pattern generators (e.g., for breathing, coughing or vocalization) would dictate recruitment order based on intrinsic electrophysiological properties. PMID:24746055
Pitti, Alexandre; Lungarella, Max; Kuniyoshi, Yasuo
2009-01-01
Pattern generators found in the spinal cord are no more seen as simple rhythmic oscillators for motion control. Indeed, they achieve flexible and dynamical coordination in interaction with the body and the environment dynamics giving to rise motor synergies. Discovering the mechanisms underlying the control of motor synergies constitutes an important research question not only for neuroscience but also for robotics: the motors coordination of high dimensional robotic systems is still a drawback and new control methods based on biological solutions may reduce their overall complexity. We propose to model the flexible combination of motor synergies in embodied systems via partial phase synchronization of distributed chaotic systems; for specific coupling strength, chaotic systems are able to phase synchronize their dynamics to the resonant frequencies of one external force. We take advantage of this property to explore and exploit the intrinsic dynamics of one specified embodied system. In two experiments with bipedal walkers, we show how motor synergies emerge when the controllers phase synchronize to the body's dynamics, entraining it to its intrinsic behavioral patterns. This stage is characterized by directed information flow from the sensors to the motors exhibiting the optimal situation when the body dynamics drive the controllers (mutual entrainment). Based on our results, we discuss the relevance of our findings for modeling the modular control of distributed pattern generators exhibited in the spinal cord, and for exploring the motor synergies in robots. PMID:20011216
Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment.
Mantilla, Carlos B; Seven, Yasin B; Sieck, Gary C
2014-01-01
Motor units are the final element of neuromotor control. In manner analogous to the organization of neuromotor control in other skeletal muscles, diaphragm motor units comprise phrenic motoneurons located in the cervical spinal cord that innervate the diaphragm muscle, the main inspiratory muscle in mammals. Diaphragm motor units play a primary role in sustaining ventilation but are also active in other nonventilatory behaviors, including coughing, sneezing, vomiting, defecation, and parturition. Diaphragm muscle fibers comprise all fiber types. Thus, diaphragm motor units display substantial differences in contractile and fatigue properties, but importantly, properties of the motoneuron and muscle fibers within a motor unit are matched. As in other skeletal muscles, diaphragm motor units are recruited in order such that motor units that display greater fatigue resistance are recruited earlier and more often than more fatigable motor units. The properties of the motor unit population are critical determinants of the function of a skeletal muscle across the range of possible motor tasks. Accordingly, fatigue-resistant motor units are sufficient to generate the forces necessary for ventilatory behaviors, whereas more fatigable units are only activated during expulsive behaviors important for airway clearance. Neuromotor control of diaphragm motor units may reflect selective inputs from distinct pattern generators distributed according to the motor unit properties necessary to accomplish these different motor tasks. In contrast, widely distributed inputs to phrenic motoneurons from various pattern generators (e.g., for breathing, coughing, or vocalization) would dictate recruitment order based on intrinsic electrophysiological properties. © 2014 Elsevier B.V. All rights reserved.
Insights into the mechanisms underlying colonic motor patterns
Dinning, Phil G.; Brookes, Simon J.; Costa, Marcello
2016-01-01
Abstract In recent years there have been significant technical and methodological advances in our ability to record the movements of the gastrointestinal tract. This has led to significant changes in our understanding of the different types of motor patterns that exist in the gastrointestinal tract (particularly the large intestine) and in our understanding of the mechanisms underlying their generation. Compared with other tubular smooth muscle organs, a rich variety of motor patterns occurs in the large intestine. This reflects a relatively autonomous nervous system in the gut wall, which has its own unique population of sensory neurons. Although the enteric nervous system can function independently of central neural inputs, under physiological conditions bowel motility is influenced by the CNS: if spinal pathways are disrupted, deficits in motility occur. The combination of high resolution manometry and video imaging has improved our knowledge of the range of motor patterns and provided some insight into the neural and mechanical factors underlying propulsion of contents. The neural circuits responsible for the generation of peristalsis and colonic migrating motor complexes have now been identified to lie within the myenteric plexus and do not require inputs from the mucosa or submucosal ganglia for their generation, but can be modified by their activity. This review will discuss the recent advances in our understanding of the different patterns of propagating motor activity in the large intestine of mammals and how latest technologies have led to major changes in our understanding of the mechanisms underlying their generation. PMID:26990133
Matsunaga, Teruyuki; Kohsaka, Hiroshi; Nose, Akinao
2017-02-22
In this study, we used the peristaltic crawling of Drosophila larvae as a model to study how motor patterns are regulated by central circuits. We built an experimental system that allows simultaneous application of optogenetics and calcium imaging to the isolated ventral nerve cord (VNC). We then investigated the effects of manipulating local activity of motor neurons (MNs) on fictive locomotion observed as waves of MN activity propagating along neuromeres. Optical inhibition of MNs with halorhodopsin3 in a middle segment (A4, A5, or A6), but not other segments, dramatically decreased the frequency of the motor waves. Conversely, local activation of MNs with channelrhodopsin2 in a posterior segment (A6 or A7) increased the frequency of the motor waves. Since peripheral nerves mediating sensory feedback were severed in the VNC preparation, these results indicate that MNs send signals to the central circuits to regulate motor pattern generation. Our results also indicate segmental specificity in the roles of MNs in motor control. The effects of the local MN activity manipulation were lost in shaking-B 2 ( shakB 2 ) or ogre 2 , gap-junction mutations in Drosophila , or upon acute application of the gap junction blocker carbenoxolone, implicating electrical synapses in the signaling from MNs. Cell-type-specific RNAi suggested shakB and ogre function in MNs and interneurons, respectively, during the signaling. Our results not only reveal an unexpected role for MNs in motor pattern regulation, but also introduce a powerful experimental system that enables examination of the input-output relationship among the component neurons in this system. SIGNIFICANCE STATEMENT Motor neurons are generally considered passive players in motor pattern generation, simply relaying information from upstream interneuronal circuits to the target muscles. This study shows instead that MNs play active roles in the control of motor generation by conveying information via gap junctions to the central pattern-generating circuits in larval Drosophila , providing novel insights into motor circuit control. The experimental system introduced in this study also presents a new approach for studying intersegmentally coordinated locomotion. Unlike traditional electrophysiology methods, this system enables the simultaneous recording and manipulation of populations of neurons that are genetically specified and span multiple segments. Copyright © 2017 the authors 0270-6474/17/372045-16$15.00/0.
NASA Astrophysics Data System (ADS)
Son, Yurak; Kamano, Takuya; Yasuno, Takashi; Suzuki, Takayuki; Harada, Hironobu
This paper describes the generation of adaptive gait patterns using new Central Pattern Generators (CPGs) including motor dynamic models for a quadruped robot under various environment. The CPGs act as the flexible oscillators of the joints and make the desired angle of the joints. The CPGs are mutually connected each other, and the sets of their coupling parameters are adjusted by genetic algorithm so that the quadruped robot can realize the stable and adequate gait patterns. As a result of generation, the suitable CPG networks for not only a walking straight gait pattern but also rotation gait patterns are obtained. Experimental results demonstrate that the proposed CPG networks are effective to automatically adjust the adaptive gait patterns for the tested quadruped robot under various environment. Furthermore, the target tracking control based on image processing is achieved by combining the generated gait patterns.
Dynamical origin of complex motor patterns
NASA Astrophysics Data System (ADS)
Alonso, L. M.; Alliende, J. A.; Mindlin, G. B.
2010-11-01
Behavior emerges as the nervous system generates motor patterns in charge of driving a peripheral biomechanical device. For several cases in the animal kingdom, it has been identified that the motor patterns used in order to accomplish a diversity of tasks are the different solutions of a simple, low dimensional nonlinear dynamical system. Yet, motor patterns emerge from the interaction of an enormous number of individual dynamical units. In this work, we study the dynamics of the average activity of a large set of coupled excitable units which are periodically forced. We show that low dimensional, yet non trivial dynamics emerges. As a case study, we analyze the air sac pressure patterns used by domestic canaries during song, which consists of a succession of repetitions of different syllable types. We show that the pressure patterns used to generate different syllables can be approximated by the solutions of the investigated model. In this way, we are capable of integrating different description scales of our problem.
Jones, Sarah E; Stanić, Davor; Dutschmann, Mathias
2016-12-01
The respiratory pattern generator of mammals is anatomically organized in lateral respiratory columns (LRCs) within the brainstem. LRC compartments serve specific functions in respiratory pattern and rhythm generation. While the caudal medullary reticular formation (cMRF) has respiratory functions reportedly related to the mediation of expulsive respiratory reflexes, it remains unclear whether neurons of the cMRF functionally belong to the LRC. In the present study we specifically investigated the respiratory functions of the cMRF. Tract tracing shows that the cMRF has substantial connectivity with key compartments of the LRC, particularly the parafacial respiratory group and the Kölliker-Fuse nuclei. These neurons have a loose topography and are located in the ventral and dorsal cMRF. Systematic mapping of the cMRF with glutamate stimulation revealed potent respiratory modulation of the respiratory motor pattern from both dorsal and ventral injection sites. Pharmacological inhibition of the cMRF with the GABA-receptor agonist isoguvacine produced significant and robust changes to the baseline respiratory motor pattern (decreased laryngeal post-inspiratory and abdominal expiratory motor activity, delayed inspiratory off-switch and increased respiratory frequency) after dorsal cMRF injection, while ventral injections had no effect. The present data indicate that the ventral cMRF is not an integral part of the respiratory pattern generator and merely serves as a relay for sensory and/or higher command-related modulation of respiration. On the contrary, the dorsal aspect of the cMRF clearly has a functional role in respiratory pattern formation. These findings revive the largely abandoned concept of a dorsal respiratory group that contributes to the generation of the respiratory motor pattern.
DINNING, P. G.; WIKLENDT, L.; MASLEN, L.; GIBBINS, I.; PATTON, V.; ARKWRIGHT, J. W.; LUBOWSKI, D. Z.; O'GRADY, G.; BAMPTON, P. A.; BROOKES, S. J.; COSTA, M.
2015-01-01
Background Until recently, investigations of the normal patterns of motility of the healthy human colon have been limited by the resolution of in vivo recording techniques. Methods We have used a new, high-resolution fiber-optic manometry system (72 sensors at 1-cm intervals) to record motor activity from colon in 10 healthy human subjects. Key Results In the fasted colon, on the basis of rate and extent of propagation, four types of propagating motor pattern could be identified: (i) cyclic motor patterns (at 2–6/min); (ii) short single motor patterns; (iii) long single motor patterns; and (iv) occasional retrograde, slow motor patterns. For the most part, the cyclic and short single motor patterns propagated in a retrograde direction. Following a 700 kCal meal, a fifth motor pattern appeared; high-amplitude propagating sequences (HAPS) and there was large increase in retrograde cyclic motor patterns (5.6±5.4/2 h vs 34.7±19.8/2 h; p < 0.001). The duration and amplitude of individual pressure events were significantly correlated. Discriminant and multivariate analysis of duration, gradient, and amplitude of the pressure events that made up propagating motor patterns distinguished clearly two types of pressure events: those belonging to HAPS and those belonging to all other propagating motor patterns. Conclusions & Inferences This work provides the first comprehensive description of colonic motor patterns recorded by high-resolution manometry and demonstrates an abundance of retrograde propagating motor patterns. The propagating motor patterns appear to be generated by two independent sources, potentially indicating their neurogenic or myogenic origin. PMID:25131177
Newman, Amy E M; Foerster, Melody; Shoemaker, Kelly L; Robertson, R Meldrum
2003-11-01
Ventilation is a crucial motor activity that provides organisms with an adequate circulation of respiratory gases. For animals that exist in harsh environments, an important goal is to protect ventilation under extreme conditions. Heat shock, anoxia, and cold shock are environmental stresses that have previously been shown to trigger protective responses. We used the locust to examine stress-induced thermotolerance by monitoring the ability of the central nervous system to generate ventilatory motor patterns during a subsequent heat exposure. Preparations from pre-stressed animals had an increased incidence of motor pattern recovery following heat-induced failure, however, prior stress did not alter the characteristics of the ventilatory motor pattern. During constant heat exposure at sub-lethal temperatures, we observed a protective effect of heat shock pre-treatment. Serotonin application had similar effects on motor patterns when compared to prior heat shock. These studies are consistent with previous studies that indicate prior exposure to extreme temperatures and hypoxia can protect neural operation against high temperature stress. They further suggest that the protective mechanism is a time-dependent process best revealed during prolonged exposure to extreme temperatures and is mediated by a neuromodulator such as serotonin.
2015-01-01
The cercal system of crickets detects low-frequency air currents produced by approaching predators and self-generated air currents during singing, which may provide sensory feedback to the singing motor network. We analyzed the effect of cercal stimulation on singing motor pattern generation to reveal the response of a singing interneuron to predator-like signals and to elucidate the possible role of self-generated air currents during singing. In fictive singing males, we recorded an interneuron of the singing network while applying air currents to the cerci; additionally, we analyzed the effect of abolishing the cercal system in freely singing males. In fictively singing crickets, the effect of short air stimuli is either to terminate prematurely or to lengthen the interchirp interval, depending on their phase in the chirp cycle. Within our stimulation paradigm, air stimuli of different velocities and durations always elicited an inhibitory postsynaptic potential in the singing interneuron. Current injection in the singing interneuron elicited singing motor activity, even during the air current-evoked inhibitory input from the cercal pathway. The disruptive effects of air stimuli on the fictive singing pattern and the inhibitory response of the singing interneuron point toward the cercal system being involved in initiating avoidance responses in singing crickets, according to the established role of cerci in a predator escape pathway. After abolishing the activity of the cercal system, the timing of natural singing activity was not significantly altered. Our study provides no evidence that self-generated cercal sensory activity has a feedback function for singing motor pattern generation. PMID:26334014
Neural basis of singing in crickets: central pattern generation in abdominal ganglia
NASA Astrophysics Data System (ADS)
Schöneich, Stefan; Hedwig, Berthold
2011-12-01
The neural mechanisms underlying cricket singing behavior have been the focus of several studies, but the central pattern generator (CPG) for singing has not been localized conclusively. To test if the abdominal ganglia contribute to the singing motor pattern and to analyze if parts of the singing CPG are located in these ganglia, we systematically truncated the abdominal nerve cord of fictively singing crickets while recording the singing motor pattern from a front-wing nerve. Severing the connectives anywhere between terminal ganglion and abdominal ganglion A3 did not preclude singing, although the motor pattern became more variable and failure-prone as more ganglia were disconnected. Singing terminated immediately and permanently after transecting the connectives between the metathoracic ganglion complex and the first unfused abdominal ganglion A3. The contribution of abdominal ganglia for singing pattern generation was confirmed by intracellular interneuron recordings and current injections. During fictive singing, an ascending interneuron with its soma and dendrite in A3 depolarized rhythmically. It spiked 10 ms before the wing-opener activity and hyperpolarized in phase with the wing-closer activity. Depolarizing current injection elicited rhythmic membrane potential oscillations and spike bursts that elicited additional syllables and reliably reset the ongoing chirp rhythm. Our results disclose that the abdominal ganglion A3 is directly involved in generating the singing motor pattern, whereas the more posterior ganglia seem to provide only stabilizing feedback to the CPG circuit. Localizing the singing CPG in the anterior abdominal neuromeres now allows analyzing its circuitry at the level of identified interneurons in subsequent studies.
Motor Neurons Tune Premotor Activity in a Vertebrate Central Pattern Generator
2017-01-01
Central patterns generators (CPGs) are neural circuits that drive rhythmic motor output without sensory feedback. Vertebrate CPGs are generally believed to operate in a top-down manner in which premotor interneurons activate motor neurons that in turn drive muscles. In contrast, the frog (Xenopus laevis) vocal CPG contains a functionally unexplored neuronal projection from the motor nucleus to the premotor nucleus, indicating a recurrent pathway that may contribute to rhythm generation. In this study, we characterized the function of this bottom-up connection. The X. laevis vocal CPG produces a 50–60 Hz “fast trill” song used by males during courtship. We recorded “fictive vocalizations” in the in vitro CPG from the laryngeal nerve while simultaneously recording premotor activity at the population and single-cell level. We show that transecting the motor-to-premotor projection eliminated the characteristic firing rate of premotor neurons. Silencing motor neurons with the intracellular sodium channel blocker QX-314 also disrupted premotor rhythms, as did blockade of nicotinic synapses in the motor nucleus (the putative location of motor neuron-to-interneuron connections). Electrically stimulating the laryngeal nerve elicited primarily IPSPs in premotor neurons that could be blocked by a nicotinic receptor antagonist. Our results indicate that an inhibitory signal, activated by motor neurons, is required for proper CPG function. To our knowledge, these findings represent the first example of a CPG in which precise premotor rhythms are tuned by motor neuron activity. SIGNIFICANCE STATEMENT Central pattern generators (CPGs) are neural circuits that produce rhythmic behaviors. In vertebrates, motor neurons are not commonly known to contribute to CPG function, with the exception of a few spinal circuits where the functional significance of motor neuron feedback is still poorly understood. The frog hindbrain vocal circuit contains a previously unexplored connection from the motor to premotor region. Our results indicate that motor neurons activate this bottom-up connection, and blocking this signal eliminates normal premotor activity. These findings may promote increased awareness of potential involvement of motor neurons in a wider range of CPGs, perhaps clarifying our understanding of network principles underlying motor behaviors in numerous organisms, including humans. PMID:28219984
Microtubules and motor proteins: Mechanically regulated self-organization in vivo
NASA Astrophysics Data System (ADS)
Vogel, S. K.; Pavin, N.; Maghelli, N.; Jülicher, F.; Tolić-Nørrelykke, I. M.
2009-11-01
A key aspect of life is sexual reproduction, which requires concerted movement. For successful mixing of the genetic material, molecular motors move the nucleus back and forth inside the cell. How motors work together to produce these large-scale movements, however, remains a mystery. To answer this question, we studied nuclear movement in fission yeast, which is driven by motor proteins pulling on microtubules. We show that motor proteins dynamically redistribute from one part of the cell to the other, generating asymmetric patterns of motors and, consequently, of forces that generate movement. By combining quantitative live cell imaging and laser ablation with a theoretical model, we find that this dynamic motor redistribution occurs purely as a result of changes in the mechanical strain sensed by the motor proteins. Our work therefore demonstrates that spatio-temporal pattern formation within a cell can occur as a result of mechanical cues (Vogel et al., 2009), which differs from conventional molecular signaling, as well as from self-organization based on a combination of biochemical reactions and diffusion.
Chitturi, Jyothsna; Hung, Wesley; Rahman, Anas M. Abdel; Wu, Min; Lim, Maria A.; Calarco, John; Dennis, James W.
2018-01-01
UBR1 is an E3 ubiquitin ligase best known for its ability to target protein degradation by the N-end rule. The physiological functions of UBR family proteins, however, remain not fully understood. We found that the functional loss of C. elegans UBR-1 leads to a specific motor deficit: when adult animals generate reversal movements, A-class motor neurons exhibit synchronized activation, preventing body bending. This motor deficit is rescued by removing GOT-1, a transaminase that converts aspartate to glutamate. Both UBR-1 and GOT-1 are expressed and critically required in premotor interneurons of the reversal motor circuit to regulate the motor pattern. ubr-1 and got-1 mutants exhibit elevated and decreased glutamate level, respectively. These results raise an intriguing possibility that UBR proteins regulate glutamate metabolism, which is critical for neuronal development and signaling. PMID:29649217
Human spinal locomotor control is based on flexibly organized burst generators.
Danner, Simon M; Hofstoetter, Ursula S; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank; Minassian, Karen
2015-03-01
Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the samples of rhythmic patterns. The basic activation patterns can be interpreted as central drives implemented by spinal burst generators that impose specific spatiotemporally organized activation on the lumbosacral motor neuron pools. Our data thus imply that the human lumbar spinal cord circuits can form burst-generating elements that flexibly combine to obtain a wide range of locomotor outputs from a constant, repetitive input. It may be possible to use this flexibility to incorporate specific adaptations to gait and stance to improve locomotor control, even after severe central nervous system damage. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Human spinal locomotor control is based on flexibly organized burst generators
Danner, Simon M.; Hofstoetter, Ursula S.; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank
2015-01-01
Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the samples of rhythmic patterns. The basic activation patterns can be interpreted as central drives implemented by spinal burst generators that impose specific spatiotemporally organized activation on the lumbosacral motor neuron pools. Our data thus imply that the human lumbar spinal cord circuits can form burst-generating elements that flexibly combine to obtain a wide range of locomotor outputs from a constant, repetitive input. It may be possible to use this flexibility to incorporate specific adaptations to gait and stance to improve locomotor control, even after severe central nervous system damage. PMID:25582580
Koizumi, Hidehiko; Mosher, Bryan; Tariq, Mohammad F.; Zhang, Ruli; Molkov, Yaroslav I.
2016-01-01
The pre-Bötzinger (pre-BötC) and Bötzinger (BötC) complexes are the brainstem compartments containing interneurons considered to be critically involved in generating respiratory rhythm and motor pattern in mammals. Current models postulate that both generation of the rhythm and coordination of the inspiratory-expiratory pattern involve inhibitory synaptic interactions within and between these regions. Both regions contain glycinergic and GABAergic neurons, and rhythmically active neurons in these regions receive appropriately coordinated phasic inhibition necessary for generation of the normal three-phase respiratory pattern. However, recent experiments attempting to disrupt glycinergic and GABAergic postsynaptic inhibition in the pre-BötC and BötC in adult rats in vivo have questioned the critical role of synaptic inhibition in these regions, as well as the importance of the BötC, which contradicts previous physiological and pharmacological studies. To further evaluate the roles of synaptic inhibition and the BötC, we bilaterally microinjected the GABAA receptor antagonist gabazine and glycinergic receptor antagonist strychnine into the pre-BötC or BötC in anesthetized adult rats in vivo and in perfused in situ brainstem–spinal cord preparations from juvenile rats. Muscimol was microinjected to suppress neuronal activity in the pre-BötC or BötC. In both preparations, disrupting inhibition within pre-BötC or BötC caused major site-specific perturbations of the rhythm and disrupted the three-phase motor pattern, in some experiments terminating rhythmic motor output. Suppressing BötC activity also potently disturbed the rhythm and motor pattern. We conclude that inhibitory circuit interactions within and between the pre-BötC and BötC critically regulate rhythmogenesis and are required for normal respiratory motor pattern generation. PMID:27200412
Output variability across animals and levels in a motor system
Norris, Brian J; Günay, Cengiz; Kueh, Daniel
2018-01-01
Rhythmic behaviors vary across individuals. We investigated the sources of this output variability across a motor system, from the central pattern generator (CPG) to the motor plant. In the bilaterally symmetric leech heartbeat system, the CPG orchestrates two coordinations in the bilateral hearts with different intersegmental phase relations (Δϕ) and periodic side-to-side switches. Population variability is large. We show that the system is precise within a coordination, that differences in repetitions of a coordination contribute little to population output variability, but that differences between bilaterally homologous cells may contribute to some of this variability. Nevertheless, much output variability is likely associated with genetic and life history differences among individuals. Variability of Δϕ were coordination-specific: similar at all levels in one, but significantly lower for the motor pattern than the CPG pattern in the other. Mechanisms that transform CPG output to motor neurons may limit output variability in the motor pattern. PMID:29345614
Arshavsky, I; Deliagina, T G; Orlovsky, G N
2015-01-01
Central pattern generators (CPGs) are a set of interconnected neurons capable of generating a basic pattern of motor output underlying "automatic" movements (breathing, locomotion, chewing, swallowing, and so on) in the absence of afferent signals from the executive motor apparatus. They can be divided into the constitutive CPGs active throughout the entire lifetime (respiratory CPGs) and conditional CPGs controlling episodic movements (locomotion, chewing, swallowing, and others). Since a motor output of CPGs is determined by their internal organization, the activities of the conditional CPGs are initiated by simple commands coming from higher centers. We describe the structural and functional organization of the locomotor CPGs in the marine mollusk Clione limacina, lamprey, frog embryo, and laboratory mammals (cat, mouse, and rat), CPGs controlling the respiratory and swallowing movements in mammals, and CPGs controlling discharges of the electric organ in the gymnotiform fish. It is shown that in all these cases, the generation of rhythmic motor output is based both on the endogenous (pacemaker) activity of specific groups of interneurons and on interneural interactions. These two interrelated mechanisms complement each other, ensuring the high reliability of CPG functionality. We discuss how the experience obtained in studying CPGs can be used to understand mechanisms of more complex functions of the brain, including its cognitive functions.
Distributed plasticity of locomotor pattern generators in spinal cord injured patients.
Grasso, Renato; Ivanenko, Yuri P; Zago, Myrka; Molinari, Marco; Scivoletto, Giorgio; Castellano, Vincenzo; Macellari, Velio; Lacquaniti, Francesco
2004-05-01
Recent progress with spinal cord injured (SCI) patients indicates that with training they can recover some locomotor ability. Here we addressed the question of whether locomotor responses developed with training depend on re-activation of the normal motor patterns or whether they depend on learning new motor patterns. To this end we recorded detailed kinematic and EMG data in SCI patients trained to step on a treadmill with body-weight support (BWST), and in healthy subjects. We found that all patients could be trained to step with BWST in the laboratory conditions, but they used new coordinative strategies. Patients with more severe lesions used their arms and body to assist the leg movements via the biomechanical coupling of limb and body segments. In all patients, the phase-relationship of the angular motion of the different lower limb segments was very different from the control, as was the pattern of activity of most recorded muscles. Surprisingly, however, the new motor strategies were quite effective in generating foot motion that closely matched the normal in the laboratory conditions. With training, foot motion recovered the shape, the step-by-step reproducibility, and the two-thirds power relationship between curvature and velocity that characterize normal gait. We mapped the recorded patterns of muscle activity onto the approximate rostrocaudal location of motor neuron pools in the human spinal cord. The reconstructed spatiotemporal maps of motor neuron activity in SCI patients were quite different from those of healthy subjects. At the end of training, the locomotor network reorganized at both supralesional and sublesional levels, from the cervical to the sacral cord segments. We conclude that locomotor responses in SCI patients may not be subserved by changes localized to limited regions of the spinal cord, but may depend on a plastic redistribution of activity across most of the rostrocaudal extent of the spinal cord. Distributed plasticity underlies recovery of foot kinematics by generating new patterns of muscle activity that are motor equivalents of the normal ones.
Central Pattern Generation and the Motor Infrastructure for Suck, Respiration, and Speech
ERIC Educational Resources Information Center
Barlow, Steven M.; Estep, Meredith
2006-01-01
The objective of the current report is to review experimental findings on centrally patterned movements and sensory and descending modulation of central pattern generators (CPGs) in a variety of animal and human models. Special emphasis is directed toward speech production muscle systems, including the chest wall and orofacial complex during…
Intraluminal pressure patterns in the human colon assessed by high-resolution manometry
Chen, Ji-Hong; Yu, Yuanjie; Yang, Zixian; Yu, Wen-Zhen; Chen, Wu Lan; Yu, Hui; Kim, Marie Jeong-Min; Huang, Min; Tan, Shiyun; Luo, Hesheng; Chen, Jianfeng; Chen, Jiande D. Z.; Huizinga, Jan D.
2017-01-01
Assessment of colonic motor dysfunction is rarely done because of inadequate methodology and lack of knowledge about normal motor patterns. Here we report on elucidation of intraluminal pressure patterns using High Resolution Colonic Manometry during a baseline period and in response to a meal, in 15 patients with constipation, chronically dependent on laxatives, 5 healthy volunteers and 9 patients with minor, transient, IBS-like symptoms but no sign of constipation. Simultaneous pressure waves (SPWs) were the most prominent propulsive motor pattern, associated with gas expulsion and anal sphincter relaxation, inferred to be associated with fast propagating contractions. Isolated pressure transients occurred in most sensors, ranging in amplitude from 5–230 mmHg. Rhythmic haustral boundary pressure transients occurred at sensors about 4–5 cm apart. Synchronized haustral pressure waves, covering 3–5 cm of the colon occurred to create a characteristic intrahaustral cyclic motor pattern at 3–6 cycles/min, propagating in mixed direction. This activity abruptly alternated with erratic patterns resembling the segmentation motor pattern of the small intestine. High amplitude propagating pressure waves (HAPWs) were too rare to contribute to function assessment in most subjects. Most patients, dependent on laxatives for defecation, were able to generate normal motor patterns in response to a meal. PMID:28216670
Winter, D A
1989-12-01
The biomechanical (kinetic) analysis of human gait reveals the integrated and detailed motor patterns that are essential in pinpointing the abnormal patterns in pathological gait. In a similar manner, these motor patterns (moments, powers, and EMGs) can be used to identify synergies and to validate theories of CNS control. Based on kinetic and EMG patterns for a wide range of normal subjects and cadences, evidence is presented that both supports and negates the central pattern generator theory of locomotion. Adaptive motor patterns that are evident in peripheral gait pathologies reinforce a strong peripheral rather than a central control. Finally, a three-component subtask theory of human gait is presented and is supported by reference to the motor patterns seen in a normal gait. The identified subtasks are (a) support (against collapse during stance); (b) dynamic balance of the upper body, also during stance; and (c) feedforward control of the foot trajectory to achieve safe ground clearance and a gentle heel contact.
Katz, P S
1998-05-01
There are many sources of modulatory input to CPGs and other types of neuronal circuits. These inputs can change the properties of cells and synapses and dramatically alter the production of motor patterns. Sometimes this enables the production of motor patterns by the circuit. At other times, the modulation allows alternate motor patterns to be produced by a single circuit. Modulatory neurones have fast as well as slow actions. In some cases, such as with GPR, the two types of effects are due to the release of co-transmitters. In other cases, such as with the DSIs, a single substance can act at different receptors to cause fast and slow postsynaptic actions. The effect of a neuromodulatory neurone is determined by the type of receptor on the target neurone. Thus a single modulatory neurone evokes a suite of actions in a circuit and thereby produces a co-ordinated output. Extrinsic and intrinsic sources of neuromodulation have different sets of constraints acting upon them. For example, extrinsic neuromodulation can easily be used for motor pattern selection; a different pattern is produced depending upon which modulatory inputs are active. However, intrinsic neuromodulation is not well suited to that task. Instead, it is useful for self-organizing properties and experience-dependent effects. One clear conclusion from this work and other work in the field is that neuromodulation by neurones intrinsic and extrinsic to CPGs is not uncommon (Katz, 1995; Katz & Frost, 1996). It is part of the normal process of motor pattern generation. As such, it needs to be considered when discussing mechanisms for neuronal circuit actions.
Passive Transport Disrupts Grid Signals in the Parahippocampal Cortex.
Winter, Shawn S; Mehlman, Max L; Clark, Benjamin J; Taube, Jeffrey S
2015-10-05
Navigation is usually thought of relative to landmarks, but neural signals representing space also use information generated by an animal's movements. These signals include grid cells, which fire at multiple locations, forming a repeating grid pattern. Grid cell generation depends upon theta rhythm, a 6-10 Hz electroencephalogram (EEG) oscillation that is modulated by the animals' movement velocity. We passively moved rats in a clear cart to eliminate motor related self-movement cues that drive moment-to-moment changes in theta rhythmicity. We found that passive movement maintained theta power and frequency at levels equivalent to low active movement velocity, spared overall head-direction (HD) cell characteristics, but abolished both velocity modulation of theta rhythmicity and grid cell firing patterns. These results indicate that self-movement motor cues are necessary for generating grid-specific firing patterns, possibly by driving velocity modulation of theta rhythmicity, which may be used as a speed signal to generate the repeating pattern of grid cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Passive Transport Disrupts Grid Signals in the Parahippocampal Cortex
Winter, Shawn S.; Mehlman, Max L.; Clark, Benjamin J.; Taube, Jeffrey S.
2015-01-01
Summary Navigation is usually thought of relative to landmarks, but neural signals representing space also use information generated by an animal’s movements. These signals include grid cells, which fire at multiple locations forming a repeating grid pattern. Grid cell generation depends upon theta rhythm, a 6-10 Hz EEG oscillation that is modulated by the animals’ movement velocity. We passively moved rats in a clear cart to eliminate motor related self-movement cues that drive moment-to-moment changes in theta rhythmicity. We found that passive movement maintained theta power and frequency at levels equivalent to low active movement velocity, spared overall HD cell characteristics, and abolished velocity modulation of theta rhythmicity and grid cell firing patterns. These results indicate that self-movement motor cues are necessary for generating grid-specific firing patterns, possibly by driving velocity modulation of theta rhythmicity. Velocity modulation of theta may be used as a speed signal to generate the repeating pattern of grid cells. PMID:26387719
Patterns of motor activity in the isolated nerve cord of the octopus arm.
Gutfreund, Yoram; Matzner, Henry; Flash, Tamar; Hochner, Binyamin
2006-12-01
The extremely flexible octopus arm provides a unique opportunity for studying movement control in a highly redundant motor system. We describe a novel preparation that allows analysis of the peripheral nervous system of the octopus arm and its interaction with the muscular and mechanosensory elements of the arm's intrinsic muscular system. First we examined the synaptic responses in muscle fibers to identify the motor pathways from the axial nerve cord of the arm to the surrounding musculature. We show that the motor axons project to the muscles via nerve roots originating laterally from the arm nerve cord. The motor field of each nerve is limited to the region where the nerve enters the arm musculature. The same roots also carry afferent mechanosensory information from the intrinsic muscle to the axial nerve cord. Next, we characterized the pattern of activity generated in the dorsal roots by electrically stimulating the axial nerve cord. The evoked activity, although far reaching and long lasting, cannot alone account for the arm extension movements generated by similar electrical stimulation. The mismatch between patterns of activity in the isolated cord and in an intact arm may stem from the involvement of mechanosensory feedback in natural arm extension.
Itakura, Yuki; Kohsaka, Hiroshi; Ohyama, Tomoko; Zlatic, Marta
2015-01-01
Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs’ wave-like activity lagged behind that of motoneurons by several segments. Thus, GVLIs are activated when the front of a forward motor wave reaches the second or third anterior segment. We propose that GVLIs are part of the feedback inhibition system that terminates motor activity once the front of the motor wave proceeds to anterior segments. PMID:26335437
Itakura, Yuki; Kohsaka, Hiroshi; Ohyama, Tomoko; Zlatic, Marta; Pulver, Stefan R; Nose, Akinao
2015-01-01
Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs' wave-like activity lagged behind that of motoneurons by several segments. Thus, GVLIs are activated when the front of a forward motor wave reaches the second or third anterior segment. We propose that GVLIs are part of the feedback inhibition system that terminates motor activity once the front of the motor wave proceeds to anterior segments.
Does trampolining and anaerobic physical fitness affect sleep?
Buchegger, J; Fritsch, R; Meier-Koll, A; Riehle, H
1991-08-01
The structure of nocturnal sleep of 16 volunteers, participating in the anaerobic sports of trampolining, dancing, and soccer, was monitored by means of polygraphic recordings. Since trampolining requires the acquisition of unfamiliar patterns of motor coordination, it can be considered as a special form of motor learning, whereas the acquisition of motor skills specific for dancing and soccer can be linked with motor patterns of normal biped locomotion. According to this view, an experimental group of 8 volunteers was formed; they participated in a training course of trampolining. In addition, a control group of 8 subjects was recruited, who engaged in one of the other two anaerobic sports. Subjects who had acquired new motor skills during a 13-wk. program in trampolining showed a statistically significant increase in REM-sleep. By contrast, the 8 subjects of the control group showed no considerable changes in REM-sleep. This suggests that efforts in acquiring new and complex motor patterns activate processes specifically involved in the generation of REM stage during nocturnal sleep.
Siniscalchi, Michael J.; Jing, Jian; Weiss, Klaudiusz R.
2016-01-01
Repetition priming is characterized by increased performance as a behavior is repeated. Although this phenomenon is ubiquitous, mediating mechanisms are poorly understood. We address this issue in a model system, the feeding network of Aplysia. This network generates both ingestive and egestive motor programs. Previous data suggest a chemical coding model: ingestive and egestive inputs to the feeding central pattern generator (CPG) release different modulators, which act via different second messengers to prime motor activity in different ways. The ingestive input to the CPG (neuron CBI-2) releases the peptides feeding circuit activating peptide and cerebral peptide 2, which produce an ingestive pattern of activity. The egestive input to the CPG (the esophageal nerve) releases the peptide small cardioactive peptide. This model is based on research that focused on a single aspect of motor control (radula opening). Here we ask whether repetition priming is observed if activity is triggered with a neuron within the core CPG itself and demonstrate that it is not. Moreover, previous studies demonstrated that effects of modulatory neurotransmitters that induce repetition priming persist. This suggests that it should be possible to “prime” motor programs triggered from within the CPG by first stimulating extrinsic modulatory inputs. We demonstrate that programs triggered after ingestive input activation are ingestive and programs triggered after egestive input activation are egestive. We ask where this priming occurs and demonstrate modifications within the CPG itself. This arrangement is likely to have important consequences for “task” switching, i.e., the cessation of one type of motor activity and the initiation of another. PMID:27466134
An ultra-sparse code underliesthe generation of neural sequences in a songbird
NASA Astrophysics Data System (ADS)
Hahnloser, Richard H. R.; Kozhevnikov, Alexay A.; Fee, Michale S.
2002-09-01
Sequences of motor activity are encoded in many vertebrate brains by complex spatio-temporal patterns of neural activity; however, the neural circuit mechanisms underlying the generation of these pre-motor patterns are poorly understood. In songbirds, one prominent site of pre-motor activity is the forebrain robust nucleus of the archistriatum (RA), which generates stereotyped sequences of spike bursts during song and recapitulates these sequences during sleep. We show that the stereotyped sequences in RA are driven from nucleus HVC (high vocal centre), the principal pre-motor input to RA. Recordings of identified HVC neurons in sleeping and singing birds show that individual HVC neurons projecting onto RA neurons produce bursts sparsely, at a single, precise time during the RA sequence. These HVC neurons burst sequentially with respect to one another. We suggest that at each time in the RA sequence, the ensemble of active RA neurons is driven by a subpopulation of RA-projecting HVC neurons that is active only at that time. As a population, these HVC neurons may form an explicit representation of time in the sequence. Such a sparse representation, a temporal analogue of the `grandmother cell' concept for object recognition, eliminates the problem of temporal interference during sequence generation and learning attributed to more distributed representations.
Spencer, Nick J; Hibberd, Timothy J; Travis, Lee; Wiklendt, Lukasz; Costa, Marcello; Hu, Hongzhen; Brookes, Simon J; Wattchow, David A; Dinning, Phil G; Keating, Damien J; Sorensen, Julian
2018-05-28
The enteric nervous system (ENS) contains millions of neurons essential for organization of motor behaviour of the intestine. It is well established the large intestine requires ENS activity to drive propulsive motor behaviours. However, the firing pattern of the ENS underlying propagating neurogenic contractions of the large intestine remains unknown. To identify this, we used high resolution neuronal imaging with electrophysiology from neighbouring smooth muscle. Myoelectric activity underlying propagating neurogenic contractions along murine large intestine (referred to as colonic migrating motor complexes, CMMCs) consisted of prolonged bursts of rhythmic depolarizations at a frequency of ∼2 Hz. Temporal coordination of this activity in the smooth muscle over large spatial fields (∼7mm, longitudinally) was dependent on the ENS. During quiescent periods between neurogenic contractions, recordings from large populations of enteric neurons, in mice of either sex, revealed ongoing activity. The onset of neurogenic contractions was characterized by the emergence of temporally synchronized activity across large populations of excitatory and inhibitory neurons. This neuronal firing pattern was rhythmic and temporally synchronized across large numbers of ganglia at ∼2 Hz. ENS activation preceded smooth muscle depolarization, indicating rhythmic depolarizations in smooth muscle were controlled by firing of enteric neurons. The cyclical emergence of temporally coordinated firing of large populations of enteric neurons represents a unique neural motor pattern outside the central nervous system. This is the first direct observation of rhythmic firing in the ENS underlying rhythmic electrical depolarizations in smooth muscle. The pattern of neuronal activity we identified underlies the generation of CMMCs. SIGNIFICANCE STATEMENT How the enteric nervous system (ENS) generates neurogenic contractions of smooth muscle in the gastrointestinal (GI) tract has been a long-standing mystery in vertebrates. It is well known that myogenic pacemaker cells exist in the GI-tract (called Interstitial cells of Cajal, ICC) that generate rhythmic myogenic contractions. However, the mechanisms underlying the generation of rhythmic neurogenic contractions of smooth muscle in the GI-tract remains unknown. We developed a high resolution neuronal imaging method with electrophysiology to address this issue. This technique revealed a novel pattern of rhythmic coordinated neuronal firing in the ENS that has never been identified. Rhythmic neuronal firing in the ENS was found to generate rhythmic neurogenic depolarizations in smooth muscle that underlie contraction of the GI-tract. Copyright © 2018 the authors.
Bagarinao, Epifanio; Yoshida, Akihiro; Ueno, Mika; Terabe, Kazunori; Kato, Shohei; Isoda, Haruo; Nakai, Toshiharu
2018-01-01
Motor imagery (MI), a covert cognitive process where an action is mentally simulated but not actually performed, could be used as an effective neurorehabilitation tool for motor function improvement or recovery. Recent approaches employing brain-computer/brain-machine interfaces to provide online feedback of the MI during rehabilitation training have promising rehabilitation outcomes. In this study, we examined whether participants could volitionally recall MI-related brain activation patterns when guided using neurofeedback (NF) during training. The participants' performance was compared to that without NF. We hypothesized that participants would be able to consistently generate the relevant activation pattern associated with the MI task during training with NF compared to that without NF. To assess activation consistency, we used the performance of classifiers trained to discriminate MI-related brain activation patterns. Our results showed significantly higher predictive values of MI-related activation patterns during training with NF. Additionally, this improvement in the classification performance tends to be associated with the activation of middle temporal gyrus/inferior occipital gyrus, a region associated with visual motion processing, suggesting the importance of performance monitoring during MI task training. Taken together, these findings suggest that the efficacy of MI training, in terms of generating consistent brain activation patterns relevant to the task, can be enhanced by using NF as a mechanism to enable participants to volitionally recall task-related brain activation patterns.
Nishino, Atsuo; Okamura, Yasushi; Piscopo, Stefania; Brown, Euan R
2010-01-19
Rhythmic motor patterns for locomotion in vertebrates are generated in spinal cord neural networks known as spinal Central Pattern Generators (CPGs). A key element in pattern generation is the role of glycinergic synaptic transmission by interneurons that cross the cord midline and inhibit contralaterally-located excitatory neurons. The glycinergic inhibitory drive permits alternating and precisely timed motor output during locomotion such as walking or swimming. To understand better the evolution of this system we examined the physiology of the neural network controlling swimming in an invertebrate chordate relative of vertebrates, the ascidian larva Ciona intestinalis. A reduced preparation of the larva consisting of nerve cord and motor ganglion generates alternating swimming movements. Pharmacological and genetic manipulation of glycine receptors shows that they are implicated in the control of these locomotory movements. Morphological molecular techniques and heterologous expression experiments revealed that glycine receptors are inhibitory and are present on both motoneurones and locomotory muscle while putative glycinergic interneurons were identified in the nerve cord by labeling with an anti-glycine antibody. In Ciona intestinalis, glycine receptors, glycinergic transmission and putative glycinergic interneurons, have a key role in coordinating swimming movements through a simple CPG that is present in the motor ganglion and nerve cord. Thus, the strong association between glycine receptors and vertebrate locomotory networks may now be extended to include the phylum chordata. The results suggest that the basic network for 'spinal-like' locomotion is likely to have existed in the common ancestor of extant chordates some 650 M years ago.
A glycine receptor is involved in the organization of swimming movements in an invertebrate chordate
2010-01-01
Background Rhythmic motor patterns for locomotion in vertebrates are generated in spinal cord neural networks known as spinal Central Pattern Generators (CPGs). A key element in pattern generation is the role of glycinergic synaptic transmission by interneurons that cross the cord midline and inhibit contralaterally-located excitatory neurons. The glycinergic inhibitory drive permits alternating and precisely timed motor output during locomotion such as walking or swimming. To understand better the evolution of this system we examined the physiology of the neural network controlling swimming in an invertebrate chordate relative of vertebrates, the ascidian larva Ciona intestinalis. Results A reduced preparation of the larva consisting of nerve cord and motor ganglion generates alternating swimming movements. Pharmacological and genetic manipulation of glycine receptors shows that they are implicated in the control of these locomotory movements. Morphological molecular techniques and heterologous expression experiments revealed that glycine receptors are inhibitory and are present on both motoneurones and locomotory muscle while putative glycinergic interneurons were identified in the nerve cord by labeling with an anti-glycine antibody. Conclusions In Ciona intestinalis, glycine receptors, glycinergic transmission and putative glycinergic interneurons, have a key role in coordinating swimming movements through a simple CPG that is present in the motor ganglion and nerve cord. Thus, the strong association between glycine receptors and vertebrate locomotory networks may now be extended to include the phylum chordata. The results suggest that the basic network for 'spinal-like' locomotion is likely to have existed in the common ancestor of extant chordates some 650 M years ago. PMID:20085645
Tensegrity and motor-driven effective interactions in a model cytoskeleton
NASA Astrophysics Data System (ADS)
Wang, Shenshen; Wolynes, Peter G.
2012-04-01
Actomyosin networks are major structural components of the cell. They provide mechanical integrity and allow dynamic remodeling of eukaryotic cells, self-organizing into the diverse patterns essential for development. We provide a theoretical framework to investigate the intricate interplay between local force generation, network connectivity, and collective action of molecular motors. This framework is capable of accommodating both regular and heterogeneous pattern formation, arrested coarsening and macroscopic contraction in a unified manner. We model the actomyosin system as a motorized cat's cradle consisting of a crosslinked network of nonlinear elastic filaments subjected to spatially anti-correlated motor kicks acting on motorized (fibril) crosslinks. The phase diagram suggests there can be arrested phase separation which provides a natural explanation for the aggregation and coalescence of actomyosin condensates. Simulation studies confirm the theoretical picture that a nonequilibrium many-body system driven by correlated motor kicks can behave as if it were at an effective equilibrium, but with modified interactions that account for the correlation of the motor driven motions of the actively bonded nodes. Regular aster patterns are observed both in Brownian dynamics simulations at effective equilibrium and in the complete stochastic simulations. The results show that large-scale contraction requires correlated kicking.
NASA Astrophysics Data System (ADS)
Panetsos, Fivos; Sanchez-Jimenez, Abel; Torets, Carlos; Largo, Carla; Micera, Silvestro
2011-08-01
In this work we address the use of realtime cortical recordings for the generation of coherent, reliable and robust motor activity in spinal-lesioned animals through selective intraspinal microstimulation (ISMS). The spinal cord of adult rats was hemisectioned and groups of multielectrodes were implanted in both the central nervous system (CNS) and the spinal cord below the lesion level to establish a neural system interface (NSI). To test the reliability of this new NSI connection, highly repeatable neural responses recorded from the CNS were used as a pattern generator of an open-loop control strategy for selective ISMS of the spinal motoneurons. Our experimental procedure avoided the spontaneous non-controlled and non-repeatable neural activity that could have generated spurious ISMS and the consequent undesired muscle contractions. Combinations of complex CNS patterns generated precisely coordinated, reliable and robust motor actions.
Broderick, Patricia A
2013-06-21
The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs), serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of static parameters currently relied upon within the realms of science and medicine. There are myriad applications for the use of NMI to discover clinically relevant diagnoses and treatments for brain disease involving the motor system.
Broderick, Patricia A.
2013-01-01
The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs), serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of static parameters currently relied upon within the realms of science and medicine. There are myriad applications for the use of NMI to discover clinically relevant diagnoses and treatments for brain disease involving the motor system. PMID:24961434
Feedback Signal from Motoneurons Influences a Rhythmic Pattern Generator.
Rotstein, Horacio G; Schneider, Elisa; Szczupak, Lidia
2017-09-20
Motoneurons are not mere output units of neuronal circuits that control motor behavior but participate in pattern generation. Research on the circuit that controls the crawling motor behavior in leeches indicated that motoneurons participate as modulators of this rhythmic motor pattern. Crawling results from successive bouts of elongation and contraction of the whole leech body. In the isolated segmental ganglia, dopamine can induce a rhythmic antiphasic activity of the motoneurons that control contraction (DE-3 motoneurons) and elongation (CV motoneurons). The study was performed in isolated ganglia where manipulation of the activity of specific motoneurons was performed in the course of fictive crawling ( crawling ). In this study, the membrane potential of CV was manipulated while crawling was monitored through the rhythmic activity of DE-3. Matching behavioral observations that show that elongation dominates the rhythmic pattern, the electrophysiological activity of CV motoneurons dominates the cycle. Brief excitation of CV motoneurons during crawling episodes resets the rhythmic activity of DE-3, indicating that CV feeds back to the rhythmic pattern generator. CV hyperpolarization accelerated the rhythm to an extent that depended on the magnitude of the cycle period, suggesting that CV exerted a positive feedback on the unit(s) of the pattern generator that controls the elongation phase. A simple computational model was implemented to test the consequences of such feedback. The simulations indicate that the duty cycle of CV depended on the strength of the positive feedback between CV and the pattern generator circuit. SIGNIFICANCE STATEMENT Rhythmic movements of animals are controlled by neuronal networks that have been conceived as hierarchical structures. At the basis of this hierarchy, we find the motoneurons, few neurons at the top control global aspects of the behavior (e.g., onset, duration); and within these two ends, specific neuronal circuits control the actual rhythmic pattern of movements. We have investigated whether motoneurons are limited to function as output units. Analysis of the network that controls crawling behavior in the leech has clearly indicated that motoneurons, in addition to controlling muscle activity, send signals to the pattern generator. Physiological and modeling studies on the role of specific motoneurons suggest that these feedback signals modulate the phase relationship of the rhythmic activity. Copyright © 2017 the authors 0270-6474/17/379149-11$15.00/0.
The Neural Basis of Mark Making: A Functional MRI Study of Drawing
Yuan, Ye; Brown, Steven
2014-01-01
Compared to most other forms of visually-guided motor activity, drawing is unique in that it “leaves a trail behind” in the form of the emanating image. We took advantage of an MRI-compatible drawing tablet in order to examine both the motor production and perceptual emanation of images. Subjects participated in a series of mark making tasks in which they were cued to draw geometric patterns on the tablet's surface. The critical comparison was between when visual feedback was displayed (image generation) versus when it was not (no image generation). This contrast revealed an occipito-parietal stream involved in motion-based perception of the emerging image, including areas V5/MT+, LO, V3A, and the posterior part of the intraparietal sulcus. Interestingly, when subjects passively viewed animations of visual patterns emerging on the projected surface, all of the sensorimotor network involved in drawing was strongly activated, with the exception of the primary motor cortex. These results argue that the origin of the human capacity to draw and write involves not only motor skills for tool use but also motor-sensory links between drawing movements and the visual images that emanate from them in real time. PMID:25271440
Katz, P S; Frost, W N
1997-10-15
For the mollusc Tritonia diomedea to generate its escape swim motor pattern, interneuron C2, a crucial member of the central pattern generator (CPG) for this rhythmic behavior, must fire repetitive bursts of action potentials. Yet, before swimming, repeated depolarizing current pulses injected into C2 at periods similar those in the swim motor program are incapable of mimicking the firing rate attained by C2 on each cycle of a swim motor program. This resting level of C2 inexcitability is attributable to its own inherent spike frequency adaptation (SFA). Clearly, this property must be altered for the swim behavior to occur. The pathway for initiation of the swimming behavior involves activation of the serotonergic dorsal swim interneurons (DSIs), which are also intrinsic members of the swim CPG. Physiologically appropriate DSI stimulation transiently decreases C2 SFA, allowing C2 to fire at higher rates even when repeatedly depolarized at short intervals. The increased C2 excitability caused by DSI stimulation is mimicked and occluded by serotonin application. Furthermore, the change in excitability is not caused by the depolarization associated with DSI stimulation or serotonin application but is correlated with a decrease in C2 spike afterhyperpolarization. This suggests that the DSIs use serotonin to evoke a neuromodulatory action on a conductance in C2 that regulates its firing rate. This modulatory action of one CPG neuron on another is likely to play a role in configuring the swim circuit into its rhythmic pattern-generating mode and maintaining it in that state.
Sternfeld, Matthew J; Hinckley, Christopher A; Moore, Niall J; Pankratz, Matthew T; Hilde, Kathryn L; Driscoll, Shawn P; Hayashi, Marito; Amin, Neal D; Bonanomi, Dario; Gifford, Wesley D; Sharma, Kamal; Goulding, Martyn; Pfaff, Samuel L
2017-01-01
Flexible neural networks, such as the interconnected spinal neurons that control distinct motor actions, can switch their activity to produce different behaviors. Both excitatory (E) and inhibitory (I) spinal neurons are necessary for motor behavior, but the influence of recruiting different ratios of E-to-I cells remains unclear. We constructed synthetic microphysical neural networks, called circuitoids, using precise combinations of spinal neuron subtypes derived from mouse stem cells. Circuitoids of purified excitatory interneurons were sufficient to generate oscillatory bursts with properties similar to in vivo central pattern generators. Inhibitory V1 neurons provided dual layers of regulation within excitatory rhythmogenic networks - they increased the rhythmic burst frequency of excitatory V3 neurons, and segmented excitatory motor neuron activity into sub-networks. Accordingly, the speed and pattern of spinal circuits that underlie complex motor behaviors may be regulated by quantitatively gating the intra-network cellular activity ratio of E-to-I neurons. DOI: http://dx.doi.org/10.7554/eLife.21540.001 PMID:28195039
Optogenetic dissection reveals multiple rhythmogenic modules underlying locomotion
Hägglund, Martin; Dougherty, Kimberly J.; Borgius, Lotta; Itohara, Shigeyoshi; Iwasato, Takuji; Kiehn, Ole
2013-01-01
Neural networks in the spinal cord known as central pattern generators produce the sequential activation of muscles needed for locomotion. The overall locomotor network architectures in limbed vertebrates have been much debated, and no consensus exists as to how they are structured. Here, we use optogenetics to dissect the excitatory and inhibitory neuronal populations and probe the organization of the mammalian central pattern generator. We find that locomotor-like rhythmic bursting can be induced unilaterally or independently in flexor or extensor networks. Furthermore, we show that individual flexor motor neuron pools can be recruited into bursting without any activity in other nearby flexor motor neuron pools. Our experiments differentiate among several proposed models for rhythm generation in the vertebrates and show that the basic structure underlying the locomotor network has a distributed organization with many intrinsically rhythmogenic modules. PMID:23798384
Hu, Kun; Meijer, Johanna H.; Shea, Steven A.; vanderLeest, Henk Tjebbe; Pittman-Polletta, Benjamin; Houben, Thijs; van Oosterhout, Floor; Deboer, Tom; Scheer, Frank A. J. L.
2012-01-01
The mammalian central circadian pacemaker (the suprachiasmatic nucleus, SCN) contains thousands of neurons that are coupled through a complex network of interactions. In addition to the established role of the SCN in generating rhythms of ∼24 hours in many physiological functions, the SCN was recently shown to be necessary for normal self-similar/fractal organization of motor activity and heart rate over a wide range of time scales—from minutes to 24 hours. To test whether the neural network within the SCN is sufficient to generate such fractal patterns, we studied multi-unit neural activity of in vivo and in vitro SCNs in rodents. In vivo SCN-neural activity exhibited fractal patterns that are virtually identical in mice and rats and are similar to those in motor activity at time scales from minutes up to 10 hours. In addition, these patterns remained unchanged when the main afferent signal to the SCN, namely light, was removed. However, the fractal patterns of SCN-neural activity are not autonomous within the SCN as these patterns completely broke down in the isolated in vitro SCN despite persistence of circadian rhythmicity. Thus, SCN-neural activity is fractal in the intact organism and these fractal patterns require network interactions between the SCN and extra-SCN nodes. Such a fractal control network could underlie the fractal regulation observed in many physiological functions that involve the SCN, including motor control and heart rate regulation. PMID:23185285
Sakurai, Akira; Katz, Paul S
2016-10-01
The nudibranch mollusc, Dendronotus iris, swims by rhythmically flexing its body from left to right. We identified a bilaterally represented interneuron, Si3, that provides strong excitatory drive to the previously identified Si2, forming a half-center oscillator, which functions as the central pattern generator (CPG) underlying swimming. As with Si2, Si3 inhibited its contralateral counterpart and exhibited rhythmic bursts in left-right alternation during the swim motor pattern. Si3 burst almost synchronously with the contralateral Si2 and was coactive with the efferent impulse activity in the contralateral body wall nerve. Perturbation of bursting in either Si3 or Si2 by current injection halted or phase-shifted the swim motor pattern, suggesting that they are both critical CPG members. Neither Si2 nor Si3 exhibited endogenous bursting properties when activated alone; activation of all four neurons was necessary to initiate and maintain the swim motor pattern. Si3 made a strong excitatory synapse onto the contralateral Si2 to which it is also electrically coupled. When Si3 was firing tonically but not exhibiting bursting, artificial enhancement of the Si3-to-Si2 synapse using dynamic clamp caused all four neurons to burst. In contrast, negation of the Si3-to-Si2 synapse by dynamic clamp blocked ongoing swim motor patterns. Together, these results suggest that the Dendronotus swim CPG is organized as a "twisted" half-center oscillator in which each "half" is composed of two excitatory-coupled neurons from both sides of the brain, each of which inhibits its contralateral counterpart. Consisting of only four neurons, this is perhaps the simplest known network oscillator for locomotion. Copyright © 2016 the American Physiological Society.
Wu, Jin-Sheng; Wang, Nan; Siniscalchi, Michael J; Perkins, Matthew H; Zheng, Yu-Tong; Yu, Wei; Chen, Song-an; Jia, Ruo-nan; Gu, Jia-Wei; Qian, Yi-Qing; Ye, Yang; Vilim, Ferdinand S; Cropper, Elizabeth C; Weiss, Klaudiusz R; Jing, Jian
2014-05-07
Motor activity is often initiated by a population of command-like interneurons. Command-like interneurons that reliably drive programs have received the most attention, so little is known about how less reliable command-like interneurons may contribute to program generation. We study two electrically coupled interneurons, cerebral-buccal interneuron-2 (CBI-2) and CBI-11, which activate feeding motor programs in the mollusk Aplysia californica. Earlier work indicated that, in rested preparations, CBI-2, a powerful activator of programs, can trigger ingestive and egestive programs. CBI-2 reliably generated ingestive patterns only when it was repeatedly stimulated. The ability of CBI-2 to trigger motor activity has been attributed to the two program-promoting peptides it contains, FCAP and CP2. Here, we show that CBI-11 differs from CBI-2 in that it contains FCAP but not CP2. Furthermore, it is weak in its ability to drive programs. On its own, CBI-11 is therefore less effective as a program activator. When it is successful, however, CBI-11 is an effective specifier of motor activity; that is, it drives mostly ingestive programs. Importantly, we found that CBI-2 and CBI-11 complement each other's actions. First, prestimulation of CBI-2 enhanced the ability of CBI-11 to drive programs. This effect appears to be partly mediated by CP2. Second, coactivation of CBI-11 with CBI-2 makes CBI-2 programs immediately ingestive. This effect may be mediated by specific actions that CBI-11 exerts on pattern-generating interneurons. Therefore, different classes of command-like neurons in a motor network may make distinct, but potentially complementary, contributions as either activators or specifiers of motor activity.
Wu, Jin-Sheng; Wang, Nan; Siniscalchi, Michael J.; Perkins, Matthew H.; Zheng, Yu-Tong; Yu, Wei; Chen, Song-an; Jia, Ruo-nan; Gu, Jia-Wei; Qian, Yi-Qing; Ye, Yang; Vilim, Ferdinand S.; Cropper, Elizabeth C.; Weiss, Klaudiusz R.
2014-01-01
Motor activity is often initiated by a population of command-like interneurons. Command-like interneurons that reliably drive programs have received the most attention, so little is known about how less reliable command-like interneurons may contribute to program generation. We study two electrically coupled interneurons, cerebral-buccal interneuron-2 (CBI-2) and CBI-11, which activate feeding motor programs in the mollusk Aplysia californica. Earlier work indicated that, in rested preparations, CBI-2, a powerful activator of programs, can trigger ingestive and egestive programs. CBI-2 reliably generated ingestive patterns only when it was repeatedly stimulated. The ability of CBI-2 to trigger motor activity has been attributed to the two program-promoting peptides it contains, FCAP and CP2. Here, we show that CBI-11 differs from CBI-2 in that it contains FCAP but not CP2. Furthermore, it is weak in its ability to drive programs. On its own, CBI-11 is therefore less effective as a program activator. When it is successful, however, CBI-11 is an effective specifier of motor activity; that is, it drives mostly ingestive programs. Importantly, we found that CBI-2 and CBI-11 complement each other's actions. First, prestimulation of CBI-2 enhanced the ability of CBI-11 to drive programs. This effect appears to be partly mediated by CP2. Second, coactivation of CBI-11 with CBI-2 makes CBI-2 programs immediately ingestive. This effect may be mediated by specific actions that CBI-11 exerts on pattern-generating interneurons. Therefore, different classes of command-like neurons in a motor network may make distinct, but potentially complementary, contributions as either activators or specifiers of motor activity. PMID:24806677
Traub, Roger D.; Whittington, Miles A.; Hall, Stephen P.
2017-01-01
Rhythmic motor patterns in invertebrates are often driven by specialized “central pattern generators” (CPGs), containing small numbers of neurons, which are likely to be “identifiable” in one individual compared with another. The dynamics of any particular CPG lies under the control of modulatory substances, amines, or peptides, entering the CPG from outside it, or released by internal constituent neurons; consequently, a particular CPG can generate a given rhythm at different frequencies and amplitudes, and perhaps even generate a repertoire of distinctive patterns. The mechanisms exploited by neuromodulators in this respect are manifold: Intrinsic conductances (e.g., calcium, potassium channels), conductance state of postsynaptic receptors, degree of plasticity, and magnitude and kinetics of transmitter release can all be affected. The CPG concept has been generalized to vertebrate motor pattern generating circuits (e.g., for locomotion), which may contain large numbers of neurons – a construct that is sensible, if there is enough redundancy: that is, the large number of neurons consists of only a small number of classes, and the cells within any one class act stereotypically. Here we suggest that CPG and modulator ideas may also help to understand cortical oscillations, normal ones, and particularly transition to epileptiform pathology. Furthermore, in the case illustrated, the mechanism of the transition appears to be an exaggerated form of a normal modulatory action used to influence sensory processing. PMID:29093667
Neural mechanisms of sequence generation in songbirds
NASA Astrophysics Data System (ADS)
Langford, Bruce
Animal models in research are useful for studying more complex behavior. For example, motor sequence generation of actions requiring good muscle coordination such as writing with a pen, playing an instrument, or speaking, may involve the interaction of many areas in the brain, each a complex system in itself; thus it can be difficult to determine causal relationships between neural behavior and the behavior being studied. Birdsong, however, provides an excellent model behavior for motor sequence learning, memory, and generation. The song consists of learned sequences of notes that are spectrographically stereotyped over multiple renditions of the song, similar to syllables in human speech. The main areas of the songbird brain involve in singing are known, however, the mechanisms by which these systems store and produce song are not well understood. We used a custom built, head-mounted, miniature motorized microdrive to chronically record the neural firing patterns of identified neurons in HVC, a pre-motor cortical nucleus which has been shown to be important in song timing. These were done in Bengalese finch which generate a song made up of stereotyped notes but variable note sequences. We observed song related bursting in neurons projecting to Area X, a homologue to basal ganglia, and tonic firing in HVC interneurons. Interneuron had firing rate patterns that were consistent over multiple renditions of the same note sequence. We also designed and built a light-weight, low-powered wireless programmable neural stimulator using Bluetooth Low Energy Protocol. It was able to generate perturbations in the song when current pulses were administered to RA, which projects to the brainstem nucleus responsible for syringeal muscle control.
Architecture of enteric neural circuits involved in intestinal motility.
Costa, M; Brookes, S H
2008-08-01
This short review describes the conceptual development in the search for the enteric neural circuits with the initial identifications of the classes of enteric neurons on the bases of their morphology, neurochemistry, biophysical properties, projections and connectivity. The discovery of the presence of multiple neurochemicals in the same nerve cells in specific combinations led to the concept of "chemical coding" and of "plurichemical transmission". The proposal that enteric reflexes are largely responsible for the propulsion of contents led to investigations of polarised reflex pathways and how these may be activated to generate the coordinated propulsive behaviour of the intestine. The research over the past decades attempted to integrate information of chemical neuroanatomy with functional studies, with the development of methods combining anatomical, functional and pharmacological techniques. This multidisciplinary strategy led to a full accounting of all functional classes of enteric neurons in the guinea-pig, and advanced wiring diagrams of the enteric neural circuits have been proposed. In parallel, investigations of the actual behaviour of the intestine during physiological motor activity have advanced with the development of spatio-temporal analysis from video recordings. The relation between neural pathways, their activities and the generation of patterns of motor activity remain largely unexplained. The enteric neural circuits appear not set in rigid programs but respond to different physico-chemical contents in an adaptable way (neuromechanical hypothesis). The generation of the complex repertoire of motor patterns results from the interplay of myogenic and neuromechanical mechanisms with spontaneous generation of migratory motor activity by enteric circuits.
Ho, S M
1997-01-01
1. The forelimb motor behaviour of developing wallaby was studied. A clock-like alternating movement was reactivated whenever the animal was removed from the pouch. 2. Forelimb stepping frequency increased during the first 3 weeks of development, while the phase relationship remained constant. Forelimb activity could be affected by altering the afferent feedback from the contralateral limb, or an increase in ambient temperature. 3. In vitro experiments were performed using an isolated brainstem-spinal cord preparation from animals up to 6 weeks postnatal. Fictive locomotor activity could be evoked by electrical stimulation or bath-applied NMDA (< 10 microM). 4. Bath-applied strychnine (10-25 microM) and bicuculline (10-50 microM) disrupted the phase relationship between motor pools, while rhythmic motor discharge remained in the absence of these inhibitory pathways. 5. The present findings indicate that the pattern generator that underlies the robust forelimb movement during the first journey to the pouch is retained for different motor functions during in-pouch development. The neural network that underlies such behaviour can be divided into two major components, a rhythm generator within each hemicord, and a pattern co-ordinating pathway which involve both glycinergic and GABAergic interneurones. PMID:9218221
Self-organized adaptation of a simple neural circuit enables complex robot behaviour
NASA Astrophysics Data System (ADS)
Steingrube, Silke; Timme, Marc; Wörgötter, Florentin; Manoonpong, Poramate
2010-03-01
Controlling sensori-motor systems in higher animals or complex robots is a challenging combinatorial problem, because many sensory signals need to be simultaneously coordinated into a broad behavioural spectrum. To rapidly interact with the environment, this control needs to be fast and adaptive. Present robotic solutions operate with limited autonomy and are mostly restricted to few behavioural patterns. Here we introduce chaos control as a new strategy to generate complex behaviour of an autonomous robot. In the presented system, 18 sensors drive 18 motors by means of a simple neural control circuit, thereby generating 11 basic behavioural patterns (for example, orienting, taxis, self-protection and various gaits) and their combinations. The control signal quickly and reversibly adapts to new situations and also enables learning and synaptic long-term storage of behaviourally useful motor responses. Thus, such neural control provides a powerful yet simple way to self-organize versatile behaviours in autonomous agents with many degrees of freedom.
Parsons, Sean P.; Huizinga, Jan D.
2016-01-01
Pacemaker activities generated by networks of interstitial cells of Cajal (ICC), in conjunction with the enteric nervous system, orchestrate most motor patterns in the gastrointestinal tract. It was our objective to understand the role of network features of ICC associated with the myenteric plexus (ICC-MP) in the shaping of motor patterns of the small intestine. To that end, a model of weakly coupled oscillators (oscillators influence each other's phase but not amplitude) was created with most parameters derived from experimental data. The ICC network is a uniform two dimensional network coupled by gap junctions. All ICC generate pacemaker (slow wave) activity with a frequency gradient in mice from 50/min at the proximal end of the intestine to 40/min at the distal end. Key features of motor patterns, directly related to the underlying pacemaker activity, are frequency steps and dislocations. These were accurately mimicked by reduction of coupling strength at a point in the chain of oscillators. When coupling strength was expressed as a product of gap junction density and conductance, and gap junction density was varied randomly along the chain (i.e., spatial noise) with a long-tailed distribution, plateau steps occurred at pointsof low density. As gap junction conductance was decreased, the number of plateaus increased, mimicking the effect of the gap junction inhibitor carbenoxolone. When spatial noise was added to the natural interval gradient, as gap junction conductance decreased, the number of plateaus increased as before but in addition the phase waves frequently changed direction of apparent propagation, again mimicking the effect of carbenoxolone. In summary, key features of the motor patterns that are governed by pacemaker activity may be a direct consequence of biological noise, specifically spatial noise in gap junction coupling and pacemaker frequency. PMID:26869875
Baev, K V; Esipenko, V B; Shimansky, Y P
1991-01-01
Systematic quantitative analysis of changes in the spinal scratching generator motor activity evoked by tonic and phasic peripheral afferent signals during "fictitious" scratching was carried out in the cat. Correlations between the kinematics of hindlimb scratching movement, sensory inflow, and primary afferent depolarization were investigated. Reliable correlations between the parameters of generator motor activity during fictitious scratching were revealed: they depended on tonic peripheral afferent inflow. The functional role of these dependencies consists of providing stability for aiming the hindlimb to the itch site. It was shown that scratching generator reaction to a phasic sensory signal depended significantly on afferent input, signal intensity, and its arrival phase in the cycle of motor activity. Phase correction of "scratching" rhythm was performed by inhibition of the current stage of "scratching" cycle, the inhibition magnitude depending on the intensity of a sensory signal run along high threshold afferent fibers. The moments in the scratching cycle, in which the afferent signal caused no rearrangement in scratching generator activity, were discovered for all investigated afferent inputs. These moments corresponded to the transitions from one scratching cycle phase to another. Integral afferent activity was distributed unevenly in the cycle during real scratching. The main part of it was observed just in that scratching cycle part which included the above mentioned no rearrangement phase points. The data obtained allowed us to conclude that the scratching generator should be considered as a working program for the motor optimal control system containing the intrinsic model of the controlled object dynamics (e.g. hindlimb scratching movement dynamics), which produces an inner analog of peripheral flow. This inner flow interacts with peripheral afferent inflow just as one of the latter components. Centrally originated modulation of primary afferent depolarization is a result of affecting the depolarization generating system by this inner "sensory" activity. It is the model, with the aid of which the generator can work after deafferentation. The functional organization of a central pattern generator is considered.
Schöneich, Stefan; Hedwig, Berthold
2012-01-01
The singing behavior of male crickets allows analyzing a central pattern generator (CPG) that was shaped by sexual selection for reliable production of species-specific communication signals. After localizing the essential ganglia for singing in Gryllus bimaculatus, we now studied the calling song CPG at the cellular level. Fictive singing was initiated by pharmacological brain stimulation. The motor pattern underlying syllables and chirps was recorded as alternating spike bursts of wing-opener and wing-closer motoneurons in a truncated wing nerve; it precisely reflected the natural calling song. During fictive singing, we intracellularly recorded and stained interneurons in thoracic and abdominal ganglia and tested their impact on the song pattern by intracellular current injections. We identified three interneurons of the metathoracic and first unfused abdominal ganglion that rhythmically de- and hyperpolarized in phase with the syllable pattern and spiked strictly before the wing-opener motoneurons. Depolarizing current injection in two of these opener interneurons caused additional rhythmic singing activity, which reliably reset the ongoing chirp rhythm. The closely intermeshing arborizations of the singing interneurons revealed the dorsal midline neuropiles of the metathoracic and three most anterior abdominal neuromeres as the anatomical location of singing pattern generation. In the same neuropiles, we also recorded several closer interneurons that rhythmically hyper- and depolarized in the syllable rhythm and spiked strictly before the wing-closer motoneurons. Some of them received pronounced inhibition at the beginning of each chirp. Hyperpolarizing current injection in the dendrite revealed postinhibitory rebound depolarization as one functional mechanism of central pattern generation in singing crickets. PMID:23170234
Lacquaniti, F.; Grasso, R.; Zago, M.
1999-08-01
Despite the fact that locomotion may differ widely in mammals, common principles of kinematic control are at work. These reflect common mechanical and neural constraints. The former are related to the need to maintain balance and to limit energy expenditure. The latter are related to the organization of the central pattern-generating networks.
Motor modules in robot-aided walking
2012-01-01
Background It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms. The activity of rhythm generating networks is described by activation signals whilst the muscle intervention generating network is represented by motor modules (muscle synergies). In this study, we extend the analysis of modular organization of walking to the case of robot-aided locomotion, at varying speed and body weight support level. Methods Non Negative Matrix Factorization was applied on surface electromyographic signals of 8 lower limb muscles of healthy subjects walking in gait robotic trainer at different walking velocities (1 to 3km/h) and levels of body weight support (0 to 30%). Results The muscular activity of volunteers could be described by low dimensionality (4 modules), as for overground walking. Moreover, the activation signals during robot-aided walking were bursts of activation timed at specific phases of the gait cycle, underlying an impulsive controller, as also observed in overground walking. This modular organization was consistent across the investigated speeds, body weight support level, and subjects. Conclusions These results indicate that walking in a Lokomat robotic trainer is achieved by similar motor modules and activation signals as overground walking and thus supports the use of robotic training for re-establishing natural walking patterns. PMID:23043818
Intrinsic and extrinsic neuromodulation of motor circuits.
Katz, P S
1995-12-01
Neuromodulation of motor circuits by extrinsic inputs provides enormous flexibility in the production of behavior. Recent work has shown that neurons intrinsic to central pattern-generating circuits can evoke neuromodulatory effects in addition to their neurotransmitting actions. Modulatory neurons often elicit a multitude of different effects attributable to actions at different receptors and/or through the release of co-transmitters. Differences in neuromodulation between species can account for differences in behavior. Modulation of neuromodulation may provide an additional level of flexibility to motor circuits.
Motor set in Parkinson's disease.
Robertson, C; Flowers, K A
1990-01-01
Three experiments employing a five-choice button-pressing task tested the ability of Parkinsonian patients to learn and generate sequences of movement, and to switch between alternative sequences at will. It was found that patients could learn and generate individual patterns of movement normally, even complex ones involving an incompatible stimulus-response relationship. They had difficulty, however, in maintaining a sequence if two different ones had been learnt and subjects were required to switch spontaneously from one to the other within a trial. Providing external cues at the start of each sequence to guide the ordering of movements improved the stability of patients' performance. Most errors in sequencing consisted of reverting to the alternative pattern of movement. Parkinsonian subjects thus show an impairment in motor set similar to that found previously in cognitive activity. Images PMID:2391523
Trivedi, Chintan A; Bollmann, Johann H
2013-01-01
Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach, and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed toward the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback.
How molecular motors shape the flagellar beat
Riedel-Kruse, Ingmar H.; Hilfinger, Andreas; Howard, Jonathon; Jülicher, Frank
2007-01-01
Cilia and eukaryotic flagella are slender cellular appendages whose regular beating propels cells and microorganisms through aqueous media. The beat is an oscillating pattern of propagating bends generated by dynein motor proteins. A key open question is how the activity of the motors is coordinated in space and time. To elucidate the nature of this coordination we inferred the mechanical properties of the motors by analyzing the shape of beating sperm: Steadily beating bull sperm were imaged and their shapes were measured with high precision using a Fourier averaging technique. Comparing our experimental data with wave forms calculated for different scenarios of motor coordination we found that only the scenario of interdoublet sliding regulating motor activity gives rise to satisfactory fits. We propose that the microscopic origin of such “sliding control” is the load dependent detachment rate of motors. Agreement between observed and calculated wave forms was obtained only if significant sliding between microtubules occurred at the base. This suggests a novel mechanism by which changes in basal compliance could reverse the direction of beat propagation. We conclude that the flagellar beat patterns are determined by an interplay of the basal properties of the axoneme and the mechanical feedback of dynein motors. PMID:19404446
Central pattern generator for vocalization: is there a vertebrate morphotype?
Bass, Andrew H
2014-10-01
Animals that generate acoustic signals for social communication are faced with two essential tasks: generate a temporally precise signal and inform the auditory system about the occurrence of one's own sonic signal. Recent studies of sound producing fishes delineate a hindbrain network comprised of anatomically distinct compartments coding equally distinct neurophysiological properties that allow an organism to meet these behavioral demands. A set of neural characters comprising a vocal-sonic central pattern generator (CPG) morphotype is proposed for fishes and tetrapods that shares evolutionary developmental origins with pectoral appendage motor systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Central pattern generator for vocalization: Is there a vertebrate morphotype?
Bass, Andrew H.
2014-01-01
Animals that generate acoustic signals for social communication are faced with two essential tasks: generate a temporally precise signal and inform the auditory system about the occurrence of one’s own sonic signal. Recent studies of sound producing fishes delineate a hindbrain network comprised of anatomically distinct compartments coding equally distinct neurophysiological properties that allow an organism to meet these behavioral demands. A set of neural characters comprising a vocal-sonic central pattern generator (CPG) morphotype is proposed for fishes and tetrapods that shares evolutionary developmental origins with pectoral appendage motor systems. PMID:25050813
Rivera, Angela R. V.; Blob, Richard W.
2013-01-01
Changes in muscle activation patterns can lead to new locomotor modes; however, neuromotor conservation—the evolution of new forms of locomotion through changes in structure without concurrent changes to underlying motor patterns—has been documented across diverse styles of locomotion. Animals that swim using appendages do so via rowing (anteroposterior oscilations) or flapping (dorsoventral oscilations). Yet few studies have compared motor patterns between these swimming modes. In swimming turtles, propulsion is generated exclusively by limbs. Kinematically, turtles swim using multiple styles of rowing (freshwater species), flapping (sea turtles) and a unique hybrid style with superficial similarity to flapping by sea turtles and characterized by increased dorsoventral motions of synchronously oscillated forelimbs that have been modified into flippers (Carettochelys insculpta). We compared forelimb motor patterns in four species of turtle (two rowers, Apalone ferox and Trachemys scripta; one flapper, Caretta caretta; and Carettochelys) and found that, despite kinematic differences, motor patterns were generally similar among species with a few notable exceptions: specifically, presence of variable bursts for pectoralis and triceps in Trachemys (though timing of the non-variable pectoralis burst was similar), and the timing of deltoideus activity in Carettochelys and Caretta compared with other taxa. The similarities in motor patterns we find for several muscles provide partial support for neuromotor conservation among turtles using diverse locomotor styles, but the differences implicate deltoideus as a prime contributor to flapping limb motions. PMID:23966596
CAP, epilepsy and motor events during sleep: the unifying role of arousal.
Parrino, Liborio; Halasz, Peter; Tassinari, Carlo Alberto; Terzano, Mario Giovanni
2006-08-01
Arousal systems play a topical neurophysiologic role in protecting and tailoring sleep duration and depth. When they appear in NREM sleep, arousal responses are not limited to a single EEG pattern but are part of a continuous spectrum of EEG modifications ranging from high-voltage slow rhythms to low amplitude fast activities. The hierarchic features of arousal responses are reflected in the phase A subtypes of CAP (cyclic alternating pattern) including both slow arousals (dominated by the <1Hz oscillation) and fast arousals (ASDA arousals). CAP is an infraslow oscillation with a periodicity of 20-40s that participates in the dynamic organization of sleep and in the activation of motor events. Physiologic, paraphysiologic and pathologic motor activities during NREM sleep are always associated with a stereotyped arousal pattern characterized by an initial increase in EEG delta power and heart rate, followed by a progressive activation of faster EEG frequencies. These findings suggest that motor patterns are already written in the brain codes (central pattern generators) embraced with an automatic sequence of EEG-vegetative events, but require a certain degree of activation (arousal) to become visibly apparent. Arousal can appear either spontaneously or be elicited by internal (epileptic burst) or external (noise, respiratory disturbance) stimuli. Whether the outcome is a physiologic movement, a muscle jerk or a major epileptic attack will depend on a number of ongoing factors (sleep stage, delta power, neuro-motor network) but all events share the common trait of arousal-activated phenomena.
Kim, Haram R; Hong, Su Z; Fiorillo, Christopher D
2015-01-01
Although neurons within intact nervous systems can be classified as 'sensory' or 'motor,' it is not known whether there is any general distinction between sensory and motor neurons at the cellular or molecular levels. Here, we extend and test a theory according to which activation of certain subtypes of voltage-gated ion channel (VGC) generate patterns of spikes in neurons of motor systems, whereas VGC are proposed to counteract patterns in sensory neurons. We previously reported experimental evidence for the theory from visual thalamus, where we found that T-type calcium channels (TtCCs) did not cause bursts of spikes but instead served the function of 'predictive homeostasis' to maximize the causal and informational link between retinogeniculate excitation and spike output. Here, we have recorded neurons in brain slices from eight sensory and motor regions of rat thalamus while mimicking key features of natural excitatory and inhibitory post-synaptic potentials. As predicted by theory, TtCC did cause bursts of spikes in motor thalamus. TtCC-mediated responses in motor thalamus were activated at more hyperpolarized potentials and caused larger depolarizations with more spikes than in visual and auditory thalamus. Somatosensory thalamus is known to be more closely connected to motor regions relative to auditory and visual thalamus, and likewise the strength of its TtCC responses was intermediate between these regions and motor thalamus. We also observed lower input resistance, as well as limited evidence of stronger hyperpolarization-induced ('H-type') depolarization, in nuclei closer to motor output. These findings support our theory of a specific difference between sensory and motor neurons at the cellular level.
Schema-based learning of adaptable and flexible prey-catching in anurans I. The basic architecture.
Corbacho, Fernando; Nishikawa, Kiisa C; Weerasuriya, Ananda; Liaw, Jim-Shih; Arbib, Michael A
2005-12-01
A motor action often involves the coordination of several motor synergies and requires flexible adjustment of the ongoing execution based on feedback signals. To elucidate the neural mechanisms underlying the construction and selection of motor synergies, we study prey-capture in anurans. Experimental data demonstrate the intricate interaction between different motor synergies, including the interplay of their afferent feedback signals (Weerasuriya 1991; Anderson and Nishikawa 1996). Such data provide insights for the general issues concerning two-way information flow between sensory centers, motor circuits and periphery in motor coordination. We show how different afferent feedback signals about the status of the different components of the motor apparatus play a critical role in motor control as well as in learning. This paper, along with its companion paper, extend the model by Liaw et al. (1994) by integrating a number of different motor pattern generators, different types of afferent feedback, as well as the corresponding control structure within an adaptive framework we call Schema-Based Learning. We develop a model of the different MPGs involved in prey-catching as a vehicle to investigate the following questions: What are the characteristic features of the activity of a single muscle? How can these features be controlled by the premotor circuit? What are the strategies employed to generate and synchronize motor synergies? What is the role of afferent feedback in shaping the activity of a MPG? How can several MPGs share the same underlying circuitry and yet give rise to different motor patterns under different input conditions? In the companion paper we also extend the model by incorporating learning components that give rise to more flexible, adaptable and robust behaviors. To show these aspects we incorporate studies on experiments on lesions and the learning processes that allow the animal to recover its proper functioning.
Hinckley, Christopher A; Alaynick, William A; Gallarda, Benjamin W; Hayashi, Marito; Hilde, Kathryn L; Driscoll, Shawn P; Dekker, Joseph D; Tucker, Haley O; Sharpee, Tatyana O; Pfaff, Samuel L
2015-09-02
The coordination of multi-muscle movements originates in the circuitry that regulates the firing patterns of spinal motorneurons. Sensory neurons rely on the musculotopic organization of motorneurons to establish orderly connections, prompting us to examine whether the intraspinal circuitry that coordinates motor activity likewise uses cell position as an internal wiring reference. We generated a motorneuron-specific GCaMP6f mouse line and employed two-photon imaging to monitor the activity of lumbar motorneurons. We show that the central pattern generator neural network coordinately drives rhythmic columnar-specific motorneuron bursts at distinct phases of the locomotor cycle. Using multiple genetic strategies to perturb the subtype identity and orderly position of motorneurons, we found that neurons retained their rhythmic activity-but cell position was decoupled from the normal phasing pattern underlying flexion and extension. These findings suggest a hierarchical basis of motor circuit formation that relies on increasingly stringent matching of neuronal identity and position. Copyright © 2015 Elsevier Inc. All rights reserved.
Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks
2018-01-01
Much of the information the brain processes and stores is temporal in nature—a spoken word or a handwritten signature, for example, is defined by how it unfolds in time. However, it remains unclear how neural circuits encode complex time-varying patterns. We show that by tuning the weights of a recurrent neural network (RNN), it can recognize and then transcribe spoken digits. The model elucidates how neural dynamics in cortical networks may resolve three fundamental challenges: first, encode multiple time-varying sensory and motor patterns as stable neural trajectories; second, generalize across relevant spatial features; third, identify the same stimuli played at different speeds—we show that this temporal invariance emerges because the recurrent dynamics generate neural trajectories with appropriately modulated angular velocities. Together our results generate testable predictions as to how recurrent networks may use different mechanisms to generalize across the relevant spatial and temporal features of complex time-varying stimuli. PMID:29537963
Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks.
Goudar, Vishwa; Buonomano, Dean V
2018-03-14
Much of the information the brain processes and stores is temporal in nature-a spoken word or a handwritten signature, for example, is defined by how it unfolds in time. However, it remains unclear how neural circuits encode complex time-varying patterns. We show that by tuning the weights of a recurrent neural network (RNN), it can recognize and then transcribe spoken digits. The model elucidates how neural dynamics in cortical networks may resolve three fundamental challenges: first, encode multiple time-varying sensory and motor patterns as stable neural trajectories; second, generalize across relevant spatial features; third, identify the same stimuli played at different speeds-we show that this temporal invariance emerges because the recurrent dynamics generate neural trajectories with appropriately modulated angular velocities. Together our results generate testable predictions as to how recurrent networks may use different mechanisms to generalize across the relevant spatial and temporal features of complex time-varying stimuli. © 2018, Goudar et al.
Body side-specific control of motor activity during turning in a walking animal
Gruhn, Matthias; Rosenbaum, Philipp; Bockemühl, Till; Büschges, Ansgar
2016-01-01
Animals and humans need to move deftly and flexibly to adapt to environmental demands. Despite a large body of work on the neural control of walking in invertebrates and vertebrates alike, the mechanisms underlying the motor flexibility that is needed to adjust the motor behavior remain largely unknown. Here, we investigated optomotor-induced turning and the neuronal mechanisms underlying the differences between the leg movements of the two body sides in the stick insect Carausius morosus. We present data to show that the generation of turning kinematics in an insect are the combined result of descending unilateral commands that change the leg motor output via task-specific modifications in the processing of local sensory feedback as well as modification of the activity of local central pattern generating networks in a body-side-specific way. To our knowledge, this is the first study to demonstrate the specificity of such modifications in a defined motor task. DOI: http://dx.doi.org/10.7554/eLife.13799.001 PMID:27130731
Pattyn, Alexandre; Vallstedt, Anna; Dias, José M; Samad, Omar Abdel; Krumlauf, Robb; Rijli, Filippo M; Brunet, Jean-Francois; Ericson, Johan
2003-03-15
Neural progenitor cells often produce distinct types of neurons in a specific order, but the determinants that control the sequential generation of distinct neuronal subclasses in the vertebrate CNS remain poorly defined. We examined the sequential generation of visceral motor neurons and serotonergic neurons from a common pool of neural progenitors located in the ventral hindbrain. We found that the temporal specification of these neurons varies along the anterior-posterior axis of the hindbrain, and that the timing of their generation critically depends on the integrated activities of Nkx- and Hox-class homeodomain proteins. A primary function of these proteins is to coordinate the spatial and temporal activation of the homeodomain protein Phox2b, which in turn acts as a binary switch in the selection of motor neuron or serotonergic neuronal fate. These findings assign new roles for Nkx, Hox, and Phox2 proteins in the control of temporal neuronal fate determination, and link spatial and temporal patterning of CNS neuronal fates.
Assembly of bipolar microtubule structures by passive cross-linkers and molecular motors
NASA Astrophysics Data System (ADS)
Johann, D.; Goswami, D.; Kruse, K.
2016-06-01
During cell division, sister chromatids are segregated by the mitotic spindle, a bipolar assembly of interdigitating antiparallel polar filaments called microtubules. The spindle contains the midzone, a stable region of overlapping antiparallel microtubules, that is essential for maintaining bipolarity. Although a lot is known about the molecular players involved, the mechanism underlying midzone formation and maintenance is still poorly understood. We study the interaction of polar filaments that are cross-linked by molecular motors moving directionally and by passive cross-linkers diffusing along microtubules. Using a particle-based stochastic model, we find that the interplay of motors and passive cross-linkers can generate a stable finite overlap between a pair of antiparallel polar filaments. We develop a mean-field theory to study this mechanism in detail and investigate the influence of steric interactions between motors and passive cross-linkers on the overlap dynamics. In the presence of interspecies steric interactions, passive cross-linkers mimic the behavior of molecular motors and stable finite overlaps are generated even for non-cross-linking motors. Finally, we develop a mean-field theory for a bundle of aligned polar filaments and show that they can self-organize into a spindlelike pattern. Our work suggests possible ways as to how cells can generate spindle midzones and control their extensions.
Somatotopic Semantic Priming and Prediction in the Motor System
Grisoni, Luigi; Dreyer, Felix R.; Pulvermüller, Friedemann
2016-01-01
The recognition of action-related sounds and words activates motor regions, reflecting the semantic grounding of these symbols in action information; in addition, motor cortex exerts causal influences on sound perception and language comprehension. However, proponents of classic symbolic theories still dispute the role of modality-preferential systems such as the motor cortex in the semantic processing of meaningful stimuli. To clarify whether the motor system carries semantic processes, we investigated neurophysiological indexes of semantic relationships between action-related sounds and words. Event-related potentials revealed that action-related words produced significantly larger stimulus-evoked (Mismatch Negativity-like) and predictive brain responses (Readiness Potentials) when presented in body-part-incongruent sound contexts (e.g., “kiss” in footstep sound context; “kick” in whistle context) than in body-part-congruent contexts, a pattern reminiscent of neurophysiological correlates of semantic priming. Cortical generators of the semantic relatedness effect were localized in areas traditionally associated with semantic memory, including left inferior frontal cortex and temporal pole, and, crucially, in motor areas, where body-part congruency of action sound–word relationships was indexed by a somatotopic pattern of activation. As our results show neurophysiological manifestations of action-semantic priming in the motor cortex, they prove semantic processing in the motor system and thus in a modality-preferential system of the human brain. PMID:26908635
Rejc, Enrico; Angeli, Claudia A.; Bryant, Nicole
2017-01-01
Abstract Individuals affected by motor complete spinal cord injury are unable to stand, walk, or move their lower limbs voluntarily; this diagnosis normally implies severe limitations for functional recovery. We have recently shown that the appropriate selection of epidural stimulation parameters was critical to promoting full-body, weight-bearing standing with independent knee extension in four individuals with chronic clinically complete paralysis. In the current study, we examined the effects of stand training and subsequent step training with epidural stimulation on motor function for standing in the same four individuals. After stand training, the ability to stand improved to different extents in the four participants. Step training performed afterwards substantially impaired standing ability in three of the four individuals. Improved standing ability generally coincided with continuous electromyography (EMG) patterns with constant levels of ground reaction forces. Conversely, poorer standing ability was associated with more variable EMG patterns that alternated EMG bursts and longer periods of negligible activity in most of the muscles. Stand and step training also differentially affected the evoked potentials amplitude modulation induced by sitting-to-standing transition. Finally, stand and step training with epidural stimulation were not sufficient to improve motor function for standing without stimulation. These findings show that the spinal circuitry of motor complete paraplegics can generate motor patterns effective for standing in response to task-specific training with optimized stimulation parameters. Conversely, step training can lead to neural adaptations resulting in impaired motor function for standing. PMID:27566051
Singh, Jyotsna; Singh, Phool; Malik, Vikas
2017-01-01
Parkinson disease alters the information patterns in movement related pathways in brain. Experimental results performed on rats show that the activity patterns changes from single spike activity to mixed burst mode in Parkinson disease. However the cause of this change in activity pattern is not yet completely understood. Subthalamic nucleus is one of the main nuclei involved in the origin of motor dysfunction in Parkinson disease. In this paper, a single compartment conductance based model is considered which focuses on subthalamic nucleus and synaptic input from globus pallidus (external). This model shows highly nonlinear behavior with respect to various intrinsic parameters. Behavior of model has been presented with the help of activity patterns generated in healthy and Parkinson condition. These patterns have been compared by calculating their correlation coefficient for different values of intrinsic parameters. Results display that the activity patterns are very sensitive to various intrinsic parameters and calcium shows some promising results which provide insights into the motor dysfunction.
A Muscle’s Force Depends on the Recruitment Patterns of Its Fibers
Wakeling, James M.; Lee, Sabrina S. M.; Arnold, Allison S.; de Boef Miara, Maria; Biewener, Andrew A.
2012-01-01
Biomechanical models of whole muscles commonly used in simulations of musculoskeletal function and movement typically assume that the muscle generates force as a scaled-up muscle fiber. However, muscles are comprised of motor units that have different intrinsic properties and that can be activated at different times. This study tested whether a muscle model comprised of motor units that could be independently activated resulted in more accurate predictions of force than traditional Hill-type models. Forces predicted by the models were evaluated by direct comparison with the muscle forces measured in situ from the gastrocnemii in goats. The muscle was stimulated tetanically at a range of frequencies, muscle fiber strains were measured using sonomicrometry, and the activation patterns of the different types of motor unit were calculated from electromyographic recordings. Activation patterns were input into five different muscle models. Four models were traditional Hill-type models with different intrinsic speeds and fiber-type properties. The fifth model incorporated differential groups of fast and slow motor units. For all goats, muscles and stimulation frequencies the differential model resulted in the best predictions of muscle force. The in situ muscle output was shown to depend on the recruitment of different motor units within the muscle. PMID:22350666
Baev, K V; Esipenko, V B; Shimansky YuP
1991-01-01
Changes in the motor activity of the spinal locomotor generator evoked by tonic and phasic peripheral afferent signals during fictitious locomotion of both slow and fast rhythms were analysed in the cat. The tonic afferent inflow was conditioned by the position of the hindlimb. The phasic afferent signals were imitated by electrical stimulation of hindlimb nerves. The correlation between the kinematics of hindlimb locomotor movement and sensory inflow was investigated during actual locomotion. Reliable correlations between motor activity parameters during fictitious locomotion were revealed in cases of both slow and fast "locomotor" rhythms. The main difference between these cases was that correlations "duration-intensity" were positive in the first and negative in the second case. The functional role of "locomotor" pattern dependence on tonic sensory inflow consisted of providing stability for planting the hindlimb on the ground. For any investigated afferent input the phase moments in the "locomotor" cycle were found, in which an afferent signal caused no rearrangement in locomotor generator activity. These moments corresponded to the transitions between "flexion" and "extension" phases and to the bursts of integral afferent activity observed during real locomotion. The data obtained are compared with the results previously described for the scratching generator. The character of changes in "locomotor" activity in response to tonic and phasic sensory signals was similar to that of such changes in "scratching" rhythm in the case of fast "locomotion". Intensification of the "flexion" phase caused by phasic high-intensity stimulation of cutaneous afferents during low "locomotor" rhythm was changed to inhibition (such as observed during "scratching") when this rhythm was fast. It is concluded that the main regularities of peripheral afferent control for both the locomotor and scratching generators are the same. Moreover, these central pattern generators are just working regimes of a general spinal motor optimal control system containing the intrinsic model of limb movement dynamics. The consequences of this concept and ways of further research are discussed.
Neural constraints on learning.
Sadtler, Patrick T; Quick, Kristin M; Golub, Matthew D; Chase, Steven M; Ryu, Stephen I; Tyler-Kabara, Elizabeth C; Yu, Byron M; Batista, Aaron P
2014-08-28
Learning, whether motor, sensory or cognitive, requires networks of neurons to generate new activity patterns. As some behaviours are easier to learn than others, we asked if some neural activity patterns are easier to generate than others. Here we investigate whether an existing network constrains the patterns that a subset of its neurons is capable of exhibiting, and if so, what principles define this constraint. We employed a closed-loop intracortical brain-computer interface learning paradigm in which Rhesus macaques (Macaca mulatta) controlled a computer cursor by modulating neural activity patterns in the primary motor cortex. Using the brain-computer interface paradigm, we could specify and alter how neural activity mapped to cursor velocity. At the start of each session, we observed the characteristic activity patterns of the recorded neural population. The activity of a neural population can be represented in a high-dimensional space (termed the neural space), wherein each dimension corresponds to the activity of one neuron. These characteristic activity patterns comprise a low-dimensional subspace (termed the intrinsic manifold) within the neural space. The intrinsic manifold presumably reflects constraints imposed by the underlying neural circuitry. Here we show that the animals could readily learn to proficiently control the cursor using neural activity patterns that were within the intrinsic manifold. However, animals were less able to learn to proficiently control the cursor using activity patterns that were outside of the intrinsic manifold. These results suggest that the existing structure of a network can shape learning. On a timescale of hours, it seems to be difficult to learn to generate neural activity patterns that are not consistent with the existing network structure. These findings offer a network-level explanation for the observation that we are more readily able to learn new skills when they are related to the skills that we already possess.
EEG signatures of arm isometric exertions in preparation, planning and execution.
Nasseroleslami, Bahman; Lakany, Heba; Conway, Bernard A
2014-04-15
The electroencephalographic (EEG) activity patterns in humans during motor behaviour provide insight into normal motor control processes and for diagnostic and rehabilitation applications. While the patterns preceding brisk voluntary movements, and especially movement execution, are well described, there are few EEG studies that address the cortical activation patterns seen in isometric exertions and their planning. In this paper, we report on time and time-frequency EEG signatures in experiments in normal subjects (n=8), using multichannel EEG during motor preparation, planning and execution of directional centre-out arm isometric exertions performed at the wrist in the horizontal plane, in response to instruction-delay visual cues. Our observations suggest that isometric force exertions are accompanied by transient and sustained event-related potentials (ERP) and event-related (de-)synchronisations (ERD/ERS), comparable to those of a movement task. Furthermore, the ERPs and ERD/ERS are also observed during preparation and planning of the isometric task. Comparison of ear-lobe-referenced and surface Laplacian ERPs indicates the contribution of superficial sources in supplementary and pre-motor (FC(z)), parietal (CP(z)) and primary motor cortical areas (C₁ and FC₁) to ERPs (primarily negative peaks in frontal and positive peaks in parietal areas), but contribution of deep sources to sustained time-domain potentials (negativity in planning and positivity in execution). Transient and sustained ERD patterns in μ and β frequency bands of ear-lobe-referenced and surface Laplacian EEG indicate the contribution of both superficial and deep sources to ERD/ERS. As no physical displacement happens during the task, we can infer that the underlying mechanisms of motor-related ERPs and ERD/ERS patterns do not only depend on change in limb coordinate or muscle-length-dependent ascending sensory information and are primary generated by motor preparation, direction-dependent planning and execution of isometric motor tasks. The results contribute to our understanding of the functions of different brain regions during voluntary motor tasks and their activity signatures in EEG can shed light on the relationships between large-scale recordings such as EEG and other recordings such as single unit activity and fMRI in this context. Copyright © 2013 Elsevier Inc. All rights reserved.
Non-peristaltic patterns of motor activity in the guinea-pig proximal colon.
Hennig, G W; Gregory, S; Brookes, S J H; Costa, M
2010-06-01
The guinea-pig proximal colon contains semi-solid feces which are propelled by intermittent neural peristaltic waves to the distal colon, where solid pellets are formed. Between propulsive periods, complex motor patterns underlie fluid re-absorption and mixing of contents. Spatio-temporal analysis of video recordings were used to investigate neural and myogenic patterns of non-peristaltic motor activity. At low distension (6 cmH(2)O), two major motor patterns were seen. Narrow rings of constriction (abrupt contractions) occurred at 19 cpm. These previously undescribed contractions occurred, almost simultaneously, at many points along the preparation, with a calculated propagation velocity of 110 mm s(-1). They were abolished by hexamethonium and by tetrodotoxin, indicating they were neurally mediated. Inhibition of nitric oxide synthase resulted in increased frequency of 'abrupt contractions' suggesting ongoing inhibitory modulation by endogenous nitric oxide. After tetrodotoxin, another distinct motor pattern was revealed; 'ripples'(1) consisted of shallow rings of contraction, occurring at 18 cpm and propagating at 2.7-2.9 mm s(-1) orally or aborally from multiple initiation sites. The frequency of 'ripples' increased as intraluminal pressure was raised, becoming very irregular at high distensions. L-type calcium channel blockers and openers affected the amplitude of 'ripples'. No frequency gradient of 'ripples' along the proximal colon was detected. This absence explains the multiple initiation sites which often shifted over time, and the oral and aboral propagation of 'ripples'. The interaction of myogenic 'ripples' with neurogenic 'abrupt contractions' generates localized alternating rings of contractions and dilatation, well suited to effective mixing of contents.
Species-Specific Diversity of a Fixed Motor Pattern: The Electric Organ Discharge of Gymnotus
Rodríguez-Cattaneo, Alejo; Pereira, Ana Carolina; Aguilera, Pedro A.; Crampton, William G. R.; Caputi, Angel A.
2008-01-01
Understanding fixed motor pattern diversity across related species provides a window for exploring the evolution of their underlying neural mechanisms. The electric organ discharges of weakly electric fishes offer several advantages as paradigmatic models for investigating how a neural decision is transformed into a spatiotemporal pattern of action. Here, we compared the far fields, the near fields and the electromotive force patterns generated by three species of the pulse generating New World gymnotiform genus Gymnotus. We found a common pattern in electromotive force, with the far field and near field diversity determined by variations in amplitude, duration, and the degree of synchronization of the different components of the electric organ discharges. While the rostral regions of the three species generate similar profiles of electromotive force and local fields, most of the species-specific differences are generated in the main body and tail regions of the fish. This causes that the waveform of the field is highly site dependant in all the studied species. These findings support a hypothesis of the relative separation of the electrolocation and communication carriers. The presence of early head negative waves in the rostral region, a species-dependent early positive wave at the caudal region, and the different relationship between the late negative peak and the main positive peak suggest three points of lability in the evolution of the electrogenic system: a) the variously timed neuronal inputs to different groups of electrocytes; b) the appearance of both rostrally and caudally innervated electrocytes, and c) changes in the responsiveness of the electrocyte membrane. PMID:18461122
Schmidt, Marc F.; McLean, Judith; Goller, Franz
2011-01-01
The production of vocalizations is intimately linked to the respiratory system. Despite our understanding of neural circuits that generate normal respiratory patterns, very little is understood regarding how these ponto-medullary circuits become engaged during vocal production. Songbirds offer a potentially powerful model system for addressing this relationship. Songs dramatically alter the respiratory pattern in ways that are often highly predictable and songbirds have a specialized telencephalic vocal motor circuit that provides massive innervation to a brainstem respiratory network that shares many similarities with its mammalian counterpart. In this review, we highlight interactions between the song motor circuit and the respiratory system, describing how both systems likely interact to produce the complex respiratory patterns that are observed during vocalization. We also discuss how the respiratory system, through its bilateral bottom-up projections to thalamus, might play a key role in sending precisely timed signals that synchronize premotor activity in both hemispheres. PMID:21984733
Wiggin, Timothy D.; Peck, Jack H.; Masino, Mark A.
2014-01-01
The cellular and network basis for most vertebrate locomotor central pattern generators (CPGs) is incompletely characterized, but organizational models based on known CPG architectures have been proposed. Segmental models propose that each spinal segment contains a circuit that controls local coordination and sends longer projections to coordinate activity between segments. Unsegmented/continuous models propose that patterned motor output is driven by gradients of neurons and synapses that do not have segmental boundaries. We tested these ideas in the larval zebrafish, an animal that swims in discrete episodes, each of which is composed of coordinated motor bursts that progress rostrocaudally and alternate from side to side. We perturbed the spinal cord using spinal transections or strychnine application and measured the effect on fictive motor output. Spinal transections eliminated episode structure, and reduced both rostrocaudal and side-to-side coordination. Preparations with fewer intact segments were more severely affected, and preparations consisting of midbody and caudal segments were more severely affected than those consisting of rostral segments. In reduced preparations with the same number of intact spinal segments, side-to-side coordination was more severely disrupted than rostrocaudal coordination. Reducing glycine receptor signaling with strychnine reversibly disrupted both rostrocaudal and side-to-side coordination in spinalized larvae without disrupting episodic structure. Both spinal transection and strychnine decreased the stability of the motor rhythm, but this effect was not causal in reducing coordination. These results are inconsistent with a segmented model of the spinal cord and are better explained by a continuous model in which motor neuron coordination is controlled by segment-spanning microcircuits. PMID:25275377
Sieling, Fred; Bédécarrats, Alexis; Simmers, John; Prinz, Astrid A; Nargeot, Romuald
2014-05-05
Rewarding stimuli in associative learning can transform the irregularly and infrequently generated motor patterns underlying motivated behaviors into output for accelerated and stereotyped repetitive action. This transition to compulsive behavioral expression is associated with modified synaptic and membrane properties of central neurons, but establishing the causal relationships between cellular plasticity and motor adaptation has remained a challenge. We found previously that changes in the intrinsic excitability and electrical synapses of identified neurons in Aplysia's central pattern-generating network for feeding are correlated with a switch to compulsive-like motor output expression induced by in vivo operant conditioning. Here, we used specific computer-simulated ionic currents in vitro to selectively replicate or suppress the membrane and synaptic plasticity resulting from this learning. In naive in vitro preparations, such experimental manipulation of neuronal membrane properties alone increased the frequency but not the regularity of feeding motor output found in preparations from operantly trained animals. On the other hand, changes in synaptic strength alone switched the regularity but not the frequency of feeding output from naive to trained states. However, simultaneously imposed changes in both membrane and synaptic properties reproduced both major aspects of the motor plasticity. Conversely, in preparations from trained animals, experimental suppression of the membrane and synaptic plasticity abolished the increase in frequency and regularity of the learned motor output expression. These data establish direct causality for the contributions of distinct synaptic and nonsynaptic adaptive processes to complementary facets of a compulsive behavior resulting from operant reward learning. Copyright © 2014 Elsevier Ltd. All rights reserved.
Transformation of Context-dependent Sensory Dynamics into Motor Behavior
Latorre, Roberto; Levi, Rafael; Varona, Pablo
2013-01-01
The intrinsic dynamics of sensory networks play an important role in the sensory-motor transformation. In this paper we use conductance based models and electrophysiological recordings to address the study of the dual role of a sensory network to organize two behavioral context-dependent motor programs in the mollusk Clione limacina. We show that: (i) a winner take-all dynamics in the gravimetric sensory network model drives the typical repetitive rhythm in the wing central pattern generator (CPG) during routine swimming; (ii) the winnerless competition dynamics of the same sensory network organizes the irregular pattern observed in the wing CPG during hunting behavior. Our model also shows that although the timing of the activity is irregular, the sequence of the switching among the sensory cells is preserved whenever the same set of neurons are activated in a given time window. These activation phase locks in the sensory signals are transformed into specific events in the motor activity. The activation phase locks can play an important role in motor coordination driven by the intrinsic dynamics of a multifunctional sensory organ. PMID:23459114
Motor unit firing rate patterns during voluntary muscle force generation: a simulation study
NASA Astrophysics Data System (ADS)
Hu, Xiaogang; Rymer, William Z.; Suresh, Nina L.
2014-04-01
Objective. Muscle force is generated by a combination of motor unit (MU) recruitment and changes in the discharge rate of active MUs. There have been two basic MU recruitment and firing rate paradigms reported in the literature, which describe the control of the MUs during force generation. The first (termed the reverse ‘onion skin’ profile), exhibits lower firing rates for lower threshold units, with higher firing rates occurring in higher threshold units. The second (termed the ‘onion skin’ profile), exhibits an inverse arrangement, with lower threshold units reaching higher firing rates. Approach. Using a simulation of the MU activity in a hand muscle, this study examined the force generation capacity and the variability of the muscle force magnitude at different excitation levels of the MU pool under these two different MU control paradigms. We sought to determine which rate/recruitment scheme was more efficient for force generation, and which scheme gave rise to the lowest force variability. Main results. We found that the force output of both firing patterns leads to graded force output at low excitation levels, and that the force generation capacity of the two different paradigms diverged around 50% excitation. In the reverse ‘onion skin’ pattern, at 100% excitation, the force output reached up to 88% of maximum force, whereas for the ‘onion skin’ pattern, the force output only reached up to 54% of maximum force at 100% excitation. The force variability was lower at the low to moderate force levels under the ‘onion skin’ paradigm than with the reverse ‘onion skin’ firing patterns, but this effect was reversed at high force levels. Significance. This study captures the influence of MU recruitment and firing rate organization on muscle force properties, and our results suggest that the different firing organizations can be beneficial at different levels of voluntary muscle force generation and perhaps for different tasks.
Trivedi, Chintan A.; Bollmann, Johann H.
2013-01-01
Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach, and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed toward the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback. PMID:23675322
Trial-by-trial adaptation of movements during mental practice under force field.
Anwar, Muhammad Nabeel; Khan, Salman Hameed
2013-01-01
Human nervous system tries to minimize the effect of any external perturbing force by bringing modifications in the internal model. These modifications affect the subsequent motor commands generated by the nervous system. Adaptive compensation along with the appropriate modifications of internal model helps in reducing human movement errors. In the current study, we studied how motor imagery influences trial-to-trial learning in a robot-based adaptation task. Two groups of subjects performed reaching movements with or without motor imagery in a velocity-dependent force field. The results show that reaching movements performed with motor imagery have relatively a more focused generalization pattern and a higher learning rate in training direction.
Proprioceptive coupling within motor neurons drives C. elegans forward locomotion
Wen, Quan; Po, Michelle; Hulme, Elizabeth; Chen, Sway; Liu, Xinyu; Kwok, Sen Wai; Gershow, Marc; Leifer, Andrew M; Butler, Victoria; Fang-Yen, Christopher; Kawano, Taizo; Schafer, William R; Whitesides, George
2012-01-01
Summary Locomotion requires coordinated motor activity throughout an animal’s body. In both vertebrates and invertebrates, chains of coupled Central Pattern Generators (CPGs) are commonly evoked to explain local rhythmic behaviors. In C. elegans, we report that proprioception within the motor circuit is responsible for propagating and coordinating rhythmic undulatory waves from head to tail during forward movement. Proprioceptive coupling between adjacent body regions transduces rhythmic movement initiated near the head into bending waves driven along the body by a chain of reflexes. Using optogenetics and calcium imaging to manipulate and monitor motor circuit activity of moving C. elegans held in microfluidic devices, we found that the B-type cholinergic motor neurons transduce the proprioceptive signal. In C. elegans, a sensorimotor feedback loop operating within a specific type of motor neuron both drives and organizes body movement. PMID:23177960
Annoni, J.; Pegna, A.
1997-01-01
OBJECTIVE—To test the hypothesis that, during random motor generation, the spatial contingencies inherent to the task would induce additional preferences in normal subjects, shifting their performances farther from randomness. By contrast, perceptual or executive dysfunction could alter these task related biases in patients with brain damage. METHODS—Two groups of patients, with right and left focal brain lesions, as well as 25 right handed subjects matched for age and handedness were asked to execute a random choice motor task—namely, to generate a random series of 180 button presses from a set of 10 keys placed vertically in front of them. RESULTS—In the control group, as in the left brain lesion group, motor generation was subject to deviations from theoretical expected randomness, similar to those when numbers are generated mentally, as immediate repetitions (successive presses on the same key) are avoided. However, the distribution of button presses was also contingent on the topographic disposition of the keys: the central keys were chosen more often than those placed at extreme positions. Small distances were favoured, particularly with the left hand. These patterns were influenced by implicit strategies and task related contingencies. By contrast, right brain lesion patients with frontal involvement tended to show a more square distribution of key presses—that is, the number of key presses tended to be more equally distributed. The strategies were also altered by brain lesions: the number of immediate repetitions was more frequent when the lesion involved the right frontal areas yielding a random generation nearer to expected theoretical randomness. The frequency of adjacent key presses was increased by right anterior and left posterior cortical as well as by right subcortical lesions, but decreased by left subcortical lesions. CONCLUSIONS—Depending on the side of the lesion and the degree of cortical-subcortical involvement, the deficits take on a different aspect and direct repetions and adjacent key presses have different patterns of alterations. Motor random generation is therefore a complex task which seems to necessitate the participation of numerous cerebral structures, among which those situated in the right frontal, left posterior, and subcortical regions have a predominant role. PMID:9408109
Motor unit recruitment patterns 1: responses to changes in locomotor velocity and incline.
Hodson-Tole, Emma F; Wakeling, James M
2008-06-01
Mammalian skeletal muscles are composed of a mixture of motor unit types, which contribute a range of mechanical and physiological properties to the muscle. For a muscle to effectively contribute to smooth, co-ordinated movement it must activate an appropriate number and combination of motor units to generate the required force over a suitable time period. Much evidence exists indicating that motor units are activated in an orderly fashion, from the slowest through to the fastest. A growing body of evidence, however, indicates that such a recruitment strategy does not always hold true. Here we investigate how motor unit recruitment patterns were influenced by changes in locomotor velocity and incline. Kinematics data and myoelectric signals were collected from three rat ankle extensor muscles during running on a treadmill at nine velocity and incline combinations. Wavelet and principal component analysis were used to simultaneously decompose the signals into time and frequency space. The relative frequency components of the signals were quantified during 20 time windows of a stride from each locomotor condition. Differences in signal frequency components existed between muscles and locomotor conditions. Faster locomotor velocities led to a relative increase in high frequency components, whereas greater inclines led to a relative increase in the low frequency components. These data were interpreted as representing changes in motor unit recruitment patterns in response to changes in the locomotor demand. Motor units were not always recruited in an orderly manner, indicating that recruitment is a multi-factorial phenomenon that is not yet fully understood.
Ivanenko, Yuri P; Grasso, Renato; Zago, Myrka; Molinari, Marco; Scivoletto, Giorgio; Castellano, Vincenzo; Macellari, Velio; Lacquaniti, Francesco
2003-11-01
What are the building blocks with which the human spinal cord constructs the motor patterns of locomotion? In principle, they could correspond to each individual activity pattern in dozens of different muscles. Alternatively, there could exist a small set of constituent temporal components that are common to all activation patterns and reflect global kinematic goals. To address this issue, we studied patients with spinal injury trained to step on a treadmill with body weight support. Patients learned to produce foot kinematics similar to that of healthy subjects but with activity patterns of individual muscles generally different from the control group. Hidden in the muscle patterns, we found a basic set of five temporal components, whose flexible combination accounted for the wide range of muscle patterns recorded in both controls and patients. Furthermore, two of the components were systematically related to foot kinematics across different stepping speeds and loading conditions. We suggest that the components are related to control signals output by spinal pattern generators, normally under the influence of descending and afferent inputs.
Reynoso, C; Crespo-Eguílaz, N; Alcázar, J L; Narbona, J
2015-03-01
The aim of this research is to contribute to knowledge of the normal spontaneous motor behavior of the human fetus during the second trimester of pregnancy. This study focuses on five patterns of spontaneous fetal movement: startle (S), axo-rhizomelic rhythmia (ARR), axial stretching (AS), general movement (GM), and diaphragmatic contraction (DC). A cohort of 13 subjects was followed up using 2D obstetrical ultrasound images at 12, 16, 20, and 24 weeks of gestation. As inclusion criteria, neonatal neurological examination and general movements after eutocic delivery at term were normal in all of the subjects, and their neuromotor and cognitive development until the end of pre-school age were also normal. All these five motor patterns are present at the beginning of the 2(nd) gestational trimester, but their quantitative and qualitative traits are diverse according to gestational ages. The phasic, isolated or rhythmically repeated movements, S and ARR, are prominent at 12 and 16 weeks of gestation, and then their presence gradually diminishes. By contrast, tonic and complex AS and GM movements increase their presence and quality at 20 and 24 weeks. RAR constitute a particular periodic motor pattern not described in previous literature. Moreover, the incidence of DC is progressive throughout the trimester, in clusters of 2-6 arrhythmic and irregular beats. Fetal heart rate increases during fetal motor active periods. All five normal behavioral patterns observed in the ultrasounds reflect the progressive tuning of motor generators in human nervous system during mid-pregnancy. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.
Modeling discrete and rhythmic movements through motor primitives: a review.
Degallier, Sarah; Ijspeert, Auke
2010-10-01
Rhythmic and discrete movements are frequently considered separately in motor control, probably because different techniques are commonly used to study and model them. Yet the increasing interest in finding a comprehensive model for movement generation requires bridging the different perspectives arising from the study of those two types of movements. In this article, we consider discrete and rhythmic movements within the framework of motor primitives, i.e., of modular generation of movements. In this way we hope to gain an insight into the functional relationships between discrete and rhythmic movements and thus into a suitable representation for both of them. Within this framework we can define four possible categories of modeling for discrete and rhythmic movements depending on the required command signals and on the spinal processes involved in the generation of the movements. These categories are first discussed in terms of biological concepts such as force fields and central pattern generators and then illustrated by several mathematical models based on dynamical system theory. A discussion on the plausibility of theses models concludes the work.
Pattyn, Alexandre; Vallstedt, Anna; Dias, José M.; Samad, Omar Abdel; Krumlauf, Robb; Rijli, Filippo M.; Brunet, Jean-Francois; Ericson, Johan
2003-01-01
Neural progenitor cells often produce distinct types of neurons in a specific order, but the determinants that control the sequential generation of distinct neuronal subclasses in the vertebrate CNS remain poorly defined. We examined the sequential generation of visceral motor neurons and serotonergic neurons from a common pool of neural progenitors located in the ventral hindbrain. We found that the temporal specification of these neurons varies along the anterior-posterior axis of the hindbrain, and that the timing of their generation critically depends on the integrated activities of Nkx- and Hox-class homeodomain proteins. A primary function of these proteins is to coordinate the spatial and temporal activation of the homeodomain protein Phox2b, which in turn acts as a binary switch in the selection of motor neuron or serotonergic neuronal fate. These findings assign new roles for Nkx, Hox, and Phox2 proteins in the control of temporal neuronal fate determination, and link spatial and temporal patterning of CNS neuronal fates. PMID:12651891
Spinal projection neurons control turning behaviors in zebrafish.
Huang, Kuo-Hua; Ahrens, Misha B; Dunn, Timothy W; Engert, Florian
2013-08-19
Discrete populations of brainstem spinal projection neurons (SPNs) have been shown to exhibit behavior-specific responses during locomotion [1-9], suggesting that separate descending pathways, each dedicated to a specific behavior, control locomotion. In an alternative model, a large variety of motor outputs could be generated from different combinations of a small number of basic motor pathways. We examined this possibility by studying the precise role of ventromedially located hindbrain SPNs (vSPNs) in generating turning behaviors. We found that unilateral laser ablation of vSPNs reduces the tail deflection and cycle period specifically during the first undulation cycle of a swim bout, whereas later tail movements are unaffected. This holds true during phototaxic [10], optomotor [11], dark-flash-induced [12], and spontaneous turns [13], suggesting a universal role of these neurons in controlling turning behaviors. Importantly, we found that the ablation not only abolishes turns but also results in a dramatic increase in the number of forward swims, suggesting that these neurons transform forward swims into turns by introducing turning kinematics into a basic motor pattern of symmetric tail undulations. Finally, we show that vSPN activity is direction specific and graded by turning angle. Together, these results provide a clear example of how a specific motor pattern can be transformed into different behavioral events by the graded activation of a small set of SPNs. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Spinal Projection Neurons Control Turning Behaviors in Zebrafish
Huang, Kuo-Hua; Ahrens, Misha B.; Dunn, Timothy W.; Engert, Florian
2013-01-01
Summary Discrete populations of brainstem spinal projection neurons (SPNs) have been shown to exhibit behavior-specific responses during locomotion [1–9], suggesting that separate descending pathways, each dedicated to a specific behavior, control locomotion. In an alternative model, a large variety of motor outputs could be generated from different combinations of a small number of basic motor pathways. We examined this possibility by studying the precise role of ventromedially located hindbrain SPNs (vSPNs) in generating turning behaviors. We found that unilateral laser ablation of vSPNs reduces the tail deflection and cycle period specifically during the first undulation cycle of a swim bout, whereas later tail movements are unaffected. This holds true during phototaxic [10], optomotor [11], dark-flash-induced [12], and spontaneous turns [13], suggesting a universal role of these neurons in controlling turning behaviors. Importantly, we found that the ablation not only abolishes turns but also results in a dramatic increase in the number of forward swims, suggesting that these neurons transform forward swims into turns by introducing turning kinematics into a basic motor pattern of symmetric tail undulations. Finally, we show that vSPN activity is direction specific and graded by turning angle. Together, these results provide a clear example of how a specific motor pattern can be transformed into different behavioral events by the graded activation of a small set of SPNs. PMID:23910662
Brown, Paul; Dale, Nicholas
2000-01-01
Adenosine causes voltage- and non-voltage-dependent inhibition of high voltage-activated (HVA) Ca2+ currents in Xenopus laevis embryo spinal neurons. As this inhibition can be blocked by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and mimicked by N6-cyclopentyladenosine (CPA) it appears to be mediated by A1 receptors. Agents active at A2 receptors either were without effect or could be blocked by DPCPX. AMP had no agonist action on these receptors. By using ω-conotoxin GVIA we found that adenosine inhibited an N-type Ca2+ current as well as a further unidentified HVA current that was insensitive to dihydropyridines, ω-agatoxin TK and ω-conotoxin MVIIC. Both types of current were subject to voltage- and non-voltage-dependent inhibition. We used CPA and DPCPX to test whether A1 receptors regulated spinal motor pattern generation in spinalized Xenopus embryos. DPCPX caused a near doubling of, while CPA greatly shortened, the length of swimming episodes. In addition, DPCPX slowed, while CPA greatly speeded up, the rate of run-down of motor activity. Our results demonstrate a novel action of A1 receptors in modulating spinal motor activity. Furthermore they confirm that adenosine is produced continually throughout swimming episodes and acts to cause the eventual termination of activity. PMID:10856119
Shibata, E; Kaneko, F
2013-04-29
The perceptual integration of afferent inputs from two antagonistic muscles, or the perceptual integration of afferent input and motor imagery are related to the generation of a kinesthetic sensation. However, it has not been clarified how, or indeed whether, a kinesthetic perception would be generated by motor imagery if afferent inputs from two antagonistic muscles were simultaneously induced by tendon vibration. The purpose of this study was to investigate how a kinesthetic perception would be generated by motor imagery during co-vibration of the two antagonistic muscles at the same frequency. Healthy subjects participated in this experiment. Illusory movement was evoked by tendon vibration. Next, the subjects imaged wrist flexion movement simultaneously with tendon vibration. Wrist flexor and extensor muscles were vibrated according to 4 patterns such that the difference between the two vibration frequencies was zero. After each trial, the perceived movement sensations were quantified on the basis of the velocity and direction of the ipsilateral hand-tracking movements. When the difference in frequency applied to the wrist flexor and the extensor was 0Hz, no subjects perceived movements without motor imagery. However, during motor imagery, the flexion velocity of the perceived movement was higher than the flexion velocity without motor imagery. This study clarified that the afferent inputs from the muscle spindle interact with motor imagery, to evoke a kinesthetic perception, even when the difference in frequency applied to the wrist flexor and extensor was 0Hz. Furthermore, the kinesthetic perception resulting from integrations of vibration and motor imagery increased depending on the vibration frequency to the two antagonistic muscles. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Morishita, Koudai; Iwami, Masafumi; Kiya, Taketoshi
2018-06-01
In the central nervous system of insects, motor patterns are generated in the thoracic ganglia under the control of brain, where sensory information is integrated and behavioral decisions are made. Previously, we established neural activity-mapping methods using an immediate early gene, BmHr38, as a neural activity marker in the brain of male silkmoth Bombyx mori. In the present study, to gain insights into neural mechanisms of motor-pattern generation in the thoracic ganglia, we investigated expression of BmHr38 in response to sex pheromone-induced courtship behavior. Levels of BmHr38 expression were strongly correlated between the brain and thoracic ganglia, suggesting that neural activity in the thoracic ganglia is tightly controlled by the brain. In situ hybridization of BmHr38 revealed that 20-30% of thoracic neurons are activated by courtship behavior. Using serial sections, we constructed a comprehensive map of courtship behaviorinduced activity in the thoracic ganglia. These results provide important clues into how complex courtship behavior is generated in the neural circuits of thoracic ganglia.
Neuromorphic walking gait control.
Still, Susanne; Hepp, Klaus; Douglas, Rodney J
2006-03-01
We present a neuromorphic pattern generator for controlling the walking gaits of four-legged robots which is inspired by central pattern generators found in the nervous system and which is implemented as a very large scale integrated (VLSI) chip. The chip contains oscillator circuits that mimic the output of motor neurons in a strongly simplified way. We show that four coupled oscillators can produce rhythmic patterns with phase relationships that are appropriate to generate all four-legged animal walking gaits. These phase relationships together with frequency and duty cycle of the oscillators determine the walking behavior of a robot driven by the chip, and they depend on a small set of stationary bias voltages. We give analytic expressions for these dependencies. This chip reduces the complex, dynamic inter-leg control problem associated with walking gait generation to the problem of setting a few stationary parameters. It provides a compact and low power solution for walking gait control in robots.
Neuromodulation during motor development and behavior.
Pflüger, H J
1999-12-01
Important recent advances have been made in understanding the role of aminergic modulation during the maturation of Xenopus larvae swimming rhythms, including effects on particular ion channel types of component neurons, and the role of peptidergic modulation during development of adult central patterns generators in the stomatogastric ganglion of crustaceans. By recording from octopaminergic neuromodulatory neurons during ongoing motor behavior in the locust, new insights into the role of this peripheral neuromodulatory mechanism have been gained. In particular, it is now clear that the octopaminergic neuromodulatory system is automatically activated in parallel to the motor systems, and that both excitation and inhibition play important functional roles.
Zaaimi, Boubker; Dean, Lauren R; Baker, Stuart N
2018-01-01
Coordinated movement requires patterned activation of muscles. In this study, we examined differences in selective activation of primate upper limb muscles by cortical and subcortical regions. Five macaque monkeys were trained to perform a reach and grasp task, and electromyogram (EMG) was recorded from 10 to 24 muscles while weak single-pulse stimuli were delivered through microelectrodes inserted in the motor cortex (M1), reticular formation (RF), or cervical spinal cord (SC). Stimulus intensity was adjusted to a level just above threshold. Stimulus-evoked effects were assessed from averages of rectified EMG. M1, RF, and SC activated 1.5 ± 0.9, 1.9 ± 0.8, and 2.5 ± 1.6 muscles per site (means ± SD); only M1 and SC differed significantly. In between recording sessions, natural muscle activity in the home cage was recorded using a miniature data logger. A novel analysis assessed how well natural activity could be reconstructed by stimulus-evoked responses. This provided two measures: normalized vector length L, reflecting how closely aligned natural and stimulus-evoked activity were, and normalized residual R, measuring the fraction of natural activity not reachable using stimulus-evoked patterns. Average values for M1, RF, and SC were L = 119.1 ± 9.6, 105.9 ± 6.2, and 109.3 ± 8.4% and R = 50.3 ± 4.9, 56.4 ± 3.5, and 51.5 ± 4.8%, respectively. RF was significantly different from M1 and SC on both measurements. RF is thus able to generate an approximation to the motor output with less activation than required by M1 and SC, but M1 and SC are more precise in reaching the exact activation pattern required. Cortical, brainstem, and spinal centers likely play distinct roles, as they cooperate to generate voluntary movements. NEW & NOTEWORTHY Brainstem reticular formation, primary motor cortex, and cervical spinal cord intermediate zone can all activate primate upper limb muscles. However, brainstem output is more efficient but less precise in producing natural patterns of motor output than motor cortex or spinal cord. We suggest that gross muscle synergies from the reticular formation are sculpted and refined by motor cortex and spinal circuits to reach the finely fractionated output characteristic of dexterous primate upper limb movements.
Dean, Lauren R.
2018-01-01
Coordinated movement requires patterned activation of muscles. In this study, we examined differences in selective activation of primate upper limb muscles by cortical and subcortical regions. Five macaque monkeys were trained to perform a reach and grasp task, and electromyogram (EMG) was recorded from 10 to 24 muscles while weak single-pulse stimuli were delivered through microelectrodes inserted in the motor cortex (M1), reticular formation (RF), or cervical spinal cord (SC). Stimulus intensity was adjusted to a level just above threshold. Stimulus-evoked effects were assessed from averages of rectified EMG. M1, RF, and SC activated 1.5 ± 0.9, 1.9 ± 0.8, and 2.5 ± 1.6 muscles per site (means ± SD); only M1 and SC differed significantly. In between recording sessions, natural muscle activity in the home cage was recorded using a miniature data logger. A novel analysis assessed how well natural activity could be reconstructed by stimulus-evoked responses. This provided two measures: normalized vector length L, reflecting how closely aligned natural and stimulus-evoked activity were, and normalized residual R, measuring the fraction of natural activity not reachable using stimulus-evoked patterns. Average values for M1, RF, and SC were L = 119.1 ± 9.6, 105.9 ± 6.2, and 109.3 ± 8.4% and R = 50.3 ± 4.9, 56.4 ± 3.5, and 51.5 ± 4.8%, respectively. RF was significantly different from M1 and SC on both measurements. RF is thus able to generate an approximation to the motor output with less activation than required by M1 and SC, but M1 and SC are more precise in reaching the exact activation pattern required. Cortical, brainstem, and spinal centers likely play distinct roles, as they cooperate to generate voluntary movements. NEW & NOTEWORTHY Brainstem reticular formation, primary motor cortex, and cervical spinal cord intermediate zone can all activate primate upper limb muscles. However, brainstem output is more efficient but less precise in producing natural patterns of motor output than motor cortex or spinal cord. We suggest that gross muscle synergies from the reticular formation are sculpted and refined by motor cortex and spinal circuits to reach the finely fractionated output characteristic of dexterous primate upper limb movements. PMID:29046427
Zhang, Jingming; Lanuza, Guillermo M.; Britz, Olivier; Wang, Zhi; Siembab, Valerie C.; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J.; Frank, Eric; Goulding, Martyn
2014-01-01
SUMMARY The reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally-located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity. PMID:24698273
Development of human locomotion.
Lacquaniti, Francesco; Ivanenko, Yuri P; Zago, Myrka
2012-10-01
Neural control of locomotion in human adults involves the generation of a small set of basic patterned commands directed to the leg muscles. The commands are generated sequentially in time during each step by neural networks located in the spinal cord, called Central Pattern Generators. This review outlines recent advances in understanding how motor commands are expressed at different stages of human development. Similar commands are found in several other vertebrates, indicating that locomotion development follows common principles of organization of the control networks. Movements show a high degree of flexibility at all stages of development, which is instrumental for learning and exploration of variable interactions with the environment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Williams, Alex H.; Kwiatkowski, Molly A.; Mortimer, Adam L.; Marder, Eve; Zeeman, Mary Lou
2013-01-01
The cardiac ganglion (CG) of Homarus americanus is a central pattern generator that consists of two oscillatory groups of neurons: “small cells” (SCs) and “large cells” (LCs). We have shown that SCs and LCs begin their bursts nearly simultaneously but end their bursts at variable phases. This variability contrasts with many other central pattern generator systems in which phase is well maintained. To determine both the consequences of this variability and how CG phasing is controlled, we modeled the CG as a pair of Morris-Lecar oscillators coupled by electrical and excitatory synapses and constructed a database of 15,000 simulated networks using random parameter sets. These simulations, like our experimental results, displayed variable phase relationships, with the bursts beginning together but ending at variable phases. The model suggests that the variable phasing of the pattern has important implications for the functional role of the excitatory synapses. In networks in which the two oscillators had similar duty cycles, the excitatory coupling functioned to increase cycle frequency. In networks with disparate duty cycles, it functioned to decrease network frequency. Overall, we suggest that the phasing of the CG may vary without compromising appropriate motor output and that this variability may critically determine how the network behaves in response to manipulations. PMID:23446690
NASA Astrophysics Data System (ADS)
McCall, Patrick; Stam, Samantha; Kovar, David; Gardel, Margaret
The shape and mechanics of animal cells are controlled by a dynamic, thin network of semiflexible actin filaments and myosin-II motor proteins called the actomyosin cortex. Motor-generated stresses in the cortex drive changes in cell shape during cell division and morphogenesis, while dynamic turnover of actin filaments dissipates stress. The relative effects that force generation, force dissipation, and disassembly and reassembly of material have on motion in these networks are unknown. We find that cross-linked actin networks in vitro contract under myosin-generated stresses, resulting in partial filament disassembly, the formation of asters, and clustering of myosin motors. We observe a rapid restoration of uniform polymer density in the presence of the assembly factors which catalyze network turnover through elongation of severed actin filaments. When severing is accelerated further by the addition of a severing protein, network contraction and motor clustering are dramatically suppressed. We test the relative effects of material regeneration and force transmission using image analysis, and conclude that the dominant mechanism for this effect is relatively short-lived stresses that do not propagate over considerable distance or push network deformation into the nonlinear contractile regime we have previously characterized. Our results present a framework to understand cytoskeletal active matter that are influenced by a complex interplay between stress generation, network reorganization, and polymer turnover.
Rillich, Jan; Stevenson, Paul A.; Pflueger, Hans-Joachim
2013-01-01
Walking and flying in locusts are exemplary rhythmical behaviors generated by central pattern generators (CPG) that are tuned in intact animals by phasic sensory inputs. Although these two behaviors are mutually exclusive and controlled by independent CPGs, leg movements during flight can be coupled to the flight rhythm. To investigate potential central coupling between the underlying CPGs, we used the muscarinic agonist pilocarpine and the amines octopamine and tyramine to initiate fictive flight and walking in deafferented locust preparations. Our data illustrate that fictive walking is readily evoked by comparatively lower concentrations of pilocarpine, whereas higher concentrations are required to elicit fictive flight. Interestingly, fictive flight did not suppress fictive walking so that the two patterns were produced simultaneously. Frequently, leg motor units were temporally coupled to the flight rhythm, so that each spike in a step cycle volley occurred synchronously with wing motor units firing at flight rhythm frequency. Similarly, tyramine also induced fictive walking and flight, but mostly without any coupling between the two rhythms. Octopamine in contrast readily evoked fictive flight but generally failed to elicit fictive walking. Despite this, numerous leg motor units were recruited, whereby each was temporarily coupled to the flight rhythm. Our results support the notion that the CPGs for walking and flight are largely independent, but that coupling can be entrained by aminergic modulation. We speculate that octopamine biases the whole motor machinery of a locust to flight whereas tyramine primarily promotes walking. PMID:23671643
Riede, Tobias; Goller, Franz
2010-10-01
Song production in songbirds is a model system for studying learned vocal behavior. As in humans, bird phonation involves three main motor systems (respiration, vocal organ and vocal tract). The avian respiratory mechanism uses pressure regulation in air sacs to ventilate a rigid lung. In songbirds sound is generated with two independently controlled sound sources, which reside in a uniquely avian vocal organ, the syrinx. However, the physical sound generation mechanism in the syrinx shows strong analogies to that in the human larynx, such that both can be characterized as myoelastic-aerodynamic sound sources. Similarities include active adduction and abduction, oscillating tissue masses which modulate flow rate through the organ and a layered structure of the oscillating tissue masses giving rise to complex viscoelastic properties. Differences in the functional morphology of the sound producing system between birds and humans require specific motor control patterns. The songbird vocal apparatus is adapted for high speed, suggesting that temporal patterns and fast modulation of sound features are important in acoustic communication. Rapid respiratory patterns determine the coarse temporal structure of song and maintain gas exchange even during very long songs. The respiratory system also contributes to the fine control of airflow. Muscular control of the vocal organ regulates airflow and acoustic features. The upper vocal tract of birds filters the sounds generated in the syrinx, and filter properties are actively adjusted. Nonlinear source-filter interactions may also play a role. The unique morphology and biomechanical system for sound production in birds presents an interesting model for exploring parallels in control mechanisms that give rise to highly convergent physical patterns of sound generation. More comparative work should provide a rich source for our understanding of the evolution of complex sound producing systems. Copyright © 2009 Elsevier Inc. All rights reserved.
A circular model for song motor control in Serinus canaria
Alonso, Rodrigo G.; Trevisan, Marcos A.; Amador, Ana; Goller, Franz; Mindlin, Gabriel B.
2015-01-01
Song production in songbirds is controlled by a network of nuclei distributed across several brain regions, which drives respiratory and vocal motor systems to generate sound. We built a model for birdsong production, whose variables are the average activities of different neural populations within these nuclei of the song system. We focus on the predictions of respiratory patterns of song, because these can be easily measured and therefore provide a validation for the model. We test the hypothesis that it is possible to construct a model in which (1) the activity of an expiratory related (ER) neural population fits the observed pressure patterns used by canaries during singing, and (2) a higher forebrain neural population, HVC, is sparsely active, simultaneously with significant motor instances of the pressure patterns. We show that in order to achieve these two requirements, the ER neural population needs to receive two inputs: a direct one, and its copy after being processed by other areas of the song system. The model is capable of reproducing the measured respiratory patterns and makes specific predictions on the timing of HVC activity during their production. These results suggest that vocal production is controlled by a circular network rather than by a simple top-down architecture. PMID:25904860
Chemical deafferentation of the locust flight system by phentolamine.
Ramirez, J M; Pearson, K G
1990-09-01
1. Phentolamine was injected into the haemolymph of locusts, Locusta migratoria, and its effects on the flight system were analyzed using electrophysiological techniques. 2. Doses of 150 microliters at 10(-2) M phentolamine inactivated the wing stretch-receptors and tegulae without influencing the central nervous system (CNS). The lack of effect on the CNS was demonstrated by the absence of any effect on the flight motor pattern in animals that had been mechanically deafferented prior to the administration of phentolamine. From these observations we conclude that phentolamine can be used to chemically deafferent the flight system of the locust. Consistent with this conclusion is that the administration of phentolamine in intact animals changed the flight motor pattern so that it resembled the pattern occurring in mechanically deafferented animals. 3. The two main advantages of deafferenting the flight system by injecting phentolamine were a) intracellular recordings from central neurons could be easily maintained during the process of deafferentation, and b) the contribution of different groups of proprioceptors to the generation of the motor pattern could be assessed since not all proprioceptors were inactivated simultaneously. 4. By intracellularly recording from elevator motoneurons and administering phentolamine we confirmed a number of previous results related to the function of the wing stretch-receptors and the tegulae.
Emotion regulation through execution, observation, and imagery of emotional movements
Shafir, Tal; Taylor, Stephan F.; Atkinson, Anthony P.; Langenecker, Scott A.; Zubieta, Jon-Kar
2014-01-01
According to Damasio’s somatic marker hypothesis, emotions are generated by conveying the current state of the body to the brain through interoceptive and proprioceptive afferent input. The resulting brain activation patterns represent unconscious emotions and correlate with subjective feelings. This proposition implies a corollary that the deliberate control of motor behavior could regulate feelings. We tested this possibility, hypothesizing that engaging in movements associated with a certain emotion would enhance that emotion and/or the corresponding valence. Furthermore, because motor imagery and observation are thought to activate the same mirror-neuron network engaged during motor execution, they might also activate the same emotional processing circuits, leading to similar emotional effects. Therefore, we measured the effects of motor execution, motor imagery and observation of whole-body dynamic expressions of emotions (happiness, sadness, fear) on affective state. All three tasks enhanced the corresponding affective state, indicating their potential to regulate emotions. PMID:23561915
Discharge Patterns of Human Tensor Palatini Motor Units During Sleep Onset
Nicholas, Christian L.; Jordan, Amy S.; Heckel, Leila; Worsnop, Christopher; Bei, Bei; Saboisky, Julian P.; Eckert, Danny J.; White, David P.; Malhotra, Atul; Trinder, John
2012-01-01
Study Objectives: Upper airway muscles such as genioglossus (GG) and tensor palatini (TP) reduce activity at sleep onset. In GG reduced muscle activity is primarily due to inspiratory modulated motor units becoming silent, suggesting reduced respiratory pattern generator (RPG) output. However, unlike GG, TP shows minimal respiratory modulation and presumably has few inspiratory modulated motor units and minimal input from the RPG. Thus, we investigated the mechanism by which TP reduces activity at sleep onset. Design: The activity of TP motor units were studied during relaxed wakefulness and over the transition from wakefulness to sleep. Setting: Sleep laboratory. Participants: Nine young (21.4 ± 3.4 years) males were studied on a total of 11 nights. Intervention: Sleep onset. Measurements and Results: Two TP EMGs (thin, hooked wire electrodes), and sleep and respiratory measures were recorded. One hundred twenty-one sleep onsets were identified (13.4 ± 7.2/subject), resulting in 128 motor units (14.3 ± 13.0/subject); 29% of units were tonic, 43% inspiratory modulated (inspiratory phasic 18%, inspiratory tonic 25%), and 28% expiratory modulated (expiratory phasic 21%, expiratory tonic 7%). There was a reduction in both expiratory and inspiratory modulated units, but not tonic units, at sleep onset. Reduced TP activity was almost entirely due to de-recruitment. Conclusions: TP showed a similar distribution of motor units as other airway muscles. However, a greater proportion of expiratory modulated motor units were active in TP and these expiratory units, along with inspiratory units, tended to become silent over sleep onset. The data suggest that both expiratory and inspiratory drive components from the RPG are reduced at sleep onset in TP. Citation: Nicholas CL; Jordan AS; Heckel L; Worsnop C; Bei B: Saboisky JP; Eckert DJ; White DP; Malhotra A; Trinder J. Discharge patterns of human tensor palatini motor units during sleep onset. SLEEP 2012;35(5):699-707. PMID:22547896
Definition and classification of negative motor signs in childhood.
Sanger, Terence D; Chen, Daofen; Delgado, Mauricio R; Gaebler-Spira, Deborah; Hallett, Mark; Mink, Jonathan W
2006-11-01
In this report we describe the outcome of a consensus meeting that occurred at the National Institutes of Health in Bethesda, Maryland, March 12 through 14, 2005. The meeting brought together 39 specialists from multiple clinical and research disciplines including developmental pediatrics, neurology, neurosurgery, orthopedic surgery, physical therapy, occupational therapy, physical medicine and rehabilitation, neurophysiology, muscle physiology, motor control, and biomechanics. The purpose of the meeting was to establish terminology and definitions for 4 aspects of motor disorders that occur in children: weakness, reduced selective motor control, ataxia, and deficits of praxis. The purpose of the definitions is to assist communication between clinicians, select homogeneous groups of children for clinical research trials, facilitate the development of rating scales to assess improvement or deterioration with time, and eventually to better match individual children with specific therapies. "Weakness" is defined as the inability to generate normal voluntary force in a muscle or normal voluntary torque about a joint. "Reduced selective motor control" is defined as the impaired ability to isolate the activation of muscles in a selected pattern in response to demands of a voluntary posture or movement. "Ataxia" is defined as an inability to generate a normal or expected voluntary movement trajectory that cannot be attributed to weakness or involuntary muscle activity about the affected joints. "Apraxia" is defined as an impairment in the ability to accomplish previously learned and performed complex motor actions that is not explained by ataxia, reduced selective motor control, weakness, or involuntary motor activity. "Developmental dyspraxia" is defined as a failure to have ever acquired the ability to perform age-appropriate complex motor actions that is not explained by the presence of inadequate demonstration or practice, ataxia, reduced selective motor control, weakness, or involuntary motor activity.
Proprioceptive input patterns elevator activity in the locust flight system.
Wolf, H; Pearson, K G
1988-06-01
1. In the locust, Locusta migratoria, the roles of two groups of wing sense organs, hind wing tegulae and wing-hinge stretch receptors, in the generation of the flight motor pattern were investigated. A preparation was employed that allowed the intracellular recording of neural activity in almost intact tethered flying locusts or after selective manipulations of sensory input. The functions of the two sets of receptors were assessed 1) by studying the phases of their discharges in the wingbeat cycle (Fig. 3), 2) by the selective ablation of input from the receptors (Figs. 4-7), and 3) by the selective stimulation of the receptor afferents (Figs. 8-12). 2. Input from the tegulae was found to be responsible for the initiation of elevator activity (Figs. 9 and 10) and for the generation of a distinct initial rapid depolarization (Figs. 4, 5, and 8) characteristic of elevator motor neuron activity in intact locusts (Figs. 1 and 16). 3. Input from the wing-hinge stretch receptors was found to control the duration of elevator depolarizations by the graded suppression of a second late component of the elevator depolarizations as wingbeat frequency increased (Figs. 6, 7, 11, and 12). The characteristics of this late component of elevator activity suggested that it is generated by the same (central nervous) mechanism that produces the elevator depolarizations recorded in deafferented animals (Fig. 2). Apparently this late component contributes to the intact pattern of elevator depolarizations only at lower wingbeat frequencies and is abolished by the action of stretch-receptor input at frequencies above approximately 15 Hz (Figs. 1, 2, and 4). At these high wingbeat frequencies elevator activity is dominated by the rapid depolarizations generated as a result of tegula input. 4. The present study demonstrates 1) that the timing of elevator motor neuron activity is determined by phasic afferent input from tegulae and stretch receptors and 2) that input from the stretch receptors controls the duration of elevator activity in the wingbeat cycle following the wing movement that was responsible for the generation of the receptor discharge.
Santin, Joseph M; Hartzler, Lynn K
2017-04-01
Semiaquatic frogs may not breathe air for several months because they overwinter in ice-covered ponds. In contrast to many vertebrates that experience decreased motor performance after inactivity, bullfrogs, Lithobates catesbeianus , retain functional respiratory motor processes following cold-submergence. Unlike mammalian hibernators with unloaded limb muscles and inactive locomotor systems, respiratory mechanics of frogs counterintuitively allow for ventilatory maneuvers when submerged. Thus, we hypothesized that bullfrogs generate respiratory motor patterns during cold-submergence to avoid disuse and preserve motor performance. Accordingly, we measured activity of respiratory muscles (buccal floor compressor and glottal dilator) via electromyography in freely behaving bullfrogs at 20 and 2°C. Although we confirm that ventilation cycles occur underwater at 20°C, bullfrogs did not activate either respiratory muscle when submerged acutely or chronically at 2°C. We conclude that cold-submerged bullfrogs endure respiratory motor inactivity, implying that other mechanisms, excluding underwater muscle activation, maintain a functional respiratory motor system throughout overwintering. © 2017. Published by The Company of Biologists Ltd.
McKinstry, Jeffrey L; Edelman, Gerald M
2013-01-01
Animal behavior often involves a temporally ordered sequence of actions learned from experience. Here we describe simulations of interconnected networks of spiking neurons that learn to generate patterns of activity in correct temporal order. The simulation consists of large-scale networks of thousands of excitatory and inhibitory neurons that exhibit short-term synaptic plasticity and spike-timing dependent synaptic plasticity. The neural architecture within each area is arranged to evoke winner-take-all (WTA) patterns of neural activity that persist for tens of milliseconds. In order to generate and switch between consecutive firing patterns in correct temporal order, a reentrant exchange of signals between these areas was necessary. To demonstrate the capacity of this arrangement, we used the simulation to train a brain-based device responding to visual input by autonomously generating temporal sequences of motor actions.
Imaging the where and when of tic generation and resting state networks in adult Tourette patients
Neuner, Irene; Werner, Cornelius J.; Arrubla, Jorge; Stöcker, Tony; Ehlen, Corinna; Wegener, Hans P.; Schneider, Frank; Shah, N. Jon
2014-01-01
Introduction: Tourette syndrome (TS) is a neuropsychiatric disorder with the core phenomenon of tics, whose origin and temporal pattern are unclear. We investigated the When and Where of tic generation and resting state networks (RSNs) via functional magnetic resonance imaging (fMRI). Methods: Tic-related activity and the underlying RSNs in adult TS were studied within one fMRI session. Participants were instructed to lie in the scanner and to let tics occur freely. Tic onset times, as determined by video-observance were used as regressors and added to preceding time-bins of 1 s duration each to detect prior activation. RSN were identified by independent component analysis (ICA) and correlated to disease severity by the means of dual regression. Results: Two seconds before a tic, the supplementary motor area (SMA), ventral primary motor cortex, primary sensorimotor cortex and parietal operculum exhibited activation; 1 s before a tic, the anterior cingulate, putamen, insula, amygdala, cerebellum and the extrastriatal-visual cortex exhibited activation; with tic-onset, the thalamus, central operculum, primary motor and somatosensory cortices exhibited activation. Analysis of resting state data resulted in 21 components including the so-called default-mode network. Network strength in those regions in SMA of two premotor ICA maps that were also active prior to tic occurrence, correlated significantly with disease severity according to the Yale Global Tic Severity Scale (YGTTS) scores. Discussion: We demonstrate that the temporal pattern of tic generation follows the cortico-striato-thalamo-cortical circuit, and that cortical structures precede subcortical activation. The analysis of spontaneous fluctuations highlights the role of cortical premotor structures. Our study corroborates the notion of TS as a network disorder in which abnormal RSN activity might contribute to the generation of tics in SMA. PMID:24904391
Patterns of Spinal Sensory-Motor Connectivity Prescribed by a Dorsoventral Positional Template
Sürmeli, Gülşen; Akay, Turgay; Ippolito, Gregory; Tucker, Philip W; Jessell, Thomas M
2011-01-01
Summary Sensory-motor circuits in the spinal cord are constructed with a fine specificity that coordinates motor behavior, but the mechanisms that direct sensory connections with their motor neuron partners remain unclear. The dorsoventral settling position of motor pools in the spinal cord is known to match the distal-to-proximal position of their muscle targets in the limb, but the significance of invariant motor neuron positioning is unknown. An analysis of sensory-motor connectivity patterns in FoxP1 mutant mice, where motor neuron position has been scrambled, shows that the final pattern of sensory-motor connections is initiated by the projection of sensory axons to discrete dorsoventral domains of the spinal cord without regard for motor neuron subtype, or indeed, the presence of motor neurons. By implication, the clustering and dorsoventral settling position of motor neuron pools serves as a determinant of the pattern of sensory input specificity, and thus motor coordination. PMID:22036571
A neural coding scheme reproducing foraging trajectories
NASA Astrophysics Data System (ADS)
Gutiérrez, Esther D.; Cabrera, Juan Luis
2015-12-01
The movement of many animals may follow Lévy patterns. The underlying generating neuronal dynamics of such a behavior is unknown. In this paper we show that a novel discovery of multifractality in winnerless competition (WLC) systems reveals a potential encoding mechanism that is translatable into two dimensional superdiffusive Lévy movements. The validity of our approach is tested on a conductance based neuronal model showing WLC and through the extraction of Lévy flights inducing fractals from recordings of rat hippocampus during open field foraging. Further insights are gained analyzing mice motor cortex neurons and non motor cell signals. The proposed mechanism provides a plausible explanation for the neuro-dynamical fundamentals of spatial searching patterns observed in animals (including humans) and illustrates an until now unknown way to encode information in neuronal temporal series.
Higham, Timothy E; Russell, Anthony P
2012-02-01
Autotomy (voluntary loss of an appendage) is common among diverse groups of vertebrates and invertebrates, and much attention has been given to ecological and developmental aspects of tail autotomy in lizards. Although most studies have focused on the ramifications for the lizard (behavior, biomechanics, energetics, etc.), the tail itself can exhibit interesting behaviors once segregated from the body. For example, recent work highlighted the ability of leopard gecko tails to jump and flip, in addition to being able to swing back and forth. Little is known, however, about the control mechanisms underlying these movements. Using electromyography, we examined the time-varying in vivo motor patterns at four sites (two proximal and two distal) in the tail of the leopard gecko, Eublepharis macularius, following autotomy. Using these data we tested the hypothesis that the disparity in movements results simply from overlapping pattern generators within the tail. We found that burst duration, but not cycle duration, of the rhythmic swings reached a plateau at approximately 150 s following autotomy. This is likely because of physiological changes related to muscle fatigue and ischemia. For flips and jumps, burst and cycle duration exhibited no regular pattern. The coefficient of variation in motor patterns was significantly greater for jumps and flips than for rhythmic swings. This supports the conclusion that the different tail behaviors do not stem from overlapping pattern generators, but that they rely upon independent neural circuits. The signal controlling jumps and flips may be modified by sensory information from the environment. Finally, we found that jumps and flips are initiated using relatively synchronous activity between the two sides of the tail. In contrast, alternating activation of the right and left sides of the tail result in rhythmic swings. The mechanism underlying this change in tail behavior is comparable to locomotor gait changes in vertebrates.
Zhang, Jingming; Lanuza, Guillermo M; Britz, Olivier; Wang, Zhi; Siembab, Valerie C; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J; Frank, Eric; Goulding, Martyn
2014-04-02
Reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here, we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity. Copyright © 2014 Elsevier Inc. All rights reserved.
DC Motor control using motor-generator set with controlled generator field
Belsterling, Charles A.; Stone, John
1982-01-01
A d.c. generator is connected in series opposed to the polarity of a d.c. power source supplying a d.c. drive motor. The generator is part of a motor-generator set, the motor of which is supplied from the power source connected to the motor. A generator field control means varies the field produced by at least one of the generator windings in order to change the effective voltage output. When the generator voltage is exactly equal to the d.c. voltage supply, no voltage is applied across the drive motor. As the field of the generator is reduced, the drive motor is supplied greater voltage until the full voltage of the d.c. power source is supplied when the generator has zero field applied. Additional voltage may be applied across the drive motor by reversing and increasing the reversed field on the generator. The drive motor may be reversed in direction from standstill by increasing the generator field so that a reverse voltage is applied across the d.c. motor.
Directed functional connectivity matures with motor learning in a cortical pattern generator.
Day, Nancy F; Terleski, Kyle L; Nykamp, Duane Q; Nick, Teresa A
2013-02-01
Sequential motor skills may be encoded by feedforward networks that consist of groups of neurons that fire in sequence (Abeles 1991; Long et al. 2010). However, there has been no evidence of an anatomic map of activation sequence in motor control circuits, which would be potentially detectable as directed functional connectivity of coactive neuron groups. The proposed pattern generator for birdsong, the HVC (Long and Fee 2008; Vu et al. 1994), contains axons that are preferentially oriented in the rostrocaudal axis (Nottebohm et al. 1982; Stauffer et al. 2012). We used four-tetrode recordings to assess the activity of ensembles of single neurons along the rostrocaudal HVC axis in anesthetized zebra finches. We found an axial, polarized neural network in which sequential activity is directionally organized along the rostrocaudal axis in adult males, who produce a stereotyped song. Principal neurons fired in rostrocaudal order and with interneurons that were rostral to them, suggesting that groups of excitatory neurons fire at the leading edge of travelling waves of inhibition. Consistent with the synchronization of neurons by caudally travelling waves of inhibition, the activity of interneurons was more coherent in the orthogonal mediolateral axis than in the rostrocaudal axis. If directed functional connectivity within the HVC is important for stereotyped, learned song, then it may be lacking in juveniles, which sing a highly variable song. Indeed, we found little evidence for network directionality in juveniles. These data indicate that a functionally directed network within the HVC matures during sensorimotor learning and may underlie vocal patterning.
Directed functional connectivity matures with motor learning in a cortical pattern generator
Day, Nancy F.; Terleski, Kyle L.; Nykamp, Duane Q.
2013-01-01
Sequential motor skills may be encoded by feedforward networks that consist of groups of neurons that fire in sequence (Abeles 1991; Long et al. 2010). However, there has been no evidence of an anatomic map of activation sequence in motor control circuits, which would be potentially detectable as directed functional connectivity of coactive neuron groups. The proposed pattern generator for birdsong, the HVC (Long and Fee 2008; Vu et al. 1994), contains axons that are preferentially oriented in the rostrocaudal axis (Nottebohm et al. 1982; Stauffer et al. 2012). We used four-tetrode recordings to assess the activity of ensembles of single neurons along the rostrocaudal HVC axis in anesthetized zebra finches. We found an axial, polarized neural network in which sequential activity is directionally organized along the rostrocaudal axis in adult males, who produce a stereotyped song. Principal neurons fired in rostrocaudal order and with interneurons that were rostral to them, suggesting that groups of excitatory neurons fire at the leading edge of travelling waves of inhibition. Consistent with the synchronization of neurons by caudally travelling waves of inhibition, the activity of interneurons was more coherent in the orthogonal mediolateral axis than in the rostrocaudal axis. If directed functional connectivity within the HVC is important for stereotyped, learned song, then it may be lacking in juveniles, which sing a highly variable song. Indeed, we found little evidence for network directionality in juveniles. These data indicate that a functionally directed network within the HVC matures during sensorimotor learning and may underlie vocal patterning. PMID:23175804
Brainstem mechanisms underlying the cough reflex and its regulation.
Mutolo, Donatella
2017-09-01
Cough is a very important airway protective reflex. Cough-related inputs are conveyed to the caudal nucleus tractus solitarii (cNTS) that projects to the brainstem respiratory network. The latter is reconfigured to generate the cough motor pattern. A high degree of modulation is exerted on second-order neurons and the brainstem respiratory network by sensory inputs and higher brain areas. Two medullary structures proved to have key functions in cough production and to be strategic sites of action for centrally active drugs: the cNTS and the caudal ventral respiratory group (cVRG). Drugs microinjected into these medullary structures caused downregulation or upregulation of the cough reflex. The results suggest that inhibition and disinhibition are prominent regulatory mechanisms of this reflex and that both the cNTS and the cVRG are essential in the generation of the entire cough motor pattern. Studies on the basic neural mechanisms subserving the cough reflex may provide hints for novel therapeutic approaches. Different proposals for further investigations are advanced. Copyright © 2017 Elsevier B.V. All rights reserved.
Khasnobish, Anwesha; Pal, Monalisa; Sardar, Dwaipayan; Tibarewala, D N; Konar, Amit
2016-08-01
This work is a preliminary study towards developing an alternative communication channel for conveying shape information to aid in recognition of items when tactile perception is hindered. Tactile data, acquired during object exploration by sensor fitted robot arm, are processed to recognize four basic geometric shapes. Patterns representing each shape, classified from tactile data, are generated using micro-controller-driven vibration motors which vibrotactually stimulate users to convey the particular shape information. These motors are attached on the subject's arm and their psychological (verbal) responses are recorded to assess the competence of the system to convey shape information to the user in form of vibrotactile stimulations. Object shapes are classified from tactile data with an average accuracy of 95.21 %. Three successive sessions of shape recognition from vibrotactile pattern depicted learning of the stimulus from subjects' psychological response which increased from 75 to 95 %. This observation substantiates the learning of vibrotactile stimulation in user over the sessions which in turn increase the system efficacy. The tactile sensing module and vibrotactile pattern generating module are integrated to complete the system whose operation is analysed in real-time. Thus, the work demonstrates a successful implementation of the complete schema of artificial tactile sensing system for object-shape recognition through vibrotactile stimulations.
Muscle synergies evoked by microstimulation are preferentially encoded during behavior
Overduin, Simon A.; d'Avella, Andrea; Carmena, Jose M.; Bizzi, Emilio
2014-01-01
Electrical microstimulation studies provide some of the most direct evidence for the neural representation of muscle synergies. These synergies, i.e., coordinated activations of groups of muscles, have been proposed as building blocks for the construction of motor behaviors by the nervous system. Intraspinal or intracortical microstimulation (ICMS) has been shown to evoke muscle patterns that can be resolved into a small set of synergies similar to those seen in natural behavior. However, questions remain about the validity of microstimulation as a probe of neural function, particularly given the relatively long trains of supratheshold stimuli used in these studies. Here, we examined whether muscle synergies evoked during ICMS in two rhesus macaques were similarly encoded by nearby motor cortical units during a purely voluntary behavior involving object reach, grasp, and carry movements. At each microstimulation site we identified the synergy most strongly evoked among those extracted from muscle patterns evoked over all microstimulation sites. For each cortical unit recorded at the same microstimulation site, we then identified the synergy most strongly encoded among those extracted from muscle patterns recorded during the voluntary behavior. We found that the synergy most strongly evoked at an ICMS site matched the synergy most strongly encoded by proximal units more often than expected by chance. These results suggest a common neural substrate for microstimulation-evoked motor responses and for the generation of muscle patterns during natural behaviors. PMID:24634652
Discharge patterns of human tensor palatini motor units during sleep onset.
Nicholas, Christian L; Jordan, Amy S; Heckel, Leila; Worsnop, Christopher; Bei, Bei; Saboisky, Julian P; Eckert, Danny J; White, David P; Malhotra, Atul; Trinder, John
2012-05-01
Upper airway muscles such as genioglossus (GG) and tensor palatini (TP) reduce activity at sleep onset. In GG reduced muscle activity is primarily due to inspiratory modulated motor units becoming silent, suggesting reduced respiratory pattern generator (RPG) output. However, unlike GG, TP shows minimal respiratory modulation and presumably has few inspiratory modulated motor units and minimal input from the RPG. Thus, we investigated the mechanism by which TP reduces activity at sleep onset. The activity of TP motor units were studied during relaxed wakefulness and over the transition from wakefulness to sleep. Sleep laboratory. Nine young (21.4 ± 3.4 years) males were studied on a total of 11 nights. Sleep onset. Two TP EMGs (thin, hooked wire electrodes), and sleep and respiratory measures were recorded. One hundred twenty-one sleep onsets were identified (13.4 ± 7.2/subject), resulting in 128 motor units (14.3 ± 13.0/subject); 29% of units were tonic, 43% inspiratory modulated (inspiratory phasic 18%, inspiratory tonic 25%), and 28% expiratory modulated (expiratory phasic 21%, expiratory tonic 7%). There was a reduction in both expiratory and inspiratory modulated units, but not tonic units, at sleep onset. Reduced TP activity was almost entirely due to de-recruitment. TP showed a similar distribution of motor units as other airway muscles. However, a greater proportion of expiratory modulated motor units were active in TP and these expiratory units, along with inspiratory units, tended to become silent over sleep onset. The data suggest that both expiratory and inspiratory drive components from the RPG are reduced at sleep onset in TP.
Husain, Masud; Wiestler, Tobias; Diedrichsen, Jörn
2014-01-01
Complex manual tasks—everything from buttoning up a shirt to playing the piano—fundamentally involve two components: (1) generating specific patterns of muscle activity (here, termed “synergies”); and (2) stringing these into purposeful sequences. Although transcranial direct current stimulation (tDCS) of the primary motor cortex (M1) has been found to increase the learning of motor sequences, it is unknown whether it can similarly facilitate motor synergy learning. Here, we determined the effects of tDCS on the learning of motor synergies using a novel hand configuration task that required the production of difficult muscular activation patterns. Bihemispheric tDCS was applied to M1 of healthy, right-handed human participants during 4 d of repetitive left-hand configuration training in a double-blind design. tDCS augmented synergy learning, leading subsequently to faster and more synchronized execution. This effect persisted for at least 4 weeks after training. Qualitatively similar tDCS-associated improvements occurred during training of finger sequences in a separate subject cohort. We additionally determined whether tDCS only improved the acquisition of motor memories for specific synergies/sequences or whether it also facilitated more general parts of the motor representations, which could be transferred to novel movements. Critically, we observed that tDCS effects generalized to untrained hand configurations and untrained finger sequences (i.e., were nonspecific), as well as to the untrained hand (i.e., were effector-independent). Hence, bihemispheric tDCS may be a promising adjunct to neurorehabilitative training regimes, in which broad transfer to everyday tasks is highly desirable. PMID:24431461
Inhibitory and modulatory inputs to the vocal central pattern generator of a teleost fish
Rosner, Elisabeth; Rohmann, Kevin N.; Bass, Andrew H.
2018-01-01
Abstract Vocalization is a behavioral feature that is shared among multiple vertebrate lineages, including fish. The temporal patterning of vocal communication signals is set, in part, by central pattern generators (CPGs). Toadfishes are well‐established models for CPG coding of vocalization at the hindbrain level. The vocal CPG comprises three topographically separate nuclei: pre‐pacemaker, pacemaker, motor. While the connectivity between these nuclei is well understood, their neurochemical profile remains largely unexplored. The highly vocal Gulf toadfish, Opsanus beta, has been the subject of previous behavioral, neuroanatomical and neurophysiological studies. Combining transneuronal neurobiotin‐labeling with immunohistochemistry, we map the distribution of inhibitory neurotransmitters and neuromodulators along with gap junctions in the vocal CPG of this species. Dense GABAergic and glycinergic label is found throughout the CPG, with labeled somata immediately adjacent to or within CPG nuclei, including a distinct subset of pacemaker neurons co‐labeled with neurobiotin and glycine. Neurobiotin‐labeled motor and pacemaker neurons are densely co‐labeled with the gap junction protein connexin 35/36, supporting the hypothesis that transneuronal neurobiotin‐labeling occurs, at least in part, via gap junction coupling. Serotonergic and catecholaminergic label is also robust within the entire vocal CPG, with additional cholinergic label in pacemaker and prepacemaker nuclei. Likely sources of these putative modulatory inputs are neurons within or immediately adjacent to vocal CPG neurons. Together with prior neurophysiological investigations, the results reveal potential mechanisms for generating multiple classes of social context‐dependent vocalizations with widely divergent temporal and spectral properties. PMID:29424431
Respiration-related discharge of hyoglossus muscle motor units in the rat.
Powell, Gregory L; Rice, Amber; Bennett-Cross, Seres J; Fregosi, Ralph F
2014-01-01
Although respiratory muscle motor units have been studied during natural breathing, simultaneous measures of muscle force have never been obtained. Tongue retractor muscles, such as the hyoglossus (HG), play an important role in swallowing, licking, chewing, breathing, and, in humans, speech. The HG is phasically recruited during the inspiratory phase of the respiratory cycle. Moreover, in urethane anesthetized rats the drive to the HG waxes and wanes spontaneously, providing a unique opportunity to study motor unit firing patterns as the muscle is driven naturally by the central pattern generator for breathing. We recorded tongue retraction force, the whole HG muscle EMG and the activity of 38 HG motor units in spontaneously breathing anesthetized rats under low-force and high-force conditions. Activity in all cases was confined to the inspiratory phase of the respiratory cycle. Changes in the EMG were correlated significantly with corresponding changes in force, with the change in EMG able to predict 53-68% of the force variation. Mean and peak motor unit firing rates were greater under high-force conditions, although the magnitude of discharge rate modulation varied widely across the population. Changes in mean and peak firing rates were significantly correlated with the corresponding changes in force, but the correlations were weak (r(2) = 0.27 and 0.25, respectively). These data indicate that, during spontaneous breathing, recruitment of HG motor units plays a critical role in the control of muscle force, with firing rate modulation playing an important but lesser role.
Statistical Mechanics of the Cytoskeleton
NASA Astrophysics Data System (ADS)
Wang, Shenshen
The mechanical integrity of eukaryotic cells along with their capability of dynamic remodeling depends on their cytoskeleton, a structural scaffold made up of a complex and dense network of filamentous proteins spanning the cytoplasm. Active force generation within the cytoskeletal networks by molecular motors is ultimately powered by the consumption of chemical energy and conversion of that energy into mechanical work. The resulting functional movements range from the collective cell migration in epithelial tissues responsible for wound healing to the changes of cell shape that occur during muscle contraction, as well as all the internal structural rearrangements essential for cell division. The role of the cytoskeleton as a dynamic versatile mesoscale "muscle", whose passive and active performance is both highly heterogeneous in space and time and intimately linked to diverse biological functions, allows it to serve as a sensitive indicator for the health and developmental state of the cell. By approaching this natural nonequilibrium many-body system from a variety of perspectives, researchers have made major progress toward understanding the cytoskeleton's unusual mechanical, dynamical and structural properties. Yet a unifying framework capable of capturing both the dynamics of active pattern formation and the emergence of spontaneous collective motion, that allows one to predict the dependence of the model's control parameters on motor properties, is still needed. In the following we construct a microscopic model and provide a theoretical framework to investigate the intricate interplay between local force generation, network architecture and collective motor action. This framework is able to accommodate both regular and heterogeneous pattern formation, as well as arrested coarsening and macroscopic contraction in a unified manner, through the notion of motor-driven effective interactions. Moreover a systematic expansion scheme combined with a variational stability analysis yields a threshold strength of motor kicking noise, below which the motorized system behaves as if it were at an effective equilibrium, but with a nontrivial effective temperature. Above the threshold, however, collective directed motion emerges spontaneously. Computer simulations support the theoretical predictions and highlight the essential role played in large-scale contraction by spatial correlation in motor kicking events.
Lee, Sabrina S. M.; de Boef Miara, Maria; Arnold, Allison S.; Biewener, Andrew A.; Wakeling, James M.
2013-01-01
SUMMARY Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation–deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these data provide new evidence that changes in motor unit recruitment have an underlying mechanical basis, at least for certain locomotor tasks. PMID:22972893
Lee, Sabrina S M; de Boef Miara, Maria; Arnold, Allison S; Biewener, Andrew A; Wakeling, James M
2013-01-15
Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation-deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these data provide new evidence that changes in motor unit recruitment have an underlying mechanical basis, at least for certain locomotor tasks.
Forthergillian Lecture. Imaging human brain function.
Frackowiak, R S
The non-invasive brain scanning techniques introduced a quarter of a century ago have become crucial for diagnosis in clinical neurology. They have also been used to investigate brain function and have provided information about normal activity and pathogenesis. They have been used to investigate functional specialization in the brain and how specialized areas communicate to generate complex integrated functions such as speech, memory, the emotions and so on. The phenomenon of brain plasticity is poorly understood and yet clinical neurologists are aware, from everyday observations, that spontaneous recovery from brain lesions is common. An improved understanding of the mechanisms of recovery may generate new therapeutic strategies and indicate ways of modulating mechanisms that promote plastic compensation for loss of function. The main methods used to investigate these issues are positron emission tomography and magnetic resonance imaging (M.R.I.). M.R.I. is also used to map brain structure. The techniques of functional brain mapping and computational morphometrics depend on high performance scanners and a validated set of analytic statistical procedures that generate reproducible data and meaningful inferences from brain scanning data. The motor system presents a good paradigm to illustrate advances made by scanning towards an understanding of plasticity at the level of brain areas. The normal motor system is organized in a nested hierarchy. Recovery from paralysis caused by internal capsule strokes involves functional reorganization manifesting itself as changed patterns of activity in the component brain areas of the normal motor system. The pattern of plastic modification depends in part on patterns of residual or disturbed connectivity after brain injury. Therapeutic manipulations in patients with Parkinson's disease using deep brain stimulation, dopaminergic agents or fetal mesencephalic transplantation provide a means to examine mechanisms underpinning plastic change. Other models of plastic change, such as normal visuospatial learning or re-establishing speech comprehension after cochlear implantation in the deaf illustrate how patterns of brain function adapt over time. Limitations of the scanning techniques and prospects for the future are discussed in relation to new developments in the neuroimaging field.
A neural coding scheme reproducing foraging trajectories
Gutiérrez, Esther D.; Cabrera, Juan Luis
2015-01-01
The movement of many animals may follow Lévy patterns. The underlying generating neuronal dynamics of such a behavior is unknown. In this paper we show that a novel discovery of multifractality in winnerless competition (WLC) systems reveals a potential encoding mechanism that is translatable into two dimensional superdiffusive Lévy movements. The validity of our approach is tested on a conductance based neuronal model showing WLC and through the extraction of Lévy flights inducing fractals from recordings of rat hippocampus during open field foraging. Further insights are gained analyzing mice motor cortex neurons and non motor cell signals. The proposed mechanism provides a plausible explanation for the neuro-dynamical fundamentals of spatial searching patterns observed in animals (including humans) and illustrates an until now unknown way to encode information in neuronal temporal series. PMID:26648311
Bradley, Nina S; Solanki, Dhara; Zhao, Dawn
2005-12-01
New imaging technologies are revealing ever-greater details of motor behavior in fetuses for clinical diagnosis and treatment. Understanding the form, mechanisms, and significance of fetal behavior will maximize imaging applications. The chick is readily available for experimentation throughout embryogenesis, making it an excellent model for this purpose. Yet in 40 yr since Hamburger and colleagues described chick embryonic behavior, we have not determined if motility belongs to a developmental continuum fundamental to posthatching behavior. This study examined kinematics and synchronized electromyography (EMG) during spontaneous limb movements in chicks at four time points between embryonic days (E) 9-18. We report that coordinated kinematic and/or EMG patterns were expressed at each time point. Variability observed in knee and ankle excursions at E15-E18 sorted into distinct in-phase and out-of-phase patterns. EMG patterns did not directly account for out-of-phase patterns, indicating study of movement biomechanics will be critical to fully understand motor control in the embryo. We also provide the first descriptions of 2- to 10-Hz limb movements emerging E15-E18 and a shift from in-phase to out-of-phase interlimb coordination E9-E18. Our findings revealed that coordinated limb movements persist across development and suggest they belong to a developmental continuum for locomotion. Limb patterns were consistent with the half center model for a locomotor pattern generator. Achievement of these patterns by E9 may thus indicate the embryo has completed a critical phase beyond which developmental progression may be less vulnerable to experimental perturbations or prenatal events.
Kuk, Mariya; Shkrum, Michael J
2018-05-01
The Office of the Chief Coroner for Ontario database for 2011-2012 was used to compare fatal injury patterns in drivers whose third-generation airbags deployed compared to first- and second-generation airbag deployments and airbag nondeployments with and without seatbelt use. There were 110 frontal and offset frontal crashes analyzed. The small sample size meant that the odds of craniocerebral, cervical spinal, thoracic, and abdominal injuries were not statistically different for airbag generation, deployment status, and seatbelt use; however, the risk of fatal thoracic injuries in third- and second-generation cases was increased. Seatbelt usage in third- and second-generation deployment cases reduced the risk of all injuries except abdominal trauma. High severity impacts and occupant compartment intrusion were frequently observed. The analyses in this retrospective study were challenged by data that were not collated in a standardized way and were limited in details about scene, vehicle, and driver variables. © 2017 American Academy of Forensic Sciences.
Functional Interactions between Mammalian Respiratory Rhythmogenic and Premotor Circuitry
Song, Hanbing; Hayes, John A.; Vann, Nikolas C.; Wang, Xueying; LaMar, M. Drew
2016-01-01
Breathing in mammals depends on rhythms that originate from the preBötzinger complex (preBötC) of the ventral medulla and a network of brainstem and spinal premotor neurons. The rhythm-generating core of the preBötC, as well as some premotor circuits, consist of interneurons derived from Dbx1-expressing precursors (Dbx1 neurons), but the structure and function of these networks remain incompletely understood. We previously developed a cell-specific detection and laser ablation system to interrogate respiratory network structure and function in a slice model of breathing that retains the preBötC, the respiratory-related hypoglossal (XII) motor nucleus and XII premotor circuits. In spontaneously rhythmic slices, cumulative ablation of Dbx1 preBötC neurons decreased XII motor output by ∼50% after ∼15 cell deletions, and then decelerated and terminated rhythmic function altogether as the tally increased to ∼85 neurons. In contrast, cumulatively deleting Dbx1 XII premotor neurons decreased motor output monotonically but did not affect frequency nor stop XII output regardless of the ablation tally. Here, we couple an existing preBötC model with a premotor population in several topological configurations to investigate which one may replicate the laser ablation experiments best. If the XII premotor population is a “small-world” network (rich in local connections with sparse long-range connections among constituent premotor neurons) and connected with the preBötC such that the total number of incoming synapses remains fixed, then the in silico system successfully replicates the in vitro laser ablation experiments. This study proposes a feasible configuration for circuits consisting of Dbx1-derived interneurons that generate inspiratory rhythm and motor pattern. SIGNIFICANCE STATEMENT To produce a breathing-related motor pattern, a brainstem core oscillator circuit projects to a population of premotor interneurons, but the assemblage of this network remains incompletely understood. Here we applied network modeling and numerical simulation to discover respiratory circuit configurations that successfully replicate photonic cell ablation experiments targeting either the core oscillator or premotor network, respectively. If premotor neurons are interconnected in a so-called “small-world” network with a fixed number of incoming synapses balanced between premotor and rhythmogenic neurons, then our simulations match their experimental benchmarks. These results provide a framework of experimentally testable predictions regarding the rudimentary structure and function of respiratory rhythm- and pattern-generating circuits in the brainstem of mammals. PMID:27383596
Hickam, Christopher Dale [Glasford, IL
2008-05-13
A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.
46 CFR 120.320 - Generators and motors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Generators and motors. 120.320 Section 120.320 Shipping... and Distribution Systems § 120.320 Generators and motors. (a) Each generator and motor must be: (1) In... generator and motor must be designed for an ambient temperature of 50 °C (122 °F) except that: (1) If the...
46 CFR 120.320 - Generators and motors.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Generators and motors. 120.320 Section 120.320 Shipping... and Distribution Systems § 120.320 Generators and motors. (a) Each generator and motor must be: (1) In... generator and motor must be designed for an ambient temperature of 50 °C (122 °F) except that: (1) If the...
Scharoun, Sara M; Gonzalez, David A; Roy, Eric A; Bryden, Pamela J
2018-04-01
Young adults plan actions in advance to minimize the cost of movement. This is exemplified by the end-state comfort (ESC) effect. A pattern of improvement in ESC in children is linked to the development of cognitive control processes, and decline in older adults is attributed to cognitive decline. This study used a cross-sectional design to examine how movement context (pantomime, demonstration with image/glass as a guide, actual grasping) influences between-hand differences in ESC planning. Children (5- to 12-year-olds), young adults, and two groups of older adults (aged 60-70, and aged 71 and older) were assessed. Findings provide evidence for adult-like patterns of ESC in 8-year-olds. Results are attributed to improvements in proprioceptive acuity and proficiency in generating and implementing internal representations of action. For older adults early in the aging process, sensitivity to ESC did not differ from young adults. However, with increasing age, differences reflect challenges in motor planning with increases in cognitive demand, similar to previous work. Findings have implications for understanding lifespan motor behavior.
Knogler, Laura D; Markov, Daniil A; Dragomir, Elena I; Štih, Vilim; Portugues, Ruben
2017-05-08
A fundamental question in neurobiology is how animals integrate external sensory information from their environment with self-generated motor and sensory signals in order to guide motor behavior and adaptation. The cerebellum is a vertebrate hindbrain region where all of these signals converge and that has been implicated in the acquisition, coordination, and calibration of motor activity. Theories of cerebellar function postulate that granule cells encode a variety of sensorimotor signals in the cerebellar input layer. These models suggest that representations should be high-dimensional, sparse, and temporally patterned. However, in vivo physiological recordings addressing these points have been limited and in particular have been unable to measure the spatiotemporal dynamics of population-wide activity. In this study, we use both calcium imaging and electrophysiology in the awake larval zebrafish to investigate how cerebellar granule cells encode three types of sensory stimuli as well as stimulus-evoked motor behaviors. We find that a large fraction of all granule cells are active in response to these stimuli, such that representations are not sparse at the population level. We find instead that most responses belong to only one of a small number of distinct activity profiles, which are temporally homogeneous and anatomically clustered. We furthermore identify granule cells that are active during swimming behaviors and others that are multimodal for sensory and motor variables. When we pharmacologically change the threshold of a stimulus-evoked behavior, we observe correlated changes in these representations. Finally, electrophysiological data show no evidence for temporal patterning in the coding of different stimulus durations. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Rybak, I A; O'Connor, R; Ross, A; Shevtsova, N A; Nuding, S C; Segers, L S; Shannon, R; Dick, T E; Dunin-Barkowski, W L; Orem, J M; Solomon, I C; Morris, K F; Lindsey, B G
2008-10-01
A large body of data suggests that the pontine respiratory group (PRG) is involved in respiratory phase-switching and the reconfiguration of the brain stem respiratory network. However, connectivity between the PRG and ventral respiratory column (VRC) in computational models has been largely ad hoc. We developed a network model with PRG-VRC connectivity inferred from coordinated in vivo experiments. Neurons were modeled in the "integrate-and-fire" style; some neurons had pacemaker properties derived from the model of Breen et al. We recapitulated earlier modeling results, including reproduction of activity profiles of different respiratory neurons and motor outputs, and their changes under different conditions (vagotomy, pontine lesions, etc.). The model also reproduced characteristic changes in neuronal and motor patterns observed in vivo during fictive cough and during hypoxia in non-rapid eye movement sleep. Our simulations suggested possible mechanisms for respiratory pattern reorganization during these behaviors. The model predicted that network- and pacemaker-generated rhythms could be co-expressed during the transition from gasping to eupnea, producing a combined "burst-ramp" pattern of phrenic discharges. To test this prediction, phrenic activity and multiple single neuron spike trains were monitored in vagotomized, decerebrate, immobilized, thoracotomized, and artificially ventilated cats during hypoxia and recovery. In most experiments, phrenic discharge patterns during recovery from hypoxia were similar to those predicted by the model. We conclude that under certain conditions, e.g., during recovery from severe brain hypoxia, components of a distributed network activity present during eupnea can be co-expressed with gasp patterns generated by a distinct, functionally "simplified" mechanism.
From the motor cortex to the movement and back again.
Teka, Wondimu W; Hamade, Khaldoun C; Barnett, William H; Kim, Taegyo; Markin, Sergey N; Rybak, Ilya A; Molkov, Yaroslav I
2017-01-01
The motor cortex controls motor behaviors by generating movement-specific signals and transmitting them through spinal cord circuits and motoneurons to the muscles. Precise and well-coordinated muscle activation patterns are necessary for accurate movement execution. Therefore, the activity of cortical neurons should correlate with movement parameters. To investigate the specifics of such correlations among activities of the motor cortex, spinal cord network and muscles, we developed a model for neural control of goal-directed reaching movements that simulates the entire pathway from the motor cortex through spinal cord circuits to the muscles controlling arm movements. In this model, the arm consists of two joints (shoulder and elbow), whose movements are actuated by six muscles (4 single-joint and 2 double-joint flexors and extensors). The muscles provide afferent feedback to the spinal cord circuits. Cortical neurons are defined as cortical "controllers" that solve an inverse problem based on a proposed straight-line trajectory to a target position and a predefined bell-shaped velocity profile. Thus, the controller generates a motor program that produces a task-specific activation of low-level spinal circuits that in turn induce the muscle activation realizing the intended reaching movement. Using the model, we describe the mechanisms of correlation between cortical and motoneuronal activities and movement direction and other movement parameters. We show that the directional modulation of neuronal activity in the motor cortex and the spinal cord may result from direction-specific dynamics of muscle lengths. Our model suggests that directional modulation first emerges at the level of muscle forces, augments at the motoneuron level, and further increases at the level of the motor cortex due to the dependence of frictional forces in the joints, contractility of the muscles and afferent feedback on muscle lengths and/or velocities.
Motor unit recruitment for dynamic tasks: current understanding and future directions.
Hodson-Tole, Emma F; Wakeling, James M
2009-01-01
Skeletal muscle contains many muscle fibres that are functionally grouped into motor units. For any motor task there are many possible combinations of motor units that could be recruited and it has been proposed that a simple rule, the 'size principle', governs the selection of motor units recruited for different contractions. Motor units can be characterised by their different contractile, energetic and fatigue properties and it is important that the selection of motor units recruited for given movements allows units with the appropriate properties to be activated. Here we review what is currently understood about motor unit recruitment patterns, and assess how different recruitment patterns are more or less appropriate for different movement tasks. During natural movements the motor unit recruitment patterns vary (not always holding to the size principle) and it is proposed that motor unit recruitment is likely related to the mechanical function of the muscles. Many factors such as mechanics, sensory feedback, and central control influence recruitment patterns and consequently an integrative approach (rather than reductionist) is required to understand how recruitment is controlled during different movement tasks. Currently, the best way to achieve this is through in vivo studies that relate recruitment to mechanics and behaviour. Various methods for determining motor unit recruitment patterns are discussed, in particular the recent wavelet-analysis approaches that have allowed motor unit recruitment to be assessed during natural movements. Directions for future studies into motor recruitment within and between functional task groups and muscle compartments are suggested.
Revisiting the body-schema concept in the context of whole-body postural-focal dynamics.
Morasso, Pietro; Casadio, Maura; Mohan, Vishwanathan; Rea, Francesco; Zenzeri, Jacopo
2015-01-01
The body-schema concept is revisited in the context of embodied cognition, further developing the theory formulated by Marc Jeannerod that the motor system is part of a simulation network related to action, whose function is not only to shape the motor system for preparing an action (either overt or covert) but also to provide the self with information on the feasibility and the meaning of potential actions. The proposed computational formulation is based on a dynamical system approach, which is linked to an extension of the equilibrium-point hypothesis, called Passive Motor Paradigm: this dynamical system generates goal-oriented, spatio-temporal, sensorimotor patterns, integrating a direct and inverse internal model in a multi-referential framework. The purpose of such computational model is to operate at the same time as a general synergy formation machinery for planning whole-body actions in humanoid robots and/or for predicting coordinated sensory-motor patterns in human movements. In order to illustrate the computational approach, the integration of simultaneous, even partially conflicting tasks will be analyzed in some detail with regard to postural-focal dynamics, which can be defined as the fusion of a focal task, namely reaching a target with the whole-body, and a postural task, namely maintaining overall stability.
Revisiting the Body-Schema Concept in the Context of Whole-Body Postural-Focal Dynamics
Morasso, Pietro; Casadio, Maura; Mohan, Vishwanathan; Rea, Francesco; Zenzeri, Jacopo
2015-01-01
The body-schema concept is revisited in the context of embodied cognition, further developing the theory formulated by Marc Jeannerod that the motor system is part of a simulation network related to action, whose function is not only to shape the motor system for preparing an action (either overt or covert) but also to provide the self with information on the feasibility and the meaning of potential actions. The proposed computational formulation is based on a dynamical system approach, which is linked to an extension of the equilibrium-point hypothesis, called Passive Motor Paradigm: this dynamical system generates goal-oriented, spatio-temporal, sensorimotor patterns, integrating a direct and inverse internal model in a multi-referential framework. The purpose of such computational model is to operate at the same time as a general synergy formation machinery for planning whole-body actions in humanoid robots and/or for predicting coordinated sensory–motor patterns in human movements. In order to illustrate the computational approach, the integration of simultaneous, even partially conflicting tasks will be analyzed in some detail with regard to postural-focal dynamics, which can be defined as the fusion of a focal task, namely reaching a target with the whole-body, and a postural task, namely maintaining overall stability. PMID:25741274
Dominici, Nadia; Keller, Urs; Vallery, Heike; Friedli, Lucia; van den Brand, Rubia; Starkey, Michelle L; Musienko, Pavel; Riener, Robert; Courtine, Grégoire
2012-07-01
Central nervous system (CNS) disorders distinctly impair locomotor pattern generation and balance, but technical limitations prevent independent assessment and rehabilitation of these subfunctions. Here we introduce a versatile robotic interface to evaluate, enable and train pattern generation and balance independently during natural walking behaviors in rats. In evaluation mode, the robotic interface affords detailed assessments of pattern generation and dynamic equilibrium after spinal cord injury (SCI) and stroke. In enabling mode,the robot acts as a propulsive or postural neuroprosthesis that instantly promotes unexpected locomotor capacities including overground walking after complete SCI, stair climbing following partial SCI and precise paw placement shortly after stroke. In training mode, robot-enabled rehabilitation, epidural electrical stimulation and monoamine agonists reestablish weight-supported locomotion, coordinated steering and balance in rats with a paralyzing SCI. This new robotic technology and associated concepts have broad implications for both assessing and restoring motor functions after CNS disorders, both in animals and in humans.
Handwriting Error Patterns of Children with Mild Motor Difficulties.
ERIC Educational Resources Information Center
Malloy-Miller, Theresa; And Others
1995-01-01
A test of handwriting legibility and 6 perceptual-motor tests were completed by 66 children ages 7-12. Among handwriting error patterns, execution was associated with visual-motor skill and sensory discrimination, aiming with visual-motor and fine-motor skills. The visual-spatial factor had no significant association with perceptual-motor…
The Human Central Pattern Generator for Locomotion.
Minassian, Karen; Hofstoetter, Ursula S; Dzeladini, Florin; Guertin, Pierre A; Ijspeert, Auke
2017-03-01
The ability of dedicated spinal circuits, referred to as central pattern generators (CPGs), to produce the basic rhythm and neural activation patterns underlying locomotion can be demonstrated under specific experimental conditions in reduced animal preparations. The existence of CPGs in humans is a matter of debate. Equally elusive is the contribution of CPGs to normal bipedal locomotion. To address these points, we focus on human studies that utilized spinal cord stimulation or pharmacological neuromodulation to generate rhythmic activity in individuals with spinal cord injury, and on neuromechanical modeling of human locomotion. In the absence of volitional motor control and step-specific sensory feedback, the human lumbar spinal cord can produce rhythmic muscle activation patterns that closely resemble CPG-induced neural activity of the isolated animal spinal cord. In this sense, CPGs in humans can be defined by the activity they produce. During normal locomotion, CPGs could contribute to the activation patterns during specific phases of the step cycle and simplify supraspinal control of step cycle frequency as a feedforward component to achieve a targeted speed. Determining how the human CPGs operate will be essential to advance the theory of neural control of locomotion and develop new locomotor neurorehabilitation paradigms.
Discharge properties of upper airway motor units during wakefulness and sleep.
Trinder, John; Jordan, Amy S; Nicholas, Christian L
2014-01-01
Upper airway muscle motoneurons, as assessed at the level of the motor unit, have a range of different discharge patterns, varying as to whether their activity is modulated in phase with the respiratory cycle, are predominantly inspiratory or expiratory, or are phasic as opposed to tonic. Two fundamental questions raised by this observation are: how are synaptic inputs from premotor neurons distributed over motoneurons to achieve these different discharge patterns; and how do different discharge patterns contribute to muscle function? We and others have studied the behavior of genioglossus (GG) and tensor palatini (TP) single motor units at transitions from wakefulness to sleep (sleep onset), from sleep to wakefulness (arousal from sleep), and during hypercapnia. Results indicate that decreases or increases in GG and TP muscle activity occur as a consequence of derecruitment or recruitment, respectively, of phasic and tonic inspiratory-modulated motoneurons, with only minor changes in rate coding. Further, sleep-wake state and chemical inputs to this "inspiratory system" appear to be mediated through the respiratory pattern generator. In contrast, phasic and tonic expiratory units and units with a purely tonic pattern, the "tonic system," are largely unaffected by sleep-wake state, and are only weakly influenced by chemical stimuli and the respiratory cycle. We speculate that the "inspiratory system" produces gross changes in upper airway muscle activity in response to changes in respiratory drive, while the "tonic system" fine tunes airway configuration with activity in this system being determined by local mechanical conditions. © 2014 Elsevier B.V. All rights reserved.
Force generation within tissues during development
NASA Astrophysics Data System (ADS)
Kasza, Karen
During embryonic development, multicellular tissues physically change shape, move, and grow. Changes in epithelial tissue organization are often accomplished by local movements of cells that are driven largely by forces generated by the motor protein myosin II. These forces are patterned to orient cell movements, resulting in changes in tissue shape and organization to build functional tissues and organs. To investigate the mechanisms of force generation in vivo, we use the fruit fly embryo as a model system. Spatial patterns of forces orient cell movements to drive rapid tissue elongation along the head-to-tail axis of the embryo. I will describe how studying embryos generated with engineered myosin variants provides insight into where, when, and how forces are generated to efficiently reorganize tissues. We found that a myosin variant that is locked-in to the active or ``on'' state accelerates cell movements, while two mutant myosin variants associated with human disease produce slowed cell movement. These myosin variants all disrupt tissue elongation, but live imaging and biophysical measurements reveal distinct effects on myosin organization and dynamics within cells and uncover mechanisms that control the spatial and temporal patterns of force generation. These studies shed light not only on how defects in force generation contribute to disease but also on physical principles at work in active, living materials.
A microfluidic device to study neuronal and motor responses to acute chemical stimuli in zebrafish.
Candelier, Raphaël; Murmu, Meena Sriti; Romano, Sebastián Alejo; Jouary, Adrien; Debrégeas, Georges; Sumbre, Germán
2015-07-21
Zebrafish larva is a unique model for whole-brain functional imaging and to study sensory-motor integration in the vertebrate brain. To take full advantage of this system, one needs to design sensory environments that can mimic the complex spatiotemporal stimulus patterns experienced by the animal in natural conditions. We report on a novel open-ended microfluidic device that delivers pulses of chemical stimuli to agarose-restrained larvae with near-millisecond switching rate and unprecedented spatial and concentration accuracy and reproducibility. In combination with two-photon calcium imaging and recordings of tail movements, we found that stimuli of opposite hedonic values induced different circuit activity patterns. Moreover, by precisely controlling the duration of the stimulus (50-500 ms), we found that the probability of generating a gustatory-induced behavior is encoded by the number of neurons activated. This device may open new ways to dissect the neural-circuit principles underlying chemosensory perception.
Scaling of motor cortical excitability during unimanual force generation.
Perez, Monica A; Cohen, Leonardo G
2009-10-01
During performance of a unimanual force generation task primary motor cortices (M1s) experience clear functional changes. Here, we evaluated the way in which M1s interact during parametric increases in right wrist flexion force in healthy volunteers. We measured the amplitude and the slope of motor evoked potentials (MEP) recruitment curves to transcranial magnetic stimulation (TMS) in the left and right flexor carpi radialis (FCR) muscles at rest and during 10%, 30% and 70% of maximal wrist flexion force. At rest, no differences were observed in the amplitude and slope of MEP recruitment curves in the left and right FCR muscles. With increasing right wrist flexion force, MEP amplitudes increased in both FCR muscles, with larger amplitudes in the right FCR. We found a significant correlation between the left and right MEP amplitudes across conditions. The slope of right and left FCR MEP recruitment curve was significantly steeper at 70% of force compared to rest and 10% of force. A significant correlation between the slope of left and right FCR MEP amplitudes was found at 70% of force only. Our results indicate a differential scaling of excitability in the corticospinal system controlling right and left FCR muscles at increasing levels of unimanual force generation. Specifically, these data highlights that at strong levels of unimanual force the increases in motor cortical excitability with increasing TMS stimulus intensities follow a similar pattern in both M1s, while at low levels of force they do not.
46 CFR 129.320 - Generators and motors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Generators and motors. 129.320 Section 129.320 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.320 Generators and motors. (a) Each generator and... contact with low-lying vapors. (b) Each generator and motor must be designed for an ambient temperature of...
ERIC Educational Resources Information Center
Peladau-Pigeon, Melanie; Steele, Catriona M.
2017-01-01
Purpose: The ability to generate tongue pressure plays a major role in bolus transport in swallowing. In studies of motor control, stability or variability of movement is a feature that changes with age, disease, task complexity, and perturbation. In this study, we explored whether age and tongue strength influence the stability of the tongue…
Kasap, Bahadir; van Opstal, A John
2017-08-01
Single-unit recordings suggest that the midbrain superior colliculus (SC) acts as an optimal controller for saccadic gaze shifts. The SC is proposed to be the site within the visuomotor system where the nonlinear spatial-to-temporal transformation is carried out: the population encodes the intended saccade vector by its location in the motor map (spatial), and its trajectory and velocity by the distribution of firing rates (temporal). The neurons' burst profiles vary systematically with their anatomical positions and intended saccade vectors, to account for the nonlinear main-sequence kinematics of saccades. Yet, the underlying collicular mechanisms that could result in these firing patterns are inaccessible to current neurobiological techniques. Here, we propose a simple spiking neural network model that reproduces the spike trains of saccade-related cells in the intermediate and deep SC layers during saccades. The model assumes that SC neurons have distinct biophysical properties for spike generation that depend on their anatomical position in combination with a center-surround lateral connectivity. Both factors are needed to account for the observed firing patterns. Our model offers a basis for neuronal algorithms for spatiotemporal transformations and bio-inspired optimal controllers.
de Rugy, Aymar; Riek, Stephan; Carson, Richard G
2006-01-01
The authors tested for predominant patterns of coordination in the combination of rhythmic flexion-extension (FE) and supination- (SP) at the elbow-joint complex. Participants (N=10) spontaneously established in-phase (supination synchronized with flexion) and antiphase (pronation synchronized with flexion) patterns. In addition, the authors used a motorized robot arm to generate involuntary SP movements with different phase relations with respect to voluntary FE. The involuntarily induced in-phase pattern was accentuated and was more consistent than other patterns. The result provides evidence that the predominance of the in-phase pattern originates in the influence of neuromuscular-skeletal constraints rather than in a preference dictated by perceptual-cognitive factors implicated in voluntary control. Neuromuscular-skeletal constraints involved in the predominance of the in-phase and the antiphase patterns are discussed.
Esplandiu, Maria J; Farniya, Ali Afshar; Bachtold, Adrian
2015-11-24
We report a simple yet highly efficient chemical motor that can be controlled with visible light. The motor made from a noble metal and doped silicon acts as a pump, which is driven through a light-activated catalytic reaction process. We show that the actuation is based on electro-osmosis with the electric field generated by chemical reactions at the metal and silicon surfaces, whereas the contribution of diffusio-osmosis to the actuation is negligible. Surprisingly, the pump can be operated using water as fuel. This is possible because of the large ζ-potential of silicon, which makes the electro-osmotic fluid motion sizable even though the electric field generated by the reaction is weak. The electro-hydrodynamic process is greatly amplified with the addition of reactive species, such as hydrogen peroxide, which generates higher electric fields. Another remarkable finding is the tunability of silicon-based pumps. That is, it is possible to control the speed of the fluid with light. We take advantage of this property to manipulate the spatial distribution of colloidal microparticles in the liquid and to pattern colloidal microparticle structures at specific locations on a wafer surface. Silicon-based pumps hold great promise for controlled mass transport in fluids.
Dai, Shengfa; Wei, Qingguo
2017-01-01
Common spatial pattern algorithm is widely used to estimate spatial filters in motor imagery based brain-computer interfaces. However, use of a large number of channels will make common spatial pattern tend to over-fitting and the classification of electroencephalographic signals time-consuming. To overcome these problems, it is necessary to choose an optimal subset of the whole channels to save computational time and improve the classification accuracy. In this paper, a novel method named backtracking search optimization algorithm is proposed to automatically select the optimal channel set for common spatial pattern. Each individual in the population is a N-dimensional vector, with each component representing one channel. A population of binary codes generate randomly in the beginning, and then channels are selected according to the evolution of these codes. The number and positions of 1's in the code denote the number and positions of chosen channels. The objective function of backtracking search optimization algorithm is defined as the combination of classification error rate and relative number of channels. Experimental results suggest that higher classification accuracy can be achieved with much fewer channels compared to standard common spatial pattern with whole channels.
GDE2 regulates subtype-specific motor neuron generation through inhibition of Notch signaling.
Sabharwal, Priyanka; Lee, Changhee; Park, Sungjin; Rao, Meenakshi; Sockanathan, Shanthini
2011-09-22
The specification of spinal interneuron and motor neuron identities initiates within progenitor cells, while motor neuron subtype diversification is regulated by hierarchical transcriptional programs implemented postmitotically. Here we find that mice lacking GDE2, a six-transmembrane protein that triggers motor neuron generation, exhibit selective losses of distinct motor neuron subtypes, specifically in defined subsets of limb-innervating motor pools that correlate with the loss of force-generating alpha motor neurons. Mechanistically, GDE2 is expressed by postmitotic motor neurons but utilizes extracellular glycerophosphodiester phosphodiesterase activity to induce motor neuron generation by inhibiting Notch signaling in neighboring motor neuron progenitors. Thus, neuronal GDE2 controls motor neuron subtype diversity through a non-cell-autonomous feedback mechanism that directly regulates progenitor cell differentiation, implying that subtype specification initiates within motor neuron progenitor populations prior to their differentiation into postmitotic motor neurons. Copyright © 2011 Elsevier Inc. All rights reserved.
GDE2 regulates subtype specific motor neuron generation through inhibition of Notch signaling
Sabharwal, Priyanka; Lee, Changhee; Park, Sungjin; Rao, Meenakshi; Sockanathan, Shanthini
2011-01-01
The specification of spinal interneuron and motor neuron identities initiates within progenitor cells, while motor neuron subtype diversification is regulated by hierarchical transcriptional programs implemented postmitotically. Here, we find that mice lacking GDE2, a six-transmembrane protein that triggers motor neuron generation, exhibit selective losses of distinct motor neuron subtypes, specifically in defined subsets of limb-innervating motor pools that correlate with the loss of force-generating alpha motor neurons. Mechanistically, GDE2 is expressed by postmitotic motor neurons but utilizes extracellular glycerophosphodiester phosphodiesterase activity to induce motor neuron generation by inhibiting Notch signaling in neighboring motor neuron progenitors. Thus, neuronal GDE2 controls motor neuron subtype diversity through a non cell-autonomous feedback mechanism that directly regulates progenitor cell differentiation, implying that subtype specification initiates within motor neuron progenitor populations prior to their differentiation into postmitotic motor neurons. PMID:21943603
49 CFR 229.91 - Motors and generators.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Motors and generators. 229.91 Section 229.91 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....91 Motors and generators. A motor or a generator may not have any of the following conditions: (a) Be...
NASA Astrophysics Data System (ADS)
Zhou, Ping; Barkhaus, Paul E.; Zhang, Xu; Zev Rymer, William
2011-10-01
This paper presents a novel application of the approximate entropy (ApEn) measurement for characterizing spontaneous motor unit activity of amyotrophic lateral sclerosis (ALS) patients. High-density surface electromyography (EMG) was used to record spontaneous motor unit activity bilaterally from the thenar muscles of nine ALS subjects. Three distinct patterns of spontaneous motor unit activity (sporadic spikes, tonic spikes and high-frequency repetitive spikes) were observed. For each pattern, complexity was characterized by calculating the ApEn values of the representative signal segments. A sliding window over each segment was also introduced to quantify the dynamic changes in complexity for the different spontaneous motor unit patterns. We found that the ApEn values for the sporadic spikes were the highest, while those of the high-frequency repetitive spikes were the lowest. There is a significant difference in mean ApEn values between two arbitrary groups of the three spontaneous motor unit patterns (P < 0.001). The dynamic ApEn curve from the sliding window analysis is capable of tracking variations in EMG activity, thus providing a vivid, distinctive description for different patterns of spontaneous motor unit action potentials in terms of their complexity. These findings expand the existing knowledge of spontaneous motor unit activity in ALS beyond what was previously obtained using conventional linear methods such as firing rate or inter-spike interval statistics.
Dynamical Motor Control Learned with Deep Deterministic Policy Gradient
2018-01-01
Conventional models of motor control exploit the spatial representation of the controlled system to generate control commands. Typically, the control command is gained with the feedback state of a specific instant in time, which behaves like an optimal regulator or spatial filter to the feedback state. Yet, recent neuroscience studies found that the motor network may constitute an autonomous dynamical system and the temporal patterns of the control command can be contained in the dynamics of the motor network, that is, the dynamical system hypothesis (DSH). Inspired by these findings, here we propose a computational model that incorporates this neural mechanism, in which the control command could be unfolded from a dynamical controller whose initial state is specified with the task parameters. The model is trained in a trial-and-error manner in the framework of deep deterministic policy gradient (DDPG). The experimental results show that the dynamical controller successfully learns the control policy for arm reaching movements, while the analysis of the internal activities of the dynamical controller provides the computational evidence to the DSH of the neural coding in motor cortices. PMID:29666634
Lin, Nan; Guo, Qihao; Han, Zaizhu; Bi, Yanchao
2011-11-01
Neuropsychological and neuroimaging studies have indicated that motor knowledge is one potential dimension along which concepts are organized. Here we present further direct evidence for the effects of motor knowledge in accounting for categorical patterns across object domains (living vs. nonliving) and grammatical domains (nouns vs. verbs), as well as the integrity of other modality-specific knowledge (e.g., visual). We present a Chinese case, XRK, who suffered from semantic dementia with left temporal lobe atrophy. In naming and comprehension tasks, he performed better at nonliving items than at living items, and better at verbs than at nouns. Critically, multiple regression method revealed that these two categorical effects could be both accounted for by the charade rating, a continuous measurement of the significance of motor knowledge for a concept or a semantic feature. Furthermore, charade rating also predicted his performances on the generation frequency of semantic features of various modalities. These findings consolidate the significance of motor knowledge in conceptual organization and further highlights the interactions between different types of semantic knowledge. Copyright © 2010 Elsevier Inc. All rights reserved.
Dynamical Motor Control Learned with Deep Deterministic Policy Gradient.
Shi, Haibo; Sun, Yaoru; Li, Jie
2018-01-01
Conventional models of motor control exploit the spatial representation of the controlled system to generate control commands. Typically, the control command is gained with the feedback state of a specific instant in time, which behaves like an optimal regulator or spatial filter to the feedback state. Yet, recent neuroscience studies found that the motor network may constitute an autonomous dynamical system and the temporal patterns of the control command can be contained in the dynamics of the motor network, that is, the dynamical system hypothesis (DSH). Inspired by these findings, here we propose a computational model that incorporates this neural mechanism, in which the control command could be unfolded from a dynamical controller whose initial state is specified with the task parameters. The model is trained in a trial-and-error manner in the framework of deep deterministic policy gradient (DDPG). The experimental results show that the dynamical controller successfully learns the control policy for arm reaching movements, while the analysis of the internal activities of the dynamical controller provides the computational evidence to the DSH of the neural coding in motor cortices.
Increased sensorimotor network activity in DYT1 dystonia: a functional imaging study
Argyelan, Miklos; Habeck, Christian; Ghilardi, M. Felice; Fitzpatrick, Toni; Dhawan, Vijay; Pourfar, Michael; Bressman, Susan B.; Eidelberg, David
2010-01-01
Neurophysiological studies have provided evidence of primary motor cortex hyperexcitability in primary dystonia, but several functional imaging studies suggest otherwise. To address this issue, we measured sensorimotor activation at both the regional and network levels in carriers of the DYT1 dystonia mutation and in control subjects. We used 15Oxygen-labelled water and positron emission tomography to scan nine manifesting DYT1 carriers, 10 non-manifesting DYT1 carriers and 12 age-matched controls while they performed a kinematically controlled motor task; they were also scanned in a non-motor audio-visual control condition. Within- and between-group contrasts were analysed with statistical parametric mapping. For network analysis, we first identified a normal motor-related activation pattern in a set of 39 motor and audio-visual scans acquired in an independent cohort of 18 healthy volunteer subjects. The expression of this pattern was prospectively quantified in the motor and control scans acquired in each of the gene carriers and controls. Network values for the three groups were compared with ANOVA and post hoc contrasts. Voxel-wise comparison of DYT1 carriers and controls revealed abnormally increased motor activation responses in the former group (P < 0.05, corrected; statistical parametric mapping), localized to the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and the inferior parietal cortex. Network analysis of the normative derivation cohort revealed a significant normal motor-related activation pattern topography (P < 0.0001) characterized by covarying neural activity in the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and cerebellum. In the study cohort, normal motor-related activation pattern expression measured during movement was abnormally elevated in the manifesting gene carriers (P < 0.001) but not in their non-manifesting counterparts. In contrast, in the non-motor control condition, abnormal increases in network activity were present in both groups of gene carriers (P < 0.001). In this condition, normal motor-related activation pattern expression in non-manifesting carriers was greater than in controls, but lower than in affected carriers. In the latter group, measures of normal motor-related activation pattern expression in the audio-visual condition correlated with independent dystonia clinical ratings (r = 0.70, P = 0.04). These findings confirm that overexcitability of the sensorimotor system is a robust feature of dystonia. The presence of elevated normal motor-related activation pattern expression in the non-motor condition suggests that abnormal integration of audio-visual input with sensorimotor network activity is an important trait feature of this disorder. Lastly, quantification of normal motor-related activation pattern expression in individual cases may have utility as an objective descriptor of therapeutic response in trials of new treatments for dystonia and related disorders. PMID:20207699
Eleftheriadou, I; Trabalza, A; Ellison, SM; Gharun, K; Mazarakis, ND
2014-01-01
To understand how receptors are involved in neuronal trafficking and to be able to utilize them for specific targeting via the peripheral route would be of great benefit. Here, we describe the generation of novel lentiviral vectors with tropism to motor neurons that were made by coexpressing onto the lentiviral surface a fusogenic glycoprotein (mutated sindbis G) and an antibody against a cell-surface receptor (Thy1.1, p75NTR, or coxsackievirus and adenovirus receptor) on the presynaptic terminal of the neuromuscular junction. These vectors exhibit binding specificity and efficient transduction of receptor positive cell lines and primary motor neurons in vitro. Targeting of each of these receptors conferred to these vectors the capability of being transported retrogradely from the axonal tip, leading to transduction of motor neurons in vitro in compartmented microfluidic cultures. In vivo delivery of coxsackievirus and adenovirus receptor-targeted vectors in leg muscles of mice resulted in predicted patterns of motor neuron labeling in lumbar spinal cord. This opens up the clinical potential of these vectors for minimally invasive administration of central nervous system-targeted therapeutics in motor neuron diseases. PMID:24670531
Scekic-Zahirovic, Jelena; Sendscheid, Oliver; El Oussini, Hajer; Jambeau, Mélanie; Sun, Ying; Mersmann, Sina; Wagner, Marina; Dieterlé, Stéphane; Sinniger, Jérome; Dirrig-Grosch, Sylvie; Drenner, Kevin; Birling, Marie-Christine; Qiu, Jinsong; Zhou, Yu; Li, Hairi; Fu, Xiang-Dong; Rouaux, Caroline; Shelkovnikova, Tatyana; Witting, Anke; Ludolph, Albert C; Kiefer, Friedemann; Storkebaum, Erik; Lagier-Tourenne, Clotilde; Dupuis, Luc
2016-05-17
FUS is an RNA-binding protein involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS-containing aggregates are often associated with concomitant loss of nuclear FUS Whether loss of nuclear FUS function, gain of a cytoplasmic function, or a combination of both lead to neurodegeneration remains elusive. To address this question, we generated knockin mice expressing mislocalized cytoplasmic FUS and complete FUS knockout mice. Both mouse models display similar perinatal lethality with respiratory insufficiency, reduced body weight and length, and largely similar alterations in gene expression and mRNA splicing patterns, indicating that mislocalized FUS results in loss of its normal function. However, FUS knockin mice, but not FUS knockout mice, display reduced motor neuron numbers at birth, associated with enhanced motor neuron apoptosis, which can be rescued by cell-specific CRE-mediated expression of wild-type FUS within motor neurons. Together, our findings indicate that cytoplasmic FUS mislocalization not only leads to nuclear loss of function, but also triggers motor neuron death through a toxic gain of function within motor neurons. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
Compositional symbol grounding for motor patterns.
Greco, Alberto; Caneva, Claudio
2010-01-01
We developed a new experimental and simulative paradigm to study the establishing of compositional grounded representations for motor patterns. Participants learned to associate non-sense arm motor patterns, performed in three different hand postures, with non-sense words. There were two group conditions: in the first (compositional), each pattern was associated with a two-word (verb-adverb) sentence; in the second (holistic), each same pattern was associated with a unique word. Two experiments were performed. In the first, motor pattern recognition and naming were tested in the two conditions. Results showed that verbal compositionality had no role in recognition and that the main source of confusability in this task came from discriminating hand postures. As the naming task resulted too difficult, some changes in the learning procedure were implemented in the second experiment. In this experiment, the compositional group achieved better results in naming motor patterns especially for patterns where hand postures discrimination was relevant. In order to ascertain the differential effect, upon this result, of memory load and of systematic grounding, neural network simulations were also made. After a basic simulation that worked as a good model of subjects performance, in following simulations the number of stimuli (motor patterns and words) was increased and the systematic association between words and patterns was disrupted, while keeping the same number of words and syntax. Results showed that in both conditions the advantage for the compositional condition significantly increased. These simulations showed that the advantage for this condition may be more related to the systematicity rather than to the mere informational gain. All results are discussed in connection to the possible support of the hypothesis of a compositional motor representation and toward a more precise explanation of the factors that make compositional representations working.
Arneodo, Ezequiel M; Perl, Yonatan Sanz; Goller, Franz; Mindlin, Gabriel B
2012-01-01
Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform.
Neural correlates of frog calling: production by two semi-independent generators.
Schmidt, R S
1992-09-28
The anterior preoptic nuclei of the isolated brainstem of male, Northern leopard frogs (Rana p. pipiens) were stimulated electrically and neural correlates of mating calling recorded from the rhombencephalic mating calling pattern generator. Lesions of discrete areas of the brainstem showed that the mating calling generator is separable into two generators, the pretrigeminal nucleus and the classical pulmonary respiration generator (which is approximately co-extensive with the motor nuclei IX-X). Each of these still can produce pulses when isolated from the other. Their interaction changes the expiratory phase of breathing into the vocal phase of calling. All stages of intermediates between these phases could be seen. An updated and simplified model of call production and evolution is presented.
ELECTROMAGNETIC AND ELECTROSTATIC GENERATORS: ANNOTATED BIBLIOGRAPHY.
generator with split poles, ultrasonic-frequency generator, unipolar generator, single-phase micromotors , synchronous motor, asynchronous motor...asymmetrical rotor, magnetic circuit, dc micromotors , circuit for the automatic control of synchronized induction motors, induction torque micromotors , electric
Disrupting vagal feedback affects birdsong motor control.
Méndez, Jorge M; Dall'asén, Analía G; Goller, Franz
2010-12-15
Coordination of different motor systems for sound production involves the use of feedback mechanisms. Song production in oscines is a well-established animal model for studying learned vocal behavior. Whereas the online use of auditory feedback has been studied in the songbird model, very little is known about the role of other feedback mechanisms. Auditory feedback is required for the maintenance of stereotyped adult song. In addition, the use of somatosensory feedback to maintain pressure during song has been demonstrated with experimentally induced fluctuations in air sac pressure. Feedback information mediating this response is thought to be routed to the central nervous system via afferent fibers of the vagus nerve. Here, we tested the effects of unilateral vagotomy on the peripheral motor patterns of song production and the acoustic features. Unilateral vagotomy caused a variety of disruptions and alterations to the respiratory pattern of song, some of which affected the acoustic structure of vocalizations. These changes were most pronounced a few days after nerve resection and varied between individuals. In the most extreme cases, the motor gestures of respiration were so severely disrupted that individual song syllables or the song motif were atypically terminated. Acoustic changes also suggest altered use of the two sound generators and upper vocal tract filtering, indicating that the disruption of vagal feedback caused changes to the motor program of all motor systems involved in song production and modification. This evidence for the use of vagal feedback by the song system with disruption of song during the first days after nerve cut provides a contrast to the longer-term effects of auditory feedback disruption. It suggests a significant role for somatosensory feedback that differs from that of auditory feedback.
Disrupting vagal feedback affects birdsong motor control
Méndez, Jorge M.; Dall'Asén, Analía G.; Goller, Franz
2010-01-01
Coordination of different motor systems for sound production involves the use of feedback mechanisms. Song production in oscines is a well-established animal model for studying learned vocal behavior. Whereas the online use of auditory feedback has been studied in the songbird model, very little is known about the role of other feedback mechanisms. Auditory feedback is required for the maintenance of stereotyped adult song. In addition, the use of somatosensory feedback to maintain pressure during song has been demonstrated with experimentally induced fluctuations in air sac pressure. Feedback information mediating this response is thought to be routed to the central nervous system via afferent fibers of the vagus nerve. Here, we tested the effects of unilateral vagotomy on the peripheral motor patterns of song production and the acoustic features. Unilateral vagotomy caused a variety of disruptions and alterations to the respiratory pattern of song, some of which affected the acoustic structure of vocalizations. These changes were most pronounced a few days after nerve resection and varied between individuals. In the most extreme cases, the motor gestures of respiration were so severely disrupted that individual song syllables or the song motif were atypically terminated. Acoustic changes also suggest altered use of the two sound generators and upper vocal tract filtering, indicating that the disruption of vagal feedback caused changes to the motor program of all motor systems involved in song production and modification. This evidence for the use of vagal feedback by the song system with disruption of song during the first days after nerve cut provides a contrast to the longer-term effects of auditory feedback disruption. It suggests a significant role for somatosensory feedback that differs from that of auditory feedback. PMID:21113000
Motor learning and modulation of prefrontal cortex: an fNIRS assessment
NASA Astrophysics Data System (ADS)
Ono, Yumie; Noah, Jack Adam; Zhang, Xian; Nomoto, Yasunori; Suzuki, Tatsuya; Shimada, Sotaro; Tachibana, Atsumichi; Bronner, Shaw; Hirsch, Joy
2015-12-01
Objective. Prefrontal hemodynamic responses are observed during performance of motor tasks. Using a dance video game (DVG), a complex motor task that requires temporally accurate footsteps with given visual and auditory cues, we investigated whether 20 h of DVG training modified hemodynamic responses of the prefrontal cortex in six healthy young adults. Approach. Fronto-temporal activity during actual DVG play was measured using functional near-infrared spectroscopy (fNIRS) pre- and post-training. To evaluate the training-induced changes in the time-courses of fNIRS signals, we employed a regression analysis using the task-specific template fNIRS signals that were generated from alternate well-trained and/or novice DVG players. The HRF was also separately incorporated as a template to construct an alternate regression model. Change in coefficients for template functions at pre- and post- training were determined and compared among different models. Main results. Training significantly increased the motor performance using the number of temporally accurate steps in the DVG as criteria. The mean oxygenated hemoglobin (ΔoxyHb) waveform changed from an activation above baseline pattern to that of a below baseline pattern. Participants showed significantly decreased coefficients for regressors of the ΔoxyHb response of novice players and HRF. The model using ΔoxyHb responses from both well-trained and novice players of DVG as templates showed the best fit for the ΔoxyHb responses of the participants at both pre- and post-training when analyzed with Akaike information criteria. Significance. These results suggest that the coefficients for the template ΔoxyHb responses of the novice players are sensitive indicators of motor learning during the initial stage of training and thus clinically useful to determine the improvement in motor performance when patients are engaged in a specific rehabilitation program.
Grubich, J R
2000-10-01
This study explores the evolution of molluscivory in the marine teleost family Sciaenidae by comparing the motor activity patterns of the pharyngeal muscles of two closely related taxa, the molluscivorous black drum (Pogonias cromis) and the generalist red drum (Sciaenops ocellatus). Muscle activity patterns were recorded simultaneously from eight pharyngeal muscles. Electromyographic (EMG) activity was recorded during feeding on three prey types that varied in shell hardness. Canonical variate and discriminant function analyses were used to describe the distinctness of drum pharyngeal processing behaviors. Discriminant functions built of EMG timing variables were more accurate than muscle activity intensity at identifying cycles by prey type and species. Both drum species demonstrated the ability to modulate pharyngeal motor patterns in response to prey hardness. The mean motor patterns and the canonical variate space of crushing behavior indicated that black drum employed a novel motor pattern during molluscivory. The mollusc-crushing motor pattern of black drum is different from other neoteleost pharyngeal behaviors in lacking upper jaw retraction by the retractor dorsalis muscle. This functional modification suggests that crushing hard-shelled marine bivalves requires a 'vice-like' compression bite in contrast to the shearing forces that are applied to weaker-shelled fiddler crabs by red drum and to freshwater snails by redear sunfish.
46 CFR 169.666 - Generators and motors.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Generators and motors. 169.666 Section 169.666 Shipping... of Less Than 100 Gross Tons § 169.666 Generators and motors. (a) Each vessel of more than 65 feet in...) Each generator and motor must be in a location that is accessible, adequately ventilated, and as dry as...
46 CFR 169.666 - Generators and motors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Generators and motors. 169.666 Section 169.666 Shipping... of Less Than 100 Gross Tons § 169.666 Generators and motors. (a) Each vessel of more than 65 feet in...) Each generator and motor must be in a location that is accessible, adequately ventilated, and as dry as...
Yan, Yuanwei; Bejoy, Julie; Xia, Junfei; Guan, Jingjiao; Zhou, Yi; Li, Yan
2016-09-15
Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells/tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capacity of signaling factors that regulate 3-D neural tissue patterning in vitro and differential responses of the resulting neural populations to various biomolecules have not yet been fully understood. By tuning neural patterning of hiPSCs with small molecules targeting sonic hedgehog (SHH) signaling, this study generated different 3-D neuronal cultures that were mainly comprised of either cortical glutamatergic neurons or motor neurons. Abundant glutamatergic neurons were observed following the treatment with an antagonist of SHH signaling, cyclopamine, while Islet-1 and HB9-expressing motor neurons were enriched by an SHH agonist, purmorphamine. In neurons derived with different neural patterning factors, whole-cell patch clamp recordings showed similar voltage-gated Na(+)/K(+) currents, depolarization-evoked action potentials and spontaneous excitatory post-synaptic currents. Moreover, these different neuronal populations exhibited differential responses to three classes of biomolecules, including (1) matrix metalloproteinase inhibitors that affect extracellular matrix remodeling; (2) N-methyl-d-aspartate that induces general neurotoxicity; and (3) amyloid β (1-42) oligomers that cause neuronal subtype-specific neurotoxicity. This study should advance our understanding of hiPSC self-organization and neural tissue development and provide a transformative approach to establish 3-D models for neurological disease modeling and drug discovery. Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells, tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capability of sonic hedgehog-related small molecules to tune different neuronal subtypes in 3-D differentiation from hiPSCs and the differential cellular responses of region-specific neuronal subtypes to various biomolecules have not been fully investigated. By tuning neural patterning of hiPSCs with small molecules targeting sonic hedgehog signaling, this study provides knowledge on the differential susceptibility of region-specific neuronal subtypes derived from hiPSCs to different biomolecules in extracellular matrix remodeling and neurotoxicity. The findings are significant for understanding 3-D neural patterning of hiPSCs for the applications in brain organoid formation, neurological disease modeling, and drug discovery. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Temperature-dependent regulation of vocal pattern generator.
Yamaguchi, Ayako; Gooler, David; Herrold, Amy; Patel, Shailja; Pong, Winnie W
2008-12-01
Vocalizations of Xenopus laevis are generated by central pattern generators (CPGs). The advertisement call of male X. laevis is a complex biphasic motor rhythm consisting of fast and slow trills (a train of clicks). We found that the trill rate of these advertisement calls is sensitive to temperature and that this rate modification of the vocal rhythms originates in the central pattern generators. In vivo the rates of fast and slow trills increased linearly with an increase in temperature. In vitro a similar linear relation between temperature and compound action potential frequency in the laryngeal nerve was found when fictive advertisement calls were evoked in the isolated brain. Temperature did not limit the contractile properties of laryngeal muscles within the frequency range of vocalizations. We next took advantage of the temperature sensitivity of the vocal CPG in vitro to localize the source of the vocal rhythms. We focused on the dorsal tegmental area of the medulla (DTAM), a brain stem nucleus that is essential for vocal production. We found that bilateral cooling of DTAM reduced both fast and slow trill rates. Thus we conclude that DTAM is a source of biphasic vocal rhythms.
Evolution of central pattern generators and rhythmic behaviours
Katz, Paul S.
2016-01-01
Comparisons of rhythmic movements and the central pattern generators (CPGs) that control them uncover principles about the evolution of behaviour and neural circuits. Over the course of evolutionary history, gradual evolution of behaviours and their neural circuitry within any lineage of animals has been a predominant occurrence. Small changes in gene regulation can lead to divergence of circuit organization and corresponding changes in behaviour. However, some behavioural divergence has resulted from large-scale rewiring of the neural network. Divergence of CPG circuits has also occurred without a corresponding change in behaviour. When analogous rhythmic behaviours have evolved independently, it has generally been with different neural mechanisms. Repeated evolution of particular rhythmic behaviours has occurred within some lineages due to parallel evolution or latent CPGs. Particular motor pattern generating mechanisms have also evolved independently in separate lineages. The evolution of CPGs and rhythmic behaviours shows that although most behaviours and neural circuits are highly conserved, the nature of the behaviour does not dictate the neural mechanism and that the presence of homologous neural components does not determine the behaviour. This suggests that although behaviour is generated by neural circuits, natural selection can act separately on these two levels of biological organization. PMID:26598733
Evolution of central pattern generators and rhythmic behaviours.
Katz, Paul S
2016-01-05
Comparisons of rhythmic movements and the central pattern generators (CPGs) that control them uncover principles about the evolution of behaviour and neural circuits. Over the course of evolutionary history, gradual evolution of behaviours and their neural circuitry within any lineage of animals has been a predominant occurrence. Small changes in gene regulation can lead to divergence of circuit organization and corresponding changes in behaviour. However, some behavioural divergence has resulted from large-scale rewiring of the neural network. Divergence of CPG circuits has also occurred without a corresponding change in behaviour. When analogous rhythmic behaviours have evolved independently, it has generally been with different neural mechanisms. Repeated evolution of particular rhythmic behaviours has occurred within some lineages due to parallel evolution or latent CPGs. Particular motor pattern generating mechanisms have also evolved independently in separate lineages. The evolution of CPGs and rhythmic behaviours shows that although most behaviours and neural circuits are highly conserved, the nature of the behaviour does not dictate the neural mechanism and that the presence of homologous neural components does not determine the behaviour. This suggests that although behaviour is generated by neural circuits, natural selection can act separately on these two levels of biological organization. © 2015 The Author(s).
Quantifying gait patterns in Parkinson's disease
NASA Astrophysics Data System (ADS)
Romero, Mónica; Atehortúa, Angélica; Romero, Eduardo
2017-11-01
Parkinson's disease (PD) is constituted by a set of motor symptoms, namely tremor, rigidity, and bradykinesia, which are usually described but not quantified. This work proposes an objective characterization of PD gait patterns by approximating the single stance phase a single grounded pendulum. This model estimates the force generated by the gait during the single support from gait data. This force describes the motion pattern for different stages of the disease. The model was validated using recorded videos of 8 young control subjects, 10 old control subjects and 10 subjects with Parkinson's disease in different stages. The estimated force showed differences among stages of Parkinson disease, observing a decrease of the estimated force for the advanced stages of this illness.
Silicon central pattern generators for cardiac diseases
Nogaret, Alain; O'Callaghan, Erin L; Lataro, Renata M; Salgado, Helio C; Meliza, C Daniel; Duncan, Edward; Abarbanel, Henry D I; Paton, Julian F R
2015-01-01
Cardiac rhythm management devices provide therapies for both arrhythmias and resynchronisation but not heart failure, which affects millions of patients worldwide. This paper reviews recent advances in biophysics and mathematical engineering that provide a novel technological platform for addressing heart disease and enabling beat-to-beat adaptation of cardiac pacing in response to physiological feedback. The technology consists of silicon hardware central pattern generators (hCPGs) that may be trained to emulate accurately the dynamical response of biological central pattern generators (bCPGs). We discuss the limitations of present CPGs and appraise the advantages of analog over digital circuits for application in bioelectronic medicine. To test the system, we have focused on the cardio-respiratory oscillators in the medulla oblongata that modulate heart rate in phase with respiration to induce respiratory sinus arrhythmia (RSA). We describe here a novel, scalable hCPG comprising physiologically realistic (Hodgkin–Huxley type) neurones and synapses. Our hCPG comprises two neurones that antagonise each other to provide rhythmic motor drive to the vagus nerve to slow the heart. We show how recent advances in modelling allow the motor output to adapt to physiological feedback such as respiration. In rats, we report on the restoration of RSA using an hCPG that receives diaphragmatic electromyography input and use it to stimulate the vagus nerve at specific time points of the respiratory cycle to slow the heart rate. We have validated the adaptation of stimulation to alterations in respiratory rate. We demonstrate that the hCPG is tuneable in terms of the depth and timing of the RSA relative to respiratory phase. These pioneering studies will now permit an analysis of the physiological role of RSA as well as its any potential therapeutic use in cardiac disease. PMID:25433077
Motor correlates of models of secondary bilateral synchrony and multiple epileptic foci.
Jiruska, Premysl; Proks, Jan; Otáhal, Jakub; Mares, Pavel
2007-10-01
Bilateral synchronous epileptiform discharges registered in patients with partial epilepsies may be generated by different pathophysiological mechanisms. Differentiation between underlying mechanisms is often crucial for correct diagnosis and adequate treatment in clinical epileptology. The aim of this study was to model in rats two possible mechanisms--secondary bilateral sychrony and interaction between multiple epilepic foci. Furthermore, to describe in detail semiology, laterality and differences in motor phenomena. Secondary bilateral synchrony was modeled by unilateral topical application of bicuculline methiodide (BMI) over the sensorimotor cortex. Bilateral symmetric application of BMI was used as a model of multiple epileptic foci. Electrographic and behavioural phenomena were recorded for 1h following the application of BMI. Electroencephalogram in both groups was characterized by presence of bilateral synchronous discharges. Myoclonic and clonic seizures involving forelimb and head muscles represented the most common motor seizure pattern in both groups. Significant differences were found in the laterality of motor phenomena. Motor seizures in unilateral foci always started in the contralateral limbs whereas symmetrical foci exhibited bilateral independent onset of convulsions. Similar lateralization was observed in interictal motor phenomena (myoclonic jerks). An important influence of posture on epileptic motor phenomena was demonstrated. Active or passive changes in animal posture (verticalization to bipedal posture) caused conversion from unilateral myoclonic jerks or clonic seizures to bilaterally synchronous (generalized) motor phenomena in both groups.
Ranganathan, Rajiv; Krishnan, Chandramouli; Dhaher, Yasin Y.; Rymer, William Z.
2018-01-01
The motor module hypothesis in motor control proposes that the nervous system can simplify the problem of controlling a large number of muscles in human movement by grouping muscles into a smaller number of modules. Here, we tested one prediction of the modular organization hypothesis by examining whether there is preferential exploration along these motor modules during the learning of a new gait pattern. Healthy college-aged participants learned a new gait pattern which required increased hip and knee flexion during the swing phase while walking in a lower-extremity robot (Lokomat). The new gait pattern was displayed as a foot trajectory in the sagittal plane and participants attempted to match their foot trajectory to this template. We recorded EMG from 8 lower-extremity muscles and we extracted motor modules during both baseline walking and target-tracking using non-negative matrix factorization (NMF). Results showed increased trajectory variability in the first block of learning, indicating that participants were engaged in exploratory behavior. Critically, when we examined the muscle activity during this exploratory phase, we found that the composition of motor modules changed significantly within the first few strides of attempting the new gait pattern. The lack of persistence of the motor modules under even short time scales suggests that motor modules extracted during locomotion may be more indicative of correlated muscle activity induced by the task constraints of walking, rather than reflecting a modular control strategy. PMID:26916510
Motor run-up system. [power lines
NASA Technical Reports Server (NTRS)
Daeges, J. J. (Inventor)
1975-01-01
A starting system is described for bringing a large synchronous motor up to speed to prevent large power line disturbances at the moment the motor is connected to the power line. The system includes (1) a digital counter which generates a count determined by the difference in frequency between the power line and a small current generated by the synchronous motor; (2) a latch which stores the count; and (3) a comparator which compares the stored count with a newly generated count to determine whether the synchronous motor is accelerating or decelerating. Signals generated by the counter and comparator control the current to a clutch that couples a starting motor to the large synchronous motor.
Huang, Stephanie; Huang, He
2018-04-01
Discrete, rapid (i.e., ballistic like) muscle activation patterns have been observed in ankle muscles (i.e., plantar flexors and dorsiflexors) of able-bodied individuals during voluntary posture control. This observation motivated us to investigate whether transtibial amputees are capable of generating such a ballistic-like activation pattern accurately using their residual ankle muscles in order to assess whether the volitional postural control of a powered ankle prosthesis using proportional myoelectric control via residual muscles could be feasible. In this paper, we asked ten transtibial amputees to generate ballistic-like activation patterns using their residual lateral gastrocnemius and residual tibialis anterior to control a computer cursor via proportional myoelectric control to hit targets positioned at 20% and 40% of maximum voluntary contraction of the corresponding residual muscle. During practice conditions, we asked amputees to hit a single target repeatedly. During testing conditions, we asked amputees to hit a random sequence of targets. We compared movement time to target and end-point accuracy. We also examined motor recruitment synchronization via time-frequency representations of residual muscle activation. The result showed that median end-point error ranged from -0.6% to 1% maximum voluntary contraction across subjects during practice, which was significantly lower compared to testing ( ). Average movement time for all amputees was 242 ms during practice and 272 ms during testing. Motor recruitment synchronization varied across subjects, and amputees with the highest synchronization achieved the fastest movement times. End-point accuracy was independent of movement time. Results suggest that it is feasible for transtibial amputees to generate ballistic control signals using their residual muscles. Future work on volitional control of powered power ankle prostheses might consider anticipatory postural control based on ballistic-like residual muscle activation patterns and direct continuous proportional myoelectric control.
Innervation of the mammalian esophagus.
Neuhuber, Winfried L; Raab, Marion; Berthoud, Hans-Rudolf; Wörl, Jürgen
2006-01-01
Understanding the innervation of the esophagus is a prerequisite for successful treatment of a variety of disorders, e.g., dysphagia, achalasia, gastroesophageal reflux disease (GERD) and non-cardiac chest pain. Although, at first glance, functions of the esophagus are relatively simple, their neuronal control is considerably complex. Vagal motor neurons of the nucleus ambiguus and preganglionic neurons of the dorsal motor nucleus innervate striated and smooth muscle, respectively. Myenteric neurons represent the interface between the dorsal motor nucleus and smooth muscle but they are also involved in striated muscle innervation. Intraganglionic laminar endings (IGLEs) represent mechanosensory vagal afferent terminals. They also establish intricate connections with enteric neurons. Afferent information is implemented by the swallowing central pattern generator in the brainstem, which generates and coordinates deglutitive activity in both striated and smooth esophageal muscle and orchestrates esophageal sphincters as well as gastric adaptive relaxation. Disturbed excitation/inhibition balance in the lower esophageal sphincter results in motility disorders, e.g., achalasia and GERD. Loss of mechanosensory afferents disrupts adaptation of deglutitive motor programs to bolus variables, eventually leading to megaesophagus. Both spinal and vagal afferents appear to contribute to painful sensations, e.g., non-cardiac chest pain. Extrinsic and intrinsic neurons may be involved in intramural reflexes using acetylcholine, nitric oxide, substance P, CGRP and glutamate as main transmitters. In addition, other molecules, e.g., ATP, GABA and probably also inflammatory cytokines, may modulate these neuronal functions.
Independent control of joint stiffness in the framework of the equilibrium-point hypothesis.
Latash, M L
1992-01-01
In the framework of the equilibrium-point hypothesis, virtual trajectories and joint stiffness patterns have been reconstructed during two motor tasks practiced against a constant bias torque. One task required a voluntary increase in joint stiffness while preserving the original joint position. The other task involved fast elbow flexions over 36 degrees. Joint stiffness gradually subsided after the termination of fast movements. In both tasks, the external torque could slowly and unexpectedly change. The subjects were required not to change their motor commands if the torque changed, i.e. "to do the same no matter what the motor did". In both tasks, changes in joint stiffness were accompanied by unchanged virtual trajectories that were also independent of the absolute value of the bias torque. By contrast, the intercept of the joint compliant characteristic with the angle axis, r(t)-function, has demonstrated a clear dependence upon both the level of coactivation and external load. We assume that a template virtual trajectory is generated at a certain level of the motor hierarchy and is later scaled taking into account some commonly changing dynamic factors of the movement execution, for example, external load. The scaling leads to the generation of commands to the segmental structures that can be expressed, according to the equilibrium-point hypothesis, as changes in the thresholds of the tonic stretch reflex for corresponding muscles.
Lo, Men-Tzung; Chiang, Wei-Yin; Hsieh, Wan-Hsin; Escobar, Carolina; Buijs, Ruud M; Hu, Kun
2016-01-01
One evolutionary adaptation in motor activity control of animals is the anticipation of food that drives foraging under natural conditions and is mimicked in laboratory with daily scheduled food availability. Food anticipation is characterized by increased activity a few hours before the feeding period. Here we report that 2-h food availability during the normal inactive phase of rats not only increases activity levels before the feeding period but also alters the temporal organization of motor activity fluctuations over a wide range of time scales from minutes up to 24 h. We demonstrate this multiscale alteration by assessing fractal patterns in motor activity fluctuations-similar fluctuation structure at different time scales-that are robust in intact animals with ad libitum food access but are disrupted under food restriction. In addition, we show that fractal activity patterns in rats with ad libitum food access are also perturbed by lesion of the dorsomedial hypothalamic (DMH)-a neural node that is involved in food anticipatory behavior. Instead of further disrupting fractal regulation, food restriction restores the disrupted fractal patterns in these animals after the DMH lesion despite the persistence of the 24-h rhythms. This compensatory effect of food restriction is more clearly pronounced in the same animals after the additional lesion of the suprachiasmatic nucleus (SCN)-the central master clock in the circadian system that generates and orchestrates circadian rhythms in behavior and physiological functions in synchrony with day-night cycles. Moreover, all observed influences of food restriction persist even when data during the food anticipatory and feeding period are excluded. These results indicate that food restriction impacts dynamics of motor activity at different time scales across the entire circadian/daily cycle, which is likely caused by the competition between the food-induced time cue and the light-entrained circadian rhythm of the SCN. The differential impacts of food restriction on fractal activity control in intact and DMH-lesioned animals suggest that the DMH plays a crucial role in integrating these different time cues to the circadian network for multiscale regulation of motor activity.
Li, Cai; Lowe, Robert; Ziemke, Tom
2014-01-01
In this article, we propose an architecture of a bio-inspired controller that addresses the problem of learning different locomotion gaits for different robot morphologies. The modeling objective is split into two: baseline motion modeling and dynamics adaptation. Baseline motion modeling aims to achieve fundamental functions of a certain type of locomotion and dynamics adaptation provides a "reshaping" function for adapting the baseline motion to desired motion. Based on this assumption, a three-layer architecture is developed using central pattern generators (CPGs, a bio-inspired locomotor center for the baseline motion) and dynamic motor primitives (DMPs, a model with universal "reshaping" functions). In this article, we use this architecture with the actor-critic algorithms for finding a good "reshaping" function. In order to demonstrate the learning power of the actor-critic based architecture, we tested it on two experiments: (1) learning to crawl on a humanoid and, (2) learning to gallop on a puppy robot. Two types of actor-critic algorithms (policy search and policy gradient) are compared in order to evaluate the advantages and disadvantages of different actor-critic based learning algorithms for different morphologies. Finally, based on the analysis of the experimental results, a generic view/architecture for locomotion learning is discussed in the conclusion.
Li, Cai; Lowe, Robert; Ziemke, Tom
2014-01-01
In this article, we propose an architecture of a bio-inspired controller that addresses the problem of learning different locomotion gaits for different robot morphologies. The modeling objective is split into two: baseline motion modeling and dynamics adaptation. Baseline motion modeling aims to achieve fundamental functions of a certain type of locomotion and dynamics adaptation provides a “reshaping” function for adapting the baseline motion to desired motion. Based on this assumption, a three-layer architecture is developed using central pattern generators (CPGs, a bio-inspired locomotor center for the baseline motion) and dynamic motor primitives (DMPs, a model with universal “reshaping” functions). In this article, we use this architecture with the actor-critic algorithms for finding a good “reshaping” function. In order to demonstrate the learning power of the actor-critic based architecture, we tested it on two experiments: (1) learning to crawl on a humanoid and, (2) learning to gallop on a puppy robot. Two types of actor-critic algorithms (policy search and policy gradient) are compared in order to evaluate the advantages and disadvantages of different actor-critic based learning algorithms for different morphologies. Finally, based on the analysis of the experimental results, a generic view/architecture for locomotion learning is discussed in the conclusion. PMID:25324773
Ramsey, Lenny; Rengachary, Jennifer; Zinn, Kristi; Siegel, Joshua S.; Metcalf, Nicholas V.; Strube, Michael J.; Snyder, Abraham Z.; Corbetta, Maurizio; Shulman, Gordon L.
2016-01-01
Strokes often cause multiple behavioural deficits that are correlated at the population level. Here, we show that motor and attention deficits are selectively associated with abnormal patterns of resting state functional connectivity in the dorsal attention and motor networks. We measured attention and motor deficits in 44 right hemisphere-damaged patients with a first-time stroke at 1–2 weeks post-onset. The motor battery included tests that evaluated deficits in both upper and lower extremities. The attention battery assessed both spatial and non-spatial attention deficits. Summary measures for motor and attention deficits were identified through principal component analyses on the raw behavioural scores. Functional connectivity in structurally normal cortex was estimated based on the temporal correlation of blood oxygenation level-dependent signals measured at rest with functional magnetic resonance imaging. Any correlation between motor and attention deficits and between functional connectivity in the dorsal attention network and motor networks that might spuriously affect the relationship between each deficit and functional connectivity was statistically removed. We report a double dissociation between abnormal functional connectivity patterns and attention and motor deficits, respectively. Attention deficits were significantly more correlated with abnormal interhemispheric functional connectivity within the dorsal attention network than motor networks, while motor deficits were significantly more correlated with abnormal interhemispheric functional connectivity patterns within the motor networks than dorsal attention network. These findings indicate that functional connectivity patterns in structurally normal cortex following a stroke link abnormal physiology in brain networks to the corresponding behavioural deficits. PMID:27225794
46 CFR 129.320 - Generators and motors.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Generators and motors. 129.320 Section 129.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.320 Generators and motors. (a) Each generator and...
46 CFR 129.320 - Generators and motors.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Generators and motors. 129.320 Section 129.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.320 Generators and motors. (a) Each generator and...
46 CFR 129.320 - Generators and motors.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Generators and motors. 129.320 Section 129.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.320 Generators and motors. (a) Each generator and...
Curtin, Eleanor; Langlois, Neil E I
2007-10-01
This study aimed to establish whether post-mortem injury patterns can assist in distinguishing drivers from front seat passengers among victims of motor vehicle collisions without regard to collision type, vehicle type or if safety equipment had been used. Injuries sustained by 206 drivers and 91 front seat passengers were catalogued from post-mortem reports. Injuries were coded for the body region, depth and location of the injury. Statistical analysis was used to detect injuries capable of discriminating between driver and passenger. Drivers were more likely to sustain the following injuries: brain injury; fractures to the right femur, right posterior ribs, base of skull, right humerus and right shoulder; and superficial wounds at the right lateral and posterior thigh, right face, right and left anterior knee, right anterior shoulder, lateral right arm and forearm and left anterior thigh. Front passengers were more vulnerable to splenic injury; fractures to the left posterior and anterior ribs, left shoulder and left femur; and superficial wounds at the left anterior shoulder region and left lateral neck. Linear discriminant analysis generated a model for predicting seating position based on the presence of injury to certain regions of the body; the overall predictive accuracy of the model was 69.3%. It was found that driver and front passenger fatalities receive different injury patterns from motor vehicle collisions, regardless of collision type. A larger study is required to improve the predictive accuracy of this model and to ascertain its value to forensic medicine.
Aoi, Shinya; Funato, Tetsuro
2016-03-01
Humans and animals walk adaptively in diverse situations by skillfully manipulating their complicated and redundant musculoskeletal systems. From an analysis of measured electromyographic (EMG) data, it appears that despite complicated spatiotemporal properties, muscle activation patterns can be explained by a low dimensional spatiotemporal structure. More specifically, they can be accounted for by the combination of a small number of basic activation patterns. The basic patterns and distribution weights indicate temporal and spatial structures, respectively, and the weights show the muscle sets that are activated synchronously. In addition, various locomotor behaviors have similar low dimensional structures and major differences appear in the basic patterns. These analysis results suggest that neural systems use muscle group combinations to solve motor control redundancy problems (muscle synergy hypothesis) and manipulate those basic patterns to create various locomotor functions. However, it remains unclear how the neural system controls such muscle groups and basic patterns through neuromechanical interactions in order to achieve adaptive locomotor behavior. This paper reviews simulation studies that explored adaptive motor control in locomotion via sensory-motor coordination using neuromusculoskeletal models based on the muscle synergy hypothesis. Herein, the neural mechanism in motor control related to the muscle synergy for adaptive locomotion and a potential muscle synergy analysis method including neuromusculoskeletal modeling for motor impairments and rehabilitation are discussed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Crossed motor innervation of the base of human tongue
Jordan, Amy S.; Nicholas, Christian L.; Cori, Jennifer M.; Semmler, John G.; Trinder, John
2015-01-01
Muscle fibers of the genioglossus (GG) form the bulk of the muscle mass at the base of the tongue. The motor control of the tongue is critical for vocalization, feeding, and breathing. Our goal was to assess the patterns of motor innervation of GG single motor units (SMUs) in humans. Simultaneous monopolar recordings were obtained from four sites in the base of the tongue bilaterally at two antero-posterior levels from 16 resting, awake, healthy adult males, who wore a face mask with airway pressure and airflow sensors. We analyzed 69 data segments in which at least one lead contained large action potentials generated by an SMU. Such potentials served as triggers for spike-triggered averaging (STA) of signals recorded from the other three sites. Spontaneous activity of the SMUs was classified as inspiratory modulated, expiratory modulated, or tonic. Consistent with the antero-posterior orientation of GG fibers, 44 STAs (77%) recorded ipsilateral to the trigger yielded sharp action potentials with a median amplitude of 52 μV [interquartile range (IQR): 25–190] that were time shifted relative to the trigger by about 1 ms. Notably, 48% of recordings on the side opposite to the trigger also yielded sharp action potentials. Of those, 17 (29%) had a median amplitude of 63 μV (IQR: 39–96), and most were generated by tonic SMUs. Thus a considerable proportion of GG muscle fibers receive a crossed motor innervation. Crossed innervation may help ensure symmetry and stability of tongue position and movements under normal conditions and following injury or degenerative changes affecting the tongue. PMID:25855691
Arneodo, Ezequiel M.; Perl, Yonatan Sanz; Goller, Franz; Mindlin, Gabriel B.
2012-01-01
Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform. PMID:22761555
Central pattern generators for social vocalization: Androgen-dependent neurophysiological mechanisms
Bass, Andrew H.; Remage-Healey, Luke
2008-01-01
Historically, most studies of vertebrate central pattern generators (CPGs) have focused on mechanisms for locomotion and respiration. Here, we highlight new results for ectothermic vertebrates, namely teleost fish and amphibians, showing how androgenic steroids can influence the temporal patterning of CPGs for social vocalization. Investigations of vocalizing teleosts show how androgens can rapidly (within minutes) modulate the neurophysiological output of the vocal CPG (fictive vocalizations that mimic the temporal properties of natural vocalizations) inclusive of their divergent actions between species, as well as intraspecific differences between male reproductive morphs. Studies of anuran amphibians (frogs) demonstrate that long-term steroid treatments (wks) can masculinize the fictive vocalizations of females, inclusive of its sensitivity to rapid modulation by serotonin. Given the conserved organization of vocal control systems across vertebrate groups, the vocal CPGs of fish and amphibians provide tractable models for identifying androgen-dependent events that are fundamental to the mechanisms of vocal motor patterning. These basic mechanisms can also inform our understanding of the more complex CPGs for vocalization, and social behaviors in general, that have evolved among birds and mammals. PMID:18262186
Ohnmacht, Jochen; Yang, Yujie; Maurer, Gianna W; Barreiro-Iglesias, Antón; Tsarouchas, Themistoklis M; Wehner, Daniel; Sieger, Dirk; Becker, Catherina G; Becker, Thomas
2016-05-01
In adult zebrafish, relatively quiescent progenitor cells show lesion-induced generation of motor neurons. Developmental motor neuron generation from the spinal motor neuron progenitor domain (pMN) sharply declines at 48 hours post-fertilisation (hpf). After that, mostly oligodendrocytes are generated from the same domain. We demonstrate here that within 48 h of a spinal lesion or specific genetic ablation of motor neurons at 72 hpf, the pMN domain reverts to motor neuron generation at the expense of oligodendrogenesis. By contrast, generation of dorsal Pax2-positive interneurons was not altered. Larval motor neuron regeneration can be boosted by dopaminergic drugs, similar to adult regeneration. We use larval lesions to show that pharmacological suppression of the cellular response of the innate immune system inhibits motor neuron regeneration. Hence, we have established a rapid larval regeneration paradigm. Either mechanical lesions or motor neuron ablation is sufficient to reveal a high degree of developmental flexibility of pMN progenitor cells. In addition, we show an important influence of the immune system on motor neuron regeneration from these progenitor cells. © 2016. Published by The Company of Biologists Ltd.
A silicon central pattern generator controls locomotion in vivo.
Vogelstein, R J; Tenore, F; Guevremont, L; Etienne-Cummings, R; Mushahwar, V K
2008-09-01
We present a neuromorphic silicon chip that emulates the activity of the biological spinal central pattern generator (CPG) and creates locomotor patterns to support walking. The chip implements ten integrate-and-fire silicon neurons and 190 programmable digital-to-analog converters that act as synapses. This architecture allows for each neuron to make synaptic connections to any of the other neurons as well as to any of eight external input signals and one tonic bias input. The chip's functionality is confirmed by a series of experiments in which it controls the motor output of a paralyzed animal in real-time and enables it to walk along a three-meter platform. The walking is controlled under closed-loop conditions with the aide of sensory feedback that is recorded from the animal's legs and fed into the silicon CPG. Although we and others have previously described biomimetic silicon locomotor control systems for robots, this is the first demonstration of a neuromorphic device that can replace some functions of the central nervous system in vivo.
The Unique Propulsive Wake Pattern of the Swimming Sea Slug Aplysia
NASA Astrophysics Data System (ADS)
Zhou, Zhuoyu; Mittal, Rajat
2017-11-01
The Aplysia, also sometimes referred to as the `Sea Hare,' is a sea slug that swims elegantly using large-amplitude flapping of its mantle. The Sea Hare has become a very valuable laboratory animal for investigation into nervous systems and brain behavior due to its simple neural system with large neurons and axons. Recently, attempts have also been made to develop biohybrid robots with both organic actuation and organic motor-pattern control inspired by the locomotion of Aplysia. While extensive works have been done to investigate this animal's neurobiology, relatively little is known about its propulsive mechanisms and swimming energetics. In this study, incompressible flow simulations with a simple kinematical model are used to gain insights into vortex dynamics, thrust generation and energetics of locomotion. The effect of mantle kinematics on the propulsive performance is examined, and simulations indicate a unique vortex wake pattern that is responsible for thrust generation. The research is supported by NSF Grant PLR-1246317 and NSF XSEDE Grant TG-CTS100002.
Hirst, Theodore C; Ribchester, Richard R
2013-01-01
Connectomic analysis of the nervous system aims to discover and establish principles that underpin normal and abnormal neural connectivity and function. Here we performed image analysis of motor unit connectivity in the fourth deep lumbrical muscle (4DL) of mice, using transgenic expression of fluorescent protein in motor neurones as a morphological reporter. We developed a method that accelerated segmentation of confocal image projections of 4DL motor units, by applying high resolution (63×, 1.4 NA objective) imaging or deconvolution only where either proved necessary, in order to resolve axon crossings that produced ambiguities in the correct assignment of axon terminals to identified motor units imaged at lower optical resolution (40×, 1.3 NA). The 4DL muscles contained between 4 and 9 motor units and motor unit sizes ranged in distribution from 3 to 111 motor nerve terminals per unit. Several structural properties of the motor units were consistent with those reported in other muscles, including suboptimal wiring length and distribution of motor unit size. Surprisingly, however, small motor units were confined to a region of the muscle near the nerve entry point, whereas their larger counterparts were progressively more widely dispersed, suggesting a previously unrecognised form of segregated motor innervation in this muscle. We also found small but significant differences in variance of motor endplate length in motor units, which correlated weakly with their motor unit size. Thus, our connectomic analysis has revealed a pattern of concentric innervation that may perhaps also exist in other, cylindrical muscles that have not previously been thought to show segregated motor unit organisation. This organisation may be the outcome of competition during postnatal development based on intrinsic neuronal differences in synaptic size or synaptic strength that generates a territorial hierarchy in motor unit size and disposition. PMID:23940381
Peladeau-Pigeon, Melanie
2017-01-01
Purpose The ability to generate tongue pressure plays a major role in bolus transport in swallowing. In studies of motor control, stability or variability of movement is a feature that changes with age, disease, task complexity, and perturbation. In this study, we explored whether age and tongue strength influence the stability of the tongue pressure generation pattern during isometric and swallowing tasks in healthy volunteers. Method Tongue pressure data, collected using the Iowa Oral Performance Instrument, were analyzed from 84 participants in sex-balanced and decade age-group strata. Tasks included maximum anterior and posterior isometric pressures and regular-effort saliva swallows. The cyclic spatiotemporal index (cSTI) was used to capture stability (vs. variability) in patterns of pressure generation. Mixed-model repeated measures analyses of covariance were performed separately for each task (anterior and posterior isometric pressures, saliva swallows) with between-participant factors of age group and sex, a within-participant factor of task repetition, and a continuous covariate of tongue strength. Results Neither age group nor sex effects were found. There was no significant relationship between tongue strength and the cSTI on the anterior isometric tongue pressure task (r = −.11). For the posterior isometric tongue pressure task, a significant negative correlation (r = −.395) was found between tongue strength and the cSTI. The opposite pattern of a significant positive correlation (r = .29) between tongue strength and the cSTI was seen for the saliva swallow task. Conclusions Tongue pressure generation patterns appear highly stable across repeated maximum isometric and saliva swallow tasks, despite advancing age. Greater pattern variability is seen with weaker posterior isometric pressures. Overall, saliva swallows had the lowest pressure amplitudes and highest pressure pattern variability as measured by the cSTI. PMID:29114767
Hodson-Tole, E F; Wakeling, J M
2007-07-01
Motor units are generally considered to follow a set, orderly pattern of recruitment within each muscle with activation occurring in the slowest through to the fastest units. A growing body of evidence, however, suggests that recruitment patterns may not always follow such an orderly sequence. Here we investigate whether motor unit recruitment patterns vary within and between the ankle extensor muscles of the rat running at 40 cm s(-1) on a level treadmill. In the past it has been difficult to quantify motor unit recruitment patterns during locomotion; however, recent application of wavelet analysis techniques has made such detailed analysis of motor unit recruitment possible. Here we present methods for quantifying the interplay of fast and slow motor unit recruitment based on their myoelectric signals. Myoelectric data were collected from soleus, plantaris and medial gastrocnemius muscles representing populations of slow, mixed and fast fibres, respectively, and providing a good opportunity to relate myoelectric frequency content to motor unit recruitment patterns. Following wavelet transformation, principal component analysis quantified signal intensity and relative frequency content. Significant differences in signal frequency content occurred between different time points within a stride (P<0.001). We optimised high- and low-frequency wavelets to the major signals from the fast and slow motor units. The goodness-of-fit of the optimised wavelets to the signal intensity was high for all three muscles (r2>0.98). The low-frequency band had a significantly better fit to signals from the soleus muscle (P<0.001), while the high-frequency band had a significantly better fit to the medial gastrocnemius (P<0.001).
Toward robust phase-locking in Melibe swim central pattern generator models
NASA Astrophysics Data System (ADS)
Jalil, Sajiya; Allen, Dane; Youker, Joseph; Shilnikov, Andrey
2013-12-01
Small groups of interneurons, abbreviated by CPG for central pattern generators, are arranged into neural networks to generate a variety of core bursting rhythms with specific phase-locked states, on distinct time scales, which govern vital motor behaviors in invertebrates such as chewing and swimming. These movements in lower level animals mimic motions of organs in higher animals due to evolutionarily conserved mechanisms. Hence, various neurological diseases can be linked to abnormal movement of body parts that are regulated by a malfunctioning CPG. In this paper, we, being inspired by recent experimental studies of neuronal activity patterns recorded from a swimming motion CPG of the sea slug Melibe leonina, examine a mathematical model of a 4-cell network that can plausibly and stably underlie the observed bursting rhythm. We develop a dynamical systems framework for explaining the existence and robustness of phase-locked states in activity patterns produced by the modeled CPGs. The proposed tools can be used for identifying core components for other CPG networks with reliable bursting outcomes and specific phase relationships between the interneurons. Our findings can be employed for identifying or implementing the conditions for normal and pathological functioning of basic CPGs of animals and artificially intelligent prosthetics that can regulate various movements.
Electrical power generating system
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1983-01-01
A power generating system for adjusting coupling an induction motor, as a generator, to an A.C. power line wherein the motor and power line are connected through a triac is described. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced.
NASA Technical Reports Server (NTRS)
Shih, T. I. P.; Yang, S. L.; Schock, H. J.
1986-01-01
A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.
NASA Technical Reports Server (NTRS)
Shih, T. I-P.; Yang, S. L.; Schock, H. J.
1986-01-01
A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.
Rhythm generation, coordination, and initiation in the vocal pathways of male African clawed frogs
Cavin Barnes, Jessica; Appleby, Todd
2016-01-01
Central pattern generators (CPGs) in the brain stem are considered to underlie vocalizations in many vertebrate species, but the detailed mechanisms underlying how motor rhythms are generated, coordinated, and initiated remain unclear. We addressed these issues using isolated brain preparations of Xenopus laevis from which fictive vocalizations can be elicited. Advertisement calls of male X. laevis that consist of fast and slow trills are generated by vocal CPGs contained in the brain stem. Brain stem central vocal pathways consist of a premotor nucleus [dorsal tegmental area of medulla (DTAM)] and a laryngeal motor nucleus [a homologue of nucleus ambiguus (n.IX-X)] with extensive reciprocal connections between the nuclei. In addition, DTAM receives descending inputs from the extended amygdala. We found that unilateral transection of the projections between DTAM and n.IX-X eliminated premotor fictive fast trill patterns but did not affect fictive slow trills, suggesting that the fast and slow trill CPGs are distinct; the slow trill CPG is contained in n.IX-X, and the fast trill CPG spans DTAM and n.IX-X. Midline transections that eliminated the anterior, posterior, or both commissures caused no change in the temporal structure of fictive calls, but bilateral synchrony was lost, indicating that the vocal CPGs are contained in the lateral halves of the brain stem and that the commissures synchronize the two oscillators. Furthermore, the elimination of the inputs from extended amygdala to DTAM, in addition to the anterior commissure, resulted in autonomous initiation of fictive fast but not slow trills by each hemibrain stem, indicating that the extended amygdala provides a bilateral signal to initiate fast trills. NEW & NOTEWORTHY Central pattern generators (CPGs) are considered to underlie vocalizations in many vertebrate species, but the detailed mechanisms underlying their functions remain unclear. We addressed this question using an isolated brain preparation of African clawed frogs. We discovered that two vocal phases are mediated by anatomically distinct CPGs, that there are a pair of CPGs contained in the left and right half of the brain stem, and that mechanisms underlying initiation of the two vocal phases are distinct. PMID:27760822
Patterns of Weakness, Classification of Motor Neuron Disease & Clinical Diagnosis of Sporadic ALS
Statland, Jeffrey M.; Barohn, Richard J.; McVey, April L.; Katz, Jonathan; Dimachkie, Mazen M.
2015-01-01
Synopsis When approaching the patient with suspected motor neuron disease (MND) the pattern of weakness on exam helps distinguish MND from other diseases of peripheral nerves, the neuromuscular junction, or muscle. MND is a clinical diagnosis supported by findings on electrodiagnostic testing, in the absence of other abnormalities on neuroimaging or serological testing. MNDs exist on a spectrum: from a pure lower motor neuron; to mixed upper and lower motor neuron; to a pure upper motor neuron variant in addition to regional variants restricted to the arms, legs or bulbar region. Amyotrophic lateral sclerosis (ALS) is a progressive mixed upper and lower motor neuron disorder, most commonly sporadic (~85%), which is invariably fatal. The only FDA approved treatments for ALS are riluzole, which prolongs life by about 3 months, and dextromethorphan/quinidine which provides symptomatic relief for pseudobulbar affect (inappropriate bouts of laughter or crying). Here we describe a pattern approach to identifying motor neuron disease, and clinical features of sporadic ALS. PMID:26515618
46 CFR 120.320 - Generators and motors.
Code of Federal Regulations, 2012 CFR
2012-10-01
... and Distribution Systems § 120.320 Generators and motors. (a) Each generator and motor must be: (1) In... above the bilges to avoid damage by splash and to avoid contact with low lying vapors. (b) Each... ammeter, which can be used for measuring voltage and current of a generator that is in operation, must be...
46 CFR 120.320 - Generators and motors.
Code of Federal Regulations, 2014 CFR
2014-10-01
... and Distribution Systems § 120.320 Generators and motors. (a) Each generator and motor must be: (1) In... above the bilges to avoid damage by splash and to avoid contact with low lying vapors. (b) Each... ammeter, which can be used for measuring voltage and current of a generator that is in operation, must be...
46 CFR 120.320 - Generators and motors.
Code of Federal Regulations, 2013 CFR
2013-10-01
... and Distribution Systems § 120.320 Generators and motors. (a) Each generator and motor must be: (1) In... above the bilges to avoid damage by splash and to avoid contact with low lying vapors. (b) Each... ammeter, which can be used for measuring voltage and current of a generator that is in operation, must be...
Method and apparatus for controlling multiple motors
Jones, Rollin G.; Kortegaard, Bert L.; Jones, David F.
1987-01-01
A method and apparatus are provided for simultaneously controlling a plurality of stepper motors. Addressing circuitry generates address data for each motor in a periodic address sequence. Memory circuits respond to the address data for each motor by accessing a corresponding memory location containing a first operational data set functionally related to a direction for moving the motor, speed data, and rate of speed change. First logic circuits respond to the first data set to generate a motor step command. Second logic circuits respond to the command from the first logic circuits to generate a third data set for replacing the first data set in memory with a current operational motor status, which becomes the first data set when the motor is next addressed.
Analysis of Vibration and Acoustic Noise in Permanent Magnet Motors.
NASA Astrophysics Data System (ADS)
Hwang, Sangmoon
The drive motor is a frequent source of vibration and acoustic noise in many precision spindle motors. One of the electromagnetic sources of vibration in permanent magnet motors is the torque ripple, consisting of the reluctance torque and electromagnetic torque fluctuation. This type of vibration is becoming more serious with the advent of new high-grade magnets with increased flux density. Acoustic noise of electromagnetic origin is difficult to predict and its exact mechanism is unclear. The mechanism of noise generation should be revealed to design a quieter motor which is the modern customer's demand. For motor operation at low speeds and loads, torque ripple due to the reluctance torque is often a source of vibration and control difficulty. The reluctance torque in a motor was calculated from the flux density by a finite element method and the Maxwell stress method. Effects of design parameters, such as stator slot width, permanent slot width, airgap length and magnetization direction, were investigated. Magnet pole shaping, by gradually decreasing the magnet thickness toward edges, yields a sinusoidal shape of the reluctance torque with reduced harmonics, thus reducing the vibration. This dissertation also presents two motor design techniques: stator tooth notching and rotor pole skewing with magnet pole shaping, and the effect of each method on the output torque. The analysis shows that the reluctance torque can be nearly eliminated by the suggested designs, with minimal sacrifice of the output torque. In permanent magnet DC motors, the most popular design type is the trapezoidal back electro-motive force (BEMF), for switched DC controllers. It is demonstrated that the output torque profile of one phase energized is qualitatively equivalent to the BEMF profile for motors with reduced reluctance torque. It implies that design of BEMF profile is possible by magnetic modeling of a motor, without expensive and time-consuming experiments for different designs. The effect of various design parameters on the output torque and torque ripple are discussed. Design parameters include winding patterns, magnetization direction, magnet arc length, number of segments in poles and magnet pole shaping. New designs of trapezoidal BEMF motors are proposed to reduce the electromagnetic torque ripple. Magnet stepping and magnet edge shaping with reduced arc length, significantly reduce torque ripple, with minimal sacrifice of the maximum output torque. Acoustic noise of electromagnetic origin is investigated using a magnetic frame which emulates a DC motor. The driving electromagnetic force is calculated using finite element analysis and the resulting vibration and acoustic noise is measured. Acoustic noise of purely electromagnetic origin was also tested with a DC brushless motor to confirm the results of the magnetic frame. The mechanism of noise generation in a DC motor is a quasi-static response of a stator not only at the fundamental frequency but also at higher harmonic frequencies of alternating switched DC, which is a current characteristic of a DC motor. Noise generation is significantly aggravated when some of those harmonics are close to the resonant frequencies of the stator. Therefore, acoustic noise is highly dependent upon the excitation current shape, as higher harmonics may match with resonant frequencies of the stator.
Delis, Ioannis; Berret, Bastien; Pozzo, Thierry; Panzeri, Stefano
2013-01-01
Muscle synergies have been hypothesized to be the building blocks used by the central nervous system to generate movement. According to this hypothesis, the accomplishment of various motor tasks relies on the ability of the motor system to recruit a small set of synergies on a single-trial basis and combine them in a task-dependent manner. It is conceivable that this requires a fine tuning of the trial-to-trial relationships between the synergy activations. Here we develop an analytical methodology to address the nature and functional role of trial-to-trial correlations between synergy activations, which is designed to help to better understand how these correlations may contribute to generating appropriate motor behavior. The algorithm we propose first divides correlations between muscle synergies into types (noise correlations, quantifying the trial-to-trial covariations of synergy activations at fixed task, and signal correlations, quantifying the similarity of task tuning of the trial-averaged activation coefficients of different synergies), and then uses single-trial methods (task-decoding and information theory) to quantify their overall effect on the task-discriminating information carried by muscle synergy activations. We apply the method to both synchronous and time-varying synergies and exemplify it on electromyographic data recorded during performance of reaching movements in different directions. Our method reveals the robust presence of information-enhancing patterns of signal and noise correlations among pairs of synchronous synergies, and shows that they enhance by 9-15% (depending on the set of tasks) the task-discriminating information provided by the synergy decompositions. We suggest that the proposed methodology could be useful for assessing whether single-trial activations of one synergy depend on activations of other synergies and quantifying the effect of such dependences on the task-to-task differences in muscle activation patterns.
Parametric motion control of robotic arms: A biologically based approach using neural networks
NASA Technical Reports Server (NTRS)
Bock, O.; D'Eleuterio, G. M. T.; Lipitkas, J.; Grodski, J. J.
1993-01-01
A neural network based system is presented which is able to generate point-to-point movements of robotic manipulators. The foundation of this approach is the use of prototypical control torque signals which are defined by a set of parameters. The parameter set is used for scaling and shaping of these prototypical torque signals to effect a desired outcome of the system. This approach is based on neurophysiological findings that the central nervous system stores generalized cognitive representations of movements called synergies, schemas, or motor programs. It has been proposed that these motor programs may be stored as torque-time functions in central pattern generators which can be scaled with appropriate time and magnitude parameters. The central pattern generators use these parameters to generate stereotypical torque-time profiles, which are then sent to the joint actuators. Hence, only a small number of parameters need to be determined for each point-to-point movement instead of the entire torque-time trajectory. This same principle is implemented for controlling the joint torques of robotic manipulators where a neural network is used to identify the relationship between the task requirements and the torque parameters. Movements are specified by the initial robot position in joint coordinates and the desired final end-effector position in Cartesian coordinates. This information is provided to the neural network which calculates six torque parameters for a two-link system. The prototypical torque profiles (one per joint) are then scaled by those parameters. After appropriate training of the network, our parametric control design allowed the reproduction of a trained set of movements with relatively high accuracy, and the production of previously untrained movements with comparable accuracy. We conclude that our approach was successful in discriminating between trained movements and in generalizing to untrained movements.
Useful properties of spinal circuits for learning and performing planar reaches
NASA Astrophysics Data System (ADS)
Tsianos, George A.; Goodner, Jared; Loeb, Gerald E.
2014-10-01
Objective. We developed a detailed model of the spinal circuitry plus musculoskeletal system (SC + MS) for the primate arm and investigated its role in sensorimotor control, learning and storing of movement repertoires. Approach. Recently developed models of spinal circuit connectivity, neurons and muscle force/energetics were integrated and in some cases refined to construct the most comprehensive model of the SC + MS to date. The SC + MS’s potential contributions to center-out reaching movement were assessed by employing an extremely simple model of the brain that issued only step commands. Main results. The SC + MS was able to generate physiological muscle dynamics underlying reaching across different directions, distances, speeds, and even in the midst of strong dynamic perturbations (i.e. viscous curl field). For each task, there were many different combinations of brain inputs that generated physiological performance. Natural patterns of recruitment and low metabolic cost emerged for about half of the learning trials when a purely kinematic cost function was used and for all of the trials when an estimate of metabolic energy consumption was added to the cost function. Solutions for different tasks could be interpolated to generate intermediate movement and the range over which interpolation was successful was consistent with experimental reports. Significance. This is the first demonstration that a realistic model of the SC + MS is capable of generating the required dynamics of center-out reaching. The interpolability observed is important for the feasibility of storing motor programs in memory rather than computing them from internal models of the musculoskeletal plant. Successful interpolation of command programs required them to have similar muscle recruitment patterns, which are thought by many to arise from hard-wired muscle synergies rather than learned as in our model system. These properties of the SC + MS along with its tendency to generate energetically efficient solutions might usefully be employed by motor cortex to generate voluntary behaviors such as reaching to targets.
Grasso, R; Zago, M; Lacquaniti, F
2000-01-01
Human erect locomotion is unique among living primates. Evolution selected specific biomechanical features that make human locomotion mechanically efficient. These features are matched by the motor patterns generated in the CNS. What happens when humans walk with bent postures? Are normal motor patterns of erect locomotion maintained or completely reorganized? Five healthy volunteers walked straight and forward at different speeds in three different postures (regular, knee-flexed, and knee- and trunk-flexed) while their motion, ground reaction forces, and electromyographic (EMG) activity were recorded. The three postures imply large differences in the position of the center of body mass relative to the body segments. The elevation angles of the trunk, pelvis, and lower limb segments relative to the vertical in the sagittal plane, the ground reaction forces and the rectified EMGs were analyzed over the gait cycle. The waveforms of the elevation angles along the gait cycle remained essentially unchanged irrespective of the adopted postures. The first two harmonics of these kinematic waveforms explain >95% of their variance. The phase shift but not the amplitude ratio between the first harmonic of the elevation angle waveforms of adjacent pairs was affected systematically by changes in posture. Thigh, shank, and foot angles covaried close to a plane in all conditions, but the plane orientation was systematically different in bent versus erect locomotion. This was explained by the changes in the temporal coupling among the three segments. For walking speeds >1 m s(-1), the plane orientation of bent locomotion indicates a much lower mechanical efficiency relative to erect locomotion. Ground reaction forces differed prominently in bent versus erect posture displaying characteristics intermediate between those typical of walking and those of running. Mean EMG activity was greater in bent postures for all recorded muscles independent of the functional role. The waveforms of the muscle activities and muscle synergies also were affected by the adopted posture. We conclude that maintaining bent postures does not interfere either with the generation of segmental kinematic waveforms or with the planar constraint of intersegmental covariation. These characteristics are maintained at the expense of adjustments in kinetic parameters, muscle synergies and the temporal coupling among the oscillating body segments. We argue that an integrated control of gait and posture is made possible because these two motor functions share some common principles of spatial organization.
Underwater vehicle propulsion and power generation
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor); Chao, Yi (Inventor)
2008-01-01
An underwater vehicle includes a shaft with a propeller disposed thereon; a generator/motor having a stator and a rotor, the rotor being operable to rotate with the propeller; at least one energy storage device connected to the generator/motor; and a controller for setting the generator/motor in a charge mode, a propulsion mode and an idle mode.
Evaluation of Esophageal Motor Function With High-resolution Manometry
2013-01-01
For several decades esophageal manometry has been the test of choice to evaluate disorders of esophageal motor function. The recent introduction of high-resolution manometry for the study of esophageal motor function simplified performance of esophageal manometry, and revealed previously unidentified patterns of normal and abnormal esophageal motor function. Presentation of pressure data as color contour plots or esophageal pressure topography led to the development of new tools for analyzing and classifying esophageal motor patterns. The current standard and still developing approach to do this is the Chicago classification. While this methodical approach is improving our diagnosis of esophageal motor disorders, it currently does not address all motor abnormalities. We will explore the Chicago classification and disorders that it does not address. PMID:23875094
Information to cerebellum on spinal motor networks mediated by the dorsal spinocerebellar tract
Stecina, Katinka; Fedirchuk, Brent; Hultborn, Hans
2013-01-01
The main objective of this review is to re-examine the type of information transmitted by the dorsal and ventral spinocerebellar tracts (DSCT and VSCT respectively) during rhythmic motor actions such as locomotion. Based on experiments in the 1960s and 1970s, the DSCT was viewed as a relay of peripheral sensory input to the cerebellum in general, and during rhythmic movements such as locomotion and scratch. In contrast, the VSCT was seen as conveying a copy of the output of spinal neuronal circuitry, including those circuits generating rhythmic motor activity (the spinal central pattern generator, CPG). Emerging anatomical and electrophysiological information on the putative subpopulations of DSCT and VSCT neurons suggest differentiated functions for some of the subpopulations. Multiple lines of evidence support the notion that sensory input is not the only source driving DSCT neurons and, overall, there is a greater similarity between DSCT and VSCT activity than previously acknowledged. Indeed the majority of DSCT cells can be driven by spinal CPGs for locomotion and scratch without phasic sensory input. It thus seems natural to propose the possibility that CPG input to some of these neurons may contribute to distinguishing sensory inputs that are a consequence of the active locomotion from those resulting from perturbations in the external world. PMID:23613538
Samson, Nathalie; Praud, Jean-Paul; Quenet, Brigitte; Similowski, Thomas; Straus, Christian
2017-01-18
Sucking, swallowing and breathing are dynamic motor behaviors. Breathing displays features of chaos-like dynamics, in particular nonlinearity and complexity, which take their source in the automatic command of breathing. In contrast, buccal/gill ventilation in amphibians is one of the rare motor behaviors that do not display nonlinear complexity. This study aimed at assessing whether sucking and swallowing would also follow nonlinear complex dynamics in the newborn lamb. Breathing movements were recorded before, during and after bottle-feeding. Sucking pressure and the integrated EMG of the thyroartenoid muscle, as an index of swallowing, were recorded during bottle-feeding. Nonlinear complexity of the whole signals was assessed through the calculation of the noise limit value (NL). Breathing and swallowing always exhibited chaos-like dynamics. The NL of breathing did not change significantly before, during or after bottle-feeding. On the other hand, sucking inconsistently and significantly less frequently than breathing exhibited a chaos-like dynamics. Therefore, the central pattern generator (CPG) that drives sucking may be functionally different from the breathing CPG. Furthermore, the analogy between buccal/gill ventilation and sucking suggests that the latter may take its phylogenetic origin in the gill ventilation CPG of the common ancestor of extant amphibians and mammals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Halbach array DC motor/generator
Merritt, B.T.; Dreifuerst, G.R.; Post, R.F.
1998-01-06
A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An ``inside-out`` design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then ``switched`` or ``commutated`` to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives. 17 figs.
Halbach array DC motor/generator
Merritt, Bernard T.; Dreifuerst, Gary R.; Post, Richard F.
1998-01-01
A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.
Modal Survey of ETM-3, A 5-Segment Derivative of the Space Shuttle Solid Rocket Booster
NASA Technical Reports Server (NTRS)
Nielsen, D.; Townsend, J.; Kappus, K.; Driskill, T.; Torres, I.; Parks, R.
2005-01-01
The complex interactions between internal motor generated pressure oscillations and motor structural vibration modes associated with the static test configuration of a Reusable Solid Rocket Motor have potential to generate significant dynamic thrust loads in the 5-segment configuration (Engineering Test Motor 3). Finite element model load predictions for worst-case conditions were generated based on extrapolation of a previously correlated 4-segment motor model. A modal survey was performed on the largest rocket motor to date, Engineering Test Motor #3 (ETM-3), to provide data for finite element model correlation and validation of model generated design loads. The modal survey preparation included pretest analyses to determine an efficient analysis set selection using the Effective Independence Method and test simulations to assure critical test stand component loads did not exceed design limits. Historical Reusable Solid Rocket Motor modal testing, ETM-3 test analysis model development and pre-test loads analyses, as well as test execution, and a comparison of results to pre-test predictions are discussed.
46 CFR 183.320 - Generators and motors.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Generators and motors. 183.320 Section 183.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.320 Generators and motors. (a) Each...
46 CFR 183.320 - Generators and motors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Generators and motors. 183.320 Section 183.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.320 Generators and motors. (a) Each...
46 CFR 183.320 - Generators and motors.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Generators and motors. 183.320 Section 183.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.320 Generators and motors. (a) Each...
46 CFR 183.320 - Generators and motors.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Generators and motors. 183.320 Section 183.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.320 Generators and motors. (a) Each...
46 CFR 183.320 - Generators and motors.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Generators and motors. 183.320 Section 183.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.320 Generators and motors. (a) Each...
Bjursell, Mikael; Ryberg, Erik; Wu, Tingting; Greasley, Peter J; Bohlooly-Y, Mohammad; Hjorth, Stephan
2016-01-01
The G-protein coupled receptor 55 (GPR55) is activated by cannabinoids and non-cannabinoid molecules and has been speculated to play a modulatory role in a large variety of physiological and pathological processes, including in metabolically perturbed states. We therefore generated male mice deficient in the gene coding for the cannabinoid/lysophosphatidylinositol (LPI) receptor Gpr55 and characterized them under normal dietary conditions as well as during high energy dense diet feeding followed by challenge with the CB1 receptor antagonist/GPR55 agonist rimonabant. Gpr55 deficient male mice (Gpr55 KO) were phenotypically indistinguishable from their wild type (WT) siblings for the most part. However, Gpr55 KO animals displayed an intriguing nocturnal pattern of motor activity and energy expenditure (EE). During the initial 6 hours of the night, motor activity was significantly elevated without any significant effect observed in EE. Interestingly, during the last 6 hours of the night motor activity was similar but EE was significantly decreased in the Gpr55 KO mice. No significant difference in motor activity was detected during daytime, but EE was lower in the Gpr55 KO compared to WT mice. The aforementioned patterns were not associated with alterations in energy intake, daytime core body temperature, body weight (BW) or composition, although a non-significant tendency to increased adiposity was seen in Gpr55 KO compared to WT mice. Detailed analyses of daytime activity in the Open Field paradigm unveiled lower horizontal activity and rearing time for the Gpr55 KO mice. Moreover, the Gpr55 KO mice displayed significantly faster reaction time in the tail flick test, indicative of thermal hyperalgesia. The BW-decreasing effect of rimonabant in mice on long-term cafeteria diet did not differ between Gpr55 KO and WT mice. In conclusion, Gpr55 deficiency is associated with subtle effects on diurnal/nocturnal EE and motor activity behaviours but does not appear per se critically required for overall metabolism or behaviours.
Patterned-string tasks: relation between fine motor skills and visual-spatial abilities in parrots.
Krasheninnikova, Anastasia
2013-01-01
String-pulling and patterned-string tasks are often used to analyse perceptual and cognitive abilities in animals. In addition, the paradigm can be used to test the interrelation between visual-spatial and motor performance. Two Australian parrot species, the galah (Eolophus roseicapilla) and the cockatiel (Nymphicus hollandicus), forage on the ground, but only the galah uses its feet to manipulate food. I used a set of string pulling and patterned-string tasks to test whether usage of the feet during foraging is a prerequisite for solving the vertical string pulling problem. Indeed, the two species used techniques that clearly differed in the extent of beak-foot coordination but did not differ in terms of their success in solving the string pulling task. However, when the visual-spatial skills of the subjects were tested, the galahs outperformed the cockatiels. This supports the hypothesis that the fine motor skills needed for advanced beak-foot coordination may be interrelated with certain visual-spatial abilities needed for solving patterned-string tasks. This pattern was also found within each of the two species on the individual level: higher motor abilities positively correlated with performance in patterned-string tasks. This is the first evidence of an interrelation between visual-spatial and motor abilities in non-mammalian animals.
Casellato, Claudia; Pedrocchi, Alessandra; Zorzi, Giovanna; Rizzi, Giorgio; Ferrigno, Giancarlo; Nardocci, Nardo
2012-07-23
Robot-generated deviating forces during multijoint reaching movements have been applied to investigate motor control and to tune neuromotor adaptation. Can the application of force to limbs improve motor learning? In this framework, the response to altered dynamic environments of children affected by primary dystonia has never been studied. As preliminary pilot study, eleven children with primary dystonia and eleven age-matched healthy control subjects were asked to perform upper limb movements, triangle-reaching (three directions) and circle-writing, using a haptic robot interacting with ad-hoc developed task-specific visual interfaces. Three dynamic conditions were provided, null additive external force (A), constant disturbing force (B) and deactivation of the additive external force again (C). The path length for each trial was computed, from the recorded position data and interaction events. The results show that the disturbing force affects significantly the movement outcomes in healthy but not in dystonic subjects, already compromised in the reference condition: the external alteration uncalibrates the healthy sensorimotor system, while the dystonic one is already strongly uncalibrated. The lack of systematic compensation for perturbation effects during B condition is reflected into the absence of after-effects in C condition, which would be the evidence that CNS generates a prediction of the perturbing forces using an internal model of the environment.The most promising finding is that in dystonic population the altered dynamic exposure seems to induce a subsequent improvement, i.e. a beneficial after-effect in terms of optimal path control, compared with the correspondent reference movement outcome. The short-time error-enhancing training in dystonia could represent an effective approach for motor performance improvement, since the exposure to controlled dynamic alterations induces a refining of the existing but strongly imprecise motor scheme and sensorimotor patterns.
2012-01-01
Background Robot-generated deviating forces during multijoint reaching movements have been applied to investigate motor control and to tune neuromotor adaptation. Can the application of force to limbs improve motor learning? In this framework, the response to altered dynamic environments of children affected by primary dystonia has never been studied. Methods As preliminary pilot study, eleven children with primary dystonia and eleven age-matched healthy control subjects were asked to perform upper limb movements, triangle-reaching (three directions) and circle-writing, using a haptic robot interacting with ad-hoc developed task-specific visual interfaces. Three dynamic conditions were provided, null additive external force (A), constant disturbing force (B) and deactivation of the additive external force again (C). The path length for each trial was computed, from the recorded position data and interaction events. Results The results show that the disturbing force affects significantly the movement outcomes in healthy but not in dystonic subjects, already compromised in the reference condition: the external alteration uncalibrates the healthy sensorimotor system, while the dystonic one is already strongly uncalibrated. The lack of systematic compensation for perturbation effects during B condition is reflected into the absence of after-effects in C condition, which would be the evidence that CNS generates a prediction of the perturbing forces using an internal model of the environment. The most promising finding is that in dystonic population the altered dynamic exposure seems to induce a subsequent improvement, i.e. a beneficial after-effect in terms of optimal path control, compared with the correspondent reference movement outcome. Conclusions The short-time error-enhancing training in dystonia could represent an effective approach for motor performance improvement, since the exposure to controlled dynamic alterations induces a refining of the existing but strongly imprecise motor scheme and sensorimotor patterns. PMID:22824547
Design optimization of a smooth headlamp reflector to SAE/DOT beam-shape requirements
NASA Astrophysics Data System (ADS)
Shatz, Narkis E.; Bortz, John C.; Dassanayake, Mahendra S.
1999-10-01
The optical design of Ford Motor Company's 1992 Mercury Grand Marquis headlamp utilized a Sylvania 9007 filament source, a paraboloidal reflector and an array of cylindrical lenses (flutes). It has been of interest to Ford to determine the practicality of closely reproducing the on- road beam pattern performance of this headlamp, with an alternate optical arrangement whereby the control of the beam would be achieved solely by means of the geometry of the surface of the reflector, subject to a requirement of smooth-surface continuity; replacing the outer lens with a clear plastic cover having no beam-forming function. To this end the far-field intensity distribution produced by the 9007 bulb was measured at the low-beam setting. These measurements were then used to develop a light-source model for use in ray tracing simulations of candidate reflector geometries. An objective function was developed to compare candidate beam patterns with the desired beam pattern. Functional forms for the 3D reflector geometry were developed with free parameters to be subsequently optimized. A solution was sought meeting the detailed US SAE/DOT constraints for minimum and maximum permissible levels of illumination in the different portions of the beam pattern. Simulated road scenes were generated by Ford Motor Company to compare the illumination properties of the new design with those of the original Grand Marquis headlamp.
DONG, HONG-WEI; SWANSON, LARRY W.
2008-01-01
The basic structural organization of axonal projections from the small but distinct magnocellular and ventral nuclei (of the bed nuclei of the stria terminalis) were analyzed with the PHAL anterograde tract tracing method in adult male rats. The former's overall projection pattern is complex, with over 80 distinct terminal fields ipsilateral to injection sites. Innervated regions in the cerebral hemisphere and brainstem fall into 9 general functional categories: cerebral nuclei, behavior control column, orofacial motor-related, humorosensory/thirst-related, brainstem autonomic control network, neuroendocrine, hypothalamic visceromotor pattern generator network, thalamocortical feedback loops, and behavioral state control. The most novel findings indicate that the magnocellular nucleus projects to virtually all known major parts of the brain network that controls pelvic functions including micturition, defecation, and penile erection—as well as to brain networks controlling nutrient and body water homeostasis. This and other evidence suggests that the magnocellular nucleus is part of a cortico-striatopallidal differentiation modulating and coordinating pelvic functions with the maintenance of nutrient and body water homeostasis. Projections of the ventral nucleus are a subset of those generated by the magnocellular nucleus, with the obvious difference that the ventral nucleus does not project detectably to Barrington's nucleus, the subfornical organ, the median preoptic and parastrial nuclei, the neuroendocrine system, and midbrain orofacial motor-related regions. PMID:16304682
Clarke, John O; Pandolfino, John E
2012-07-01
High-resolution manometry has added significantly to our current understanding of esophageal motor function by providing improved detail and a data analysis paradigm that is more akin to an imaging format. Esophageal pressure topography provides a seamless dynamic representation of the pressure profile through the entire esophagus and thus, is able to eliminate movement artifact and also assess intrabolus pressure patterns as a surrogate for bolus transit mechanics. This has led to improved identification of anatomic landmarks and measurement of important physiological parameters (esophagogastric junction relaxation, distal latency, and contractile integrity). This research has bridged the gap into clinical practice by defining physiologically relevant phenotypes that may have prognostic significance and improve treatment decisions in achalasia, spasm, and hypercontractile disorders. However, more work is needed in determining the etiology of symptom generation in the context of normal or trivial motor dysfunction. This research will require new techniques to assess visceral hypersensitivity and alterations in central modulation of pain and discomfort.
Modelling the control of interceptive actions.
Beek, P J; Dessing, J C; Peper, C E; Bullock, D
2003-01-01
In recent years, several phenomenological dynamical models have been formulated that describe how perceptual variables are incorporated in the control of motor variables. We call these short-route models as they do not address how perception-action patterns might be constrained by the dynamical properties of the sensory, neural and musculoskeletal subsystems of the human action system. As an alternative, we advocate a long-route modelling approach in which the dynamics of these subsystems are explicitly addressed and integrated to reproduce interceptive actions. The approach is exemplified through a discussion of a recently developed model for interceptive actions consisting of a neural network architecture for the online generation of motor outflow commands, based on time-to-contact information and information about the relative positions and velocities of hand and ball. This network is shown to be consistent with both behavioural and neurophysiological data. Finally, some problems are discussed with regard to the question of how the motor outflow commands (i.e. the intended movement) might be modulated in view of the musculoskeletal dynamics. PMID:14561342
Giampalmo, Susan L; Absher, Benjamin F; Bourne, W Tucker; Steves, Lida E; Vodenski, Vassil V; O'Donnell, Peter M; Erickson, Jonathan C
2011-01-01
Micro-air vehicles (MAVs) have attracted attention for their potential application to military applications, environmental sensing, and search and rescue missions. While progress is being made toward fabrication of a completely human-engineered MAV, another promising approach seeks to interface to, and take control of, an insect's nervous system. Cyborg insects take advantage of their innate exquisite loco-motor, navigation, and sensing abilities. Recently, several groups have demonstrated the feasibility of radio-controlled flight in the hawkmoth and beetle via electrical neural interfaces. Here, we report a method for eliciting the "jump" response in the American grasshopper (S. Americana). We found that stimulating the metathoracic T3 ganglion with constant-current square wave pulses with amplitude 186 ± 40 μA and frequency 190 ± 13 Hz reproducibly evoked (≥95% success rate) the desired motor activity in N=3 test subjects. To the best of our knowledge, this is the first report of an insect cyborg with a synchronous neuromuscular system.
Rehabilitation and motor learning through vibrotactile feedback
NASA Astrophysics Data System (ADS)
Panchanathan, Roshan; Rosenthal, Jacob; McDaniel, Troy
2014-05-01
Group instruction is the most common delivery method of motor skill training given its cost and time effectiveness. This is also the case during rehabilitation where therapists divide their attention among several patients. Compared to dedicated one-on-one instruction, group instruction often suffers from reduced quality and quantity of instruction and feedback. Further, during rehabilitation programs, patients struggle outside of therapy sessions given the lack of instruction and feedback found only during clinic visits. We propose a wearable, low-cost motion sensing and actuation system capable of providing real-time vibrotactile feedback for trainer-defined goal movements and repetitions. The trainer inputs movement goals for the user, and adapts these values (joint angles, movement speeds) over time for continued progress. In this paper, we present a novel second generation design, and introduce a flexible vibrotactile strip to overcome construction challenges of these types of systems. The flexible display is constructed using commercial LED strips that have been modified by attaching pancake style vibration motors. The flexible display does not require external microcontrollers to enable or disable motors, and may allow these systems to be expanded to the whole body. We also summarize two previous studies that have assessed appropriate body sites and pattern designs for vibrotactile motor instructions and feedback signals.
Sebert Kuhlmann, Anne K; Brett, John; Thomas, Deborah; Sain, Stephan R
2009-09-01
We examined patterns of pedestrian-motor vehicle collisions and associated environmental characteristics in Denver, Colorado. We integrated publicly available data on motor vehicle collisions, liquor licenses, land use, and sociodemographic characteristics to analyze spatial patterns and other characteristics of collisions involving pedestrians. We developed both linear and spatially weighted regression models of these collisions. Spatial analysis revealed global clustering of pedestrian-motor vehicle collisions with concentrations in downtown, in a contiguous neighborhood, and along major arterial streets. Walking to work, population density, and liquor license outlet density all contributed significantly to both linear and spatial models of collisions involving pedestrians and were each significantly associated with these collisions. These models, constructed with data from Denver, identified conditions that likely contribute to patterns of pedestrian-motor vehicle collisions. Should these models be verified elsewhere, they will have implications for future research directions, public policy to enhance pedestrian safety, and public health programs aimed at decreasing unintentional injury from pedestrian-motor vehicle collisions and promoting walking as a routine physical activity.
Yu, Vickie Y.; Kadis, Darren S.; Oh, Anna; Goshulak, Debra; Namasivayam, Aravind; Pukonen, Margit; Kroll, Robert; De Nil, Luc F.; Pang, Elizabeth W.
2016-01-01
This study evaluated changes in motor speech control and inter-gestural coordination for children with speech sound disorders (SSD) subsequent to PROMPT (Prompts for Restructuring Oral Muscular Phonetic Targets) intervention. We measured the distribution patterns of voice onset time (VOT) for a voiceless stop (/p/) to examine the changes in inter-gestural coordination. Two standardized tests were used (VMPAC, GFTA-2) to assess the changes in motor speech skills and articulation. Data showed positive changes in patterns of VOT with a lower pattern of variability. All children showed significantly higher scores for VMPAC, but only some children showed higher scores for GFTA-2. Results suggest that the proprioceptive feedback provided through PROMPT had a positive influence on motor speech control and inter-gestural coordination in voicing behavior. This set of VOT data for children with SSD adds to our understanding of the speech characteristics underlying motor speech control. Directions for future studies are discussed. PMID:24446799
Retraining the injured spinal cord
NASA Technical Reports Server (NTRS)
Edgerton, V. R.; Leon, R. D.; Harkema, S. J.; Hodgson, J. A.; London, N.; Reinkensmeyer, D. J.; Roy, R. R.; Talmadge, R. J.; Tillakaratne, N. J.; Timoszyk, W.;
2001-01-01
The present review presents a series of concepts that may be useful in developing rehabilitative strategies to enhance recovery of posture and locomotion following spinal cord injury. First, the loss of supraspinal input results in a marked change in the functional efficacy of the remaining synapses and neurons of intraspinal and peripheral afferent (dorsal root ganglion) origin. Second, following a complete transection the lumbrosacral spinal cord can recover greater levels of motor performance if it has been exposed to the afferent and intraspinal activation patterns that are associated with standing and stepping. Third, the spinal cord can more readily reacquire the ability to stand and step following spinal cord transection with repetitive exposure to standing and stepping. Fourth, robotic assistive devices can be used to guide the kinematics of the limbs and thus expose the spinal cord to the new normal activity patterns associated with a particular motor task following spinal cord injury. In addition, such robotic assistive devices can provide immediate quantification of the limb kinematics. Fifth, the behavioural and physiological effects of spinal cord transection are reflected in adaptations in most, if not all, neurotransmitter systems in the lumbosacral spinal cord. Evidence is presented that both the GABAergic and glycinergic inhibitory systems are up-regulated following complete spinal cord transection and that step training results in some aspects of these transmitter systems being down-regulated towards control levels. These concepts and observations demonstrate that (a) the spinal cord can interpret complex afferent information and generate the appropriate motor task; and (b) motor ability can be defined to a large degree by training.
Delayed production of adenosine underlies temporal modulation of swimming in frog embryo
Dale, Nicholas
1998-01-01
To investigate the dynamics of adenosine production in the spinal cord during motor activity, and its possible contribution to the temporal modulation of motor patterns, a sensor sensitive to adenosine at concentrations as low as 10 nm was devised.When pressed against the outside of the spinal cord, the sensor detected slow changes in the levels of adenosine during fictive swimming that ranged from 10 to 650 nm. In four embryos where particularly large signals were recorded due to favourable probe placement, the adenosine levels continued to rise for up to a minute following cessation of activity before slowly returning to baseline. In the remaining thirteen embryos, levels of adenosine started to return slowly to baseline almost immediately after activity had stopped.Inhibitors of adenosine uptake increased the magnitude of the signal recorded and slowed the recovery following cessation of activity.A realistic computational model of the spinal circuitry was combined with models of extracellular breakdown of ATP to adenosine. ATP and adenosine inhibited, as in the real embryo, the voltage-gated K+ and Ca2+ currents, respectively. The model reproduced the temporal run-down of motor activity seen in the real embryo suggesting that synaptic release of ATP together with its extracellular breakdown to adenosine is sufficient to exert time-dependent control over motor pattern generation.The computational analysis also suggested that the delay in the rise of adenosine levels is likely to result from feed-forward inhibition of the 5′-ectonucleotidase in the spinal cord. This inhibition is a key determinant of the rate of run-down. PMID:9679180
Peripheral Nerve Injury in Developing Rats Reorganizes Representation Pattern in Motor Cortex
NASA Astrophysics Data System (ADS)
Donoghue, John P.; Sanes, Jerome N.
1987-02-01
We investigated the effect of neonatal nerve lesions on cerebral motor cortex organization by comparing the cortical motor representation of normal adult rats with adult rats that had one forelimb removed on the day of birth. Mapping of cerebral neocortex with electrical stimulation revealed an altered relationship between the motor cortex and the remaining muscles. Whereas distal forelimb movements are normally elicited at the lowest threshold in the motor cortex forelimb area, the same stimuli activated shoulder and trunk muscles in experimental animals. In addition, an expanded cortical representation of intact body parts was present and there was an absence of a distinct portion of motor cortex. These data demonstrate that representation patterns in motor cortex can be altered by peripheral nerve injury during development.
Yu, Haitao; Dhingra, Rishi R; Dick, Thomas E; Galán, Roberto F
2017-01-01
Neural activity generally displays irregular firing patterns even in circuits with apparently regular outputs, such as motor pattern generators, in which the output frequency fluctuates randomly around a mean value. This "circuit noise" is inherited from the random firing of single neurons, which emerges from stochastic ion channel gating (channel noise), spontaneous neurotransmitter release, and its diffusion and binding to synaptic receptors. Here we demonstrate how to expand conductance-based network models that are originally deterministic to include realistic, physiological noise, focusing on stochastic ion channel gating. We illustrate this procedure with a well-established conductance-based model of the respiratory pattern generator, which allows us to investigate how channel noise affects neural dynamics at the circuit level and, in particular, to understand the relationship between the respiratory pattern and its breath-to-breath variability. We show that as the channel number increases, the duration of inspiration and expiration varies, and so does the coefficient of variation of the breath-to-breath interval, which attains a minimum when the mean duration of expiration slightly exceeds that of inspiration. For small channel numbers, the variability of the expiratory phase dominates over that of the inspiratory phase, and vice versa for large channel numbers. Among the four different cell types in the respiratory pattern generator, pacemaker cells exhibit the highest sensitivity to channel noise. The model shows that suppressing input from the pons leads to longer inspiratory phases, a reduction in breathing frequency, and larger breath-to-breath variability, whereas enhanced input from the raphe nucleus increases breathing frequency without changing its pattern. A major source of noise in neuronal circuits is the "flickering" of ion currents passing through the neurons' membranes (channel noise), which cannot be suppressed experimentally. Computational simulations are therefore the best way to investigate the effects of this physiological noise by manipulating its level at will. We investigate the role of noise in the respiratory pattern generator and show that endogenous, breath-to-breath variability is tightly linked to the respiratory pattern. Copyright © 2017 the American Physiological Society.
Hornseth, M L; Pigeon, K E; MacNearney, D; Larsen, T A; Stenhouse, G; Cranston, J; Finnegan, L
2018-05-11
Natural regeneration of seismic lines, cleared for hydrocarbon exploration, is slow and often hindered by vegetation damage, soil compaction, and motorized human activity. There is an extensive network of seismic lines in western Canada which is known to impact forest ecosystems, and seismic lines have been linked to declines in woodland caribou (Rangifer tarandus caribou). Seismic line restoration is costly, but necessary for caribou conservation to reduce cumulative disturbance. Understanding where motorized activity may be impeding regeneration of seismic lines will aid in prioritizing restoration. Our study area in west-central Alberta, encompassed five caribou ranges where restoration is required under federal species at risk recovery strategies, hence prioritizing seismic lines for restoration is of immediate conservation value. To understand patterns of motorized activity on seismic lines, we evaluated five a priori hypotheses using a predictive modeling framework and Geographic Information System variables across three landscapes in the foothills and northern boreal regions of Alberta. In the northern boreal landscape, motorized activity was most common in dry areas with a large industrial footprint. In highly disturbed areas of the foothills, motorized activity on seismic lines increased with low vegetation heights, relatively dry soils, and further from forest cutblocks, while in less disturbed areas of the foothills, motorized activity on seismic lines decreased proportional to seismic line density, slope steepness, and white-tailed deer abundance, and increased proportional with distance to roads. We generated predictive maps of high motorized activity, identifying 21,777 km of seismic lines where active restoration could expedite forest regeneration.
Cpd-1 Null Mice Display a Subtle Neurological Phenotype
Kular, Rupinder K.; Gogliotti, Rocky G.; Opal, Puneet
2010-01-01
Background CPD1 (also known as ANP32-E) belongs to a family of evolutionarily conserved acidic proteins with leucine rich repeats implicated in a variety of cellular processes regulating gene expression, vesicular trafficking, intracellular signaling and apoptosis. Because of its spatiotemporal expression pattern, CPD1 has been proposed to play an important role in brain morphogenesis and synaptic development. Methodology/Principal Findings We have generated CPD1 knock-out mice that we have subsequently characterized. These mice are viable and fertile. However, they display a subtle neurological clasping phenotype and mild motor deficits. Conclusions/Significance CPD1 is not essential for normal development; however, it appears to play a role in the regulation of fine motor functions. The minimal phenotype suggests compensatory biological mechanisms. PMID:20844742
Development and Plasticity of Cortical Processing Architectures
NASA Astrophysics Data System (ADS)
Singer, Wolf
1995-11-01
One of the basic functions of the cerebral cortex is the analysis and representation of relations among the components of sensory and motor patterns. It is proposed that the cortex applies two complementary strategies to cope with the combinatorial problem posed by the astronomical number of possible relations: (i) the analysis and representation of frequently occurring, behaviorally relevant relations by groups of cells with fixed but broadly tuned response properties; and (ii) the dynamic association of these cells into functionally coherent assemblies. Feedforward connections and reciprocal associative connections, respectively, are thought to underlie these two operations. The architectures of both types of connections are susceptible to experience-dependent modifications during development, but they become fixed in the adult. As development proceeds, feedforward connections also appear to lose much of their functional plasticity, whereas the synapses of the associative connections retain a high susceptibility to use-dependent modifications. The reduced plasticity of feedforward connections is probably responsible for the invariance of cognitive categories acquired early in development. The persistent adaptivity of reciprocal connections is a likely substrate for the ability to generate representations for new perceptual objects and motor patterns throughout life.
Stavisky, Sergey D; Kao, Jonathan C; Ryu, Stephen I; Shenoy, Krishna V
2017-07-05
Neural circuits must transform new inputs into outputs without prematurely affecting downstream circuits while still maintaining other ongoing communication with these targets. We investigated how this isolation is achieved in the motor cortex when macaques received visual feedback signaling a movement perturbation. To overcome limitations in estimating the mapping from cortex to arm movements, we also conducted brain-machine interface (BMI) experiments where we could definitively identify neural firing patterns as output-null or output-potent. This revealed that perturbation-evoked responses were initially restricted to output-null patterns that cancelled out at the neural population code readout and only later entered output-potent neural dimensions. This mechanism was facilitated by the circuit's large null space and its ability to strongly modulate output-potent dimensions when generating corrective movements. These results show that the nervous system can temporarily isolate portions of a circuit's activity from its downstream targets by restricting this activity to the circuit's output-null neural dimensions. Copyright © 2017 Elsevier Inc. All rights reserved.
Fussnecker, Brendon L; Smith, Brian H; Mustard, Julie A
2006-10-01
The biogenic amines octopamine and tyramine are believed to play a number of important roles in the behavior of invertebrates including the regulation of motor function. To investigate the role of octopamine and tyramine in locomotor behavior in honey bees, subjects were injected with a range of concentrations of octopamine, tyramine, mianserin or yohimbine. Continuous observation of freely moving worker bees was used to examine the effects of these treatments on the amount of time honey bees spent engaged in different locomotor behaviors such as walking, grooming, fanning and flying. All treatments produced significant shifts in behavior. Decreases in time spent walking and increases in grooming or stopped behavior were observed for every drug. However, the pattern of the shift depended on drug, time after injection and concentration. Flying behavior was differentially affected with increases in flying seen in octopamine treated bees, whereas those receiving tyramine showed a decrease in flying. Taken together, these data provide evidence that octopamine and tyramine modulate motor function in the honey bee perhaps via interaction with central pattern generators or through effects on sensory perception.
Fussnecker, Brendon L.; Smith, Brian H.; Mustard, Julie A.
2006-01-01
The biogenic amines octopamine and tyramine are believed to play a number of important roles in the behavior of invertebrates including the regulation of motor function. To investigate the role of octopamine and tyramine in locomotor behavior in honey bees, subjects were injected with a range of concentrations of octopamine, tyramine, mianserin or yohimbine. Continuous observation of freely moving worker bees was used to examine the effects of these treatments on the amount of time honey bees spent engaged in different locomotor behaviors such as walking, grooming, fanning and flying. All treatments produced significant shifts in behavior. Decreases in time spent walking and increases in grooming or stopped behavior were observed for every drug. However, the pattern of the shift depended on drug, time after injection and concentration. Flying behavior was differentially effected with increases in flying seen in octopamine treated bees, whereas those receiving tyramine showed a decrease in flying. Taken together, these data provide evidence that octopamine and tyramine modulate motor function in the honey bee perhaps via interaction with central pattern generators or through effects on sensory perception. PMID:17028016
A generalized locomotion CPG architecture based on oscillatory building blocks.
Yang, Zhijun; França, Felipe M G
2003-07-01
Neural oscillation is one of the most extensively investigated topics of artificial neural networks. Scientific approaches to the functionalities of both natural and artificial intelligences are strongly related to mechanisms underlying oscillatory activities. This paper concerns itself with the assumption of the existence of central pattern generators (CPGs), which are the plausible neural architectures with oscillatory capabilities, and presents a discrete and generalized approach to the functionality of locomotor CPGs of legged animals. Based on scheduling by multiple edge reversal (SMER), a primitive and deterministic distributed algorithm, it is shown how oscillatory building block (OBB) modules can be created and, hence, how OBB-based networks can be formulated as asymmetric Hopfield-like neural networks for the generation of complex coordinated rhythmic patterns observed among pairs of biological motor neurons working during different gait patterns. It is also shown that the resulting Hopfield-like network possesses the property of reproducing the whole spectrum of different gaits intrinsic to the target locomotor CPGs. Although the new approach is not restricted to the understanding of the neurolocomotor system of any particular animal, hexapodal and quadrupedal gait patterns are chosen as illustrations given the wide interest expressed by the ongoing research in the area.
50. VIEW LOOKING SOUTHEAST AT A MOTORGENERATOR SET LOCATED UNDER ...
50. VIEW LOOKING SOUTHEAST AT A MOTOR-GENERATOR SET LOCATED UNDER CONTROL ROOM. THREE 450 kva., 2500 VOLT, 60 CYCLE MOTOR-GENERATOR UNITS PROVIDED POWER FOR THE RAILROAD SIGNAL SYSTEM. 25 CYCLE POWER WAS PROVIDED TO THE MOTOR (LEFT BACKGROUND). THE MOTOR TURNED THE GENERATOR (CENTER FOREGROUND) WHICH PRODUCED 60 CYCLE POWER TO OPERATE LIGHTS AND SIGNALING DEVICES. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT
ERIC Educational Resources Information Center
Mody, M.; Shui, A. M.; Nowinski, L. A.; Golas, S. B.; Ferrone, C.; O'Rourke, J. A.; McDougle, C. J.
2017-01-01
Many children with autism spectrum disorder (ASD) have notable difficulties in motor, speech and language domains. The connection between motor skills (oral-motor, manual-motor) and speech and language deficits reported in other developmental disorders raises important questions about a potential relationship between motor skills and…
Motor neurons and the generation of spinal motor neuron diversity
Stifani, Nicolas
2014-01-01
Motor neurons (MNs) are neuronal cells located in the central nervous system (CNS) controlling a variety of downstream targets. This function infers the existence of MN subtypes matching the identity of the targets they innervate. To illustrate the mechanism involved in the generation of cellular diversity and the acquisition of specific identity, this review will focus on spinal MNs (SpMNs) that have been the core of significant work and discoveries during the last decades. SpMNs are responsible for the contraction of effector muscles in the periphery. Humans possess more than 500 different skeletal muscles capable to work in a precise time and space coordination to generate complex movements such as walking or grasping. To ensure such refined coordination, SpMNs must retain the identity of the muscle they innervate. Within the last two decades, scientists around the world have produced considerable efforts to elucidate several critical steps of SpMNs differentiation. During development, SpMNs emerge from dividing progenitor cells located in the medial portion of the ventral neural tube. MN identities are established by patterning cues working in cooperation with intrinsic sets of transcription factors. As the embryo develop, MNs further differentiate in a stepwise manner to form compact anatomical groups termed pools connecting to a unique muscle target. MN pools are not homogeneous and comprise subtypes according to the muscle fibers they innervate. This article aims to provide a global view of MN classification as well as an up-to-date review of the molecular mechanisms involved in the generation of SpMN diversity. Remaining conundrums will be discussed since a complete understanding of those mechanisms constitutes the foundation required for the elaboration of prospective MN regeneration therapies. PMID:25346659
Powertrain system for a hybrid electric vehicle
Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.
1999-08-31
A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.
Powertrain system for a hybrid electric vehicle
Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.
1999-08-31
A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.
Pantall, Annette; Teulier, Caroline; Ulrich, Beverly D
2012-12-01
Infants with myelomeningocele (MMC) increase step frequency in response to modifications to the treadmill surface. The aim was to investigate how these modifications impacted the electromyographic (EMG) patterns. We analyzed EMG from 19 infants aged 2-10 months, with MMC at the lumbosacral level. We supported infants upright on the treadmill for 12 trials, each 30 seconds long. Modifications included visual flow, unloading, weights, Velcro and lcriction. Surface electrodes recorded EMG from tibialis anterior, lateral gastrocnemius, rectus femoris and biceps femoris. We determined muscle bursts for each stride cycle and from these calculated various parameters. Results indicated that each of the five sensory conditions generated different motor patterns. Visual flow and friction which we previously reported increased step frequency impacted lateral gastrocnemius most. Weights, which significantly decreased step frequency increased burst duration and co-activity of the proximal muscles. We also observed an age effect, with all conditions increasing muscle activity in younger infants whereas in older infants visual flow and unloading stimulated most activity. In conclusion, we have demonstrated that infants with myelomeningocele at levels which impact the myotomes of major locomotor muscles find ways to respond and adapt their motor output to changes in sensory input. Copyright © 2012 Elsevier B.V. All rights reserved.
Pantall, Annette; Teulier, Caroline; Ulrich, Beverly D.
2013-01-01
Infants with myelomeningocele (MMC) increase step frequency in response to modifications to the treadmill surface. The aim was to investigate how these modifications impacted the electromyographic (EMG) patterns. We analyzed EMG from 19 infants aged 2–10 months, with MMC at the lumbosacral level. We supported infants upright on the treadmill for 12 trials, each 30 seconds long. Modifications included visual flow, unloading, weights, Velcro and lcriction. Surface electrodes recorded EMG from tibialis anterior, lateral gastrocnemius, rectus femoris and biceps femoris. We determined muscle bursts for each stride cycle and from these calculated various parameters. Results indicated that each of the five sensory conditions generated different motor patterns. Visual flow and friction which we previously reported increased step frequency impacted lateral gastrocnemius most. Weights, which significantly decreased step frequency increased burst duration and co-activity of the proximal muscles. We also observed an age effect, with all conditions increasing muscle activity in younger infants whereas in older infants visual flow and unloading stimulated most activity. In conclusion, we have demonstrated that infants with myelomeningocele at levels which impact the myotomes of major locomotor muscles find ways to respond and adapt their motor output to changes in sensory input. PMID:23158017
The role of the circadian system in fractal neurophysiological control
Pittman-Polletta, Benjamin R.; Scheer, Frank A.J.L.; Butler, Matthew P.; Shea, Steven A.; Hu, Kun
2013-01-01
Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations - similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system’s role in fractal regulation. PMID:23573942
Motor control by precisely timed spike patterns
Srivastava, Kyle H.; Holmes, Caroline M.; Vellema, Michiel; Pack, Andrea R.; Elemans, Coen P. H.; Nemenman, Ilya; Sober, Samuel J.
2017-01-01
A fundamental problem in neuroscience is understanding how sequences of action potentials (“spikes”) encode information about sensory signals and motor outputs. Although traditional theories assume that this information is conveyed by the total number of spikes fired within a specified time interval (spike rate), recent studies have shown that additional information is carried by the millisecond-scale timing patterns of action potentials (spike timing). However, it is unknown whether or how subtle differences in spike timing drive differences in perception or behavior, leaving it unclear whether the information in spike timing actually plays a role in brain function. By examining the activity of individual motor units (the muscle fibers innervated by a single motor neuron) and manipulating patterns of activation of these neurons, we provide both correlative and causal evidence that the nervous system uses millisecond-scale variations in the timing of spikes within multispike patterns to control a vertebrate behavior—namely, respiration in the Bengalese finch, a songbird. These findings suggest that a fundamental assumption of current theories of motor coding requires revision. PMID:28100491
Rice, Amber; Fuglevand, Andrew J; Laine, Christopher M; Fregosi, Ralph F
2011-05-01
The respiratory central pattern generator distributes rhythmic excitatory input to phrenic, intercostal, and hypoglossal premotor neurons. The degree to which this input shapes motor neuron activity can vary across respiratory muscles and motor neuron pools. We evaluated the extent to which respiratory drive synchronizes the activation of motor unit pairs in tongue (genioglossus, hyoglossus) and chest-wall (diaphragm, external intercostals) muscles using coherence analysis. This is a frequency domain technique, which characterizes the frequency and relative strength of neural inputs that are common to each of the recorded motor units. We also examined coherence across the two tongue muscles, as our previous work shows that, despite being antagonists, they are strongly coactivated during the inspiratory phase, suggesting that excitatory input from the premotor neurons is distributed broadly throughout the hypoglossal motoneuron pool. All motor unit pairs showed highly correlated activity in the low-frequency range (1-8 Hz), reflecting the fundamental respiratory frequency and its harmonics. Coherence of motor unit pairs recorded either within or across the tongue muscles was similar, consistent with broadly distributed premotor input to the hypoglossal motoneuron pool. Interestingly, motor units from diaphragm and external intercostal muscles showed significantly higher coherence across the 10-20-Hz bandwidth than tongue-muscle units. We propose that the lower coherence in tongue-muscle motor units over this range reflects a larger constellation of presynaptic inputs, which collectively lead to a reduction in the coherence between hypoglossal motoneurons in this frequency band. This, in turn, may reflect the relative simplicity of the respiratory drive to the diaphragm and intercostal muscles, compared with the greater diversity of functions fulfilled by muscles of the tongue.
Hanuschkin, A; Ganguli, S; Hahnloser, R H R
2013-01-01
Mirror neurons are neurons whose responses to the observation of a motor act resemble responses measured during production of that act. Computationally, mirror neurons have been viewed as evidence for the existence of internal inverse models. Such models, rooted within control theory, map-desired sensory targets onto the motor commands required to generate those targets. To jointly explore both the formation of mirrored responses and their functional contribution to inverse models, we develop a correlation-based theory of interactions between a sensory and a motor area. We show that a simple eligibility-weighted Hebbian learning rule, operating within a sensorimotor loop during motor explorations and stabilized by heterosynaptic competition, naturally gives rise to mirror neurons as well as control theoretic inverse models encoded in the synaptic weights from sensory to motor neurons. Crucially, we find that the correlational structure or stereotypy of the neural code underlying motor explorations determines the nature of the learned inverse model: random motor codes lead to causal inverses that map sensory activity patterns to their motor causes; such inverses are maximally useful, by allowing the imitation of arbitrary sensory target sequences. By contrast, stereotyped motor codes lead to less useful predictive inverses that map sensory activity to future motor actions. Our theory generalizes previous work on inverse models by showing that such models can be learned in a simple Hebbian framework without the need for error signals or backpropagation, and it makes new conceptual connections between the causal nature of inverse models, the statistical structure of motor variability, and the time-lag between sensory and motor responses of mirror neurons. Applied to bird song learning, our theory can account for puzzling aspects of the song system, including necessity of sensorimotor gating and selectivity of auditory responses to bird's own song (BOS) stimuli.
Hanuschkin, A.; Ganguli, S.; Hahnloser, R. H. R.
2013-01-01
Mirror neurons are neurons whose responses to the observation of a motor act resemble responses measured during production of that act. Computationally, mirror neurons have been viewed as evidence for the existence of internal inverse models. Such models, rooted within control theory, map-desired sensory targets onto the motor commands required to generate those targets. To jointly explore both the formation of mirrored responses and their functional contribution to inverse models, we develop a correlation-based theory of interactions between a sensory and a motor area. We show that a simple eligibility-weighted Hebbian learning rule, operating within a sensorimotor loop during motor explorations and stabilized by heterosynaptic competition, naturally gives rise to mirror neurons as well as control theoretic inverse models encoded in the synaptic weights from sensory to motor neurons. Crucially, we find that the correlational structure or stereotypy of the neural code underlying motor explorations determines the nature of the learned inverse model: random motor codes lead to causal inverses that map sensory activity patterns to their motor causes; such inverses are maximally useful, by allowing the imitation of arbitrary sensory target sequences. By contrast, stereotyped motor codes lead to less useful predictive inverses that map sensory activity to future motor actions. Our theory generalizes previous work on inverse models by showing that such models can be learned in a simple Hebbian framework without the need for error signals or backpropagation, and it makes new conceptual connections between the causal nature of inverse models, the statistical structure of motor variability, and the time-lag between sensory and motor responses of mirror neurons. Applied to bird song learning, our theory can account for puzzling aspects of the song system, including necessity of sensorimotor gating and selectivity of auditory responses to bird's own song (BOS) stimuli. PMID:23801941
NASA Astrophysics Data System (ADS)
Pezzulo, Giovanni; Donnarumma, Francesco; Iodice, Pierpaolo; Prevete, Roberto; Dindo, Haris
2015-03-01
Controlling the body - given its huge number of degrees of freedom - poses severe computational challenges. Mounting evidence suggests that the brain alleviates this problem by exploiting "synergies", or patterns of muscle activities (and/or movement dynamics and kinematics) that can be combined to control action, rather than controlling individual muscles of joints [1-10].
Neural mechanisms of single corrective steps evoked in the standing rabbit
Hsu, L.-J.; Zelenin, P. V.; Lyalka, V. F.; Vemula, M. G.; Orlovsky, G. N.; Deliagina, T. G.
2017-01-01
Single steps in different directions are often used for postural corrections. However, our knowledge about the neural mechanisms underlying their generation is scarce. This study was aimed to characterize the corrective steps generated in response to disturbances of the basic body configuration caused by forward, backward or outward displacement of the hindlimb, as well as to reveal location in the CNS of the corrective step generating mechanisms. Video recording of the motor response to translation of the supporting surface under the hindlimb along with contact forces and activity of back and limb muscles was performed in freely standing intact and in fixed postmammillary rabbits. In intact rabbits, displacement of the hindlimb in any direction caused a lateral trunk movement towards the contralateral hindlimb, and then a corrective step in the direction opposite to the initial displacement. The time difference between onsets of these two events varied considerably. The EMG pattern in the supporting hindlimb was similar for all directions of corrective steps. It caused the increase in the limb stiffness. EMG pattern in the stepping limb differed in steps with different directions. In postmammillary rabbits the corrective stepping movements, as well as EMG patterns in both stepping and standing hindlimbs were similar to those observed in intact rabbits. This study demonstrates that the corrective trunk and limb movements are generated by separate mechanisms activated by sensory signals from the deviated limb. The neuronal networks generating postural corrective steps reside in the brainstem, cerebellum, and spinal cord. PMID:28215990
Robles-García, Verónica; Arias, Pablo; Sanmartín, Gabriel; Espinosa, Nelson; Flores, Julian; Grieve, Kenneth L; Cudeiro, Javier
2013-12-01
Impaired temporal stability and poor motor unit recruitment are key impairments in Parkinsonian motor control during a whole spectrum of rhythmic movements, from simple finger tapping to gait. Therapies based on imitation can be designed for patients with motor impairments and virtual-reality (VR) offers a new perspective. Motor actions are known to depend upon the dopaminergic system, whose involvement in imitation is unknown. We sought to understand this role and the underlying possibilities for motor rehabilitation, by observing the execution of different motor-patterns during imitation in a VR environment in subjects with and without dopaminergic deficits. 10 OFF-dose idiopathic Parkinson's Disease patients (PD), 9 age-matched and 9 young-subjects participated. Subjects performed finger-tapping at their "comfort" and "slow-comfort" rates, while immersed in VR presenting their "avatar" in 1st person perspective. Imitation was evaluated by asking subjects to replicate finger-tapping patterns different to their natural one. The finger-pattern presented matched their comfort and comfort-slow rates, but without a pause on the table (continuously moving). Patients were able to adapt their finger-tapping correctly, showing that in comparison with the control groups, the dopaminergic deficiency of PD did not impair imitation. During imitation the magnitude of EMG increased and the temporal variability of movement decreased. PD-patients have unaltered ability to imitate instructed motor-patterns, suggesting that a fully-functional dopaminergic system is not essential for such imitation. It should be further investigated if imitation training over a period of time induces positive off-line motor adaptations with transfer to non-imitation tasks. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dasen, Jeremy S; De Camilli, Alessandro; Wang, Bin; Tucker, Philip W; Jessell, Thomas M
2008-07-25
The precision with which motor neurons innervate target muscles depends on a regulatory network of Hox transcription factors that translates neuronal identity into patterns of connectivity. We show that a single transcription factor, FoxP1, coordinates motor neuron subtype identity and connectivity through its activity as a Hox accessory factor. FoxP1 is expressed in Hox-sensitive motor columns and acts as a dose-dependent determinant of columnar fate. Inactivation of Foxp1 abolishes the output of the motor neuron Hox network, reverting the spinal motor system to an ancestral state. The loss of FoxP1 also changes the pattern of motor neuron connectivity, and in the limb motor axons appear to select their trajectories and muscle targets at random. Our findings show that FoxP1 is a crucial determinant of motor neuron diversification and connectivity, and clarify how this Hox regulatory network controls the formation of a topographic neural map.
Lateralization of brain activity pattern during unilateral movement in Parkinson's disease.
Wu, Tao; Hou, Yanan; Hallett, Mark; Zhang, Jiarong; Chan, Piu
2015-05-01
We investigated the lateralization of brain activity pattern during performance of unilateral movement in drug-naïve Parkinson's disease (PD) patients with only right hemiparkinsonian symptoms. Functional MRI was obtained when the subjects performed strictly unilateral right hand movement. A laterality index was calculated to examine the lateralization. Patients had decreased activity in the left putamen and left supplementary motor area, but had increased activity in the right primary motor cortex, right premotor cortex, left postcentral gyrus, and bilateral cerebellum. The laterality index was significantly decreased in PD patients compared with controls (0.41 ± 0.14 vs. 0.84 ± 0.09). The connectivity from the left putamen to cortical motor regions and cerebellum was decreased, while the interactions between the cortical motor regions, cerebellum, and right putamen were increased. Our study demonstrates that in early PD, the lateralization of brain activity during unilateral movement is significantly reduced. The dysfunction of the striatum-cortical circuit, decreased transcallosal inhibition, and compensatory efforts from cortical motor regions, cerebellum, and the less affected striatum are likely reasons contributing to the reduced motor lateralization. The disruption of the lateralized brain activity pattern might be a reason underlying some motor deficits in PD, like mirror movements or impaired bilateral motor coordination. © 2015 Wiley Periodicals, Inc.
Voluntary and reactive recruitment of locomotor muscle synergies during perturbed walking
Chvatal, Stacie A.; Ting, Lena H.
2012-01-01
The modular control of muscles in groups, often referred to as muscle synergies, has been proposed to provide a motor repertoire of actions for the robust control of movement. However it is not clear whether muscle synergies identified in one task are also recruited by different neural pathways subserving other motor behaviors. We tested the hypothesis that voluntary and reactive modifications to walking in humans result from the recruitment of locomotor muscle synergies. We recorded the activity of 16 muscles in the right leg as subjects walked a 7.5 m path at two different speeds. To elicit a second motor behavior, midway through the path we imposed ramp and hold translation perturbations of the support surface in each of four cardinal directions. Variations in the temporal recruitment of locomotor muscle synergies could account for cycle-by-cycle variations in muscle activity across strides. Locomotor muscle synergies were also recruited in atypical phases of gait, accounting for both anticipatory gait modifications prior to perturbations and reactive feedback responses to perturbations. Our findings are consistent with the idea that a common pool of spatially-fixed locomotor muscle synergies can be recruited by different neural pathways, including the central pattern generator for walking, brainstem pathways for balance control, and cortical pathways mediating voluntary gait modifications. Together with electrophysiological studies, our work suggests that muscle synergies may provide a library of motor subtasks that can be flexibly recruited by parallel descending pathways to generate a variety of complex natural movements in the upper and lower limbs. PMID:22933805
Sukal-Moulton, Theresa; Krosschell, Kristin J; Gaebler-Spira, Deborah J; Dewald, Julius P A
2014-01-01
Extensive neuromotor development occurs early in human life, and the timing of brain injury may affect the resulting motor impairment. In Part I of this series, it was demonstrated that the distribution of weakness in the upper extremity depended on the timing of brain injury in individuals with childhood-onset hemiparesis. The goal of this study was to characterize how timing of brain injury affects joint torque synergies, or losses of independent joint control. Twenty-four individuals with hemiparesis were divided into 3 groups based on the timing of their injury: before birth (PRE-natal, n = 8), around the time of birth (PERI-natal, n = 8), and after 6 months of age (POST-natal, n = 8). Individuals with hemiparesis and 8 typically developing peers participated in maximal isometric shoulder, elbow, wrist, and finger torque generation tasks while their efforts were recorded by a multiple degree-of-freedom load cell. Motor output in 4 joints of the upper extremity was concurrently measured during 8 primary torque generation tasks to quantify joint torque synergies. There were a number of significant coupling patterns identified in individuals with hemiparesis that differed from the typically developing group. POST-natal differences were most noted in the coupling of shoulder abductors with elbow, wrist, and finger flexors, while the PRE-natal group demonstrated significant distal joint coupling with elbow flexion. The torque synergies measured provide indirect evidence for the use of bulbospinal pathways in the POST-natal group, while those with earlier injury may use relatively preserved ipsilateral corticospinal motor pathways.
Aspects of body self-calibration
NASA Technical Reports Server (NTRS)
Lackner, J. R.; DiZio, P. A.
2000-01-01
The representation of body orientation and configuration is dependent on multiple sources of afferent and efferent information about ongoing and intended patterns of movement and posture. Under normal terrestrial conditions, we feel virtually weightless and we do not perceive the actual forces associated with movement and support of our body. It is during exposure to unusual forces and patterns of sensory feedback during locomotion that computations and mechanisms underlying the ongoing calibration of our body dimensions and movements are revealed. This review discusses the normal mechanisms of our position sense and calibration of our kinaesthetic, visual and auditory sensory systems, and then explores the adaptations that take place to transient Coriolis forces generated during passive body rotation. The latter are very rapid adaptations that allow body movements to become accurate again, even in the absence of visual feedback. Muscle spindle activity interpreted in relation to motor commands and internally modeled reafference is an important component in permitting this adaptation. During voluntary rotary movements of the body, the central nervous system automatically compensates for the Coriolis forces generated by limb movements. This allows accurate control to be maintained without our perceiving the forces generated.
Neuromodulation intrinsic to the central pattern generator for escape swimming in Tritonia.
Katz, P S
1998-11-16
Extrinsic neuromodulatory inputs to central pattern generators (CPGs) can alter the properties and synaptic interactions of neurons in those circuits and thereby modify the output of the CPG. Recent work in a number of systems has now demonstrated that neurons intrinsic to CPG can also evoke neuromodulatory actions on other members of the CPG. Such "intrinsic neuromodulation" plays a role in controlling the CPG underlying the escape swim response of the nudibrach mollusc, Tritonia diomedea. The dorsal swim interneurons (DSIs) are a bilaterally represented set of three serotonergic neurons that participate in the generation of the rhythmic swim motor program. Serotonin released from these CPG neurons functions both as a fast neurotransmitter and as a slower neuromodulator. In its modulatory role, serotonin enhances the release of neurotransmitter from another CPG neuron, C2, and also increases C2 excitability by decreasing spike frequency adaptation. These neuromodulatory actions intrinsic to the CPG may be important for the initial self-configuration of the system into a function CPG and for experience-dependent changes in the output such as behavioral sensitization and habituation.
NASA Astrophysics Data System (ADS)
Deng, Jie; Yao, Jun; Dewald, Julius P. A.
2005-12-01
In this paper, we attempt to determine a subject's intention of generating torque at the shoulder or elbow, two neighboring joints, using scalp electroencephalogram signals from 163 electrodes for a brain-computer interface (BCI) application. To achieve this goal, we have applied a time-frequency synthesized spatial patterns (TFSP) BCI algorithm with a presorting procedure. Using this method, we were able to achieve an average recognition rate of 89% in four healthy subjects, which is comparable to the highest rates reported in the literature but now for tasks with much closer spatial representations on the motor cortex. This result demonstrates, for the first time, that the TFSP BCI method can be applied to separate intentions between generating static shoulder versus elbow torque. Furthermore, in this study, the potential application of this BCI algorithm for brain-injured patients was tested in one chronic hemiparetic stroke subject. A recognition rate of 76% was obtained, suggesting that this BCI method can provide a potential control signal for neural prostheses or other movement coordination improving devices for patients following brain injury.
2009-01-01
Report documents trade studies and preliminary design of the energy storage flywheel and associated motor /generator, the final system topology, high...27 Flywheel Motor /Generator Model ...................................................................30 Controlled Rectifier...0.4 s...........27 Figure 33. One of the two flywheels in the simulation circuit with its motor /generator
Permanent-Magnet Motors and Generators for Aircraft
NASA Technical Reports Server (NTRS)
Echolds, E. F.
1983-01-01
Electric motors and generators that use permarotating machinery, but aspects of control and power conditioning are also considered. The discussion is structured around three basic areas: rotating machine design considerations presents various configuration and material options, generator applications provides insight into utilization areas and shows actual hardware and test results, and motor applications provides the same type of information for drive systems.
Dopamine activates the motor pattern for crawling in the medicinal leech.
Puhl, Joshua G; Mesce, Karen A
2008-04-16
Locomotion in segmented animals is thought to be based on the coupling of "unit burst generators," but the biological nature of the unit burst generator has been revealed in only a few animal systems. We determined that dopamine (DA), a universal modulator of motor activity, is sufficient to activate fictive crawling in the medicinal leech, and can exert its actions within the smallest division of the animal's CNS, the segmental ganglion. In the entire isolated nerve cord or in the single ganglion, DA induced slow antiphasic bursting (approximately 15 s period) of motoneurons known to participate in the two-step elongation-contraction cycle underlying crawling behavior. During each cycle, the dorsal (DE-3) and ventral (VE-4) longitudinal excitor motoneurons fired approximately 180 degrees out of phase from the ventrolateral circular excitor motoneuron (CV), which marks the elongation phase. In many isolated whole nerve cords, DE-3 bursting progressed in an anterior to posterior direction with intersegmental phase delays appropriate for crawling. In the single ganglion, the dorsal (DI-1) and ventral (VI-2) inhibitory longitudinal motoneurons fired out of phase with each DE-3 burst, further confirming that the crawl unit burst generator exists in the single ganglion. All isolated ganglia of the CNS were competent to produce DA-induced robust fictive crawling, which typically lasted uninterrupted for 5-15 min. A quantitative analysis indicated that DA-induced crawling was not significantly different from electrically evoked or spontaneous crawling. We conclude that DA is sufficient to activate the full crawl motor program and that the kernel for crawling resides within each segmental ganglion.
Post, Richard F.
2005-02-22
A motor/generator having its stationary portion, i.e., the stator, positioned concentrically within its rotatable element, i.e., the rotor, along its axis of rotation. The rotor includes a Halbach array. The stator windings are switched or commutated to provide a DC motor/generator much the same as in a conventional DC motor/generator. The voltage and power are automatically regulated by using centrifugal force to change the diameter of the rotor, and thereby vary the radial gap in between the stator and the rotating Halbach array, as a function of the angular velocity of the rotor.
Extended core for motor/generator
Shoykhet, Boris A.
2005-05-10
An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.
Extended core for motor/generator
Shoykhet, Boris A.
2006-08-22
An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.
Mefferd, Antje S.
2016-01-01
The degree of speech movement pattern consistency can provide information about speech motor control. Although tongue motor control is particularly important because of the tongue's primary contribution to the speech acoustic signal, capturing tongue movements during speech remains difficult and costly. This study sought to determine if formant movements could be used to estimate tongue movement pattern consistency indirectly. Two age groups (seven young adults and seven older adults) and six speech conditions (typical, slow, loud, clear, fast, bite block speech) were selected to elicit an age- and task-dependent performance range in tongue movement pattern consistency. Kinematic and acoustic spatiotemporal indexes (STI) were calculated based on sentence-length tongue movement and formant movement signals, respectively. Kinematic and acoustic STI values showed strong associations across talkers and moderate to strong associations for each talker across speech tasks; although, in cases where task-related tongue motor performance changes were relatively small, the acoustic STI values were poorly associated with kinematic STI values. These findings suggest that, depending on the sensitivity needs, formant movement pattern consistency could be used in lieu of direct kinematic analysis to indirectly examine speech motor control. PMID:27908069
Predicting Slag Generation in Sub-Scale Test Motors Using a Neural Network
NASA Technical Reports Server (NTRS)
Wiesenberg, Brent
1999-01-01
Generation of slag (aluminum oxide) is an important issue for the Reusable Solid Rocket Motor (RSRM). Thiokol performed testing to quantify the relationship between raw material variations and slag generation in solid propellants by testing sub-scale motors cast with propellant containing various combinations of aluminum fuel and ammonium perchlorate (AP) oxidizer particle sizes. The test data were analyzed using statistical methods and an artificial neural network. This paper primarily addresses the neural network results with some comparisons to the statistical results. The neural network showed that the particle sizes of both the aluminum and unground AP have a measurable effect on slag generation. The neural network analysis showed that aluminum particle size is the dominant driver in slag generation, about 40% more influential than AP. The network predictions of the amount of slag produced during firing of sub-scale motors were 16% better than the predictions of a statistically derived empirical equation. Another neural network successfully characterized the slag generated during full-scale motor tests. The success is attributable to the ability of neural networks to characterize multiple complex factors including interactions that affect slag generation.
Sebert Kuhlmann, Anne K.; Thomas, Deborah; R. Sain, Stephan
2009-01-01
Objectives. We examined patterns of pedestrian–motor vehicle collisions and associated environmental characteristics in Denver, Colorado. Methods. We integrated publicly available data on motor vehicle collisions, liquor licenses, land use, and sociodemographic characteristics to analyze spatial patterns and other characteristics of collisions involving pedestrians. We developed both linear and spatially weighted regression models of these collisions. Results. Spatial analysis revealed global clustering of pedestrian–motor vehicle collisions with concentrations in downtown, in a contiguous neighborhood, and along major arterial streets. Walking to work, population density, and liquor license outlet density all contributed significantly to both linear and spatial models of collisions involving pedestrians and were each significantly associated with these collisions. Conclusions. These models, constructed with data from Denver, identified conditions that likely contribute to patterns of pedestrian–motor vehicle collisions. Should these models be verified elsewhere, they will have implications for future research directions, public policy to enhance pedestrian safety, and public health programs aimed at decreasing unintentional injury from pedestrian–motor vehicle collisions and promoting walking as a routine physical activity. PMID:19608966
Maynard, Ashley E; Greenfield, Patricia M; Childs, Carla P
2015-02-01
We studied the implications of social change for cognitive development in a Maya community in Chiapas, Mexico, over 43 years. The same procedures were used to collect data in 1969-1970, 1991, and 2012-once in each generation. The goal was to understand the implications of weaving, schooling and participation in a commercial economy for the development of visual pattern representation. In 2012, our participants consisted of 133 boys and girls descended from participants in the prior two generations. Procedures consisted of placing colored sticks in a wooden frame to make striped patterns, some familiar (Zinacantec woven patterns) and some novel (created by the investigators). Following Greenfield (2009), we hypothesised that the development of commerce and the expansion of formal schooling would influence children's representations. Her theory postulates that these factors move human development towards cognitive abstraction and skill in dealing with novelty. Furthermore, the theory posits that whatever sociodemographic variable is changing most rapidly functions as the primary motor for developmental change. From 1969 to 1991, the rapid development of a commercial economy drove visual representation in the hypothesised directions. From 1991 to 2012, the rapid expansion of schooling drove visual representation in the hypothesised directions. © 2015 International Union of Psychological Science.
von Laßberg, Christoph; Rapp, Walter; Krug, Jürgen
2014-06-01
In a prior study with high level gymnasts we could demonstrate that the neuromuscular activation pattern during the "whip-like" leg acceleration phases (LAP) in accelerating movement sequences on high bar, primarily runs in a consecutive succession from the bar (punctum fixum) to the legs (punctum mobile). The current study presents how the neuromuscular activation is represented during movement sequences that immediately follow the LAP by the antagonist muscle chain to generate an effective transfer of momentum for performing specific elements, based on the energy generated by the preceding LAP. Thirteen high level gymnasts were assessed by surface electromyography during high performance elements on high bar and parallel bars. The results show that the neuromuscular succession runs primarily from punctum mobile towards punctum fixum for generating the transfer of momentum. Additionally, further principles of neuromuscular interactions between the anterior and posterior muscle chain during such movement sequences are presented. The findings complement the understanding of neuromuscular activation patterns during rotational movements around fixed axes and will help to form the basis of more direct and better teaching methods regarding earlier optimization and facilitation of the motor learning process concerning fundamental movement requirements. Copyright © 2014 Elsevier Ltd. All rights reserved.
Plummer, Prudence; Eskes, Gail; Wallace, Sarah; Giuffrida, Clare; Fraas, Michael; Campbell, Grace; Clifton, Kerrylee; Skidmore, Elizabeth R
2013-12-01
Cognitive-motor interference (CMI) is evident when simultaneous performance of a cognitive task and a motor task results in deterioration in performance in one or both of the tasks, relative to performance of each task separately. The purpose of this review is to present a framework for categorizing patterns of CMI and to examine the specific patterns of CMI evident in published studies comparing single-task and dual-task performance of cognitive and motor tasks during gait and balance activities after stroke. We also examine the literature for associations between patterns of CMI and a history of falls, as well as evidence for the effects of rehabilitation on CMI after stroke. Overall, this review suggests that during gait activities with an added cognitive task, people with stroke are likely to demonstrate significant decrements in motor performance only (cognitive-related motor interference), or decrements in both motor and cognitive performance (mutual interference). In contrast, patterns of CMI were variable among studies examining balance activities. Comparing people poststroke with and without a history of falls, patterns and magnitude of CMI were similar for fallers and nonfallers. Longitudinal studies suggest that conventional rehabilitation has minimal effects on CMI during gait or balance activities. However, early-phase pilot studies suggest that dual-task interventions may reduce CMI during gait performance in community-dwelling stroke survivors. It is our hope that this innovative and critical examination of the existing literature will highlight the limitations in current experimental designs and inform improvements in the design and reporting of dual-task studies in stroke. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
de Borst, Aline W; de Gelder, Beatrice
2017-08-01
Previous studies have shown that the early visual cortex contains content-specific representations of stimuli during visual imagery, and that these representational patterns of imagery content have a perceptual basis. To date, there is little evidence for the presence of a similar organization in the auditory and tactile domains. Using fMRI-based multivariate pattern analyses we showed that primary somatosensory, auditory, motor, and visual cortices are discriminative for imagery of touch versus sound. In the somatosensory, motor and visual cortices the imagery modality discriminative patterns were similar to perception modality discriminative patterns, suggesting that top-down modulations in these regions rely on similar neural representations as bottom-up perceptual processes. Moreover, we found evidence for content-specific representations of the stimuli during auditory imagery in the primary somatosensory and primary motor cortices. Both the imagined emotions and the imagined identities of the auditory stimuli could be successfully classified in these regions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
46 CFR 129.320 - Generators and motors.
Code of Federal Regulations, 2011 CFR
2011-10-01
... INSTALLATIONS Power Sources and Distribution Systems § 129.320 Generators and motors. (a) Each generator and... windings, if DC; (7) When intended for connection in a normally grounded configuration, the grounding...
Changes in the neural control of a complex motor sequence during learning
Otchy, Timothy M.; Goldberg, Jesse H.; Aronov, Dmitriy; Fee, Michale S.
2011-01-01
The acquisition of complex motor sequences often proceeds through trial-and-error learning, requiring the deliberate exploration of motor actions and the concomitant evaluation of the resulting performance. Songbirds learn their song in this manner, producing highly variable vocalizations as juveniles. As the song improves, vocal variability is gradually reduced until it is all but eliminated in adult birds. In the present study we examine how the motor program underlying such a complex motor behavior evolves during learning by recording from the robust nucleus of the arcopallium (RA), a motor cortex analog brain region. In young birds, neurons in RA exhibited highly variable firing patterns that throughout development became more precise, sparse, and bursty. We further explored how the developing motor program in RA is shaped by its two main inputs: LMAN, the output nucleus of a basal ganglia-forebrain circuit, and HVC, a premotor nucleus. Pharmacological inactivation of LMAN during singing made the song-aligned firing patterns of RA neurons adultlike in their stereotypy without dramatically affecting the spike statistics or the overall firing patterns. Removing the input from HVC, on the other hand, resulted in a complete loss of stereotypy of both the song and the underlying motor program. Thus our results show that a basal ganglia-forebrain circuit drives motor exploration required for trial-and-error learning by adding variability to the developing motor program. As learning proceeds and the motor circuits mature, the relative contribution of LMAN is reduced, allowing the premotor input from HVC to drive an increasingly stereotyped song. PMID:21543758
Latash, M L; Gutman, S R
1994-01-01
Until now, the equilibrium-point hypothesis (lambda model) of motor control has assumed nonintersecting force-length characteristics of the tonic stretch reflex for individual muscles. Limited data from animal experiments suggest, however, that such intersections may occur. We have assumed the possibility of intersection of the characteristics of the tonic stretch reflex and performed a computer simulation of movement trajectories and electromyographic patterns. The simulation has demonstrated, in particular, that a transient change in the slope of the characteristic of an agonist muscle may lead to temporary movement reversals, hesitations, oscillations, and multiple electromyographic bursts that are typical of movements of patients with dystonia. The movement patterns of three patients with idiopathic dystonia during attempts at fast single-joint movements (in the elbow, wrist, and ankle) were recorded and compared with the results of the computer simulation. This approach considers that motor disorders in dystonia result from faulty control patterns that may not correlate with any morphological or neurophysiological changes. It provides a basis for the high variability of dystonic movements. The uniqueness of abnormal motor patterns in dystonia, that precludes statistical analysis across patients, may result from subtle differences in the patterns of intersecting characteristics of the tonic stretch reflex. The applicability of our analysis to disordered multijoint movement patterns is discussed.
Motor learning in childhood reveals distinct mechanisms for memory retention and re-learning.
Musselman, Kristin E; Roemmich, Ryan T; Garrett, Ben; Bastian, Amy J
2016-05-01
Adults can easily learn and access multiple versions of the same motor skill adapted for different conditions (e.g., walking in water, sand, snow). Following even a single session of adaptation, adults exhibit clear day-to-day retention and faster re-learning of the adapted pattern. Here, we studied the retention and re-learning of an adapted walking pattern in children aged 6-17 yr. We found that all children, regardless of age, showed adult-like patterns of retention of the adapted walking pattern. In contrast, children under 12 yr of age did not re-learn faster on the next day after washout had occurred-they behaved as if they had never adapted their walking before. Re-learning could be improved in younger children when the adaptation time on day 1 was increased to allow more practice at the plateau of the adapted pattern, but never to adult-like levels. These results show that the ability to store a separate, adapted version of the same general motor pattern does not fully develop until adolescence, and furthermore, that the mechanisms underlying the retention and rapid re-learning of adapted motor patterns are distinct. © 2016 Musselman et al.; Published by Cold Spring Harbor Laboratory Press.
Efficient differentiation of mouse embryonic stem cells into motor neurons.
Wu, Chia-Yen; Whye, Dosh; Mason, Robert W; Wang, Wenlan
2012-06-09
Direct differentiation of embryonic stem (ES) cells into functional motor neurons represents a promising resource to study disease mechanisms, to screen new drug compounds, and to develop new therapies for motor neuron diseases such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Many current protocols use a combination of retinoic acid (RA) and sonic hedgehog (Shh) to differentiate mouse embryonic stem (mES) cells into motor neurons. However, the differentiation efficiency of mES cells into motor neurons has only met with moderate success. We have developed a two-step differentiation protocol that significantly improves the differentiation efficiency compared with currently established protocols. The first step is to enhance the neuralization process by adding Noggin and fibroblast growth factors (FGFs). Noggin is a bone morphogenetic protein (BMP) antagonist and is implicated in neural induction according to the default model of neurogenesis and results in the formation of anterior neural patterning. FGF signaling acts synergistically with Noggin in inducing neural tissue formation by promoting a posterior neural identity. In this step, mES cells were primed with Noggin, bFGF, and FGF-8 for two days to promote differentiation towards neural lineages. The second step is to induce motor neuron specification. Noggin/FGFs exposed mES cells were incubated with RA and a Shh agonist, Smoothened agonist (SAG), for another 5 days to facilitate motor neuron generation. To monitor the differentiation of mESs into motor neurons, we used an ES cell line derived from a transgenic mouse expressing eGFP under the control of the motor neuron specific promoter Hb9. Using this robust protocol, we achieved 51 ± 0.8% of differentiation efficiency (n = 3; p < 0.01, Student's t-test). Results from immunofluorescent staining showed that GFP+ cells express the motor neuron specific markers, Islet-1 and choline acetyltransferase (ChAT). Our two-step differentiation protocol provides an efficient way to differentiate mES cells into spinal motor neurons.
DOT National Transportation Integrated Search
1980-12-01
This source document on motor vehicle market analysis and consumer impacts consists of three parts. Part II consists of studies and review on: motor vehicle sales trends; motor vehicle fleet life and fleet composition; car buying patterns of the busi...
Motor/Generator and Inverter Characterization for Flywheel System Applications
NASA Technical Reports Server (NTRS)
Tamarcus, Jeffries L.
2004-01-01
The Advanced Electrical Systems Development Branch at NASA Glenn Research Center (GRC) has been involved in the research and development of high speed flywheels systems for satellite energy storage and attitude applications. These flywheels will serve as replacement for chemical nickel hydrogen, nickel cadmium batteries and gyroscopic wheels. The advantages of using flywheel systems for energy storage on satellites are high energy density, high power density, long life, deep depth of discharge, and broad operating temperature ranges. A flywheel system for space applications consist of a number of flywheel modules, the motor/generator and magnetic bearing, and an electronics package. The motor/generator electronics package includes a pulse-width modulated inverter that drives the flywheel permanent magnet motor/generator located at one end of the shaft. This summer, I worked under the direct supervision of my mentor, Walter Santiago, and the goal for this summer was to characterize motor generator and inverter attributes in order to increase their viability as a more efficient energy storage source for space applications. To achieve this goal, magnetic field measurements around the motor/generator permanent magnet and the impedance of the motor/generator three phase windings were characterized, and a recreation of the inverter pulse width modulated control system was constructed. The Flywheel modules for space use are designed to maximize energy density and minimize loss, and attaining these values will aid in locating and reducing losses within the flywheel system as a whole, making flywheel technology more attractive for use as energy storage in future space applications.
Testing promotes effector transfer.
Boutin, Arnaud; Panzer, Stefan; Salesse, Robin N; Blandin, Yannick
2012-11-01
The retrieval of information from memory during testing has recently been shown to promote transfer in the verbal domain. Motor-related research, however, has ignored testing as a relevant method to enhance motor transfer. We thus investigated whether testing has the potential to induce generalised motor memories by favouring effector transfer. Participants were required to reproduce a spatial-temporal pattern of elbow extensions and flexions with their dominant right arm. We tested the ability of participants to transfer the original pattern (extrinsic transformation; i.e., goal-based configuration) or the mirrored pattern (intrinsic transformation; i.e., movement-based configuration) to the unpractised non-dominant left arm. To evaluate how testing affects motor transfer at 24-h testing, participants were either administered an initial testing session during early practice (early testing group) or shortly after the end of practice (late testing group; i.e., no alternation between practice and testing sessions). No initial testing session was completed for the control group. We found better effector transfer at 24-h testing for the early testing group for both extrinsic and intrinsic transformations of the movement pattern when compared with the control group, while no testing benefit was observed for the late testing group. This indicates that testing positively affects motor learning, yielding enhanced long-term transfer capabilities. We thus demonstrate the critical role of retrieval practice via testing during the process of motor memory encoding, and provide the conditions under which testing effectively contributes to the generalisation of motor memories. Copyright © 2012 Elsevier B.V. All rights reserved.
Angular measurements of the dynein ring reveal a stepping mechanism dependent on a flexible stalk
Lippert, Lisa G.; Dadosh, Tali; Hadden, Jodi A.; Karnawat, Vishakha; Diroll, Benjamin T.; Murray, Christopher B.; Holzbaur, Erika L. F.; Schulten, Klaus; Reck-Peterson, Samara L.; Goldman, Yale E.
2017-01-01
The force-generating mechanism of dynein differs from the force-generating mechanisms of other cytoskeletal motors. To examine the structural dynamics of dynein’s stepping mechanism in real time, we used polarized total internal reflection fluorescence microscopy with nanometer accuracy localization to track the orientation and position of single motors. By measuring the polarized emission of individual quantum nanorods coupled to the dynein ring, we determined the angular position of the ring and found that it rotates relative to the microtubule (MT) while walking. Surprisingly, the observed rotations were small, averaging only 8.3°, and were only weakly correlated with steps. Measurements at two independent labeling positions on opposite sides of the ring showed similar small rotations. Our results are inconsistent with a classic power-stroke mechanism, and instead support a flexible stalk model in which interhead strain rotates the rings through bending and hinging of the stalk. Mechanical compliances of the stalk and hinge determined based on a 3.3-μs molecular dynamics simulation account for the degree of ring rotation observed experimentally. Together, these observations demonstrate that the stepping mechanism of dynein is fundamentally different from the stepping mechanisms of other well-studied MT motors, because it is characterized by constant small-scale fluctuations of a large but flexible structure fully consistent with the variable stepping pattern observed as dynein moves along the MT. PMID:28533393
Sánchez, J A; Kirk, M D
2001-12-01
Ingestion of seaweed by Aplysia is in part mediated by cerebral-buccal interneurons that drive rhythmic motor output from the buccal ganglia and in some cases cerebral-buccal interneurons act as members of the feeding central pattern generator. Here we document cooperative interactions between cerebral-buccal interneuron 2 and cerebral-buccal interneuron 12, characterize synaptic input to cerebral-buccal interneuron 2 and cerebral-buccal interneuron 12 from buccal peripheral nerve 2,3, describe a synaptic connection between cerebral-buccal interneuron 1 and buccal neuron B34, further characterize connections made by cerebral-buccal interneurons 2 and -12 with B34 and B61/62, and describe a novel, inhibitory connection made by cerebral-buccal interneuron 2 with a buccal neuron. When cerebral-buccal interneurons 2 and 12 were driven synchronously at low frequencies, ingestion-like buccal motor programs were elicited, and if either was driven alone, indirect synaptic input was recruited in the other cerebral-buccal interneuron. Stimulation of BN2,3 recruited both ingestion and rejection-like motor programs without firing in cerebral-buccal interneurons 2 or 12. During motor programs elicited by cerebral-buccal interneurons 2 or 12, high-voltage stimulation of BN2,3 inhibited firing in both cerebral-buccal interneurons. Our results suggest that cerebral-buccal interneurons 2 and 12 use cooperative interactions to modulate buccal motor programs, yet firing in cerebral-buccal interneurons 2 or 12 is not necessary for recruiting motor programs by buccal peripheral nerve BN2,3, even in preparations with intact cerebral-buccal pathways.
Aversive stimuli exacerbate defensive motor behaviour in motor conversion disorder.
Blakemore, Rebekah L; Sinanaj, Indrit; Galli, Silvio; Aybek, Selma; Vuilleumier, Patrik
2016-12-01
Conversion disorder or functional neurological symptom disorder (FND) can affect the voluntary motor system, without an organic cause. Functional symptoms are thought to be generated unconsciously, arising from underlying psychological stressors. However, attempts to demonstrate a direct relationship between the limbic system and disrupted motor function in FND are lacking. We tested whether negative affect would exacerbate alterations of motor control and corresponding brain activations in individuals with FND. Ten patients and ten healthy controls produced an isometric precision-grip contraction at 10% of maximum force while either viewing visual feedback of their force output, or unpleasant or pleasant emotional images (without feedback). Force magnitude was continuously recorded together with change in brain activity using fMRI. For controls, force output decayed from the target level while viewing pleasant and unpleasant images. Patients however, maintained force at the target level without decay while viewing unpleasant images, indicating a pronounced effect of negative affect on force output in FND. This emotional modulation of force control was associated with different brain activation patterns between groups. Contrasting the unpleasant with the pleasant condition, controls showed increased activity in the inferior frontal cortex and pre-supplementary motor area, whereas patients had greater activity in the cerebellum (vermis), posterior cingulate cortex, and hippocampus. Engagement of a cerebellar-limbic network in patients is consistent with heightened processing of emotional salience, and supports the role of the cerebellum in freezing responses in the presence of aversive events. These data highlight a possible neural circuit through which psychological stressors elicit defensive behaviour and modulate motor function in FND. Copyright © 2016 Elsevier Ltd. All rights reserved.
Structural and Functional Bases for Individual Differences in Motor Learning
Tomassini, Valentina; Jbabdi, Saad; Kincses, Zsigmond T.; Bosnell, Rose; Douaud, Gwenaelle; Pozzilli, Carlo; Matthews, Paul M.; Johansen-Berg, Heidi
2013-01-01
People vary in their ability to learn new motor skills. We hypothesize that between-subject variability in brain structure and function can explain differences in learning. We use brain functional and structural MRI methods to characterize such neural correlates of individual variations in motor learning. Healthy subjects applied isometric grip force of varying magnitudes with their right hands cued visually to generate smoothly-varying pressures following a regular pattern. We tested whether individual variations in motor learning were associated with anatomically colocalized variations in magnitude of functional MRI (fMRI) signal or in MRI differences related to white and grey matter microstructure. We found that individual motor learning was correlated with greater functional activation in the prefrontal, premotor, and parietal cortices, as well as in the basal ganglia and cerebellum. Structural MRI correlates were found in the premotor cortex [for fractional anisotropy (FA)] and in the cerebellum [for both grey matter density and FA]. The cerebellar microstructural differences were anatomically colocalized with fMRI correlates of learning. This study thus suggests that variations across the population in the function and structure of specific brain regions for motor control explain some of the individual differences in skill learning. This strengthens the notion that brain structure determines some limits to cognitive function even in a healthy population. Along with evidence from pathology suggesting a role for these regions in spontaneous motor recovery, our results also highlight potential targets for therapeutic interventions designed to maximize plasticity for recovery of similar visuomotor skills after brain injury. PMID:20533562
Methods/Labor Standards Application Program - Phase IV
1985-01-01
Engine Platform a. Pressure switch b. Compressor motor c. Voltage regulator d. Open and clean generator exciter and main windings S3 . Main Collector...clean motors b. Slip rings Gantry #3 Annual: S2. Engine Platform a. Pressure switch b. Compressor motor Voltage regulator d. Open and clean generator...Travel Motors Open and clean motorsa. b. Slip rings Gantry #4 S2 . S3. S4 . S5 . Engine Platform a. Pressure switch b. Compressor motor Voltage regulator
Rotary Stirling-Cycle Engine And Generator
NASA Technical Reports Server (NTRS)
Chandler, Joseph A.
1990-01-01
Proposed electric-power generator comprises three motor generators coordinated by microprocessor and driven by rotary Stirling-cycle heat engine. Combination offers thermodynamic efficiency of Stirling cycle, relatively low vibration, and automatic adjustment of operating parameters to suit changing load on generator. Rotary Stirling cycle engine converts heat to power via compression and expansion of working gas between three pairs of rotary pistons on three concentric shafts in phased motion. Three motor/generators each connected to one of concentric shafts, can alternately move and be moved by pistons. Microprocessor coordinates their operation, including switching between motor and generator modes at appropriate times during each cycle.
Functional neuroanatomical networks associated with expertise in motor imagery.
Guillot, Aymeric; Collet, Christian; Nguyen, Vo An; Malouin, Francine; Richards, Carol; Doyon, Julien
2008-07-15
Although numerous behavioural studies provide evidence that there exist wide differences within individual motor imagery (MI) abilities, little is known with regards to the functional neuroanatomical networks that dissociate someone with good versus poor MI capacities. For the first time, we thus compared, through functional magnetic resonance imaging (fMRI), the pattern of cerebral activations in 13 skilled and 15 unskilled imagers during both physical execution and MI of a sequence of finger movements. Differences in MI abilities were assessed using well-established questionnaire and chronometric measures, as well as a new index based upon the subject's peripheral responses from the autonomic nervous system. As expected, both good and poor imagers activated the inferior and superior parietal lobules, as well as motor-related regions including the lateral and medial premotor cortex, the cerebellum and putamen. Inter-group comparisons revealed that good imagers activated more the parietal and ventrolateral premotor regions, which are known to play a critical role in the generation of mental images. By contrast, poor imagers recruited the cerebellum, orbito-frontal and posterior cingulate cortices. Consistent with findings from the motor sequence learning literature and Doyon and Ungerleider's model of motor learning [Doyon, J., Ungerleider, L.G., 2002. Functional anatomy of motor skill learning. In: Squire, L.R., Schacter, D.L. (Eds.), Neuropsychology of memory, Guilford Press, pp. 225-238], our results demonstrate that compared to skilled imagers, poor imagers not only need to recruit the cortico-striatal system, but to compensate with the cortico-cerebellar system during MI of sequential movements.
Linear summation of outputs in a balanced network model of motor cortex.
Capaday, Charles; van Vreeswijk, Carl
2015-01-01
Given the non-linearities of the neural circuitry's elements, we would expect cortical circuits to respond non-linearly when activated. Surprisingly, when two points in the motor cortex are activated simultaneously, the EMG responses are the linear sum of the responses evoked by each of the points activated separately. Additionally, the corticospinal transfer function is close to linear, implying that the synaptic interactions in motor cortex must be effectively linear. To account for this, here we develop a model of motor cortex composed of multiple interconnected points, each comprised of reciprocally connected excitatory and inhibitory neurons. We show how non-linearities in neuronal transfer functions are eschewed by strong synaptic interactions within each point. Consequently, the simultaneous activation of multiple points results in a linear summation of their respective outputs. We also consider the effects of reduction of inhibition at a cortical point when one or more surrounding points are active. The network response in this condition is linear over an approximately two- to three-fold decrease of inhibitory feedback strength. This result supports the idea that focal disinhibition allows linear coupling of motor cortical points to generate movement related muscle activation patterns; albeit with a limitation on gain control. The model also explains why neural activity does not spread as far out as the axonal connectivity allows, whilst also explaining why distant cortical points can be, nonetheless, functionally coupled by focal disinhibition. Finally, we discuss the advantages that linear interactions at the cortical level afford to motor command synthesis.
Development of a high-efficiency motor/generator for flywheel energy storage
NASA Astrophysics Data System (ADS)
Lashley, Christopher; Anand, Dave K.; Kirk, James A.; Zmood, Ronald B.
This study addresses the design changes and extensions necessary to construct and test a working prototype of a motor/generator for a magnetically suspended flywheel energy storage system. The brushless motor controller for the motor was specified and the electronic commutation arrangement designed. The laminations were redesigned and fabricated using laser machining. Flux density measurements were made and the results used to redesign the armature windings. A test rig was designed and built, and the motor/generator was installed and speed tested to 9000 rpm. Experimental methods of obtaining the machine voltage and torque constants Kv and Kt, obtaining the useful air-gap flux density, and characterizing the motor and other system components are described. The measured Kv and Kt were approximately 40 percent greater than predicted by theory and initial experiment.
Development of a high-efficiency motor/generator for flywheel energy storage
NASA Technical Reports Server (NTRS)
Lashley, Christopher; Anand, Dave K.; Kirk, James A.; Zmood, Ronald B.
1991-01-01
This study addresses the design changes and extensions necessary to construct and test a working prototype of a motor/generator for a magnetically suspended flywheel energy storage system. The brushless motor controller for the motor was specified and the electronic commutation arrangement designed. The laminations were redesigned and fabricated using laser machining. Flux density measurements were made and the results used to redesign the armature windings. A test rig was designed and built, and the motor/generator was installed and speed tested to 9000 rpm. Experimental methods of obtaining the machine voltage and torque constants Kv and Kt, obtaining the useful air-gap flux density, and characterizing the motor and other system components are described. The measured Kv and Kt were approximately 40 percent greater than predicted by theory and initial experiment.
A Megawatt Power Module for Ship Service - Supplement. Volume 1: Program Technical Report
2007-06-01
Alternator” otherwise known as an “AC Homopolar ” or “Synchronous Homopolar ” machine for this application. The various motor /generator machine...After reviewing alternative motor /generator technologies as discussed above, a Homopolar Inductor Alternator (HIA) was selected for the technology...integrated flywheel energy storage system with homopolar inductor motor /generator and high-frequency drive”, Industry Applications, IEEE Transactions on
D'Ausilio, A.; Maffongelli, L.; Bartoli, E.; Campanella, M.; Ferrari, E.; Berry, J.; Fadiga, L.
2014-01-01
The activation of listener's motor system during speech processing was first demonstrated by the enhancement of electromyographic tongue potentials as evoked by single-pulse transcranial magnetic stimulation (TMS) over tongue motor cortex. This technique is, however, technically challenging and enables only a rather coarse measurement of this motor mirroring. Here, we applied TMS to listeners’ tongue motor area in association with ultrasound tissue Doppler imaging to describe fine-grained tongue kinematic synergies evoked by passive listening to speech. Subjects listened to syllables requiring different patterns of dorso-ventral and antero-posterior movements (/ki/, /ko/, /ti/, /to/). Results show that passive listening to speech sounds evokes a pattern of motor synergies mirroring those occurring during speech production. Moreover, mirror motor synergies were more evident in those subjects showing good performances in discriminating speech in noise demonstrating a role of the speech-related mirror system in feed-forward processing the speaker's ongoing motor plan. PMID:24778384
Tug-of-war of microtubule filaments at the boundary of a kinesin- and dynein-patterned surface
NASA Astrophysics Data System (ADS)
Ikuta, Junya; Kamisetty, Nagendra K.; Shintaku, Hirofumi; Kotera, Hidetoshi; Kon, Takahide; Yokokawa, Ryuji
2014-06-01
Intracellular cargo is transported by multiple motor proteins. Because of the force balance of motors with mixed polarities, cargo moves bidirectionally to achieve biological functions. Here, we propose a microtubule gliding assay for a tug-of-war study of kinesin and dynein. A boundary of the two motor groups is created by photolithographically patterning gold to selectively attach kinesin to the glass and dynein to the gold surface using a self-assembled monolayer. The relationship between the ratio of two antagonistic motor numbers and the velocity is derived from a force-velocity relationship for each motor to calculate the detachment force and motor backward velocity. Although the tug-of-war involves >100 motors, values are calculated for a single molecule and reflect the collective dynein and non-collective kinesin functions when they work as a team. This assay would be useful for detailed in vitro analysis of intracellular motility, e.g., mitosis, where a large number of motors with mixed polarities are involved.
Tug-of-war of microtubule filaments at the boundary of a kinesin- and dynein-patterned surface
Ikuta, Junya; Kamisetty, Nagendra K.; Shintaku, Hirofumi; Kotera, Hidetoshi; Kon, Takahide; Yokokawa, Ryuji
2014-01-01
Intracellular cargo is transported by multiple motor proteins. Because of the force balance of motors with mixed polarities, cargo moves bidirectionally to achieve biological functions. Here, we propose a microtubule gliding assay for a tug-of-war study of kinesin and dynein. A boundary of the two motor groups is created by photolithographically patterning gold to selectively attach kinesin to the glass and dynein to the gold surface using a self-assembled monolayer. The relationship between the ratio of two antagonistic motor numbers and the velocity is derived from a force-velocity relationship for each motor to calculate the detachment force and motor backward velocity. Although the tug-of-war involves >100 motors, values are calculated for a single molecule and reflect the collective dynein and non-collective kinesin functions when they work as a team. This assay would be useful for detailed in vitro analysis of intracellular motility, e.g., mitosis, where a large number of motors with mixed polarities are involved. PMID:24923426
Sacheli, Lucia Maria; Zapparoli, Laura; De Santis, Carlo; Preti, Matteo; Pelosi, Catia; Ursino, Nicola; Zerbi, Alberto; Banfi, Giuseppe; Paulesu, Eraldo
2017-10-01
Gait imagery and gait observation can boost the recovery of locomotion dysfunctions; yet, a neurologically justified rationale for their clinical application is lacking as much as a direct comparison of their neural correlates. Using functional magnetic resonance imaging, we measured the neural correlates of explicit motor imagery of gait during observation of in-motion videos shot in a park with a steady cam (Virtual Walking task). In a 2 × 2 factorial design, we assessed the modulatory effect of gait observation and of foot movement execution on the neural correlates of the Virtual Walking task: in half of the trials, the participants were asked to mentally imitate a human model shown while walking along the same route (mental imitation condition); moreover, for half of all the trials, the participants also performed rhythmic ankle dorsiflexion as a proxy for stepping movements. We found that, beyond the areas associated with the execution of lower limb movements (the paracentral lobule, the supplementary motor area, and the cerebellum), gait imagery also recruited dorsal premotor and posterior parietal areas known to contribute to the adaptation of walking patterns to environmental cues. When compared with mental imitation, motor imagery recruited a more extensive network, including a brainstem area compatible with the human mesencephalic locomotor region (MLR). Reduced activation of the MLR in mental imitation indicates that this more visually guided task poses less demand on subcortical structures crucial for internally generated gait patterns. This finding may explain why patients with subcortical degeneration benefit from rehabilitation protocols based on gait observation. Hum Brain Mapp 38:5195-5216, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Advanced dc motor controller for battery-powered electric vehicles
NASA Technical Reports Server (NTRS)
Belsterling, C. A.
1981-01-01
A motor generation set is connected to run from the dc source and generate a voltage in the traction motor armature circuit that normally opposes the source voltage. The functional feasibility of the concept is demonstrated with tests on a Proof of Principle System. An analog computer simulation is developed, validated with the results of the tests, applied to predict the performance of a full scale Functional Model dc Controller. The results indicate high efficiencies over wide operating ranges and exceptional recovery of regenerated energy. The new machine integrates both motor and generator on a single two bearing shaft. The control strategy produces a controlled bidirectional plus or minus 48 volts dc output from the generator permitting full control of a 96 volt dc traction motor from a 48 volt battery, was designed to control a 20 hp traction motor. The controller weighs 63.5 kg (140 lb.) and has a peak efficiency of 90% in random driving modes and 96% during the SAE J 227a/D driving cycle.
ElBasiouny, Sherif M.; Rymer, W. Zev; Heckman, C. J.
2012-01-01
Motoneuron discharge patterns reflect the interaction of synaptic inputs with intrinsic conductances. Recent work has focused on the contribution of conductances mediating persistent inward currents (PICs), which amplify and prolong the effects of synaptic inputs on motoneuron discharge. Certain features of human motor unit discharge are thought to reflect a relatively stereotyped activation of PICs by excitatory synaptic inputs; these features include rate saturation and de-recruitment at a lower level of net excitation than that required for recruitment. However, PIC activation is also influenced by the pattern and spatial distribution of inhibitory inputs that are activated concurrently with excitatory inputs. To estimate the potential contributions of PIC activation and synaptic input patterns to motor unit discharge patterns, we examined the responses of a set of cable motoneuron models to different patterns of excitatory and inhibitory inputs. The models were first tuned to approximate the current- and voltage-clamp responses of low- and medium-threshold spinal motoneurons studied in decerebrate cats and then driven with different patterns of excitatory and inhibitory inputs. The responses of the models to excitatory inputs reproduced a number of features of human motor unit discharge. However, the pattern of rate modulation was strongly influenced by the temporal and spatial pattern of concurrent inhibitory inputs. Thus, even though PIC activation is likely to exert a strong influence on firing rate modulation, PIC activation in combination with different patterns of excitatory and inhibitory synaptic inputs can produce a wide variety of motor unit discharge patterns. PMID:22031773
A model of TMS-induced I-waves in motor cortex.
Rusu, Cătălin V; Murakami, Max; Ziemann, Ulf; Triesch, Jochen
2014-01-01
Transcranial magnetic stimulation (TMS) allows to manipulate neural activity non-invasively, and much research is trying to exploit this ability in clinical and basic research settings. In a standard TMS paradigm, single-pulse stimulation over motor cortex produces repetitive responses in descending motor pathways called I-waves. However, the details of how TMS induces neural activity patterns in cortical circuits to produce these responses remain poorly understood. According to a traditional view, I-waves are due to repetitive synaptic inputs to pyramidal neurons in layer 5 (L5) of motor cortex, but the potential origin of such repetitive inputs is unclear. Here we aim to test the plausibility of an alternative mechanism behind D- and I-wave generation through computational modeling. This mechanism relies on the broad distribution of conduction delays of synaptic inputs arriving at different parts of L5 cells' dendritic trees and their spike generation mechanism. Our model consists of a detailed L5 pyramidal cell and a population of layer 2 and 3 (L2/3) neurons projecting onto it with synapses exhibiting short-term depression. I-waves are simulated as superpositions of spike trains from a large population of L5 cells. Our model successfully reproduces all basic characteristics of I-waves observed in epidural responses during in vivo recordings of conscious humans. In addition, it shows how the complex morphology of L5 neurons might play an important role in the generation of I-waves. In the model, later I-waves are formed due to inputs to distal synapses, while earlier ones are driven by synapses closer to the soma. Finally, the model offers an explanation for the inhibition and facilitation effects in paired-pulse stimulation protocols. In contrast to previous models, which required either neural oscillators or chains of inhibitory interneurons acting upon L5 cells, our model is fully feed-forward without lateral connections or loops. It parsimoniously explains findings from a range of experiments and should be considered as a viable alternative explanation of the generating mechanism of I-waves. Copyright © 2014 Elsevier Inc. All rights reserved.
Control System for Bearingless Motor-generator
NASA Technical Reports Server (NTRS)
Kascak, Peter E. (Inventor); Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor)
2008-01-01
A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.
Study of Plasma Motor Generator (PMG) tether system for orbit reboost
NASA Technical Reports Server (NTRS)
1987-01-01
Detailed designs were produced for a 2 kW plasma motor generator tether system based largely on existing hardware and hardware designs. Specifically, the hollow cathode design and electronics are derived from ion propulsion equipment. A prototype tether was constructed and will be tested for deployment, strength, resistance to breakage and abrasion and electrical properties. In addition, laboratory development models of the electronics will be used to operate two plasma motor generator hollow cathode assemblies with this tether to verify electrical performance parameters for the complete system. Results show that a low cost demonstration of a plasma motor generator tether system appears to be feasible by the middle of the 1990s.
Control system for bearingless motor-generator
NASA Technical Reports Server (NTRS)
Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor); Kascak, Peter E. (Inventor)
2010-01-01
A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.
Yoo, Peter E; Hagan, Maureen A; John, Sam E; Opie, Nicholas L; Ordidge, Roger J; O'Brien, Terence J; Oxley, Thomas J; Moffat, Bradford A; Wong, Yan T
2018-06-01
Performing voluntary movements involves many regions of the brain, but it is unknown how they work together to plan and execute specific movements. We recorded high-resolution ultra-high-field blood-oxygen-level-dependent signal during a cued ankle-dorsiflexion task. The spatiotemporal dynamics and the patterns of task-relevant information flow across the dorsal motor network were investigated. We show that task-relevant information appears and decays earlier in the higher order areas of the dorsal motor network then in the primary motor cortex. Furthermore, the results show that task-relevant information is encoded in general initially, and then selective goals are subsequently encoded in specifics subregions across the network. Importantly, the patterns of recurrent information flow across the network vary across different subregions depending on the goal. Recurrent information flow was observed across all higher order areas of the dorsal motor network in the subregions encoding for the current goal. In contrast, only the top-down information flow from the supplementary motor cortex to the frontoparietal regions, with weakened recurrent information flow between the frontoparietal regions and bottom-up information flow from the frontoparietal regions to the supplementary cortex were observed in the subregions encoding for the opposing goal. We conclude that selective motor goal encoding and execution rely on goal-dependent differences in subregional recurrent information flow patterns across the long-range dorsal motor network areas that exhibit graded functional specialization. © 2018 Wiley Periodicals, Inc.
The Motor Subsystem as a Predictor of Success in Young Football Talents: A Person-Oriented Study
Zibung, Marc; Zuber, Claudia; Conzelmann, Achim
2016-01-01
Motor tests play a key role in talent selection in football. However, individual motor tests only focus on specific areas of a player’s complex performance. To evaluate his or her overall performance during a game, the current study takes a holistic perspective and uses a person-oriented approach. In this approach, several factors are viewed together as a system, whose state is analysed longitudinally. Based on this idea, six motor tests were aggregated to form the Motor Function subsystem. 104 young, top-level, male football talents were tested three times (2011, 2012, 2013; Mage, t2011 = 12.26, SD = 0.29), and their overall level of performance was determined one year later (2014). The data were analysed using the LICUR method, a pattern-analytical procedure for person-oriented approaches. At all three measuring points, four patterns could be identified, which remained stable over time. One of the patterns found at the third measuring point identified more subsequently successful players than random selection would. This pattern is characterised by above-average, but not necessarily the best, performance on the tests. Developmental paths along structurally stable patterns that occur more often than predicted by chance indicate that the Motor Function subsystem is a viable means of forecasting in the age range of 12–15 years. Above-average, though not necessary outstanding, performance both on fitness and technical tests appears to be particularly promising. These findings underscore the view that a holistic perspective may be profitable in talent selection. PMID:27508929
Computerized Torque Control for Large dc Motors
NASA Technical Reports Server (NTRS)
Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.
1987-01-01
Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.
Implicit motor learning promotes neural efficiency during laparoscopy.
Zhu, Frank F; Poolton, Jamie M; Wilson, Mark R; Hu, Yong; Maxwell, Jon P; Masters, Rich S W
2011-09-01
An understanding of differences in expert and novice neural behavior can inform surgical skills training. Outside the surgical domain, electroencephalographic (EEG) coherence analyses have shown that during motor performance, experts display less coactivation between the verbal-analytic and motor planning regions than their less skilled counterparts. Reduced involvement of verbal-analytic processes suggests greater neural efficiency. The authors tested the utility of an implicit motor learning intervention specifically devised to promote neural efficiency by reducing verbal-analytic involvement in laparoscopic performance. In this study, 18 novices practiced a movement pattern on a laparoscopic trainer with either conscious awareness of the movement pattern (explicit motor learning) or suppressed awareness of the movement pattern (implicit motor learning). In a retention test, movement accuracy was compared between the conditions, and coactivation (EEG coherence) was assessed between the motor planning (Fz) region and both the verbal-analytic (T3) and the visuospatial (T4) cortical regions (T3-Fz and T4-Fz, respectively). Movement accuracy in the conditions was not different in a retention test (P = 0.231). Findings showed that the EEG coherence scores for the T3-Fz regions were lower for the implicit learners than for the explicit learners (P = 0.027), but no differences were apparent for the T4-Fz regions (P = 0.882). Implicit motor learning reduced EEG coactivation between verbal-analytic and motor planning regions, suggesting that verbal-analytic processes were less involved in laparoscopic performance. The findings imply that training techniques that discourage nonessential coactivation during motor performance may provide surgeons with more neural resources with which to manage other aspects of surgery.
Peng, Shichun; Ma, Yilong; Spetsieris, Phoebe G; Mattis, Paul; Feigin, Andrew; Dhawan, Vijay; Eidelberg, David
2013-01-01
In order to generate imaging biomarkers from disease-specific brain networks, we have implemented a general toolbox to rapidly perform scaled subprofile modeling (SSM) based on principal component analysis (PCA) on brain images of patients and normals. This SSMPCA toolbox can define spatial covariance patterns whose expression in individual subjects can discriminate patients from controls or predict behavioral measures. The technique may depend on differences in spatial normalization algorithms and brain imaging systems. We have evaluated the reproducibility of characteristic metabolic patterns generated by SSMPCA in patients with Parkinson's disease (PD). We used [18F]fluorodeoxyglucose PET scans from PD patients and normal controls. Motor-related (PDRP) and cognition-related (PDCP) metabolic patterns were derived from images spatially normalized using four versions of SPM software (spm99, spm2, spm5 and spm8). Differences between these patterns and subject scores were compared across multiple independent groups of patients and control subjects. These patterns and subject scores were highly reproducible with different normalization programs in terms of disease discrimination and cognitive correlation. Subject scores were also comparable in PD patients imaged across multiple PET scanners. Our findings confirm a very high degree of consistency among brain networks and their clinical correlates in PD using images normalized in four different SPM platforms. SSMPCA toolbox can be used reliably for generating disease-specific imaging biomarkers despite the continued evolution of image preprocessing software in the neuroimaging community. Network expressions can be quantified in individual patients independent of different physical characteristics of PET cameras. PMID:23671030
Peng, Shichun; Ma, Yilong; Spetsieris, Phoebe G; Mattis, Paul; Feigin, Andrew; Dhawan, Vijay; Eidelberg, David
2014-05-01
To generate imaging biomarkers from disease-specific brain networks, we have implemented a general toolbox to rapidly perform scaled subprofile modeling (SSM) based on principal component analysis (PCA) on brain images of patients and normals. This SSMPCA toolbox can define spatial covariance patterns whose expression in individual subjects can discriminate patients from controls or predict behavioral measures. The technique may depend on differences in spatial normalization algorithms and brain imaging systems. We have evaluated the reproducibility of characteristic metabolic patterns generated by SSMPCA in patients with Parkinson's disease (PD). We used [(18) F]fluorodeoxyglucose PET scans from patients with PD and normal controls. Motor-related (PDRP) and cognition-related (PDCP) metabolic patterns were derived from images spatially normalized using four versions of SPM software (spm99, spm2, spm5, and spm8). Differences between these patterns and subject scores were compared across multiple independent groups of patients and control subjects. These patterns and subject scores were highly reproducible with different normalization programs in terms of disease discrimination and cognitive correlation. Subject scores were also comparable in patients with PD imaged across multiple PET scanners. Our findings confirm a very high degree of consistency among brain networks and their clinical correlates in PD using images normalized in four different SPM platforms. SSMPCA toolbox can be used reliably for generating disease-specific imaging biomarkers despite the continued evolution of image preprocessing software in the neuroimaging community. Network expressions can be quantified in individual patients independent of different physical characteristics of PET cameras. Copyright © 2013 Wiley Periodicals, Inc.
Neural mechanism of optimal limb coordination in crustacean swimming
Zhang, Calvin; Guy, Robert D.; Mulloney, Brian; Zhang, Qinghai; Lewis, Timothy J.
2014-01-01
A fundamental challenge in neuroscience is to understand how biologically salient motor behaviors emerge from properties of the underlying neural circuits. Crayfish, krill, prawns, lobsters, and other long-tailed crustaceans swim by rhythmically moving limbs called swimmerets. Over the entire biological range of animal size and paddling frequency, movements of adjacent swimmerets maintain an approximate quarter-period phase difference with the more posterior limbs leading the cycle. We use a computational fluid dynamics model to show that this frequency-invariant stroke pattern is the most effective and mechanically efficient paddling rhythm across the full range of biologically relevant Reynolds numbers in crustacean swimming. We then show that the organization of the neural circuit underlying swimmeret coordination provides a robust mechanism for generating this stroke pattern. Specifically, the wave-like limb coordination emerges robustly from a combination of the half-center structure of the local central pattern generating circuits (CPGs) that drive the movements of each limb, the asymmetric network topology of the connections between local CPGs, and the phase response properties of the local CPGs, which we measure experimentally. Thus, the crustacean swimmeret system serves as a concrete example in which the architecture of a neural circuit leads to optimal behavior in a robust manner. Furthermore, we consider all possible connection topologies between local CPGs and show that the natural connectivity pattern generates the biomechanically optimal stroke pattern most robustly. Given the high metabolic cost of crustacean swimming, our results suggest that natural selection has pushed the swimmeret neural circuit toward a connection topology that produces optimal behavior. PMID:25201976
Controller for a High-Power, Brushless dc Motor
NASA Technical Reports Server (NTRS)
Fleming, David J.; Makdad, Terence A.
1987-01-01
Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.
Identifying Residual Speech Sound Disorders in Bilingual Children: A Japanese-English Case Study
Preston, Jonathan L.; Seki, Ayumi
2012-01-01
Purpose The purposes are to (1) describe the assessment of residual speech sound disorders (SSD) in bilinguals by distinguishing speech patterns associated with second language acquisition from patterns associated with misarticulations, and (2) describe how assessment of domains such as speech motor control and phonological awareness can provide a more complete understanding of SSDs in bilinguals. Method A review of Japanese phonology is provided to offer a context for understanding the transfer of Japanese to English productions. A case study of an 11-year-old is presented, demonstrating parallel speech assessments in English and Japanese. Speech motor and phonological awareness tasks were conducted in both languages. Results Several patterns were observed in the participant’s English that could be plausibly explained by the influence of Japanese phonology. However, errors indicating a residual SSD were observed in both Japanese and English. A speech motor assessment suggested possible speech motor control problems, and phonological awareness was judged to be within the typical range of performance in both languages. Conclusion Understanding the phonological characteristics of L1 can help clinicians recognize speech patterns in L2 associated with transfer. Once these differences are understood, patterns associated with a residual SSD can be identified. Supplementing a relational speech analysis with measures of speech motor control and phonological awareness can provide a more comprehensive understanding of a client’s strengths and needs. PMID:21386046
Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M.; Yamamori, Tetsuo
2011-01-01
Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice. PMID:21525375
Kitsukawa, Takashi; Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M; Yamamori, Tetsuo
2011-07-01
Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice.
Hong, Do-Kwan; Joo, Dae-Suk; Woo, Byung-Chul; Koo, Dae-Hyun; Ahn, Chan-Woo
2014-01-01
The objective of the present study was to deal with the rotordynamics of the rotor of an ultra-high speed PM type synchronous motor-generator for a 500 W rated micro gas turbine generator. This paper introduces dynamic analysis, and experiments on the motor-generator. The focus is placed on an analytical approach considering the mechanical dynamic problems. It is essential to deal with dynamic stability at ultra-high speeds. Unbalance response analysis is performed by calculating the unbalance with and without balancing using a balancing machine. Critical speed analysis is performed to determine the operating speed with sufficient separation margin. The unbalance response analysis is compared with the experimental results considering the balancing grade (ISO 1940-1) and predicted vibration displacement with and without balancing. Based on these results, a high-speed motor-generator was successfully developed. PMID:25177804
Rank-order-selective neurons form a temporal basis set for the generation of motor sequences.
Salinas, Emilio
2009-04-08
Many behaviors are composed of a series of elementary motor actions that must occur in a specific order, but the neuronal mechanisms by which such motor sequences are generated are poorly understood. In particular, if a sequence consists of a few motor actions, a primate can learn to replicate it from memory after practicing it for just a few trials. How do the motor and premotor areas of the brain assemble motor sequences so fast? The network model presented here reveals part of the solution to this problem. The model is based on experiments showing that, during the performance of motor sequences, some cortical neurons are always activated at specific times, regardless of which motor action is being executed. In the model, a population of such rank-order-selective (ROS) cells drives a layer of downstream motor neurons so that these generate specific movements at different times in different sequences. A key ingredient of the model is that the amplitude of the ROS responses must be modulated by sequence identity. Because of this modulation, which is consistent with experimental reports, the network is able not only to produce multiple sequences accurately but also to learn a new sequence with minimal changes in connectivity. The ROS neurons modulated by sequence identity thus serve as a basis set for constructing arbitrary sequences of motor responses downstream. The underlying mechanism is analogous to the mechanism described in parietal areas for generating coordinate transformations in the spatial domain.
RANK-ORDER-SELECTIVE NEURONS FORM A TEMPORAL BASIS SET FOR THE GENERATION OF MOTOR SEQUENCES
Salinas, Emilio
2009-01-01
Many behaviors are composed of a series of elementary motor actions that must occur in a specific order, but the neuronal mechanisms by which such motor sequences are generated are poorly understood. In particular, if a sequence consists of a few motor actions, a primate can learn to replicate it from memory after practicing it for just a few trials. How do the motor and premotor areas of the brain assemble motor sequences so fast? The network model presented here reveals part of the solution to this problem. The model is based on experiments showing that, during the performance of motor sequences, some cortical neurons are always activated at specific times, regardless of which motor action is being executed. In the model, a population of such rank-order-selective (ROS) cells drives a layer of downstream motor neurons so that these generate specific movements at different times in different sequences. A key ingredient of the model is that the amplitude of the ROS responses must be modulated by sequence identity. Because of this modulation, which is consistent with experimental reports, the network is able not only to produce multiple sequences accurately but also to learn a new sequence with minimal changes in connectivity. The ROS neurons modulated by sequence identity thus serve as a basis set for constructing arbitrary sequences of motor responses downstream. The underlying mechanism is analogous to the mechanism described in parietal areas for generating coordinate transformations in the spatial domain. PMID:19357265
Ryberg, Erik; Wu, Tingting; Greasley, Peter J.; Bohlooly-Y, Mohammad; Hjorth, Stephan
2016-01-01
The G-protein coupled receptor 55 (GPR55) is activated by cannabinoids and non-cannabinoid molecules and has been speculated to play a modulatory role in a large variety of physiological and pathological processes, including in metabolically perturbed states. We therefore generated male mice deficient in the gene coding for the cannabinoid/lysophosphatidylinositol (LPI) receptor Gpr55 and characterized them under normal dietary conditions as well as during high energy dense diet feeding followed by challenge with the CB1 receptor antagonist/GPR55 agonist rimonabant. Gpr55 deficient male mice (Gpr55 KO) were phenotypically indistinguishable from their wild type (WT) siblings for the most part. However, Gpr55 KO animals displayed an intriguing nocturnal pattern of motor activity and energy expenditure (EE). During the initial 6 hours of the night, motor activity was significantly elevated without any significant effect observed in EE. Interestingly, during the last 6 hours of the night motor activity was similar but EE was significantly decreased in the Gpr55 KO mice. No significant difference in motor activity was detected during daytime, but EE was lower in the Gpr55 KO compared to WT mice. The aforementioned patterns were not associated with alterations in energy intake, daytime core body temperature, body weight (BW) or composition, although a non-significant tendency to increased adiposity was seen in Gpr55 KO compared to WT mice. Detailed analyses of daytime activity in the Open Field paradigm unveiled lower horizontal activity and rearing time for the Gpr55 KO mice. Moreover, the Gpr55 KO mice displayed significantly faster reaction time in the tail flick test, indicative of thermal hyperalgesia. The BW-decreasing effect of rimonabant in mice on long-term cafeteria diet did not differ between Gpr55 KO and WT mice. In conclusion, Gpr55 deficiency is associated with subtle effects on diurnal/nocturnal EE and motor activity behaviours but does not appear per se critically required for overall metabolism or behaviours. PMID:27941994
An Adapting Auditory-motor Feedback Loop Can Contribute to Generating Vocal Repetition
Brainard, Michael S.; Jin, Dezhe Z.
2015-01-01
Consecutive repetition of actions is common in behavioral sequences. Although integration of sensory feedback with internal motor programs is important for sequence generation, if and how feedback contributes to repetitive actions is poorly understood. Here we study how auditory feedback contributes to generating repetitive syllable sequences in songbirds. We propose that auditory signals provide positive feedback to ongoing motor commands, but this influence decays as feedback weakens from response adaptation during syllable repetitions. Computational models show that this mechanism explains repeat distributions observed in Bengalese finch song. We experimentally confirmed two predictions of this mechanism in Bengalese finches: removal of auditory feedback by deafening reduces syllable repetitions; and neural responses to auditory playback of repeated syllable sequences gradually adapt in sensory-motor nucleus HVC. Together, our results implicate a positive auditory-feedback loop with adaptation in generating repetitive vocalizations, and suggest sensory adaptation is important for feedback control of motor sequences. PMID:26448054
Motor Stereotypies and Volumetric Brain Alterations in Children with Autistic Disorder
ERIC Educational Resources Information Center
Goldman, Sylvie; O'Brien, Liam M.; Filipek, Pauline A.; Rapin, Isabelle; Herbert, Martha R.
2013-01-01
Motor stereotypies are defined as patterned, repetitive, purposeless movements. These stigmatizing motor behaviors represent one manifestation of the third core criterion for an Autistic Disorder (AD) diagnosis, and are becoming viewed as potential early markers of autism. Moreover, motor stereotypies might be a tangible expression of the…
NASA Astrophysics Data System (ADS)
Rimbawati; Azis Hutasuhut, Abdul; Irsan Pasaribu, Faisal; Cholish; Muharnif
2017-09-01
There is an electric machine that can operate as a generator either single-phase or three-phase in almost every household and industry today. This electric engine cannot be labeled as a generator but can be functioned as a generator. The machine that is mentioned is “squirrel cage motors” or it is well-known as induction motor that can be found in water pumps, washing machines, fans, blowers and other industrial machines. The induction motor can be functioned as a generator when the rotational speed of the rotor is made larger than the speed of the rotary field. In this regard, this study aims to modify the remains of 3-phase induction motor to be a permanent generator. Data of research based conducted on the river flow of Rumah Sumbul Village, STM Hulu district of Deli Serdang. The method of this research is by changing rotor and stator winding on a 3 phase induction motor, so it can produce a generator with rotation speed of 500 rpm. Based on the research, it can be concluded that the output voltage generator has occurred a voltage drop 10% between before and after loading for Star circuit and 2% for Delta circuit.
Chu, Shin Ying; Barlow, Steven M; Lee, Jaehoon; Wang, Jingyan
2017-12-01
This research characterised perioral muscle reciprocity and amplitude ratio in lower lip during bilabial syllable production [pa] at three rates to understand the neuromotor dynamics and scaling of motor speech patterns in individuals with Parkinson's disease (PD). Electromyographic (EMG) signals of the orbicularis oris superior [OOS], orbicularis oris inferior [OOI] and depressor labii inferioris [DLI] were recorded during syllable production and expressed as polar-phase notations. PD participants exhibited the general features of reciprocity between OOS, OOI and DLI muscles as reflected in the EMG during syllable production. The control group showed significantly higher integrated EMG amplitude ratio in the DLI:OOS muscle pairs than PD participants. No speech rate effects were found in EMG muscle reciprocity and amplitude magnitude across all muscle pairs. Similar patterns of muscle reciprocity in PD and controls suggest that corticomotoneuronal output to the facial nucleus and respective perioral muscles is relatively well-preserved in our cohort of mild idiopathic PD participants. Reduction of EMG amplitude ratio among PD participants is consistent with the putative reduction in the thalamocortical activation characteristic of this disease which limits motor cortex drive from generating appropriate commands which contributes to bradykinesia and hypokinesia of the orofacial mechanism.
NASA Technical Reports Server (NTRS)
DiZio, P.; Lackner, J. R.
2000-01-01
Reaching movements made to visual targets in a rotating room are initially deviated in path and endpoint in the direction of transient Coriolis forces generated by the motion of the arm relative to the rotating environment. With additional reaches, movements become progressively straighter and more accurate. Such adaptation can occur even in the absence of visual feedback about movement progression or terminus. Here we examined whether congenitally blind and sighted subjects without visual feedback would demonstrate adaptation to Coriolis forces when they pointed to a haptically specified target location. Subjects were tested pre-, per-, and postrotation at 10 rpm counterclockwise. Reaching to straight ahead targets prerotation, both groups exhibited slightly curved paths. Per-rotation, both groups showed large initial deviations of movement path and curvature but within 12 reaches on average had returned to prerotation curvature levels and endpoints. Postrotation, both groups showed mirror image patterns of curvature and endpoint to the per-rotation pattern. The groups did not differ significantly on any of the performance measures. These results provide compelling evidence that motor adaptation to Coriolis perturbations can be achieved on the basis of proprioceptive, somatosensory, and motor information in the complete absence of visual experience.
Hao, M; He, X; Lan, N
2012-01-01
It has been shown that normal cyclic movement of human arm and resting limb tremor in Parkinson's disease (PD) are associated with the oscillatory neuronal activities in different cerebral networks, which are transmitted to the antagonistic muscles via the same spinal pathway. There are mono-synaptic and multi-synaptic corticospinal pathways for conveying motor commands. This study investigates the plausible role of propriospinal neuronal (PN) network in the C3-C4 levels in multi-synaptic transmission of cortical commands for oscillatory movements. A PN network model is constructed based on known neurophysiological connections, and is hypothesized to achieve the conversion of cortical oscillations into alternating antagonistic muscle bursts. Simulations performed with a virtual arm (VA) model indicate that without the PN network, the alternating bursts of antagonistic muscle EMG could not be reliably generated, whereas with the PN network, the alternating pattern of bursts were naturally displayed in the three pairs of antagonist muscles. Thus, it is suggested that oscillations in the primary motor cortex (M1) of single and double tremor frequencies are processed at the PN network to compute the alternating burst pattern in the flexor and extensor muscles.
The cortical activation pattern by a rehabilitation robotic hand: a functional NIRS study
Chang, Pyung-Hun; Lee, Seung-Hee; Gu, Gwang Min; Lee, Seung-Hyun; Jin, Sang-Hyun; Yeo, Sang Seok; Seo, Jeong Pyo; Jang, Sung Ho
2014-01-01
Introduction: Clarification of the relationship between external stimuli and brain response has been an important topic in neuroscience and brain rehabilitation. In the current study, using functional near infrared spectroscopy (fNIRS), we attempted to investigate cortical activation patterns generated during execution of a rehabilitation robotic hand. Methods: Ten normal subjects were recruited for this study. Passive movements of the right fingers were performed using a rehabilitation robotic hand at a frequency of 0.5 Hz. We measured values of oxy-hemoglobin (HbO), deoxy-hemoglobin (HbR) and total-hemoglobin (HbT) in five regions of interest: the primary sensory-motor cortex (SM1), hand somatotopy of the contralateral SM1, supplementary motor area (SMA), premotor cortex (PMC), and prefrontal cortex (PFC). Results: HbO and HbT values indicated significant activation in the left SM1, left SMA, left PMC, and left PFC during execution of the rehabilitation robotic hand (uncorrected, p < 0.01). By contrast, HbR value indicated significant activation only in the hand somatotopic area of the left SM1 (uncorrected, p < 0.01). Conclusions: Our results appear to indicate that execution of the rehabilitation robotic hand could induce cortical activation. PMID:24570660
Low-Rank Linear Dynamical Systems for Motor Imagery EEG.
Zhang, Wenchang; Sun, Fuchun; Tan, Chuanqi; Liu, Shaobo
2016-01-01
The common spatial pattern (CSP) and other spatiospectral feature extraction methods have become the most effective and successful approaches to solve the problem of motor imagery electroencephalography (MI-EEG) pattern recognition from multichannel neural activity in recent years. However, these methods need a lot of preprocessing and postprocessing such as filtering, demean, and spatiospectral feature fusion, which influence the classification accuracy easily. In this paper, we utilize linear dynamical systems (LDSs) for EEG signals feature extraction and classification. LDSs model has lots of advantages such as simultaneous spatial and temporal feature matrix generation, free of preprocessing or postprocessing, and low cost. Furthermore, a low-rank matrix decomposition approach is introduced to get rid of noise and resting state component in order to improve the robustness of the system. Then, we propose a low-rank LDSs algorithm to decompose feature subspace of LDSs on finite Grassmannian and obtain a better performance. Extensive experiments are carried out on public dataset from "BCI Competition III Dataset IVa" and "BCI Competition IV Database 2a." The results show that our proposed three methods yield higher accuracies compared with prevailing approaches such as CSP and CSSP.
Houwen, Suzanne; Kamphorst, Erica; van der Veer, Gerda; Cantell, Marja
2018-04-30
A relationship between motor performance and cognitive functioning is increasingly being recognized. Yet, little is known about the precise nature of the relationship between both domains, especially in early childhood. To identify distinct constellations of motor performance, executive functioning (EF), and verbal ability in preschool aged children; and to explore how individual and contextual variables are related to profile membership. The sample consisted of 119 3- to 4-year old children (62 boys; 52%). The home based assessments consisted of a standardized motor test (Movement Assessment Battery for Children - 2), five performance-based EF tasks measuring inhibition and working memory, and the Receptive Vocabulary subtest from the Wechsler Preschool and Primary Scale of Intelligence Third Edition. Parents filled out the Behavior Rating Inventory of Executive Function - Preschool version. Latent profile analysis (LPA) was used to delineate profiles of motor performance, EF, and verbal ability. Chi-square statistics and multinomial logistic regression analysis were used to examine whether profile membership was predicted by age, gender, risk of motor coordination difficulties, ADHD symptomatology, language problems, and socioeconomic status (SES). LPA yielded three profiles with qualitatively distinct response patterns of motor performance, EF, and verbal ability. Quantitatively, the profiles showed most pronounced differences with regard to parent ratings and performance-based tests of EF, as well as verbal ability. Risk of motor coordination difficulties and ADHD symptomatology were associated with profile membership, whereas age, gender, language problems, and SES were not. Our results indicate that there are distinct subpopulations of children who show differential relations with regard to motor performance, EF, and verbal ability. The fact that we found both quantitative as well as qualitative differences between the three patterns of profiles underscores the need for a person-centered approach with a focus on patterns of individual characteristics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bajaj, Sahil; Housley, Stephen N.; Wu, David; Dhamala, Mukesh; James, G. A.; Butler, Andrew J.
2016-01-01
Balance of motor network activity between the two brain hemispheres after stroke is crucial for functional recovery. Several studies have extensively studied the role of the affected brain hemisphere to better understand changes in motor network activity following stroke. Very few studies have examined the role of the unaffected brain hemisphere and confirmed the test–retest reliability of connectivity measures on unaffected hemisphere. We recorded blood oxygenation level dependent functional magnetic resonance imaging (fMRI) signals from nine stroke survivors with hemiparesis of the left or right hand. Participants performed a motor execution task with affected hand, unaffected hand, and both hands simultaneously. Participants returned for a repeat fMRI scan 1 week later. Using dynamic causal modeling (DCM), we evaluated effective connectivity among three motor areas: the primary motor area (M1), the premotor cortex (PMC) and the supplementary motor area for the affected and unaffected hemispheres separately. Five participants’ manual motor ability was assessed by Fugl-Meyer Motor Assessment scores and root-mean square error of participants’ tracking ability during a robot-assisted game. We found (i) that the task performance with the affected hand resulted in strengthening of the connectivity pattern for unaffected hemisphere, (ii) an identical network of the unaffected hemisphere when participants performed the task with their unaffected hand, and (iii) the pattern of directional connectivity observed in the affected hemisphere was identical for tasks using the affected hand only or both hands. Furthermore, paired t-test comparison found no significant differences in connectivity strength for any path when compared with one-week follow-up. Brain-behavior linear correlation analysis showed that the connectivity patterns in the unaffected hemisphere more accurately reflected the behavioral conditions than the connectivity patterns in the affected hemisphere. Above findings enrich our knowledge of unaffected brain hemisphere following stroke, which further strengthens our neurobiological understanding of stroke-affected brain and can help to effectively identify and apply stroke-treatments. PMID:28082882
Reluctance apparatus for flywheel energy storage
Hull, John R.
2000-01-01
A motor generator for providing high efficiency, controlled voltage output or storage of energy in a flywheel system. A motor generator includes a stator of a soft ferromagnetic material, a motor coil and a generator coil, and a rotor has at least one embedded soft ferromagnetic piece. Control of voltage output is achieved by use of multiple stator pieces and multiple rotors with controllable gaps between the stator pieces and the soft ferromagnetic piece.
Trapped field internal dipole superconducting motor generator
Hull, John R.
2001-01-01
A motor generator including a high temperature superconductor rotor and an internally disposed coil assembly. The motor generator superconductor rotor is constructed of a plurality of superconductor elements magnetized to produce a dipole field. The coil assembly can be either a conventional conductor or a high temperature superconductor. The superconductor rotor elements include a magnetization direction and c-axis for the crystals of the elements and which is oriented along the magnetization direction.
A linear magnetic motor and generator
NASA Technical Reports Server (NTRS)
Studer, P. A.
1980-01-01
In linear magnetic motor and generator suitable for remote and hostile environments, magnetic forces drive reciprocating shaft along its axis. Actuator shaft is located in center of cylindrical body and may be supported by either contacting or noncontacting bearings. When device operates as bidirectional motor, drive coil selectively adds and subtracts magnetic flux to and from flux paths, producing forces that drive actuator along axis. When actuator is driven by external reciprocating engine, device becomes ac generator.
Zhang, Yu-Ting; Jin, Hui; Wang, Jun-Hua; Wen, Lan-Yu; Yang, Yang; Ruan, Jing-Wen; Zhang, Shu-Xin; Ling, Eng-Ang
2017-01-01
Spinal cord injury (SCI) often results in death of spinal neurons and atrophy of muscles which they govern. Thus, following SCI, reorganizing the lumbar spinal sensorimotor pathways is crucial to alleviate muscle atrophy. Tail nerve electrical stimulation (TANES) has been shown to activate the central pattern generator (CPG) and improve the locomotion recovery of spinal contused rats. Electroacupuncture (EA) is a traditional Chinese medical practice which has been proven to have a neural protective effect. Here, we examined the effects of TANES and EA on lumbar motor neurons and hindlimb muscle in spinal transected rats, respectively. From the third day postsurgery, rats in the TANES group were treated 5 times a week and those in the EA group were treated once every other day. Four weeks later, both TANES and EA showed a significant impact in promoting survival of lumbar motor neurons and expression of choline acetyltransferase (ChAT) and ameliorating atrophy of hindlimb muscle after SCI. Meanwhile, the expression of neurotrophin-3 (NT-3) in the same spinal cord segment was significantly increased. These findings suggest that TANES and EA can augment the expression of NT-3 in the lumbar spinal cord that appears to protect the motor neurons as well as alleviate muscle atrophy. PMID:28744378
Merrison-Hort, Robert; Zhang, Hong-Yan; Borisyuk, Roman
2014-01-01
Many neural circuits are capable of generating multiple stereotyped outputs after different sensory inputs or neuromodulation. We have previously identified the central pattern generator (CPG) for Xenopus tadpole swimming that involves antiphase oscillations of activity between the left and right sides. Here we analyze the cellular basis for spontaneous left–right motor synchrony characterized by simultaneous bursting on both sides at twice the swimming frequency. Spontaneous synchrony bouts are rare in most tadpoles, and they instantly emerge from and switch back to swimming, most frequently within the first second after skin stimulation. Analyses show that only neurons that are active during swimming fire action potentials in synchrony, suggesting both output patterns derive from the same neural circuit. The firing of excitatory descending interneurons (dINs) leads that of other types of neurons in synchrony as it does in swimming. During synchrony, the time window between phasic excitation and inhibition is 7.9 ± 1 ms, shorter than that in swimming (41 ± 2.3 ms). The occasional, extra midcycle firing of dINs during swimming may initiate synchrony, and mismatches of timing in the left and right activity can switch synchrony back to swimming. Computer modeling supports these findings by showing that the same neural network, in which reciprocal inhibition mediates rebound firing, can generate both swimming and synchrony without circuit reconfiguration. Modeling also shows that lengthening the time window between phasic excitation and inhibition by increasing dIN synaptic/conduction delay can improve the stability of synchrony. PMID:24760866
System and method for determining stator winding resistance in an AC motor using motor drives
Lu, Bin; Habetler, Thomas G; Zhang, Pinjia
2013-02-26
A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.
Learning multiple variable-speed sequences in striatum via cortical tutoring.
Murray, James M; Escola, G Sean
2017-05-08
Sparse, sequential patterns of neural activity have been observed in numerous brain areas during timekeeping and motor sequence tasks. Inspired by such observations, we construct a model of the striatum, an all-inhibitory circuit where sequential activity patterns are prominent, addressing the following key challenges: (i) obtaining control over temporal rescaling of the sequence speed, with the ability to generalize to new speeds; (ii) facilitating flexible expression of distinct sequences via selective activation, concatenation, and recycling of specific subsequences; and (iii) enabling the biologically plausible learning of sequences, consistent with the decoupling of learning and execution suggested by lesion studies showing that cortical circuits are necessary for learning, but that subcortical circuits are sufficient to drive learned behaviors. The same mechanisms that we describe can also be applied to circuits with both excitatory and inhibitory populations, and hence may underlie general features of sequential neural activity pattern generation in the brain.
Spinal motor control system incorporates an internal model of limb dynamics.
Shimansky, Y P
2000-10-01
The existence and utilization of an internal representation of the controlled object is one of the most important features of the functioning of neural motor control systems. This study demonstrates that this property already exists at the level of the spinal motor control system (SMCS), which is capable of generating motor patterns for reflex rhythmic movements, such as locomotion and scratching, without the aid of the peripheral afferent feedback, but substantially modifies the generated activity in response to peripheral afferent stimuli. The SMCS is presented as an optimal control system whose optimality requires that it incorporate an internal model (IM) of the controlled object's dynamics. A novel functional mechanism for the integration of peripheral sensory signals with the corresponding predictive output from the IM, the summation of information precision (SIP) is proposed. In contrast to other models in which the correction of the internal representation of the controlled object's state is based on the calculation of a mismatch between the internal and external information sources, the SIP mechanism merges the information from these sources in order to optimize the precision of the controlled object's state estimate. It is demonstrated, based on scratching in decerebrate cats as an example of the spinal control of goal-directed movements, that the results of computer modeling agree with the experimental observations related to the SMCS's reactions to phasic and tonic peripheral afferent stimuli. It is also shown that the functional requirements imposed by the mathematical model of the SMCS comply with the current knowledge about the related properties of spinal neuronal circuitry. The crucial role of the spinal presynaptic inhibition mechanism in the neuronal implementation of SIP is elucidated. Important differences between the IM and a state predictor employed for compensating for a neural reflex time delay are discussed.
Behavioral Reactivity and Approach-Withdrawal Bias in Infancy
Hane, Amie Ashley; Fox, Nathan A.; Henderson, Heather A.; Marshall, Peter J.
2008-01-01
Seven hundred and seventy nine infants were screened at 4 months of age for motor and emotional reactivity. At age 9 months, infants who showed extreme patterns of motor and negative (n = 75) or motor and positive (n = 73) reactivity and an unselected control group (n = 86) were administered the Laboratory Temperament Assessment Battery (Lab-TAB), and baseline electroencephalogram (EEG) data were collected. Negatively reactive infants showed significantly more avoidance than positively reactive infants and displayed a pattern of right frontal EEG asymmetry. Positively reactive infants exhibited significantly more approach behavior than controls and exhibited a pattern of left frontal asymmetry. Results support the notion that approach-withdrawal bias underlies reactivity in infancy. PMID:18793079
Accelerated high-yield generation of limb-innervating motor neurons from human stem cells
Amoroso, Mackenzie W.; Croft, Gist F.; Williams, Damian J.; O’Keeffe, Sean; Carrasco, Monica A.; Davis, Anne R.; Roybon, Laurent; Oakley, Derek H.; Maniatis, Tom; Henderson, Christopher E.; Wichterle, Hynek
2013-01-01
Human pluripotent stem cells are a promising source of differentiated cells for developmental studies, cell transplantation, disease modeling, and drug testing. However, their widespread use even for intensely studied cell types like spinal motor neurons is hindered by the long duration and low yields of existing protocols for in vitro differentiation and by the molecular heterogeneity of the populations generated. We report a combination of small molecules that within 3 weeks induce motor neurons at up to 50% abundance and with defined subtype identities of relevance to neurodegenerative disease. Despite their accelerated differentiation, motor neurons expressed combinations of HB9, ISL1 and column-specific markers that mirror those observed in vivo in human fetal spinal cord. They also exhibited spontaneous and induced activity, and projected axons towards muscles when grafted into developing chick spinal cord. Strikingly, this novel protocol preferentially generates motor neurons expressing markers of limb-innervating lateral motor column motor neurons (FOXP1+/LHX3−). Access to high-yield cultures of human limb-innervating motor neuron subtypes will facilitate in-depth study of motor neuron subtype-specific properties, disease modeling, and development of large-scale cell-based screening assays. PMID:23303937
Load-dependent assembly of the bacterial flagellar motor.
Tipping, Murray J; Delalez, Nicolas J; Lim, Ren; Berry, Richard M; Armitage, Judith P
2013-08-20
It is becoming clear that the bacterial flagellar motor output is important not only for bacterial locomotion but also for mediating the transition from liquid to surface living. The output of the flagellar motor changes with the mechanical load placed on it by the external environment: at a higher load, the motor runs more slowly and produces higher torque. Here we show that the number of torque-generating units bound to the flagellar motor also depends on the external mechanical load, with fewer stators at lower loads. Stalled motors contained at least as many stators as rotating motors at high load, indicating that rotation is unnecessary for stator binding. Mutant stators incapable of generating torque could not be detected around the motor. We speculate that a component of the bacterial flagellar motor senses external load and mediates the strength of stator binding to the rest of the motor. The transition between liquid living and surface living is important in the life cycles of many bacteria. In this paper, we describe how the flagellar motor, used by bacteria for locomotion through liquid media and across solid surfaces, is capable of adjusting the number of bound stator units to better suit the external load conditions. By stalling motors using external magnetic fields, we also show that rotation is not required for maintenance of stators around the motor; instead, torque production is the essential factor for motor stability. These new results, in addition to previous data, lead us to hypothesize that the motor stators function as mechanosensors as well as functioning as torque-generating units.
Generation of novel motor sequences: the neural correlates of musical improvisation.
Berkowitz, Aaron L; Ansari, Daniel
2008-06-01
While some motor behavior is instinctive and stereotyped or learned and re-executed, much action is a spontaneous response to a novel set of environmental conditions. The neural correlates of both pre-learned and cued motor sequences have been previously studied, but novel motor behavior has thus far not been examined through brain imaging. In this paper, we report a study of musical improvisation in trained pianists with functional magnetic resonance imaging (fMRI), using improvisation as a case study of novel action generation. We demonstrate that both rhythmic (temporal) and melodic (ordinal) motor sequence creation modulate activity in a network of brain regions comprised of the dorsal premotor cortex, the rostral cingulate zone of the anterior cingulate cortex, and the inferior frontal gyrus. These findings are consistent with a role for the dorsal premotor cortex in movement coordination, the rostral cingulate zone in voluntary selection, and the inferior frontal gyrus in sequence generation. Thus, the invention of novel motor sequences in musical improvisation recruits a network of brain regions coordinated to generate possible sequences, select among them, and execute the decided-upon sequence.
Family patterns of development dyslexia, Part II: Behavioral phenotypes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolff, P.H.; Melngailis, I.; Bedrosian, M.
1995-12-18
The motor control of bimanual coordination and motor speech was compared between first degree relatives from families with at least 2 dyslexic family members, and families where probands were the only affected family members. Half of affected relatives had motor coordination deficits; and they came from families in which probands also showed impaired motor coordination. By contrast, affected relatives without motor deficits came from dyslexia families where probands did not have motor deficits. Motor coordination deficits were more common and more severe among affected offspring in families where both parents were affected than among affected offspring in families where onlymore » one parent was affected. However, motor coordination deficits were also more common and more severe in affected parents when both parents were affected than among affected parents in families where only one parent was affected. We conclude that impaired temporal resolution in motor action identifies a behavioral phenotype in some subtypes of developmental dyslexia. The observed pattern of transmission for motor deficits and reading impairment in about half of dyslexia families was most congruent with a genetic model of dyslexia in which 2 codominant major genes cosegregate in dyslexia pedigrees where the proband is also motorically impaired. 54 refs., 5 figs., 5 tabs.« less
Joiner, Wilsaan M; Ajayi, Obafunso; Sing, Gary C; Smith, Maurice A
2011-01-01
The ability to generalize learned motor actions to new contexts is a key feature of the motor system. For example, the ability to ride a bicycle or swing a racket is often first developed at lower speeds and later applied to faster velocities. A number of previous studies have examined the generalization of motor adaptation across movement directions and found that the learned adaptation decays in a pattern consistent with the existence of motor primitives that display narrow Gaussian tuning. However, few studies have examined the generalization of motor adaptation across movement speeds. Following adaptation to linear velocity-dependent dynamics during point-to-point reaching arm movements at one speed, we tested the ability of subjects to transfer this adaptation to short-duration higher-speed movements aimed at the same target. We found near-perfect linear extrapolation of the trained adaptation with respect to both the magnitude and the time course of the velocity profiles associated with the high-speed movements: a 69% increase in movement speed corresponded to a 74% extrapolation of the trained adaptation. The close match between the increase in movement speed and the corresponding increase in adaptation beyond what was trained indicates linear hypergeneralization. Computational modeling shows that this pattern of linear hypergeneralization across movement speeds is not compatible with previous models of adaptation in which motor primitives display isotropic Gaussian tuning of motor output around their preferred velocities. Instead, we show that this generalization pattern indicates that the primitives involved in the adaptation to viscous dynamics display anisotropic tuning in velocity space and encode the gain between motor output and motion state rather than motor output itself.
Stability and Patterning of Speech Movement Sequences in Children and Adults.
ERIC Educational Resources Information Center
Smith, Anne; Goffman, Lisa
1998-01-01
A study of 16 children (ages 4 and 7 years) and 8 young adults used an "Optotrak" system to study patterning and stability of speech movements in developing speech motor systems. Results indicate that nonlinear and nonuniform changes occur in components of the speech motor system during development. (Author/CR)
The Motor Core of Speech: A Comparison of Serial Organization Patterns in Infants and Languages.
ERIC Educational Resources Information Center
MacNeilage, Peter F.; Davis, Barbara L.; Kinney, Ashlynn; Matyear, Christine L.
2000-01-01
Presents evidence for four major design features of serial organization of speech arising from comparison of babbling and early speech with patterns in ten languages. Maintains that no explanation for the design features is available from Universal Grammar; except for intercyclical consonant repetition development, perceptual-motor learning seems…
NASA Astrophysics Data System (ADS)
Tramo, Mark Jude
2004-05-01
The acquisition and maintenance of fine-motor skills underlying musical instrument performance rely on the development, integration, and plasticity of neural systems localized within specific subregions of the cerebral cortex. Cortical representations of a motor sequence, such as a sequence of finger movements along the keys of a saxophone, take shape before the figure sequence occurs. The temporal pattern and spatial coordinates are computed by networks of neurons before and during the movements. When a finger sequence is practiced over and over, performance gets faster and more accurate, probably because cortical neurons generating the sequence increase in spatial extent, their electrical discharges become more synchronous, or both. By combining experimental methods such as single- and multi-neuron recordings, focal stimulation, microanatomical tracers, gross morphometry, evoked potentials, and functional imaging in humans and nonhuman primates, neuroscientists are gaining insights into the cortical physiology, anatomy, and plasticity of musical instrument performance.
Neurophysiology of Flight in Wild-Type and a Mutant Drosophila
Levine, Jon D.; Wyman, Robert J.
1973-01-01
We report the flight motor output pattern in Drosophila melanogaster and the neural network responsible for it, and describe the bursting motor output pattern in a mutant. There are 26 singly-innervated muscle fibers. There are two basic firing patterns: phase progression, shown by units that receive a common input but have no cross-connections, and phase stability, in which synergic units, receiving a common input and inhibiting each other, fire in a repeating sequence. Flies carrying the mutation stripe cannot fly. Their motor output is reduced to a short duration, high-frequency burst, but the patterning within bursts shows many of the characteristics of the wild type. The mutation is restricted in its effect, as the nervous system has normal morphology by light microscopy and other behaviors of the mutant are normal. Images PMID:4197927
Deecke, L
1987-01-01
Topographical studies in humans of the Bereitschaftspotential (BP, or readiness potential, as averaged from the electroencephalogram) and the Bereitschaftsmagnetfeld (BM, or readiness magnetic field, as averaged from the magnetoencephalogram) revealed a widespread distribution of motor preparation over both hemispheres even before unilateral movement. This indicates the existence of several generators responsible for the BP, including generators in the ipsilateral hemisphere, which is in agreement with measurements of regional cerebral blood flow or regional cerebral energy metabolism. Nevertheless, two principal generators seem to prevail: (1) An early generator, starting its activity 1s or more before the motor act, with its maximum at the vertex. For this and other reasons, early BP generation probably stems from cortical tissue representing or including the supplementary motor area (SMA). (2) A later generator, starting its activity about 0.5s before the onset of movement and biased towards the contralateral hemisphere (contralateral preponderance of negativity, CPN). For unilateral finger movements the CPN succeeds the BP's initial bilateral symmetry in the later preparation period. Thus, this lateralized BP component probably stems from the primary motor area, MI (area 4, hand representation). While regional cerebral blood flow or regional cerebral energy metabolism show that the SMA is active in conjunction with motor acts, these data do not permit the conclusion that SMA activity precedes motor acts. This can only be shown by the Bereitschaftspotential, which proves that SMA activity occurs before the onset of movement and, what is more, before the onset of MI activity. This important order of events (first SMA, then MI activation) has been elucidated by our BP studies. It gives the SMA an important functional role: the initiation of voluntary movement. The recording of movement-related potentials associated with manual hand-tracking and motor learning points to the SMA and frontal cortex having an important role in these functions.
Evidence for a general stiffening motor control pattern in neck pain: a cross sectional study.
Meisingset, Ingebrigt; Woodhouse, Astrid; Stensdotter, Ann-Katrin; Stavdahl, Øyvind; Lorås, Håvard; Gismervik, Sigmund; Andresen, Hege; Austreim, Kristian; Vasseljen, Ottar
2015-03-17
Neck pain is associated with several alterations in neck motion and motor control. Previous studies have investigated single constructs of neck motor control, while few have applied a comprehensive set of tests to investigate cervical motor control. This comparative cross- sectional study aimed to investigate different motor control constructs in neck pain patients and healthy controls. A total of 166 subjects participated in the study, 91 healthy controls (HC) and 75 neck pain patients (NP) with long-lasting moderate to severe neck pain. Neck flexibility, proprioception, head steadiness, trajectory movement control, and postural sway were assessed using a 3D motion tracking system (Liberty). The different constructs of neck motion and motor control were based on tests used in previous studies. Neck flexibility was lower in NP compared to HC, indicated by reduced cervical ROM and conjunct motion. Movement velocity was slower in NP compared to HC. Tests of head steadiness showed a stiffer movement pattern in NP compared to HC, indicated by lower head angular velocity. NP patients departed less from a predictable trajectory movement pattern (figure of eight) compared to healthy controls, but there was no difference for unpredictable movement patterns (the Fly test). No differences were found for postural sway in standing with eyes open and eyes closed. However, NP patients had significantly larger postural sway when standing on a balance pad. Proprioception did not differ between the groups. Largest effect sizes (ES) were found for neck flexibility (ES range: 0.2-0.8) and head steadiness (ES range: 1.3-2.0). Neck flexibility was the only construct that showed a significant association with current neck pain, while peak velocity was the only variable that showed a significant association with kinesiophobia. NP patients showed an overall stiffer and more rigid neck motor control pattern compared to HC, indicated by lower neck flexibility, slower movement velocity, increased head steadiness and more rigid trajectory head motion patterns. Only neck flexibility showed a significant association with clinical features in NP patients.
Linear summation of outputs in a balanced network model of motor cortex
Capaday, Charles; van Vreeswijk, Carl
2015-01-01
Given the non-linearities of the neural circuitry's elements, we would expect cortical circuits to respond non-linearly when activated. Surprisingly, when two points in the motor cortex are activated simultaneously, the EMG responses are the linear sum of the responses evoked by each of the points activated separately. Additionally, the corticospinal transfer function is close to linear, implying that the synaptic interactions in motor cortex must be effectively linear. To account for this, here we develop a model of motor cortex composed of multiple interconnected points, each comprised of reciprocally connected excitatory and inhibitory neurons. We show how non-linearities in neuronal transfer functions are eschewed by strong synaptic interactions within each point. Consequently, the simultaneous activation of multiple points results in a linear summation of their respective outputs. We also consider the effects of reduction of inhibition at a cortical point when one or more surrounding points are active. The network response in this condition is linear over an approximately two- to three-fold decrease of inhibitory feedback strength. This result supports the idea that focal disinhibition allows linear coupling of motor cortical points to generate movement related muscle activation patterns; albeit with a limitation on gain control. The model also explains why neural activity does not spread as far out as the axonal connectivity allows, whilst also explaining why distant cortical points can be, nonetheless, functionally coupled by focal disinhibition. Finally, we discuss the advantages that linear interactions at the cortical level afford to motor command synthesis. PMID:26097452
Moon, Hyun Im; Pyun, Sung-Bom; Tae, Woo-Suk; Kwon, Hee Kyu
2016-07-01
Stroke impairs motor, balance, and gait function and influences activities of daily living. Understanding the relationship between brain lesions and deficits can help clinicians set goals during rehabilitation. We sought to elucidate the neural substrates of lower extremity motor, balance, and ambulation function using voxel-based lesion symptom mapping (VLSM) in supratentorial stroke patients. We retrospectively screened patients who met the following criteria: first-ever stroke, supratentorial lesion, and available brain magnetic resonance imaging (MRI) data. MRIs of 133 stroke patients were selected for VLSM analysis. We generated statistical maps of lesions related to lower extremity motor (lower extremity Fugl-Meyer assessment, LEFM), balance (Berg Balance Scale, BBS), and gait (Functional Ambulation Category, FAC) using VLSM. VLSM revealed that lower LEFM scores were associated with damage to the bilateral basal ganglia, insula, internal capsule, and subgyral white matter adjacent to the corona radiata. The lesions were more widely distributed in the left than in the right hemisphere, representing motor and praxis function necessary for performing tasks. However, no associations between lesion maps and balance and gait function were established. Motor impairment of the lower extremities was associated with lesions in the basal ganglia, insula, internal capsule, and white matter adjacent to the corona radiata. However, VLSM revealed no specific lesion locations with regard to balance and gait function. This might be because balance and gait are complex skills that require spatial and temporal integration of sensory input and execution of movement patterns. For more accurate prediction, factors other than lesion location need to be investigated.
Neurogenic and myogenic motor patterns of rabbit proximal, mid, and distal colon.
Dinning, P G; Costa, M; Brookes, S J; Spencer, N J
2012-07-01
The rabbit colon consists of four distinct regions. The motility of each region is controlled by myogenic and neurogenic mechanisms. Associating these mechanisms with specific motor patterns throughout all regions of the colon has not previously been achieved. Three sections of the colon (the proximal, mid, and distal colon) were removed from euthanized rabbits. The proximal colon consists of a triply teniated region and a single tenia region. Spatio-temporal maps were constructed from video recordings of colonic wall diameter, with associated intraluminal pressure recorded from the aboral end. Hexamethonium (100 μM) and tetrodotoxin (TTX; 0.6 μM) were used to inhibit neural activity. Four distinct patterns of motility were detected: 1 myogenic and 3 neurogenic. The myogenic activity consisted of circular muscle (CM) contractions (ripples) that occurred throughout the colon and propagated in both antegrade (anal) and retrograde (oral) directions. The neural activity of the proximal colon consisted of slowly (0.1 mm/s) propagating colonic migrating motor complexes, which were abolished by hexamethonium. These complexes were observed in the region of the proximal colon with a single band of tenia. In the distal colon, tetrodotoxin-sensitive, thus neurally mediated, but hexamethonium-resistant, peristaltic (anal) and antiperistaltic (oral) contractions were identified. The distinct patterns of neurogenic and myogenic motor activity recorded from isolated rabbit colon are specific to each anatomically distinct region. The regional specificity motor pattern is likely to facilitate orderly transit of colonic content from semi-liquid to solid composition of feces.
Castañer, Marta; Barreira, Daniel; Camerino, Oleguer; Anguera, M. Teresa; Fernandes, Tiago; Hileno, Raúl
2017-01-01
Research in soccer has traditionally given more weight to players' technical and tactical skills, but few studies have analyzed the motor skills that underpin specific motor actions. The objective of this study was to investigate the style of play of the world's top soccer players, Cristiano Ronaldo and Lionel Messi, and how they use their motor skills in attacking actions that result in a goal. We used and improved the easy-to-use observation instrument (OSMOS-soccer player) with 9 criteria, each one expanded to build 50 categories. Associations between these categories were investigated by T-pattern detection and polar coordinate analysis. T-pattern analysis detects temporal structures of complex behavioral sequences composed of simpler or directly distinguishable events within specified observation periods (time point series). Polar coordinate analysis involves the application of a complex procedure to provide a vector map of interrelated behaviors obtained from prospective and retrospective sequential analysis. The T-patterns showed that for both players the combined criteria were mainly between the different aspects of motor skills, namely the use of lower limbs, contact with the ball using the outside of the foot, locomotion, body orientation with respect to the opponent goal line, and the criteria of technical actions and the right midfield. Polar coordinate analysis detected significant associations between the same criteria included in the T-patterns as well as the criteria of turning the body, numerical equality with no pressure, and relative numerical superiority. PMID:28553245
Castañer, Marta; Barreira, Daniel; Camerino, Oleguer; Anguera, M Teresa; Fernandes, Tiago; Hileno, Raúl
2017-01-01
Research in soccer has traditionally given more weight to players' technical and tactical skills, but few studies have analyzed the motor skills that underpin specific motor actions. The objective of this study was to investigate the style of play of the world's top soccer players, Cristiano Ronaldo and Lionel Messi, and how they use their motor skills in attacking actions that result in a goal. We used and improved the easy-to-use observation instrument (OSMOS-soccer player) with 9 criteria, each one expanded to build 50 categories. Associations between these categories were investigated by T-pattern detection and polar coordinate analysis. T-pattern analysis detects temporal structures of complex behavioral sequences composed of simpler or directly distinguishable events within specified observation periods (time point series). Polar coordinate analysis involves the application of a complex procedure to provide a vector map of interrelated behaviors obtained from prospective and retrospective sequential analysis. The T-patterns showed that for both players the combined criteria were mainly between the different aspects of motor skills, namely the use of lower limbs, contact with the ball using the outside of the foot, locomotion, body orientation with respect to the opponent goal line, and the criteria of technical actions and the right midfield. Polar coordinate analysis detected significant associations between the same criteria included in the T-patterns as well as the criteria of turning the body, numerical equality with no pressure, and relative numerical superiority.
Electrical stimulation and motor recovery.
Young, Wise
2015-01-01
In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical stimulation (FES) has long been used to activate sacral nerves to treat bladder and pelvic dysfunction and to augment motor function. In theory, FES should facilitate synaptic formation and motor recovery after regenerative therapies. Upcoming clinical trials provide unique opportunities to test the theory.
Uggetti, Carla; Ausenda, Carlo D; Squarza, Silvia; Cadioli, Marcello; Grimoldi, Ludovico; Cerri, Cesare; Cariati, Maurizio
2016-08-01
The bilateral transfer of a motor skill is a physiological phenomenon: the development of a motor skill with one hand can trigger the development of the same ability of the other hand. The purpose of this study was to verify whether bilateral transfer is associated with a specific brain activation pattern using functional magnetic resonance imaging (fMRI). The motor task was implemented as the execution of the Nine Hole Peg Test. Fifteen healthy subjects (10 right-handers and five left-handers) underwent two identical fMRI runs performing the motor task with the non-dominant hand. Between the first and the second run, each subject was intensively trained for five minutes to perform the same motor task with the dominant hand. Comparing the two functional scans across the pool of subjects, a change of the motor activation pattern was observed. In particular, we observed, in the second run, a change in the activation pattern both in the cerebellum and in the cerebral cortex. We found activations in cortical areas involved in somatosensory integration, areas involved in procedural memory. Our study shows, in a small group of healthy subjects, the modification of the fMRI activation pathway of a motor task performed by the non-dominant hand after intensive exercise performing the same task with the dominant hand. © The Author(s) 2016.
34. Interior of elevator tower, Block 31, looking northeast. Otis ...
34. Interior of elevator tower, Block 31, looking northeast. Otis Tandem Gearless Elevator Hoist (1941); floor selector (far left), in foreground is the motor generator set which includes exciter (left), AC motor (center), DC generator (right); beyond is the passenger motor (right), hoist cable and drum (center), freight motor (left). - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA
2014-01-01
Ambulation or walking is one of the main gaits of locomotion. In terrestrial animals, it may be defined as a series of rhythmic and bilaterally coordinated movement of the limbs which creates a forward movement of the body. This applies regardless of the number of limbs—from arthropods with six or more limbs to bipedal primates. These fundamental similarities among species may explain why comparable neural systems and cellular properties have been found, thus far, to control in similar ways locomotor rhythm generation in most animal models. The aim of this article is to provide a comprehensive review of the known structural and functional features associated with central nervous system (CNS) networks that are involved in the control of ambulation and other stereotyped motor patterns—specifically Central Pattern Generators (CPGs) that produce basic rhythmic patterned outputs for locomotion, micturition, ejaculation, and defecation. Although there is compelling evidence of their existence in humans, CPGs have been most studied in reduced models including in vitro isolated preparations, genetically-engineered mice and spinal cord-transected animals. Compared with other structures of the CNS, the spinal cord is generally considered as being well-preserved phylogenetically. As such, most animal models of spinal cord-injured (SCI) should be considered as valuable tools for the development of novel pharmacological strategies aimed at modulating spinal activity and restoring corresponding functions in chronic SCI patients. PMID:24910602
How to make spinal motor neurons.
Davis-Dusenbery, Brandi N; Williams, Luis A; Klim, Joseph R; Eggan, Kevin
2014-02-01
All muscle movements, including breathing, walking, and fine motor skills rely on the function of the spinal motor neuron to transmit signals from the brain to individual muscle groups. Loss of spinal motor neuron function underlies several neurological disorders for which treatment has been hampered by the inability to obtain sufficient quantities of primary motor neurons to perform mechanistic studies or drug screens. Progress towards overcoming this challenge has been achieved through the synthesis of developmental biology paradigms and advances in stem cell and reprogramming technology, which allow the production of motor neurons in vitro. In this Primer, we discuss how the logic of spinal motor neuron development has been applied to allow generation of motor neurons either from pluripotent stem cells by directed differentiation and transcriptional programming, or from somatic cells by direct lineage conversion. Finally, we discuss methods to evaluate the molecular and functional properties of motor neurons generated through each of these techniques.
Motor Controller System For Large Dynamic Range of Motor Operation
NASA Technical Reports Server (NTRS)
Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor); Dutton, Kenneth R. (Inventor); Paulson, Mitchell Scott (Inventor)
2006-01-01
A motor controller system uses a rotary sensor with a plurality of signal conditioning units, coupled to the rotary sensor. Each of these units, which is associated with a particular range of motor output shaft rotation rates, generate a feedback signal indicative of the position of the motor s output shaft. A controller (i) converts a selected motor output shaft rotation rate to a corresponding incremental amount of rotational movement for a selected fixed time period, (ii) selects, at periodic completions of the selected fixed time period, the feedback signal from one of the signal conditioning units for which the particular range of motor output shaft rotation rates associated therewith encompasses the selected motor output shaft rotation rate, and (iii) generates a motor drive signal based on a difference between the incremental amount of rotational movement and the feedback signal from the selected one of the signal conditioning Units.
Kamson, David O.; Juhász, Csaba; Shin, Joseph; Behen, Michael E.; Guy, William C.; Chugani, Harry T.; Jeong, Jeong-Won
2014-01-01
Background Reorganization of the corticospinal tract (CST) after early damage can limit motor deficit. In this study, we explored patterns of structural CST reorganization in children with Sturge-Weber syndrome. Methods Five children (age 1.5-7 years) with motor deficit due to unilateral Sturge-Weber syndrome were studied prospectively and longitudinally (1-2 years follow-up). CST segments belonging to hand and leg movements were separated, and their volume was measured by diffusion tensor imaging (DTI) tractography using a recently validated method. CST segmental volumes were normalized and compared between the SWS children and age-matched healthy controls. Volume changes during follow-up were also compared to clinical motor symptoms. Results In the SWS children, hand-related (but not leg-related) CST volumes were consistently decreased in the affected cerebral hemisphere at baseline. At follow-up, two distinct patterns of hand CST volume changes emerged: (i) Two children with extensive frontal lobe damage showed a CST volume decrease in the lesional hemisphere and a concomitant increase in the non-lesional (contralateral) hemisphere. These children developed good hand grasp but no fine motor skills. (ii) The three other children, with relative sparing of the frontal lobe, showed an interval increase of the normalized hand CST volume in the affected hemisphere; these children showed no gross motor deficit at follow-up. Conclusions DTI tractography can detect differential abnormalities in the hand CST segment both ipsi- and contralateral to the lesion. Interval increase in the CST hand segment suggests structural reorganization, whose pattern may determine clinical motor outcome and could guide strategies for early motor intervention. PMID:24507695
Kamson, David O; Juhász, Csaba; Shin, Joseph; Behen, Michael E; Guy, William C; Chugani, Harry T; Jeong, Jeong-Won
2014-04-01
Reorganization of the corticospinal tract after early damage can limit motor deficit. In this study, we explored patterns of structural corticospinal tract reorganization in children with Sturge-Weber syndrome. Five children (age 1.5-7 years) with motor deficit resulting from unilateral Sturge-Weber syndrome were studied prospectively and longitudinally (1-2 years follow-up). Corticospinal tract segments belonging to hand and leg movements were separated and their volume was measured by diffusion tensor imaging tractography using a recently validated method. Corticospinal tract segmental volumes were normalized and compared between the Sturge-Weber syndrome children and age-matched healthy controls. Volume changes during follow-up were also compared with clinical motor symptoms. In the Sturge-Weber syndrome children, hand-related (but not leg-related) corticospinal tract volumes were consistently decreased in the affected cerebral hemisphere at baseline. At follow-up, two distinct patterns of hand corticospinal tract volume changes emerged. (1) Two children with extensive frontal lobe damage showed a corticospinal tract volume decrease in the lesional hemisphere and a concomitant increase in the nonlesional (contralateral) hemisphere. These children developed good hand grasp but no fine motor skills. (2) The three other children, with relative sparing of the frontal lobe, showed an interval increase of the normalized hand corticospinal tract volume in the affected hemisphere; these children showed no gross motor deficit at follow-up. Diffusion tensor imaging tractography can detect differential abnormalities in the hand corticospinal tract segment both ipsi- and contralateral to the lesion. Interval increase in the corticospinal tract hand segment suggests structural reorganization, whose pattern may determine clinical motor outcome and could guide strategies for early motor intervention. Copyright © 2014 Elsevier Inc. All rights reserved.
Troyer, Angela K; Black, Sandra E; Armilio, Maria L; Moscovitch, Morris
2004-01-01
Focal damage to the basal ganglia is relatively rare, and little is known about the cognitive effects of damage to specific basal ganglia structures. A 28-year-old, highly educated male (patient RI) sustained a unilateral left ischemic infarction involving primarily the putamen and secondarily the head of the caudate and the anterior internal capsule. Two detailed neuropsychological assessments, at 3 and 16 months post-infarction, revealed that a majority of cognitive abilities were spared. RI's general intelligence, simple attention, concept formation, cognitive flexibility, and explicit memory were unaffected. Select cognitive abilities were affected, and these appeared to be related to direct involvement of the putamen and/or to indirect disruption of circuits between the basal ganglia and frontal lobes. Consistent with involvement of the left putamen, RI showed micrographia with his right hand. Interestingly, his micrographia was context-dependent, appearing only when verbal expression was involved (e.g., present when writing spontaneously, but not when copying sentences or when drawing). Evidence of disruption to frontal systems included variably decreased sustained attention, mildly decreased ability to generate words and to generate ideas, and significantly impaired abstraction ability in both verbal and visual modalities. Although there are several possible interpretations for these findings, this pattern of cognitive and motor functioning is consistent with neuroimaging research suggesting that the frontal/subcortical circuit between the putamen and frontal motor areas plays a role in non-routine response selection and performance.
Inferior olive mirrors joint dynamics to implement an inverse controller.
Alvarez-Icaza, Rodrigo; Boahen, Kwabena
2012-10-01
To produce smooth and coordinated motion, our nervous systems need to generate precisely timed muscle activation patterns that, due to axonal conduction delay, must be generated in a predictive and feedforward manner. Kawato proposed that the cerebellum accomplishes this by acting as an inverse controller that modulates descending motor commands to predictively drive the spinal cord such that the musculoskeletal dynamics are canceled out. This and other cerebellar theories do not, however, account for the rich biophysical properties expressed by the olivocerebellar complex's various cell types, making these theories difficult to verify experimentally. Here we propose that a multizonal microcomplex's (MZMC) inferior olivary neurons use their subthreshold oscillations to mirror a musculoskeletal joint's underdamped dynamics, thereby achieving inverse control. We used control theory to map a joint's inverse model onto an MZMC's biophysics, and we used biophysical modeling to confirm that inferior olivary neurons can express the dynamics required to mirror biomechanical joints. We then combined both techniques to predict how experimentally injecting current into the inferior olive would affect overall motor output performance. We found that this experimental manipulation unmasked a joint's natural dynamics, as observed by motor output ringing at the joint's natural frequency, with amplitude proportional to the amount of current. These results support the proposal that the cerebellum-in particular an MZMC-is an inverse controller; the results also provide a biophysical implementation for this controller and allow one to make an experimentally testable prediction.
ERIC Educational Resources Information Center
Schubert, T. F.; Jacobitz, F. G.; Kim, E. M.
2009-01-01
In order to meet changing curricular needs, an electric motor and generator laboratory experience was designed, implemented, and assessed. The experiment is unusual in its early placement in the curriculum and in that it focuses on modeling electric motors, predicting their performance, and measuring efficiency of energy conversion. While…
Solomon, Irene C; Chon, Ki H; Rodriguez, Melissa N
2003-01-01
Recent investigations have examined the influence of gap junctional communication on generation and modulation of respiratory rhythm and inspiratory motoneuron synchronization in vitro using transverse medullary slice and en bloc brain stem-spinal cord preparations obtained from neonatal (1-5 days postnatal) mice. Gap junction proteins, however, have been identified in both neurons and glia in brain stem regions implicated in respiratory control in both neonatal and adult rodents. Here, we used an in vitro arterially perfused rat preparation to examine the role of gap junctional communication on generation and modulation of respiratory rhythm and inspiratory motoneuron synchronization in adult rodents. We recorded rhythmic inspiratory motor activity from one or both phrenic nerves before and during pharmacological blockade (i.e., uncoupling) of brain stem gap junctions using carbenoxolone (100 microM), 18alpha-glycyrrhetinic acid (25-100 microM), 18beta-glycyrrhetinic acid (25-100 microM), octanol (200-300 microM), or heptanol (200 microM). During perfusion with a gap junction uncoupling agent, we observed an increase in the frequency of phrenic bursts (~95% above baseline frequency; P < 0.001) and a decrease in peak amplitude of integrated phrenic nerve discharge (P < 0.001). The increase in frequency of phrenic bursts resulted from a decrease in both T(I) (P < 0.01) and T(E) (P < 0.01). In addition, the pattern of phrenic nerve discharge shifted from an augmenting discharge pattern to a "bell-shaped" or square-wave discharge pattern in most experiments. Spectral analyses using a fast Fourier transform (FFT) algorithm revealed a reduction in the peak power of both the 40- to 50-Hz peak (corresponding to the MFO) and 90- to 110-Hz peak (corresponding to the HFO) although spurious higher frequency activity (> or =130 Hz) was observed, suggesting an overall loss or reduction in inspiratory-phase synchronization. Although additional experiments are required to identify the specific brain stem regions and cell types (i.e., neurons, glia) mediating the observed modulations in phrenic motor output, these findings suggest that gap junction communication modulates generation of respiratory rhythm and inspiratory motoneuron synchronization in adult rodents in vitro.
de Manzano, Örjan; Ullén, Fredrik
2012-10-15
Free, i.e. non-externally cued generation of movement sequences is fundamental to human behavior. We have earlier hypothesized that the dorsal premotor cortex (PMD), which has been consistently implicated in cognitive aspects of planning and selection of spatial motor sequences may be particularly important for the free generation of spatial movement sequences, whereas the pre-supplementary motor area (pre-SMA), which shows increased activation during perception, learning and reproduction of temporal sequences, may contribute more to the generation of temporal structures. Here we test this hypothesis using fMRI and musical improvisation in professional pianists as a model behavior. We employed a 2 × 2 factorial design with the factors Melody (Specified/Improvised) and Rhythm (Specified/Improvised). The main effect analyses partly confirmed our hypothesis: there was a main effect of Melody in the PMD; the pre-SMA was present in the main effect of Rhythm, as predicted, as well as in the main effect of Melody. A psychophysiological interaction analysis of functional connectivity demonstrated that the correlation in activity between the pre-SMA and cerebellum was higher during rhythmic improvisation than during the other conditions. In summary, there were only subtle differences in activity level between the pre-SMA and PMD during improvisation, regardless of condition. Consequently, the free generation of rhythmic and melodic structures, appears to be largely integrated processes but the functional connectivity between premotor areas and other regions may change during free generation in response to sequence-specific spatiotemporal demands. Copyright © 2012 Elsevier Inc. All rights reserved.
Hu, Xiaogang; Suresh, Aneesha K; Rymer, William Z; Suresh, Nina L
2016-08-01
Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.
NASA Astrophysics Data System (ADS)
Hu, Xiaogang; Suresh, Aneesha K.; Rymer, William Z.; Suresh, Nina L.
2016-08-01
Objective. Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Approach. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Main results. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Significance. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.
Tubulin Glutamylation Regulates Ciliary Motility by Altering Inner Dynein Arm Activity
Suryavanshi, Swati; Eddé, Bernard; Fox, Laura A.; Guerrero, Stella; Hard, Robert; Hennessey, Todd; Kabi, Amrita; Malison, David; Pennock, David; Sale, Winfield S.; Wloga, Dorota; Gaertig, Jacek
2010-01-01
SUMMMARY How microtubule-associated motor proteins are regulated is not well understood. A potential mechanism for spatial regulation of motor proteins is provided by post-translational modifications of tubulin subunits that form patterns on microtubules. Glutamylation is a conserved tubulin modification [1] that is enriched in axonemes. The enzymes responsible for this PTM, glutamic acid ligases (E-ligases), belong to a family of proteins with a tubulin tyrosine ligase (TTL) homology domain (TTL-like or TTLL proteins) [2]. We show that in cilia of Tetrahymena, TTLL6 E-ligases generate glutamylation mainly on the B-tubule of outer doublet microtubules, the site of force production by ciliary dynein. Deletion of two TTLL6 paralogs caused severe deficiency in ciliary motility associated with abnormal waveform and reduced beat frequency. In isolated axonemes with a normal dynein arm composition, TTLL6 deficiency did not affect the rate of ATP-induced doublet microtubule sliding. Unexpectedly, the same TTLL6 deficiency increased the velocity of microtubule sliding in axonemes that also lack outer dynein arms, in which forces are generated by inner dynein arms. We conclude that tubulin glutamylation on the B-tubule inhibits the net force imposed on sliding doublet microtubules by inner dynein arms. PMID:20189389
Hu, Xiaogang; Suresh, Aneesha K; Rymer, William Z; Suresh, Nina L
2015-12-01
The advancement of surface electromyogram (sEMG) recording and signal processing techniques has allowed us to characterize the recruitment properties of a substantial population of motor units (MUs) non-invasively. Here we seek to determine whether MU recruitment properties are modified in paretic muscles of hemispheric stroke survivors. Using an advanced EMG sensor array, we recorded sEMG during isometric contractions of the first dorsal interosseous muscle over a range of contraction levels, from 20% to 60% of maximum, in both paretic and contralateral muscles of stroke survivors. Using MU decomposition techniques, MU action potential amplitudes and recruitment thresholds were derived for simultaneously activated MUs in each isometric contraction. Our results show a significant disruption of recruitment organization in paretic muscles, in that the size principle describing recruitment rank order was materially distorted. MUs were recruited over a very narrow force range with increasing force output, generating a strong clustering effect, when referenced to recruitment force magnitude. Such disturbances in MU properties also correlated well with the impairment of voluntary force generation. Our findings provide direct evidence regarding MU recruitment modifications in paretic muscles of stroke survivors, and suggest that these modifications may contribute to weakness for voluntary contractions.
Peptide Assembly-Driven Metal-Organic Framework (MOF) Motors for Micro Electric Generator
Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L.; Uemura, Takashi; Zheng, Yongtai; Kitagawa, Susumu
2014-01-01
Peptide-MOF motors, whose motions are driven by anisotropic surface gradients created via peptide self-assembly around nanopores of MOFs, can rotate microscopic rotors and magnet fast enough to generate electric power of 0.1 µW. To make the peptide-MOF generator recyclable, a new MOF is applied as a host motor engine, which has a more rigid framework with higher H2O affinity so that peptide release occurs more efficiently via guest exchange without the destruction of MOF. PMID:25418936
Liu, Yishi; LeBeouf, Brigitte; Guo, Xiaoyan; Correa, Paola A.; Gualberto, Daisy G.; Lints, Robyn; Garcia, L. Rene
2011-01-01
Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K+ channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components. PMID:21423722
Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario
2015-02-01
Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions. Copyright © 2015 the American Physiological Society.
NASA Technical Reports Server (NTRS)
Pevzner, L. Z.; Venkov, L.; Cheresharov, L.
1980-01-01
Albino rats were kept for a year under conditions of daily motor load or constant hypokinesia. An increase in motor activity results in a rise in the acetylcholinesterase activity determined in the synaptosomal and purified mitochondrial fractions while hypokinesia induces a pronounced decrease in this enzyme activity. The butyrylcholinesterase activity somewhat decreases in the synaptosomal fraction after hypokinesia but does not change under the motor load pattern. Motor load causes an increase in the amount of synaptosomal water-soluble proteins possessing an intermediate electrophoretic mobility and seem to correspond to the brain-specific protein 14-3-2. In the synaptosomal fraction the amount of membrane proteins with a low electrophoretic mobility and with the cholinesterase activity rises. Hypokinesia, on the contrary, decreases the amount of these membrane proteins.
Dynamical systems techniques reveal the sexual dimorphic nature of motor patterns in birdsong
NASA Astrophysics Data System (ADS)
Mendez, J. M.; Alliende, J. A.; Amador, A.; Mindlin, G. B.
2006-10-01
In this work we analyze the pressure motor patterns used by canaries (Serinus canaria) during song, both in the cases of males and testosterone treated females. We found a qualitative difference between them which was not obvious from the acoustical features of the uttered songs. We also show the diversity of patterns, both for males and females, to be consistent with a recently proposed model for the dynamics of the oscine respiratory system. The model not only allows us to reproduce qualitative features of the different pressure patterns, but also to account for all the diversity of pressure patterns found in females.
Research Study Towards a MEFFV Electric Armament System
2004-01-01
CHPSPerf Inputs Parameter Setting Engine Power (kW) 500 per engine Generator Power (kW) 500/generator Traction Motors Power (kW) 500/side # Battery Pack...Cells in Parallel 2 # Motors in Drive Train 2 Max Power of Traction Motors 200 Minimum Engine Power (kW) 50 Optimum Engine Power (kW) 750 Stop... motors . Other options were examined for the energy storage system. Of particular interest in this regard is the use of the CPA flywheel as the load
a Low-Cost and Portable System for 3d Reconstruction of Texture-Less Objects
NASA Astrophysics Data System (ADS)
Hosseininaveh, A.; Yazdan, R.; Karami, A.; Moradi, M.; Ghorbani, F.
2015-12-01
The optical methods for 3D modelling of objects can be classified into two categories including image-based and range-based methods. Structure from Motion is one of the image-based methods implemented in commercial software. In this paper, a low-cost and portable system for 3D modelling of texture-less objects is proposed. This system includes a rotating table designed and developed by using a stepper motor and a very light rotation plate. The system also has eight laser light sources with very dense and strong beams which provide a relatively appropriate pattern on texture-less objects. In this system, regarding to the step of stepper motor, images are semi automatically taken by a camera. The images can be used in structure from motion procedures implemented in Agisoft software.To evaluate the performance of the system, two dark objects were used. The point clouds of these objects were obtained by spraying a light powders on the objects and exploiting a GOM laser scanner. Then these objects were placed on the proposed turntable. Several convergent images were taken from each object while the laser light sources were projecting the pattern on the objects. Afterward, the images were imported in VisualSFM as a fully automatic software package for generating an accurate and complete point cloud. Finally, the obtained point clouds were compared to the point clouds generated by the GOM laser scanner. The results showed the ability of the proposed system to produce a complete 3D model from texture-less objects.
The flagellar motor of Caulobacter crescentus generates more torque when a cell swims backward
Lele, Pushkar P.; Roland, Thibault; Shrivastava, Abhishek; Chen, Yihao; Berg, Howard C.
2016-01-01
Caulobacter crescentus, a monotrichous bacterium, swims by rotating a single right-handed helical filament. CW motor rotation thrusts the cell forward 1, a mode of motility known as the pusher mode; CCW motor rotation pulls the cell backward, a mode of motility referred to as the puller mode 2. The situation is opposite in E. coli, a peritrichous bacterium, where CCW rotation of multiple left-handed filaments drives the cell forward. The flagellar motor in E. coli generates more torque in the CCW direction than the CW direction in swimming cells 3,4. However, monotrichous bacteria including C. crescentus swim forward and backward at similar speeds, prompting the assumption that motor torques in the two modes are the same 5,6. Here, we present evidence that motors in C. crescentus develop higher torques in the puller mode than in the pusher mode, and suggest that the anisotropy in torque-generation is similar in two species, despite the differences in filament handedness and motor bias (probability of CW rotation). PMID:27499800
Recording In Vivo Human Colonic Motility: What Have We Learnt Over the Past 100 Years?
Dinning, Phil G
To understand the abnormalities that underpin functional gut disorders we must first gain insight into the normal patterns of gut motility. While detailed information continually builds on the motor patterns (and mechanisms that control them) of the human esophagus and anorectum, our knowledge of normal and abnormal motility in the more inaccessible regions of the gut remains poor. This particularly true of the human colon. Investigation of in vivo colonic motor patterns is achieved through measures of transit (radiology, scintigraphy and, more recently, "smart pills") or by direct real-time recording of colonic contractility (intraluminal manometry). This short review will provide an overview of findings from the past and present and attempt to piece together the complex nature of colonic motor patterns. In doing so it will build a profile of human colonic motility and determine the likely mechanisms that control this motility.
Torres, Elizabeth B; Cole, Jonathan; Poizner, Howard
2014-01-01
Parkinson's disease (PD) is a neurodegenerative disorder defined by motor impairments that include rigidity, systemic slowdown of movement (bradykinesia), postural problems, and tremor. While the progressive decline in motor output functions is well documented, less understood are impairments linked to the continuous kinesthetic sensation emerging from the flow of motions. There is growing evidence in recent years that kinesthetic problems are also part of the symptoms of PD, but objective methods to readily quantify continuously unfolding motions across different contexts have been lacking. Here we present evidence from a deafferented subject (IW) and a new statistical platform that enables new analyses of motor output variability measured as a continuous flow of kinesthetic reafferent input. Systematic increasing similarities between the patterns of motor output variability in IW and the participants with increasing degrees of PD severity suggest potential deficits in kinesthetic sensing in PD. We propose that these deficits may result from persistent, noisy, and random motor patterns as the disorder progresses. The stochastic signatures from the unfolding motions revealed levels of noise in the motor output fluctuations of these patients bound to decrease the kinesthetic signal's bandwidth. The results are interpreted in light of the concept of kinesthetic reafference ( Von Holst and Mittelstaedt, 1950). In this context, noisy motor output variability from voluntary movements in PD leads to a returning stream of noisy afference caused, in turn, by those faulty movements themselves. Faulty efferent output re-enters the CNS as corrupted sensory motor input. We find here that severity level in PD leads to the persistence of such patterns, thus bringing the statistical signatures of the subjects with PD systematically closer to those of the subject without proprioception.
Torres, Elizabeth B.; Cole, Jonathan; Poizner, Howard
2014-01-01
Parkinson’s disease (PD) is a neurodegenerative disorder defined by motor impairments that include rigidity, systemic slowdown of movement (bradykinesia), postural problems, and tremor. While the progressive decline in motor output functions is well documented, less understood are impairments linked to the continuous kinesthetic sensation emerging from the flow of motions. There is growing evidence in recent years that kinesthetic problems are also part of the symptoms of PD, but objective methods to readily quantify continuously unfolding motions across different contexts have been lacking. Here we present evidence from a deafferented subject (IW) and a new statistical platform that enables new analyses of motor output variability measured as a continuous flow of kinesthetic reafferent input. Systematic increasing similarities between the patterns of motor output variability in IW and the participants with increasing degrees of PD severity suggest potential deficits in kinesthetic sensing in PD. We propose that these deficits may result from persistent, noisy, and random motor patterns as the disorder progresses. The stochastic signatures from the unfolding motions revealed levels of noise in the motor output fluctuations of these patients bound to decrease the kinesthetic signal’s bandwidth. The results are interpreted in light of the concept of kinesthetic reafference ( Von Holst and Mittelstaedt, 1950). In this context, noisy motor output variability from voluntary movements in PD leads to a returning stream of noisy afference caused, in turn, by those faulty movements themselves. Faulty efferent output re-enters the CNS as corrupted sensory motor input. We find here that severity level in PD leads to the persistence of such patterns, thus bringing the statistical signatures of the subjects with PD systematically closer to those of the subject without proprioception. PMID:25374524
What Do Eye Gaze Metrics Tell Us about Motor Imagery?
Poiroux, Elodie; Cavaro-Ménard, Christine; Leruez, Stéphanie; Lemée, Jean Michel; Richard, Isabelle; Dinomais, Mickael
2015-01-01
Many of the brain structures involved in performing real movements also have increased activity during imagined movements or during motor observation, and this could be the neural substrate underlying the effects of motor imagery in motor learning or motor rehabilitation. In the absence of any objective physiological method of measurement, it is currently impossible to be sure that the patient is indeed performing the task as instructed. Eye gaze recording during a motor imagery task could be a possible way to "spy" on the activity an individual is really engaged in. The aim of the present study was to compare the pattern of eye movement metrics during motor observation, visual and kinesthetic motor imagery (VI, KI), target fixation, and mental calculation. Twenty-two healthy subjects (16 females and 6 males), were required to perform tests in five conditions using imagery in the Box and Block Test tasks following the procedure described by Liepert et al. Eye movements were analysed by a non-invasive oculometric measure (SMI RED250 system). Two parameters describing gaze pattern were calculated: the index of ocular mobility (saccade duration over saccade + fixation duration) and the number of midline crossings (i.e. the number of times the subjects gaze crossed the midline of the screen when performing the different tasks). Both parameters were significantly different between visual imagery and kinesthesic imagery, visual imagery and mental calculation, and visual imagery and target fixation. For the first time we were able to show that eye movement patterns are different during VI and KI tasks. Our results suggest gaze metric parameters could be used as an objective unobtrusive approach to assess engagement in a motor imagery task. Further studies should define how oculomotor parameters could be used as an indicator of the rehabilitation task a patient is engaged in.
2013-01-01
Background In patients with schizophrenia, altered brain activation and motor activity levels are central features, reflecting cognitive impairments and negative symptoms, respectively. Newer studies using nonlinear methods have addressed the severe disturbances in neurocognitive functioning that is regarded as one of the core features of schizophrenia. Our aim was to compare brain activation and motor activity in a patient during pharmacological treatment that was switched from a first- to a second-generation antipsychotic drug. We hypothesised that this change of medication would increase level of responding in both measures. Case presentation We present the case of a 53-year-old male with onset of severe mental illness in adolescence, ICD-10 diagnosed as schizophrenia of paranoid type, chronic form. We compared brain activation and motor activity in this patient during pharmacological treatment with a first-generation (perphenazin), and later switched to a second-generation (risperidone) antipsychotic drug. We used functional magnetic resonance imaging (fMRI) to measure brain activation and wrist worn actigraphy to measure motor activity. Conclusion Our study showed that brain activation decreased in areas critical for cognitive functioning in this patient, when changing from a first to a second generation antipsychotic drug. However the mean motor activity level was unchanged, although risperidone reduced variability, particularly short-term variability from minute to minute. Compared to the results from previous studies, the present findings indicate that changing to a second-generation antipsychotic alters variability measures towards that seen in a control group, but with reduced brain activation, which was an unexpected finding. PMID:23648137
Berle, Jan Øystein; Løberg, Else-Marie; Fasmer, Ole Bernt
2013-05-06
In patients with schizophrenia, altered brain activation and motor activity levels are central features, reflecting cognitive impairments and negative symptoms, respectively. Newer studies using nonlinear methods have addressed the severe disturbances in neurocognitive functioning that is regarded as one of the core features of schizophrenia. Our aim was to compare brain activation and motor activity in a patient during pharmacological treatment that was switched from a first- to a second-generation antipsychotic drug. We hypothesised that this change of medication would increase level of responding in both measures. We present the case of a 53-year-old male with onset of severe mental illness in adolescence, ICD-10 diagnosed as schizophrenia of paranoid type, chronic form. We compared brain activation and motor activity in this patient during pharmacological treatment with a first-generation (perphenazin), and later switched to a second-generation (risperidone) antipsychotic drug. We used functional magnetic resonance imaging (fMRI) to measure brain activation and wrist worn actigraphy to measure motor activity. Our study showed that brain activation decreased in areas critical for cognitive functioning in this patient, when changing from a first to a second generation antipsychotic drug. However the mean motor activity level was unchanged, although risperidone reduced variability, particularly short-term variability from minute to minute. Compared to the results from previous studies, the present findings indicate that changing to a second-generation antipsychotic alters variability measures towards that seen in a control group, but with reduced brain activation, which was an unexpected finding.
1 At speeds above mid-range, both the engine and electric motor are used to propel the vehicle. The gasoline engine provides power to the drive-train directly and to the electric motor via the generator. Go , generator, power split device, and electric motor visible. The car is moving. There are blue arrows flowing
Electrifying the motor engram: effects of tDCS on motor learning and control
de Xivry, Jean-Jacques Orban; Shadmehr, Reza
2014-01-01
Learning to control our movements accompanies neuroplasticity of motor areas of the brain. The mechanisms of neuroplasticity are diverse and produce what is referred to as the motor engram, i.e. the neural trace of the motor memory. Transcranial direct current stimulation (tDCS) alters the neural and behavioral correlates of motor learning, but its precise influence on the motor engram is unknown. In this review, we summarize the effects of tDCS on neural activity and suggest a few key principles: 1) firing rates are increased by anodal polarization and decreased by cathodal polarization, 2) anodal polarization strengthens newly formed associations, and 3) polarization modulates the memory of new/preferred firing patterns. With these principles in mind, we review the effects of tDCS on motor control, motor learning, and clinical applications. The increased spontaneous and evoked firing rates may account for the modulation of dexterity in non-learning tasks by tDCS. The facilitation of new association may account for the effect of tDCS on learning in sequence tasks while the ability of tDCS to strengthen memories of new firing patterns may underlie the effect of tDCS on consolidation of skills. We then describe the mechanisms of neuroplasticity of motor cortical areas and how they might be influenced by tDCS. We end with current challenges for the fields of brain stimulation and motor learning. PMID:25200178
‘Life is motion’: multiscale motility of molecular motors
NASA Astrophysics Data System (ADS)
Lipowsky, Reinhard; Klumpp, Stefan
2005-07-01
Life is intimately related to complex patterns of directed movement. It is quite remarkable that all of this movement is based on filaments and motor molecules which perform mechanical work on the nanometer scale. This article reviews recent theoretical work on the motility of molecular motors and motor particles that bind to cytoskeletal filaments and walk along these filaments in a directed fashion. It is emphasized that these systems exhibit several motility regimes which are well seperated in time. In their bound state, the motor particles move with a typical velocity of about 1 μm/s. The motor cycles underlying this bound motor movement can be understood in terms of driven Brownian ratchets and networks. On larger length and time scales, the motor particles unbind from the filaments and undergo peculiar motor walks consisting of many diffusional encounters with the filaments. If the mutual exclusion (or hardcore repulsion) of these motor particles is taken into account, one finds a variety of cooperative phenomena and self-organized processes: build-up of traffic jams; active structure formation leading to steady states with spatially nonuniform density and current patterns; and active phase transitions between different steady states far from equilibrium. A particularly simple active phase transition with spontaneous symmetry breaking is predicted to occur in systems with two species of motor particles which walk on the filaments in opposite directions.
Electrifying the motor engram: effects of tDCS on motor learning and control.
Orban de Xivry, Jean-Jacques; Shadmehr, Reza
2014-11-01
Learning to control our movements is accompanied by neuroplasticity of motor areas of the brain. The mechanisms of neuroplasticity are diverse and produce what is referred to as the motor engram, i.e., the neural trace of the motor memory. Transcranial direct current stimulation (tDCS) alters the neural and behavioral correlates of motor learning, but its precise influence on the motor engram is unknown. In this review, we summarize the effects of tDCS on neural activity and suggest a few key principles: (1) Firing rates are increased by anodal polarization and decreased by cathodal polarization, (2) anodal polarization strengthens newly formed associations, and (3) polarization modulates the memory of new/preferred firing patterns. With these principles in mind, we review the effects of tDCS on motor control, motor learning, and clinical applications. The increased spontaneous and evoked firing rates may account for the modulation of dexterity in non-learning tasks by tDCS. The facilitation of new association may account for the effect of tDCS on learning in sequence tasks while the ability of tDCS to strengthen memories of new firing patterns may underlie the effect of tDCS on consolidation of skills. We then describe the mechanisms of neuroplasticity of motor cortical areas and how they might be influenced by tDCS. We end with current challenges for the fields of brain stimulation and motor learning.
Maier, M A; Shupe, L E; Fetz, E E
2005-10-01
Dynamic recurrent neural networks were derived to simulate neuronal populations generating bidirectional wrist movements in the monkey. The models incorporate anatomical connections of cortical and rubral neurons, muscle afferents, segmental interneurons and motoneurons; they also incorporate the response profiles of four populations of neurons observed in behaving monkeys. The networks were derived by gradient descent algorithms to generate the eight characteristic patterns of motor unit activations observed during alternating flexion-extension wrist movements. The resulting model generated the appropriate input-output transforms and developed connection strengths resembling those in physiological pathways. We found that this network could be further trained to simulate additional tasks, such as experimentally observed reflex responses to limb perturbations that stretched or shortened the active muscles, and scaling of response amplitudes in proportion to inputs. In the final comprehensive network, motor units are driven by the combined activity of cortical, rubral, spinal and afferent units during step tracking and perturbations. The model displayed many emergent properties corresponding to physiological characteristics. The resulting neural network provides a working model of premotoneuronal circuitry and elucidates the neural mechanisms controlling motoneuron activity. It also predicts several features to be experimentally tested, for example the consequences of eliminating inhibitory connections in cortex and red nucleus. It also reveals that co-contraction can be achieved by simultaneous activation of the flexor and extensor circuits without invoking features specific to co-contraction.
Martoni, Monica; Carissimi, Alicia; Fabbri, Marco; Filardi, Marco; Tonetti, Lorenzo; Natale, Vincenzo
2016-12-01
Within a chronobiological perspective, the present study aimed to describe 24 h of sleep-wake cycle, motor activity, and food intake patterns in different body mass index (BMI) categories of children through 7 days of actigraphic recording. Height and weight were objectively measured for BMI calculation in a sample of 115 Italian primary schoolchildren (10.21 ± 0.48 years, 62.61 % females). According to BMI values, 2.60 % were underweight, 61.70 % were of normal weight, 29.60 % were overweight and 6.10 % were obese. Participants wore a wrist actigraph continuously for 7 days to record motor activity and describe sleep-wake patterns. In addition, participants were requested to push the event-marker button of the actigraph each time they consumed food to describe their circadian eating patterns. BMI group differences were found for sleep quantity (i.e. midpoint of sleep and amplitude), while sleep quality, 24-h motor activity and food intake patterns were similar between groups. Regression analyses showed that BMI was negatively predicted by sleep duration on schooldays. BMI was also predicted by motor activity and by food intake frequencies recorded at particular times of day during schooldays and at the weekend. The circadian perspective seems to provide promising insight into childhood obesity, but this aspect needs to be further explored.
Kodama, Takayuki; Nakano, Hideki; Katayama, Osamu; Murata, Shin
2017-01-01
The association between motor imagery ability and brain neural activity that leads to the manifestation of a motor illusion remains unclear. In this study, we examined the association between the ability to generate motor imagery and brain neural activity leading to the induction of a motor illusion by vibratory stimulation. The sample consisted of 20 healthy individuals who did not have movement or sensory disorders. We measured the time between the starting and ending points of a motor illusion (the time to illusion induction, TII) and performed electroencephalography (EEG). We conducted a temporo-spatial analysis on brain activity leading to the induction of motor illusions using the EEG microstate segmentation method. Additionally, we assessed the ability to generate motor imagery using the Japanese version of the Movement Imagery Questionnaire-Revised (JMIQ-R) prior to performing the task and examined the associations among brain neural activity levels as identified by microstate segmentation method, TII, and the JMIQ-R scores. The results showed four typical microstates during TII and significantly higher neural activity in the ventrolateral prefrontal cortex, primary sensorimotor area, supplementary motor area (SMA), and inferior parietal lobule (IPL). Moreover, there were significant negative correlations between the neural activity of the primary motor cortex (MI), SMA, IPL, and TII, and a significant positive correlation between the neural activity of the SMA and the JMIQ-R scores. These findings suggest the possibility that a neural network primarily comprised of the neural activity of SMA and M1, which are involved in generating motor imagery, may be the neural basis for inducing motor illusions. This may aid in creating a new approach to neurorehabilitation that enables a more robust reorganization of the neural base for patients with brain dysfunction with a motor function disorder.
High-Frequency Network Oscillations in Cerebellar Cortex
Middleton, Steven J.; Racca, Claudia; Cunningham, Mark O.; Traub, Roger D.; Monyer, Hannah; Knöpfel, Thomas; Schofield, Ian S.; Jenkins, Alistair; Whittington, Miles A.
2016-01-01
SUMMARY Both cerebellum and neocortex receive input from the somatosensory system. Interaction between these regions has been proposed to underpin the correct selection and execution of motor commands, but it is not clear how such interactions occur. In neocortex, inputs give rise to population rhythms, providing a spatiotemporal coding strategy for inputs and consequent outputs. Here, we show that similar patterns of rhythm generation occur in cerebellum during nicotinic receptor subtype activation. Both gamma oscillations (30–80 Hz) and very fast oscillations (VFOs, 80–160 Hz) were generated by intrinsic cerebellar cortical circuitry in the absence of functional glutamatergic connections. As in neocortex, gamma rhythms were dependent on GABAA receptor-mediated inhibition, whereas VFOs required only nonsynaptically connected intercellular networks. The ability of cerebellar cortex to generate population rhythms within the same frequency bands as neocortex suggests that they act as a common spatiotemporal code within which corticocerebellar dialog may occur. PMID:18549787
Teaching and Learning in Physical Education for Young Children.
ERIC Educational Resources Information Center
Grineski, Steven
1988-01-01
Planned physical education experiences should be an integral part of the preschool or kindergarten curriculum to: foster normal motor development, take advantage of children's readiness to develop and practice motor skills, fulfill children's need and desire for movement, and develop fundamental motor patterns. (CB)
Engineered kinesin motor proteins amenable to small-molecule inhibition
Engelke, Martin F.; Winding, Michael; Yue, Yang; Shastry, Shankar; Teloni, Federico; Reddy, Sanjay; Blasius, T. Lynne; Soppina, Pushpanjali; Hancock, William O.; Gelfand, Vladimir I.; Verhey, Kristen J.
2016-01-01
The human genome encodes 45 kinesin motor proteins that drive cell division, cell motility, intracellular trafficking and ciliary function. Determining the cellular function of each kinesin would benefit from specific small-molecule inhibitors. However, screens have yielded only a few specific inhibitors. Here we present a novel chemical-genetic approach to engineer kinesin motors that can carry out the function of the wild-type motor yet can also be efficiently inhibited by small, cell-permeable molecules. Using kinesin-1 as a prototype, we develop two independent strategies to generate inhibitable motors, and characterize the resulting inhibition in single-molecule assays and in cells. We further apply these two strategies to create analogously inhibitable kinesin-3 motors. These inhibitable motors will be of great utility to study the functions of specific kinesins in a dynamic manner in cells and animals. Furthermore, these strategies can be used to generate inhibitable versions of any motor protein of interest. PMID:27045608
Motor cortex embeds muscle-like commands in an untangled population response
Russo, Abigail A.; Bittner, Sean R.; Perkins, Sean M.; Seely, Jeffrey S.; London, Brian M.; Lara, Antonio H.; Miri, Andrew; Marshall, Najja J.; Kohn, Adam; Jessell, Thomas M.; Abbott, Laurence F.; Cunningham, John P.; Churchland, Mark M.
2018-01-01
Summary Primate motor cortex projects to spinal interneurons and motor neurons, suggesting that motor cortex activity may be dominated by muscle-like commands. Extensive observations during reaching lend support to this view, but evidence remains ambiguous and much-debated. To provide a different perspective, we employed a novel behavioral paradigm that affords extensive comparison between time-evolving neural and muscle activity. We found that single motor cortex neurons displayed many muscle-like properties, but the structure of population activity was not muscle-like. Unlike muscle activity, neural activity was structured to avoid ‘tangling’: moments where similar activity patterns led to dissimilar future patterns. Avoidance of tangling was present across tasks and species. Network models revealed a potential reason for this consistent feature: low tangling confers noise robustness. Finally, we were able to predict motor cortex activity from muscle activity alone, by leveraging the hypothesis that muscle-like commands are embedded in additional structure that yields low tangling. PMID:29398358
Changes in muscle fiber conduction velocity indicate recruitment of distinct motor unit populations.
Houtman, C J; Stegeman, D F; Van Dijk, J P; Zwarts, M J
2003-09-01
To obtain more insight into the changes in mean muscle fiber conduction velocity (MFCV) during sustained isometric exercise at relatively low contraction levels, we performed an in-depth study of the human tibialis anterior muscle by using multichannel surface electromyogram. The results show an increase in MFCV after an initial decrease of MFCV at 30 or 40% maximum voluntary contraction in all of the five subjects studied. With a peak velocity analysis, we calculated the distribution of conduction velocities of action potentials in the bipolar electromyogram signal. It shows two populations of peak velocities occurring simultaneously halfway through the exercise. The MFCV pattern implies the recruitment of two different populations of motor units. Because of the lowering of MFCV of the first activated population of motor units, the newly recruited second population of motor units becomes visible. It is most likely that the MFCV pattern can be ascribed to the fatiguing of already recruited predominantly type I motor units, followed by the recruitment of fresh, predominantly type II, motor units.
The punctum fixum-punctum mobile model: a neuromuscular principle for efficient movement generation?
von Laßberg, Christoph; Rapp, Walter
2015-01-01
According to the "punctum fixum-punctum mobile model" that was introduced in prior studies, for generation of the most effective intentional acceleration of a body part the intersegmental neuromuscular onset succession has to spread successively from the rotation axis (punctum fixum) toward the body part that shall be accelerated (punctum mobile). The aim of the present study was to investigate whether this principle is, indeed, fundamental for any kind of efficient rotational accelerations in general, independent of the kind of movements, type of rotational axis, the current body position, or movement direction. Neuromuscular onset succession was captured by surface electromyography of relevant muscles of the anterior and posterior muscle chain in 16 high-level gymnasts during intentional accelerating movement phases while performing 18 different gymnastics elements (in various body positions to forward and backward, performed on high bar, parallel bars, rings and trampoline), as well as during non-sport specific pivot movements around the longitudinal axis. The succession patterns to generate the acceleration phases during these movements were described and statistically evaluated based on the onset time difference between the muscles of the corresponding muscle chain. In all the analyzed movement phases, the results clearly support the hypothesized succession pattern from punctum fixum to punctum mobile. This principle was further underlined by the finding that the succession patterns do change their direction running through the body when the rotational axis (punctum fixum) has been changed (e.g., high bar or rings [hands] vs. floor or trampoline [feet]). The findings improve our understanding of intersegmental neuromuscular coordination patterns to generate intentional movements most efficiently. This could help to develop more specific methods to facilitate such patterns in particular contexts, thus allowing for shorter motor learning procedures of context-specific key movement sequences in different disciplines of sports, as well as during non-sport specific movements.
The Punctum Fixum-Punctum Mobile Model: A Neuromuscular Principle for Efficient Movement Generation?
von Laßberg, Christoph; Rapp, Walter
2015-01-01
According to the “punctum fixum–punctum mobile model” that was introduced in prior studies, for generation of the most effective intentional acceleration of a body part the intersegmental neuromuscular onset succession has to spread successively from the rotation axis (punctum fixum) toward the body part that shall be accelerated (punctum mobile). The aim of the present study was to investigate whether this principle is, indeed, fundamental for any kind of efficient rotational accelerations in general, independent of the kind of movements, type of rotational axis, the current body position, or movement direction. Neuromuscular onset succession was captured by surface electromyography of relevant muscles of the anterior and posterior muscle chain in 16 high-level gymnasts during intentional accelerating movement phases while performing 18 different gymnastics elements (in various body positions to forward and backward, performed on high bar, parallel bars, rings and trampoline), as well as during non-sport specific pivot movements around the longitudinal axis. The succession patterns to generate the acceleration phases during these movements were described and statistically evaluated based on the onset time difference between the muscles of the corresponding muscle chain. In all the analyzed movement phases, the results clearly support the hypothesized succession pattern from punctum fixum to punctum mobile. This principle was further underlined by the finding that the succession patterns do change their direction running through the body when the rotational axis (punctum fixum) has been changed (e.g., high bar or rings [hands] vs. floor or trampoline [feet]). The findings improve our understanding of intersegmental neuromuscular coordination patterns to generate intentional movements most efficiently. This could help to develop more specific methods to facilitate such patterns in particular contexts, thus allowing for shorter motor learning procedures of context-specific key movement sequences in different disciplines of sports, as well as during non-sport specific movements. PMID:25822498
Detection of Ludic Patterns in Two Triadic Motor Games and Differences in Decision Complexity
Aguilar, Miguel Pic; Navarro-Adelantado, Vicente; Jonsson, Gudberg K.
2018-01-01
The triad is a particular structure in which an ambivalent social relationship takes place. This work is focused on the search of behavioral regularities in the practice of motor games in triad, which is a little known field. For the detection of behavioral patterns not visible to the naked eye, we use Theme. A chasing games model was followed, with rules, and in two different structures (A↔B↔C↔A and A → B → C → A) on four class groups (two for each structure), for a total of 84, 12, and 13 year old secondary school students, 37 girls (44%) and 47 boys (56%). The aim was to examine if the players' behavior, in relation to the triad structure, matches with any ludic behavior patterns. An observational methodology was applied, with a nomothetic, punctual and multidimensional design. The intra and inter-evaluative correlation coefficients and the generalizability theory ensured the quality of the data. A mixed behavioral role system was used (four criteria and 15 categories), and the pattern detection software Theme was applied to detect temporal regularities in the order of event occurrences. The results show that time location of motor responses in triad games was not random. In the “maze” game we detected more complex ludic patterns than the “three fields” game, which might be explained by means of structural determinants such as circulation. This research points out the decisional complexity in motor games, and it confirms the differences among triads from the point of view of motor communication. PMID:29354084
Electrical system for a motor vehicle
Tamor, Michael Alan
1999-01-01
In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.
Electrical system for a motor vehicle
Tamor, M.A.
1999-07-20
In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor. 2 figs.
Discharge patterns of human genioglossus motor units during arousal from sleep.
Wilkinson, Vanessa; Malhotra, Atul; Nicholas, Christian L; Worsnop, Christopher; Jordan, Amy S; Butler, Jane E; Saboisky, Julian P; Gandevia, Simon C; White, David P; Trinder, John
2010-03-01
Single motor unit recordings of the human genioglossus muscle reveal motor units with a variety of discharge patterns. Integrated multiunit electromyographic recordings of genioglossus have demonstrated an abrupt increase in the muscle's activity at arousal from sleep. The aim of the present study was to determine the effect of arousal from sleep on the activity of individual motor units as a function of their particular discharge pattern. Genioglossus activity was measured using intramuscular fine-wire electrodes inserted via a percutaneous approach. Arousals from sleep were identified using the ASDA criterion and the genioglossus electromyogram recordings analyzed for single motor unit activity. Sleep research laboratory. Sleep and respiratory data were collected in 8 healthy subjects (6 men). 138 motor units were identified during prearousalarousal sleep: 25% inspiratory phasic, 33% inspiratory tonic, 4% expiratory phasic, 3% expiratory tonic, and 35% tonic. At arousal from sleep inspiratory phasic units significantly increased the proportion of a breath over which they were active, but did not appreciably increase their rate of firing. 80 new units were identified at arousals, 75% were inspiratory, many of which were active for only 1 or 2 breaths. 22% of units active before arousal, particularly expiratory and tonic units, stopped at the arousal. Increased genioglossus muscle activity at arousal from sleep is primarily due to recruitment of inspiratory phasic motor units. Further, activity within the genioglossus motoneuron pool is reorganized at arousal as, in addition to recruitment, approximately 20% of units active before arousals stopped firing.
Voon, V; Brezing, C; Gallea, C; Hallett, M
2014-01-01
Background Conversion disorder is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that conversion disorder with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amgydala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Methods Subjects performed either an internally or externally generated two-button action selection task in a functional MRI study. Results Eleven conversion disorder patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. Conclusion We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system which is both hypoactive and functionally disconnected from prefrontal top-down regulation. PMID:21935985
Voon, Valerie; Brezing, Christina; Gallea, Cecile; Hallett, Mark
2011-11-01
Conversion disorder (CD) is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that CD with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amygdala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Subjects performed either an internally or externally generated 2-button action selection task in a functional MRI study. Eleven CD patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula, and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system, which is both hypoactive and functionally disconnected from prefrontal top-down regulation. Copyright © 2011 Movement Disorder Society.
Lemon, W C; Levine, R B
1997-06-01
During the metamorphosis of Manduca sexta the larval nervous system is reorganized to allow the generation of behaviors that are specific to the pupal and adult stages. In some instances, metamorphic changes in neurons that persist from the larval stage are segment-specific and lead to expression of segment-specific behavior in later stages. At the larval-pupal transition, the larval abdominal bending behavior, which is distributed throughout the abdomen, changes to the pupal gin trap behavior which is restricted to three abdominal segments. This study suggests that the neural circuit that underlies larval bending undergoes segment specific modifications to produce the segmentally restricted gin trap behavior. We show, however, that non-gin trap segments go through a developmental change similar to that seen in gin trap segments. Pupal-specific motor patterns are produced by stimulation of sensory neurons in abdominal segments that do not have gin traps and cannot produce the gin trap behavior. In particular, sensory stimulation in non-gin trap pupal segments evokes a motor response that is faster than the larval response and that displays the triphasic contralateral-ipsilateral-contralateral activity pattern that is typical of the pupal gin trap behavior. Despite the alteration of reflex activity in all segments, developmental changes in sensory neuron morphology are restricted to those segments that form gin traps. In non-gin trap segments, persistent sensory neurons do not expand their terminal arbors, as do sensory neurons in gin trap segments, yet are capable of eliciting gin trap-like motor responses.
Gallivan, Jason P; McLean, D Adam; Flanagan, J Randall; Culham, Jody C
2013-01-30
Planning object-directed hand actions requires successful integration of the movement goal with the acting limb. Exactly where and how this sensorimotor integration occurs in the brain has been studied extensively with neurophysiological recordings in nonhuman primates, yet to date, because of limitations of non-invasive methodologies, the ability to examine the same types of planning-related signals in humans has been challenging. Here we show, using a multivoxel pattern analysis of functional MRI (fMRI) data, that the preparatory activity patterns in several frontoparietal brain regions can be used to predict both the limb used and hand action performed in an upcoming movement. Participants performed an event-related delayed movement task whereby they planned and executed grasp or reach actions with either their left or right hand toward a single target object. We found that, although the majority of frontoparietal areas represented hand actions (grasping vs reaching) for the contralateral limb, several areas additionally coded hand actions for the ipsilateral limb. Notable among these were subregions within the posterior parietal cortex (PPC), dorsal premotor cortex (PMd), ventral premotor cortex, dorsolateral prefrontal cortex, presupplementary motor area, and motor cortex, a region more traditionally implicated in contralateral movement generation. Additional analyses suggest that hand actions are represented independently of the intended limb in PPC and PMd. In addition to providing a unique mapping of limb-specific and action-dependent intention-related signals across the human cortical motor system, these findings uncover a much stronger representation of the ipsilateral limb than expected from previous fMRI findings.
Brake blending strategy for a hybrid vehicle
Boberg, Evan S.
2000-12-05
A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.
29 CFR 1926.406 - Specific purpose equipment and installations.
Code of Federal Regulations, 2013 CFR
2013-07-01
...—disconnecting means—(1) Motor-generator, AC transformer, and DC rectifier arc welders. A disconnecting means shall be provided in the supply circuit for each motor-generator arc welder, and for each AC transformer...
29 CFR 1926.406 - Specific purpose equipment and installations.
Code of Federal Regulations, 2012 CFR
2012-07-01
...—disconnecting means—(1) Motor-generator, AC transformer, and DC rectifier arc welders. A disconnecting means shall be provided in the supply circuit for each motor-generator arc welder, and for each AC transformer...
The Effects of Exercise on the Firing Patterns of Single Motor Units.
ERIC Educational Resources Information Center
Cracraft, Joe D.
In this study, the training effects of static and dynamic exercise programs on the firing patterns of 450 single motor units (SMU) in the human tibialis anterior muscle were investigated. In a six week program, the static group (N=5) participated in daily high intensity, short duration, isometric exercises while the dynamic group (N=5)…
Harmonic Fluxes and Electromagnetic Forces of Concentric Winding Brushless Permanent Magnet Motor
NASA Astrophysics Data System (ADS)
Ishibashi, Fuminori; Takemasa, Ryo; Matsushita, Makoto; Nishizawa, Takashi; Noda, Shinichi
Brushless permanent magnet motors have been widely used in home applications and industrial fields. These days, high efficiency and low noise motors are demanded from the view point of environment. Electromagnetic noise and iron loss of the motor are produced by the harmonic fluxes and electromagnetic forces. However, order and space pattern of these have not been discussed in detail. In this paper, fluxes, electromagnetic forces and magneto-motive forces of brushless permanent magnet motors with concentric winding were analyzed analytically, experimentally and numerically. Time harmonic fluxes and time electromagnetic forces in the air gap were measured by search coils on the inner surface of the stator teeth and analyzed by FEM. Space pattern of time harmonic fluxes and time electromagnetic forces were worked out with experiments and FEM. Magneto motive forces due to concentric winding were analyzed with equations and checked by FEM.
Wriessnegger, Selina C.; Steyrl, David; Koschutnig, Karl; Müller-Putz, Gernot R.
2014-01-01
Motor imagery (MI) is a commonly used paradigm for the study of motor learning or cognitive aspects of action control. The rationale for using MI training to promote the relearning of motor function arises from research on the functional correlates that MI shares with the execution of physical movements. While most of the previous studies investigating MI were based on simple movements in the present study a more attractive mental practice was used to investigate cortical activation during MI. We measured cerebral responses with functional magnetic resonance imaging (fMRI) in twenty three healthy volunteers as they imagined playing soccer or tennis before and after a short physical sports exercise. Our results demonstrated that only 10 min of training are enough to boost MI patterns in motor related brain regions including premotor cortex and supplementary motor area (SMA) but also fronto-parietal and subcortical structures. This supports previous findings that MI has beneficial effects especially in combination with motor execution when used in motor rehabilitation or motor learning processes. We conclude that sports MI combined with an interactive game environment could be a promising additional tool in future rehabilitation programs aiming to improve upper or lower limb functions or support neuroplasticity. PMID:25071505
75 FR 72863 - Motor Carrier Safety Advisory Committee Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-26
... MCSAC will complete action on Task 10-02, regarding Fatigue Management Plans for Commercial Motor Vehicle Drivers. Additionally, the MCSAC will commence work on Task 11-01, regarding Patterns of Safety... officer, safety director, vehicle maintenance supervisor, and driver supervisor of a motor carrier...
Sillar, K T; Reith, C A; McDearmid, J R
1998-11-16
In this article we review our research on the development and intrinsic neuromodulation of a spinal network controlling locomotion in a simple vertebrate. Swimming in hatchling Xenopus embryos is generated by a restricted network of well-characterized spinal neurons. This network produces a stereotyped motor pattern which, like real swimming, involves rhythmic activity that alternates across the body and progresses rostrocaudally with a brief delay between muscle segments. The stereotypy results from motoneurons discharging a single impulse in each cycle; because all motoneurons appear to behave similarly there is little scope for altering the output to the myotomes from one cycle to the next. Just one day later, however, Xenopus larvae generate a more complex and flexible motor pattern in which motoneurons can discharge a variable number of impulses which contribute to ventral root bursts in each cycle. This maturation of swimming is due, in part, to the influence of serotonin released from brain-stem raphespinal interneurons whose axonal projections innervate the cord early in larval life. Larval swimming is differentially modulated by both serotonin and by noradrenaline: serotonin leads to relatively fast, intense swimming whereas noradrenaline favors slower, weaker activity. Thus, these two biogenic amines select opposite extremes from the spectrum of possible output patterns that the swimming network can produce. Our studies on the cellular and synaptic effects of the amines indicate that they can control the strength of reciprocal glycinergic inhibition in the spinal cord. Serotonin and noradrenaline act presynaptically on the terminals of glycinergic commissural interneurons to weaken and strengthen, respectively, crossed glycinergic inhibition during swimming. As a result, serotonin reduces and noradrenaline increases interburst intervals. The membrane properties of spinal neurons are also affected by the amines. In particular, serotonin can induce intrinsic oscillatory membrane properties in the presence of NMDA. These depolarizations are slow compared to the cycle periods during swimming and so may contribute to enhancement of swimming over several consecutive cycles of activity.
Control system and method for a hybrid electric vehicle
Tamor, Michael Alan
2001-03-06
Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.
NASA Astrophysics Data System (ADS)
Razali Hanipah, M.; Razul Razali, Akhtar
2017-10-01
Free-piston engine generator (FPEG) provides a novel method for electrical power generation in hybrid electric vehicle applications with scarcely reported prototype development and testing. This paper is looking into the motion control strategy for motoring the FPEG during starting. There are two motion profiles investigated namely, trapezoidal velocity and Scurve velocity. Both motion profiles were investigated numerically and the results have shown that the S-curve motion can only achieve 80% of the stroke when operated at the proposed motoring speed of 10Hz.
Motor planning flexibly optimizes performance under uncertainty about task goals.
Wong, Aaron L; Haith, Adrian M
2017-03-03
In an environment full of potential goals, how does the brain determine which movement to execute? Existing theories posit that the motor system prepares for all potential goals by generating several motor plans in parallel. One major line of evidence for such theories is that presenting two competing goals often results in a movement intermediate between them. These intermediate movements are thought to reflect an unintentional averaging of the competing plans. However, normative theories suggest instead that intermediate movements might actually be deliberate, generated because they improve task performance over a random guessing strategy. To test this hypothesis, we vary the benefit of making an intermediate movement by changing movement speed. We find that participants generate intermediate movements only at (slower) speeds where they measurably improve performance. Our findings support the normative view that the motor system selects only a single, flexible motor plan, optimized for uncertain goals.
[Phylo- and ontogenetic aspects of erect posture and walking in developmental neurology].
Berényi, Marianne; Katona, Ferenc; Sanchez, Carmen; Mandujano, Mario
2011-07-30
The group or profile of elementary neuromotor patterns is different from the primitive reflex group which is now called the "primitive reflex profile." All these elementary neuromotor patterns are characterized by a high degree of organization, persistence, and stereotypy. In many regards, these patterns are predecessors or precursors of from them the specific human motor patterns which appear spontaneously later as crawling, creeping, sitting, and walking with erect posture. On the basis of our experiences it can be stated that the elementary neuromotor patterns can be activated in all neonates and young infants as congenital motor functions. With regards to their main properties and functional forms, the normal patterns can be divided into two main groups: (1) One group is characterized by lifting of the head and complex chains of movements which are directed to the verticalization of the body; (2) The other group is characterized by complex movements directed to locomotion and change of body position. The neuromotor patterns can be activated by placing the human infant in specific body positions that trigger the vestibulospinal and the reticulospinal systems, the archicerebellum and the basal gangliae. Most of these systems display early myelinisation and are functioning very soon. Many of the elementary neuromotor patterns reflect the most important - spontaneously developing forms of human movements such as sitting upright in space and head elevation crawling and walking. The majority of the human neuromotor patterns are human specific. When the infant is put in an activating position, crawling, sitting up, and walking begin and last as long as the activating position is maintained. Each elementary neuromotor pattern is a repeated, continuous train of complex movements in response to a special activating position. The brainstem is not sufficient to organize these complex movements, the integrity of the basal ganglia is also necessary. Elementary sensorimotor patterns during human ontogenesis reflect phylogenetic develpoment of species specific human functions. During ontogenesis spontaneous motor development gradually arises from these early specific sensorimotor predecessors.. The regular use of the elementary neuromotor patterns for diagnostic puposes has several distinct advantages. The neuromotor patterns have a natural stereotypy in normal infants and, therefore, deflections from this regular pattern may be detected easily, thus, the activation of the elementary neuromotor pattern is a more suitable method for identifying defects in the motor activity of the neonate or young infant than the assessment of the primitive reflexes. The "stiumulus positions," which activate specific movements according to how the human neonate or young infant is positioned, do not activate such motor patterns in neonate or young primates including apes. The characteristic locomotor pattern in these adult primates, including the apes, is swinging and involves brachiation with an extreme prehensility. This species specific motor activity is reflected in the orangutan and gibbon neonates by an early extensive grasp. However, according to our investigations, no crawling, creeping, elementary walk, or sitting up can be activated in them. Neonates grasp the hair of the mother, a vital function for the survival of the young. In contemporary nonhuman primates including apes, the neonate brain is more mature. Thus, pronounced differences can be observed between early motor ontogenesis in the human and all other primates. The earliest human movements are complex performances rather than simple reflexes. The distinction between primitive reflexes and elementary neuromotor patterns is essential. Primitive reflexes are controlled by the brainstem. All can be activated in primates. These reflexes have short durations and contrary to elementary sensorimotor patterns occur only once in response to one stimulus, e.g., one head drop elicits one abduction-adduction of the upper extremities correlated to adduction and flexion of the lower extremities to a lesser degree with the Moro reflex. Elementary neuromotor patterns are much more complex and most of them including elementary walk may be elicited as early as the 19th-20th gestational week, though less perfectly than later.
Low Voltage Electrolytic Capacitor Pulse Forming Inductive Network for Electric Weapons
2006-06-01
reliable high- current, high-energy pulses of many megawatts. Pulsed alternators potentially have the same maintenance issues as other motor ...high-energy pulses of many megawatts. Pulsed alternators potentially have the same maintenance issues as other motor -generator sets, so a solid...Rotating Flywheel) Pulse Forming Network Compensated Pulsed Alternators, or Compulsators as they are called, are essentially large motor -generator
Peptide assembly-driven metal-organic framework (MOF) motors for micro electric generators
Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L.; ...
2014-11-22
Peptide–metal–organic framework (Pep-MOF) motors, whose motions are driven by anisotropic surface tension gradients created via peptide self-assembly around frameworks, can rotate microscopic rotors and magnets fast enough to generate an electric power of 0.1 μW. Finally, a new rigid Pep-MOF motor can be recycled by refilling the peptide fuel into the nanopores of the MOF.
A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction.
Abulnaga, S Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M; Onyike, Chiadi U; Ying, Sarah H; Prince, Jerry L
2016-02-27
The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.
A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction
NASA Astrophysics Data System (ADS)
Abulnaga, S. Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M.; Onyike, Chiadi U.; Ying, Sarah H.; Prince, Jerry L.
2016-03-01
The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.
In vivo analysis of Purkinje cell firing properties during postnatal mouse development
Arancillo, Marife; White, Joshua J.; Lin, Tao; Stay, Trace L.
2014-01-01
Purkinje cell activity is essential for controlling motor behavior. During motor behavior Purkinje cells fire two types of action potentials: simple spikes that are generated intrinsically and complex spikes that are induced by climbing fiber inputs. Although the functions of these spikes are becoming clear, how they are established is still poorly understood. Here, we used in vivo electrophysiology approaches conducted in anesthetized and awake mice to record Purkinje cell activity starting from the second postnatal week of development through to adulthood. We found that the rate of complex spike firing increases sharply at 3 wk of age whereas the rate of simple spike firing gradually increases until 4 wk of age. We also found that compared with adult, the pattern of simple spike firing during development is more irregular as the cells tend to fire in bursts that are interrupted by long pauses. The regularity in simple spike firing only reached maturity at 4 wk of age. In contrast, the adult complex spike pattern was already evident by the second week of life, remaining consistent across all ages. Analyses of Purkinje cells in alert behaving mice suggested that the adult patterns are attained more than a week after the completion of key morphogenetic processes such as migration, lamination, and foliation. Purkinje cell activity is therefore dynamically sculpted throughout postnatal development, traversing several critical events that are required for circuit formation. Overall, we show that simple spike and complex spike firing develop with unique developmental trajectories. PMID:25355961
Induction motor speed control using varied duty cycle terminal voltage via PI controller
NASA Astrophysics Data System (ADS)
Azwin, A.; Ahmed, S.
2018-03-01
This paper deals with the PI speed controller for the three-phase induction motor using PWM technique. The PWM generated signal is utilized for voltage source inverter with an optimal duty cycle on a simplified induction motor model. A control algorithm for generating PWM control signal is developed. Obtained results shows that the steady state error and overshoot of the developed system is in the limit under different speed and load condition. The robustness of the control performance would be potential for induction motor performance improvement.
Ciryam, Prajwal; Lambert-Smith, Isabella A.; Bean, Daniel M.; Freer, Rosie; Cid, Fernando; Tartaglia, Gian Gaetano; Saunders, Darren N.; Wilson, Mark R.; Morimoto, Richard I.; Dobson, Christopher M.; Vendruscolo, Michele; Favrin, Giorgio; Yerbury, Justin J.
2017-01-01
Amyotrophic lateral sclerosis (ALS) is a heterogeneous degenerative motor neuron disease linked to numerous genetic mutations in apparently unrelated proteins. These proteins, including SOD1, TDP-43, and FUS, are highly aggregation-prone and form a variety of intracellular inclusion bodies that are characteristic of different neuropathological subtypes of the disease. Contained within these inclusions are a variety of proteins that do not share obvious characteristics other than coaggregation. However, recent evidence from other neurodegenerative disorders suggests that disease-affected biochemical pathways can be characterized by the presence of proteins that are supersaturated, with cellular concentrations significantly greater than their solubilities. Here, we show that the proteins that form inclusions of mutant SOD1, TDP-43, and FUS are not merely a subset of the native interaction partners of these three proteins, which are themselves supersaturated. To explain the presence of coaggregating proteins in inclusions in the brain and spinal cord, we observe that they have an average supersaturation even greater than the average supersaturation of the native interaction partners in motor neurons, but not when scores are generated from an average of other human tissues. These results suggest that inclusion bodies in various forms of ALS result from a set of proteins that are metastable in motor neurons, and thus prone to aggregation upon a disease-related progressive collapse of protein homeostasis in this specific setting. PMID:28396410
Casellato, Claudia; Gandolla, Marta; Crippa, Alessandro; Pedrocchi, Alessandra
2017-07-01
Autism spectrum disorder (ASD) is a multifaceted neurodevelopmental disorder characterized by a persistence of social and communication impairment, and restricted and repetitive behaviors. However, motor disorders have also been described, but not objectively assessed. Most studies showed inefficient eye-hand coordination and motor learning in children with ASD; in other experiments, mechanisms of acquisition of internal models in self-generated movements appeared to be normal in autism. In this framework, we have developed a robotic protocol, recording gaze and hand data during upper limb tasks, in which a haptic pen-like handle is moved along specific trajectories displayed on the screen. The protocol includes trials of reaching under a perturbing force field and catching moving targets, with or without visual availability of the whole path. We acquired 16 typically-developing scholar-age children and one child with ASD as a case study. Speed-accuracy tradeoff, motor performance, and gaze-hand spatial coordination have been evaluated. Compared to typically developing peers, in the force field sequence, the child with ASD showed an intact but delayed learning, and more variable gazehand patterns. In the catching trials, he showed less efficient movements, but an intact capability of exploiting the available a-priori plan. The proposed protocol represents a powerful tool, easily tunable, for quantitative (longitudinal) assessment, and for subject-tailored training in ASD.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-01
... and Generators Production) The Port of Houston Authority, grantee of FTZ 84, submitted a notification... used for the production of electric motors and generators for hybrid electric vehicles (HEV). Pursuant... motors and generators (duty rates range from free to 2.5%) for the foreign status inputs noted below...
Generation of Spinal Motor Neurons from Human Pluripotent Stem Cells.
Santos, David P; Kiskinis, Evangelos
2017-01-01
Human embryonic stem cells (ESCs) are characterized by their unique ability to self-renew indefinitely, as well as to differentiate into any cell type of the human body. Induced pluripotent stem cells (iPSCs) share these salient characteristics with ESCs and can easily be generated from any given individual by reprogramming somatic cell types such as fibroblasts or blood cells. The spinal motor neuron (MN) is a specialized neuronal subtype that synapses with muscle to control movement. Here, we present a method to generate functional, postmitotic, spinal motor neurons through the directed differentiation of ESCs and iPSCs by the use of small molecules. These cells can be utilized to study the development and function of human motor neurons in healthy and disease states.
Filtering and Control of High Speed Motor Current in a Flywheel Energy Storage System
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Santiago, Walter
2004-01-01
The NASA Glenn Research Center has been developing technology to enable the use of high speed flywheel energy storage units in future spacecraft for the last several years. An integral part of the flywheel unit is the three phase motor/generator that is used to accelerate and decelerate the flywheel. The motor/generator voltage is supplied from a pulse width modulated (PWM) inverter operating from a fixed DC voltage supply. The motor current is regulated through a closed loop current control that commands the necessary voltage from the inverter to achieve the desired current. The current regulation loop is the innermost control loop of the overall flywheel system and, as a result, must be fast and accurate over the entire operating speed range (20,000 to 60,000 rpm) of the flywheel. The voltage applied to the motor is a high frequency PWM version of the DC bus voltage that results in the commanded fundamental value plus higher order harmonics. Most of the harmonic content is at the switching frequency and above. The higher order harmonics cause a rapid change in voltage to be applied to the motor that can result in large voltage stresses across the motor windings. In addition, the high frequency content in the motor causes sensor noise in the magnetic bearings that leads to disturbances for the bearing control. To alleviate these problems, a filter is used to present a more sinusoidal voltage to the motor/generator. However, the filter adds additional dynamics and phase lag to the motor system that can interfere with the performance of the current regulator. This paper will discuss the tuning methodology and results for the motor/generator current regulator and the impact of the filter on the control. Results at speeds up to 50,000 rpm are presented.
Disordered Actomyosin Is Sufficient to Promote Cooperative and Telescopic Contractility
NASA Astrophysics Data System (ADS)
Murrell, Michael; Linsmeier, Ian; Banerjee, Shiladitya; Kim, Tae Yoon; Jung, Wonyeong; Oakes, Patrick
While the molecular interactions between myosin motors and F-actin are well known, the relationship between F-actin organization and myosin-mediated force generation remains poorly understood. Here, we explore the accumulation of myosin-induced stresses within a 2D biomimetic model of the actomyosin cortex, where myosin activity is controlled spatially and temporally using light. By controlling the geometry and the duration of myosin activation, we show that contraction of disordered actomyosin is highly cooperative, telescopic with the activation area and generates a pattern of mechanical stresses consistent with those observed in contractile cells. We quantitatively reproduce these properties using an in vitro isotropic model of the actomyosin cytoskeleton, and explore the physical origins of telescopic contractility in disordered networks using agent-based simulations. NSF CMMI-1525316.
Kinetic chain abnormalities in the athletic shoulder.
Sciascia, Aaron; Thigpen, Charles; Namdari, Surena; Baldwin, Keith
2012-03-01
Overhead activities require the shoulder to be exposed to and sustain repetitive loads. The segmental activation of the body's links, known as the kinetic chain, allows this to occur effectively. Proper muscle activation is achieved through generation of energy from the central segment or core, which then transfers the energy to the terminal links of the shoulder, elbow, and hand. The kinetic chain is best characterized by 3 components: optimized anatomy, reproducible efficient motor patterns, and the sequential generation of forces. However, tissue injury and anatomic deficits such as weakness and/or tightness in the leg, pelvic core, or scapular musculature can lead to overuse shoulder injuries. These injuries can be prevented and maladaptations can be detected with a thorough understanding of biomechanics of the kinetic chain as it relates to overhead activity.
Reliability, synchrony and noise
Ermentrout, G. Bard; Galán, Roberto F.; Urban, Nathaniel N.
2008-01-01
The brain is noisy. Neurons receive tens of thousands of highly fluctuating inputs and generate spike trains that appear highly irregular. Much of this activity is spontaneous—uncoupled to overt stimuli or motor outputs—leading to questions about the functional impact of this noise. Although noise is most often thought of as disrupting patterned activity and interfering with the encoding of stimuli, recent theoretical and experimental work has shown that noise can play a constructive role—leading to increased reliability or regularity of neuronal firing in single neurons and across populations. These results raise fundamental questions about how noise can influence neural function and computation. PMID:18603311
Robot Control Through Brain Computer Interface For Patterns Generation
NASA Astrophysics Data System (ADS)
Belluomo, P.; Bucolo, M.; Fortuna, L.; Frasca, M.
2011-09-01
A Brain Computer Interface (BCI) system processes and translates neuronal signals, that mainly comes from EEG instruments, into commands for controlling electronic devices. This system can allow people with motor disabilities to control external devices through the real-time modulation of their brain waves. In this context an EEG-based BCI system that allows creative luminous artistic representations is here presented. The system that has been designed and realized in our laboratory interfaces the BCI2000 platform performing real-time analysis of EEG signals with a couple of moving luminescent twin robots. Experiments are also presented.
Size principle and information theory.
Senn, W; Wyler, K; Clamann, H P; Kleinle, J; Lüscher, H R; Müller, L
1997-01-01
The motor units of a skeletal muscle may be recruited according to different strategies. From all possible recruitment strategies nature selected the simplest one: in most actions of vertebrate skeletal muscles the recruitment of its motor units is by increasing size. This so-called size principle permits a high precision in muscle force generation since small muscle forces are produced exclusively by small motor units. Larger motor units are activated only if the total muscle force has already reached certain critical levels. We show that this recruitment by size is not only optimal in precision but also optimal in an information theoretical sense. We consider the motoneuron pool as an encoder generating a parallel binary code from a common input to that pool. The generated motoneuron code is sent down through the motoneuron axons to the muscle. We establish that an optimization of this motoneuron code with respect to its information content is equivalent to the recruitment of motor units by size. Moreover, maximal information content of the motoneuron code is equivalent to a minimal expected error in muscle force generation.
Vectorial Command of Induction Motor Pumping System Supplied by a Photovoltaic Generator
NASA Astrophysics Data System (ADS)
Makhlouf, Messaoud; Messai, Feyrouz; Benalla, Hocine
2011-01-01
With the continuous decrease of the cost of solar cells, there is an increasing interest and needs in photovoltaic (PV) system applications following standard of living improvements. Water pumping system powered by solar-cell generators are one of the most important applications. The fluctuation of solar energy on one hand, and the necessity to optimise available solar energy on the other, it is useful to develop new efficient and flexible modes to control motors that entrain the pump. A vectorial control of an asynchronous motor fed by a photovoltaic system is proposed. This paper investigates a photovoltaic-electro mechanic chain, composed of a PV generator, DC-AC converter, a vector controlled induction motor and centrifugal pump. The PV generator is forced to operate at its maximum power point by using an appropriate search algorithm integrated in the vector control. The optimization is realized without need to adding a DC-DC converter to the chain. The motor supply is also ensured in all insolation conditions. Simulation results show the effectiveness and feasibility of such an approach.
CFD Analysis of the 24-inch JIRAD Hybrid Rocket Motor
NASA Technical Reports Server (NTRS)
Liang, Pak-Yan; Ungewitter, Ronald; Claflin, Scott
1996-01-01
A series of multispecies, multiphase computational fluid dynamics (CFD) analyses of the 24-inch diameter joint government industry industrial research and development (JIRAD) hybrid rocket motor is described. The 24-inch JIRAD hybrid motor operates by injection of liquid oxygen (LOX) into a vaporization plenum chamber upstream of ports in the hydroxyl-terminated polybutadiene (HTPB) solid fuel. The injector spray pattern had a strong influence on combustion stability of the JIRAD motor so a CFD study was initiated to define the injector end flow field under different oxidizer spray patterns and operating conditions. By using CFD to gain a clear picture of the flow field and temperature distribution within the JIRAD motor, it is hoped that the fundamental mechanisms of hybrid combustion instability may be identified and then suppressed by simple alterations to the oxidizer injection parameters such as injection angle and velocity. The simulations in this study were carried out using the General Algorithm for Analysis of Combustion SYstems (GALACSY) multiphase combustion codes. GALACSY consists of a comprehensive set of droplet dynamic submodels (atomization, evaporation, etc.) and a computationally efficient hydrocarbon chemistry package built around a robust Navier-Stokes solver optimized for low Mach number flows. Lagrangian tracking of dispersed particles describes a closely coupled spray phase. The CFD cases described in this paper represent various levels of simplification of the problem. They include: (A) gaseous oxygen with combusting fuel vapor blowing off the walls at various oxidizer injection angles and velocities, (B) gaseous oxygen with combusting fuel vapor blowing off the walls, and (C) liquid oxygen with combusting fuel vapor blowing off the walls. The study used an axisymmetric model and the results indicate that the injector design significantly effects the flow field in the injector end of the motor. Markedly different recirculation patterns are observed in the vaporization chamber as the oxygen velocity and/or spray pattern is varied. The ability of these recirculation patterns to stabilize the diffusion flame above the surface of the solid fuel gives a plausible explanation for the experimentally determined combustion stability characteristics of the JIRAD motor, and suggests how combustion stability can be assured by modifications to the injector design.
Motor Development and Skill Analysis. Connections to Elementary Physical Education.
ERIC Educational Resources Information Center
Mielke, Dan; Morrison, Craig
1985-01-01
Drawing upon stages of motor development and elements of biomechanics, the authors used anatomical planes as a frame of reference to determine movement patterns and assess readiness to perform movement skills. The combination of determining readiness and analyzing skill enables the teacher to plan proper motor skill activities. (MT)
Matijević, Valentina; Secić, Ana; Zivković, Tamara Kauzlarić; Borosak, Jesenka; Kolak, Zeljka; Dimić, Zdenka
2013-09-01
The early child development, from birth until the age of one year is, amongst other changes, characterized by intense motor learning. During that period, the voluntary learning patterns evolve from reflexive patterns to coordinated voluntary patterns. All of the child's voluntary movements present active forms in which the child communicates with the environment. In this communication, the hand plays an important role. Its brain representation covers one-third of the entire motor region, situated in the close proximity to the speech region. For this reason, some authors refer to hand as a "speech organ". According to numerous studies, each separate finger also has a relatively large representation in the cerebral cortex, which points to the importance of the fine motor skills development, or precise, highly differentiated movements of hand muscles following the principles of differentiation and hierarchical integration. Development of the fine motor skills in the hand is important for the overall child development, and it also serves as a predictor pointing to immaturity of the central nervous system. The aim of this paper is to present the development of hand motoricity from birth until the age of one year, as well as the most frequent deviations observed in children hospitalized at Children's Department of Rehabilitation, Clinical Department of Rheumatology, Physical Medicine and Rehabilitation, Sestre milosrdnice University Hospital Center.
Sustained Hypoxia Elicits Competing Spinal Mechanisms of Phrenic Motor Facilitation
Devinney, Michael J.; Nichols, Nicole L.
2016-01-01
Acute intermittent hypoxia (AIH) induces phrenic long-term facilitation (pLTF), a form of spinal motor plasticity. Competing mechanisms give rise to phrenic motor facilitation (pMF; a general term including pLTF) depending on the severity of hypoxia within episodes. In contrast, moderate acute sustained hypoxia (mASH) does not elicit pMF. By varying the severity of ASH and targeting competing mechanisms of pMF, we sought to illustrate why moderate AIH (mAIH) elicits pMF but mASH does not. Although mAIH elicits serotonin-dependent pLTF, mASH does not; thus, mAIH-induced pLTF is pattern sensitive. In contrast, severe AIH (sAIH) elicits pLTF through adenosine-dependent mechanisms, likely from greater extracellular adenosine accumulation. Because serotonin- and adenosine-dependent pMF interact via cross talk inhibition, we hypothesized that pMF is obscured because the competing mechanisms of pMF are balanced and offsetting during mASH. Here, we demonstrate the following: (1) blocking spinal A2A receptors with MSX-3 reveals mASH-induced pMF; and (2) sASH elicits A2A-dependent pMF. In anesthetized rats pretreated with intrathecal A2A receptor antagonist injections before mASH (PaO2 = 40–54 mmHg) or sASH (PaO2 = 25–36 mmHg), (1) mASH induced a serotonin-dependent pMF and (2) sASH induced an adenosine-dependent pMF, which was enhanced by spinal serotonin receptor inhibition. Thus, competing adenosine- and serotonin-dependent mechanisms contribute differentially to pMF depending on the pattern/severity of hypoxia. Understanding interactions between these mechanisms has clinical relevance as we develop therapies to treat severe neuromuscular disorders that compromise somatic motor behaviors, including breathing. Moreover, these results demonstrate how competing mechanisms of plasticity can give rise to pattern sensitivity in pLTF. SIGNIFICANCE STATEMENT Intermittent hypoxia elicits pattern-sensitive spinal plasticity and improves motor function after spinal injury or during neuromuscular disease. Specific mechanisms of pattern sensitivity in this form of plasticity are unknown. We provide evidence that competing mechanisms of phrenic motor facilitation mediated by adenosine 2A and serotonin 2 receptors are differentially expressed, depending on the pattern/severity of hypoxia. Understanding how these distinct mechanisms interact during hypoxic exposures differing in severity and duration will help explain interesting properties of plasticity, such as pattern sensitivity, and may help optimize therapies to restore motor function in patients with neuromuscular disorders that compromise movement. PMID:27466333
Scheidegger, Olivier; Kamber, Nicole; Rösler, Kai Michael
2018-05-29
To estimate non-invasively the amount, recruitment pattern and discharge frequency of spinal motor neurons (MN) at contraction strength >20% of maximal voluntary contraction (MVC) of small hand muscles. A peripheral collision technique was used and consisted of supramaximal electrical stimuli at Erb's point and at the wrist, synchronizing descending volleys of action potential during voluntary isometric contractions of the abductor digiti minimi muscle at 20-80% of MVC strength and 1-8 s of contraction duration. Responses of 13 healthy volunteers were quantified and analysed using a recently described model of MN behaviour. A linear relationship between MN discharge and force generation was noticed with R2 = 0.996, and was confirmed using the simulation results (R2 = 0.997) for contraction durations up to 8 s. For each investigated force level, discharge frequency and recruitment pattern were calculated for individual MN. Using this method, MN discharge properties during voluntary activity can be estimated non-invasively. This method provides new opportunities for the non-invasive study of MN behaviour, and could be expanded to patients with conduction failure and during fatigue. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Patterns of motor recruitment can be determined using surface EMG.
Wakeling, James M
2009-04-01
Previous studies have reported how different populations of motor units (MUs) can be recruited during dynamic and locomotor tasks. It was hypothesised that the higher-threshold units would contribute higher-frequency components to the sEMG spectra due to their faster conduction velocities, and thus recruitment patterns that increase the proportion of high-threshold units active would lead to higher-frequency elements in the sEMG spectra. This idea was tested by using a model of varying recruitment coupled to a three-layer volume conductor model to generate a series of sEMG signals. The recruitment varied from (A) orderly recruitment where the lowest-threshold MUs were initially activated and higher-threshold MUs were sequentially recruited as the contraction progressed, (B) a recurrent inhibition model that started with orderly recruitment, but as the higher-threshold units were activated they inhibited the lower-threshold MUs (C) nine models with intermediate properties that were graded between these two extremes. The sEMG was processed using wavelet analysis and the spectral properties quantified by their mean frequency, and an angle theta that was determined from the principal components of the spectra. Recruitment strategies that resulted in a greater proportion of faster MUs being active had a significantly lower theta and higher mean frequency.
Corti, Stefania; Nizzardo, Monica; Simone, Chiara; Falcone, Marianna; Nardini, Martina; Ronchi, Dario; Donadoni, Chiara; Salani, Sabrina; Riboldi, Giulietta; Magri, Francesca; Menozzi, Giorgia; Bonaglia, Clara; Rizzo, Federica; Bresolin, Nereo; Comi, Giacomo P.
2016-01-01
Spinal muscular atrophy (SMA) is among the most common genetic neurological diseases that cause infant mortality. Induced pluripotent stem cells (iPSCs) generated from skin fibroblasts from SMA patients and genetically corrected have been proposed to be useful for autologous cell therapy. We generated iPSCs from SMA patients (SMA-iPSCs) using nonviral, nonintegrating episomal vectors and used a targeted gene correction approach based on single-stranded oligonucleotides to convert the survival motor neuron 2 (SMN2) gene into an SMN1-like gene. Corrected iPSC lines contained no exogenous sequences. Motor neurons formed by differentiation of uncorrected SMA-iPSCs reproduced disease-specific features. These features were ameliorated in motor neurons derived from genetically corrected SMA-iPSCs. The different gene splicing profile in SMA-iPSC motor neurons was rescued after genetic correction. The transplantation of corrected motor neurons derived from SMA-iPSCs into an SMA mouse model extended the life span of the animals and improved the disease phenotype. These results suggest that generating genetically corrected SMA-iPSCs and differentiating them into motor neurons may provide a source of motor neurons for therapeutic transplantation for SMA. PMID:23253609
Krane-Gartiser, Karoline; Henriksen, Tone E G; Vaaler, Arne E; Fasmer, Ole Bernt; Morken, Gunnar
2015-09-01
To compare the activity patterns of inpatients with unipolar depression, who had been divided into groups with and without motor retardation prior to actigraphy monitoring. Twenty-four-hour actigraphy recordings from 52 consecutively, acutely admitted inpatients with unipolar depression (ICD-10) were compared to recordings from 28 healthy controls. The patients, admitted between September 2011 and April 2012, were separated into 2 groups: 25 with motor retardation and 27 without motor retardation. Twenty-eight healthy controls were also included. Twenty-four-hour recordings, 9-hour daytime sequences, and 64-minute periods of continuous motor activity in the morning and evening were analyzed for mean activity, variability, and complexity. Patients with motor retardation had a reduced mean activity level (P = .04) and higher intraindividual variability, as shown by increased standard deviation (SD) (P = .003) and root mean square successive difference (RMSSD) (P = .025), during 24 hours compared to the patients without motor retardation. Both patient groups demonstrated significantly lower mean activity compared to healthy controls (P < .001) as well as higher SD (P < .02) and RMSSD (P < .001) and a higher RMSSD/SD ratio (P = .04). In the active morning period, the patients without motor retardation displayed significantly increased complexity compared to motor-retarded patients (P = .006). The patients with and without motor retardation differ in activity patterns. Findings in depressed inpatients without motor retardation closely resemble those of inpatients with mania. © Copyright 2015 Physicians Postgraduate Press, Inc.
ERIC Educational Resources Information Center
Phatak, Pramila; And Others
This study reports various aspects of the analyses carried out on the longitudinal data reported in a previous study (PS 007 345) for determining the general growth patterns and growth velocity of mental and motor development. Preliminary analyses focused on the selection of the growth curve, its evaluation in the 208 individual cases, and the…
A Preliminary Analysis of Correlated Evolution in Mammalian Chewing Motor Patterns
Williams, Susan H.; Vinyard, Christopher J.; Wall, Christine E.; Doherty, Alison H.; Crompton, Alfred W.; Hylander, William L.
2011-01-01
Descriptive and quantitative analyses of electromyograms (EMG) from the jaw adductors during feeding in mammals have demonstrated both similarities and differences among species in chewing motor patterns. These observations have led to a number of hypotheses of the evolution of motor patterns, the most comprehensive of which was proposed by Weijs in 1994. Since then, new data have been collected and additional hypotheses for the evolution of motor patterns have been proposed. Here, we take advantage of these new data and a well-resolved species-level phylogeny for mammals to test for the correlated evolution of specific components of mammalian chewing motor patterns. We focus on the evolution of the coordination of working-side (WS) and balancing-side (BS) jaw adductors (i.e., Weijs’ Triplets I and II), the evolution of WS and BS muscle recruitment levels, and the evolution of asynchrony between pairs of muscles. We converted existing chewing EMG data into binary traits to incorporate as much data as possible and facilitate robust phylogenetic analyses. We then tested hypotheses of correlated evolution of these traits across our phylogeny using a maximum likelihood method and the Bayesian Markov Chain Monte Carlo method. Both sets of analyses yielded similar results highlighting the evolutionary changes that have occurred across mammals in chewing motor patterns. We find support for the correlated evolution of (1) Triplets I and II, (2) BS deep masseter asynchrony and Triplets I and II, (3) a relative delay in the activity of the BS deep masseter and a decrease in the ratio of WS to BS muscle recruitment levels, and (4) a relative delay in the activity of the BS deep masseter and a delay in the activity of the BS posterior temporalis. In contrast, changes in relative WS and BS activity levels across mammals are not correlated with Triplets I and II. Results from this work can be integrated with dietary and morphological data to better understand how feeding and the masticatory apparatus have evolved across mammals in the context of new masticatory demands. PMID:21719433
A preliminary analysis of correlated evolution in Mammalian chewing motor patterns.
Williams, Susan H; Vinyard, Christopher J; Wall, Christine E; Doherty, Alison H; Crompton, Alfred W; Hylander, William L
2011-08-01
Descriptive and quantitative analyses of electromyograms (EMG) from the jaw adductors during feeding in mammals have demonstrated both similarities and differences among species in chewing motor patterns. These observations have led to a number of hypotheses of the evolution of motor patterns, the most comprehensive of which was proposed by Weijs in 1994. Since then, new data have been collected and additional hypotheses for the evolution of motor patterns have been proposed. Here, we take advantage of these new data and a well-resolved species-level phylogeny for mammals to test for the correlated evolution of specific components of mammalian chewing motor patterns. We focus on the evolution of the coordination of working-side (WS) and balancing-side (BS) jaw adductors (i.e., Weijs' Triplets I and II), the evolution of WS and BS muscle recruitment levels, and the evolution of asynchrony between pairs of muscles. We converted existing chewing EMG data into binary traits to incorporate as much data as possible and facilitate robust phylogenetic analyses. We then tested hypotheses of correlated evolution of these traits across our phylogeny using a maximum likelihood method and the Bayesian Markov Chain Monte Carlo method. Both sets of analyses yielded similar results highlighting the evolutionary changes that have occurred across mammals in chewing motor patterns. We find support for the correlated evolution of (1) Triplets I and II, (2) BS deep masseter asynchrony and Triplets I and II, (3) a relative delay in the activity of the BS deep masseter and a decrease in the ratio of WS to BS muscle recruitment levels, and (4) a relative delay in the activity of the BS deep masseter and a delay in the activity of the BS posterior temporalis. In contrast, changes in relative WS and BS activity levels across mammals are not correlated with Triplets I and II. Results from this work can be integrated with dietary and morphological data to better understand how feeding and the masticatory apparatus have evolved across mammals in the context of new masticatory demands.
Saliency Detection as a Reactive Process: Unexpected Sensory Events Evoke Corticomuscular Coupling
Kilintari, Marina; Srinivasan, Mandayam; Haggard, Patrick
2018-01-01
Survival in a fast-changing environment requires animals not only to detect unexpected sensory events, but also to react. In humans, these salient sensory events generate large electrocortical responses, which have been traditionally interpreted within the sensory domain. Here we describe a basic physiological mechanism coupling saliency-related cortical responses with motor output. In four experiments conducted on 70 healthy participants, we show that salient substartle sensory stimuli modulate isometric force exertion by human participants, and that this modulation is tightly coupled with electrocortical activity elicited by the same stimuli. We obtained four main results. First, the force modulation follows a complex triphasic pattern consisting of alternating decreases and increases of force, time-locked to stimulus onset. Second, this modulation occurs regardless of the sensory modality of the eliciting stimulus. Third, the magnitude of the force modulation is predicted by the amplitude of the electrocortical activity elicited by the same stimuli. Fourth, both neural and motor effects are not reflexive but depend on contextual factors. Together, these results indicate that sudden environmental stimuli have an immediate effect on motor processing, through a tight corticomuscular coupling. These observations suggest that saliency detection is not merely perceptive but reactive, preparing the animal for subsequent appropriate actions. SIGNIFICANCE STATEMENT Salient events occurring in the environment, regardless of their modalities, elicit large electrical brain responses, dominated by a widespread “vertex” negative-positive potential. This response is the largest synchronization of neural activity that can be recorded from a healthy human being. Current interpretations assume that this vertex potential reflects sensory processes. Contrary to this general assumption, we show that the vertex potential is strongly coupled with a modulation of muscular activity that follows the same pattern. Both the vertex potential and its motor effects are not reflexive but strongly depend on contextual factors. These results reconceptualize the significance of these evoked electrocortical responses, suggesting that saliency detection is not merely perceptive but reactive, preparing the animal for subsequent appropriate actions. PMID:29378865
Hodgson, Jessica C; Hudson, John M
2017-03-01
Research using clinical populations to explore the relationship between hemispheric speech lateralization and handedness has focused on individuals with speech and language disorders, such as dyslexia or specific language impairment (SLI). Such work reveals atypical patterns of cerebral lateralization and handedness in these groups compared to controls. There are few studies that examine this relationship in people with motor coordination impairments but without speech or reading deficits, which is a surprising omission given the prevalence of theories suggesting a common neural network underlying both functions. We use an emerging imaging technique in cognitive neuroscience; functional transcranial Doppler (fTCD) ultrasound, to assess whether individuals with developmental coordination disorder (DCD) display reduced left-hemisphere lateralization for speech production compared to control participants. Twelve adult control participants and 12 adults with DCD, but no other developmental/cognitive impairments, performed a word-generation task whilst undergoing fTCD imaging to establish a hemispheric lateralization index for speech production. All participants also completed an electronic peg-moving task to determine hand skill. As predicted, the DCD group showed a significantly reduced left lateralization pattern for the speech production task compared to controls. Performance on the motor skill task showed a clear preference for the dominant hand across both groups; however, the DCD group mean movement times were significantly higher for the non-dominant hand. This is the first study of its kind to assess hand skill and speech lateralization in DCD. The results reveal a reduced leftwards asymmetry for speech and a slower motor performance. This fits alongside previous work showing atypical cerebral lateralization in DCD for other cognitive processes (e.g., executive function and short-term memory) and thus speaks to debates on theories of the links between motor control and language production. © 2016 The Authors. Journal of Neuropsychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-27
..., plates, filters, bearings, air pumps/compressors, valves, switches, electric motors, tubes/pipes/profiles... electric motors, pinions, magnets, ignition parts, diodes, transistors, resistors, semiconductors, liquid..., starter motors, motor/generator units, alternators, distributors, other static converters, inverter...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-16
..., springs, brackets, plates, filters, bearings, air pumps/compressors, valves, switches, electric motors..., clutches, parts of electric motors, pinions, magnets, ignition parts, diodes, transistors, resistors... and chambers, starter motors, motor/generator units, alternators, distributors, other static...
Composite Ceramic Superconducting Wires for Electric Motor Applications
1989-07-07
generators that have been built using NbTi superconducting wire at liquid 3 helium temperature (4.2*K). Most of these magnets , motors, and generators have...temperature superconductors. A magnetic diffusivity value cannot be rigorously determined for the superconductor in the superconducting state when flux jump...cv, FIRST ANNUAL REPORT FOR THE PROJECT "COMPOSITE CERAMIC SUPERCONDUCTING WIRES FOR ELECTRIC MOTOR APPLICATIONS" 2 PRIME CONTRACTOR CERAMICS PROCESS
NASA Technical Reports Server (NTRS)
Studer, P. A.; Evans, H. E. (Inventor)
1978-01-01
A high efficiency, flywheel type energy storage device which comprises an electronically commutated d.c. motor/generator unit having a massive flywheel rotor magnetically suspended around a ring shaped stator is presented. During periods of low energy demand, the storage devices were operated as a motor, and the flywheel motor was brought up to operating speed. Energy was drawn from the device functioning as a generator as the flywheel rotor rotated during high energy demand periods.
Migliori, Amy D; Keller, Nicholas; Alam, Tanfis I; Mahalingam, Marthandan; Rao, Venigalla B; Arya, Gaurav; Smith, Douglas E
2014-06-17
How viral packaging motors generate enormous forces to translocate DNA into viral capsids remains unknown. Recent structural studies of the bacteriophage T4 packaging motor have led to a proposed mechanism wherein the gp17 motor protein translocates DNA by transitioning between extended and compact states, orchestrated by electrostatic interactions between complimentarily charged residues across the interface between the N- and C-terminal subdomains. Here we show that site-directed alterations in these residues cause force dependent impairments of motor function including lower translocation velocity, lower stall force and higher frequency of pauses and slips. We further show that the measured impairments correlate with computed changes in free-energy differences between the two states. These findings support the proposed structural mechanism and further suggest an energy landscape model of motor activity that couples the free-energy profile of motor conformational states with that of the ATP hydrolysis cycle.
NASA Astrophysics Data System (ADS)
Migliori, Amy D.; Keller, Nicholas; Alam, Tanfis I.; Mahalingam, Marthandan; Rao, Venigalla B.; Arya, Gaurav; Smith, Douglas E.
2014-06-01
How viral packaging motors generate enormous forces to translocate DNA into viral capsids remains unknown. Recent structural studies of the bacteriophage T4 packaging motor have led to a proposed mechanism wherein the gp17 motor protein translocates DNA by transitioning between extended and compact states, orchestrated by electrostatic interactions between complimentarily charged residues across the interface between the N- and C-terminal subdomains. Here we show that site-directed alterations in these residues cause force dependent impairments of motor function including lower translocation velocity, lower stall force and higher frequency of pauses and slips. We further show that the measured impairments correlate with computed changes in free-energy differences between the two states. These findings support the proposed structural mechanism and further suggest an energy landscape model of motor activity that couples the free-energy profile of motor conformational states with that of the ATP hydrolysis cycle.
Migliori, Amy D.; Keller, Nicholas; Alam, Tanfis I.; Mahalingam, Marthandan; Rao, Venigalla B.; Arya, Gaurav; Smith, Douglas E
2014-01-01
How viral packaging motors generate enormous forces to translocate DNA into viral capsids remains unknown. Recent structural studies of the bacteriophage T4 packaging motor have led to a proposed mechanism wherein the gp17 motor protein translocates DNA by transitioning between extended and compact states, orchestrated by electrostatic interactions between complimentarily charged residues across the interface between the N- and C-terminal subdomains. Here, we show that site-directed alterations in these residues cause force dependent impairments of motor function including lower translocation velocity, lower stall force, and higher frequency of pauses and slips. We further show that the measured impairments correlate with computed changes in free energy differences between the two states. These findings support the proposed structural mechanism and further suggest an energy landscape model of motor activity that couples the free energy profile of motor conformational states with that of the ATP hydrolysis cycle. PMID:24937091
Components of Motor Deficiencies in ADHD and Possible Interventions.
Dahan, Anat; Ryder, Chen Hanna; Reiner, Miriam
2018-05-15
There is a growing body of evidence pointing at several types of motor abnormalities found in attention-deficit/hyperactivity disorder (ADHD). In this article we review findings stemming from different paradigms, and suggest an interweaving approach to the different stages involved in the motor regulation process. We start by reviewing various aspects of motor abnormalities found in ADHD and related brain mechanisms. Then, we classify reported motor impairments associated with ADHD, into four classes of motor stages: Attention to the task, motion preparation, motion execution and motion monitoring. Motor abnormalities and corresponding neural activations are analyzed in the context of each of the four identified motor patterns, along with the interactions among them and with other systems. Given the specifications and models of the role of the four motor impairments in ADHD, we ask what treatments correspond to the identified motor impairments. We analyze therapeutic interventions targeting motor difficulties most commonly experienced among individuals with ADHD; first, Neurofeedback training and EMG-biofeedback. As some of the identified components of attention, planning and monitoring have been shown to be linked to abnormal oscillation patterns in the brain, we examine neurofeedback interventions aimed to address these types of oscillations: Theta/beta frequency training and SCP neurofeedback targeted at elevating the CNV component. Additionally we discuss EMG-Biofeedback interventions targeted at feedback on motor activity. Further we review physical activity and motor interventions aimed at improving motor difficulties, associated with ADHD. These kinds of interventions are shown to be helpful not only in aspects of physical ability, but also in enhancing cognition and executive functioning. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pavlov, Alexey N.; Runnova, Anastasiya E.; Maksimenko, Vladimir A.; Grishina, Daria S.; Hramov, Alexander E.
2018-02-01
Authentic recognition of specific patterns of electroencephalograms (EEGs) associated with real and imagi- nary movements is an important stage for the development of brain-computer interfaces. In experiments with untrained participants, the ability to detect the motor-related brain activity based on the multichannel EEG processing is demonstrated. Using the detrended fluctuation analysis, changes in the EEG patterns during the imagination of hand movements are reported. It is discussed how the ability to recognize brain activity related to motor executions depends on the electrode position.
Peng, Zhen; Genewein, Tim; Braun, Daniel A.
2014-01-01
Complexity is a hallmark of intelligent behavior consisting both of regular patterns and random variation. To quantitatively assess the complexity and randomness of human motion, we designed a motor task in which we translated subjects' motion trajectories into strings of symbol sequences. In the first part of the experiment participants were asked to perform self-paced movements to create repetitive patterns, copy pre-specified letter sequences, and generate random movements. To investigate whether the degree of randomness can be manipulated, in the second part of the experiment participants were asked to perform unpredictable movements in the context of a pursuit game, where they received feedback from an online Bayesian predictor guessing their next move. We analyzed symbol sequences representing subjects' motion trajectories with five common complexity measures: predictability, compressibility, approximate entropy, Lempel-Ziv complexity, as well as effective measure complexity. We found that subjects' self-created patterns were the most complex, followed by drawing movements of letters and self-paced random motion. We also found that participants could change the randomness of their behavior depending on context and feedback. Our results suggest that humans can adjust both complexity and regularity in different movement types and contexts and that this can be assessed with information-theoretic measures of the symbolic sequences generated from movement trajectories. PMID:24744716
Limiting Speed of the Bacterial Flagellar Motor
NASA Astrophysics Data System (ADS)
Nirody, Jasmine; Berry, Richard; Oster, George
The bacterial flagellar motor (BFM) drives swimming in a wide variety of bacterial species, making it crucial for several fundamental biological processes including chemotaxis and community formation. Recent experiments have shown that the structure of this nanomachine is more dynamic than previously believed. Specifically, the number of active torque-generating units (stators) was shown to vary across applied loads. This finding invalidates the experimental evidence reporting that limiting (zero-torque) speed is independent of the number of active stators. Here, we put forward a model for the torque generation mechanism of this motor and propose that the maximum speed of the motor increases as additional torque-generators are recruited. This is contrary to the current widely-held belief that there is a universal upper limit to the speed of the BFM. Our result arises from the assumption that stators disengage from the motor for a significant portion of their mechanochemical cycles at low loads. We show that this assumption is consistent with current experimental evidence and consolidate our predictions with arguments that a processive motor must have a high duty ratio at high loads.
Eye movement sequence generation in humans: Motor or goal updating?
Quaia, Christian; Joiner, Wilsaan M.; FitzGibbon, Edmond J.; Optican, Lance M.; Smith, Maurice A.
2011-01-01
Saccadic eye movements are often grouped in pre-programmed sequences. The mechanism underlying the generation of each saccade in a sequence is currently poorly understood. Broadly speaking, two alternative schemes are possible: first, after each saccade the retinotopic location of the next target could be estimated, and an appropriate saccade could be generated. We call this the goal updating hypothesis. Alternatively, multiple motor plans could be pre-computed, and they could then be updated after each movement. We call this the motor updating hypothesis. We used McLaughlin’s intra-saccadic step paradigm to artificially create a condition under which these two hypotheses make discriminable predictions. We found that in human subjects, when sequences of two saccades are planned, the motor updating hypothesis predicts the landing position of the second saccade in two-saccade sequences much better than the goal updating hypothesis. This finding suggests that the human saccadic system is capable of executing sequences of saccades to multiple targets by planning multiple motor commands, which are then updated by serial subtraction of ongoing motor output. PMID:21191134
The influence of an uncertain force environment on reshaping trial-to-trial motor variability.
Izawa, Jun; Yoshioka, Toshinori; Osu, Rieko
2014-09-10
Motor memory is updated to generate ideal movements in a novel environment. When the environment changes every trial randomly, how does the brain incorporate this uncertainty into motor memory? To investigate how the brain adapts to an uncertain environment, we considered a reach adaptation protocol where individuals practiced moving in a force field where a noise was injected. After they had adapted, we measured the trial-to-trial variability in the temporal profiles of the produced hand force. We found that the motor variability was significantly magnified by the adaptation to the random force field. Temporal profiles of the motor variance were significantly dissociable between two different types of random force fields experienced. A model-based analysis suggests that the variability is generated by noise in the gains of the internal model. It further suggests that the trial-to-trial motor variability magnified by the adaptation in a random force field is generated by the uncertainty of the internal model formed in the brain as a result of the adaptation.
Gli function is essential for motor neuron induction in zebrafish.
Vanderlaan, Gary; Tyurina, Oksana V; Karlstrom, Rolf O; Chandrasekhar, Anand
2005-06-15
The Gli family of zinc-finger transcription factors mediates Hedgehog (Hh) signaling in all vertebrates. However, their roles in ventral neural tube patterning, in particular motor neuron induction, appear to have diverged across species. For instance, cranial motor neurons are essentially lost in zebrafish detour (gli1(-)) mutants, whereas motor neuron development is unaffected in mouse single gli and some double gli knockouts. Interestingly, the expression of some Hh-regulated genes (ptc1, net1a, gli1) is mostly unaffected in the detour mutant hindbrain, suggesting that other Gli transcriptional activators may be involved. To better define the roles of the zebrafish gli genes in motor neuron induction and in Hh-regulated gene expression, we examined these processes in you-too (yot) mutants, which encode dominant repressor forms of Gli2 (Gli2(DR)), and following morpholino-mediated knockdown of gli1, gli2, and gli3 function. Motor neuron induction at all axial levels was reduced in yot (gli2(DR)) mutant embryos. In addition, Hh target gene expression at all axial levels except in rhombomere 4 was also reduced, suggesting an interference with the function of other Glis. Indeed, morpholino-mediated knockdown of Gli2(DR) protein in yot mutants led to a suppression of the defective motor neuron phenotype. However, gli2 knockdown in wild-type embryos generated no discernable motor neuron phenotype, while gli3 knockdown reduced motor neuron induction in the hindbrain and spinal cord. Significantly, gli2 or gli3 knockdown in detour (gli1(-)) mutants revealed roles for Gli2 and Gli3 activator functions in ptc1 expression and spinal motor neuron induction. Similarly, gli1 or gli3 knockdown in yot (gli2(DR)) mutants resulted in severe or complete loss of motor neurons, and of ptc1 and net1a expression, in the hindbrain and spinal cord. In addition, gli1 expression was greatly reduced in yot mutants following gli3, but not gli1, knockdown, suggesting that Gli3 activator function is specifically required for gli1 expression. These observations demonstrate that Gli activator function (encoded by gli1, gli2, and gli3) is essential for motor neuron induction and Hh-regulated gene expression in zebrafish.
Cost Performance Estimating Relationships for Hybrid Electric Vehicle Components
2003-07-31
Permanent magnet motors are more likely to be used as generators, while AC induction motors are more efficiently used as motors. Inverters/controllers can...than permanent magnet motors . Switched Reluctance motors are also used on hybrid electric vehicles, but are not used as widely as either AC...induction or permanent magnet motors , and are not analyzed here. Methodology The motor estimates are based on power, with kilowatts being the unit of
Hierarchy of orofacial rhythms revealed through whisking and breathing
Moore, Jeffrey D.; Deschênes, Martin; Furuta, Takahiro; Huber, Daniel; Smear, Matthew C.; Demers, Maxime; Kleinfeld, David
2014-01-01
Whisking and sniffing are predominant aspects of exploratory behavior in rodents, yet the neural mechanisms that generate their motor patterns remain largely uncharacterized. We use anatomical, behavioral, electrophysiological, and pharmacological tools to demonstrate that these patterns are coordinated by respiratory centers in the ventral medulla. We delineate a distinct region in the ventral medulla that provides rhythmic input to the facial motoneurons that drive protraction of the vibrissae. Neuronal output from this region is reset at each inspiration by direct input from the preBötzinger complex, such that high frequency sniffing has a one-to-one coordination with whisking while basal respiration is accompanied by intervening whisks that occur between breaths. We conjecture that the respiratory nuclei, which project to other premotor regions for oral and facial control, function as a master clock for behaviors that coordinate with breathing. PMID:23624373
Tokita, Masayoshi; Nakayama, Tomoki
2014-02-01
Vertebrates have succeeded to inhabit almost every ecological niche due in large part to the anatomical diversification of their jaw complex. As a component of the feeding apparatus, jaw muscles carry a vital role for determining the mode of feeding. Early patterning of the jaw muscles has been attributed to cranial neural crest-derived mesenchyme, however, much remains to be understood about the role of nonneural crest tissues in the evolution and diversification of jaw muscle morphology. In this study, we describe the development of trigeminal motor neurons in a parrot species with the uniquely shaped jaw muscles and compare its developmental pattern to that in the quail with the standard jaw muscles to uncover potential roles of nervous tissue in the evolution of vertebrate jaw muscles. In parrot embryogenesis, the motor axon bundles are detectable within the muscular tissue only after the basic shape of the muscular tissue has been established. This supports the view that nervous tissue does not primarily determine the spatial pattern of jaw muscles. In contrast, the trigeminal motor nucleus, which is composed of somata of neurons that innervate major jaw muscles, of parrot is more developed compared to quail, even in embryonic stage where no remarkable interspecific difference in both jaw muscle morphology and motor nerve branching pattern is recognized. Our data suggest that although nervous tissue may not have a large influence on initial patterning of jaw muscles, it may play an important role in subsequent growth and maintenance of muscular tissue and alterations in cranial nervous tissue development may underlie diversification of jaw muscle morphology. Copyright © 2013 Wiley Periodicals, Inc.
Ting, Lena H.
2014-01-01
The simple act of standing up is an important and essential motor behavior that most humans and animals achieve with ease. Yet, maintaining standing balance involves complex sensorimotor transformations that must continually integrate a large array of sensory inputs and coordinate multiple motor outputs to muscles throughout the body. Multiple, redundant local sensory signals are integrated to form an estimate of a few global, task-level variables important to postural control, such as body center of mass position and body orientation with respect to Earth-vertical. Evidence suggests that a limited set of muscle synergies, reflecting preferential sets of muscle activation patterns, are used to move task variables such as center of mass position in a predictable direction following a postural perturbations. We propose a hierarchal feedback control system that allows the nervous system the simplicity of performing goal-directed computations in task-variable space, while maintaining the robustness afforded by redundant sensory and motor systems. We predict that modulation of postural actions occurs in task-variable space, and in the associated transformations between the low-dimensional task-space and high-dimensional sensor and muscle spaces. Development of neuromechanical models that reflect these neural transformations between low and high-dimensional representations will reveal the organizational principles and constraints underlying sensorimotor transformations for balance control, and perhaps motor tasks in general. This framework and accompanying computational models could be used to formulate specific hypotheses about how specific sensory inputs and motor outputs are generated and altered following neural injury, sensory loss, or rehabilitation. PMID:17925254
Rewiring of regenerated axons by combining treadmill training with semaphorin3A inhibition
2014-01-01
Background Rats exhibit extremely limited motor function recovery after total transection of the spinal cord (SCT). We previously reported that SM-216289, a semaphorin3A inhibitor, enhanced axon regeneration and motor function recovery in SCT adult rats. However, these effects were limited because most regenerated axons likely do not connect to the right targets. Thus, rebuilding the appropriate connections for regenerated axons may enhance recovery. In this study, we combined semaphorin3A inhibitor treatment with extensive treadmill training to determine whether combined treatment would further enhance the “rewiring” of regenerated axons. In this study, which aimed for clinical applicability, we administered a newly developed, potent semaphorin3A inhibitor, SM-345431 (Vinaxanthone), using a novel drug delivery system that enables continuous drug delivery over the period of the experiment. Results Treatment with SM-345431 using this delivery system enhanced axon regeneration and produced significant, but limited, hindlimb motor function recovery. Although extensive treadmill training combined with SM-345431 administration did not further improve axon regeneration, hindlimb motor performance was restored, as evidenced by the significant improvement in the execution of plantar steps on a treadmill. In contrast, control SCT rats could not execute plantar steps at any point during the experimental period. Further analyses suggested that this strategy reinforced the wiring of central pattern generators in lumbar spinal circuits, which, in turn, led to enhanced motor function recovery (especially in extensor muscles). Conclusions This study highlights the importance of combining treatments that promote axon regeneration with specific and appropriate rehabilitations that promote rewiring for the treatment of spinal cord injury. PMID:24618249
Motor Experience Influences Object Knowledge
Chrysikou, Evangelia G.; Casasanto, Daniel; Thompson-Schill, Sharon L.
2016-01-01
An object’s perceived readiness-for-action (e.g., its size, the degree of rotation from its canonical position, or the user’s viewpoint) can influence semantic knowledge retrieval. Yet, the organization of object knowledge may also be affected by body-specific sensorimotor experiences. Here, we investigated whether people’s history of performing motor actions with their hands influences the knowledge they store and retrieve about graspable objects. We compared object representations between healthy right- and left-handers (Experiment 1), and between unilateral stroke patients, whose motor experience was changed by impairment of either their right or left hand (Experiment 2). Participants saw pictures of graspable everyday items with the handles oriented toward either the left or right hand, and they generated the type of grasp they would employ (i.e., clench or pinch) when using each object, responding orally. In both experiments, hand dominance and object orientation interacted to predict response times. In Experiment 1, judgments were fastest when objects were oriented toward the right hand in right-handers, but not in left-handers. In Experiment 2, judgments were fastest when objects were oriented toward the left hand in patients who had lost the use of their right hand, even though these patients were right-handed prior to brain injury. Results suggest that at least some aspects of object knowledge are determined by motor experience, and can be changed by new patterns of motor experience. People with different bodily characteristics, who interact with objects in systematically different ways, form correspondingly different neurocognitive representations of the same common objects. PMID:28253009
Motor experience influences object knowledge.
Chrysikou, Evangelia G; Casasanto, Daniel; Thompson-Schill, Sharon L
2017-03-01
An object's perceived readiness-for-action (e.g., its size, the degree of rotation from its canonical position, the user's viewpoint) can influence semantic knowledge retrieval. Yet, the organization of object knowledge may also be affected by body-specific sensorimotor experiences. Here, we investigated whether people's history of performing motor actions with their hands influences the knowledge they store and retrieve about graspable objects. We compared object representations between healthy right- and left-handers (Experiment 1), and between unilateral stroke patients, whose motor experience was changed by impairment of either their right or left hand (Experiment 2). Participants saw pictures of graspable everyday items with the handles oriented toward either the left or right hand, and they generated the type of grasp they would employ (i.e., clench or pinch) when using each object, responding orally. In both experiments, hand dominance and object orientation interacted to predict response times. In Experiment 1, judgments were fastest when objects were oriented toward the right hand in right-handers, but not in left-handers. In Experiment 2, judgments were fastest when objects were oriented toward the left hand in patients who had lost the use of their right hand, even though these patients were right-handed prior to brain injury. Results suggest that at least some aspects of object knowledge are determined by motor experience, and can be changed by new patterns of motor experience. People with different bodily characteristics, who interact with objects in systematically different ways, form correspondingly different neurocognitive representations of the same common objects. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Hedwig, Berthold
2014-01-01
Crickets carry wind-sensitive mechanoreceptors on their cerci, which, in response to the airflow produced by approaching predators, triggers escape reactions via ascending giant interneurons (GIs). Males also activate their cercal system by air currents generated due to the wing movements underlying sound production. Singing males still respond to external wind stimulation, but are not startled by the self-generated airflow. To investigate how the nervous system discriminates sensory responses to self-generated and external airflow, we intracellularly recorded wind-sensitive afferents and ventral GIs of the cercal escape pathway in fictively singing crickets, a situation lacking any self-stimulation. GI spiking was reduced whenever cercal wind stimulation coincided with singing motor activity. The axonal terminals of cercal afferents showed no indication of presynaptic inhibition during singing. In two ventral GIs, however, a corollary discharge inhibition occurred strictly in phase with the singing motor pattern. Paired intracellular recordings revealed that this inhibition was not mediated by the activity of the previously identified corollary discharge interneuron (CDI) that rhythmically inhibits the auditory pathway during singing. Cercal wind stimulation, however, reduced the spike activity of this CDI by postsynaptic inhibition. Our study reveals how precisely timed corollary discharge inhibition of ventral GIs can prevent self-generated airflow from triggering inadvertent escape responses in singing crickets. The results indicate that the responsiveness of the auditory and wind-sensitive pathway is modulated by distinct CDIs in singing crickets and that the corollary discharge inhibition in the auditory pathway can be attenuated by cercal wind stimulation. PMID:25318763