Sample records for motor skill performance

  1. Effects of gross motor function and manual function levels on performance-based ADL motor skills of children with spastic cerebral palsy.

    PubMed

    Park, Myoung-Ok

    2017-02-01

    [Purpose] The purpose of this study was to determine effects of Gross Motor Function Classification System and Manual Ability Classification System levels on performance-based motor skills of children with spastic cerebral palsy. [Subjects and Methods] Twenty-three children with cerebral palsy were included. The Assessment of Motor and Process Skills was used to evaluate performance-based motor skills in daily life. Gross motor function was assessed using Gross Motor Function Classification Systems, and manual function was measured using the Manual Ability Classification System. [Results] Motor skills in daily activities were significantly different on Gross Motor Function Classification System level and Manual Ability Classification System level. According to the results of multiple regression analysis, children categorized as Gross Motor Function Classification System level III scored lower in terms of performance based motor skills than Gross Motor Function Classification System level I children. Also, when analyzed with respect to Manual Ability Classification System level, level II was lower than level I, and level III was lower than level II in terms of performance based motor skills. [Conclusion] The results of this study indicate that performance-based motor skills differ among children categorized based on Gross Motor Function Classification System and Manual Ability Classification System levels of cerebral palsy.

  2. Auditory and motor imagery modulate learning in music performance

    PubMed Central

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of auditory interference. Motor imagery aided pitch accuracy overall when interference conditions were manipulated at encoding (Experiment 1) but not at retrieval (Experiment 2). Thus, skilled performers' imagery abilities had distinct influences on encoding and retrieval of musical sequences. PMID:23847495

  3. The validity of parental reports on motor skills performance level in preschool children: a comparison with a standardized motor test.

    PubMed

    Zysset, Annina E; Kakebeeke, Tanja H; Messerli-Bürgy, Nadine; Meyer, Andrea H; Stülb, Kerstin; Leeger-Aschmann, Claudia S; Schmutz, Einat A; Arhab, Amar; Ferrazzini, Valentina; Kriemler, Susi; Munsch, Simone; Puder, Jardena J; Jenni, Oskar G

    2018-05-01

    Motor skills are interrelated with essential domains of childhood such as cognitive and social development. Thus, the evaluation of motor skills and the identification of atypical or delayed motor development is crucial in pediatric practice (e.g., during well-child visits). Parental reports on motor skills may serve as possible indicators to decide whether further assessment of a child is necessary or not. We compared parental reports on fundamental motor skills performance level (e.g., hopping, throwing), based on questions frequently asked in pediatric practice, with a standardized motor test in 389 children (46.5% girls/53.5% boys, M age = 3.8 years, SD = 0.5, range 3.0-5.0 years) from the Swiss Preschoolers' Health Study (SPLASHY). Motor skills were examined using the Zurich Neuromotor Assessment 3-5 (ZNA3-5), and parents filled in an online questionnaire on fundamental motor skills performance level. The results showed that the answers from the parental report correlated only weakly with the objectively assessed motor skills (r = .225, p < .001). Although a parental screening instrument for motor skills would be desirable, the parent's report used in this study was not a valid indicator for children's fundamental motor skills. Thus, we may recommend to objectively examine motor skills in clinical practice and not to exclusively rely on parental report. What is Known: • Early assessment of motor skills in preschool children is important because motor skills are essential for the engagement in social activities and the development of cognitive abilities. Atypical or delayed motor development can be an indicator for different developmental needs or disorders. • Pediatricians frequently ask parents about the motor competences of their child during well-child visits. What is New: • The parental report on fundamental motor skills performance level used in this study was not a reliable indicator for describing motor development in the preschool age. • Standardized examinations of motor skills are required to validly assess motor development in preschoolers.

  4. Key Principles of Open Motor-Skill Training for Peak Performance

    ERIC Educational Resources Information Center

    Wang, Jin

    2016-01-01

    Motor-skill training is an imperative element contributing to overall sport performance. In order to help coaches, athletes and practitioners to capture the characteristics of motor skills, sport scientists have divided motor skills into different categories, such as open versus closed, serial or discrete, outcome- or process-oriented, and…

  5. Gross motor skill development of kindergarten children in Japan.

    PubMed

    Aye, Thanda; Kuramoto-Ahuja, Tsugumi; Sato, Tamae; Sadakiyo, Kaori; Watanabe, Miyoko; Maruyama, Hitoshi

    2018-05-01

    [Purpose] The purposes of this study were to assess and explore the gender-based differences in gross motor skill development of 5-year-old Japanese children. [Subjects and Methods] This cross-sectional study recruited 60 healthy 5-year-old (third-year kindergarten, i.e., nencho ) children (34 boys, 26 girls) from one local private kindergarten school in Otawara city, Tochigi Prefecture, Japan. Gross motor skills, including six locomotor and six object control skills, were assessed using the test of gross motor development, second edition (TGMD-2). All subjects performed two trials of each gross motor skill, and the performances were video-recorded and scored. Assessment procedures were performed according to the standardized guidelines of the TGMD-2. [Results] The majority of subjects had an average level of overall gross motor skills. Girls had significantly better locomotor skills. Boys had significantly better object control skills. [Conclusion] The gross motor skill development of 5-year-old Japanese children involves gender-based differences in locomotor and object control skills. This study provided valuable information that can be used to establish normative references for the gross motor skills of 5-year-old Japanese children.

  6. Dissociable effects of practice variability on learning motor and timing skills.

    PubMed

    Caramiaux, Baptiste; Bevilacqua, Frédéric; Wanderley, Marcelo M; Palmer, Caroline

    2018-01-01

    Motor skill acquisition inherently depends on the way one practices the motor task. The amount of motor task variability during practice has been shown to foster transfer of the learned skill to other similar motor tasks. In addition, variability in a learning schedule, in which a task and its variations are interweaved during practice, has been shown to help the transfer of learning in motor skill acquisition. However, there is little evidence on how motor task variations and variability schedules during practice act on the acquisition of complex motor skills such as music performance, in which a performer learns both the right movements (motor skill) and the right time to perform them (timing skill). This study investigated the impact of rate (tempo) variability and the schedule of tempo change during practice on timing and motor skill acquisition. Complete novices, with no musical training, practiced a simple musical sequence on a piano keyboard at different rates. Each novice was assigned to one of four learning conditions designed to manipulate the amount of tempo variability across trials (large or small tempo set) and the schedule of tempo change (randomized or non-randomized order) during practice. At test, the novices performed the same musical sequence at a familiar tempo and at novel tempi (testing tempo transfer), as well as two novel (but related) sequences at a familiar tempo (testing spatial transfer). We found that practice conditions had little effect on learning and transfer performance of timing skill. Interestingly, practice conditions influenced motor skill learning (reduction of movement variability): lower temporal variability during practice facilitated transfer to new tempi and new sequences; non-randomized learning schedule improved transfer to new tempi and new sequences. Tempo (rate) and the sequence difficulty (spatial manipulation) affected performance variability in both timing and movement. These findings suggest that there is a dissociable effect of practice variability on learning complex skills that involve both motor and timing constraints.

  7. Gross motor skill development of kindergarten children in Japan

    PubMed Central

    Aye, Thanda; Kuramoto-Ahuja, Tsugumi; Sato, Tamae; Sadakiyo, Kaori; Watanabe, Miyoko; Maruyama, Hitoshi

    2018-01-01

    [Purpose] The purposes of this study were to assess and explore the gender-based differences in gross motor skill development of 5-year-old Japanese children. [Subjects and Methods] This cross-sectional study recruited 60 healthy 5-year-old (third-year kindergarten, i.e., nencho) children (34 boys, 26 girls) from one local private kindergarten school in Otawara city, Tochigi Prefecture, Japan. Gross motor skills, including six locomotor and six object control skills, were assessed using the test of gross motor development, second edition (TGMD-2). All subjects performed two trials of each gross motor skill, and the performances were video-recorded and scored. Assessment procedures were performed according to the standardized guidelines of the TGMD-2. [Results] The majority of subjects had an average level of overall gross motor skills. Girls had significantly better locomotor skills. Boys had significantly better object control skills. [Conclusion] The gross motor skill development of 5-year-old Japanese children involves gender-based differences in locomotor and object control skills. This study provided valuable information that can be used to establish normative references for the gross motor skills of 5-year-old Japanese children. PMID:29765187

  8. Longitudinal development of manual motor ability in autism spectrum disorder from childhood to mid-adulthood relates to adaptive daily living skills.

    PubMed

    Travers, Brittany G; Bigler, Erin D; Duffield, Tyler C; Prigge, Molly D B; Froehlich, Alyson L; Lange, Nicholas; Alexander, Andrew L; Lainhart, Janet E

    2017-07-01

    Many individuals with autism spectrum disorder (ASD) exhibit motor difficulties, but it is unknown whether manual motor skills improve, plateau, or decline in ASD in the transition from childhood into adulthood. Atypical development of manual motor skills could impact the ability to learn and perform daily activities across the life span. This study examined longitudinal grip strength and finger tapping development in individuals with ASD (n = 90) compared to individuals with typical development (n = 56), ages 5 to 40 years old. We further examined manual motor performance as a possible correlate of current and future daily living skills. The group with ASD demonstrated atypical motor development, characterized by similar performance during childhood but increasingly poorer performance from adolescence into adulthood. Grip strength was correlated with current adaptive daily living skills, and Time 1 grip strength predicted daily living skills eight years into the future. These results suggest that individuals with ASD may experience increasingly more pronounced motor difficulties from adolescence into adulthood and that manual motor performance in ASD is related to adaptive daily living skills. © 2016 John Wiley & Sons Ltd.

  9. The effect of amblyopia on fine motor skills in children.

    PubMed

    Webber, Ann L; Wood, Joanne M; Gole, Glen A; Brown, Brian

    2008-02-01

    In an investigation of the functional impact of amblyopia in children, the fine motor skills of amblyopes and age-matched control subjects were compared. The influence of visual factors that might predict any decrement in fine motor skills was also explored. Vision and fine motor skills were tested in a group of children (n = 82; mean age, 8.2 +/- 1.7 [SD] years) with amblyopia of different causes (infantile esotropia, n = 17; acquired strabismus, n = 28; anisometropia, n = 15; mixed, n = 13; and deprivation n = 9), and age-matched control children (n = 37; age 8.3 +/- 1.3 years). Visual motor control (VMC) and upper limb speed and dexterity (ULSD) items of the Bruininks-Oseretsky Test of Motor Proficiency were assessed, and logMAR visual acuity (VA) and Randot stereopsis were measured. Multiple regression models were used to identify the visual determinants of fine motor skills performance. Amblyopes performed significantly poorer than control subjects on 9 of 16 fine motor skills subitems and for the overall age-standardized scores for both VMC and ULSD items (P < 0.05). The effects were most evident on timed tasks. The etiology of amblyopia and level of binocular function significantly affected fine motor skill performance on both items; however, when examined in a multiple regression model that took into account the intercorrelation between visual characteristics, poorer fine motor skills performance was associated with strabismus (F(1,75) = 5.428; P = 0.022), but not with the level of binocular function, refractive error, or visual acuity in either eye. Fine motor skills were reduced in children with amblyopia, particularly those with strabismus, compared with control subjects. The deficits in motor performance were greatest on manual dexterity tasks requiring speed and accuracy.

  10. Motor skill performance and sports participation in deaf elementary school children.

    PubMed

    Hartman, Esther; Houwen, Suzanne; Visscher, Chris

    2011-04-01

    This study aimed to examine motor performance in deaf elementary school children and its association with sports participation. The population studied included 42 deaf children whose hearing loss ranged from 80 to 120 dB. Their motor skills were assessed with the Movement Assessment Battery for Children, and a questionnaire was used to determine their active involvement in organized sports. The deaf children had significantly more borderline and definite motor problems than the normative sample: 62% (manual dexterity), 52% (ball skills), and 45% (balance skills). Participation in organized sports was reported by 43% of the children; these children showed better performance on ball skills and dynamic balance. This study demonstrates the importance of improving deaf children's motor skill performance, which might contribute positively to their sports participation.

  11. Effects of Age and Visual-Motor Skills on Preschool Children's Computer-Game Performance.

    ERIC Educational Resources Information Center

    Strein, William

    1987-01-01

    The relationship of both age and visual-motor skills to performance on an arcade-like video game was studied with 16 preschool children. While age was positively related to performance, no significant relationship was found for the visual-motor skills variable. (Author/CB)

  12. Fine and gross motor skills: The effects on skill-focused dual-tasks.

    PubMed

    Raisbeck, Louisa D; Diekfuss, Jed A

    2015-10-01

    Dual-task methodology often directs participants' attention towards a gross motor skill involved in the execution of a skill, but researchers have not investigated the comparative effects of attention on fine motor skill tasks. Furthermore, there is limited information about participants' subjective perception of workload with respect to task performance. To examine this, the current study administered the NASA-Task Load Index following a simulated shooting dual-task. The task required participants to stand 15 feet from a projector screen which depicted virtual targets and fire a modified Glock 17 handgun equipped with an infrared laser. Participants performed the primary shooting task alone (control), or were also instructed to focus their attention on a gross motor skill relevant to task execution (gross skill-focused) and a fine motor skill relevant to task execution (fine skill-focused). Results revealed that workload was significantly greater during the fine skill-focused task for both skill levels, but performance was only affected for the lesser-skilled participants. Shooting performance for the lesser-skilled participants was greater during the gross skill-focused condition compared to the fine skill-focused condition. Correlational analyses also demonstrated a significant negative relationship between shooting performance and workload during the gross skill-focused task for the higher-skilled participants. A discussion of the relationship between skill type, workload, skill level, and performance in dual-task paradigms is presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A Single Bout of High-Intensity Interval Training Improves Motor Skill Retention in Individuals With Stroke.

    PubMed

    Nepveu, Jean-Francois; Thiel, Alexander; Tang, Ada; Fung, Joyce; Lundbye-Jensen, Jesper; Boyd, Lara A; Roig, Marc

    2017-08-01

    One bout of high-intensity cardiovascular exercise performed immediately after practicing a motor skill promotes changes in the neuroplasticity of the motor cortex and facilitates motor learning in nondisabled individuals. To determine if a bout of exercise performed at high intensity is sufficient to induce neuroplastic changes and improve motor skill retention in patients with chronic stroke. Twenty-two patients with different levels of motor impairment were recruited. On the first session, the effects of a maximal graded exercise test on corticospinal and intracortical excitability were assessed from the affected and unaffected primary motor cortex representational area of a hand muscle with transcranial magnetic stimulation. On the second session, participants were randomly assigned to an exercise or a nonexercise control group. Immediately after practicing a motor task, the exercise group performed 15 minutes of high-intensity interval training while the control group rested. Twenty-four hours after motor practice all participants completed a test of the motor task to assess skill retention. The graded exercise test reduced interhemispheric imbalances in GABA A -mediated short-interval intracortical inhibition but changes in other markers of excitability were not statistically significant. The group that performed high-intensity interval training showed a better retention of the motor skill. The performance of a maximal graded exercise test triggers only modest neuroplastic changes in patients with chronic stroke. However, a single bout of high-intensity interval training performed immediately after motor practice improves skill retention, which could potentially accelerate motor recovery in these individuals.

  14. Teacher Compliance and Accuracy in State Assessment of Student Motor Skill Performance

    ERIC Educational Resources Information Center

    Hall, Tina J.; Hicklin, Lori K.; French, Karen E.

    2015-01-01

    Purpose: The purpose of this study was to investigate teacher compliance with state mandated assessment protocols and teacher accuracy in assessing student motor skill performance. Method: Middle school teachers (N = 116) submitted eighth grade student motor skill performance data from 318 physical education classes to a trained monitoring…

  15. Individual Differences in Motor Timing and Its Relation to Cognitive and Fine Motor Skills

    PubMed Central

    Lorås, Håvard; Stensdotter, Ann-Katrin; Öhberg, Fredrik; Sigmundsson, Hermundur

    2013-01-01

    The present study investigated the relationship between individual differences in timing movements at the level of milliseconds and performance on selected cognitive and fine motor skills. For this purpose, young adult participants (N = 100) performed a repetitive movement task paced by an auditory metronome at different rates. Psychometric measures included the digit-span and symbol search subtasks from the Wechsler battery as well as the Raven SPM. Fine motor skills were assessed with the Purdue Pegboard test. Motor timing performance was significantly related (mean r = .3) to cognitive measures, and explained both unique and shared variance with information-processing speed of Raven's scores. No significant relations were found between motor timing measures and fine motor skills. These results show that individual differences in cognitive and motor timing performance is to some extent dependent upon shared processing not associated with individual differences in manual dexterity. PMID:23874952

  16. Individual differences in motor timing and its relation to cognitive and fine motor skills.

    PubMed

    Lorås, Håvard; Stensdotter, Ann-Katrin; Öhberg, Fredrik; Sigmundsson, Hermundur

    2013-01-01

    The present study investigated the relationship between individual differences in timing movements at the level of milliseconds and performance on selected cognitive and fine motor skills. For this purpose, young adult participants (N = 100) performed a repetitive movement task paced by an auditory metronome at different rates. Psychometric measures included the digit-span and symbol search subtasks from the Wechsler battery as well as the Raven SPM. Fine motor skills were assessed with the Purdue Pegboard test. Motor timing performance was significantly related (mean r = .3) to cognitive measures, and explained both unique and shared variance with information-processing speed of Raven's scores. No significant relations were found between motor timing measures and fine motor skills. These results show that individual differences in cognitive and motor timing performance is to some extent dependent upon shared processing not associated with individual differences in manual dexterity.

  17. Effectiveness of a Physical Activity Intervention for Head Start Preschoolers: A Randomized Intervention Study

    PubMed Central

    Davies, Patricia L.; Anderson, Jennifer; Kennedy, Catherine

    2013-01-01

    OBJECTIVES. The level of children’s motor skill proficiency may be an important determinant of their physical activity behaviors. This study assessed the efficacy of an intervention on gross motor skill performance, physical activity, and weight status of preschoolers. METHOD. The Food Friends: Get Movin’ With Mighty Moves® program was conducted in four Head Start centers. Measurements included the Peabody Developmental Motor Scales, pedometer counts, and body mass index (BMI) z scores. RESULTS. The intervention led to significant changes in gross motor skills in the treatment group (n = 98) compared with the control group (n = 103) and was a strong predictor of overall gross motor performance (gross motor quotient), locomotor, stability, and object manipulation skills. No intervention effect was found for physical activity levels or weight status. CONCLUSION. The intervention dose was adequate for enhancing gross motor skill performance but not for increasing physical activity levels or reducing BMI. PMID:23245780

  18. Motor Skill Assessment of Children: Is There an Association between Performance-Based, Child-Report, and Parent-Report Measures of Children's Motor Skills?

    ERIC Educational Resources Information Center

    Kennedy, Johanna; Brown, Ted; Chien, Chi-Wen

    2012-01-01

    Client-centered practice requires therapists to actively seek the perspectives of children and families. Several assessment tools are available to facilitate this process. However, when evaluating motor skill performance, therapists typically concentrate on performance-based assessment. To improve understanding of the information provided by the…

  19. Assessment of global motor performance and gross and fine motor skills of infants attending day care centers.

    PubMed

    Souza, Carolina T; Santos, Denise C C; Tolocka, Rute E; Baltieri, Letícia; Gibim, Nathália C; Habechian, Fernanda A P

    2010-01-01

    To analyze the global motor performance and the gross and fine motor skills of infants attending two public child care centers full-time. This was a longitudinal study that included 30 infants assessed at 12 and 17 months of age with the Motor Scale of the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). This scale allows the analysis of global motor performance, fine and gross motor performance, and the discrepancy between them. The Wilcoxon test and Spearman's correlation coefficient were used. Most of the participants showed global motor performance within the normal range, but below the reference mean at 12 and 17 months, with 30% classified as having "suspected delays" in at least one of the assessments. Gross motor development was poorer than fine motor development at 12 and at 17 months of age, with great discrepancy between these two subtests in the second assessment. A clear individual variability was observed in fine motor skills, with weak linear correlation between the first and the second assessment of this subtest. A lower individual variability was found in the gross motor skills and global motor performance with positive moderate correlation between assessments. Considering both performance measurements obtained at 12 and 17 months of age, four infants were identified as having a "possible delay in motor development". The study showed the need for closer attention to the motor development of children who attend day care centers during the first 17 months of life, with special attention to gross motor skills (which are considered an integral part of the child's overall development) and to children with suspected delays in two consecutive assessments.

  20. Cardiorespiratory Fitness and Motor Skills in Relation to Cognition and Academic Performance in Children – A Review

    PubMed Central

    Haapala, Eero A.

    2013-01-01

    Different elements of physical fitness in children have shown a declining trend during the past few decades. Cardiorespiratory fitness and motor skills have been associated with cognition, but the magnitude of this association remains unknown. The purpose of this review is to provide an overview of the relationship of cardiorespiratory fitness and motor skills with cognitive functions and academic performance in children up to 13 years of age. Cross-sectional studies suggest that children with higher cardiorespiratory fitness have more efficient cognitive processing at the neuroelectric level, as well as larger hippocampal and basal ganglia volumes, compared to children with lower cardiorespiratory fitness. Higher cardiorespiratory fitness has been associated with better inhibitory control in tasks requiring rigorous attention allocation. Better motor skills have been related to more efficient cognitive functions including inhibitory control and working memory. Higher cardiorespiratory fitness and better motor skills have also been associated with better academic performance. Furthermore, none of the studies on cardiorespiratory fitness have revealed independent associations with cognitive functions by controlling for motor skills. Studies concerning the relationship between motor skills and cognitive functions also did not consider cardiorespiratory fitness in the analyses. The results of this review suggest that high levels of cardiorespiratory fitness and motor skills may be beneficial for cognitive development and academic performance but the evidence relies mainly on cross-sectional studies. PMID:23717355

  1. Forelimb training drives transient map reorganization in ipsilateral motor cortex

    PubMed Central

    Pruitt, David T.; Schmid, Ariel N.; Danaphongse, Tanya T.; Flanagan, Kate E.; Morrison, Robert A.; Kilgard, Michael P.; Rennaker, Robert L.; Hays, Seth A.

    2016-01-01

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. PMID:27392641

  2. Forelimb training drives transient map reorganization in ipsilateral motor cortex.

    PubMed

    Pruitt, David T; Schmid, Ariel N; Danaphongse, Tanya T; Flanagan, Kate E; Morrison, Robert A; Kilgard, Michael P; Rennaker, Robert L; Hays, Seth A

    2016-10-15

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. 78 FR 41187 - Driver Qualifications: Skill Performance Evaluation; Virginia Department of Motor Vehicles...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2013-0147] Driver Qualifications: Skill Performance Evaluation; Virginia Department of Motor Vehicles' Application for Exemption AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of...

  4. Neural substrates underlying stimulation-enhanced motor skill learning after stroke

    PubMed Central

    Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques

    2015-01-01

    Motor skill learning is one of the key components of motor function recovery after stroke, especially recovery driven by neurorehabilitation. Transcranial direct current stimulation can enhance neurorehabilitation and motor skill learning in stroke patients. However, the neural mechanisms underlying the retention of stimulation-enhanced motor skill learning involving a paretic upper limb have not been resolved. These neural substrates were explored by means of functional magnetic resonance imaging. Nineteen chronic hemiparetic stroke patients participated in a double-blind, cross-over randomized, sham-controlled experiment with two series. Each series consisted of two sessions: (i) an intervention session during which dual transcranial direct current stimulation or sham was applied during motor skill learning with the paretic upper limb; and (ii) an imaging session 1 week later, during which the patients performed the learned motor skill. The motor skill learning task, called the ‘circuit game’, involves a speed/accuracy trade-off and consists of moving a pointer controlled by a computer mouse along a complex circuit as quickly and accurately as possible. Relative to the sham series, dual transcranial direct current stimulation applied bilaterally over the primary motor cortex during motor skill learning with the paretic upper limb resulted in (i) enhanced online motor skill learning; (ii) enhanced 1-week retention; and (iii) superior transfer of performance improvement to an untrained task. The 1-week retention’s enhancement driven by the intervention was associated with a trend towards normalization of the brain activation pattern during performance of the learned motor skill relative to the sham series. A similar trend towards normalization relative to sham was observed during performance of a simple, untrained task without a speed/accuracy constraint, despite a lack of behavioural difference between the dual transcranial direct current stimulation and sham series. Finally, dual transcranial direct current stimulation applied during the first session enhanced continued learning with the paretic limb 1 week later, relative to the sham series. This lasting behavioural enhancement was associated with more efficient recruitment of the motor skill learning network, that is, focused activation on the motor-premotor areas in the damaged hemisphere, especially on the dorsal premotor cortex. Dual transcranial direct current stimulation applied during motor skill learning with a paretic upper limb resulted in prolonged shaping of brain activation, which supported behavioural enhancements in stroke patients. PMID:25488186

  5. Interrelations between three fine motor skills in young adults.

    PubMed

    Lorås, Håvard; Sigmundsson, Hermundur

    2012-08-01

    Motor skills are typically considered to be highly specific, although some researchers have attempted to identify evidence for general motor aptitude. The present study tested these contentions by assessing the extent of relationship between fine motor tasks, using correlations between selected performance measures for three fine motor skills. University students ages 18 to 35 years (N = 305; 147 men, 158 women) completed three fine motor tasks with both right and left hands (placing pegs, posting coins, and placing bricks). Performance was assessed by time to complete each individual task. The intercorrelations between the three tasks were generally low and at a level that can be expected by chance (r < or = .3), indicating that performance was quite specific to the individual skills rather than attributable to a general ability. As a further test for evidence for a general motor ability, the dimensionality of the data set was analyzed using a principal component analysis on the correlation matrix. A three-factor solution explaining approximately 80% of the total variance in performance on the fine motor tasks was identified, where each factor could be associated with each fine motor task. These findings provide further support for the high specificity in fine motor skills and against the existence of a general aptitude for motor ability.

  6. Difference in children's gross motor skills between two types of preschools.

    PubMed

    Chow, Bik C; Louie, Lobo H T

    2013-02-01

    The purpose of this study was to assess the influence of preschool type (public vs private) on motor skill performance in 239 (121 boys, 118 girls) preschool children ages 3 to 6.5 yr. Preschoolers were tested on 12 fundamental motor skills from the Test of Gross Motor Development-Second Edition and 11 anthropometrics (body height, weight, Body Mass Index, waist and hip girths, and body segment lengths). Analysis of variance controlled for anthropometrics and age indicated that children from private preschools performed better on locomotor skills than those from public preschools. However, no difference was found in object control skills. The results suggest that performance of locomotor skills by preschool children is affected by their schools' physical environment.

  7. Can Perceptuo-Motor Skills Assessment Outcomes in Young Table Tennis Players (7-11 years) Predict Future Competition Participation and Performance? An Observational Prospective Study.

    PubMed

    Faber, Irene R; Elferink-Gemser, Marije T; Faber, Niels R; Oosterveld, Frits G J; Nijhuis-Van der Sanden, Maria W G

    2016-01-01

    Forecasting future performance in youth table tennis players based on current performance is complex due to, among other things, differences between youth players in growth, development, maturity, context and table tennis experience. Talent development programmes might benefit from an assessment of underlying perceptuo-motor skills for table tennis, which is hypothesized to determine the players' potential concerning the perceptuo-motor domain. The Dutch perceptuo-motor skills assessment intends to measure the perceptuo-motor potential for table tennis in youth players by assessing the underlying skills crucial for developing technical and tactical qualities. Untrained perceptuo-motor tasks are used as these are suggested to represent a player's future potential better than specific sport skills themselves as the latter depend on exposure to the sport itself. This study evaluated the value of the perceptuo-motor skills assessment for a talent developmental programme by evaluating its predictive validity for competition participation and performance in 48 young table tennis players (7-11 years). Players were tested on their perceptuo-motor skills once during a regional talent day, and the subsequent competition results were recorded half-yearly over a period of 2.5 years. Logistic regression analysis showed that test scores did not predict future competition participation (p >0.05). Yet, the Generalized Estimating Equations analysis, including the test items 'aiming at target', 'throwing a ball', and 'eye-hand coordination' in the best fitting model, revealed that the outcomes of the perceptuo-motor skills assessment were significant predictors for future competition results (R2 = 51%). Since the test age influences the perceptuo-motor skills assessment's outcome, another multivariable model was proposed including test age as a covariate (R2 = 53%). This evaluation demonstrates promising prospects for the perceptuo-motor skills assessment to be included in a talent development programme. Future studies are needed to clarify the predictive value in a larger sample of youth competition players over a longer period in time.

  8. How is a motor skill learned? Change and invariance at the levels of task success and trajectory control

    PubMed Central

    Krakauer, John W.; Mazzoni, Pietro

    2012-01-01

    The public pays large sums of money to watch skilled motor performance. Notably, however, in recent decades motor skill learning (performance improvement beyond baseline levels) has received less experimental attention than motor adaptation (return to baseline performance in the setting of an external perturbation). Motor skill can be assessed at the levels of task success and movement quality, but the link between these levels remains poorly understood. We devised a motor skill task that required visually guided curved movements of the wrist without a perturbation, and we defined skill learning at the task level as a change in the speed–accuracy trade-off function (SAF). Practice in restricted speed ranges led to a global shift of the SAF. We asked how the SAF shift maps onto changes in trajectory kinematics, to establish a link between task-level performance and fine motor control. Although there were small changes in mean trajectory, improved performance largely consisted of reduction in trial-to-trial variability and increase in movement smoothness. We found evidence for improved feedback control, which could explain the reduction in variability but does not preclude other explanations such as an increased signal-to-noise ratio in cortical representations. Interestingly, submovement structure remained learning invariant. The global generalization of the SAF across a wide range of difficulty suggests that skill for this task is represented in a temporally scalable network. We propose that motor skill acquisition can be characterized as a slow reduction in movement variability, which is distinct from faster model-based learning that reduces systematic error in adaptation paradigms. PMID:22514286

  9. Acute Exercise Improves Motor Memory Consolidation in Preadolescent Children

    PubMed Central

    Lundbye-Jensen, Jesper; Skriver, Kasper; Nielsen, Jens B.; Roig, Marc

    2017-01-01

    Objective: The ability to acquire new motor skills is essential both during childhood and later in life. Recent studies have demonstrated that an acute bout of exercise can improve motor memory consolidation in adults. The objective of the present study was to investigate whether acute exercise protocols following motor skill practice in a school setting can also improve long-term retention of motor memory in preadolescent children. Methods: Seventy-seven pre-adolescent children (age 10.5 ± 0.75 (SD)) participated in the study. Prior to the main experiment age, BMI, fitness status and general physical activity level was assessed in all children and they were then randomly allocated to three groups. All children practiced a visuomotor tracking task followed by 20 min of rest (CON), high intensity intermittent floorball (FLB) or running (RUN) with comparable exercise intensity and duration for exercise groups. Delayed retention of motor memory was assessed 1 h, 24 h and 7 days after motor skill acquisition. Results: During skill acquisition, motor performance improved significantly to the immediate retention test with no differences between groups. One hour following skill acquisition, motor performance decreased significantly for RUN. Twenty-four hours following skill acquisition there was a tendency towards improved performance for FLB but no significant effects. Seven days after motor practice however, both FLB and RUN performed better when compared to their immediate retention test indicating significant offline gains. This effect was not observed for CON. In contrast, 7 days after motor practice, retention of motor memory was significantly better for FLB and RUN compared to CON. No differences were observed when comparing FLB and RUN. Conclusions: Acute intense intermittent exercise performed immediately after motor skill acquisition facilitates long-term motor memory in pre-adolescent children, presumably by promoting memory consolidation. The results also demonstrate that the effects can be accomplished in a school setting. The positive effect of both a team game (i.e., FLB) and running indicates that the observed memory improvements are determined to a larger extent by physiological factors rather than the types of movements performed during the exercise protocol. PMID:28473761

  10. The Performance of Fundamental Gross Motor Skills by Children Enrolled in Head Start.

    ERIC Educational Resources Information Center

    Woodard, Rebecca J.; Yun, Joonkoo

    2001-01-01

    This study sought to descriptively evaluate the performance of fundamental gross motor skills among Head Start children. Levels of performance were compared and contrasted with performance profiles of the Test of Gross Motor Development. Findings suggest that Head Start curriculum should focus on the importance of developing fundamental gross…

  11. Motor Skills and Exercise Capacity Are Associated with Objective Measures of Cognitive Functions and Academic Performance in Preadolescent Children.

    PubMed

    Geertsen, Svend Sparre; Thomas, Richard; Larsen, Malte Nejst; Dahn, Ida Marie; Andersen, Josefine Needham; Krause-Jensen, Matilde; Korup, Vibeke; Nielsen, Claus Malta; Wienecke, Jacob; Ritz, Christian; Krustrup, Peter; Lundbye-Jensen, Jesper

    2016-01-01

    To investigate associations between motor skills, exercise capacity and cognitive functions, and evaluate how they correlate to academic performance in mathematics and reading comprehension using standardised, objective tests. This cross-sectional study included 423 Danish children (age: 9.29±0.35 years, 209 girls). Fine and gross motor skills were evaluated in a visuomotor accuracy-tracking task, and a whole-body coordination task, respectively. Exercise capacity was estimated from the Yo-Yo intermittent recovery level 1 children's test (YYIR1C). Selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) were used to assess different domains of cognitive functions, including sustained attention, spatial working memory, episodic and semantic memory, and processing speed. Linear mixed-effects models were used to investigate associations between these measures and the relationship with standard tests of academic performance in mathematics and reading comprehension. Both fine and gross motor skills were associated with better performance in all five tested cognitive domains (all P<0.001), whereas exercise capacity was only associated with better sustained attention (P<0.046) and spatial working memory (P<0.038). Fine and gross motor skills (all P<0.001), exercise capacity and cognitive functions such as working memory, episodic memory, sustained attention and processing speed were all associated with better performance in mathematics and reading comprehension. The data demonstrate that fine and gross motor skills are positively correlated with several aspects of cognitive functions and with academic performance in both mathematics and reading comprehension. Moreover, exercise capacity was associated with academic performance and performance in some cognitive domains. Future interventions should investigate associations between changes in motor skills, exercise capacity, cognitive functions, and academic performance to elucidate the causality of these associations.

  12. Motor Skills and Exercise Capacity Are Associated with Objective Measures of Cognitive Functions and Academic Performance in Preadolescent Children

    PubMed Central

    Thomas, Richard; Larsen, Malte Nejst; Dahn, Ida Marie; Andersen, Josefine Needham; Krause-Jensen, Matilde; Korup, Vibeke; Nielsen, Claus Malta; Wienecke, Jacob; Ritz, Christian; Krustrup, Peter; Lundbye-Jensen, Jesper

    2016-01-01

    Objective To investigate associations between motor skills, exercise capacity and cognitive functions, and evaluate how they correlate to academic performance in mathematics and reading comprehension using standardised, objective tests. Methods This cross-sectional study included 423 Danish children (age: 9.29±0.35 years, 209 girls). Fine and gross motor skills were evaluated in a visuomotor accuracy-tracking task, and a whole-body coordination task, respectively. Exercise capacity was estimated from the Yo-Yo intermittent recovery level 1 children's test (YYIR1C). Selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) were used to assess different domains of cognitive functions, including sustained attention, spatial working memory, episodic and semantic memory, and processing speed. Linear mixed-effects models were used to investigate associations between these measures and the relationship with standard tests of academic performance in mathematics and reading comprehension. Results Both fine and gross motor skills were associated with better performance in all five tested cognitive domains (all P<0.001), whereas exercise capacity was only associated with better sustained attention (P<0.046) and spatial working memory (P<0.038). Fine and gross motor skills (all P<0.001), exercise capacity and cognitive functions such as working memory, episodic memory, sustained attention and processing speed were all associated with better performance in mathematics and reading comprehension. Conclusions The data demonstrate that fine and gross motor skills are positively correlated with several aspects of cognitive functions and with academic performance in both mathematics and reading comprehension. Moreover, exercise capacity was associated with academic performance and performance in some cognitive domains. Future interventions should investigate associations between changes in motor skills, exercise capacity, cognitive functions, and academic performance to elucidate the causality of these associations. PMID:27560512

  13. Neural substrates underlying stimulation-enhanced motor skill learning after stroke.

    PubMed

    Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques; Vandermeeren, Yves

    2015-01-01

    Motor skill learning is one of the key components of motor function recovery after stroke, especially recovery driven by neurorehabilitation. Transcranial direct current stimulation can enhance neurorehabilitation and motor skill learning in stroke patients. However, the neural mechanisms underlying the retention of stimulation-enhanced motor skill learning involving a paretic upper limb have not been resolved. These neural substrates were explored by means of functional magnetic resonance imaging. Nineteen chronic hemiparetic stroke patients participated in a double-blind, cross-over randomized, sham-controlled experiment with two series. Each series consisted of two sessions: (i) an intervention session during which dual transcranial direct current stimulation or sham was applied during motor skill learning with the paretic upper limb; and (ii) an imaging session 1 week later, during which the patients performed the learned motor skill. The motor skill learning task, called the 'circuit game', involves a speed/accuracy trade-off and consists of moving a pointer controlled by a computer mouse along a complex circuit as quickly and accurately as possible. Relative to the sham series, dual transcranial direct current stimulation applied bilaterally over the primary motor cortex during motor skill learning with the paretic upper limb resulted in (i) enhanced online motor skill learning; (ii) enhanced 1-week retention; and (iii) superior transfer of performance improvement to an untrained task. The 1-week retention's enhancement driven by the intervention was associated with a trend towards normalization of the brain activation pattern during performance of the learned motor skill relative to the sham series. A similar trend towards normalization relative to sham was observed during performance of a simple, untrained task without a speed/accuracy constraint, despite a lack of behavioural difference between the dual transcranial direct current stimulation and sham series. Finally, dual transcranial direct current stimulation applied during the first session enhanced continued learning with the paretic limb 1 week later, relative to the sham series. This lasting behavioural enhancement was associated with more efficient recruitment of the motor skill learning network, that is, focused activation on the motor-premotor areas in the damaged hemisphere, especially on the dorsal premotor cortex. Dual transcranial direct current stimulation applied during motor skill learning with a paretic upper limb resulted in prolonged shaping of brain activation, which supported behavioural enhancements in stroke patients. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Profiles of Motor Laterality in Young Athletes' Performance of Complex Movements: Merging the MOTORLAT and PATHoops Tools

    PubMed Central

    Castañer, Marta; Andueza, Juan; Hileno, Raúl; Puigarnau, Silvia; Prat, Queralt; Camerino, Oleguer

    2018-01-01

    Laterality is a key aspect of the analysis of basic and specific motor skills. It is relevant to sports because it involves motor laterality profiles beyond left-right preference and spatial orientation of the body. The aim of this study was to obtain the laterality profiles of young athletes, taking into account the synergies between the support and precision functions of limbs and body parts in the performance of complex motor skills. We applied two instruments: (a) MOTORLAT, a motor laterality inventory comprising 30 items of basic, specific, and combined motor skills, and (b) the Precision and Agility Tapping over Hoops (PATHoops) task, in which participants had to perform a path by stepping in each of 14 hoops arranged on the floor, allowing the observation of their feet, left-right preference and spatial orientation. A total of 96 young athletes performed the PATHoops task and the 30 MOTORLAT items, allowing us to obtain data about limb dominance and spatial orientation of the body in the performance of complex motor skills. Laterality profiles were obtained by means of a cluster analysis and a correlational analysis and a contingency analysis were applied between the motor skills and spatial orientation actions performed. The results obtained using MOTORLAT show that the combined motor skills criterion (for example, turning while jumping) differentiates athletes' uses of laterality, showing a clear tendency toward mixed laterality profiles in the performance of complex movements. In the PATHoops task, the best spatial orientation strategy was “same way” (same foot and spatial wing) followed by “opposite way” (opposite foot and spatial wing), in keeping with the research assumption that actions unfolding in a horizontal direction in front of an observer's eyes are common in a variety of sports. PMID:29930527

  15. Motor Development and Skill Analysis. Connections to Elementary Physical Education.

    ERIC Educational Resources Information Center

    Mielke, Dan; Morrison, Craig

    1985-01-01

    Drawing upon stages of motor development and elements of biomechanics, the authors used anatomical planes as a frame of reference to determine movement patterns and assess readiness to perform movement skills. The combination of determining readiness and analyzing skill enables the teacher to plan proper motor skill activities. (MT)

  16. Atypical Acquisition and Atypical Expression of Memory Consolidation Gains in a Motor Skill in Young Female Adults with ADHD

    ERIC Educational Resources Information Center

    Adi-Japha, Esther; Fox, Orly; Karni, Avi

    2011-01-01

    Individuals with ADHD often show performance deficits in motor tasks. It is not clear, however, whether this reflects less effective acquisition of skill (procedural knowledge), or deficient consolidation into long-term memory, in ADHD. The aim of the study was to compare the acquisition of skilled motor performance, the expression of…

  17. Sensori-Motor and Daily Living Skills of Preschool Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Jasmin, Emmanuelle; Couture, Melanie; McKinley, Patricia; Reid, Greg; Fombonne, Eric; Gisel, Erika

    2009-01-01

    Sensori-motor development and performance of daily living skills (DLS) remain little explored in children with autism spectrum disorders (ASD). The objective of this study was to determine the impact of sensori-motor skills on the performance of DLS in preschool children with ASD. Thirty-five children, 3-4 years of age, were recruited and assessed…

  18. Motor skills and school performance in children with daily physical education in school--a 9-year intervention study.

    PubMed

    Ericsson, I; Karlsson, M K

    2014-04-01

    The aim was to study long-term effects on motor skills and school performance of increased physical education (PE). All pupils born 1990-1992 from one school were included in a longitudinal study over nine years. An intervention group (n = 129) achieved daily PE (5 × 45 min/week) and if needed one extra lesson of adapted motor training. The control group (n = 91) had PE two lessons/week. Motor skills were evaluated by the Motor Skills Development as Ground for Learning observation checklist and school achievements by marks in Swedish, English, Mathematics, and PE and proportion of pupils who qualified for upper secondary school. In school year 9 there were motor skills deficits in 7% of pupils in the intervention group compared to 47% in the control group (P < 0.001), 96% of the pupils in the intervention group compared to 89% in the control group (P < 0.05) qualified for upper secondary school. The sum of evaluated marks was higher among boys in the intervention group than in the control group (P < 0.05). The sum of marks was also higher in pupils with no motor skills deficit than among pupils with motor skills deficits (P < 0.01), as was the proportion of pupils who qualified for upper secondary school (97% vs 81%, P < 0.001). Daily PE and adapted motor skills training during the compulsory school years is a feasible way to improve not only motor skills but also school performance and the proportion of pupils who qualify for upper secondary school. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Learning fast accurate movements requires intact frontostriatal circuits

    PubMed Central

    Shabbott, Britne; Ravindran, Roshni; Schumacher, Joseph W.; Wasserman, Paula B.; Marder, Karen S.; Mazzoni, Pietro

    2013-01-01

    The basal ganglia are known to play a crucial role in movement execution, but their importance for motor skill learning remains unclear. Obstacles to our understanding include the lack of a universally accepted definition of motor skill learning (definition confound), and difficulties in distinguishing learning deficits from execution impairments (performance confound). We studied how healthy subjects and subjects with a basal ganglia disorder learn fast accurate reaching movements. We addressed the definition and performance confounds by: (1) focusing on an operationally defined core element of motor skill learning (speed-accuracy learning), and (2) using normal variation in initial performance to separate movement execution impairment from motor learning abnormalities. We measured motor skill learning as performance improvement in a reaching task with a speed-accuracy trade-off. We compared the performance of subjects with Huntington's disease (HD), a neurodegenerative basal ganglia disorder, to that of premanifest carriers of the HD mutation and of control subjects. The initial movements of HD subjects were less skilled (slower and/or less accurate) than those of control subjects. To factor out these differences in initial execution, we modeled the relationship between learning and baseline performance in control subjects. Subjects with HD exhibited a clear learning impairment that was not explained by differences in initial performance. These results support a role for the basal ganglia in both movement execution and motor skill learning. PMID:24312037

  20. How can surgical training benefit from theories of skilled motor development, musical skill acquisition and performance psychology?

    PubMed

    McCaskie, Andrew W; Kenny, Dianna T; Deshmukh, Sandeep

    2011-05-02

    Trainee surgeons must acquire expert status in the context of reduced hours, reduced operating room time and the need to learn complex skills involving screen-mediated techniques, computers and robotics. Ever more sophisticated surgical simulation strategies have been helpful in providing surgeons with the opportunity to practise, but not all of these strategies are widely available. Similarities in the motor skills required in skilled musical performance and surgery suggest that models of music learning, and particularly skilled motor development, may be applicable in training surgeons. More attention should be paid to factors associated with optimal arousal and optimal performance in surgical training - lessons learned from helping anxious musicians optimise performance and manage anxiety may also be transferable to trainee surgeons. The ways in which the trainee surgeon moves from novice to expert need to be better understood so that this process can be expedited using current knowledge in other disciplines requiring the performance of complex fine motor tasks with high cognitive load under pressure.

  1. Development of Young Adults' Fine Motor Skills when Learning to Play Percussion Instruments

    ERIC Educational Resources Information Center

    Gzibovskis, Talis; Marnauza, Mara

    2012-01-01

    When playing percussion instruments, the main activity is done with the help of a motion or motor skills; to perform it, developed fine motor skills are necessary: the speed and precision of fingers, hands and palms. The aim of the research was to study and test the development of young adults' fine motor skills while learning to play percussion…

  2. Early motor skill competence as a mediator of child and adult physical activity

    PubMed Central

    Loprinzi, Paul D.; Davis, Robert E.; Fu, Yang-Chieh

    2015-01-01

    Objective: In order to effectively promote physical activity (PA) during childhood, and across the lifespan, a better understanding of the role of early motor skill development on child and adult PA is needed. Methods: Here, we propose a conceptual model delineating the hypothesized influence of motor skill development on child and adult PA, while providing an overview of the current empirical research related to this model. Results: There is consistent and emerging evidence showing that adequate motor skill competence, particularly locomotor and gross motor skills, is associated with increased PA levels during the preschool, child, and adolescent years, with early motor skill development also influencing enjoyment of PA as well as long-term PA and motor skill performance. The physical education setting appears to be a well-suited environment for motor skill development. Conclusion: Employing appropriate strategies to target motor skill development across the childhood years is of paramount interest in helping shape children's PA behavior, their experiences related to PA, as well as maintain their PA. PMID:26844157

  3. Can Perceptuo-Motor Skills Assessment Outcomes in Young Table Tennis Players (7–11 years) Predict Future Competition Participation and Performance? An Observational Prospective Study

    PubMed Central

    2016-01-01

    Forecasting future performance in youth table tennis players based on current performance is complex due to, among other things, differences between youth players in growth, development, maturity, context and table tennis experience. Talent development programmes might benefit from an assessment of underlying perceptuo-motor skills for table tennis, which is hypothesized to determine the players’ potential concerning the perceptuo-motor domain. The Dutch perceptuo-motor skills assessment intends to measure the perceptuo-motor potential for table tennis in youth players by assessing the underlying skills crucial for developing technical and tactical qualities. Untrained perceptuo-motor tasks are used as these are suggested to represent a player’s future potential better than specific sport skills themselves as the latter depend on exposure to the sport itself. This study evaluated the value of the perceptuo-motor skills assessment for a talent developmental programme by evaluating its predictive validity for competition participation and performance in 48 young table tennis players (7–11 years). Players were tested on their perceptuo-motor skills once during a regional talent day, and the subsequent competition results were recorded half-yearly over a period of 2.5 years. Logistic regression analysis showed that test scores did not predict future competition participation (p >0.05). Yet, the Generalized Estimating Equations analysis, including the test items ‘aiming at target’, ‘throwing a ball’, and ‘eye-hand coordination’ in the best fitting model, revealed that the outcomes of the perceptuo-motor skills assessment were significant predictors for future competition results (R2 = 51%). Since the test age influences the perceptuo-motor skills assessment’s outcome, another multivariable model was proposed including test age as a covariate (R2 = 53%). This evaluation demonstrates promising prospects for the perceptuo-motor skills assessment to be included in a talent development programme. Future studies are needed to clarify the predictive value in a larger sample of youth competition players over a longer period in time. PMID:26863212

  4. Relationships between academic performance, SES school type and perceptual-motor skills in first grade South African learners: NW-CHILD study.

    PubMed

    Pienaar, A E; Barhorst, R; Twisk, J W R

    2014-05-01

    Perceptual-motor skills contribute to a variety of basic learning skills associated with normal academic success. This study aimed to determine the relationship between academic performance and perceptual-motor skills in first grade South African learners and whether low SES (socio-economic status) school type plays a role in such a relationship. This cross-sectional study of the baseline measurements of the NW-CHILD longitudinal study included a stratified random sample of first grade learners (n = 812; 418 boys and 394 boys), with a mean age of 6.78 years ± 0.49 living in the North West Province (NW) of South Africa. The Beery-Buktenica Developmental Test of Visual-Motor Integration-4 (VMI) was used to assess visual-motor integration, visual perception and hand control while the Bruininks Oseretsky Test of Motor Proficiency, short form (BOT2-SF) assessed overall motor proficiency. Academic performance in math, reading and writing was assessed with the Mastery of Basic Learning Areas Questionnaire. Linear mixed models analysis was performed with spss to determine possible differences between the different VMI and BOT2-SF standard scores in different math, reading and writing mastery categories ranging from no mastery to outstanding mastery. A multinomial multilevel logistic regression analysis was performed to assess the relationship between a clustered score of academic performance and the different determinants. A strong relationship was established between academic performance and VMI, visual perception, hand control and motor proficiency with a significant relationship between a clustered academic performance score, visual-motor integration and visual perception. A negative association was established between low SES school types on academic performance, with a common perceptual motor foundation shared by all basic learning areas. Visual-motor integration, visual perception, hand control and motor proficiency are closely related to basic academic skills required in the first formal school year, especially among learners in low SES type schools. © 2013 John Wiley & Sons Ltd.

  5. Associations of Postural Knowledge and Basic Motor Skill with Dyspraxia in Autism: Implication for Abnormalities in Distributed Connectivity and Motor Learning

    PubMed Central

    Dowell, Lauren R.; Mahone, E. Mark; Mostofsky, Stewart H.

    2009-01-01

    Children with autism often have difficulty performing skilled movements. Praxis performance requires basic motor skill, knowledge of representations of the movement (mediated by parietal regions), and transcoding of these representations into movement plans (mediated by premotor circuits). The goals of this study were: (a) to determine whether dyspraxia in autism is associated with impaired representational (“postural”) knowledge, and (b) to examine the contributions of postural knowledge and basic motor skill to dyspraxia in autism. Thirty-seven children with autism spectrum disorder (ASD) and 50 typically developing (TD) children, ages 8–13, completed: (a) an examination of basic motor skills, (b) a postural knowledge test assessing praxis discrimination, and (c) a praxis examination. Children with ASD showed worse basic motor skill and postural knowledge than controls. The ASD group continued to show significantly poorer praxis than controls after accounting for age, IQ, basic motor skill, and postural knowledge. Dyspraxia in autism appears to be associated with impaired formation of spatial representations, as well as transcoding and execution. Distributed abnormality across parietal, premotor, and motor circuitry, as well as anomalous connectivity may be implicated. PMID:19702410

  6. Fine motor skills and expressive language: a study with children with congenital hypotyreoidism.

    PubMed

    Frezzato, Renata Camargo; Santos, Denise Castilho Cabrera; Goto, Maura Mikie Fukujima; Ouro, Michelle Prado Cabral do; Santos, Carolina Taddeo Mendes Dos; Dutra, Vivian; Lima, Maria Cecília Marconi Pinheiro

    2017-03-09

    To screen the global development of children with and without congenital hypothyroidism and to investigate the association between fine motor skills and expressive language development in both groups. This is a prospective study of a cohort of children diagnosed with Congenital Hypothyroidism and monitored in a reference service for congenital hypothyroidism of a public hospital and of children without this disorder. The screening was performed using the Bayley Scales of Infant Development III in the cognitive, gross and fine motor skills, and receptive and expressive language domains. The children's performance was expressed in three categories: competent, and non-competent. We screened 117 children with average age of 21 months diagnosed with Congenital Hypothyroidism at birth, with the Thyroid Stimulating Hormone (TSH) level normalized during screening, and 51 children without the condition. The children with Congenital Hypothyroidism presented lower performance in gross and fine motor skills upon comparison between the two groups, and no differences were found in the cognitive and receptive and expressive language domains. The association between fine motor skills and language persisted in the group with Hypothyroidism, demonstrating that the interrelationship of skills is present in all individuals, although this group is two times more likely to present expressive language impairment when fine motor skills are already compromised. In the development process, both skills - motor and expressive language - might be associated and/or dependent on each other in the sample assessed.

  7. Information Processing Capabilities in Performers Differing in Levels of Motor Skill

    DTIC Science & Technology

    1979-01-01

    F. I. 1. , ’ Lockhart , R. S. Levels of* processing : A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 1972, 11, 671-684...ARI TECHNICAL REPORT LEVEr.79iA4 Information Processing Capabilities in Performers Differing In Levels of 00 Motor Skill ,4 by Robert N. Singer... PROCESSING CAPABILITIES IN PERFORMERS DIFFERING IN LEVELS OF MOTOR SKILL INTRODUCTION In the human behaving systems model developed by Singer, Gerson, and

  8. Sleep benefits consolidation of visuo-motor adaptation learning in older adults.

    PubMed

    Mantua, Janna; Baran, Bengi; Spencer, Rebecca M C

    2016-02-01

    Sleep is beneficial for performance across a range of memory tasks in young adults, but whether memories are similarly consolidated in older adults is less clear. Performance benefits have been observed following sleep in older adults for declarative learning tasks, but this benefit may be reduced for non-declarative, motor skill learning tasks. To date, studies of sleep-dependent consolidation of motor learning in older adults are limited to motor sequence tasks. To examine whether reduced sleep-dependent consolidation in older adults is generalizable to other forms of motor skill learning, we examined performance changes over intervals of sleep and wake in young (n = 62) and older adults (n = 61) using a mirror-tracing task, which assesses visuo-motor adaptation learning. Participants learned the task either in the morning or in evening, and performance was assessed following a 12-h interval containing overnight sleep or daytime wake. Contrary to our prediction, both young adults and older adults exhibited sleep-dependent gains in visuo-motor adaptation. There was a correlation between performance improvement over sleep and percent of the night in non-REM stage 2 sleep. These results indicate that motor skill consolidation remains intact with increasing age although this relationship may be limited to specific forms of motor skill learning.

  9. Associations of motor and cardiovascular performance with academic skills in children.

    PubMed

    Haapala, Eero A; Poikkeus, Anna-Maija; Tompuri, Tuomo; Kukkonen-Harjula, Katriina; Leppänen, Paavo H T; Lindi, Virpi; Lakka, Timo A

    2014-01-01

    We investigated the associations of cardiovascular and motor performance in grade 1 with academic skills in grades 1-3. The participants were 6- to 8-yr-old children with complete data in grades 1-2 for 174 children and in grade 3 for 167 children. Maximal workload during exercise test was used as a measure of cardiovascular performance. The shuttle run test (SRT) time, the errors in balance test, and the number of cubes moved in box and block test (BBT) were measures of motor performance. Academic skills were assessed using reading fluency, reading comprehension, and arithmetic skill tests. Among boys, longer SRT time was associated with poorer reading fluency in grades 1-3 (β = -0.29 to -0.39, P < 0.01), reading comprehension in grades 1-2 (β = -0.25 to -0.29, P < 0.05), and arithmetic skills in grades 1-3 (β = -0.33 to -0.40, P < 0.003). Poorer balance was related to poorer reading comprehension (β = -0.20, P = 0.042). The smaller number of cubes moved in BBT was related to poorer reading fluency in grades 1-2 (β = 0.23-0.28, P < 0.03), reading comprehension in grade 3 (β = 0.23, P = 0.037), and arithmetic skills in grades 1-2 (β = 0.21-0.23, P < 0.043). Among girls, longer SRT time was related to poorer reading fluency in grade 3 (β = -0.27, P = 0.027) and arithmetic skills in grade 2 (β = -0.25, P = 0.040). The smaller number of cubes moved in BBT was associated with worse reading fluency in grade 2 (β = 0.26, P = 0.030). Cardiovascular performance was not related to academic skills. Poorer motor performance was associated with worse academic skills in children, especially among boys. These findings emphasize early identification of children with poor motor performance and actions to improve these children's motor performance and academic skills during the first school years.

  10. Differences in Visuo-Motor Control in Skilled vs. Novice Martial Arts Athletes during Sustained and Transient Attention Tasks: A Motor-Related Cortical Potential Study

    PubMed Central

    Sanchez-Lopez, Javier; Fernandez, Thalia; Silva-Pereyra, Juan; Martinez Mesa, Juan A.; Di Russo, Francesco

    2014-01-01

    Cognitive and motor processes are essential for optimal athletic performance. Individuals trained in different skills and sports may have specialized cognitive abilities and motor strategies related to the characteristics of the activity and the effects of training and expertise. Most studies have investigated differences in motor-related cortical potential (MRCP) during self-paced tasks in athletes but not in stimulus-related tasks. The aim of the present study was to identify the differences in performance and MRCP between skilled and novice martial arts athletes during two different types of tasks: a sustained attention task and a transient attention task. Behavioral and electrophysiological data from twenty-two martial arts athletes were obtained while they performed a continuous performance task (CPT) to measure sustained attention and a cued continuous performance task (c-CPT) to measure transient attention. MRCP components were analyzed and compared between groups. Electrophysiological data in the CPT task indicated larger prefrontal positive activity and greater posterior negativity distribution prior to a motor response in the skilled athletes, while novices showed a significantly larger response-related P3 after a motor response in centro-parietal areas. A different effect occurred in the c-CPT task in which the novice athletes showed strong prefrontal positive activity before a motor response and a large response-related P3, while in skilled athletes, the prefrontal activity was absent. We propose that during the CPT, skilled athletes were able to allocate two different but related processes simultaneously according to CPT demand, which requires controlled attention and controlled motor responses. On the other hand, in the c-CPT, skilled athletes showed better cue facilitation, which permitted a major economy of resources and “automatic” or less controlled responses to relevant stimuli. In conclusion, the present data suggest that motor expertise enhances neural flexibility and allows better adaptation of cognitive control to the requested task. PMID:24621480

  11. Differences in visuo-motor control in skilled vs. novice martial arts athletes during sustained and transient attention tasks: a motor-related cortical potential study.

    PubMed

    Sanchez-Lopez, Javier; Fernandez, Thalia; Silva-Pereyra, Juan; Martinez Mesa, Juan A; Di Russo, Francesco

    2014-01-01

    Cognitive and motor processes are essential for optimal athletic performance. Individuals trained in different skills and sports may have specialized cognitive abilities and motor strategies related to the characteristics of the activity and the effects of training and expertise. Most studies have investigated differences in motor-related cortical potential (MRCP) during self-paced tasks in athletes but not in stimulus-related tasks. The aim of the present study was to identify the differences in performance and MRCP between skilled and novice martial arts athletes during two different types of tasks: a sustained attention task and a transient attention task. Behavioral and electrophysiological data from twenty-two martial arts athletes were obtained while they performed a continuous performance task (CPT) to measure sustained attention and a cued continuous performance task (c-CPT) to measure transient attention. MRCP components were analyzed and compared between groups. Electrophysiological data in the CPT task indicated larger prefrontal positive activity and greater posterior negativity distribution prior to a motor response in the skilled athletes, while novices showed a significantly larger response-related P3 after a motor response in centro-parietal areas. A different effect occurred in the c-CPT task in which the novice athletes showed strong prefrontal positive activity before a motor response and a large response-related P3, while in skilled athletes, the prefrontal activity was absent. We propose that during the CPT, skilled athletes were able to allocate two different but related processes simultaneously according to CPT demand, which requires controlled attention and controlled motor responses. On the other hand, in the c-CPT, skilled athletes showed better cue facilitation, which permitted a major economy of resources and "automatic" or less controlled responses to relevant stimuli. In conclusion, the present data suggest that motor expertise enhances neural flexibility and allows better adaptation of cognitive control to the requested task.

  12. Motor automaticity in Parkinson’s disease

    PubMed Central

    Wu, Tao; Hallett, Mark; Chan, Piu

    2017-01-01

    Bradykinesia is the most important feature contributing to motor difficulties in Parkinson’s disease (PD). However, the pathophysiology underlying bradykinesia is not fully understood. One important aspect is that PD patients have difficulty in performing learned motor skills automatically, but this problem has been generally overlooked. Here we review motor automaticity associated motor deficits in PD, such as reduced arm swing, decreased stride length, freezing of gait, micrographia and reduced facial expression. Recent neuroimaging studies have revealed some neural mechanisms underlying impaired motor automaticity in PD, including less efficient neural coding of movement, failure to shift automated motor skills to the sensorimotor striatum, instability of the automatic mode within the striatum, and use of attentional control and/or compensatory efforts to execute movements usually performed automatically in healthy people. PD patients lose previously acquired automatic skills due to their impaired sensorimotor striatum, and have difficulty in acquiring new automatic skills or restoring lost motor skills. More investigations on the pathophysiology of motor automaticity, the effect of L-dopa or surgical treatments on automaticity, and the potential role of using measures of automaticity in early diagnosis of PD would be valuable. PMID:26102020

  13. Gross motor skill development of 5-year-old Kindergarten children in Myanmar.

    PubMed

    Aye, Thanda; Oo, Khin Saw; Khin, Myo Thuzar; Kuramoto-Ahuja, Tsugumi; Maruyama, Hitoshi

    2017-10-01

    [Purpose] The purpose of this study was to examine the gross motor skill development of 5-year-old Kindergarten children in Myanmar. [Subjects and Methods] Total 472 healthy Kindergarten children (237 males, 235 females) of 2016-2017 academic year from four schools in urban area and four schools in rural area of Myanmar were recruited. The gross motor skill development of all subjects was assessed with the test of gross motor development second edition (TGMD-2). All subjects performed two trials for each gross motor skill and the performance was video recorded and scored. The assessment procedures were done according to the standardized guidelines of TGMD-2. [Results] The majority of subjects had average level of gross motor skill rank. The significant differences were found on the run and gallop of locomotor skills and the most of object control skills except the catch between males and females. The significant differences were also found between subjects from urban and rural areas. [Conclusion] Gross motor skill development of 5-year-old Kindergarten children in Myanmar had gender-based and region-based differences on both locomotor and object control skills. This study added a valuable information to the establishment of a normative reference of Kindergarten aged children for future studies.

  14. Gross motor skill development of 5-year-old Kindergarten children in Myanmar

    PubMed Central

    Aye, Thanda; Oo, Khin Saw; Khin, Myo Thuzar; Kuramoto-Ahuja, Tsugumi; Maruyama, Hitoshi

    2017-01-01

    [Purpose] The purpose of this study was to examine the gross motor skill development of 5-year-old Kindergarten children in Myanmar. [Subjects and Methods] Total 472 healthy Kindergarten children (237 males, 235 females) of 2016–2017 academic year from four schools in urban area and four schools in rural area of Myanmar were recruited. The gross motor skill development of all subjects was assessed with the test of gross motor development second edition (TGMD-2). All subjects performed two trials for each gross motor skill and the performance was video recorded and scored. The assessment procedures were done according to the standardized guidelines of TGMD-2. [Results] The majority of subjects had average level of gross motor skill rank. The significant differences were found on the run and gallop of locomotor skills and the most of object control skills except the catch between males and females. The significant differences were also found between subjects from urban and rural areas. [Conclusion] Gross motor skill development of 5-year-old Kindergarten children in Myanmar had gender-based and region-based differences on both locomotor and object control skills. This study added a valuable information to the establishment of a normative reference of Kindergarten aged children for future studies. PMID:29184287

  15. A Systematic Investigation of the Effect of Action Observation Training and Motor Imagery Training on the Development of Mental Representation Structure and Skill Performance

    PubMed Central

    Kim, Taeho; Frank, Cornelia; Schack, Thomas

    2017-01-01

    Action observation training and motor imagery training have independently been studied and considered as an effective training strategy for improving motor skill learning. However, comparative studies of the two training strategies are relatively few. The purpose of this study was to investigate the effects of action observation training and motor imagery training on the development of mental representation structure and golf putting performance as well as the relation between the changes in mental representation structure and skill performance during the early learning stage. Forty novices were randomly assigned to one of four groups: action observation training, motor imagery training, physical practice and no practice. The mental representation structure and putting performance were measured before and after 3 days of training, then after a 2-day retention period. The results showed that mental representation structure and the accuracy of the putting performance were improved over time through the two types of cognitive training (i.e., action observation training and motor imagery training). In addition, we found a significant positive correlation between changes in mental representation structure and skill performance for the action observation training group only. Taken together, these results suggest that both cognitive adaptations and skill improvement occur through the training of the two simulation states of action, and that perceptual-cognitive changes are associated with the change of skill performance for action observation training. PMID:29089881

  16. Age differences in spatial working memory contributions to visuomotor adaptation and transfer.

    PubMed

    Langan, Jeanne; Seidler, Rachael D

    2011-11-20

    Throughout our life span we encounter challenges that require us to adapt to the demands of our changing environment; this entails learning new skills. Two primary components of motor skill learning are motor acquisition, the initial process of learning the skill, and motor transfer, when learning a new skill is benefitted by the overlap with a previously learned one. Older adults typically exhibit declines in motor acquisition compared to young adults, but remarkably, do not demonstrate deficits in motor transfer [10]. Our recent work demonstrates that a failure to engage spatial working memory (SWM) is associated with skill learning deficits in older adults [16]. Here, we investigate the role that SWM plays in both motor learning and transfer in young and older adults. Both age groups exhibited performance savings, or positive transfer, at transfer of learning for some performance variables. Measures of spatial working memory performance and reaction time correlated with both motor learning and transfer for young adults. Young adults recruited overlapping brain regions in prefrontal, premotor, parietal and occipital cortex for performance of a SWM and a visuomotor adaptation task, most notably during motor learning, replicating our prior findings [12]. Neural overlap between the SWM task and visuomotor adaptation for the older adults was limited to parietal cortex, with minimal changes from motor learning to transfer. Combined, these results suggest that age differences in engagement of cognitive strategies have a differential impact on motor learning and transfer. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Age differences in spatial working memory contributions to visuomotor adaptation and transfer

    PubMed Central

    Langan, Jeanne; Seidler, Rachael. D.

    2011-01-01

    Throughout our life span we encounter challenges that require us to adapt to the demands of our changing environment; this entails learning new skills. Two primary components of motor skill learning are motor acquisition, the initial process of learning the skill, and motor transfer, when learning a new skill is benefitted by the overlap with a previously learned one. Older adults typically exhibit declines in motor acquisition compared to young adults, but remarkably, do not demonstrate deficits in motor transfer (Seidler, 2007). Our recent work demonstrates that a failure to engage spatial working memory (SWM) is associated with skill learning deficits in older adults (Anguera et al., 2011). Here, we investigate the role that SWM plays in both motor learning and transfer in young and older adults. Both age groups exhibited performance savings, or positive transfer, at transfer of learning for some performance variables. Measures of spatial working memory performance and reaction time correlated with both motor learning and transfer for young adults. Young adults recruited overlapping brain regions in prefrontal, premotor, parietal and occipital cortex for performance of a SWM and a visuomotor adaptation task, most notably during motor learning, replicating our prior findings (Anguera et al., 2010). Neural overlap between the SWM task and visuomotor adaptation for the older adults was limited to parietal cortex, with minimal changes from motor learning to transfer. Combined, these results suggest that age differences in engagement of cognitive strategies have a differential impact on motor learning and transfer. PMID:21784106

  18. Does Imagined Practice Help in Learning a Motor Skill?

    ERIC Educational Resources Information Center

    Winters, Lynn; Reisberg, Daniel

    Several studies have shown an improvement in the performance of motor skills following imagined performance of the skill, or "mental practice." One unresolved issue has centered on whether the effect being observed is in fact a practice effect. As one alternative, the effect may be a simple instance of planning when to use a skill, or…

  19. Anxiety disorders in 8-11-year-old children: motor skill performance and self-perception of competence.

    PubMed

    Ekornås, Belinda; Lundervold, Astri J; Tjus, Tomas; Heimann, Mikael

    2010-06-01

    This study investigates motor skill performance and self-perceived competence in children with anxiety disorders compared with children without psychiatric disorders. Motor skills and self-perception were assessed in 329 children aged 8 to 11 years, from the Bergen Child Study. The Kiddie-SADS PL diagnostic interview was employed to define a group of children with an anxiety disorder without comorbid diagnosis, and a control group (no diagnosis) matched according to gender, age, and full-scale IQ. Children in the anxiety disorder group displayed impaired motor skills and poor self-perceived peer acceptance and physical competence compared with the control group. Two-thirds of the anxious boys scored on the Motor Assessment Battery for Children (MABC) as having motor problems. The present study demonstrated impaired motor skills in boys with "pure" anxiety disorders. Anxious children also perceived themselves as being less accepted by peers and less competent in physical activities compared with children in the control group.

  20. Gross motor skill performance in children with and without visual impairments--research to practice.

    PubMed

    Wagner, Matthias O; Haibach, Pamela S; Lieberman, Lauren J

    2013-10-01

    The aim of this study was to provide an empirical basis for teaching gross motor skills in children with visual impairments. For this purpose, gross motor skill performance of 23, 6-12 year old, boys and girls who are blind (ICD-10 H54.0) and 28 sighted controls with comparable age and gender characteristics was compared on six locomotor and six object control tasks using the Test of Gross Motor Development-Second Edition. Results indicate that children who are blind perform significantly (p<.05) worse in all assessed locomotor and object control skills, whereby running, leaping, kicking and catching are the most affected skills, and corresponding differences are related to most running, leaping, kicking and catching component. Practical implications are provided. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Relationship between children's performance-based motor skills and child, parent, and teacher perceptions of children's motor abilities using self/informant-report questionnaires.

    PubMed

    Lalor, Aislinn; Brown, Ted; Murdolo, Yuki

    2016-04-01

    Occupational therapists often assess the motor skill performance of children referred to them as part of the assessment process. This study investigated whether children's, parents' and teachers' perceptions of children's motor skills using valid and reliable self/informant-report questionnaires were associated with and predictive of children's actual motor performance, as measured by a standardised performance-based motor skill assessment. Fifty-five typically developing children (8-12 years of age), their parents and classroom teachers were recruited to participate in the study. The children completed the Physical Self-Description Questionnaire (PSDQ) and the Self-Perception Profile for Children. The parents completed the Developmental Profile III (DP-III) and the Developmental Coordination Disorder Questionnaire, whereas the teachers completed the Developmental Coordination Disorder Questionnaire and the Teacher's Rating Scale of Child's Actual Behavior. Children's motor performance composite scores were determined using the Bruininks-Oseretsky Test of Motor Proficiency, Second Edition (BOT-2). Spearman's rho correlation coefficients were calculated to identify if significant correlations existed and multiple linear regression was used to identify whether self/informant report data were significant predictors of children's motor skill performance. The child self-report scores had the largest number of significant correlations with the BOT-2 composites. Regression analysis found that the parent report DP-III Physical subscale was a significant predictor of the BOT-2 Manual Coordination composite and the child-report questionnaire PSDQ. Endurance subscale was a significant predictor of the BOT-2 Strength and Agility composite. The findings support the use of top-down assessment methods from a variety of sources when evaluating children's motor abilities. © 2016 Occupational Therapy Australia.

  2. Reduced asymmetry in motor skill learning in left-handed compared to right-handed individuals.

    PubMed

    McGrath, Robert L; Kantak, Shailesh S

    2016-02-01

    Hemispheric specialization for motor control influences how individuals perform and adapt to goal-directed movements. In contrast to adaptation, motor skill learning involves a process wherein one learns to synthesize novel movement capabilities in absence of perturbation such that they are performed with greater accuracy, consistency and efficiency. Here, we investigated manual asymmetry in acquisition and retention of a complex motor skill that requires speed and accuracy for optimal performance in right-handed and left-handed individuals. We further determined if degree of handedness influences motor skill learning. Ten right-handed (RH) and 10 left-handed (LH) adults practiced two distinct motor skills with their dominant or nondominant arms during separate sessions two-four weeks apart. Learning was quantified by changes in the speed-accuracy tradeoff function measured at baseline and one-day retention. Manual asymmetry was evident in the RH group but not the LH group. RH group demonstrated significantly greater skill improvement for their dominant-right hand than their nondominant-left hand. In contrast, for the LH group, both dominant and nondominant hands demonstrated comparable learning. Less strongly-LH individuals (lower EHI scores) exhibited more learning of their dominant hand. These results suggest that while hemispheric specialization influences motor skill learning, these effects may be influenced by handedness. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Relationship between motor proficiency and body composition in 6- to 10-year-old children.

    PubMed

    Marmeleira, José; Veiga, Guida; Cansado, Hugo; Raimundo, Armando

    2017-04-01

    The aim of this study is to examine the relationship between motor skill competence and body composition of 6- to 10-year-old children. Seventy girls and 86 boys participated. Body composition was measured by body mass index and skinfold thickness. Motor proficiency was evaluated through the Bruininks-Oseretsky Test of Motor Proficiency-Short Form, which included measures of gross motor skills and fine motor skills. Significant associations were found for both sexes between the percentage of body fat and (i) the performance in each gross motor task, (ii) the composite score for gross motor skills and (iii) the motor proficiency score. The percentage of body fat was not significantly associated with the majority of the fine motor skills items and with the respective composite score. Considering body weigh categories, children with normal weight had significantly higher scores than their peers with overweight or with obesity in gross motor skills and in overall motor proficiency. Children's motor proficiency is negatively associated with body fat, and normal weight children show better motor competence than those who are overweight or obese. The negative impact of excessive body weight is stronger for gross motor skills that involve dynamic body movements than for stationary object control skills; fine motor skills appear to be relatively independent of the constraints imposed by excessive body weight. © 2017 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

  4. Disentangling Fine Motor Skills' Relations to Academic Achievement: The Relative Contributions of Visual-Spatial Integration and Visual-Motor Coordination

    ERIC Educational Resources Information Center

    Carlson, Abby G.; Rowe, Ellen; Curby, Timothy W.

    2013-01-01

    Recent research has established a connection between children's fine motor skills and their academic performance. Previous research has focused on fine motor skills measured prior to elementary school, while the present sample included children ages 5-18 years old, making it possible to examine whether this link remains relevant throughout…

  5. The Relationship between Gross Motor Skills and Academic Achievement in Children with Learning Disabilities

    ERIC Educational Resources Information Center

    Westendorp, Marieke; Hartman, Esther; Houwen, Suzanne; Smith, Joanne; Visscher, Chris

    2011-01-01

    The present study compared the gross motor skills of 7- to 12-year-old children with learning disabilities (n = 104) with those of age-matched typically developing children (n = 104) using the Test of Gross Motor Development-2. Additionally, the specific relationships between subsets of gross motor skills and academic performance in reading,…

  6. The Influence of Motor Skills on Measurement Accuracy

    NASA Astrophysics Data System (ADS)

    Brychta, Petr; Sadílek, Marek; Brychta, Josef

    2016-10-01

    This innovative study trying to do interdisciplinary interface at first view different ways fields: kinantropology and mechanical engineering. A motor skill is described as an action which involves the movement of muscles in a body. Gross motor skills permit functions as a running, jumping, walking, punching, lifting and throwing a ball, maintaining a body balance, coordinating etc. Fine motor skills captures smaller neuromuscular actions, such as holding an object between the thumb and a finger. In mechanical inspection, the accuracy of measurement is most important aspect. The accuracy of measurement to some extent is also dependent upon the sense of sight or sense of touch associated with fine motor skills. It is therefore clear that the level of motor skills will affect the precision and accuracy of measurement in metrology. Aim of this study is literature review to find out fine motor skills level of individuals and determine the potential effect of different fine motor skill performance on precision and accuracy of mechanical engineering measuring.

  7. Sleep-Dependent Consolidation of Procedural Motor Memories in Children and Adults: The Pre-Sleep Level of Performance Matters

    ERIC Educational Resources Information Center

    Wilhelm, Ines; Metzkow-Meszaros, Maila; Knapp, Susanne; Born, Jan

    2012-01-01

    In striking contrast to adults, in children sleep following training a motor task did not induce the expected (offline) gain in motor skill performance in previous studies. Children normally perform at distinctly lower levels than adults. Moreover, evidence in adults suggests that sleep dependent offline gains in skill essentially depend on the…

  8. Motor Skill Performance by Low SES Preschool and Typically Developing Children on the PDMS-2

    ERIC Educational Resources Information Center

    Liu, Ting; Hoffmann, Chelsea; Hamilton, Michelle

    2017-01-01

    The purpose of this study was to compare the motor skill performance of preschool children from low socioeconomic (SES) backgrounds to their age matched typically developing peers using the Peabody Developmental Motor Scales-2 (PDMS-2). Sixty-eight children (34 low SES and 34 typically developing; ages 3-5) performed the PDMS-2. Standard scores…

  9. Motivational state, reward value, and Pavlovian cues differentially affect skilled forelimb grasping in rats

    PubMed Central

    de Clauser, Larissa; Kasper, Hansjörg; Schwab, Martin E.

    2016-01-01

    Motor skills represent high-precision movements performed at optimal speed and accuracy. Such motor skills are learned with practice over time. Besides practice, effects of motivation have also been shown to influence speed and accuracy of movements, suggesting that fast movements are performed to maximize gained reward over time as noted in previous studies. In rodents, skilled motor performance has been successfully modeled with the skilled grasping task, in which animals use their forepaw to grasp for sugar pellet rewards through a narrow window. Using sugar pellets, the skilled grasping task is inherently tied to motivation processes. In the present study, we performed three experiments modulating animals’ motivation during skilled grasping by changing the motivational state, presenting different reward value ratios, and displaying Pavlovian stimuli. We found in all three studies that motivation affected the speed of skilled grasping movements, with the strongest effects seen due to motivational state and reward value. Furthermore, accuracy of the movement, measured in success rate, showed a strong dependence on motivational state as well. Pavlovian cues had only minor effects on skilled grasping, but results indicate an inverse Pavlovian-instrumental transfer effect on movement speed. These findings have broad implications considering the increasing use of skilled grasping in studies of motor system structure, function, and recovery after injuries. PMID:27194796

  10. Ecological validity of the German Bruininks-Oseretsky Test of Motor Proficiency - 2nd Edition.

    PubMed

    Vinçon, Sabine; Green, Dido; Blank, Rainer; Jenetzky, Ekkehart

    2017-06-01

    The diagnosis of Developmental Coordination Disorder (DCD) is based on poor motor coordination in the absence of other neurological disorders. In order to identify the presence of movement difficulties, a standardised motor assessment is recommended to determine the extent of movement problems which may contribute to deficits in daily task performance. A German version of the Bruininks-Oseretsky Test of Motor Proficiency, Second Edition (German BOT-2) was recently published. This study aimed to determine the ecological validity of the German BOT-2 by considering the relationship between assessment of fundamental motor skills with the BOT-2 and performance of everyday motor activities as evaluated by parents. This study used data obtained from the German BOT-2 standardisation study (n=1.177). Subtests were compared with theoretically corresponding tasks via parental ratings of overall fine and gross motor abilities and performance in six typical motor activities. Non-parametric Jonckheere Terpstra test was used to identify differences in ordered contrasts. Subtests reflecting 'Strength', 'Running Speed and Agility', 'Upper-Limb Coordination', 'Balance', and 'Fine Motor Precision' were associated with parental evaluation of gross motor skills (p<0.001). The subtest 'Fine Motor Integration' significantly correlated with parental ratings of females' fine motor skills. Parental ratings of males' fine motor skills were associated with three further subtests. Regarding everyday motor activities, the first three fine motor BOT-2 subtests were associated with parent evaluations of drawing, writing and arts and crafts (p<0.001). Gross motor subtests of 'Bilateral Coordination' and 'Balance' showed no relationship to bike riding or performance in sports. Subtests of 'Upper-Limb Coordination' and 'Strength' showed significant correlations with sports, ball games and cycling. The results of this study suggest that the closer the proximity in the nature of the motor skills assessed in the German BOT-2 to daily motor tasks, the stronger the relationship between the clinical test and parental report of everyday performance of their child. The body functions tested in the German BOT-2, and hypothesized to underpin certain skills, were not automatically relevant for specific activities undertaken by German children. Future research should investigate the relationships of the various BOT-2 constructs for diagnosis of DCD. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Acute exercise and motor memory consolidation: Does exercise type play a role?

    PubMed

    Thomas, R; Flindtgaard, M; Skriver, K; Geertsen, S S; Christiansen, L; Korsgaard Johnsen, L; Busk, D V P; Bojsen-Møller, E; Madsen, M J; Ritz, C; Roig, M; Lundbye-Jensen, J

    2017-11-01

    A single bout of high-intensity exercise can augment off-line gains in skills acquired during motor practice. It is currently unknown if the type of physical exercise influences the effect on motor skill consolidation. This study investigated the effect of three types of high-intensity exercise following visuomotor skill acquisition on the retention of motor memory in 40 young (25.3 ±3.6 years), able-bodied male participants randomly assigned to one of four groups either performing strength training (STR), circuit training (CT), indoor hockey (HOC) or rest (CON). Retention tests of the motor skill were performed 1 (R1h) and 24 h (R1d) post acquisition. For all exercise groups, mean motor performance scores decreased at R1h compared to post acquisition (POST) level; STR (P = 0.018), CT (P = 0.02), HOC (P = 0.014) and performance scores decreased for CT compared to CON (P = 0.049). Mean performance scores increased from POST to R1d for all exercise groups; STR (P = 0.010), CT (P = 0.020), HOC (P = 0.007) while performance scores for CON decreased (P = 0.043). Changes in motor performance were thus greater for STR (P = 0.006), CT (P < 0.001) and HOC (P < 0.001) compared to CON from POST to R1d. The results demonstrate that high-intensity, acute exercise can lead to a decrease in motor performance assessed shortly after motor skill practice (R1h), but enhances offline effects promoting long-term retention (R1d). Given that different exercise modalities produced similar positive off-line effects on motor memory, we conclude that exercise-induced effects beneficial to consolidation appear to depend primarily on the physiological stimulus rather than type of exercise and movements employed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Reduced Motor Cortex Activity during Movement Preparation following a Period of Motor Skill Practice

    PubMed Central

    Wright, David J.; Holmes, Paul; Di Russo, Francesco; Loporto, Michela; Smith, Dave

    2012-01-01

    Experts in a skill produce movement-related cortical potentials (MRCPs) of smaller amplitude and later onset than novices. This may indicate that, following long-term training, experts require less effort to plan motor skill performance. However, no longitudinal evidence exists to support this claim. To address this, EEG was used to study the effect of motor skill training on cortical activity related to motor planning. Ten non-musicians took part in a 5-week training study learning to play guitar. At week 1, the MRCP was recorded from motor areas whilst participants played the G Major scale. Following a period of practice of the scale, the MRCP was recorded again at week 5. Results showed that the amplitude of the later pre-movement components were smaller at week 5 compared to week 1. This may indicate that, following training, less activity at motor cortex sites is involved in motor skill preparation. This supports claims for a more efficient motor preparation following motor skill training. PMID:23251647

  13. Fine and gross motor skills differ between healthy-weight and obese children.

    PubMed

    Gentier, Ilse; D'Hondt, Eva; Shultz, Sarah; Deforche, Benedicte; Augustijn, Mireille; Hoorne, Sofie; Verlaecke, Katja; De Bourdeaudhuij, Ilse; Lenoir, Matthieu

    2013-11-01

    Within the obesity literature, focus is put on the link between weight status and gross motor skills. However, research on fine motor skills in the obese (OB) childhood population is limited. Therefore, the present study focused on possible weight related differences in gross as well as fine motor skill tasks. Thirty-four OB children (12 ♀ and 22 ♂, aged 7-13 years) were recruited prior to participating in a multidisciplinary treatment program at the Zeepreventorium (De Haan, Belgium). Additionally, a control group of 34 age and gender-matched healthy-weight (HW) children was included in the study. Anthropometric measures were recorded and gross and fine motor skills were assessed using the Bruininks-Oseretsky Test of Motor Proficiency, second edition (BOT-2). Results were analyzed by independent samples t-tests, multivariate analysis of variance, and a chi-squared test. Being OB was detrimental for all subtests evaluating gross motor skill performance (i.e., upper-limb coordination, bilateral coordination, balance, running speed and agility, and strength). Furthermore, OB children performed worse in fine motor precision and a manual dexterity task, when compared to their HW peers. No group differences existed for the fine motor integration task. Our study provides evidence that lower motor competence in OB children is not limited to gross motor skills alone; OB children are also affected by fine motor skill problems. Further investigation is warranted to provide possible explanations for these differences. It is tentatively suggested that OB children experience difficulties with the integration and processing of sensory information. Future research is needed to explore whether this assumption is correct and what the underlying mechanism(s) could be. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Relationship between binocular vision, visual acuity, and fine motor skills.

    PubMed

    O'Connor, Anna R; Birch, Eileen E; Anderson, Susan; Draper, Hayley

    2010-12-01

    The aims of this study were to analyze the relationship between the performance on fine motor skills tasks and peripheral and bifoveal sensory fusion, phasic and tonic motor fusion, the level of visual acuity (VA) in the poorer seeing eye, and the interocular VA difference. Subjects aged 12 to 28 years with a range of levels of binocular vision and VA performed three tasks: Purdue pegboard (number of pegs placed in 30 s), bead threading task (with two sizes of bead to increase the difficulty, time taken to thread a fixed number of beads), and a water pouring task (accuracy and time to pour a fixed quantity into five glass cylinders). Ophthalmic measures included peripheral (Worth 4 dot) and bifoveal (4 prism diopter) sensory fusion, phasic (prism bar) and tonic (Risley rotary prism) motor fusion ranges, and monocular VA. One hundred twenty-one subjects with a mean age of 18.8 years were tested; 18.2% had a manifest strabismus. Performance on fine motor skills tasks was significantly better in subjects with sensory and motor fusion compared with those without for most tasks, with significant differences between those with and without all measures of fusion on the pegboard and bead task. Both the acuity in the poorer seeing eye (highest r value of all motor tasks = 0.43) and the interocular acuity difference were statistically significantly related to performance on the motor skill tasks. Both sensory and motor fusion and good VA in both eyes are of benefit in the performance of fine motor skills tasks, with the presence of some binocular vision being beneficial compared with no fusion on certain sensorimotor tasks. This evidence supports the need to maximize fusion and VA outcomes.

  15. Emerging Executive Functioning and Motor Development in Infants at High and Low Risk for Autism Spectrum Disorder.

    PubMed

    St John, Tanya; Estes, Annette M; Dager, Stephen R; Kostopoulos, Penelope; Wolff, Jason J; Pandey, Juhi; Elison, Jed T; Paterson, Sarah J; Schultz, Robert T; Botteron, Kelly; Hazlett, Heather; Piven, Joseph

    2016-01-01

    Existing evidence suggests executive functioning (EF) deficits may be present in children with autism spectrum disorder (ASD) by 3 years of age. It is less clear when, prior to 3 years, EF deficits may emerge and how EF unfold over time. The contribution of motor skill difficulties to poorer EF in children with ASD has not been systematically studied. We investigated the developmental trajectory of EF in infants at high and low familial risk for ASD (HR and LR) and the potential associations between motor skills, diagnostic group, and EF performance. Participants included 186 HR and 76 LR infants. EF (A-not-B), motor skills (Fine and Gross Motor), and cognitive ability were directly assessed at 12 months and 24 months of age. Participants were directly evaluated for ASD at 24 months using DSM-IV-TR criteria and categorized as HR-ASD, HR-Negative, and LR-Negative. HR-ASD and HR-Negative siblings demonstrated less improvement in EF over time compared to the LR-Negative group. Motor skills were associated with group and EF performance at 12 months. No group differences were found at 12 months, but at 24 months, the HR-ASD and HR-Negative groups performed worse than the LR-Negative group overall after controlling for visual reception and maternal education. On reversal trials, the HR-ASD group performed worse than the LR-Negative group. Motor skills were associated with group and EF performance on reversal trials at 24 months. Findings suggest that HR siblings demonstrate altered EF development and that motor skills may play an important role in this process.

  16. Emerging Executive Functioning and Motor Development in Infants at High and Low Risk for Autism Spectrum Disorder

    PubMed Central

    St. John, Tanya; Estes, Annette M.; Dager, Stephen R.; Kostopoulos, Penelope; Wolff, Jason J.; Pandey, Juhi; Elison, Jed T.; Paterson, Sarah J.; Schultz, Robert T.; Botteron, Kelly; Hazlett, Heather; Piven, Joseph

    2016-01-01

    Existing evidence suggests executive functioning (EF) deficits may be present in children with autism spectrum disorder (ASD) by 3 years of age. It is less clear when, prior to 3 years, EF deficits may emerge and how EF unfold over time. The contribution of motor skill difficulties to poorer EF in children with ASD has not been systematically studied. We investigated the developmental trajectory of EF in infants at high and low familial risk for ASD (HR and LR) and the potential associations between motor skills, diagnostic group, and EF performance. Participants included 186 HR and 76 LR infants. EF (A-not-B), motor skills (Fine and Gross Motor), and cognitive ability were directly assessed at 12 months and 24 months of age. Participants were directly evaluated for ASD at 24 months using DSM-IV-TR criteria and categorized as HR-ASD, HR-Negative, and LR-Negative. HR-ASD and HR-Negative siblings demonstrated less improvement in EF over time compared to the LR-Negative group. Motor skills were associated with group and EF performance at 12 months. No group differences were found at 12 months, but at 24 months, the HR-ASD and HR-Negative groups performed worse than the LR-Negative group overall after controlling for visual reception and maternal education. On reversal trials, the HR-ASD group performed worse than the LR-Negative group. Motor skills were associated with group and EF performance on reversal trials at 24 months. Findings suggest that HR siblings demonstrate altered EF development and that motor skills may play an important role in this process. PMID:27458411

  17. Longitudinal Development of Manual Motor Ability in Autism Spectrum Disorder from Childhood to Mid-Adulthood Relates to Adaptive Daily Living Skills

    ERIC Educational Resources Information Center

    Travers, Brittany G.; Bigler, Erin D.; Duffield, Tyler C.; Prigge, Molly D. B.; Froehlich, Alyson L.; Lange, Nicholas; Alexander, Andrew L.; Lainhart, Janet E.

    2017-01-01

    Many individuals with autism spectrum disorder (ASD) exhibit motor difficulties, but it is unknown whether manual motor skills improve, plateau, or decline in ASD in the transition from childhood into adulthood. Atypical development of manual motor skills could impact the ability to learn and perform daily activities across the life span. This…

  18. The relation between cognitive and motor performance and their relevance for children's transition to school: a latent variable approach.

    PubMed

    Roebers, Claudia M; Röthlisberger, Marianne; Neuenschwander, Regula; Cimeli, Patrizia; Michel, Eva; Jäger, Katja

    2014-02-01

    Both theoretically and empirically there is a continuous interest in understanding the specific relation between cognitive and motor development in childhood. In the present longitudinal study including three measurement points, this relation was targeted. At the beginning of the study, the participating children were 5-6-year-olds. By assessing participants' fine motor skills, their executive functioning, and their non-verbal intelligence, their cross-sectional and cross-lagged interrelations were examined. Additionally, performance in these three areas was used to predict early school achievement (in terms of mathematics, reading, and spelling) at the end of participants' first grade. Correlational analyses and structural equation modeling revealed that fine motor skills, non-verbal intelligence and executive functioning were significantly interrelated. Both fine motor skills and intelligence had significant links to later school achievement. However, when executive functioning was additionally included into the prediction of early academic achievement, fine motor skills and non-verbal intelligence were no longer significantly associated with later school performance suggesting that executive functioning plays an important role for the motor-cognitive performance link. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Relationship of ocular accommodation and motor skills performance in developmental coordination disorder.

    PubMed

    Rafique, Sara A; Northway, Nadia

    2015-08-01

    Ocular accommodation provides a well-focussed image, feedback for accurate eye movement control, and cues for depth perception. To accurately perform visually guided motor tasks, integration of ocular motor systems is essential. Children with motor coordination impairment are established to be at higher risk of accommodation anomalies. The aim of the present study was to examine the relationship between ocular accommodation and motor tasks, which are often overlooked, in order to better understand the problems experienced by children with motor coordination impairment. Visual function, gross and fine motor skills were assessed in children with developmental coordination disorder (DCD) and typically developing control children. Children with DCD had significantly poorer accommodation facility and amplitude dynamics compared to controls. Results indicate a relationship between impaired accommodation and motor skills. Specifically, accommodation anomalies correlated with visual motor, upper limb and fine dexterity task performance. Consequently, we argue accommodation anomalies influence the ineffective coordination of action and perception in DCD. Furthermore, reading disabilities were related to poorer motor performance. We postulate the role of the fastigial nucleus as a common pathway for accommodation and motor deficits. Implications of the findings and recommended visual screening protocols are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Fine Motor Function Skills in Patients with Parkinson Disease with and without Mild Cognitive Impairment.

    PubMed

    Dahdal, Philippe; Meyer, Antonia; Chaturvedi, Menorca; Nowak, Karolina; Roesch, Anne D; Fuhr, Peter; Gschwandtner, Ute

    2016-01-01

    The objective of this study was to investigate the relation between impaired fine motor skills in Parkinson disease (PD) patients and their cognitive status, and to determine whether fine motor skills are more impaired in PD patients with mild cognitive impairment (MCI) than in non-MCI patients. Twenty PD MCI and 31 PD non-MCI patients (mean age 66.7 years, range 50-84, 36 males/15 females), all right-handed, took part in a motor performance test battery. Steadiness, precision, dexterity, velocity of arm-hand movements, and velocity of wrist-finger movements were measured and compared across groups and analyzed for confounders (age, sex, education, severity of motor symptoms, and disease duration). Statistical analysis included t tests corrected for multiple testing, and a linear regression with stepwise elimination procedure was used to select significant predictors for fine motor function. PD MCI patients performed significantly worse in precision (p < 0.05), dexterity (p < 0.05), and velocity (arm-hand movements; p < 0.05) compared to PD non-MCI patients. The fine motor function skills were confounded by age. Fine motor skills in PD MCI patients are impaired compared to PD non-MCI patients. Investigating the relation between the fine motor performance and MCI in PD might be a relevant subject for future research. © 2016 S. Karger AG, Basel.

  1. Re-examining sleep׳s effect on motor skills: How to access performance on the finger tapping task?

    PubMed

    Ribeiro Pereira, Sofia Isabel; Beijamini, Felipe; Vincenzi, Roberta Almeida; Louzada, Fernando Mazzilli

    2015-01-01

    Here our goal was to determine the magnitude of sleep-related motor skill enhancement. Performance on the finger tapping task (FTT) was evaluated after a 90 min daytime nap (n=15) or after quiet wakefulness (n=15). By introducing a slight modification in the formula used to calculate the offline gains we were able to refine the estimated magnitude of sleep׳s effect on motor skills. The raw value of improvement after a nap decreased after this correction (from ~15% to ~5%), but remained significantly higher than the control. These results suggest that sleep does indeed play a role in motor skill consolidation.

  2. Child-Rearing Practices and Motor Performance of Black and White Children.

    ERIC Educational Resources Information Center

    Lee, Amelia M.

    1980-01-01

    The relationship between child-rearing practices and motor skill performance of elementary school Black and White children is examined in terms of running and jumping skills and authoritarian control attitudes of their mothers. (CJ)

  3. Assessing fundamental motor skills in Belgian children aged 3-8 years highlights differences to US reference sample.

    PubMed

    Bardid, Farid; Huyben, Floris; Lenoir, Matthieu; Seghers, Jan; De Martelaer, Kristine; Goodway, Jacqueline D; Deconinck, Frederik J A

    2016-06-01

    This study aimed to understand the fundamental motor skills (FMS) of Belgian children using the process-oriented Test of Gross Motor Development, Second Edition (TGMD-2) and to investigate the suitability of using the United States (USA) test norms in Belgium. FMS were assessed using the TGMD-2. Gender, age and motor performance were examined in 1614 Belgian children aged 3-8 years (52.1% boys) and compared with the US reference sample. More proficient FMS performance was found with increasing age, from 3 to 6 years for locomotor skills and 3 to 7 years for object control skills. Gender differences were observed in object control skills, with boys performing better than girls. In general, Belgian children had lower levels of motor competence than the US reference sample, specifically for object control skills. The score distribution of the Belgian sample was skewed, with 37.4% scoring below average and only 6.9% scoring above average. This study supported the usefulness of the TGMD-2 as a process-oriented instrument to measure gross motor development in early childhood in Belgium. However, it also demonstrated that caution is warranted when using the US reference norms. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  4. Acquisition and improvement of human motor skills: Learning through observation and practice

    NASA Technical Reports Server (NTRS)

    Iba, Wayne

    1991-01-01

    Skilled movement is an integral part of the human existence. A better understanding of motor skills and their development is a prerequisite to the construction of truly flexible intelligent agents. We present MAEANDER, a computational model of human motor behavior, that uniformly addresses both the acquisition of skills through observation and the improvement of skills through practice. MAEANDER consists of a sensory-effector interface, a memory of movements, and a set of performance and learning mechanisms that let it recognize and generate motor skills. The system initially acquires such skills by observing movements performed by another agent and constructing a concept hierarchy. Given a stored motor skill in memory, MAEANDER will cause an effector to behave appropriately. All learning involves changing the hierarchical memory of skill concepts to more closely correspond to either observed experience or to desired behaviors. We evaluated MAEANDER empirically with respect to how well it acquires and improves both artificial movement types and handwritten script letters from the alphabet. We also evaluate MAEANDER as a psychological model by comparing its behavior to robust phenomena in humans and by considering the richness of the predictions it makes.

  5. A Model for the Transfer of Perceptual-Motor Skill Learning in Human Behaviors

    ERIC Educational Resources Information Center

    Rosalie, Simon M.; Muller, Sean

    2012-01-01

    This paper presents a preliminary model that outlines the mechanisms underlying the transfer of perceptual-motor skill learning in sport and everyday tasks. Perceptual-motor behavior is motivated by performance demands and evolves over time to increase the probability of success through adaptation. Performance demands at the time of an event…

  6. Motor Skill Performance and Sports Participation in Deaf Elementary School Children

    ERIC Educational Resources Information Center

    Hartman, Esther; Houwen, Suzanne; Visscher, Chris

    2011-01-01

    This study aimed to examine motor performance in deaf elementary school children and its association with sports participation. The population studied included 42 deaf children whose hearing loss ranged from 80 to 120 dB. Their motor skills were assessed with the Movement Assessment Battery for Children, and a questionnaire was used to determine…

  7. Activities of daily living in children with hemiparesis: influence of cognitive abilities and motor competence.

    PubMed

    Adler, Caroline; Rauchenzauner, Markus; Staudt, Martin; Berweck, Steffen

    2014-12-01

    The aim of the article is to investigate whether motor competence and cognitive abilities influence the quality of performance of activities of daily living (ADL) in children with hemiparesis. Patients and A total of 20 children with hemiparesis (age, 6-12 years; 11 congenital, 9 acquired during childhood) were studied. Motor competence was assessed with the Assisting Hand Assessment, cognitive abilities with the German version of the Wechsler Intelligence Scale for Children IV, and the quality of ADL performance with the Assessment of Motor and Process Skills (AMPS). The motor skills scale of the AMPS correlated with motor competence, and the process skills scale of the AMPS correlated with cognitive abilities. The quality of ADL performance is influenced not only by motor competence but also by the cognitive abilities of a hemiparetic child. This suggests that, in addition to motor-oriented training programs, an optimal therapy for hemiparetic children should also consider cognitive approaches. Georg Thieme Verlag KG Stuttgart · New York.

  8. Learning-performance distinction and memory processes for motor skills: a focused review and perspective.

    PubMed

    Kantak, Shailesh S; Winstein, Carolee J

    2012-03-01

    Behavioral research in cognitive psychology provides evidence for an important distinction between immediate performance that accompanies practice and long-term performance that reflects the relative permanence in the capability for the practiced skill (i.e. learning). This learning-performance distinction is strikingly evident when challenging practice conditions may impair practice performance, but enhance long-term retention of motor skills. A review of motor learning studies with a specific focus on comparing differences in performance between that at the end of practice and at delayed retention suggests that the delayed retention or transfer performance is a better indicator of motor learning than the performance at (or end of) practice. This provides objective evidence for the learning-performance distinction. This behavioral evidence coupled with an understanding of the motor memory processes of encoding, consolidation and retrieval may provide insight into the putative mechanism that implements the learning-performance distinction. Here, we propose a simplistic empirically-based framework--motor behavior-memory framework--that integrates the temporal evolution of motor memory processes with the time course of practice and delayed retention frequently used in behavioral motor learning paradigms. In the context of the proposed framework, recent research has used noninvasive brain stimulation to decipher the role of each motor memory process, and specific cortical brain regions engaged in motor performance and learning. Such findings provide beginning insights into the relationship between the time course of practice-induced performance changes and motor memory processes. This in turn has promising implications for future research and practical applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Flexibility of movement organization in piano performance.

    PubMed

    Furuya, Shinichi; Altenmüller, Eckart

    2013-01-01

    Piano performance involves a large repertoire of highly skilled movements. The acquisition of these exceptional skills despite innate neural and biomechanical constraints requires a sophisticated interaction between plasticity of the neural system and organization of a redundant number of degrees of freedom (DOF) in the motor system. Neuroplasticity subserving virtuosity of pianists has been documented in neuroimaging studies investigating effects of long-term piano training on structure and function of the cortical and subcortical regions. By contrast, recent behavioral studies have advanced the understanding of neuromuscular strategies and biomechanical principles behind the movement organization that enables skilled piano performance. Here we review the motor control and biomechanics literature, introducing the importance of describing motor behaviors not only for understanding mechanisms responsible for skillful motor actions in piano playing, but also for advancing diagnosis and rehabilitation of movement disorders caused by extensive piano practice.

  10. Associations between Low-Income Children's Fine Motor Skills in Preschool and Academic Performance in Second Grade

    ERIC Educational Resources Information Center

    Dinehart, Laura; Manfra, Louis

    2013-01-01

    Research Findings: Given the growing literature pertaining to the importance of fine motor skills for later academic achievement (D. W. Grissmer, K. J. Grimm, S. M. Aiyer, W. M. Murrah, & J. S. Steele, 2010), the current study examines whether the fine motor skills of economically disadvantaged preschool students predict later academic…

  11. Fine motor skills in children with rolandic epilepsy.

    PubMed

    Ayaz, Muhammed; Kara, Bülent; Soylu, Nusret; Ayaz, Ayşe Burcu

    2013-11-01

    This study aimed to evaluate fine motor skills in children with rolandic epilepsy (RE). The research included 44 children diagnosed with typical RE and 44 controls matched in terms of age, gender, and level of education. Fine motor skills were evaluated with the Purdue Pegboard Test, and intelligence was measured with the Wechsler Intelligence Scale for Children. After controlling for the effect of intelligence on fine motor skills, the results showed that the children with RE did not perform as well as the controls in the PPT dominant hand, both hands, and assembly subtests. Epileptic focus, treatment status, type of antiepileptic treatment, age at the time of the first seizure, time since the last seizure, and total number of seizures did not affect motor skills. Rolandic epilepsy negatively affected fine motor skills regardless of the children's level of intelligence. © 2013.

  12. Motivational State, Reward Value, and Pavlovian Cues Differentially Affect Skilled Forelimb Grasping in Rats

    ERIC Educational Resources Information Center

    Mosberger, Alice C.; de Clauser, Larissa; Kasper, Hansjörg; Schwab, Martin E.

    2016-01-01

    Motor skills represent high-precision movements performed at optimal speed and accuracy. Such motor skills are learned with practice over time. Besides practice, effects of motivation have also been shown to influence speed and accuracy of movements, suggesting that fast movements are performed to maximize gained reward over time as noted in…

  13. Disentangling fine motor skills' relations to academic achievement: the relative contributions of visual-spatial integration and visual-motor coordination.

    PubMed

    Carlson, Abby G; Rowe, Ellen; Curby, Timothy W

    2013-01-01

    Recent research has established a connection between children's fine motor skills and their academic performance. Previous research has focused on fine motor skills measured prior to elementary school, while the present sample included children ages 5-18 years old, making it possible to examine whether this link remains relevant throughout childhood and adolescence. Furthermore, the majority of research linking fine motor skills and academic achievement has not determined which specific components of fine motor skill are driving this relation. The few studies that have looked at associations of separate fine motor tasks with achievement suggest that copying tasks that tap visual-spatial integration skills are most closely related to achievement. The present study examined two separate elements of fine motor skills--visual-motor coordination and visual-spatial integration--and their associations with various measures of academic achievement. Visual-motor coordination was measured using tracing tasks, while visual-spatial integration was measured using copy-a-figure tasks. After controlling for gender, socioeconomic status, IQ, and visual-motor coordination, and visual-spatial integration explained significant variance in children's math and written expression achievement. Knowing that visual-spatial integration skills are associated with these two achievement domains suggests potential avenues for targeted math and writing interventions for children of all ages.

  14. The relationship between motor performance and peer relations in 9- to 12-year-old children.

    PubMed

    Livesey, D; Lum Mow, M; Toshack, T; Zheng, Y

    2011-07-01

    Poor motor skills have been associated with peer relationship difficulties, with lower peer preference and greater likelihood of suffering from withdrawal and low self-worth. Most research into these relationships has focused upon children with motor problems and on activities involving physical skills (play/sport). The current study examined the link between motor performance and peer relations in 9- to 12-year-old children in both physical and non-physical (schoolwork) settings using a community sample. Participants were 192 school children whose motor performance was tested using the Movement Assessment Battery for Children. Peer acceptance was assessed using the Peer Rating Scale and teachers completed the Peer Exclusion subscale of the Child Behaviour Scale to indicate each child's peer status. Children were also asked to indicate their level of physical activity and their perceived freedom in leisure using self-report questionnaires. Children with poor motor performance had lower levels of physical activity, and freedom in leisure and were less preferred by their peers in both play and classroom settings. These effects were stronger for boys than for girls. Teacher indicated that children with poorer motor skills experienced higher levels of peer rejection in the classroom setting. When motor performance was separated into fine- and gross-motor performance it was found that only the latter was significantly correlated with peer acceptance in the play context but that fine-motor skills contributed significantly to variance in teacher ratings of peer exclusion in the classroom setting. The results support and extend earlier findings that children with poor motor performance are less accepted by their peers in play settings and provide some support for this extending to settings involving low levels of physical activity (classroom settings). The results similarly support previous findings that motor performance is associated with perceived freedom in leisure and with the likelihood of participating in active pursuits. © 2010 Blackwell Publishing Ltd.

  15. The influence of a real job on upper limb performance in motor skill tests: which abilities are transferred?

    PubMed

    Giangiardi, Vivian Farahte; Alouche, Sandra Regina; de Freitas, Sandra Maria Sbeghen Ferreira; Pires, Raquel Simoni; Padula, Rosimeire Simprini

    2018-06-01

    To investigate whether the specificities of real jobs create distinctions in the performance of workers in different motor tests for the upper limbs, 24 participants were divided into two groups according to their specific job: fine and repetitive tasks and general tasks. Both groups reproduced tasks related to aiming movements, handling and strength of the upper limbs. There were no significant differences between groups in the dexterity and performance of aiming movements. However, the general tasks group had higher grip strength than the repetitive tasks group, demonstrating differences according to job specificity. The results suggest that a particular motor skill in a specific job cannot improve performance in other tasks with the same motor requirements. The transfer of the fine and gross motor skills from previous experience in a job-specific task is the basis for allocating training and guidance to workers.

  16. Can stereotype threat affect motor performance in the absence of explicit monitoring processes? Evidence using a strength task.

    PubMed

    Chalabaev, Aïna; Brisswalter, Jeanick; Radel, Rémi; Coombes, Stephen A; Easthope, Christopher; Clément-Guillotin, Corentin

    2013-04-01

    Previous evidence shows that stereotype threat impairs complex motor skills through increased conscious monitoring of task performance. Given that one-step motor skills may not be susceptible to these processes, we examined whether performance on a simple strength task may be reduced under stereotype threat. Forty females and males performed maximum voluntary contractions under stereotypical or nullified-stereotype conditions. Results showed that the velocity of force production within the first milliseconds of the contraction decreased in females when the negative stereotype was induced, whereas maximal force did not change. In males, the stereotype induction only increased maximal force. These findings suggest that stereotype threat may impair motor skills in the absence of explicit monitoring processes, by influencing the planning stage of force production.

  17. Polyphasic Temporal Behavior of Finger-Tapping Performance: A Measure of Motor Skills and Fatigue.

    PubMed

    Aydin, Leyla; Kiziltan, Erhan; Gundogan, Nimet Unay

    2016-01-01

    Successive voluntary motor movement involves a number of physiological mechanisms and may reflect motor skill development and neuromuscular fatigue. In this study, the temporal behavior of finger tapping was investigated in relation to motor skills and fatigue by using a long-term computer-based test. The finger-tapping performances of 29 healthy male volunteers were analyzed using linear and nonlinear regression models established for inter-tapping interval. The results suggest that finger-tapping performance exhibits a polyphasic nature, and has several characteristic time points, which may be directly related to muscle dynamics and energy consumption. In conclusion, we believe that future studies evaluating the polyphasic nature of the maximal voluntary movement will lead to the definition of objective scales that can be used in the follow up of some neuromuscular diseases, as well as, the determination of motor skills, individual ability, and peripheral fatigue through the use of a low cost, easy-to-use computer-based finger-tapping test.

  18. Skill Acquisition in Physical Education: A Speculative Perspective

    ERIC Educational Resources Information Center

    Smith, Wayne W.

    2011-01-01

    How we learn motor skills has always been of interest to physical educators. Contemporary conceptual frameworks about motor skill learning draw from earlier behavioral and cognitive psychology learning theories. As a point of departure this paper foregrounds complexity theorizing, arguing that skill is contingent upon the performer's physical and…

  19. A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition.

    PubMed

    Statton, Matthew A; Encarnacion, Marysol; Celnik, Pablo; Bastian, Amy J

    2015-01-01

    Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise-resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation programs.

  20. A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition

    PubMed Central

    Statton, Matthew A.; Encarnacion, Marysol; Celnik, Pablo; Bastian, Amy J.

    2015-01-01

    Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise–resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation programs. PMID:26506413

  1. Functional handwriting performance in school-age children with fetal alcohol spectrum disorders.

    PubMed

    Duval-White, Cherie J; Jirikowic, Tracy; Rios, Dianne; Deitz, Jean; Olson, Heather Carmichael

    2013-01-01

    Handwriting is a critical skill for school success. Children with fetal alcohol spectrum disorders (FASD) often present with fine motor and visual-motor impairments that can affect handwriting performance, yet handwriting skills have not been systematically investigated in this clinical group. This study aimed to comprehensively describe handwriting skills in 20 school-age children with FASD. Children were tested with the Process Assessment of the Learner, 2nd Edition (PAL-II), and the Visuomotor Precision subtest of NEPSY, a developmental neuropsychological assessment. Participants performed below average on PAL-II measures of handwriting legibility and speed and on NEPSY visual-motor precision tasks. In contrast, PAL-II measures of sensorimotor skills were broadly within the average range. Results provide evidence of functional handwriting challenges for children with FASD and suggest diminished visual-motor skills and increased difficulty as task complexity increases. Future research is needed to further describe the prevalence and nature of handwriting challenges in this population. Copyright © 2013 by the American Occupational Therapy Association, Inc.

  2. Functional Handwriting Performance in School-Age Children With Fetal Alcohol Spectrum Disorders

    PubMed Central

    Duval-White, Cherie J.; Rios, Dianne; Deitz, Jean; Olson, Heather Carmichael

    2013-01-01

    Handwriting is a critical skill for school success. Children with fetal alcohol spectrum disorders (FASD) often present with fine motor and visual–motor impairments that can affect handwriting performance, yet handwriting skills have not been systematically investigated in this clinical group. This study aimed to comprehensively describe handwriting skills in 20 school-age children with FASD. Children were tested with the Process Assessment of the Learner, 2nd Edition (PAL–II), and the Visuomotor Precision subtest of NEPSY, a developmental neuropsychological assessment. Participants performed below average on PAL–II measures of handwriting legibility and speed and on NEPSY visual–motor precision tasks. In contrast, PAL–II measures of sensorimotor skills were broadly within the average range. Results provide evidence of functional handwriting challenges for children with FASD and suggest diminished visual–motor skills and increased difficulty as task complexity increases. Future research is needed to further describe the prevalence and nature of handwriting challenges in this population. PMID:23968791

  3. Motor and gestural performance in children with autism spectrum disorders, developmental coordination disorder, and/or attention deficit hyperactivity disorder.

    PubMed

    Dewey, Deborah; Cantell, Marja; Crawford, Susan G

    2007-03-01

    Motor and gestural skills of children with autism spectrum disorders (ASD), developmental coordination disorder (DCD), and/or attention deficit hyperactivity disorder (ADHD) were investigated. A total of 49 children with ASD, 46 children with DCD, 38 children with DCD+ADHD, 27 children with ADHD, and 78 typically developing control children participated. Motor skills were assessed with the Bruininks-Oseretsky Test of Motor Proficiency Short Form, and gestural skills were assessed using a test that required children to produce meaningful gestures to command and imitation. Children with ASD, DCD, and DCD+ADHD were significantly impaired on motor coordination skills; however, only children with ASD showed a generalized impairment in gestural performance. Examination of types of gestural errors revealed that children with ASD made significantly more incorrect action and orientation errors to command, and significantly more orientation and distortion errors to imitation than children with DCD, DCD+ADHD, ADHD, and typically developing control children. These findings suggest that gestural impairments displayed by the children with ASD were not solely attributable to deficits in motor coordination skills.

  4. Gene Expression Changes in the Motor Cortex Mediating Motor Skill Learning

    PubMed Central

    Cheung, Vincent C. K.; DeBoer, Caroline; Hanson, Elizabeth; Tunesi, Marta; D'Onofrio, Mara; Arisi, Ivan; Brandi, Rossella; Cattaneo, Antonino; Goosens, Ki A.

    2013-01-01

    The primary motor cortex (M1) supports motor skill learning, yet little is known about the genes that contribute to motor cortical plasticity. Such knowledge could identify candidate molecules whose targeting might enable a new understanding of motor cortical functions, and provide new drug targets for the treatment of diseases which impair motor function, such as ischemic stroke. Here, we assess changes in the motor-cortical transcriptome across different stages of motor skill acquisition. Adult rats were trained on a gradually acquired appetitive reach and grasp task that required different strategies for successful pellet retrieval, or a sham version of the task in which the rats received pellet reward without needing to develop the reach and grasp skill. Tissue was harvested from the forelimb motor-cortical area either before training commenced, prior to the initial rise in task performance, or at peak performance. Differential classes of gene expression were observed at the time point immediately preceding motor task improvement. Functional clustering revealed that gene expression changes were related to the synapse, development, intracellular signaling, and the fibroblast growth factor (FGF) family, with many modulated genes known to regulate synaptic plasticity, synaptogenesis, and cytoskeletal dynamics. The modulated expression of synaptic genes likely reflects ongoing network reorganization from commencement of training till the point of task improvement, suggesting that motor performance improves only after sufficient modifications in the cortical circuitry have accumulated. The regulated FGF-related genes may together contribute to M1 remodeling through their roles in synaptic growth and maturation. PMID:23637843

  5. Mirror Visual Feedback Training Improves Intermanual Transfer in a Sport-Specific Task: A Comparison between Different Skill Levels.

    PubMed

    Steinberg, Fabian; Pixa, Nils Henrik; Doppelmayr, Michael

    2016-01-01

    Mirror training therapy is a promising tool to initiate neural plasticity and facilitate the recovery process of motor skills after diseases such as stroke or hemiparesis by improving the intermanual transfer of fine motor skills in healthy people as well as in patients. This study evaluated whether these augmented performance improvements by mirror visual feedback (MVF) could be used for learning a sport-specific skill and if the effects are modulated by skill level. A sample of 39 young, healthy, and experienced basketball and handball players and 41 novices performed a stationary basketball dribble task at a mirror box in a standing position and received either MVF or direct feedback. After four training days using only the right hand, performance of both hands improved from pre- to posttest measurements. Only the left hand (untrained) performance of the experienced participants receiving MVF was more pronounced than for the control group. This indicates that intermanual motor transfer can be improved by MVF in a sport-specific task. However, this effect cannot be generalized to motor learning per se since it is modulated by individuals' skill level, a factor that might be considered in mirror therapy research.

  6. Mirror Visual Feedback Training Improves Intermanual Transfer in a Sport-Specific Task: A Comparison between Different Skill Levels

    PubMed Central

    Pixa, Nils Henrik; Doppelmayr, Michael

    2016-01-01

    Mirror training therapy is a promising tool to initiate neural plasticity and facilitate the recovery process of motor skills after diseases such as stroke or hemiparesis by improving the intermanual transfer of fine motor skills in healthy people as well as in patients. This study evaluated whether these augmented performance improvements by mirror visual feedback (MVF) could be used for learning a sport-specific skill and if the effects are modulated by skill level. A sample of 39 young, healthy, and experienced basketball and handball players and 41 novices performed a stationary basketball dribble task at a mirror box in a standing position and received either MVF or direct feedback. After four training days using only the right hand, performance of both hands improved from pre- to posttest measurements. Only the left hand (untrained) performance of the experienced participants receiving MVF was more pronounced than for the control group. This indicates that intermanual motor transfer can be improved by MVF in a sport-specific task. However, this effect cannot be generalized to motor learning per se since it is modulated by individuals' skill level, a factor that might be considered in mirror therapy research. PMID:27642526

  7. Assessment of motor and process skills: assessing client work performance in Belgium.

    PubMed

    Vandamme, Dirk

    2010-01-01

    The aim of this study is to establish whether the Assessment of Motor and Process Skills (AMPS) is an appropriate tool to evaluate the quality of work performance by comparing clients' results on the AMPS with the quality of the skills that they demonstrate on the shop floor. A convenience sample of chronically unemployed (vocationally disabled) participants (N=139) with no formal training who were seeking unskilled work through Jobcentrum West-Vlaanderen (West Flanders Job Centre, Belgium) was used. Results demonstrated that in 75.2% of cases the prediction of employment outcome was correct; it is suggested that an AMPS motor score < 2.5 and a process score < 1.2 is insufficient for regular employment, while a motor score > 3.1 and process score > 1.5 indicates that regular employment is a realistic goal. The quality of the motor skills measured by the AMPS and measured on the shop floor are comparable, but little similarity was found in the measurement of process skills.

  8. Flexibility of movement organization in piano performance

    PubMed Central

    Furuya, Shinichi; Altenmüller, Eckart

    2013-01-01

    Piano performance involves a large repertoire of highly skilled movements. The acquisition of these exceptional skills despite innate neural and biomechanical constraints requires a sophisticated interaction between plasticity of the neural system and organization of a redundant number of degrees of freedom (DOF) in the motor system. Neuroplasticity subserving virtuosity of pianists has been documented in neuroimaging studies investigating effects of long-term piano training on structure and function of the cortical and subcortical regions. By contrast, recent behavioral studies have advanced the understanding of neuromuscular strategies and biomechanical principles behind the movement organization that enables skilled piano performance. Here we review the motor control and biomechanics literature, introducing the importance of describing motor behaviors not only for understanding mechanisms responsible for skillful motor actions in piano playing, but also for advancing diagnosis and rehabilitation of movement disorders caused by extensive piano practice. PMID:23882199

  9. The relationship between gross motor skills and academic achievement in children with learning disabilities.

    PubMed

    Westendorp, Marieke; Hartman, Esther; Houwen, Suzanne; Smith, Joanne; Visscher, Chris

    2011-01-01

    The present study compared the gross motor skills of 7- to 12-year-old children with learning disabilities (n = 104) with those of age-matched typically developing children (n = 104) using the Test of Gross Motor Development-2. Additionally, the specific relationships between subsets of gross motor skills and academic performance in reading, spelling, and mathematics were examined in children with learning disabilities. As expected, the children with learning disabilities scored poorer on both the locomotor and object-control subtests than their typically developing peers. Furthermore, in children with learning disabilities a specific relationship was observed between reading and locomotor skills and a trend was found for a relationship between mathematics and object-control skills: the larger children's learning lag, the poorer their motor skill scores. This study stresses the importance of specific interventions facilitating both motor and academic abilities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Older age relates to worsening of fine motor skills: a population-based study of middle-aged and elderly persons.

    PubMed

    Hoogendam, Yoo Young; van der Lijn, Fedde; Vernooij, Meike W; Hofman, Albert; Niessen, Wiro J; van der Lugt, Aad; Ikram, M Arfan; van der Geest, Jos N

    2014-01-01

    In a population-based study of 1,912 community-dwelling persons of 45 years and older, we investigated the relation between age and fine motor skills using the Archimedes spiral-drawing test. Also, we studied the effect of brain volume on fine motor skills. Participants were required to trace a template of a spiral on an electronic drawing board. Clinical scores from this test were obtained by visual assessment of the drawings. Quantitative measures were objectively determined from the recorded data of the drawings. As tremor is known to occur increasingly with advancing age, we also rated drawings to assess presence of tremor. We found presence of a tremor in 1.3% of the drawings. In the group without tremor, we found that older age was related to worse fine motor skills. Additionally, participants over the age of 75 showed increasing deviations from the template when drawing the spiral. Larger cerebral volume and smaller white matter lesion volume were related to better spiral-drawing performance, whereas cerebellar volume was not related to spiral-drawing performance. Older age is related to worse fine motor skills, which can be captured by clinical scoring or quantitative measures of the Archimedes spiral-drawing test. Persons with a tremor performed worse on almost all measures of the spiral-drawing test. Furthermore, larger cerebral volume is related to better fine motor skills.

  11. Factors associated with inadequate fine motor skills in Brazilian students of different socioeconomic status.

    PubMed

    Bobbio, Tatiana Godoy; Morcillo, André Moreno; Barros Filho, Antonio de Azevedo; Concalves, Vanda Maria Gimenes

    2007-12-01

    The objective of this study was to evaluate and compare the motor coordination of Brazilian schoolchildren of different socioeconomic status in their first year of primary education. Factors associated with inadequate fine motor skills were identified. A total of 238 schoolchildren, 118 from a public school and 120 from a private school, were evaluated on fine motor skills using the Evolutional Neurological Examination. Statistical analysis was performed using univariate logistic regression followed by multivariate analysis. Children attending public school had a 5.5-fold greater risk of having inadequate fine motor skills for their age compared to children attending private school, while children who started school after four years of age had a 2.8-fold greater risk of having inadequate motor coordination compared to children who began school earlier. Data for this sample suggest socioeconomic factors and later entry of children to school may be associated with their fine motor skills.

  12. Effect of transcranial direct current stimulation (tDCS) during complex whole body motor skill learning.

    PubMed

    Kaminski, Elisabeth; Hoff, Maike; Sehm, Bernhard; Taubert, Marco; Conde, Virginia; Steele, Christopher J; Villringer, Arno; Ragert, Patrick

    2013-09-27

    The aim of the study was to investigate tDCS effects on motor skill learning in a complex whole body dynamic balance task (DBT). We hypothesized that tDCS over the supplementary motor area (SMA), a region that is known to be involved in the control of multi-joint whole body movements, will result in polarity specific changes in DBT learning. In a randomized sham-controlled, double-blinded parallel design, we applied 20 min of tDCS over the supplementary motor area (SMA) and prefrontal cortex (PFC) while subjects performed a DBT. Anodal tDCS over SMA with the cathode placed over contralateral PFC impaired motor skill learning of the DBT compared to sham. This effect was still present on the second day of training. Reversing the polarity (cathode over SMA, anode over PFC) did not affect motor skill learning neither on the first nor on the second day of training. To better disentangle whether the impaired motor skill learning was due to a modulation of SMA or PFC, we performed an additional control experiment. Here, we applied anodal tDCS over SMA together with a larger and presumably more ineffective electrode (cathode) over PFC. Interestingly this alternative tDCS electrode setup did not affect the outcome of DBT learning. Our results provide novel evidence that a modulation of the (right) PFC seems to impair complex multi-joint motor skill learning. Hence, future studies should take the positioning of both tDCS electrodes into account when investigating complex motor skill learning. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Visual and skill effects on soccer passing performance, kinematics, and outcome estimations

    PubMed Central

    Basevitch, Itay; Tenenbaum, Gershon; Land, William M.; Ward, Paul

    2015-01-01

    The role of visual information and action representations in executing a motor task was examined from a mental representations approach. High-skill (n = 20) and low-skill (n = 20) soccer players performed a passing task to two targets at distances of 9.14 and 18.29 m, under three visual conditions: normal, occluded, and distorted vision (i.e., +4.0 corrective lenses, a visual acuity of approximately 6/75) without knowledge of results. Following each pass, participants estimated the relative horizontal distance from the target as the ball crossed the target plane. Kinematic data during each pass were also recorded for the shorter distance. Results revealed that performance on the motor task decreased as a function of visual information and task complexity (i.e., distance from target) regardless of skill level. High-skill players performed significantly better than low-skill players on both the actual passing and estimation tasks, at each target distance and visual condition. In addition, kinematic data indicated that high-skill participants were more consistent and had different kinematic movement patterns than low-skill participants. Findings contribute to the understanding of the underlying mechanisms required for successful performance in a self-paced, discrete and closed motor task. PMID:25784886

  14. Neural correlates of skill acquisition: decreased cortical activity during a serial interception sequence learning task.

    PubMed

    Gobel, Eric W; Parrish, Todd B; Reber, Paul J

    2011-10-15

    Learning of complex motor skills requires learning of component movements as well as the sequential structure of their order and timing. Using a Serial Interception Sequence Learning (SISL) task, participants learned a sequence of precisely timed interception responses through training with a repeating sequence. Following initial implicit learning of the repeating sequence, functional MRI data were collected during performance of that known sequence and compared with activity evoked during novel sequences of actions, novel timing patterns, or both. Reduced activity was observed during the practiced sequence in a distributed bilateral network including extrastriate occipital, parietal, and premotor cortical regions. These reductions in evoked activity likely reflect improved efficiency in visuospatial processing, spatio-motor integration, motor planning, and motor execution for the trained sequence, which is likely supported by nondeclarative skill learning. In addition, the practiced sequence evoked increased activity in the left ventral striatum and medial prefrontal cortex, while the posterior cingulate was more active during periods of better performance. Many prior studies of perceptual-motor skill learning have found increased activity in motor areas of the frontal cortex (e.g., motor and premotor cortex, SMA) and striatal areas (e.g., the putamen). The change in activity observed here (i.e., decreased activity across a cortical network) may reflect skill learning that is predominantly expressed through more accurate performance rather than decreased reaction time. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Neural Correlates of Skill Acquisition: Decreased Cortical Activity During a Serial Interception Sequence Learning Task

    PubMed Central

    Gobel, Eric W.; Parrish, Todd B.; Reber, Paul J.

    2011-01-01

    Learning of complex motor skills requires learning of component movements as well as the sequential structure of their order and timing. Using a Serial Interception Sequence Learning (SISL) task, participants learned a sequence of precisely timed interception responses through training with a repeating sequence. Following initial implicit learning of the repeating sequence, functional MRI data were collected during performance of that known sequence and compared with activity evoked during novel sequences of actions, novel timing patterns, or both. Reduced activity was observed during the practiced sequence in a distributed bilateral network including extrastriate occipital, parietal, and premotor cortical regions. These reductions in evoked activity likely reflect improved efficiency in visuospatial processing, spatio-motor integration, motor planning, and motor execution for the trained sequence, which is likely supported by nondeclarative skill learning. In addition, the practiced sequence evoked increased activity in the left ventral striatum and medial prefrontal cortex, while the posterior cingulate was more active during periods of better performance. Many prior studies of perceptual-motor skill learning have found increased activity in motor areas of frontal cortex (e.g., motor and premotor cortex, SMA) and striatal areas (e.g., the putamen). The change in activity observed here (i.e., decreased activity across a cortical network) may reflect skill learning that is predominantly expressed through more accurate performance rather than decreased reaction time. PMID:21771663

  16. Changes in Striatal Dopamine Release Associated with Human Motor-Skill Acquisition

    PubMed Central

    Kawashima, Shoji; Ueki, Yoshino; Kato, Takashi; Matsukawa, Noriyuki; Mima, Tatsuya; Hallett, Mark; Ito, Kengo; Ojika, Kosei

    2012-01-01

    The acquisition of new motor skills is essential throughout daily life and involves the processes of learning new motor sequence and encoding elementary aspects of new movement. Although previous animal studies have suggested a functional importance for striatal dopamine release in the learning of new motor sequence, its role in encoding elementary aspects of new movement has not yet been investigated. To elucidate this, we investigated changes in striatal dopamine levels during initial skill-training (Day 1) compared with acquired conditions (Day 2) using 11C-raclopride positron-emission tomography. Ten volunteers learned to perform brisk contractions using their non-dominant left thumbs with the aid of visual feedback. On Day 1, the mean acceleration of each session was improved through repeated training sessions until performance neared asymptotic levels, while improved motor performance was retained from the beginning on Day 2. The 11C-raclopride binding potential (BP) in the right putamen was reduced during initial skill-training compared with under acquired conditions. Moreover, voxel-wise analysis revealed that 11C-raclopride BP was particularly reduced in the right antero-dorsal to the lateral part of the putamen. Based on findings from previous fMRI studies that show a gradual shift of activation within the striatum during the initial processing of motor learning, striatal dopamine may play a role in the dynamic cortico-striatal activation during encoding of new motor memory in skill acquisition. PMID:22355391

  17. The Effects of Three Styles of Teaching on the Psychomotor Performance and Social Skill Development of Fifth Grade Children.

    ERIC Educational Resources Information Center

    Goldberger, Michael; And Others

    1982-01-01

    The effectiveness of three teaching styles in promoting motor skill acquisition and social skill development were examined in 96 fifth-grade students. Styles B, C, and E from Mosston's "Spectrum of Teaching Styles" appeared to be beneficial in helping students learn motor skills. (CJ)

  18. Whole body heat stress increases motor cortical excitability and skill acquisition in humans

    PubMed Central

    Littmann, Andrew E.; Shields, Richard K.

    2015-01-01

    Objective Vigorous systemic exercise stimulates a cascade of molecular and cellular processes that enhance central nervous system (CNS) plasticity and performance. The influence of heat stress on CNS performance and learning is novel. We designed two experiments to determine whether passive heat stress 1) facilitated motor cortex excitability and 2) improved motor task acquisition compared to no heat stress. Methods Motor evoked potentials (MEPs) from the first dorsal interosseus (FDI) were collected before and after 30 minutes of heat stress at 73° C. A second cohort of subjects performed a motor learning task using the FDI either following heat or the no heat condition. Results Heat stress increased heart rate to 65% of age-predicted maximum. After heat, mean resting MEP amplitude increased 48% (P < 0.05). MEP stimulus-response amplitudes did not differ according to stimulus intensity. In the second experiment, heat stress caused a significant decrease in absolute and variable error (p < 0.05) during a novel movement task using the FDI. Conclusions Passive environmental heat stress 1) increases motor cortical excitability, and 2) enhances performance in a motor skill acquisition task. Significance Controlled heat stress may prime the CNS to enhance motor skill acquisition during rehabilitation. PMID:26616546

  19. Neuronal Substrates Underlying Performance Variability in Well-Trained Skillful Motor Task in Humans.

    PubMed

    Mizuguchi, Nobuaki; Uehara, Shintaro; Hirose, Satoshi; Yamamoto, Shinji; Naito, Eiichi

    2016-01-01

    Motor performance fluctuates trial by trial even in a well-trained motor skill. Here we show neural substrates underlying such behavioral fluctuation in humans. We first scanned brain activity with functional magnetic resonance imaging while healthy participants repeatedly performed a 10 s skillful sequential finger-tapping task. Before starting the experiment, the participants had completed intensive training. We evaluated task performance per trial (number of correct sequences in 10 s) and depicted brain regions where the activity changes in association with the fluctuation of the task performance across trials. We found that the activity in a broader range of frontoparietocerebellar network, including the bilateral dorsolateral prefrontal cortex (DLPFC), anterior cingulate and anterior insular cortices, and left cerebellar hemisphere, was negatively correlated with the task performance. We further showed in another transcranial direct current stimulation (tDCS) experiment that task performance deteriorated, when we applied anodal tDCS to the right DLPFC. These results indicate that fluctuation of brain activity in the nonmotor frontoparietocerebellar network may underlie trial-by-trial performance variability even in a well-trained motor skill, and its neuromodulation with tDCS may affect the task performance.

  20. Motor Skills of Children Newly Diagnosed with Attention Deficit Hyperactivity Disorder Prior to and Following Treatment with Stimulant Medication

    ERIC Educational Resources Information Center

    Brossard-Racine, Marie; Shevell, Michael; Snider, Laurie; Belanger, Stacey Ageranioti; Majnemer, Annette

    2012-01-01

    Motor difficulties are common in children with Attention Deficit Hyperactivity Disorder (ADHD). Although preliminary evidence has suggested that methylphenidate can improve the motor skills in children with ADHD and Developmental Coordination Disorder (DCD), the effect of stimulant medication on motor performance in children newly diagnosed with…

  1. Fine Motor Skills Predict Maths Ability Better than They Predict Reading Ability in the Early Primary School Years

    PubMed Central

    Pitchford, Nicola J.; Papini, Chiara; Outhwaite, Laura A.; Gulliford, Anthea

    2016-01-01

    Fine motor skills have long been recognized as an important foundation for development in other domains. However, more precise insights into the role of fine motor skills, and their relationships to other skills in mediating early educational achievements, are needed to support the development of optimal educational interventions. We explored concurrent relationships between two components of fine motor skills, Fine Motor Precision and Fine Motor Integration, and early reading and maths development in two studies with primary school children of low-to-mid socio-economic status in the UK. Two key findings were revealed. First, despite being in the first 2 years of primary school education, significantly better performance was found in reading compared to maths across both studies. This may reflect the protective effects of recent national-level interventions to promote early literacy skills in young children in the UK that have not been similarly promoted for maths. Second, fine motor skills were a better predictor of early maths ability than they were of early reading ability. Hierarchical multiple regression revealed that fine motor skills did not significantly predict reading ability when verbal short-term memory was taken into account. In contrast, Fine Motor Integration remained a significant predictor of maths ability, even after the influence of non-verbal IQ had been accounted for. These results suggest that fine motor skills should have a pivotal role in educational interventions designed to support the development of early mathematical skills. PMID:27303342

  2. Fine Motor Skills Predict Maths Ability Better than They Predict Reading Ability in the Early Primary School Years.

    PubMed

    Pitchford, Nicola J; Papini, Chiara; Outhwaite, Laura A; Gulliford, Anthea

    2016-01-01

    Fine motor skills have long been recognized as an important foundation for development in other domains. However, more precise insights into the role of fine motor skills, and their relationships to other skills in mediating early educational achievements, are needed to support the development of optimal educational interventions. We explored concurrent relationships between two components of fine motor skills, Fine Motor Precision and Fine Motor Integration, and early reading and maths development in two studies with primary school children of low-to-mid socio-economic status in the UK. Two key findings were revealed. First, despite being in the first 2 years of primary school education, significantly better performance was found in reading compared to maths across both studies. This may reflect the protective effects of recent national-level interventions to promote early literacy skills in young children in the UK that have not been similarly promoted for maths. Second, fine motor skills were a better predictor of early maths ability than they were of early reading ability. Hierarchical multiple regression revealed that fine motor skills did not significantly predict reading ability when verbal short-term memory was taken into account. In contrast, Fine Motor Integration remained a significant predictor of maths ability, even after the influence of non-verbal IQ had been accounted for. These results suggest that fine motor skills should have a pivotal role in educational interventions designed to support the development of early mathematical skills.

  3. Task-specific gross motor skills training for ambulant school-aged children with cerebral palsy: a systematic review.

    PubMed

    Toovey, Rachel; Bernie, Charmaine; Harvey, Adrienne R; McGinley, Jennifer L; Spittle, Alicia J

    2017-01-01

    The primary objective is to systematically evaluate the evidence for the effectiveness of task-specific training (TST) of gross motor skills for improving activity and/or participation outcomes in ambulant school-aged children with cerebral palsy (CP). The secondary objective is to identify motor learning strategies reported within TST and assess relationship to outcome. Systematic review. Relevant databases were searched for studies including: children with CP (mean age >4 years and >60% of the sample ambulant); TST targeting gross motor skills and activity (skill performance, gross motor function and functional skills) and/or participation-related outcomes. Quality of included studies was assessed using standardised tools for risk of bias, study design and quality of evidence across outcomes. Continuous data were summarised for each study using standardised mean difference (SMD) and 95% CIs. Thirteen studies met inclusion criteria: eight randomised controlled trials (RCTs), three comparative studies, one repeated-measures study and one single-subject design study. Risk of bias was moderate across studies. Components of TST varied and were often poorly reported. Within-group effects of TST were positive across all outcomes of interest in 11 studies. In RCTs, between-group effects were conflicting for skill performance and functional skills, positive for participation-related outcomes (one study: Life-HABITS performance SMD=1.19, 95% CI 0.3 to 2.07, p<0.001; Life-HABITS satisfaction SMD=1.29, 95% CI 0.40 to 2.18, p=0.001), while no difference or negative effects were found for gross motor function. The quality of evidence was low-to-moderate overall. Variability and poor reporting of motor learning strategies limited assessment of relationship to outcome. Limited evidence for TST for gross motor skills in ambulant children with CP exists for improving activity and participation-related outcomes and recommendations for use over other interventions are limited by poor study methodology and heterogeneous interventions. PROSPERO ID42016036727.

  4. Task-specific gross motor skills training for ambulant school-aged children with cerebral palsy: a systematic review

    PubMed Central

    Bernie, Charmaine; Harvey, Adrienne R; McGinley, Jennifer L; Spittle, Alicia J

    2017-01-01

    Objectives The primary objective is to systematically evaluate the evidence for the effectiveness of task-specific training (TST) of gross motor skills for improving activity and/or participation outcomes in ambulant school-aged children with cerebral palsy (CP). The secondary objective is to identify motor learning strategies reported within TST and assess relationship to outcome. Design Systematic review. Method Relevant databases were searched for studies including: children with CP (mean age >4 years and >60% of the sample ambulant); TST targeting gross motor skills and activity (skill performance, gross motor function and functional skills) and/or participation-related outcomes. Quality of included studies was assessed using standardised tools for risk of bias, study design and quality of evidence across outcomes. Continuous data were summarised for each study using standardised mean difference (SMD) and 95% CIs. Results Thirteen studies met inclusion criteria: eight randomised controlled trials (RCTs), three comparative studies, one repeated-measures study and one single-subject design study. Risk of bias was moderate across studies. Components of TST varied and were often poorly reported. Within-group effects of TST were positive across all outcomes of interest in 11 studies. In RCTs, between-group effects were conflicting for skill performance and functional skills, positive for participation-related outcomes (one study: Life-HABITS performance SMD=1.19, 95% CI 0.3 to 2.07, p<0.001; Life-HABITS satisfaction SMD=1.29, 95% CI 0.40 to 2.18, p=0.001), while no difference or negative effects were found for gross motor function. The quality of evidence was low-to-moderate overall. Variability and poor reporting of motor learning strategies limited assessment of relationship to outcome. Conclusions Limited evidence for TST for gross motor skills in ambulant children with CP exists for improving activity and participation-related outcomes and recommendations for use over other interventions are limited by poor study methodology and heterogeneous interventions. Registration PROSPERO ID42016036727 PMID:29637118

  5. Long-term importance of fundamental motor skills: a 20-year follow-up study.

    PubMed

    Lloyd, Meghann; Saunders, Travis J; Bremer, Emily; Tremblay, Mark S

    2014-01-01

    The purpose of this study was to investigate the potential long-term association of motor skill proficiency at 6 years of age and self-reported physical activity (PA) at age 26. Direct motor performance data were collected in 1991 with a follow-up study occurring in 1996, and then indirect questionnaires (self-report) administered in 2001 and 2011. In 2011, 17 participants who were identified as either having high motor proficiency (HMP) or low motor proficiency (LMP) in 1991 completed a series of 4 questionnaires. Analyses were conducted to determine whether there were differences between groups for motor skill proficiency, PA, or sedentary behavior, and whether these outcomes were related across ages. Motor skill proficiency at age 6 was related to self-reported proficiency at age 16 (r = .77, p = .006), and self-reported proficiency between 16 and 26 years (r = .85, p = .001). Motor skill proficiency at age 6 was positively associated with leisure time PA at age 26 in females and participants in the HMP group. The results may provide preliminary evidence about the importance of how early motor skill proficiency relates to long-term PA. More research with larger sample sizes is needed to investigate the importance of motor skills over time.

  6. Assessing Motor Skill Competency in Elementary School Students: A Three-Year Study.

    PubMed

    Chen, Weiyun; Mason, Steve; Hypnar, Andrew; Bennett, Austin

    2016-03-01

    This study was to examine how well fourth- and fifth-grade students demonstrated motor skill competency assessed with selected PE Metrics assessment rubrics (2009). Fourth- and fifth-grade students (n = 1,346-1,926) were assessed on their performance of three manipulative skills using the PE Metrics Assessment Rubrics during the pre-intervention year, the post-intervention year 1, and the post-intervention year 3. Descriptive statistics, independent t-test, ANOVA, and follow-up comparisons were conducted for data analysis. The results indicated that the post-intervention year 2 cohort performed significantly more competent than the pre-intervention cohort and the post-intervention year 1 cohort on the three manipulative skill assessments. The post-intervention year 1 cohort significantly outperformed the pre-intervention cohort on the soccer dribbling, passing, and receiving and the striking skill assessments, but not on the throwing skill assessment. Although the boys in the three cohorts performed significantly better than the girls on all three skills, the girls showed substantial improvement on the overhand throwing and the soccer skills from baseline to the post-intervention year 1 and the post-intervention year 2. However, the girls, in particular, need to improve striking skill. The CTACH PE was conducive to improving fourth- and fifth-grade students' motor skill competency in the three manipulative skills. This study suggest that PE Metrics assessment rubrics are feasible tools for PE teachers to assess levels of students' demonstration of motor skill competency during a regular PE lesson. Key pointsCATCH PE is an empirically-evidenced quality PE curricular that is conducive to improving students' manipulative skill competency.Boys significantly outperformed than girls in all three manipulative skills.Girls need to improve motor skill competency in striking skill. PE Metrics are feasible assessment rubrics that can be easily used by trained physical education teachers to assess students' manipulative skill competency.

  7. Assessing Motor Skill Competency in Elementary School Students: A Three-Year Study

    PubMed Central

    Chen, Weiyun; Mason, Steve; Hypnar, Andrew; Bennett, Austin

    2016-01-01

    This study was to examine how well fourth- and fifth-grade students demonstrated motor skill competency assessed with selected PE Metrics assessment rubrics (2009). Fourth- and fifth-grade students (n = 1,346-1,926) were assessed on their performance of three manipulative skills using the PE Metrics Assessment Rubrics during the pre-intervention year, the post-intervention year 1, and the post-intervention year 3. Descriptive statistics, independent t-test, ANOVA, and follow-up comparisons were conducted for data analysis. The results indicated that the post-intervention year 2 cohort performed significantly more competent than the pre-intervention cohort and the post-intervention year 1 cohort on the three manipulative skill assessments. The post-intervention year 1 cohort significantly outperformed the pre-intervention cohort on the soccer dribbling, passing, and receiving and the striking skill assessments, but not on the throwing skill assessment. Although the boys in the three cohorts performed significantly better than the girls on all three skills, the girls showed substantial improvement on the overhand throwing and the soccer skills from baseline to the post-intervention year 1 and the post-intervention year 2. However, the girls, in particular, need to improve striking skill. The CTACH PE was conducive to improving fourth- and fifth-grade students’ motor skill competency in the three manipulative skills. This study suggest that PE Metrics assessment rubrics are feasible tools for PE teachers to assess levels of students’ demonstration of motor skill competency during a regular PE lesson. Key points CATCH PE is an empirically-evidenced quality PE curricular that is conducive to improving students’ manipulative skill competency. Boys significantly outperformed than girls in all three manipulative skills. Girls need to improve motor skill competency in striking skill. PE Metrics are feasible assessment rubrics that can be easily used by trained physical education teachers to assess students’ manipulative skill competency. PMID:26957932

  8. Determinants of gross motor skill performance in children with visual impairments.

    PubMed

    Haibach, Pamela S; Wagner, Matthias O; Lieberman, Lauren J

    2014-10-01

    Children with visual impairments (CWVI) generally perform poorer in gross motor skills when compared with their sighted peers. This study examined the influence of age, sex, and severity of visual impairment upon locomotor and object control skills in CWVI. Participants included 100 CWVI from across the United States who completed the Test of Gross Motor Development II (TGMD-II). The TGMD-II consists of 12 gross motor skills including 6 object control skills (catching, kicking, striking, dribbling, throwing, and rolling) and 6 locomotor skills (running, sliding, galloping, leaping, jumping, and hopping). The full range of visual impairments according to United States Association for Blind Athletes (USABA; B3=20/200-20/599, legally blind; B2=20/600 and up, travel vision; B1=totally blind) were assessed. The B1 group performed significantly worse than the B2 (0.000 ≤ p ≤ 0.049) or B3 groups (0.000 ≤ p ≤ 0.005); however, there were no significant differences between B2 and B3 except for the run (p=0.006), catch (p=0.000), and throw (p=0.012). Age and sex did not play an important role in most of the skills, with the exception of boys outperforming girls striking (p=0.009), dribbling (p=0.013), and throwing (p=0.000), and older children outperforming younger children in dribbling (p=0.002). The significant impact of the severity of visual impairment is likely due to decreased experiences and opportunities for children with more severe visual impairments. In addition, it is likely that these reduced experiences explain the lack of age-related differences in the CWVI. The large disparities in performance between children who are blind and their partially sighted peers give direction for instruction and future research. In addition, there is a critical need for intentional and specific instruction on motor skills at a younger age to enable CWVI to develop their gross motor skills. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Short Term Motor-Skill Acquisition Improves with Size of Self-Controlled Virtual Hands

    PubMed Central

    Ossmy, Ori; Mukamel, Roy

    2017-01-01

    Visual feedback in general, and from the body in particular, is known to influence the performance of motor skills in humans. However, it is unclear how the acquisition of motor skills depends on specific visual feedback parameters such as the size of performing effector. Here, 21 healthy subjects physically trained to perform sequences of finger movements with their right hand. Through the use of 3D Virtual Reality devices, visual feedback during training consisted of virtual hands presented on the screen, tracking subject’s hand movements in real time. Importantly, the setup allowed us to manipulate the size of the displayed virtual hands across experimental conditions. We found that performance gains increase with the size of virtual hands. In contrast, when subjects trained by mere observation (i.e., in the absence of physical movement), manipulating the size of the virtual hand did not significantly affect subsequent performance gains. These results demonstrate that when it comes to short-term motor skill learning, the size of visual feedback matters. Furthermore, these results suggest that highest performance gains in individual subjects are achieved when the size of the virtual hand matches their real hand size. These results may have implications for optimizing motor training schemes. PMID:28056023

  10. Older Adults can Learn to Learn New Motor Skills

    PubMed Central

    Seidler, Rachael D.

    2007-01-01

    Many studies have demonstrated that aging is associated with declines in skill acquisition. In the current study, we tested whether older adults could acquire general, transferable knowledge about skill learning processes. Older adult participants learned five different motor tasks. Two older adult control groups performed the same number of trials, but learned only one task. The experimental group exhibited faster learning than that seen in the control groups. These data demonstrate that older adults can learn to learn new motor skills. PMID:17602760

  11. Relationship between writing skills and visual-motor control in low-vision students.

    PubMed

    Atasavun Uysal, Songül; Aki, Esra

    2012-08-01

    The purpose of this study was to investigate the relationship between handwriting skills and visual motor control among students with low vision and to compare this with the performance of their normal sighted peers. 42 students with low vision and 26 normal sighted peers participated. The Bruininks-Oseretsky Motor Proficiency Test-Short Form (BOTMP-SF), Jebsen Taylor Hand Function Test's writing subtest, and a legibility assessment were administered. Significant differences were found between groups for students' writing speed, legibility, and visual motor control. Visual motor control was correlated both writing speed and legibility. Students with low vision had poorer handwriting performance, with lower legibility and slower writing speed. Writing performance time was related to visual motor control in students with low vision.

  12. Effect of Aerobic Loading on Static Balance in Young Athletes

    ERIC Educational Resources Information Center

    Akyüz, Öznur

    2017-01-01

    The fact that balances can also be a factor in performance distinction between athletes in athletic skills, and is considered to provide positive acceleration for physical development in which motor skills are exhibited. Human's skill to ensure balance can be defined as a determinant factor in development of other motor skills. From this point of…

  13. Enhancing the Motor Skills of Children with Autism Spectrum Disorders: A Pool-Based Approach

    ERIC Educational Resources Information Center

    Lee, Jihyun; Porretta, David L.

    2013-01-01

    Children with autism spectrum disorders (ASDs) often experience difficulties with motor skill learning and performance. The pool is a unique learning environment that can help children with ASDs learn or improve aquatic skills, fitness, and social skills. A pool-based approach is also aligned with the elements of dynamic systems theory, which…

  14. The generalizability of working-memory capacity in the sport domain.

    PubMed

    Buszard, Tim; Masters, Rich Sw; Farrow, Damian

    2017-08-01

    Working-memory capacity has been implicated as an influential variable when performing and learning sport-related skills. In this review, we critically evaluate evidence linking working-memory capacity with performing under pressure, tactical decision making, motor skill acquisition, and sport expertise. Laboratory experiments link low working-memory capacity with poorer performance under pressure and poorer decision making when required to inhibit distractions or resolve conflict. However, the generalizability of these findings remains unknown. While working-memory capacity is associated with the acquisition of simple motor skills, there is no such evidence from the available data for complex motor skills. Likewise, currently there is no evidence to suggest that a larger working-memory capacity facilitates the attainment of sport expertise. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Neonatal stroke causes poor midline motor behaviors and poor fine and gross motor skills during early infancy.

    PubMed

    Chen, Chao-Ying; Lo, Warren D; Heathcock, Jill C

    2013-03-01

    Upper extremity movements, midline behaviors, fine, and gross motor skills are frequently impaired in hemiparesis and cerebral palsy. We investigated midline toy exploration and fine and gross motor skills in infants at risk for hemiplegic cerebral palsy. Eight infants with neonatal stroke (NS) and thirteen infants with typical development (TD) were assessed from 2 to 7 months of age. The following variables were analyzed: percentage of time in midline and fine and gross motor scores on the Bayley Scales of Infant Development (BSID-III). Infants with neonatal stroke demonstrated poor performance in midline behaviors and fine and gross motor scores on the BSID-III. These results suggest that infants with NS have poor midline behaviors and motor skill development early in infancy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Effect of the Children's Health Activity Motor Program on Motor Skills and Self-Regulation in Head Start Preschoolers: An Efficacy Trial.

    PubMed

    Robinson, Leah E; Palmer, Kara K; Bub, Kristen L

    2016-01-01

    Self-regulatory skills are broadly defined as the ability to manage emotions, focus attention, and inhibit some behaviors while activating others in accordance with social expectations and are an established indicator of academic success. Growing evidence links motor skills and physical activity to self-regulation. This study examined the efficacy of a motor skills intervention (i.e., the Children's Health Activity Motor Program, CHAMP) that is theoretically grounded in Achievement Goal Theory on motor skill performance and self-regulation in Head Start preschoolers. A sample of 113 Head Start preschoolers (Mage = 51.91 ± 6.5 months; 49.5% males) were randomly assigned to a treatment (n = 68) or control (n = 45) program. CHAMP participants engaged in 15, 40-min sessions of a mastery climate intervention that focused on the development of motor skills over 5 weeks while control participants engaged in their normal outdoor recess period. The Delay of Gratification Snack Task was used to measure self-regulation and the Test of Gross Motor Development-2nd Edition was used to assess motor skills. All measures were assessed prior to and following the intervention. Linear mixed models were fit for both self-regulation and motor skills. Results revealed a significant time × treatment interaction (p < 0.001). In regard to motor skills, post hoc comparisons found that all children improved their motor skills (p < 0.05), but the CHAMP group improved significantly more than the control group (p < 0.001). Children in CHAMP maintained their self-regulation scores across time, while children in the control group scored significantly lower than the CHAMP group at the posttest (p < 0.05). CHAMP is a mastery climate movement program that enhance skills associated with healthy development in children (i.e., motor skills and self-regulation). This efficacy trial provided evidence that CHAMP helped maintain delay of gratification in preschool age children and significantly improved motor skills while participating in outdoor recess was not effective. CHAMP could help contribute to children's learning-related skills and physical development and subsequently to their academic success.

  17. Older Age Relates to Worsening of Fine Motor Skills: A Population-Based Study of Middle-Aged and Elderly Persons

    PubMed Central

    Hoogendam, Yoo Young; van der Lijn, Fedde; Vernooij, Meike W.; Hofman, Albert; Niessen, Wiro J.; van der Lugt, Aad; Ikram, M. Arfan; van der Geest, Jos N.

    2014-01-01

    Introduction: In a population-based study of 1,912 community-dwelling persons of 45 years and older, we investigated the relation between age and fine motor skills using the Archimedes spiral-drawing test. Also, we studied the effect of brain volume on fine motor skills. Methods: Participants were required to trace a template of a spiral on an electronic drawing board. Clinical scores from this test were obtained by visual assessment of the drawings. Quantitative measures were objectively determined from the recorded data of the drawings. As tremor is known to occur increasingly with advancing age, we also rated drawings to assess presence of tremor. Results: We found presence of a tremor in 1.3% of the drawings. In the group without tremor, we found that older age was related to worse fine motor skills. Additionally, participants over the age of 75 showed increasing deviations from the template when drawing the spiral. Larger cerebral volume and smaller white matter lesion volume were related to better spiral-drawing performance, whereas cerebellar volume was not related to spiral-drawing performance. Conclusion: Older age is related to worse fine motor skills, which can be captured by clinical scoring or quantitative measures of the Archimedes spiral-drawing test. Persons with a tremor performed worse on almost all measures of the spiral-drawing test. Furthermore, larger cerebral volume is related to better fine motor skills. PMID:25309436

  18. On the relationship between motor performance and executive functioning in children with intellectual disabilities.

    PubMed

    Hartman, E; Houwen, S; Scherder, E; Visscher, C

    2010-05-01

    It has been suggested that children with intellectual disabilities (ID) have motor problems and higher-order cognitive deficits. The aim of this study was to examine the motor skills and executive functions in school-age children with borderline and mild ID. The second aim was to investigate the relationship between the two performance domains. Sixty-one children aged between 7 and 12 years diagnosed with borderline ID (33 boys and 28 girls; 71 < IQ < 79) and 36 age peers with mild ID (24 boys and 12 girls; 54 < IQ < 70) were assessed. Their abilities were compared with those of 97 age- and gender-matched typically developing children. Qualitative motor skills, i.e. locomotor ability and object control, were evaluated with the Test of Gross Motor Development (TGMD-2). Executive functioning (EF), in terms of planning ability, strategic decision-making and problem solving, was gauged with the Tower of London (TOL) task. Compared with the reference group, the full ID cohort scored significantly lower on all assessments. For the locomotor skills, the children with mild ID scored significantly lower than the children with borderline ID, but for the object control skills and the TOL score, no significant differences between the two groups were found. Motor performance and EF correlated positively. At the most complex level, the TOL showed decision time to be a mediator between motor performance and EF: the children with the lower motor scores had significantly shorter decision times and lower EF scores. Analogously, the children with the lower object control scores had longer execution times and lower EF scores. The current results support the notion that besides being impaired in qualitative motor skills intellectually challenged children are also impaired in higher-order executive functions. The deficits in the two domains are interrelated, so early interventions boosting their motor and cognitive development are recommended.

  19. Early developmental influences on self-esteem trajectories from adolescence through adulthood: Impact of birth weight and motor skills.

    PubMed

    Poole, Kristie L; Schmidt, Louis A; Ferro, Mark A; Missiuna, Cheryl; Saigal, Saroj; Boyle, Michael H; Van Lieshout, Ryan J

    2018-02-01

    While the trajectory of self-esteem from adolescence to adulthood varies from person to person, little research has examined how differences in early developmental processes might affect these pathways. This study examined how early motor skill development interacted with preterm birth status to predict self-esteem from adolescence through the early 30s. We addressed this using the oldest known, prospectively followed cohort of extremely low birth weight (<1000 g) survivors (N = 179) and normal birth weight controls (N = 145) in the world, born between 1977 and 1982. Motor skills were measured using a performance-based assessment at age 8 and a retrospective self-report, and self-esteem was reported during three follow-up periods (age 12-16, age 22-26, and age 29-36). We found that birth weight status moderated the association between early motor skills and self-esteem. Stable over three decades, the self-esteem of normal birth weight participants was sensitive to early motor skills such that those with poorer motor functioning manifested lower self-esteem, while those with better motor skills manifested higher self-esteem. Conversely, differences in motor skill development did not affect the self-esteem from adolescence to adulthood in individuals born at extremely low birth weight. Early motor skill development may exert differential effects on self-esteem, depending on whether one is born at term or prematurely.

  20. Gymnastic judges benefit from their own motor experience as gymnasts.

    PubMed

    Pizzera, Alexandra

    2012-12-01

    Gymnastic judges have the difficult task of evaluating highly complex skills. My purpose in the current study was to examine evidence that judges use their sensorimotor experiences to enhance their perceptual judgments. In a video test, 58 judges rated 31 gymnasts performing a balance beam skill. I compared decision quality between judges who could perform the skill themselves on the balance beam (specific motor experience = SME) and those who could not. Those with SME showed better performance than those without SME. These data suggest that judges use their personal experiences as information to accurately assess complex gymnastic skills. [corrected].

  1. Whole body heat stress increases motor cortical excitability and skill acquisition in humans.

    PubMed

    Littmann, Andrew E; Shields, Richard K

    2016-02-01

    Vigorous systemic exercise stimulates a cascade of molecular and cellular processes that enhance central nervous system (CNS) plasticity and performance. The influence of heat stress on CNS performance and learning is novel. We designed two experiments to determine whether passive heat stress (1) facilitated motor cortex excitability and (2) improved motor task acquisition compared to no heat stress. Motor evoked potentials (MEPs) from the first dorsal interosseus (FDI) were collected before and after 30 min of heat stress at 73 °C. A second cohort of subjects performed a motor learning task using the FDI either following heat or the no heat condition. Heat stress increased heart rate to 65% of age-predicted maximum. After heat, mean resting MEP amplitude increased 48% (p<0.05). MEP stimulus-response amplitudes did not differ according to stimulus intensity. In the second experiment, heat stress caused a significant decrease in absolute and variable error (p<0.05) during a novel movement task using the FDI. Passive environmental heat stress (1) increases motor cortical excitability, and (2) enhances performance in a motor skill acquisition task. Controlled heat stress may prime the CNS to enhance motor skill acquisition during rehabilitation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Overthinking skilled motor performance: or why those who teach can't do.

    PubMed

    Flegal, Kristin E; Anderson, Michael C

    2008-10-01

    Skilled athletes often maintain that overthinking disrupts performance of their motor skills. Here, we examined whether these experiences have a basis in verbal overshadowing, a phenomenon in which describing memories for ineffable perceptual experiences disrupts later retention. After learning a unique golf-putting task, golfers of low and intermediate skill either described their actions in detail or performed an irrelevant verbal task. They then performed the putting task again. Strikingly, describing their putting experience significantly impaired higher skill golfers' ability to reachieve the putting criterion, compared with higher skill golfers who performed the irrelevant verbal activity. Verbalization had no such effect, however, for lower skill golfers. These findings establish that the effects of overthinking extend beyond dual-task interference and may sometimes reflect impacts on long-term memory. We propose that these effects are mediated by competition between procedural and declarative memory, as suggested by recent work in cognitive neuroscience.

  3. Motor skills, cognition, and work performance of people with severe mental illness.

    PubMed

    Lipskaya-Velikovsky, Lena; Elgerisi, Dikla; Easterbrook, Adam; Ratzon, Navah Z

    2018-01-12

    Employment offers many benefits to people with mental illness, yet their employment rate is much lower than that of the general population. We investigated the effect of work-related motor skills, neurocognition, and job attitudes on the work performance of people with mental illness, comparing those working in sheltered workshops, with controls working in similar jobs. Twenty-nine adults with severe mental illness and 27 controls matched by gender and age were enrolled into the study using convenience sampling. They were assessed for gross and fine motor hand functioning, job attitudes, work performance, and cognition. People with mental illness scored lower on work performance, cognitive functioning, and hand dexterity while sitting and working with tools. They were assigned lower job loads than were controls, and perceived the physical environment at work as more constraining than did controls. Assembling motor skills significantly explained the work performance of people with mental illness. The results expand our understanding of the complexities involved in the employment of people with severe mental illness, and point to new paths for improving vocational outcomes of people with severe mental illness, taking into account their motor skills and job attitudes. Implications for rehabilitation Therapists should be aware that employed people with severe mental illness may have various unmet needs, affecting their work performance and experience of stress. This study results demonstrate importance of motor skills and perception of the work environment for the promotion of vocational outcomes among individuals with severe mental illness. Employment of people with severe mental illness should be viewed from holistic perspective as with general population, rather than focused on traditionally illness-related factors.

  4. The fourth dimension: A motoric perspective on the anxiety-performance relationship.

    PubMed

    Carson, Howie J; Collins, Dave

    2016-01-01

    This article focuses on raising concern that anxiety-performance relationship theory has insufficiently catered for motoric issues during, primarily, closed and self-paced skill execution (e.g., long jump and javelin throw). Following a review of current theory, we address the under-consideration of motoric issues by extending the three-dimensional model put forward by Cheng, Hardy, and Markland (2009) ('Toward a three-dimensional conceptualization of performance anxiety: Rationale and initial measurement development, Psychology of Sport and Exercise , 10 , 271-278). This fourth dimension, termed skill establishment , comprises the level and consistency of movement automaticity together with a performer's confidence in this specific process, as providing a degree of robustness against negative anxiety effects. To exemplify this motoric influence, we then offer insight regarding current theories' misrepresentation that a self-focus of attention toward an already well-learned skill always leads to a negative performance effect. In doing so, we draw upon applied literature to distinguish between positive and negative self-foci and suggest that on what and how a performer directs their attention is crucial to the interaction with skill establishment and, therefore, performance. Finally, implications for skill acquisition research are provided. Accordingly, we suggest a positive potential flow from applied/translational to fundamental/theory-generating research in sport which can serve to freshen and usefully redirect investigation into this long-considered but still insufficiently understood concept.

  5. The fourth dimension: A motoric perspective on the anxiety–performance relationship

    PubMed Central

    Carson, Howie J.; Collins, Dave

    2016-01-01

    ABSTRACT This article focuses on raising concern that anxiety–performance relationship theory has insufficiently catered for motoric issues during, primarily, closed and self-paced skill execution (e.g., long jump and javelin throw). Following a review of current theory, we address the under-consideration of motoric issues by extending the three-dimensional model put forward by Cheng, Hardy, and Markland (2009) (‘Toward a three-dimensional conceptualization of performance anxiety: Rationale and initial measurement development, Psychology of Sport and Exercise, 10, 271–278). This fourth dimension, termed skill establishment, comprises the level and consistency of movement automaticity together with a performer's confidence in this specific process, as providing a degree of robustness against negative anxiety effects. To exemplify this motoric influence, we then offer insight regarding current theories’ misrepresentation that a self-focus of attention toward an already well-learned skill always leads to a negative performance effect. In doing so, we draw upon applied literature to distinguish between positive and negative self-foci and suggest that on what and how a performer directs their attention is crucial to the interaction with skill establishment and, therefore, performance. Finally, implications for skill acquisition research are provided. Accordingly, we suggest a positive potential flow from applied/translational to fundamental/theory-generating research in sport which can serve to freshen and usefully redirect investigation into this long-considered but still insufficiently understood concept. PMID:26692896

  6. Gross Motor Skill Acquisition in Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Meegan, Sarah; Maraj, Brian K. V.; Weeks, Daniel; Chua, Romeo

    2006-01-01

    The purpose of this study was to assess whether verbal-motor performances deficits exhibited by individuals with Down syndrome limited their ability to acquire gross motor skills when given visual and verbal instruction together and then transferred to either a visual or verbal instructional mode to reproduce the movement. Nine individuals with…

  7. Visual Constructive and Visual-Motor Skills in Deaf Native Signers

    ERIC Educational Resources Information Center

    Hauser, Peter C.; Cohen, Julie; Dye, Matthew W. G.; Bavelier, Daphne

    2007-01-01

    Visual constructive and visual-motor skills in the deaf population were investigated by comparing performance of deaf native signers (n = 20) to that of hearing nonsigners (n = 20) on the Beery-Buktenica Developmental Test of Visual-Motor Integration, Rey-Osterrieth Complex Figure Test, Wechsler Memory Scale Visual Reproduction subtest, and…

  8. Changes in Information Processing with Aging: Implications for Teaching Motor Skills.

    ERIC Educational Resources Information Center

    Anshel, Mark H.

    Although there are marked individual differences in the effect of aging on learning and performing motor skills, there is agreement that humans process information less efficiently with advanced age. Significant decrements have been found specifically with motor tasks that are characterized as externally-paced, rapid, complex, and requiring rapid…

  9. Early Boost and Slow Consolidation in Motor Skill Learning

    ERIC Educational Resources Information Center

    Hotermans, Christophe; Peigneux, Philippe; de Noordhout, Alain Maertens; Moonen, Gustave; Maquet, Pierre

    2006-01-01

    Motor skill learning is a dynamic process that continues covertly after training has ended and eventually leads to delayed increments in performance. Current theories suggest that this off-line improvement takes time and appears only after several hours. Here we show an early transient and short-lived boost in performance, emerging as early as…

  10. On Supporting Physical Skill Discovery

    NASA Astrophysics Data System (ADS)

    Furukawa, Koichi; Suwa, Masaki; Kato, Takaaki

    One of the main difficulties in motor skill acquisition is attributed to body control based on wrong mental models. This is true to various domains such as playing sports and playing musical instruments. In order to acquire adequate motor skill by modifying false belief, we need to help people find appropriate key points in achieving a body control and integrate them. In this paper, we investigate three approaches to realize such support. The first one is to encourage exploration of the relations among key points constituting a motor skill, using a technique of meta-cognitive verbalization. The second one is to represent a motor skill by appropriate mechanical models. The third one is to integrate rules for component tasks in achieving a compound task. These three approaches, we argue, help people build an integrated mental model consisting of multiple relations among various key points, one that seems to be indispensable for acquisition of motor skills. These ideas suggest the possibility to create new skill rules to perform difficult tasks automatically.

  11. Specificity of Dyspraxia in Children with Autism

    PubMed Central

    MacNeil, Lindsey K.; Mostofsky, Stewart H.

    2012-01-01

    Objective To explore the specificity of impaired praxis and postural knowledge to autism by examining three samples of children, including those with autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD), and typically developing (TD) children. Method Twenty-four children with ASD, 24 children with ADHD, and 24 TD children, ages 8–13, completed measures assessing basic motor control (the Physical and Neurological Exam for Subtle Signs; PANESS), praxis (performance of skilled gestures to command, with imitation, and tool use) and the ability to recognize correct hand postures necessary to perform these skilled gestures (the Postural Knowledge Test; PKT). Results Children with ASD performed significantly worse than TD children on all three assessments. In contrast, children with ADHD performed significantly worse than TD controls on PANESS but not on the praxis examination or PKT. Furthermore, children with ASD performed significantly worse than children with ADHD on both the praxis examination and PKT, but not on the PANESS. Conclusions Whereas both children with ADHD and children with ASD show impairments in basic motor control, impairments in performance and recognition of skilled motor gestures, consistent with dyspraxia, appear to be specific to autism. The findings suggest that impaired formation of perceptual-motor action models necessary to development of skilled gestures and other goal directed behavior is specific to autism; whereas, impaired basic motor control may be a more generalized finding. PMID:22288405

  12. Focus of attention and automaticity in handwriting.

    PubMed

    MacMahon, Clare; Charness, Neil

    2014-04-01

    This study investigated the nature of automaticity in everyday tasks by testing handwriting performance under single and dual-task conditions. Item familiarity and hand dominance were also manipulated to understand both cognitive and motor components of the task. In line with previous literature, performance was superior in an extraneous focus of attention condition compared to two different skill focus conditions. This effect was found only when writing with the dominant hand. In addition, performance was superior for high familiarity compared to low familiarity items. These findings indicate that motor and cognitive familiarity are related to the degree of automaticity of motor skills and can be manipulated to produce different performance outcomes. The findings also imply that the progression of skill acquisition from novel to novice to expert levels can be traced using different dual-task conditions. The separation of motor and cognitive familiarity is a new approach in the handwriting domain, and provides insight into the nature of attentional demands during performance. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. SKILLED BIMANUAL TRAINING DRIVES MOTOR CORTEX PLASTICITY IN CHILDREN WITH UNILATERAL CEREBRAL PALSY

    PubMed Central

    Friel, Kathleen M.; Kuo, Hsing-Ching; Fuller, Jason; Ferre, Claudio L.; Brandão, Marina; Carmel, Jason B.; Bleyenheuft, Yannick; Gowatsky, Jaimie L.; Stanford, Arielle D.; Rowny, Stefan B.; Luber, Bruce; Bassi, Bruce; Murphy, David LK; Lisanby, Sarah H.; Gordon, Andrew M.

    2015-01-01

    Background Intensive bimanual therapy can improve hand function in children with unilateral spastic cerebral palsy (USCP). We compared the effects of structured bimanual skill training vs. unstructured bimanual practice on motor outcomes and motor map plasticity in children with USCP. Objective We hypothesized that structured skill training would produce greater motor map plasticity than unstructured practice. Methods Twenty children with USCP (average age 9,5; 12 males) received therapy in a day-camp-setting, 6 h/day, 5 days/week, for 3 weeks. In structured skill training (n=10), children performed progressively more difficult movements and practiced functional goals. In unstructured practice (n=10), children engaged in bimanual activities but did not practice skillful movements or functional goals. We used the Assisting Hand Assessment (AHA), Jebsen-Taylor test of Hand Function (JTTHF) and Canadian Occupational Performance Measure (COPM) to measure hand function. We used single-pulse transcranial magnetic stimulation (TMS) to map the representation of first dorsal interosseous (FDI) and flexor carpi radialis (FCR) muscles bilaterally. Results Both groups showed significant improvements in bimanual hand use (AHA; p<0.05) and hand dexterity (JTTHF; p<0.001). However, only the structured skill group showed increases in the size of the affected hand motor map and amplitudes of motor evoked potentials (p<0.01). Most children who showed the most functional improvements (COPM) had the largest changes in map size. Conclusions These findings uncover a dichotomy of plasticity: the unstructured practice group improved hand function but did not show changes in motor maps. Skill training is important for driving motor cortex plasticity in children with USCP. PMID:26867559

  14. Reading, Why Not? Literacy Skills in Children with Motor and Speech Impairments

    ERIC Educational Resources Information Center

    Ferreira, Janna; Ronnberg, Jerker; Gustafson, Stefan; Wengelin, Asa

    2007-01-01

    In this study, 12 participants with various levels of motor and speech deficits were tested to explore their reading skills in relation to letter knowledge, speech level, auditory discrimination, phonological awareness, language skills, digit span, and nonverbal IQ. Two subgroups, based on a median split of reading performance, are described: the…

  15. Summer Education Program for Neurologically and Physically Handicapped Children. Summer 1975. Evaluation Report.

    ERIC Educational Resources Information Center

    Ellis, Ronald S.

    Evaluated was the Summer Education Program for Neurologically and Physically Handicapped Children, designed to improve the performance of 145 children (6-16 years old) in the following areas--gross motor skills, swimming, fine motor skills, socialization with nonhandicapped peers, and independent daily living skills. The program included the…

  16. Weight status and gender-related differences in motor skills and in child care - based physical activity in young children

    PubMed Central

    2012-01-01

    Background Over the last decades, a decline in motor skills and in physical activity and an increase in obesity has been observed in children. However, there is a lack of data in young children. We tested if differences in motor skills and in physical activity according to weight or gender were already present in 2- to 4-year-old children. Methods Fifty-eight child care centers in the French part of Switzerland were randomly selected for the Youp'là bouge study. Motor skills were assessed by an obstacle course including 5 motor skills, derived from the Zurich Neuromotor Assessment test. Physical activity was measured with accelerometers (GT1M, Actigraph, Florida, USA) using age-adapted cut-offs. Weight status was assessed using the International Obesity Task Force criteria (healthy weight vs overweight) for body mass index (BMI). Results Of the 529 children (49% girls, 3.4 ± 0.6 years, BMI 16.2 ± 1.2 kg/m2), 13% were overweight. There were no significant weight status-related differences in the single skills of the obstacle course, but there was a trend (p = 0.059) for a lower performance of overweight children in the overall motor skills score. No significant weight status-related differences in child care-based physical activity were observed. No gender-related differences were found in the overall motor skills score, but boys performed better than girls in 2 of the 5 motor skills (p ≤ 0.04). Total physical activity as well as time spent in moderate-vigorous and in vigorous activity during child care were 12-25% higher and sedentary activity 5% lower in boys compared to girls (all p < 0.01). Conclusions At this early age, there were no significant weight status- or gender-related differences in global motor skills. However, in accordance to data in older children, child care-based physical activity was higher in boys compared to girls. These results are important to consider when establishing physical activity recommendations or targeting health promotion interventions in young children. PMID:22405468

  17. Weight status and gender-related differences in motor skills and in child care - based physical activity in young children.

    PubMed

    Bonvin, Antoine; Barral, Jérôme; Kakebeeke, Tanja H; Kriemler, Susi; Longchamp, Anouk; Marques-Vidal, Pedro; Puder, Jardena J

    2012-03-09

    Over the last decades, a decline in motor skills and in physical activity and an increase in obesity has been observed in children. However, there is a lack of data in young children. We tested if differences in motor skills and in physical activity according to weight or gender were already present in 2- to 4-year-old children. Fifty-eight child care centers in the French part of Switzerland were randomly selected for the Youp'là bouge study. Motor skills were assessed by an obstacle course including 5 motor skills, derived from the Zurich Neuromotor Assessment test. Physical activity was measured with accelerometers (GT1M, Actigraph, Florida, USA) using age-adapted cut-offs. Weight status was assessed using the International Obesity Task Force criteria (healthy weight vs overweight) for body mass index (BMI). Of the 529 children (49% girls, 3.4 ± 0.6 years, BMI 16.2 ± 1.2 kg/m2), 13% were overweight. There were no significant weight status-related differences in the single skills of the obstacle course, but there was a trend (p = 0.059) for a lower performance of overweight children in the overall motor skills score. No significant weight status-related differences in child care-based physical activity were observed. No gender-related differences were found in the overall motor skills score, but boys performed better than girls in 2 of the 5 motor skills (p ≤ 0.04). Total physical activity as well as time spent in moderate-vigorous and in vigorous activity during child care were 12-25% higher and sedentary activity 5% lower in boys compared to girls (all p < 0.01). At this early age, there were no significant weight status- or gender-related differences in global motor skills. However, in accordance to data in older children, child care-based physical activity was higher in boys compared to girls. These results are important to consider when establishing physical activity recommendations or targeting health promotion interventions in young children.

  18. Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats.

    PubMed

    Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto

    2014-03-01

    We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. The Effects of an Intervention on the Gross and Fine Motor Skills of Hispanic Pre-K Children from Low SES Backgrounds

    ERIC Educational Resources Information Center

    Hamilton, Michelle; Liu, Ting

    2018-01-01

    The purpose of this study was to examine the effects of a motor skill intervention on gross and fine motor skill performance of Hispanic pre-K children from low SES backgrounds. One hundred and forty-nine pre-K children were randomly assigned to an intervention group (n = 74) and control group (n = 75). All children were assessed on fine and gross…

  20. Effectiveness of cognitive orientation to (daily) occupational performance (CO-OP) on children with cerebral palsy: A mixed design.

    PubMed

    Ghorbani, Neda; Rassafiani, Mehdi; Izadi-Najafabadi, Sara; Yazdani, Farzaneh; Akbarfahimi, Nazila; Havaei, Naser; Gharebaghy, Soraya

    2017-12-01

    Cerebral palsy (CP) is the most common cause of physical disabilities during childhood. Therapeutic interventions mainly focus on impairment reduction to address motor-based difficulties. In contrast, Cognitive Orientation to daily Occupational Performance (CO-OP) is a cognitive approach, providing intervention at the level of activity and participation. This study aims to determine whether the CO-OP approach improves motor skills and achievement in motor-based occupational performance goals in children with CP. In this mixed design research (i.e., a multiple baseline single case experimental design and a one-group pretest-posttest design), five children with CP participated in 12 CO-OP intervention sessions. Repeated measures of motor skills for the multiple baseline single case experimental design were taken using the Bruininks-Oseretsky Test of Motor Proficiency (BOTMP); pre- and post-measures of parent/child perception of performance and satisfaction were identified using the Canadian Occupational Performance Measure (COPM); level of achievement was identified using Goal Attainment Scaling (GAS). According to the BOTMP results, all children were able to engage in the CO-OP intervention to improve motor performance. Significant differences after treatment were found in both performance and performance satisfaction ratings using the COPM as rated by parents and children. The GAS results showed progress in achievement levels for all children; all goals were achieved or exceeded. CO-OP intervention can be helpful in improving motor skills and achieving self-identified, motor-based goals in children with CP. Copyright © 2017. Published by Elsevier Ltd.

  1. Direct and Conceptual Replications of Burgmer & Englich (2012): Power May Have Little to No Effect on Motor Performance

    PubMed Central

    Gottschalk, Christopher; Calin-Jageman, Robert J.

    2015-01-01

    Burgmer and Englich (2012) have reported that manipulating feelings of power can substantially improve performance on two motor tasks: golf and darts. We conducted two high-powered direct replications of the effects of power on golf, two online conceptual replications using mirror-tracing as a performance measure, and an additional conceptual replication using a cognitive performance measure (word-search). Overall, we found little to no effect of power on motor skill (d = 0.09, 95% CI[-0.07, 0.22], n = 603). We varied task difficulty, re-analyzed data without participants showing weak responses on manipulation checks, and tried adjusting performance scores for age, gender, and initial task skill. None of these secondary analyses revealed a strong effect of power on performance. A meta-analysis integrating our data with Burgmer & Englich leaves open the possibility that manipulating power could provide a modest boost in motor skill (d = 0.19, 95% CI [0.001, 0.38], n = 685). Unfortunately, the pattern of performance changes we observed was unrelated to group differences in perceived and rated power, suggesting that what motor effects do occur with this protocol may not be directly related to the construct of power. [Burgmer, P., &Englich, B. (2012). Bullseye!: How Power Improves Motor Performance. Social Psychological and Personality Science, 4(2), 224–232.] PMID:26536592

  2. A Group Motor Skills Program for Children with Coordination Difficulties: Effect on Fundamental Movement Skills and Physical Activity Participation.

    PubMed

    Kane, Kyra J; Staples, Kerri L

    2016-01-01

    Children with coordination difficulties are at risk of low levels of physical activity (PA) participation. This intervention examined the effects of a multidisciplinary program that emphasized parent participation on motor skill performance and PA. Ten boys (5-7 years) completed a group program consisting of conditioning exercises and activities designed to address child-selected goals. Motor proficiency and PA participation were assessed before and after the program using the Test of Gross Motor Development (TGMD-2) and triaxial accelerometers, respectively. Rating scales captured child and parent perceptions of performance for each child's goals. TGMD-2 subtest raw scores, age equivalent and percentile scores improved, along with parent ratings of their child's performance. Six children reported skill improvements. On average, moderate to vigorous PA improved by 10 min per day although these gains were not significant. Time spent in sedentary activities was unchanged. None of the children met the Canadian PA and sedentary behaviour guidelines. The results support effectiveness of a group program to improve gross motor performance and levels of PA in children with coordination difficulties. Gains in both of these domains also have the potential to impact quality of life and reduce health risks associated with inactivity.

  3. Men are more accurate than women in aiming at targets in both near space and extrapersonal space.

    PubMed

    Sykes Tottenham, Laurie; Saucier, Deborah M; Elias, Lorin J; Gutwin, Carl

    2005-08-01

    Men excel at motor tasks requiring aiming accuracy whereas women excel at different tasks requiring fine motor skill. However, these tasks are confounded with proximity to the body, as fine motor tasks are performed proximally and aiming tasks are directed at distal targets. As such, it is not known whether the male advantage on tasks requiring aiming accuracy is because men have better aim or is better in the proximal domain in which the task is usually presented. 18 men (M age = 20.6 yr., SD = 3.0) and 20 women (M age = 18.7 yr., SD = 0.9) performed 2 tasks of extrapersonal aiming accuracy (>2 m away), 2 tasks of aiming accuracy performed in near space (< 1 m from them), and a task of fine motor skill. Men outperformed women on both the extrapersonal aiming tasks, and women outperformed men on the task of fine motor skill. However, a male advantage was observed for one of the aiming tasks performed in near space, suggesting that the male advantage for aiming accuracy does not result from proximity.

  4. Effect of the Children’s Health Activity Motor Program on Motor Skills and Self-Regulation in Head Start Preschoolers: An Efficacy Trial

    PubMed Central

    Robinson, Leah E.; Palmer, Kara K.; Bub, Kristen L.

    2016-01-01

    Self-regulatory skills are broadly defined as the ability to manage emotions, focus attention, and inhibit some behaviors while activating others in accordance with social expectations and are an established indicator of academic success. Growing evidence links motor skills and physical activity to self-regulation. This study examined the efficacy of a motor skills intervention (i.e., the Children’s Health Activity Motor Program, CHAMP) that is theoretically grounded in Achievement Goal Theory on motor skill performance and self-regulation in Head Start preschoolers. A sample of 113 Head Start preschoolers (Mage = 51.91 ± 6.5 months; 49.5% males) were randomly assigned to a treatment (n = 68) or control (n = 45) program. CHAMP participants engaged in 15, 40-min sessions of a mastery climate intervention that focused on the development of motor skills over 5 weeks while control participants engaged in their normal outdoor recess period. The Delay of Gratification Snack Task was used to measure self-regulation and the Test of Gross Motor Development-2nd Edition was used to assess motor skills. All measures were assessed prior to and following the intervention. Linear mixed models were fit for both self-regulation and motor skills. Results revealed a significant time × treatment interaction (p < 0.001). In regard to motor skills, post hoc comparisons found that all children improved their motor skills (p < 0.05), but the CHAMP group improved significantly more than the control group (p < 0.001). Children in CHAMP maintained their self-regulation scores across time, while children in the control group scored significantly lower than the CHAMP group at the posttest (p < 0.05). CHAMP is a mastery climate movement program that enhance skills associated with healthy development in children (i.e., motor skills and self-regulation). This efficacy trial provided evidence that CHAMP helped maintain delay of gratification in preschool age children and significantly improved motor skills while participating in outdoor recess was not effective. CHAMP could help contribute to children’s learning-related skills and physical development and subsequently to their academic success. PMID:27660751

  5. Gender Differences in Musical Aptitude, Rhythmic Ability and Motor Performance in Preschool Children

    ERIC Educational Resources Information Center

    Pollatou, Elisana; Karadimou, Konstantina; Gerodimos, Vasilios

    2005-01-01

    Most of the preschool curricula involve integrated movement activities that combine music, rhythm and locomotor skills. The purpose of the current study was to examine whether there are any differences between boys and girls at the age of five concerning their musical aptitude, rhythmic ability and performance in gross motor skills. Ninety-five…

  6. Motor Skill Performance of Children and Adolescents with Visual Impairments: A Review

    ERIC Educational Resources Information Center

    Houwen, Suzanne; Visscher, Chris; Lemmink, Koen A. P. M.; Hartman, Esther

    2009-01-01

    This article reviews studies on variables that are related to the motor skill performance of children and adolescents with visual impairments (VI). Three major groups of variables are considered (child, environmental, and task). Thirty-nine studies are included in this review, 26 of which examined the effects of child, environmental, and/or task…

  7. The effectiveness of video prompting on teaching aquatic play skills for children with autism.

    PubMed

    Yanardag, Mehmet; Akmanoglu, Nurgul; Yilmaz, Ilker

    2013-01-01

    To investigate the effectiveness of the video prompting procedure on teaching aquatic play skills and to determine the effects of aquatic exercise training on the motor performance of children with autism. A multiple probe design across behaviours was used and replicated across subjects for the instructional part of this study. Pretest-posttest design was applied for the exercise training part of this study. Three children with autism were taught three aquatic play skills in a one-to-one training format. Aquatic play skills intervention and aquatic exercise training were performed separately throughout 12 weeks at three sessions per week, each lasting 1 h. The video prompting procedure was utilized for the instruction part of this study. Video prompting was effective in teaching aquatic play skills to children with autism. In addition, aquatic exercise training increased the total motor performance scores of all the participants after 12 weeks. According to the social validity results, the families gave positive feedback about the learned skills and movement capabilities of their children. Aquatic play skills and swimming pools are favoured for children with autism. This attractive intervention is recommended as a means to extend knowledge of leisure skills and motor development of children with autism.

  8. Interlimb coordination and academic performance in elementary school children.

    PubMed

    da Silva Pacheco, Sheila Cristina; Gabbard, Carl; Ries, Lilian Gerdi Kittel; Bobbio, Tatiana Godoy

    2016-10-01

    The specific mechanisms linking motor ability and cognitive performance, especially academic achievement, are still unclear. Whereas the literature provides an abundance of information on fine and visual-motor skill and cognitive attributes, much less has been reported on gross motor ability. This study examined interlimb coordination and its relationship to academic performance in children aged 8-11 years. Motor and academic skills were examined in 100 Brazilian children using the Bruininks-Oseretsky Test of Motor Proficiency and the Academic Performance Test. Participants were grouped into low (<25%) and high (>75%) academic achievers. There was a significant difference between groups for Total Motor Composite (P < 0.001) favoring the high group. On regression analysis there was a significant association between academic performance and Body Coordination. Of the subtests of Body Coordination (Bilateral Coordination and Balance), Bilateral Coordination accounted for the highest impact on academic performance. Of interest here, that subtest consists primarily of gross motor tasks involving interlimb coordination. Overall, there was a positive relationship between motor behavior, in particular activities involving interlimb coordination, and academic performance. Application of these findings in the area of early assessment may be useful in the identification of later academic problems. © 2016 Japan Pediatric Society.

  9. Lack of spacing effects during piano learning.

    PubMed

    Wiseheart, Melody; D'Souza, Annalise A; Chae, Jacey

    2017-01-01

    Spacing effects during retention of verbal information are easily obtained, and the effect size is large. Relatively little evidence exists on whether motor skill retention benefits from distributed practice, with even less evidence on complex motor skills. We taught a 17-note musical sequence on a piano to individuals without prior formal training. There were five lags between learning episodes: 0-, 1-, 5-, 10-, and 15-min. After a 5-min retention interval, participants' performance was measured using three criteria: accuracy of note playing, consistency in pressure applied to the keys, and consistency in timing. No spacing effect was found, suggesting that the effect may not always be demonstrable for complex motor skills or non-verbal abilities (timing and motor skills). Additionally, we taught short phrases from five songs, using the same set of lags and retention interval, and did not find any spacing effect for accuracy of song reproduction. Our findings indicate that although the spacing effect is one of the most robust phenomena in the memory literature (as demonstrated by verbal learning studies), the effect may vary when considered in the novel realm of complex motor skills such as piano performance.

  10. Lack of spacing effects during piano learning

    PubMed Central

    D’Souza, Annalise A.; Chae, Jacey

    2017-01-01

    Spacing effects during retention of verbal information are easily obtained, and the effect size is large. Relatively little evidence exists on whether motor skill retention benefits from distributed practice, with even less evidence on complex motor skills. We taught a 17-note musical sequence on a piano to individuals without prior formal training. There were five lags between learning episodes: 0-, 1-, 5-, 10-, and 15-min. After a 5-min retention interval, participants’ performance was measured using three criteria: accuracy of note playing, consistency in pressure applied to the keys, and consistency in timing. No spacing effect was found, suggesting that the effect may not always be demonstrable for complex motor skills or non-verbal abilities (timing and motor skills). Additionally, we taught short phrases from five songs, using the same set of lags and retention interval, and did not find any spacing effect for accuracy of song reproduction. Our findings indicate that although the spacing effect is one of the most robust phenomena in the memory literature (as demonstrated by verbal learning studies), the effect may vary when considered in the novel realm of complex motor skills such as piano performance. PMID:28800631

  11. Deficits in Lower Limb Muscle Reflex Contraction Latency and Peak Force Are Associated With Impairments in Postural Control and Gross Motor Skills of Children With Developmental Coordination Disorder: A Cross-Sectional Study.

    PubMed

    Fong, Shirley S M; Ng, Shamay S M; Guo, X; Wang, Yuling; Chung, Raymond C K; Stat, Grad; Ki, W Y; Macfarlane, Duncan J

    2015-10-01

    This cross-sectional, exploratory study aimed to compare neuromuscular performance, balance and motor skills proficiencies of typically developing children and those with developmental coordination disorder (DCD) and to determine associations of these neuromuscular factors with balance and motor skills performances in children with DCD.One hundred thirty children with DCD and 117 typically developing children participated in the study. Medial hamstring and gastrocnemius muscle activation onset latencies in response to an unexpected posterior-to-anterior trunk perturbation were assessed by electromyography and accelerometer. Hamstring and gastrocnemius muscle peak force and time to peak force were quantified by dynamometer, and balance and motor skills performances were evaluated with the Movement Assessment Battery for Children (MABC).Independent t tests revealed that children with DCD had longer hamstring and gastrocnemius muscle activation onset latencies (P < 0.001) and lower isometric peak forces (P < 0.001), but not times to peak forces (P > 0.025), than the controls. Multiple regression analysis accounting for basic demographics showed that gastrocnemius peak force was independently associated with the MABC balance subscore and ball skills subscore, accounting for 5.7% (P = 0.003) and 8.5% (P = 0.001) of the variance, respectively. Gastrocnemius muscle activation onset latency also explained 11.4% (P < 0.001) of the variance in the MABC ball skills subscore.Children with DCD had delayed leg muscle activation onset times and lower isometric peak forces. Gastrocnemius peak force was associated with balance and ball skills performances, whereas timing of gastrocnemius muscle activation was a determinant of ball skill performance in the DCD population.

  12. Fine motor skills in adult Tourette patients are task-dependent.

    PubMed

    Neuner, Irene; Arrubla, Jorge; Ehlen, Corinna; Janouschek, Hildegard; Nordt, Carlos; Fimm, Bruno; Schneider, Frank; Shah, N Jon; Kawohl, Wolfram

    2012-10-11

    Tourette syndrome is a neuropsychiatric disorder characterized by motor and phonic tics. Deficient motor inhibition underlying tics is one of the main hypotheses in its pathophysiology. Therefore the question arises whether this supposed deficient motor inhibition affects also voluntary movements. Despite severe motor tics, different personalities who suffer from Tourette perform successfully as neurosurgeon, pilot or professional basketball player. For the investigation of fine motor skills we conducted a motor performance test battery in an adult Tourette sample and an age matched group of healthy controls. The Tourette patients showed a significant lower performance in the categories steadiness of both hands and aiming of the right hand in comparison to the healthy controls. A comparison of patients' subgroup without comorbidities or medication and healthy controls revealed a significant difference in the category steadiness of the right hand. Our results show that steadiness and visuomotor integration of fine motor skills are altered in our adult sample but not precision and speed of movements. This alteration pattern might be the clinical vignette of complex adaptations in the excitability of the motor system on the basis of altered cortical and subcortical components. The structurally and functionally altered neuronal components could encompass orbitofrontal, ventrolateral prefrontal and parietal cortices, the anterior cingulate, amygdala, primary motor and sensorimotor areas including altered corticospinal projections, the corpus callosum and the basal ganglia.

  13. Working memory and fine motor skills predict early numeracy performance of children with cerebral palsy.

    PubMed

    Van Rooijen, Maaike; Verhoeven, Ludo; Steenbergen, Bert

    2016-01-01

    Early numeracy is an important precursor for arithmetic performance, academic proficiency, and work success. Besides their apparent motor difficulties, children with cerebral palsy (CP) often show additional cognitive disturbances. In this study, we examine whether working memory, non-verbal intelligence, linguistic skills, counting and fine motor skills are positively related to the early numeracy performance of 6-year-old children with CP. A total of 56 children (M = 6.0, SD = 0.61, 37 boys) from Dutch special education schools participated in this cross-sectional study. Of the total group, 81% of the children have the spastic type of CP (33% unilateral and 66% bilateral), 9% have been diagnosed as having diskinetic CP, 8% have been diagnosed as having spastic and diskinetic CP and 2% have been diagnosed as having a combination of diskinetic and atactic CP. The children completed standardized tests assessing early numeracy performance, working memory, non-verbal intelligence, sentence understanding and fine motor skills. In addition, an experimental task was administered to examine their basic counting performance. Structural equation modeling showed that working memory and fine motor skills were significantly related to the early numeracy performance of the children (β = .79 and p < .001, β = .41 and p < .001, respectively). Furthermore, counting was a mediating variable between working memory and early numeracy (β = .57, p < .001). Together, these findings highlight the importance of working memory for early numeracy performance in children with CP and they warrant further research into the efficacy of intervention programs aimed at working memory training.

  14. Teaching Motor Skills to Children: Theory into Practice.

    ERIC Educational Resources Information Center

    Gabbard, Carl

    1984-01-01

    A recent development in elementary physical education is the use of Schema theory as a basis for teaching and understanding the acquisition of motor skills by children. This theory suggests how children learn and perform a variety of movements. (DF)

  15. Protein synthesis is essential not only for consolidation but also for maintenance and post-retrieval reconsolidation of acrobatic motor skill in rats.

    PubMed

    Peng, Ji-Yun; Li, Bao-Ming

    2009-05-28

    It has been reported that consolidation of motor skill, a type of non-declarative memories, requires protein synthesis, as hippocampus-dependent declarative memory does. However, little is known about the importance of protein synthesis in maintenance and especially post-retrieval reconsolidation of acrobatic motor skill. Here, we show that protein synthesis is essential not only for the consolidation but also for the maintenance and reconsolidation of a rotarod-running skill. Intra-ventricle infusion of the protein synthesis inhibitor anisomycin 0 h but not 2 h post-training caused a severe deficit in the acquisition of the rotarod-running skill. Protein synthesis inhibition (PSI) also caused a deficit in the maintenance of the rotarod-running skill, as well-trained rats demonstrated a deficit in the rotarod-running performance upon treatment with anisomycin. Similarly, PSI impaired the post-retrieval reconsolidation of the rotarod-running skill: well-trained rats treated with anisomycin 0 h but not 0.5, 2 and 4 h after the task performance exhibited amnesia for the running skill later on. Interestingly, rats treated with anisomycin 6 and 12 h post-retrieval exhibited amnesia for the running skill. Thus, protein synthesis is essential not only for the consolidation but also for the maintenance and post-retrieval reconsolidation of rotarod-running acrobatic motor skill.

  16. [Stimulation at home and motor development among 36-month-old Mexican children].

    PubMed

    Osorio, Erika; Torres-Sánchez, Luisa; Hernández, María Del Carmen; López-Carrillo, Lizbeth; Schnaas, Lourdes

    2010-01-01

    To identify the relationship between stimulation at home and motor development among 36 month-old children. The development of gross and fine motor skills of 169 infants (50.9% boys and 49.1% girls) was assessed at the age of 36 months with the Peabody Developmental Motor Scale. The quality of home stimulation was determined during a prior evaluation (at 30 months) by means of the HOME Scale. Total stimulation at home was significantly associated with better performance in the gross and fine motor areas. Particular aspects of this home stimulation were related to better gross and fine motor functions. Static balance and locomotion (gross motor skills) and grasping and visual-motor integration (fine motor skills) are associated with particular aspects of home stimulation, such as parent-child interaction, verbal reinforcement of the child's positive actions and providing the child with clear boundaries.

  17. Relationship between Procedural Tactical Knowledge and Specific Motor Skills in Young Soccer Players

    PubMed Central

    Aquino, Rodrigo; Marques, Renato Francisco R.; Petiot, Grégory Hallé; Gonçalves, Luiz Guilherme C.; Moraes, Camila; Santiago, Paulo Roberto P.; Puggina, Enrico Fuini

    2016-01-01

    The purpose of this study was to investigate the association between offensive tactical knowledge and the soccer-specific motor skills performance. Fifteen participants were submitted to two evaluation tests, one to assess their technical and tactical analysis. The motor skills performance was measured through four tests of technical soccer skills: ball control, shooting, passing and dribbling. The tactical performance was based on a tactical assessment system called FUT-SAT (Analyses of Procedural Tactical Knowledge in Soccer). Afterwards, technical and tactical evaluation scores were ranked with and without the use of the cluster method. A positive, weak correlation was perceived in both analyses (rho = 0.39, not significant p = 0.14 (with cluster analysis); and rho = 0.35; not significant p = 0.20 (without cluster analysis)). We can conclude that there was a weak association between the technical and the offensive tactical knowledge. This shows the need to reflect on the use of such tests to assess technical skills in team sports since they do not take into account the variability and unpredictability of game actions and disregard the inherent needs to assess such skill performance in the game. PMID:29910300

  18. Reliability and validity of play-based assessments of motor and cognitive skills for infants and young children: a systematic review.

    PubMed

    O'Grady, Michael G; Dusing, Stacey C

    2015-01-01

    Play is vital for development. Infants and children learn through play. Traditional standardized developmental tests measure whether a child performs individual skills within controlled environments. Play-based assessments can measure skill performance during natural, child-driven play. The purpose of this study was to systematically review reliability, validity, and responsiveness of all play-based assessments that quantify motor and cognitive skills in children from birth to 36 months of age. Studies were identified from a literature search using PubMed, ERIC, CINAHL, and PsycINFO databases and the reference lists of included papers. Included studies investigated reliability, validity, or responsiveness of play-based assessments that measured motor and cognitive skills for children to 36 months of age. Two reviewers independently screened 40 studies for eligibility and inclusion. The reviewers independently extracted reliability, validity, and responsiveness data. They examined measurement properties and methodological quality of the included studies. Four current play-based assessment tools were identified in 8 included studies. Each play-based assessment tool measured motor and cognitive skills in a different way during play. Interrater reliability correlations ranged from .86 to .98 for motor development and from .23 to .90 for cognitive development. Test-retest reliability correlations ranged from .88 to .95 for motor development and from .45 to .91 for cognitive development. Structural validity correlations ranged from .62 to .90 for motor development and from .42 to .93 for cognitive development. One study assessed responsiveness to change in motor development. Most studies had small and poorly described samples. Lack of transparency in data management and statistical analysis was common. Play-based assessments have potential to be reliable and valid tools to assess cognitive and motor skills, but higher-quality research is needed. Psychometric properties should be considered for each play-based assessment before it is used in clinical and research practice. © 2015 American Physical Therapy Association.

  19. Cognitive predictors of sequential motor impairments in children with dyslexia and/or attention deficit/hyperactivity disorder.

    PubMed

    Marchand-Krynski, Marie-Ève; Bélanger, Anne-Marie; Morin-Moncet, Olivier; Beauchamp, Miriam H; Leonard, Gabriel

    2018-01-01

    This study examined cognitive predictors of sequential motor skills in 215 children with dyslexia and/or attention deficit/hyperactivity disorder (ADHD). Visual working memory and math fluency abilities contributed significantly to performance of sequential motor abilities in children with dyslexia (N = 67), ADHD (N = 66) and those with a comorbid diagnosis (N = 82), generally without differentiation between groups. In addition, primary diagnostic features of each disorder, such as reading and inattention, did not contribute to the variance in motor skill performance of these children. The results support a unifying framework of motor impairment in children with neurodevelopmental disorders such as dyslexia and ADHD.

  20. Improving a Bimanual Motor Skill Through Unimanual Training

    PubMed Central

    Hayashi, Takuji; Nozaki, Daichi

    2016-01-01

    When we learn a bimanual motor skill (e.g., rowing a boat), we often break it down into unimanual practices (e.g., a rowing drill with the left or right arm). Such unimanual practice is thought to be useful for learning bimanual motor skills efficiently because the learner can concentrate on learning to perform a simpler component. However, it is not so straightforward to assume that unimanual training (UT) improves bimanual performance. We have previously demonstrated that motor memories for reaching movements consist of three different parts: unimanual-specific, bimanual-specific, and overlapping parts. According to this scheme, UT appears to be less effective, as its training effect is only partially transferred to the same limb for bimanual movement. In the present study, counter-intuitively, we demonstrate that, even after the bimanual skill is almost fully learned by means of bimanual training (BT), additional UT could further improve bimanual skill. We hypothesized that this effect occurs because UT increases the memory content in the overlapping part, which might contribute to an increase in the memory for bimanual movement. To test this hypothesis, we examined whether the UT performed after sufficient BT could improve the bimanual performance. Participants practiced performing bimanual reaching movements (BM) in the presence of a novel force-field imposed only on their left arm. As an index for the motor performance, we used the error-clamp method (i.e., after-effect of the left arm) to evaluate the force output to compensate for the force-field during the reaching movement. After sufficient BT, the training effect reached a plateau. However, UT performed subsequently improved the bimanual performance significantly. In contrast, when the same amount of BT was continued, the bimanual performance remained unchanged, highlighting the beneficial effect of UT on bimanual performance. Considering memory structure, we also expected that BT could improve unimanual performance, which was confirmed by another experiment. These results provide a new interpretation of why UT was useful for improving a bimanual skill, and propose a practical strategy for enhancing performance by performing training in various contexts. PMID:27471452

  1. A longitudinal study on gross motor development in children with learning disorders.

    PubMed

    Westendorp, Marieke; Hartman, Esther; Houwen, Suzanne; Huijgen, Barbara C H; Smith, Joanne; Visscher, Chris

    2014-02-01

    This longitudinal study examined the development of gross motor skills, and sex-differences therein, in 7- to 11-years-old children with learning disorders (LD) and compared the results with typically developing children to determine the performance level of children with LD. In children with LD (n=56; 39 boys, 17 girls), gross motor skills were assessed with the Test of Gross Motor Development-2 and measured annually during a 3-year period. Motor scores of 253 typically developing children (125 boys, 112 girls) were collected for references values. The multilevel analyses showed that the ball skills of children with LD improved with age (p<.001), especially between 7 and 9 years, but the locomotor skills did not (p=.50). Boys had higher ball skill scores than girls (p=.002) and these differences were constant over time. Typically developing children outperformed the children with LD on the locomotor skills and ball skills at all ages, except the locomotor skills at age 7. Children with LD develop their ball skills later in the primary school-period compared to typically developing peers. However, 11 year-old children with LD had a lag in locomotor skills and ball skills of at least four and three years, respectively, compared to their peers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Effects of Two Practice Style Formats on Fifth Grade Students' Motor Skill Performance and Task Engagement

    ERIC Educational Resources Information Center

    Chatoupis, Constantine C.; Vagenas, George

    2017-01-01

    We investigated the effectiveness of two teaching formats that fall under the canopy of Mosston and Ashworth's (2008) practice style, on fifth grade students' motor skill performance and task engagement. Both formats are also known as station teaching or learning centers. In the teacher-rotated format (TR), the teacher decides the amount of time…

  3. Pairing Learners by Companionship: Effects on Motor Skill Performance and Comfort Levels in the Reciprocal Style of Teaching

    ERIC Educational Resources Information Center

    Chatoupis, Constantine

    2015-01-01

    Mosston and Ashworth's (2008) reciprocal style of teaching gives learners the opportunity to work in pairs to support each other's learning (one practices a task and the other gives feedback). The effects of pairing learners by companionship (friend and nonacquaintance) on 8-year-old children's motor skill performance and comfort levels were…

  4. Effect of task-oriented training and high-variability practice on gross motor performance and activities of daily living in children with spastic diplegia.

    PubMed

    Kwon, Hae-Yeon; Ahn, So-Yoon

    2016-10-01

    [Purpose] This study investigates how a task-oriented training and high-variability practice program can affect the gross motor performance and activities of daily living for children with spastic diplegia and provides an effective and reliable clinical database for future improvement of motor performances skills. [Subjects and Methods] This study randomly assigned seven children with spastic diplegia to each intervention group including that of a control group, task-oriented training group, and a high-variability practice group. The control group only received neurodevelopmental treatment for 40 minutes, while the other two intervention groups additionally implemented a task-oriented training and high-variability practice program for 8 weeks (twice a week, 60 min per session). To compare intra and inter-relationships of the three intervention groups, this study measured gross motor performance measure (GMPM) and functional independence measure for children (WeeFIM) before and after 8 weeks of training. [Results] There were statistically significant differences in the amount of change before and after the training among the three intervention groups for the gross motor performance measure and functional independence measure. [Conclusion] Applying high-variability practice in a task-oriented training course may be considered an efficient intervention method to improve motor performance skills that can tune to movement necessary for daily livelihood through motor experience and learning of new skills as well as change of tasks learned in a complex environment or similar situations to high-variability practice.

  5. Effect of exercise intervention on the perceptual-motor skills in adolescents with autism.

    PubMed

    Rafie, Forouzan; Ghasemi, Abdollah; Zamani Jam, Azadeh; Jalali, Shahin

    2017-01-01

    Motor skill impairment has been reported in many studies of autistic adolescents. The aim of this study was to examine the effect of selected physical exercise on Perceptual-motor skills in adolescents with autism. Twenty adolescents with autism that were under special education in Tehran based on their Childhood Autism Rating Scale (CARS) scores and level of abilities were selected. Measurement tool was Bruininks-Oseretsky Test of Motor Proficiency (BOTMP). Selected group motor program in this study includes motor activities, games and sports for adolescents that were performed for 10 weeks. Results showed that selected physical exercise training has significant effects on all of the variables (P<0.001) except the speed of running and agility (P=0.61), bilateral coordination (P=0.12) and response speed (P=0.42). It seems that miscellaneous physical exercise programs which include ball games, delightful play and targeted play can improve perceptual-motor skills in adolescents with autism.

  6. Isolating Visual and Proprioceptive Components of Motor Sequence Learning in ASD.

    PubMed

    Sharer, Elizabeth A; Mostofsky, Stewart H; Pascual-Leone, Alvaro; Oberman, Lindsay M

    2016-05-01

    In addition to defining impairments in social communication skills, individuals with autism spectrum disorder (ASD) also show impairments in more basic sensory and motor skills. Development of new skills involves integrating information from multiple sensory modalities. This input is then used to form internal models of action that can be accessed when both performing skilled movements, as well as understanding those actions performed by others. Learning skilled gestures is particularly reliant on integration of visual and proprioceptive input. We used a modified serial reaction time task (SRTT) to decompose proprioceptive and visual components and examine whether patterns of implicit motor skill learning differ in ASD participants as compared with healthy controls. While both groups learned the implicit motor sequence during training, healthy controls showed robust generalization whereas ASD participants demonstrated little generalization when visual input was constant. In contrast, no group differences in generalization were observed when proprioceptive input was constant, with both groups showing limited degrees of generalization. The findings suggest, when learning a motor sequence, individuals with ASD tend to rely less on visual feedback than do healthy controls. Visuomotor representations are considered to underlie imitative learning and action understanding and are thereby crucial to social skill and cognitive development. Thus, anomalous patterns of implicit motor learning, with a tendency to discount visual feedback, may be an important contributor in core social communication deficits that characterize ASD. Autism Res 2016, 9: 563-569. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  7. The impact of reward and punishment on skill learning depends on task demands

    PubMed Central

    Steel, Adam; Silson, Edward H.; Stagg, Charlotte J.; Baker, Chris I.

    2016-01-01

    Reward and punishment motivate behavior, but it is unclear exactly how they impact skill performance and whether the effect varies across skills. The present study investigated the effect of reward and punishment in both a sequencing skill and a motor skill context. Participants trained on either a sequencing skill (serial reaction time task) or a motor skill (force-tracking task). Skill knowledge was tested immediately after training, and again 1 hour, 24–48 hours, and 30 days after training. We found a dissociation of the effects of reward and punishment on the tasks, primarily reflecting the impact of punishment. While punishment improved serial reaction time task performance, it impaired force-tracking task performance. In contrast to prior literature, neither reward nor punishment benefitted memory retention, arguing against the common assumption that reward ubiquitously benefits skill retention. Collectively, these results suggest that punishment impacts skilled behavior more than reward in a complex, task dependent fashion. PMID:27786302

  8. The impact of reward and punishment on skill learning depends on task demands.

    PubMed

    Steel, Adam; Silson, Edward H; Stagg, Charlotte J; Baker, Chris I

    2016-10-27

    Reward and punishment motivate behavior, but it is unclear exactly how they impact skill performance and whether the effect varies across skills. The present study investigated the effect of reward and punishment in both a sequencing skill and a motor skill context. Participants trained on either a sequencing skill (serial reaction time task) or a motor skill (force-tracking task). Skill knowledge was tested immediately after training, and again 1 hour, 24-48 hours, and 30 days after training. We found a dissociation of the effects of reward and punishment on the tasks, primarily reflecting the impact of punishment. While punishment improved serial reaction time task performance, it impaired force-tracking task performance. In contrast to prior literature, neither reward nor punishment benefitted memory retention, arguing against the common assumption that reward ubiquitously benefits skill retention. Collectively, these results suggest that punishment impacts skilled behavior more than reward in a complex, task dependent fashion.

  9. The Effect of an Acute Bout of Moderate-Intensity Aerobic Exercise on Motor Learning of a Continuous Tracking Task

    PubMed Central

    Snow, Nicholas J.; Mang, Cameron S.; Roig, Marc; Boyd, Lara A.

    2016-01-01

    Introduction There is evidence for beneficial effects of acute and long-term exercise interventions on several forms of memory, including procedural motor learning. In the present study we examined how performing a single bout of continuous moderate intensity aerobic exercise would impact motor skill acquisition and retention in young healthy adults, compared to a period of rest. We hypothesized that exercise would improve motor skill acquisition and retention, compared to motor practice alone. Materials and Methods Sixteen healthy adults completed sessions of aerobic exercise or seated rest that were immediately followed by practice of a novel motor task (practice). Exercise consisted of 30 minutes of continuous cycling at 60% peak O2 uptake. Twenty-four hours after practice, we assessed motor learning with a no-exercise retention test (retention). We also quantified changes in offline motor memory consolidation, which occurred between practice and retention (offline). Tracking error was separated into indices of temporal precision and spatial accuracy. Results There were no differences between conditions in the timing of movements during practice (p = 0.066), at retention (p = 0.761), or offline (p = 0.966). However, the exercise condition enabled participants to maintain spatial accuracy during practice (p = 0.477); whereas, following rest performance diminished (p = 0.050). There were no significant differences between conditions at retention (p = 0.532) or offline (p = 0.246). Discussion An acute bout of moderate-intensity aerobic exercise facilitated the maintenance of motor performance during skill acquisition, but did not influence motor learning. Given past work showing that pairing high intensity exercise with skilled motor practice benefits learning, it seems plausible that intensity is a key modulator of the effects of acute aerobic exercise on changes in complex motor behavior. Further work is necessary to establish a dose-response relationship between aerobic exercise and motor learning. PMID:26901664

  10. Separation Potential of Educable Retarded and Intellectually Normal Boys as a Function of Motor Performance

    ERIC Educational Resources Information Center

    Dobbins, D. Alan; Rarick, G. Lawrence

    1976-01-01

    While overwhelming evidence exists suggesting substantial differences between the motor skills of educably retarded and intellectually normal children, data from this study warn against the universal generalization of depressed motor performance to all educable retardates. (MB)

  11. Poor Motor Skills: A Risk Marker for Bully Victimization

    PubMed Central

    Bejerot, Susanne; Plenty, Stephanie; Humble, Alice; Humble, Mats B

    2013-01-01

    Children who are clumsy are often bullied. Nevertheless, motor skills have been overlooked in research on bullying victimization. A total of 2,730 Swedish adults (83% females) responded to retrospective questions on bullying, their talents in physical education (i.e., coordination and balls skills) and school academics. Poor talents were used as indicators of poor gross motor skills and poor academic skills. A subset of participants also provided information on educational level in adulthood, childhood obesity, belonging to an ethic minority in school and socioeconomic status relative to schoolmates. A total of 29.4% of adults reported being bullied in school, and 18.4% reported having below average gross motor skills. Of those with below average motor skills, 48.6% were bullied in school. Below average motor skills in childhood were associated with an increased risk (OR 3.01 [95% CI: 1.97–4.60]) of being bullied, even after adjusting for the influence of lower socioeconomic status, poor academic performance, being overweight, and being a bully. Higher odds for bully victimization were also associated with lower socioeconomic status (OR 2.29 [95% CI: 1.45–3.63]), being overweight (OR 1.71 [95% CI: 1.18–2.47]) and being a bully (OR 2.18 [95% CI: 1.53–3.11]). The findings indicate that poor gross motor skills constitute a robust risk-marker for vulnerability for bully victimization. Aggr. Behav. 39:453–461, 2013. © 2013 The Authors. Aggressive Behavior Published by Wiley-Blackwell PMID:23784933

  12. Poor motor skills: a risk marker for bully victimization.

    PubMed

    Bejerot, Susanne; Plenty, Stephanie; Humble, Alice; Humble, Mats B

    2013-01-01

    Children who are clumsy are often bullied. Nevertheless, motor skills have been overlooked in research on bullying victimization. A total of 2,730 Swedish adults (83% females) responded to retrospective questions on bullying, their talents in physical education (i.e., coordination and balls skills) and school academics. Poor talents were used as indicators of poor gross motor skills and poor academic skills. A subset of participants also provided information on educational level in adulthood, childhood obesity, belonging to an ethic minority in school and socioeconomic status relative to schoolmates. A total of 29.4% of adults reported being bullied in school, and 18.4% reported having below average gross motor skills. Of those with below average motor skills, 48.6% were bullied in school. Below average motor skills in childhood were associated with an increased risk (OR 3.01 [95% CI: 1.97-4.60]) of being bullied, even after adjusting for the influence of lower socioeconomic status, poor academic performance, being overweight, and being a bully. Higher odds for bully victimization were also associated with lower socioeconomic status (OR 2.29 [95% CI: 1.45-3.63]), being overweight (OR 1.71 [95% CI: 1.18-2.47]) and being a bully (OR 2.18 [95% CI: 1.53-3.11]). The findings indicate that poor gross motor skills constitute a robust risk-marker for vulnerability for bully victimization. © 2013 The Authors. Aggressive Behavior Published by Wiley-Blackwell.

  13. Childhood clumsiness and peer victimization: a case–control study of psychiatric patients

    PubMed Central

    2013-01-01

    Background Poor motor and social skills as well as peer victimization are commonly reported in both ADHD and autism spectrum disorder. Positive relationships between poor motor and poor social skills, and between poor social skills and peer victimization, are well documented, but the relationship between poor motor skills and peer victimization has not been studied in psychiatric populations. Method 277 patients (133 males, 144 females), mean age 31 years, investigated for ADHD or autism spectrum disorder in adulthood and with normal intelligence, were interviewed about childhood peer victimization and examined for gross motor skills. The parents completed a comprehensive questionnaire on childhood problems, the Five to Fifteen. The Five to Fifteen is a validated questionnaire with 181 statements that covers various symptoms in childhood across eight different domains, one of them targeting motor skills. Regression models were used to evaluate the relationship between motor skills and the risk and duration of peer victimization, adjusted for sex and diagnosis. Results Victims were described as more clumsy in childhood than their non-victimized counterparts. A significant independent association was found between reportedly poor childhood gross motor skills and peer victimization (adjusted odds ratio: 2.97 [95% confidence interval: 1.46-6.07], n = 235, p = 0.003). In adulthood, the victimized group performed worse on vertical jumps, a gross motor task, and were lonelier. Other factors that were expected to be associated with peer victimization were not found in this highly selected group. Conclusion Poor gross motor skills constitute a strong and independent risk factor for peer victimization in childhood, regardless of sex, childhood psychiatric care and diagnosis. PMID:23442984

  14. Hypnosis in sport: an Isomorphic Model.

    PubMed

    Robazza, C; Bortoli, L

    1994-10-01

    Hypnosis in sport can be applied according to an Isomorphic Model. Active-alert hypnosis is induced before or during practice whereas traditional hypnosis is induced after practice to establish connections between the two experiences. The fundamental goals are to (a) develop mental skills important to both motor and hypnotic performance, (b) supply a wide range of motor and hypnotic bodily experiences important to performance, and (c) induce alert hypnosis before or during performance. The model is based on the assumption that hypnosis and motor performance share common skills modifiable through training. Similarities between hypnosis and peak performance in the model are also considered. Some predictions are important from theoretical and practical points of view.

  15. IQ discrepancy differentiates levels of fine motor skills and their relationship in children with autism spectrum disorders

    PubMed Central

    Yu, Tzu-Ying; Chou, Willy; Chow, Julie Chi; Lin, Chien-Ho; Tung, Li-Chen; Chen, Kuan-Lin

    2018-01-01

    Purpose We investigated 1) the impact of differences in intelligence quotient discrepancy (IQD) on motor skills of preschool-aged children with autism spectrum disorders (ASD); 2) the relationships between IQD and motor skills in preschool-aged children with ASD. Methods A total of 127 ASD preschool-aged children were divided into three groups according to the size of the IQD: IQD within 1 standard deviation (1SD; EVENIQ; n=81), discrepantly higher verbal intelligence quotient (VIQ; n=22; VIQ>performance intelligence quotient [PIQ] above 1SD [≥15 points]), and discrepantly higher PIQ (n=24; PIQ>VIQ above 1SD [≥15 points]). Children’s IQD and motor skills were determined with the Wechsler Preschool and Primary Scale of Intelligence™ – Fourth Edition and the motor subtests of the Comprehensive Developmental Inventory for Infants and Toddlers (CDIIT), respectively. Results One-way analysis of variance revealed significant group differences for the fine motor domain of the CDIIT and the visual–motor coordination subtest (F=3.37–4.38, p<0.05). Children with discrepantly higher PIQ were associated with better fine motor skills than were children with even IQD and those with discrepantly higher VIQ, and vice versa. IQD (PIQ – VIQ) had significant positive correlations with the fine motor domain and fine motor subtests of the CDIIT (r=0.18–0.29, p<0.05). Conclusion The IQD can identify different levels of fine motor skills in preschool-aged children with ASD. This study suggests important implications for clinicians, therapists, and researchers: discrepantly higher PIQ could be related to better visual–motor coordination, and discrepantly higher VIQ could be related to poor visual–motor coordination. Furthermore, the results support that when therapists are working with preschool-aged children with ASD who are developing fine motor skills or undertaking fine motor tasks related to visual–motor coordination, they may need to pay attention to the children’s IQD. PMID:29503543

  16. IQ discrepancy differentiates levels of fine motor skills and their relationship in children with autism spectrum disorders.

    PubMed

    Yu, Tzu-Ying; Chou, Willy; Chow, Julie Chi; Lin, Chien-Ho; Tung, Li-Chen; Chen, Kuan-Lin

    2018-01-01

    We investigated 1) the impact of differences in intelligence quotient discrepancy (IQD) on motor skills of preschool-aged children with autism spectrum disorders (ASD); 2) the relationships between IQD and motor skills in preschool-aged children with ASD. A total of 127 ASD preschool-aged children were divided into three groups according to the size of the IQD: IQD within 1 standard deviation (1SD; EVENIQ; n=81), discrepantly higher verbal intelligence quotient (VIQ; n=22; VIQ>performance intelligence quotient [PIQ] above 1SD [≥15 points]), and discrepantly higher PIQ (n=24; PIQ>VIQ above 1SD [≥15 points]). Children's IQD and motor skills were determined with the Wechsler Preschool and Primary Scale of Intelligence™ - Fourth Edition and the motor subtests of the Comprehensive Developmental Inventory for Infants and Toddlers (CDIIT), respectively. One-way analysis of variance revealed significant group differences for the fine motor domain of the CDIIT and the visual-motor coordination subtest ( F =3.37-4.38, p <0.05). Children with discrepantly higher PIQ were associated with better fine motor skills than were children with even IQD and those with discrepantly higher VIQ, and vice versa. IQD (PIQ - VIQ) had significant positive correlations with the fine motor domain and fine motor subtests of the CDIIT ( r =0.18-0.29, p <0.05). The IQD can identify different levels of fine motor skills in preschool-aged children with ASD. This study suggests important implications for clinicians, therapists, and researchers: discrepantly higher PIQ could be related to better visual-motor coordination, and discrepantly higher VIQ could be related to poor visual-motor coordination. Furthermore, the results support that when therapists are working with preschool-aged children with ASD who are developing fine motor skills or undertaking fine motor tasks related to visual-motor coordination, they may need to pay attention to the children's IQD.

  17. Differences in Learning Volitional (Manual) and Non-Volitional (Posture) Aspects of a Complex Motor Skill in Young Adult Dyslexic and Skilled Readers

    PubMed Central

    Sela, Itamar; Karni, Avi

    2012-01-01

    The ‘Cerebellar Deficit Theory’ of developmental dyslexia proposes that a subtle developmental cerebellar dysfunction leads to deficits in attaining ‘automatic’ procedures and therefore manifests as subtle motor impairments (e.g., balance control, motor skill learning) in addition to the reading and phonological difficulties. A more recent version of the theory suggests a core deficit in motor skill acquisition. This study was undertaken to compare the time-course and the nature of practice-related changes in volitional (manual) and non-volitional (posture) motor performance in dyslexic and typical readers while learning a new movement sequence. Seventeen dyslexic and 26 skilled young adult readers underwent a three-session training program in which they practiced a novel sequence of manual movements while standing in a quiet stance position. Both groups exhibited robust and well-retained gains in speed, with no loss of accuracy, on the volitional, manual, aspects of the task, with a time-course characteristic of procedural learning. However, the dyslexic readers exhibited a pervasive slowness in the initiation of volitional performance. In addition, while typical readers showed clear and well-retained task-related adaptation of the balance and posture control system, the dyslexic readers had significantly larger sway and variance of sway throughout the three sessions and were less efficient in adapting the posture control system to support the acquisition of the novel movement sequence. These results support the notion of a non-language-related deficit in developmental dyslexia, one related to the recruitment of motor systems for effective task performance rather than to a general motor learning disability. PMID:23049736

  18. Cognitive skill learning and schizophrenia: implications for cognitive remediation.

    PubMed

    Michel, L; Danion, J M; Grangé, D; Sandner, G

    1998-10-01

    The ability to acquire a motor and cognitive skill was investigated in 26 patients with schizophrenia and 26 normal participants using repeated testing on the Tower of Toronto puzzle. Seven patients with defective performance were retested using additional trials and immediate feedback designed to facilitate problem solving. A component analysis of performance was used based on J. R. Anderson's (1987) model of cognitive skill learning. Patients exhibited a performance deficit on both motor and cognitive skills. However, their acquisition rate was similar to that of normal participants on most parameters, indicating that skill learning suffered little or no impairment. Performance deficit was accounted for by poor problem-solving ability, explicit memory, and general intellectual capacities. It was remediable in some, but not all, patients. Remediation failure was also related to severe defects of cognitive functions.

  19. Investigation of Perceptual-Motor Behavior Across the Expert Athlete to Disabled Patient Skill Continuum can Advance Theory and Practical Application.

    PubMed

    Müller, Sean; Vallence, Ann-Maree; Winstein, Carolee

    2017-12-14

    A framework is presented of how theoretical predictions can be tested across the expert athlete to disabled patient skill continuum. Common-coding theory is used as the exemplar to discuss sensory and motor system contributions to perceptual-motor behavior. Behavioral and neural studies investigating expert athletes and patients recovering from cerebral stroke are reviewed. They provide evidence of bi-directional contributions of visual and motor systems to perceptual-motor behavior. Majority of this research is focused on perceptual-motor performance or learning, with less on transfer. The field is ripe for research designed to test theoretical predictions across the expert athlete to disabled patient skill continuum. Our view has implications for theory and practice in sports science, physical education, and rehabilitation.

  20. Two Processes in Early Bimanual Motor Skill Learning

    PubMed Central

    Yeganeh Doost, Maral; Orban de Xivry, Jean-Jacques; Bihin, Benoît; Vandermeeren, Yves

    2017-01-01

    Most daily activities are bimanual and their efficient performance requires learning and retention of bimanual coordination. Despite in-depth knowledge of the various stages of motor skill learning in general, how new bimanual coordination control policies are established is still unclear. We designed a new cooperative bimanual task in which subjects had to move a cursor across a complex path (a circuit) as fast and as accurately as possible through coordinated bimanual movements. By looking at the transfer of the skill between different circuits and by looking at training with varying circuits, we identified two processes in early bimanual motor learning. Loss of performance due to the switch in circuit after 15 min of training amounted to 20%, which suggests that a significant portion of improvements in bimanual performance is specific to the used circuit (circuit-specific skill). In contrast, the loss of performance due to the switch in circuit was 5% after 4 min of training. This suggests that learning the new bimanual coordination control policy dominates early in the training and is independent of the used circuit. Finally, switching between two circuits throughout training did not affect the early stage of learning (i.e., the first few minutes), but did affect the later stage. Together, these results suggest that early bimanual motor skill learning includes two different processes. Learning the new bimanual coordination control policy predominates in the first minutes whereas circuit-specific skill improvements unfold later in parallel with further improvements in the bimanual coordination control policy. PMID:29326573

  1. Self-Regulatory Skill Among Children with and without Developmental Coordination Disorder: An Exploratory Study.

    PubMed

    Sangster Jokić, Claire A; Whitebread, David

    2016-11-01

    Children with developmental coordination disorder (DCD) experience difficulty learning and performing everyday motor tasks due to poor motor coordination. Recent research applying a cognitive learning paradigm has argued that children with DCD have less effective cognitive and metacognitive skills with which to effectively acquire motor skills. However, there is currently limited research examining individual differences in children's use of self-regulatory and metacognitive skill during motor learning. This exploratory study aimed to compare the self-regulatory performance of children with and without DCD. Using a mixed methods approach, this study observed and compared the self-regulatory behavior of 15 children with and without DCD, aged between 7 and 9 years, during socially mediated motor practice. Observation was conducted using a quantitative coding scheme and qualitative analysis of video-recorded sessions. This paper will focus on the results of quantitative analysis, while data arising from the qualitative analysis will be used to support quantitative findings. In general, findings indicate that children with DCD exhibit less independent and more ineffective self-regulatory skill during motor learning than their typically developing peers. In addition, children with DCD rely more heavily on external support for effective regulation and are more likely to exhibit negative patterns of motivational regulation. These findings provide further support for the notion that children with DCD experience difficulty effectively self-regulating motor learning. Implications for practice and directions for future research are discussed.

  2. Effect of biased feedback on motor imagery learning in BCI-teleoperation system.

    PubMed

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2014-01-01

    Feedback design is an important issue in motor imagery BCI systems. Regardless, to date it has not been reported how feedback presentation can optimize co-adaptation between a human brain and such systems. This paper assesses the effect of realistic visual feedback on users' BCI performance and motor imagery skills. We previously developed a tele-operation system for a pair of humanlike robotic hands and showed that BCI control of such hands along with first-person perspective visual feedback of movements can arouse a sense of embodiment in the operators. In the first stage of this study, we found that the intensity of this ownership illusion was associated with feedback presentation and subjects' performance during BCI motion control. In the second stage, we probed the effect of positive and negative feedback bias on subjects' BCI performance and motor imagery skills. Although the subject specific classifier, which was set up at the beginning of experiment, detected no significant change in the subjects' online performance, evaluation of brain activity patterns revealed that subjects' self-regulation of motor imagery features improved due to a positive bias of feedback and a possible occurrence of ownership illusion. Our findings suggest that in general training protocols for BCIs, manipulation of feedback can play an important role in the optimization of subjects' motor imagery skills.

  3. Comparison of performance on process- and product-oriented assessments of fundamental motor skills across childhood.

    PubMed

    Logan, Samuel W; Barnett, Lisa M; Goodway, Jacqueline D; Stodden, David F

    2017-04-01

    Process-oriented motor competence (MC) assessments evaluate how a movement is performed. Product-oriented assessments evaluate the outcome of a movement. Determining the concurrent validity of process and product assessments is important to address the predictive utility of motor competence for health. The current study aimed to: (1) compare process and product assessments of the standing long jump, hop and throw across age groups and (2) determine the capacity of process assessments to classify levels of MC. Participants included 170 children classified into three age groups: 4-5, 7-8 and 10-11 years old. Participants' skills were examined concurrently using three process assessments ((Test of Gross Motor Development-2nd edition [TGMD-2]), Get Skilled; Get Active, and developmental sequences) and one product measure (throw speed, jump and hop distance). Results indicate moderate to strong correlations between (1) process assessments across skills and age groups (r range = .37-70) and (2) process and product assessments across skills and age groups (r range = .26-.88). In general, sensitivity to detect advanced skill level is lowest for TGMD-2 and highest for developmental sequences for all three skills. The use of process and product assessments is suggested to comprehensively capture levels of MC in human movement.

  4. Getting the fundamentals of movement: a meta-analysis of the effectiveness of motor skill interventions in children.

    PubMed

    Logan, S W; Robinson, L E; Wilson, A E; Lucas, W A

    2012-05-01

    The development of fundamental movement skills (FMS) is associated with positive health-related outcomes. Children do not develop FMS naturally through maturational processes. These skills need to be learned, practised and reinforced. The objective was to determine the effectiveness of motor skill interventions in children. The following databases were searched for relevant articles: Academic Search Premier, PsycArticles, PsycInfo, SportDiscus and ERIC. No date range was specified and each search was conducted to include all possible years of publication specific to each database. Key terms for the search included motor, skill, movement, intervention, programme or children. Searches were conducted using single and combined terms. Pertinent journals and article reference lists were also manually searched. (1) implementation of any type of motor skill intervention; (2) pre- and post-qualitative assessment of FMS; and (3) availability of means and standard deviations of motor performance. A significant positive effect of motor skill interventions on the improvement of FMS in children was found (d= 0.39, P < 0.001). Results indicate that object control (d= 0.41, P < 0.001) and locomotor skills (d= 0.45, P < 0.001) improved similarly from pre- to post-intervention. The overall effect size for control groups (i.e. free play) was not significant (d= 0.06, P= 0.33). A Pearson correlation indicated a non-significant (P= 0.296), negative correlation (r=-0.18) between effect size of pre- to post-improvement of FMS and the duration of the intervention (in minutes). Motor skill interventions are effective in improving FMS in children. Early childhood education centres should implement 'planned' movement programmes as a strategy to promote motor skill development in children. © 2011 Blackwell Publishing Ltd.

  5. Motor skills in Czech children with attention-deficit/hyperactivity disorder and their neurotypical counterparts.

    PubMed

    Scharoun, S M; Bryden, P J; Otipkova, Z; Musalek, M; Lejcarova, A

    2013-11-01

    Attention-deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed neurobehavioural disorder. Characterized by recurring problems with impulsiveness and inattention in combination with hyperactivity, motor impairments have also been well documented in the literature. The aim of this study was to compare the fine and gross motor skills of male and female children with ADHD and their neurotypical counterparts within seven skill assessments. This included three fine motor tasks: (1) spiral tracing, (2) dot filling, (3) tweezers and beads; and four gross motor tasks: (1) twistbox, (2) foot tapping, (3) small plate finger tapping, and (4) large plate finger tapping. It was hypothesized that children with ADHD would display poorer motor skills in comparison to neurotypical controls in both fine and gross motor assessments. However, statistically significant differences between the groups only emerged in four of the seven tasks (spiral tracing, dot filling, tweezers and beads and foot tapping). In line with previous findings, the complexity underlying upper limb tasks solidified the divide in performance between children with ADHD and their neurotypical counterparts. In light of similar research, impairments in lower limb motor skill were also observed. Future research is required to further delineate trends in motor difficulties in ADHD, while further investigating the underlying mechanisms of impairment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Motor learning.

    PubMed

    Wolpert, Daniel M; Flanagan, J Randall

    2010-06-08

    Although learning a motor skill, such as a tennis stroke, feels like a unitary experience, researchers who study motor control and learning break the processes involved into a number of interacting components. These components can be organized into four main groups. First, skilled performance requires the effective and efficient gathering of sensory information, such as deciding where and when to direct one's gaze around the court, and thus an important component of skill acquisition involves learning how best to extract task-relevant information. Second, the performer must learn key features of the task such as the geometry and mechanics of the tennis racket and ball, the properties of the court surface, and how the wind affects the ball's flight. Third, the player needs to set up different classes of control that include predictive and reactive control mechanisms that generate appropriate motor commands to achieve the task goals, as well as compliance control that specifies, for example, the stiffness with which the arm holds the racket. Finally, the successful performer can learn higher-level skills such as anticipating and countering the opponent's strategy and making effective decisions about shot selection. In this Primer we shall consider these components of motor learning using as an example how we learn to play tennis. 2010 Elsevier Ltd. All rights reserved.

  7. Electro-encephalogram based brain-computer interface: improved performance by mental practice and concentration skills.

    PubMed

    Mahmoudi, Babak; Erfanian, Abbas

    2006-11-01

    Mental imagination is the essential part of the most EEG-based communication systems. Thus, the quality of mental rehearsal, the degree of imagined effort, and mind controllability should have a major effect on the performance of electro-encephalogram (EEG) based brain-computer interface (BCI). It is now well established that mental practice using motor imagery improves motor skills. The effects of mental practice on motor skill learning are the result of practice on central motor programming. According to this view, it seems logical that mental practice should modify the neuronal activity in the primary sensorimotor areas and consequently change the performance of EEG-based BCI. For developing a practical BCI system, recognizing the resting state with eyes opened and the imagined voluntary movement is important. For this purpose, the mind should be able to focus on a single goal for a period of time, without deviation to another context. In this work, we are going to examine the role of mental practice and concentration skills on the EEG control during imaginative hand movements. The results show that the mental practice and concentration can generally improve the classification accuracy of the EEG patterns. It is found that mental training has a significant effect on the classification accuracy over the primary motor cortex and frontal area.

  8. Performance on the Developmental Test of Visual-Motor Integration and Its Supplementary Tests: Comparing Chinese and U.S. Kindergarten Children

    ERIC Educational Resources Information Center

    Tse, Linda F. L.; Siu, Andrew M. H.; Li-Tsang, Cecilia W. P.

    2017-01-01

    Visual-motor integration (VMI) is the ability to coordinate visual perception and motor skills. Although Chinese children have superior performance in VMI than U.S. norms, there is limited information regarding the performance of its basic composition of VMI in regard to visual and motor aspects. This study aimed to examine the differences in…

  9. Brief periods of NREM sleep do not promote early offline gains but subsequent on-task performance in motor skill learning.

    PubMed

    Maier, Jonathan G; Piosczyk, Hannah; Holz, Johannes; Landmann, Nina; Deschler, Christoph; Frase, Lukas; Kuhn, Marion; Klöppel, Stefan; Spiegelhalder, Kai; Sterr, Annette; Riemann, Dieter; Feige, Bernd; Voderholzer, Ulrich; Nissen, Christoph

    2017-11-01

    Sleep modulates motor learning, but its detailed impact on performance curves remains to be fully characterized. This study aimed to further determine the impact of brief daytime periods of NREM sleep on 'offline' (task discontinuation after initial training) and 'on-task' (performance within the test session) changes in motor skill performance (finger tapping task). In a mixed design (combined parallel group and repeated measures) sleep laboratory study (n=17 'active' wake vs. sleep, n=19 'passive' wake vs. sleep), performance curves were assessed prior to and after a 90min period containing either sleep, active or passive wakefulness. We observed a highly significant, but state- (that is, sleep/wake)-independent early offline gain and improved on-task performance after sleep in comparison to wakefulness. Exploratory curve fitting suggested that the observed sleep effect most likely emerged from an interaction of training-induced improvement and detrimental 'time-on-task' processes, such as fatigue. Our results indicate that brief periods of NREM sleep do not promote early offline gains but subsequent on-task performance in motor skill learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Effects of tDCS on Bimanual Motor Skills: A Brief Review

    PubMed Central

    Pixa, Nils H.; Pollok, Bettina

    2018-01-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that allows the modulation of cortical excitability as well as neuroplastic reorganization using a weak constant current applied through the skull on the cerebral cortex. TDCS has been found to improve motor performance in general and motor learning in particular. However, these effects have been reported almost exclusively for unimanual motor tasks such as serial reaction time tasks, adaptation tasks, or visuo-motor tracking. Despite the importance of bimanual actions in most activities of daily living, only few studies have investigated the effects of tDCS on bimanual motor skills. The objectives of this review article are: (i) to provide a concise overview of the few existing studies in this area; and (ii) to discuss the effects of tDCS on bimanual motor skills in healthy volunteers and patients suffering from neurological diseases. Despite considerable variations in stimulation protocols, the bimanual tasks employed, and study designs, the data suggest that tDCS has the potential to enhance bimanual motor skills. The findings imply that the effects of tDCS vary with task demands, such as complexity and the level of expertise of the participating volunteers. Nevertheless, optimized stimulation protocols tailored to bimanual tasks and individual performance considering the underlying neural substrates of task execution are required in order to probe the effectiveness of tDCS in greater detail, thus creating an opportunity to support motor recovery in neuro-rehabilitation. PMID:29670514

  11. Effects of tDCS on Bimanual Motor Skills: A Brief Review.

    PubMed

    Pixa, Nils H; Pollok, Bettina

    2018-01-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that allows the modulation of cortical excitability as well as neuroplastic reorganization using a weak constant current applied through the skull on the cerebral cortex. TDCS has been found to improve motor performance in general and motor learning in particular. However, these effects have been reported almost exclusively for unimanual motor tasks such as serial reaction time tasks, adaptation tasks, or visuo-motor tracking. Despite the importance of bimanual actions in most activities of daily living, only few studies have investigated the effects of tDCS on bimanual motor skills. The objectives of this review article are: (i) to provide a concise overview of the few existing studies in this area; and (ii) to discuss the effects of tDCS on bimanual motor skills in healthy volunteers and patients suffering from neurological diseases. Despite considerable variations in stimulation protocols, the bimanual tasks employed, and study designs, the data suggest that tDCS has the potential to enhance bimanual motor skills. The findings imply that the effects of tDCS vary with task demands, such as complexity and the level of expertise of the participating volunteers. Nevertheless, optimized stimulation protocols tailored to bimanual tasks and individual performance considering the underlying neural substrates of task execution are required in order to probe the effectiveness of tDCS in greater detail, thus creating an opportunity to support motor recovery in neuro-rehabilitation.

  12. Brief report: Response inhibition and processing speed in children with motor difficulties and developmental coordination disorder.

    PubMed

    Bernardi, Marialivia; Leonard, Hayley C; Hill, Elisabeth L; Henry, Lucy A

    2016-01-01

    A previous study reported that children with poor motor skills, classified as having motor difficulties (MD) or Developmental Coordination Disorder (DCD), produced more errors in a motor response inhibition task compared to typically developing (TD) children but did not differ in verbal inhibition errors. The present study investigated whether these groups differed in the length of time they took to respond in order to achieve these levels of accuracy, and whether any differences in response speed could be explained by generally slow information processing in children with poor motor skills. Timing data from the Verbal Inhibition Motor Inhibition test were analyzed to identify differences in performance between the groups on verbal and motor inhibition, as well as on processing speed measures from standardized batteries. Although children with MD and DCD produced more errors in the motor inhibition task than TD children, the current analyses found that they did not take longer to complete the task. Children with DCD were slower at inhibiting verbal responses than TD children, while the MD group seemed to perform at an intermediate level between the other groups in terms of verbal inhibition speed. Slow processing speed did not account for these group differences. Results extended previous research into response inhibition in children with poor motor skills by explicitly comparing motor and verbal responses, and suggesting that slow performance, even when accurate, may be attributable to an inefficient way of inhibiting responses, rather than slow information processing speed per se.

  13. Comprehension of handwriting development: Pen-grip kinetics in handwriting tasks and its relation to fine motor skills among school-age children.

    PubMed

    Lin, Yu-Chen; Chao, Yen-Li; Wu, Shyi-Kuen; Lin, Ho-Hsio; Hsu, Chieh-Hsiang; Hsu, Hsiao-Man; Kuo, Li-Chieh

    2017-10-01

    Numerous tools have been developed to evaluate handwriting performances by analysing written products. However, few studies have directly investigated kinetic performances of digits when holding a pen. This study thus attempts to investigate pen-grip kinetics during writing tasks of school-age children and explore the relationship between the kinetic factors and fine motor skills. This study recruited 181 children aged from 5 to 12 years old and investigated the effects of age on handwriting kinetics and the relationship between these and fine motor skills. The forces applied from the digits and pen-tip were measured during writing tasks via a force acquisition pen, and the children's fine motor performances were also evaluated. The results indicate that peak force and average force might not be direct indicators of handwriting performance for normally developing children at this age. Younger children showed larger force variation and lower adjustment frequency during writing, which might indicate they had poorer force control than the older children. Force control when handling a pen is significantly correlated with fine motor performance, especially in relation to the manual dexterity. A novel system is proposed for analysing school-age children's force control while handwriting. We observed the development of force control in relation to pen grip among the children with different ages in this study. The findings suggested that manipulation skill may be crucial when children are establishing their handwriting capabilities. © 2017 Occupational Therapy Australia.

  14. Motor Skill Learning in Children.

    ERIC Educational Resources Information Center

    Gabbard, Carl P.

    The purpose of this article is to briefly describe schema theory and indicate its relevance to early childhood development, with specific reference to children's acquisition of motor skills. Schema theory proposes an explanation of how individuals learn and perform a seemingly endless variety of movements. According to Schmidt (1975), goal…

  15. Fine-motor skills testing and prediction of endovascular performance.

    PubMed

    Bech, Bo; Lönn, Lars; Schroeder, Torben V; Ringsted, Charlotte

    2013-12-01

    Performing endovascular procedures requires good control of fine-motor digital movements and hand-eye coordination. Objective assessment of such skills is difficult. Trainees acquire control of catheter/wire movements at various paces. However, little is known to what extent talent plays for novice candidates at entry to practice. To study the association between performance in a novel aptitude test of fine-motor skills and performance in simulated procedures. The test was based on manual course-tracking using a proprietary hand-operated roller-bar device coupled to a personal computer with monitor view rotation. A total of 40 test repetitions were conducted separately with each hand. Test scores were correlated with simulator performance. Group A (n = 14), clinicians with various levels of endovascular experience, performed a simulated procedure of contralateral iliac artery stenting. Group B (n = 19), medical students, performed 10 repetitions of crossing a challenging aortic bifurcation in a simulator. The test score differed markedly between the individuals in both groups, in particular with the non-dominant hand. Group A: the test score with the non-dominant hand correlated significantly with simulator performance assessed with the global rating scale SAVE (R = -0.69, P = 0.007). There was no association observed from performances with the dominant hand. Group B: there was no significant association between the test score and endovascular skills acquisition neither with the dominant nor with the non-dominant hand. Clinicians with increasing levels of endovascular technical experience had developed good fine-motor control of the non-dominant hand, in particular, that was associated with good procedural performance in the simulator. The aptitude test did not predict endovascular skills acquisition among medical students, thus, cannot be suggested for selection of novice candidates. Procedural experience and practice probably supplant the influence of innate abilities (talent) over time.

  16. Physical Activity Predicts Performance in an Unpracticed Bimanual Coordination Task.

    PubMed

    Boisgontier, Matthieu P; Serbruyns, Leen; Swinnen, Stephan P

    2017-01-01

    Practice of a given physical activity is known to improve the motor skills related to this activity. However, whether unrelated skills are also improved is still unclear. To test the impact of physical activity on an unpracticed motor task, 26 young adults completed the international physical activity questionnaire and performed a bimanual coordination task they had never practiced before. Results showed that higher total physical activity predicted higher performance in the bimanual task, controlling for multiple factors such as age, physical inactivity, music practice, and computer games practice. Linear mixed models allowed this effect of physical activity to be generalized to a large population of bimanual coordination conditions. This finding runs counter to the notion that generalized motor abilities do not exist and supports the existence of a "learning to learn" skill that could be improved through physical activity and that impacts performance in tasks that are not necessarily related to the practiced activity.

  17. Improvement of fine motor skills in children with visual impairment: an explorative study.

    PubMed

    Reimer, A M; Cox, R F A; Nijhuis-Van der Sanden, M W G; Boonstra, F N

    2011-01-01

    In this study we analysed the potential spin-off of magnifier training on the fine-motor skills of visually impaired children. The fine-motor skills of 4- and 5-year-old visually impaired children were assessed using the manual skills test for children (6-12 years) with a visual impairment (ManuVis) and movement assessment for children (Movement ABC), before and after receiving a 12-sessions training within a 6-weeks period. The training was designed to practice the use of a stand magnifier, as part of a larger research project on low-vision aids. In this study, fifteen children trained with a magnifier; seven without. Sixteen children had nystagmus. In this group head orientation (ocular torticollis) was monitored. Results showed an age-related progress in children's fine-motor skills after the training, irrespective of magnifier condition: performance speed of the ManuVis items went from 333.4s to 273.6s on average. Accuracy in the writing tasks also increased. Finally, for the children with nystagmus, an increase of ocular torticollis was found. These results suggest a careful reconsideration of which intervention is most effective for enhancing perceptuomotor performance in visually impaired children: specific 'fine-motor' training or 'non-specific' visual-attention training with a magnifier. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Motor skills of children newly diagnosed with Attention Deficit Hyperactivity Disorder prior to and following treatment with stimulant medication.

    PubMed

    Brossard-Racine, Marie; Shevell, Michael; Snider, Laurie; Bélanger, Stacey Ageranioti; Majnemer, Annette

    2012-01-01

    Motor difficulties are common in children with Attention Deficit Hyperactivity Disorder (ADHD). Although preliminary evidence has suggested that methylphenidate can improve the motor skills in children with ADHD and Developmental Coordination Disorder (DCD), the effect of stimulant medication on motor performance in children newly diagnosed with ADHD with or without motor impairment remains unclear. A cohort study of 49 medication-naïve children (39 male; mean age 8.4±1.3 years) with ADHD was conducted. Children were evaluated using the Movement Assessment Battery for Children and the developmental test of visual motor integration at diagnosis and again three months following daily treatment with a stimulant medication. Motor difficulties were highly present at baseline (73.5%) but resolved in a subset after treatment with stimulant medication, suggesting that their motor difficulties may be attributed in part to their attentional problems. Nevertheless, motor impairment persisted in 55.1% of the sample. The severity of the behavioural symptoms was significantly associated with balance skills in children without motor impairments (r(2)=0.30, p<0.01) and with visual motor integration skills in children with persisting motor difficulties (r(2)=0.27, p<0.01). Attentional difficulties negatively affect the motor skills of children with ADHD. Following the use of stimulant medication, an important subset continued to demonstrate motor difficulties. The improvement in behaviour was insufficient to resolve motor problems and these children should therefore be targeted for rehabilitation services. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The Relationship Between Motor Skills, Social Problems, and ADHD Symptomatology: Does It Vary According to Parent and Teacher Report?

    PubMed

    Goulardins, Juliana B; Rigoli, Daniela; Loh, Pek Ru; Kane, Robert; Licari, Melissa; Hands, Beth; Oliveira, Jorge A; Piek, Jan

    2018-06-01

    This study investigated the relationship between motor performance; attentional, hyperactive, and impulsive symptoms; and social problems. Correlations between parents' versus teachers' ratings of social problems and ADHD symptomatology were also examined. A total of 129 children aged 9 to 12 years were included. ADHD symptoms and social problems were identified based on Conners' Rating Scales-Revised: L, and the McCarron Assessment of Neuromuscular Development was used to assess motor skills. After controlling for ADHD symptomatology, motor skills remained a significant predictor of social problems in the teacher model but not in the parent model. After controlling for motor skills, inattentive (not hyperactive-impulsive) symptoms were a significant predictor of social problems in the parent model, whereas hyperactive-impulsive (not inattentive) symptoms were a significant predictor of social problems in the teacher model. The findings suggested that intervention strategies should consider the interaction between symptoms and environmental contexts.

  20. A study on fine motor skills of Iranian children with attention deficit/hyper activity disorder aged from 6 to 11 years.

    PubMed

    Lavasani, Negar Miri; Stagnitti, Karen

    2011-06-01

    The aim of this study was to compare the fine motor skills of two groups of Iranian children. Of the 55 male Tehranian children aged 6 to 10 years, 29 children were typically developing and 26 were identified as attention deficit hyperactivity disorder (ADHD) using the Diagnostic and Statistical Manual of Mental Disorder. All children were assessed using the Raven Intelligence Test and nine fine motor tasks. There were no significant differences between the groups based on intelligence. In eight of the fine motor tasks, there was a significant difference between the groups. These tasks were cutting, placing dots in a grid pattern without direction, threading beads, drawing a line within 1 and 2 minutes, finger movements and Purdue pegboard. Boys who have been identified as ADHD have poorer fine motor skills compared to typically developing boys of the same age. Children aged 6 to 10 years who have been identified as ADHD will require more attention to their fine motor skill performance to enable greater participation in daily living tasks in Tehran such as writing, fine arts and dressing which require fast and quick hand motor skills. There are still limitations in this area; therefore, research in fine motor skills and ADHD children are recommended for future research. Copyright © 2010 John Wiley & Sons, Ltd.

  1. Developing an eBook-Integrated High-Fidelity Mobile App Prototype for Promoting Child Motor Skills and Taxonomically Assessing Children's Emotional Responses Using Face and Sound Topology.

    PubMed

    Brown, William; Liu, Connie; John, Rita Marie; Ford, Phoebe

    2014-01-01

    Developing gross and fine motor skills and expressing complex emotion is critical for child development. We introduce "StorySense", an eBook-integrated mobile app prototype that can sense face and sound topologies and identify movement and expression to promote children's motor skills and emotional developmental. Currently, most interactive eBooks on mobile devices only leverage "low-motor" interaction (i.e. tapping or swiping). Our app senses a greater breath of motion (e.g. clapping, snapping, and face tracking), and dynamically alters the storyline according to physical responses in ways that encourage the performance of predetermined motor skills ideal for a child's gross and fine motor development. In addition, our app can capture changes in facial topology, which can later be mapped using the Facial Action Coding System (FACS) for later interpretation of emotion. StorySense expands the human computer interaction vocabulary for mobile devices. Potential clinical applications include child development, physical therapy, and autism.

  2. Sequence for the Training of Eye-Hand Coordination Needed for the Organization of Handwriting Tasks

    ERIC Educational Resources Information Center

    Trester, Mary Fran

    1971-01-01

    Suggested is a sequence of 11 class activities, progressing from gross to fine motor skills, to assist the development of skills required to perform handwriting tasks successfully, for use particularly with children who lack fine motor control and eye-hand coordination. (KW)

  3. Response to "Transfer or Specificity?"

    ERIC Educational Resources Information Center

    Miller, Judith

    2007-01-01

    This article presents the author's response to "Transfer or Specificity?" and reports a research that supports a strong case for a fundamental motor skill as a precursor to two sport specific skills as in Gallahue and Ozmun's (2002) theoretical model of motor development. Reported changes in performance of the overarm throw are…

  4. Sleep-Dependent Learning and Motor-Skill Complexity

    ERIC Educational Resources Information Center

    Kuriyama, Kenichi; Stickgold, Robert; Walker, Matthew P.

    2004-01-01

    Learning of a procedural motor-skill task is known to progress through a series of unique memory stages. Performance initially improves during training, and continues to improve, without further rehearsal, across subsequent periods of sleep. Here, we investigate how this delayed sleep-dependent learning is affected when the task characteristics…

  5. A Matter of Balance: Motor Control is Related to Children’s Spatial and Proportional Reasoning Skills

    PubMed Central

    Frick, Andrea; Möhring, Wenke

    2016-01-01

    Recent research has shown close links between spatial and mathematical thinking and between spatial abilities and motor skills. However, longitudinal research examining the relations between motor, spatial, and mathematical skills is rare, and the nature of these relations remains unclear. The present study thus investigated the relation between children’s motor control and their spatial and proportional reasoning. We measured 6-year-olds’ spatial scaling (i.e., the ability to reason about different-sized spaces), their mental transformation skills, and their ability to balance on one leg as an index for motor control. One year later (N = 126), we tested the same children’s understanding of proportions. We also assessed several control variables (verbal IQ and socio-economic status) as well as inhibitory control, visuo-spatial and verbal working memory. Stepwise hierarchical regressions showed that, after accounting for effects of control variables, children’s balance skills significantly increased the explained variance in their spatial performance and proportional reasoning. Our results suggest specific relations between balance skills and spatial as well as proportional reasoning skills that cannot be explained by general differences in executive functioning or intelligence. PMID:26793157

  6. Effects of Long-Duration Microgravity on Fine Motor Skills: ISS One-Year Mission

    NASA Technical Reports Server (NTRS)

    Holden, Kritina; Greene, Maya; Cross, Ernest

    2017-01-01

    Fine motor skills will be critical in future long-duration missions, particularly those skills needed to interact with advanced technologies in next-generation vehicles, spacesuits, and habitats. Studies to date on the effects of microgravity and gravitational transitions on fine motor performance have not yielded conclusive results. Datasets are incomplete-timeline gaps in the microgravity data sessions. Studies have not focused on the fine motor actions that are likely to be required for interacting with software displays and controls (pointing, clicking, dragging, multi-touch/pinching). The majority of studies have used a joystick or arm reaching task. Touchscreen tablets are already in use on ISS, and at least one commercial partner is already planning a cockpit with touchscreens as the primary means of input. We must ensure that crewmembers are ready to perform with computer-based devices after a long-duration voyage and transition to surface operations.

  7. Motor-Perceptual Function in Children with Developmental Reading Disorders: Neuropsychophysiological Analysis.

    ERIC Educational Resources Information Center

    Chiarenza, Giuseppe Augusto

    1990-01-01

    Eight reading-disordered and 9 nondisabled males (age 10) performed a skilled motor-perceptual task. The children with reading disorders were slower, less accurate, and achieved a smaller number of target performances. Their brain macropotentials associated with motor programing, processing of sensory information, and evaluation of the results…

  8. Long-term practice effects on a new skilled motor learning: an electrophysiological study.

    PubMed

    Fattapposta, F; Amabile, G; Cordischi, M V; Di Venanzio, D; Foti, A; Pierelli, F; D'Alessio, C; Pigozzi, F; Parisi, A; Morrocutti, C

    1996-12-01

    Cortical functions concerned with the execution of skilled movements can be studied through complex interactive tasks. Skilled performance task (SPT) offers the greatest deal of information about the electrophysiological components reflecting pre-programming, execution of the movement and control of the results. Overall, these components are indicated as "movement-related brain macropotentials' (MRBMs). Among them, Bereitschaftspotential (BP) reflects cerebral processes related to the preparation of movement and skilled performance positivity (SPP) reflects control processes on the result of performance. There is some evidence supporting a training effect on MRBMs, but less clear is whether long-term practice of a skilled activity could modify learning strategies of a new skilled task. We recorded MRBMs in subjects trained for a long time to perform a highly skillful athletic activity, i.e. gun shooting, and in a group of control subjects without any former experience in skilled motor activities. Our findings demonstrated the existence of a relationship between pre-programming and performance control, as suggested by decrease of BP amplitude and increase of SPP amplitude in presence of high levels of performance. Long-term practice seems to develop better control models on performance, that reduce the need of a high mental effort in pre-programming a skilled action.

  9. Impulse-variability theory: implications for ballistic, multijoint motor skill performance.

    PubMed

    Urbin, M A; Stodden, David F; Fischman, Mark G; Weimar, Wendi H

    2011-01-01

    Impulse-variability theory (R. A. Schmidt, H. N. Zelaznik, B. Hawkins, J. S. Frank, & J. T. Quinn, 1979) accounts for the curvilinear relationship between the magnitude and resulting variability of the muscular forces that influence the success of goal-directed limb movements. The historical roots of impulse-variability theory are reviewed in the 1st part of this article, including the relationship between movement speed and spatial error. The authors then address the relevance of impulse-variability theory for the control of ballistic, multijoint skills, such as throwing, striking, and kicking. These types of skills provide a stark contrast to the relatively simple, minimal degrees of freedom movements that characterized early research. However, the inherent demand for ballistic force generation is a strong parallel between these simple laboratory tasks and multijoint motor skills. Therefore, the authors conclude by recommending experimental procedures for evaluating the adequacy of impulse variability as a theoretical model within the context of ballistic, multijoint motor skill performance. Copyright © Taylor & Francis Group, LLC

  10. Use of technology to facilitate physical activity in children with autism spectrum disorders: A pilot study.

    PubMed

    Bittner, Melissa D; Rigby, B Rhett; Silliman-French, Lisa; Nichols, David L; Dillon, Suzanna R

    2017-08-01

    Deficits in social behavior and communication skills are correlated with reduced gross motor skills in children with autism spectrum disorders (ASD). The ExerciseBuddy application (EB app) was designed to communicate these motor skills to those with ASD and integrates evidence-based practices such as visual support and video modeling supported by The National Professional Development Center on Autism Spectrum Disorders. The purpose of this study was to determine the effectiveness of the EB app in facilitating increased physiologic responses to physical activity via a continuous measurement of energy expenditure and heart rate versus practice-style teaching methods in children with ASD. Six children, ages 5 to 10years, diagnosed with ASD were recruited. Each participant performed a variety of locomotor or object control skills as defined by the Test of Gross Motor Development-2 once per week for 4weeks. Motor skills were communicated and demonstrated using either practice-style teaching methods or the instructional section of the EB app. Energy expenditure and heart rate were measured continuously during each 12-minute session. A Wilcoxon signed-rank test was performed to assess any differences between the use of the app and practice-style teaching methods. The use of the EB app elicited greater values for peak energy expenditure (p=0.043) and peak heart rate response (p=0.028) while performing locomotor skills but no differences were observed while performing object control skills. Similarities were observed with average physiologic responses between the use of the EB app and practice-style teaching methods. The use of the EB app may allow for a greater peak physiologic response during more dynamic movements and a similar average cardiovascular and metabolic response when compared to practice-style teaching methods in children with ASD. Published by Elsevier Inc.

  11. Impaired Communication Between the Motor and Somatosensory Homunculus Is Associated With Poor Manual Dexterity in Autism Spectrum Disorder.

    PubMed

    Thompson, Abigail; Murphy, Declan; Dell'Acqua, Flavio; Ecker, Christine; McAlonan, Grainne; Howells, Henrietta; Baron-Cohen, Simon; Lai, Meng-Chuan; Lombardo, Michael V

    2017-02-01

    Fine motor skill impairments are common in autism spectrum disorder (ASD), significantly affecting quality of life. Sensory inputs reaching the primary motor cortex (M1) from the somatosensory cortex (S1) are likely involved in fine motor skill and specifically motor learning. However, the role of these connections has not been directly investigated in humans. This study aimed to investigate, for the first time, the role of the S1-M1 connections in healthy subjects in vivo and whether microstructural alterations are associated with motor impairment in ASD. Sixty right-handed neurotypical adult men aged 18 to 45 years, and 60 right-handed age- and sex-matched subjects diagnosed with ASD underwent fine motor skill assessment and scanning with diffusion tensor imaging (DTI). The streamlines of the hand region connecting S1-M1 of the motor-sensory homunculus were virtually dissected using TrackVis, and diffusion properties were extracted. The face/tongue region connections were used as control tracts. The ASD group displayed lower motor performances and altered DTI measurements of the hand-region connection. Behavioral performance correlated with hand-region DTI measures in both groups, but not with the face/tongue connections, indicating anatomical specificity. There was a left-hemisphere association of motor ability in the control group and an atypical rightward shift in the ASD group. These findings suggest that direct interaction between S1 and M1 may contribute to the human ability to precisely interact with and manipulate the environment. Because electrophysiological evidence indicates that these connections may underpin long-term potentiation in M1, our findings may lead to novel therapeutic treatments for motor skill disorders. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Refinement of learned skilled movement representation in motor cortex deep output layer

    PubMed Central

    Li, Qian; Ko, Ho; Qian, Zhong-Ming; Yan, Leo Y. C.; Chan, Danny C. W.; Arbuthnott, Gordon; Ke, Ya; Yung, Wing-Ho

    2017-01-01

    The mechanisms underlying the emergence of learned motor skill representation in primary motor cortex (M1) are not well understood. Specifically, how motor representation in the deep output layer 5b (L5b) is shaped by motor learning remains virtually unknown. In rats undergoing motor skill training, we detect a subpopulation of task-recruited L5b neurons that not only become more movement-encoding, but their activities are also more structured and temporally aligned to motor execution with a timescale of refinement in tens-of-milliseconds. Field potentials evoked at L5b in vivo exhibit persistent long-term potentiation (LTP) that parallels motor performance. Intracortical dopamine denervation impairs motor learning, and disrupts the LTP profile as well as the emergent neurodynamical properties of task-recruited L5b neurons. Thus, dopamine-dependent recruitment of L5b neuronal ensembles via synaptic reorganization may allow the motor cortex to generate more temporally structured, movement-encoding output signal from M1 to downstream circuitry that drives increased uniformity and precision of movement during motor learning. PMID:28598433

  13. Activities of daily living in children with developmental coordination disorder: dressing, personal hygiene, and eating skills.

    PubMed

    Summers, Janet; Larkin, Dawne; Dewey, Deborah

    2008-04-01

    In order to understand how age, culture, and problems in motor coordination impact the performance of activities of daily living, we used focus groups and in-depth interviews with Australian and Canadian parents to examine activities of daily living of younger (5-7 years of age) and older (8-9 years of age) children with and without DCD. By comparison with their typically developing age group, children with DCD had more difficulty with dressing, personal hygiene, and eating skills. Difficulties with postural control and fine-motor skills were reported to contribute to poorer performance of activities of daily living. As expected, competence in the performance of activities of daily living improved in the older children with and without DCD and there were few differences in the performance of daily living tasks between typical children in Australia and Canada. Overall, the motor difficulties of children with DCD had a significant impact on performance of a wide range of daily activities.

  14. Using Video Game Telemetry Data to Research Motor Chunking, Action Latencies, and Complex Cognitive-Motor Skill Learning.

    PubMed

    Thompson, Joseph J; McColeman, C M; Stepanova, Ekaterina R; Blair, Mark R

    2017-04-01

    Many theories of complex cognitive-motor skill learning are built on the notion that basic cognitive processes group actions into easy-to-perform sequences. The present work examines predictions derived from laboratory-based studies of motor chunking and motor preparation using data collected from the real-time strategy video game StarCraft 2. We examined 996,163 action sequences in the telemetry data of 3,317 players across seven levels of skill. As predicted, the latency to the first action (thought to be the beginning of a chunked sequence) is delayed relative to the other actions in the group. Other predictions, inspired by the memory drum theory of Henry and Rogers, received only weak support. Copyright © 2017 Cognitive Science Society, Inc.

  15. Task-specific motor performance and musculoskeletal response in self-classified right handers.

    PubMed

    Kumar, Sameer; Mandal, Manas K

    2003-11-01

    We examined the difference between the left and right hand motor performance (in terms of erg produced) of self-classified right handers (15 men, 15 women) for power (task involving muscle force) and skilled (task involving precision and eye hand coordination) tasks. Musculoskeletal response during task performance was measured by electromyogram to test the hypothesis that performance with the nondominant hand would trigger more generalized muscle tension. The difference between the left and right hand performance of men was nonsignificant for power task; for women, right hand performance was significantly superior than left for such task. Men excelled in power and women excelled in skilled tasks relative to their counterparts. Generalized muscle tension was significantly more during the left than the right hand performance for power but not for skilled tasks.

  16. Motor Learning as Young Gymnast's Talent Indicator.

    PubMed

    di Cagno, Alessandra; Battaglia, Claudia; Fiorilli, Giovanni; Piazza, Marina; Giombini, Arrigo; Fagnani, Federica; Borrione, Paolo; Calcagno, Giuseppe; Pigozzi, Fabio

    2014-12-01

    Talent identification plans are designed to select young athletes with the ability to achieve future success in sports. The aim of the study was to verify the predictive value of coordination and precision in skill acquisition during motor learning, as indicators of talent. One hundred gymnasts, both cadets (aged 11.5 ± 0.5 yr.) and juniors (aged 13.3 ± 0.5 years), competing at the national level, were enrolled in the study. The assessment of motor coordination involved three tests of the validated Hirtz's battery (1985), and motor skill learning involved four technical tests, specific of rhythmic gymnastics. All the tests were correlated with ranking and performance scores reached by each gymnast in the 2011, 2012, and 2013 National Championships. Coordination tests were significantly correlated to 2013 Championships scores (p < 0.01) and ranking (p < 0.05) of elite cadet athletes. Precision, in skill acquisition test results, was positively and significantly associated with scores in 2013 (adj. R(2) = 0.26, p < 0.01). Gymnasts with the best results in coordination and motor learning tests went on to achieve better competition results in three- year time. Key pointsIn talent identification and selection procedures it is better to include the evaluation of coordination and motor learning ability.Motor learning assessment concerns performance improvement and the ability to develop it, rather than evaluating the athlete's current performance.In this manner talent identification processes should be focused on the future performance capabilities of athletes.

  17. Motor Learning as Young Gymnast’s Talent Indicator

    PubMed Central

    di Cagno, Alessandra; Battaglia, Claudia; Fiorilli, Giovanni; Piazza, Marina; Giombini, Arrigo; Fagnani, Federica; Borrione, Paolo; Calcagno, Giuseppe; Pigozzi, Fabio

    2014-01-01

    Talent identification plans are designed to select young athletes with the ability to achieve future success in sports. The aim of the study was to verify the predictive value of coordination and precision in skill acquisition during motor learning, as indicators of talent. One hundred gymnasts, both cadets (aged 11.5 ± 0.5 yr.) and juniors (aged 13.3 ± 0.5 years), competing at the national level, were enrolled in the study. The assessment of motor coordination involved three tests of the validated Hirtz’s battery (1985), and motor skill learning involved four technical tests, specific of rhythmic gymnastics. All the tests were correlated with ranking and performance scores reached by each gymnast in the 2011, 2012, and 2013 National Championships. Coordination tests were significantly correlated to 2013 Championships scores (p < 0.01) and ranking (p < 0.05) of elite cadet athletes. Precision, in skill acquisition test results, was positively and significantly associated with scores in 2013 (adj. R2 = 0.26, p < 0.01). Gymnasts with the best results in coordination and motor learning tests went on to achieve better competition results in three- year time. Key points In talent identification and selection procedures it is better to include the evaluation of coordination and motor learning ability. Motor learning assessment concerns performance improvement and the ability to develop it, rather than evaluating the athlete’s current performance. In this manner talent identification processes should be focused on the future performance capabilities of athletes. PMID:25435768

  18. A model for the transfer of perceptual-motor skill learning in human behaviors.

    PubMed

    Rosalie, Simon M; Müller, Sean

    2012-09-01

    This paper presents a preliminary model that outlines the mechanisms underlying the transfer of perceptual-motor skill learning in sport and everyday tasks. Perceptual-motor behavior is motivated by performance demands and evolves over time to increase the probability of success through adaptation. Performance demands at the time of an event create a unique transfer domain that specifies a range of potentially successful actions. Transfer comprises anticipatory subconscious and conscious mechanisms. The model also outlines how transfer occurs across a continuum, which depends on the individual's expertise and contextual variables occurring at the incidence of transfer

  19. Preferential stabilization of newly formed dendritic spines in motor cortex during manual skill learning predicts performance gains, but not memory endurance.

    PubMed

    Clark, Taylor A; Fu, Min; Dunn, Andrew K; Zuo, Yi; Jones, Theresa A

    2018-07-01

    Previous findings that skill learning is associated with the formation and preferential stabilization of new dendritic spines in cortex have raised the possibility that this preferential stabilization is a mechanism for lasting skill memory. We investigated this possibility in adult mice using in vivo two-photon imaging to monitor spine dynamics on superficial apical dendrites of layer V pyramidal neurons in motor cortex during manual skill learning. Spine formation increased over the first 3 days of training on a skilled reaching task, followed by increased spine elimination. A greater proportion of spines formed during the first 3 training days were lost if training stopped after 3, compared with 15 days. However, performance gains achieved in 3 training days persisted, indicating that preferential new spine stabilization was non-essential for skill retention. Consistent with a role in ongoing skill refinement, the persistence of spines formed early in training strongly predicted performance improvements. Finally, while we observed no net spine density change on superficial dendrites, the density of spines on deeper apical branches of the same neuronal population was increased regardless of training duration, suggestive of a potential role in the retention of the initial skill memory. Together, these results indicate dendritic subpopulation-dependent variation in spine structural responses to skill learning, which potentially reflect distinct contributions to the refinement and retention of newly acquired motor skills. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Communication skills in individuals with spastic diplegia.

    PubMed

    Lamônica, Dionísia Aparecida Cusin; Paiva, Cora Sofia Takaya; Abramides, Dagma Venturini Marques; Biazon, Jamile Lozano

    2015-01-01

    To assess communication skills in children with spastic diplegia. The study included 20 subjects, 10 preschool children with spastic diplegia and 10 typical matched according to gender, mental age, and socioeconomic status. Assessment procedures were the following: interviews with parents, Stanford - Binet method, Gross Motor Function Classification System, Observing the Communicative Behavior, Vocabulary Test by Peabody Picture, Denver Developmental Screening Test II, MacArthur Development Inventory on Communicative Skills. Statistical analysis was performed using the values of mean, median, minimum and maximum value, and using Student's t-test, Mann-Whitney test, and Paired t-test. Individuals with spastic diplegia, when compared to their peers of the same mental age, presented no significant difference in relation to receptive and expressive vocabulary, fine motor skills, adaptive, personal-social, and language. The most affected area was the gross motor skills in individuals with spastic cerebral palsy. The participation in intervention procedures and the pairing of participants according to mental age may have approximated the performance between groups. There was no statistically significant difference in the comparison between groups, showing appropriate communication skills, although the experimental group has not behaved homogeneously.

  1. Curriculum enrichment with self-testing activities in development of fundamental movement skills of first-grade children in Greece.

    PubMed

    Karabourniotis, Dimitrios; Evaggelinou, Christina; Tzetzis, George; Kourtessis, Thomas

    2002-06-01

    The purpose of this study was to investigate the effect of self-testing activities on the development of fundamental movement skills in first-grade children in Greece. Two groups of children were tested. The Control group (n = 23 children) received the regular 12-wk. physical education school program and the Experimental group (n = 22 children) received a 12-wk. skill-oriented program with an increasing allotment of self-testing activities. The Test of Gross Motor Development was used to assess fundamental movement skills, while the content areas of physical education courses were estimated with an assessment protocol, based on the interval recording system called the Academic Learning Time-Physical Education. A 2 x 2 repeated measures analysis of variance with group as the between factor and testing time (pretest vs posttest) as the repeated-measures factor was performed to assess differences between the two groups. A significant interaction of group with testing time was found for the Test of Gross Motor Development total score, with the Experimental group scoring higher then the Control group. A significant main effect was also found for test but not for group. This study provides evidence supporting the notion that a balanced allotment of the self-testing and game activities beyond the usual curriculum increases the fundamental motor-skill development of children. Also, it stresses the necessity for content and performance standards for the fundamental motor skills in educational programs. Finally, it seems that the Test of Gross Motor Development is a useful tool for the assessment of children's fundamental movement skills.

  2. Factors Affecting Psychosocial and Motor Development in 3-Year-Old Children Who Are Deaf or Hard of Hearing

    PubMed Central

    Leigh, Greg; Ching, Teresa Y. C.; Crowe, Kathryn; Cupples, Linda; Marnane, Vivienne; Seeto, Mark

    2015-01-01

    Previous research has shown an association between children’s development of psychosocial and motor skills. This study evaluated the development of these skills in 301 three-year-old deaf and hard of hearing children (M: 37.8 months) and considered a range of possible predictors including gender, birth weight, age at first fitting with hearing devices, hearing device used, presence of additional disabilities, severity of hearing loss, maternal education, socio-economic status (SES), language ability, and communication mode. Caregivers reported on children’s development using the Child Development Inventory (CDI). On average, both psychosocial and motor development quotients were within the typical range for hearing children, with large individual differences. There was a positive correlation between language ability and both social and motor development, and also between social and motor development. Age at first fitting of hearing aids (as an indicator of age at identification of hearing loss), SES, degree of hearing loss, and maternal education were not significant predictors of social skill or motor development, whereas presence of additional disabilities and birth weight were. Girls performed better than boys on all but the Gross Motor subscale of the CDI. Children with hearing aids tended to perform better than those with cochlear implants on the Gross Motor subscale. PMID:26209447

  3. The validity of the 4-Skills Scan: A double validation study.

    PubMed

    van Kernebeek, W G; de Kroon, M L A; Savelsbergh, G J P; Toussaint, H M

    2018-06-01

    Adequate gross motor skills are an essential aspect of a child's healthy development. Where physical education (PE) is part of the primary school curriculum, a strong curriculum-based emphasis on evaluation and support of motor skill development in PE is apparent. Monitoring motor development is then a task for the PE teacher. In order to fulfil this task, teachers need adequate tools. The 4-Skills Scan is a quick and easily manageable gross motor skill instrument; however, its validity has never been assessed. Therefore, the purpose of this study is to assess the construct and concurrent validity of both 4-Skills Scans (version 2007 and version 2015). A total of 212 primary school children (6 - 12 years old), was requested to participate in both versions of the 4-Skills Scan. For assessing construct validity, children covered an obstacle course with video recordings for observation by an expert panel. For concurrent validity, a comparison was made with the MABC-2, by calculating Pearson correlations. Multivariable linear regression analyses were performed to determine the contribution of each subscale to the construct of gross motor skills, according to the MABC-2 and the expert panel. Correlations between the 4-Skills Scans and expert valuations were moderate, with coefficients of .47 (version 2007) and .46 (version 2015). Correlations between the 4-Skills Scans and the MABC-2 (gross) were moderate (.56) for version 2007 and high (.64) for version 2015. It is concluded that both versions of the 4-Skills Scans are satisfactory valid instruments for assessing gross motor skills during PE lessons. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Objective Assessment of Bimanual Laparoscopic Surgical Skills via Functional Near Infrared Spectroscopy (fNIRS)

    NASA Astrophysics Data System (ADS)

    Nemani, Arun

    Surgical simulators are effective methods for training and assessing surgical technical skills, particularly those that are bimanual. These simulators are now ubiquitous in surgical training and assessment programs for residents. Simulators are used in programs such as the Fundamentals of Laparoscopic Surgery (FLS) and Fundamentals of Endoscopic Surgery (FES), which are pre-requisites for Board certification in general surgery. Although these surgical simulators have been validated for clinical use, they have significant limitations, such as subjectivity in assessment metrics, poor correlation of transfer from simulation to clinically relevant environments, poor correlation of task performance scores to learning motor skill levels, and ultimately inconsistent reliability of these assessment methods as an indicator of positive patient outcomes. These limitations present an opportunity for more objective and analytical approaches to assess surgical motor skills. To address these surgical skill assessment limitations, we present functional near-infrared spectroscopic (fNIRS), a non-invasive brain imaging method, to objectively differentiate and classify subjects with varying degrees of laparoscopic surgical motor skill levels based on measurements of functional activation changes. In this work, we show that fNIRS based metrics can objectively differentiate and classify surgical motor skill levels with significantly more accuracy than established metrics. Using classification approaches such as multivariate linear discriminant analysis, we show evidence that fNIRS metrics reduce the misclassification error, defined as the probability that a trained subject is misclassified as an untrained subject and vice versa, from 53-61% to 4.2-4.4% compared to conventional metrics for surgical skill assessment. This evidence also translates to surgical skill transfer metrics, where such metrics assess surgical motor skill transfer from simulation to clinically relevant environments. Results indicate that fNIRS based metrics can successfully differentiate and classify surgical motor skill transfer levels by reducing the misclassification errors from 20-41 % to 2.2-9.1%, when compared to conventional surgical skill transfer assessment metrics. Furthermore, this work also shows evidence of high functional connectivity between the prefrontal cortex and primary motor cortex regions correlated to increases in surgical motor skill levels, addressing the gap in current literature in underlying neurophysiological responses to surgical motor skill learning. This work is the first to show conclusive evidence that fNIRS based metrics can significantly improve subject classification for surgical motor skill assessment compared to metrics currently used in Board certification in general surgery. Our approach brings robustness, objectivity, and accuracy in not only assessing surgical motor skill levels but also validating the effectiveness of future surgical trainers in assessing and translating surgical motor skills to more clinically relevant environments. This non-invasive imaging approach for objective quantification for complex bimanual surgical motor skills will bring about a paradigm change in surgical certification and assessment, that may lead to significantly reduced negative patient outcomes. Ultimately, this approach can be generally applied for bimanual motor skill assessment and can be applied for other fields, such as brain computer interfaces (BCI), robotics, stroke and rehabilitation therapy.

  5. Motor Competence in 11-Year-Old Boys and Girls

    ERIC Educational Resources Information Center

    Vedul-Kjelsås, Vigdis; Stensdotter, Ann-Katrin; Sigmundsson, Hermundur

    2013-01-01

    By using the Movement Assessment Battery (MABC), the present study investigated possible gender differences in several tasks of motor competence in children. The sample included 67 Norwegian sixth-grade children (Girls N?=?29; Boys?=?39). Boys' performance exceeds that of girls in ball skills and in one of the balance skills. No differences were…

  6. A Literature Review on Observational Learning for Medical Motor Skills and Anesthesia Teaching

    ERIC Educational Resources Information Center

    Cordovani, Ligia; Cordovani, Daniel

    2016-01-01

    Motor skill practice is very important to improve performance of medical procedures and could be enhanced by observational practice. Observational learning could be particularly important in the medical field considering that patients' safety prevails over students' training. The mechanism of observational learning is based on the mirror neuron…

  7. Aerobic exercise enhances neural correlates of motor skill learning.

    PubMed

    Singh, Amaya M; Neva, Jason L; Staines, W Richard

    2016-03-15

    Repetitive, in-phase bimanual motor training tasks can expand the excitable cortical area of the trained muscles. Recent evidence suggests that an acute bout of moderate-intensity aerobic exercise can enhance the induction of rapid motor plasticity at the motor hotspot. However, these changes have not been investigated throughout the entire cortical representation. Furthermore, it is unclear how exercise-induced changes in excitability may relate to motor performance. We investigated whether aerobic exercise could enhance the neural correlates of motor learning. We hypothesized that the combination of exercise and training would increase the excitable cortical area to a greater extent than either exercise or training alone, and that the addition of exercise would enhance performance on a motor training task. 25 young, healthy, right-handed individuals were recruited and divided into two groups and three experimental conditions. The exercise group performed exercise alone (EX) and exercise followed by training (EXTR) while the training group performed training alone (TR). The combination of exercise and training increased excitability within the cortical map of the trained muscle to a greater extent than training alone. However, there was no difference in performance between the two groups. These results indicate that exercise may enhance the cortical adaptations to motor skill learning. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Changes in motor skill and fitness measures among children with high and low motor competence: a five-year longitudinal study.

    PubMed

    Hands, Beth

    2008-04-01

    Children with low motor competence (LMC) are less able to participate fully in many sports and recreational activities typically enjoyed by their well-coordinated peers. Poor fitness outcomes have been reported for these children, although previous studies have not tracked these outcomes over time. In this study, 19 children (8 girls and 11 boys) with LMC aged between 5 and 7years were matched by age and gender with 19 children with high motor competence (HMC). Six fitness (body composition and cardiovascular endurance) and motor skill (sprint run, standing broad jump and balance) measures were repeated for each group once a year for five years. For each year of the study, the LMC groups performed less well on all measures than the HMC groups. Changes over time were significantly different between groups for cardiovascular endurance, 50-m run and balance, but not for body composition, overhand throw or standing broad jump. Between the two groups, performances were significantly different for all measures, except body composition. These findings confirm the impact of LMC on fitness measures and skill performances over time.

  9. Promoting ball skills in preschool-age girls.

    PubMed

    Veldman, Sanne L C; Palmer, Kara K; Okely, Anthony D; Robinson, Leah E

    2017-01-01

    Evidence supports that girls are less proficient than boys at performing ball skills. This study examined the immediate and long-term effects of a ball skill intervention on preschool-age girls' ball skill performance. Randomized controlled trial. Girls (M age =47.24±7.38 months) were randomly assigned to a high autonomy, mastery-based 9-week motor skill intervention (the Children's Health Activity Motor Program; CHAMP, 540min; n=38) or a control group (free-play; n=16). Ball skill proficiency was assessed at pretest, posttest, and retention test (after 9 weeks) using the object control subscale of the Test of Gross Motor Development - 2nd Edition. Treatment efficacy was examined using linear mixed models. Two models were fit: one for short-term changes (pretest to posttest) and one for long-term changes (pretest to retention). Linear mixed models revealed a significantly time*treatment interaction for both models. Post hoc analysis confirmed that girls in CHAMP experienced significant gains in ball skills from pretest to posttest (p<.001) and pretest to retention (p<.001). Moreover, girls in CHAMP were no different from the control group at pretest (p>.05) but had significantly higher ball skills scores at both posttest (p<.001) and retention (p<.001). This study demonstrates the positive effects of a ball skill intervention (i.e., CHAMP) on improving girls' ball skills both short- and long-term. Findings suggest that early childhood interventions that focus on the development of ball skills in young girls might be an avenue to improve girls' ball skill performance. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  10. Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults.

    PubMed

    Berghuis, K M M; Veldman, M P; Solnik, S; Koch, G; Zijdewind, I; Hortobágyi, T

    2015-06-01

    It is controversial whether or not old adults are capable of learning new motor skills and consolidate the performance gains into motor memory in the offline period. The underlying neuronal mechanisms are equally unclear. We determined the magnitude of motor learning and motor memory consolidation in healthy old adults and examined if specific metrics of neuronal excitability measured by magnetic brain stimulation mediate the practice and retention effects. Eleven healthy old adults practiced a wrist extension-flexion visuomotor skill for 20 min (MP, 71.3 years), while a second group only watched the templates without movements (attentional control, AC, n = 11, 70.5 years). There was 40 % motor learning in MP but none in AC (interaction, p < 0.001) with the skill retained 24 h later in MP and a 16 % improvement in AC. Corticospinal excitability at rest and during task did not change, but when measured during contraction at 20 % of maximal force, it strongly increased in MP and decreased in AC (interaction, p = 0.002). Intracortical inhibition at rest and during the task decreased and facilitation at rest increased in MP, but these metrics changed in the opposite direction in AC. These neuronal changes were especially profound at retention. Healthy old adults can learn a new motor skill and consolidate the learned skill into motor memory, processes that are most likely mediated by disinhibitory mechanisms. These results are relevant for the increasing number of old adults who need to learn and relearn movements during motor rehabilitation.

  11. Effects of Physical Activity on Motor Skills and Cognitive Development in Early Childhood: A Systematic Review.

    PubMed

    Zeng, Nan; Ayyub, Mohammad; Sun, Haichun; Wen, Xu; Xiang, Ping; Gao, Zan

    2017-01-01

    This study synthesized literature concerning casual evidence of effects of various physical activity programs on motor skills and cognitive development in typically developed preschool children. Electronic databases were searched through July 2017. Peer-reviewed randomized controlled trials (RCTs) examining the effectiveness of physical activity on motor skills and cognitive development in healthy young children (4-6 years) were screened. A total of 15 RCTs were included. Of the 10 studies assessing the effects of physical activity on motor skills, eight (80%) reported significant improvements in motor performance and one observed mixed findings, but one failed to promote any beneficial outcomes. Of the five studies investigating the influence of physical activity on cognitive development, four (80%) showed significant and positive changes in language learning, academic achievement, attention, and working memory. Notably, one indicated no significant improvements were observed after the intervention. Findings support causal evidence of effects of physical activity on both motor skills and cognitive development in preschool children. Given the shortage of available studies, future research with large representative samples is warranted to explore the relationships between physical activity and cognitive domains as well as strengthen and confirm the dose-response evidence in early childhood.

  12. Motor Performance of Children with Mild Intellectual Disability and Borderline Intellectual Functioning

    ERIC Educational Resources Information Center

    Vuijk, P. J.; Hartman, E.; Scherder, E.; Visscher, C.

    2010-01-01

    Background: There is a relatively small body of research on the motor performance of children with mild intellectual disabilities (MID) and borderline intellectual functioning (BIF). Adequate levels of motor skills may contribute to lifelong enjoyment of physical activity, participation in sports and healthy lifestyles. The present study compares…

  13. Assessment of motor functioning in the preschool period.

    PubMed

    Piek, Jan P; Hands, Beth; Licari, Melissa K

    2012-12-01

    The assessment of motor functioning in young children has become increasingly important in recent years with the acknowledgement that motor impairment is linked with cognitive, language, social and emotional difficulties. However, there is no one gold standard assessment tool to investigate motor ability in children. The aim of the current paper was to discuss the issues related to the assessment of motor ability in young pre-school children and to provide guidelines on the best approach for motor assessment. The paper discusses the maturational changes in brain development at the preschool level in relation to motor ability. Other issues include sex differences in motor ability at this young age, and evidence for this in relation to sociological versus biological influences. From the previous literature it is unclear what needs to be assessed in relation to motor functioning. Should the focus be underlying motor processes or movement skill assessment? Several key assessment tools are discussed that produce a general measure of motor performance followed by a description of tools that assess specific skills, such as fine and gross motor, ball and graphomotor skills. The paper concludes with recommendations on the best approach in assessing motor function in pre-school children.

  14. Training the Motor Aspects of Pre-driving Skills of Young Adults With and Without Autism Spectrum Disorder.

    PubMed

    Brooks, Johnell; Kellett, Julie; Seeanner, Julia; Jenkins, Casey; Buchanan, Caroline; Kinsman, Anne; Kelly, Desmond; Pierce, Susan

    2016-07-01

    The purpose of this study was to investigate the utility of using a driving simulator to address the motor aspects of pre-driving skills with young adults with Autism Spectrum Disorder (ASD). A group of neurotypical control participants and ten participants with ASD completed 18 interactive steering and pedal exercises with the goal to achieve error-free performance. Most participants were able to achieve this goal within five trials for all exercises except for the two most difficult ones. Minimal performance differences were observed between the two groups. Participants with ASD needed more time to complete the tasks. Overall, the interactive exercises and the process used worked well to address motor related aspects of pre-driving skills in young adults with ASD.

  15. Outcome and Process in Motor Performance: A Comparison of Jumping by Typically Developing Children and Those with Low Motor Proficiency

    ERIC Educational Resources Information Center

    Williams, Morgan D.; Saunders, John E.; Maschette, Wayne E.; Wilson, Cameron J.

    2013-01-01

    The motivation for this study was to explore a conceptual framework to understand the outcomes and processes of motor performance in children. Vertical jumping, a fundamental movement skill, was used to compare children (ages 6-12 years) who were typically developing (TD) and those identified as having low motor proficiency (LMP). Jumps were…

  16. Attentional Focus in Classical Ballet: A Survey Of Professional Dancers.

    PubMed

    Guss-West, Clare; Wulf, Gabriele

    2016-03-01

    Focus of attention and its effects on skilled motor performance has become an important line of research in the motor learning domain. Numerous studies have demonstrated that an external focus of attention (i.e., on the movement effect) enhances motor performance and learning relative to an internal focus (i.e., on body movements). Thus, small differences in the wording of instructions or feedback given by teachers can have a significant impact on the effectiveness and efficiency of motor skill performance. In this paper, we review some of the attentional focus studies that are relevant to ballet performance. In addition, we report the findings of a survey among professional ballet dancers (N = 53) that we conducted to determine their typical attentional focus while performing certain movements. The results showed that the majority adopted internal foci, or combinations of internal and external foci, most of the time. This suggests that there is room for improvement for performance and teaching. We provide examples of how external foci can be promoted in ballet practice.

  17. Motor-skill learning in a novel running-wheel task is dependent on D1 dopamine receptors in the striatum

    PubMed Central

    Willuhn, Ingo; Steiner, Heinz

    2008-01-01

    Evidence indicates that dopamine receptors regulate processes of procedural learning in the sensorimotor striatum. Our previous studies revealed that the indirect dopamine receptor agonist cocaine alters motor-skill learning-associated gene regulation in the sensorimotor striatum. Cocaine-induced gene regulation in the striatum is principally mediated by D1 dopamine receptors. We investigated the effects of cocaine and striatal D1 receptor antagonism on motor-skill learning. Rats were trained on a running wheel (40–60 min, 2–5 days) to learn a new motor skill, that is, the ability to control the movement of the wheel. Immediately before each training session, the animals received an injection of vehicle or cocaine (25 mg/kg, i.p.), and/or the D1 receptor antagonist SCH-23390 (0, 3, 10 μg/kg, i.p., or 0, 0.3, 1 μg, intrastriatal via chronically implanted cannula). The animal’s ability to control/balance the moving wheel (wheel skill) was tested before and repeatedly after the training. Normal wheel-skill memory lasted for at least 4 weeks. Cocaine administered before the training tended to attenuate skill learning. Systemic administration of SCH-23390 alone also impaired skill learning. However, cocaine given in conjunction with the lower SCH-23390 dose (3 μg/kg) reversed the inhibition of skill learning produced by the D1 receptor antagonist, enabling intact skill performance during the whole post-training period. In contrast, when cocaine was administered with the higher SCH-23390 dose (10 μg/kg), skill performance was normalized 1–6 days after the training, but these rats lost their improved wheel skill by day 18 after the training. Similar effects were produced by SCH-23390 (0.3–1 μg) infused into the striatum. Our results indicate that cocaine interferes with normal motor-skill learning, which seems to be dependent on optimal D1 receptor signaling. Furthermore, our findings demonstrate that D1 receptors in the striatum are critical for consolidation of long-term skill memory. PMID:18343588

  18. Effect of prematurity and low birth weight in visual abilities and school performance.

    PubMed

    Perez-Roche, T; Altemir, I; Giménez, G; Prieto, E; González, I; Peña-Segura, J L; Castillo, O; Pueyo, V

    2016-12-01

    Prematurity and low birth weight are known risk factors for cognitive and developmental impairments, and school failure. Visual perceptual and visual motor skills seem to be among the most affected cognitive domains in these children. To assess the influence of prematurity and low birth weight in visual cognitive skills and school performance. We performed a prospective cohort study, which included 80 boys and girls in an age range from 5 to 13. Subjects were grouped by gestational age at birth (preterm, <37 weeks; term, 37-42 weeks) and birth weight (small for gestational age (SGA), <10th centile; appropriate weight for gestational age (AGA), ≥10th centile). Each child underwent full ophthalmologic assessment and standardized testing of visual cognitive abilities (Test of Visual Perceptual Skills and Test of Visual Analysis Skills). Parents completed a questionnaire on school performance in children. Figure-ground skill and visual motor integration were significantly decreased in the preterm birth group, compared with term control subjects (figure-ground: 45.7 vs 66.5, p=0.012; visual motor integration, TVAS: (9.9 vs 11.8, p=0.018), while outcomes of visual memory (29.0 vs 47.7, p=0.012), form constancy (33.3 vs 52.8, p=0.019), figure-ground (37.4 vs 65.6, p=0.001), and visual closure (43.7 vs 62.6 p=0.016) testing were lower in the SGA (vs AGA) group. Visual cognitive difficulties corresponded with worse performance in mathematics (r=0.414, p=0.004) and reading (r=0.343, p=0.018). Specific patterns of visual perceptual and visual motor deficits are displayed by children born preterm or SGA, which hinder mathematics and reading performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Can a virtual reality assessment of fine motor skill predict successful central line insertion?

    PubMed

    Mohamadipanah, Hossein; Parthiban, Chembian; Nathwani, Jay; Rutherford, Drew; DiMarco, Shannon; Pugh, Carla

    2016-10-01

    Due to the increased use of peripherally inserted central catheter lines, central lines are not performed as frequently. The aim of this study is to evaluate whether a virtual reality (VR)-based assessment of fine motor skills can be used as a valid and objective assessment of central line skills. Surgical residents (N = 43) from 7 general surgery programs performed a subclavian central line in a simulated setting. Then, they participated in a force discrimination task in a VR environment. Hand movements from the subclavian central line simulation were tracked by electromagnetic sensors. Gross movements as monitored by the electromagnetic sensors were compared with the fine motor metrics calculated from the force discrimination tasks in the VR environment. Long periods of inactivity (idle time) during needle insertion and lack of smooth movements, as detected by the electromagnetic sensors, showed a significant correlation with poor force discrimination in the VR environment. Also, long periods of needle insertion time correlated to the poor performance in force discrimination in the VR environment. This study shows that force discrimination in a defined VR environment correlates to needle insertion time, idle time, and hand smoothness when performing subclavian central line placement. Fine motor force discrimination may serve as a valid and objective assessment of the skills required for successful needle insertion when placing central lines. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Motor skill for tool-use is associated with asymmetries in Broca's area and the motor hand area of the precentral gyrus in chimpanzees (Pan troglodytes).

    PubMed

    Hopkins, William D; Meguerditchian, Adrien; Coulon, Olivier; Misiura, Maria; Pope, Sarah; Mareno, Mary Catherine; Schapiro, Steven J

    2017-02-01

    Among nonhuman primates, chimpanzees are well known for their sophistication and diversity of tool use in both captivity and the wild. The evolution of tool manufacture and use has been proposed as a driving mechanism for the development of increasing brain size, complex cognition and motor skills, as well as the population-level handedness observed in modern humans. Notwithstanding, our understanding of the neurological correlates of tool use in chimpanzees and other primates remains poorly understood. Here, we assessed the hand preference and performance skill of chimpanzees on a tool use task and correlated these data with measures of neuroanatomical asymmetries in the inferior frontal gyrus (IFG) and the pli-de-passage fronto-parietal moyen (PPFM). The IFG is the homolog to Broca's area in the chimpanzee brain and the PPFM is a buried gyrus that connects the pre- and post-central gyri and corresponds to the motor-hand area of the precentral gyrus. We found that chimpanzees that performed the task better with their right compared to left hand showed greater leftward asymmetries in the IFG and PPFM. This association between hand performance and PPFM asymmetry was particularly robust for right-handed individuals. Based on these findings, we propose that the evolution of tool use was associated with increased left hemisphere specialization for motor skill. We further suggest that lateralization in motor planning, rather than hand preference per se, was selected for with increasing tool manufacture and use in Hominid evolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Motor skill for tool-use is associated with asymmetries in Broca’s area and the motor hand area of the precentral gyrus in chimpanzees (Pan troglodytes)

    PubMed Central

    Hopkins, William D.; Meguerditchian, Adrien; Coulon, Olivier; Misiura, Maria; Pope, Sarah; Mareno, Mary Catherine; Schapiro, Steven J.

    2017-01-01

    Among nonhuman primates, chimpanzees are well known for their sophistication and diversity of tool use in both captivity and the wild. The evolution of tool manufacture and use has been proposed as a driving mechanism for the development of increasing brain size, complex cognition and motor skills, as well as the population-level handedness observed in modern humans. Notwithstanding, our understanding of the neurological correlates of tool use in chimpanzees and other primates remains poorly understood. Here, we assessed the hand preference and performance skill of chimpanzees on a tool use task and correlated these data with measures of neuroanatomical asymmetries in the inferior frontal gyrus (IFG) and the pli-de-passage fronto-parietal moyen (PPFM). The IFG is the homolog to Broca’s area in the chimpanzee brain and the PPFM is a buried gyrus that connects the pre- and post-central gyri and corresponds to the motor-hand area of the precentral gyrus. We found that chimpanzees that performed the task better with their right compared to left hand showed greater leftward asymmetries in the IFG and PPFM. This association between hand performance and PPFM asymmetry was particularly robust for right-handed individuals. Based on these findings, we propose that the evolution of tool use was associated with increased left hemisphere specialization for motor skill. We further suggest that lateralization in motor planning, rather than hand preference per se, was selected for with increasing tool manufacture and use in Hominid evolution. PMID:27816558

  2. An Evaluation of Videomodeling on Fundamental Motor Skill Performance of Preschool Children

    ERIC Educational Resources Information Center

    Obrusnikova, Iva; Cavalier, Albert

    2018-01-01

    Proficiency in fundamental motor skills (FMS) is important for both the health and the overall growth and development of young children. To identify factors that facilitate the development of FMS, the study provided preliminary data on the effect of videomodeling (VM) on the acquisition of FMS by typically developing young children. Participants…

  3. Toy Story: Illustrating Gender Differences in a Motor Skills Task

    ERIC Educational Resources Information Center

    Knight, Jennifer L.; Hebl, Michelle R.; Mendoza, Miriam

    2004-01-01

    To challenge students' stereotypes about gendered performance on motor skills tasks, we developed a classroom active learning demonstration. Four 3-person, same-gender teams received either a Barbie(r) doll or a Transformer(r), and team members dressed the Barbie or manipulated the Transformer from a tank to a robot as quickly as possible, with…

  4. Gross Motor Skills and Sports Participation of Children with Visual Impairments

    ERIC Educational Resources Information Center

    Houwen, Suzanne; Visscher, Chris; Hartman, Esther; Lemmink, Koen A. P. M.

    2007-01-01

    Gross motor skill performance of children with visual impairments and its association with the degree of visual impairment and sports participation was examined. Twenty children with visual impairments (M age = 9.2 years, SD = 1.5) and 100 sighted children (M age = 9.1 years, SD = 1.5) from mainstream schools participated. The results showed that…

  5. Fine motor skills of the hands in Polish and Czech female senior citizens from different backgrounds.

    PubMed

    Skrzek, Anna; Přidalová, Miroslava; Sebastjan, Anna; Harásková, Dominika; Fugiel, Jaroslaw; Ignasiak, Zofia; Slawinska, Teresa; Rozek, Krystyna

    2015-08-01

    The aim of the present study was an in-depth analysis of fine motor skills of the hands in elderly women from different socio-cultural backgrounds. The research also included analysis of the associations of age with the variables assessing right- and left-hand motor skills and its effect on hand performance asymmetry. The study examined 486 women over the age of 60. The study measured dominant and non-dominant hand performance using the motor performance series test battery (aiming, line tracking, inserting pins, tapping) from the Vienna test system. The best results in the tests assessing coordinated hand movements were achieved by the group of elderly women attending a University of the Third Age in Poland. This may be the result of a larger variety of physical activity programs offered at this type of institution. However, due to the cross-sectional design of the study, additional research of a longitudinal nature needs to be performed using the same sample of individuals to draw any definitive conclusions. Additionally, a decrease in the differences between dominant and non-dominant hand function with age was observed.

  6. Motor Prediction at the Edge of Instability: Alteration of Grip Force Control during Changes in Bimanual Coordination

    ERIC Educational Resources Information Center

    Danion, Frederic; Jirsa, Viktor K.

    2010-01-01

    Predicting the consequences of actions is fundamental for skilled motor behavior. We investigated whether motor prediction is influenced by the fact that some movements are easier to perform and stabilize than others. Twelve subjects performed a bimanual rhythmical task either symmetrically or asymmetrically (the latter being more difficult and…

  7. Effect of height on motor coordination in college students participating in a dancesport program.

    PubMed

    Li, Xiaoxin; Wang, Huazhuo; Yang, Yaohua; Qi, Chunying; Wang, Fei; Jin, Man

    2015-03-01

    Athlete screening tools combine measures of physical performance and morphometric parameters unique to each sport. Given the increasing competitiveness of dancesport, we designed the present quasi-experimental study to analyze the relationship between body height and motor coordination in college students. Six hundred eighty-six students were randomly selected to participate in a dancing sport program that consisted of 16 weeks (32 hrs) of training. The program included an assessment of basic skills (rhythm, movement specificity, intensity, expressive force, and action coherence) and skills related to a doubles dance routine. Male and female students were divided into four single-sex groups based on their heights (each group had a 5-cm range), and the average scores for each performance indicator were analyzed. A one-way ANOVA revealed significant differences in performance scores for each indicator of basic skills and double routine skills between the different height groups. Male in the 175-179 cm group and female students in the 165-169 cm group had the best performance scores on each indicator, while the shortest students had the worst performance scores. The height of students participating in sport dancing training had an impact on dancesport performance and motor coordination, counter to the traditional belief that shorter people have better coordination.

  8. Changes of motor-cortical oscillations associated with motor learning.

    PubMed

    Pollok, B; Latz, D; Krause, V; Butz, M; Schnitzler, A

    2014-09-05

    Motor learning results from practice but also between practice sessions. After skill acquisition early consolidation results in less interference with other motor tasks and even improved performance of the newly learned skill. A specific significance of the primary motor cortex (M1) for early consolidation has been suggested. Since synchronized oscillatory activity is assumed to facilitate neuronal plasticity, we here investigate alterations of motor-cortical oscillations by means of event-related desynchronization (ERD) at alpha (8-12 Hz) and beta (13-30 Hz) frequencies in healthy humans. Neuromagnetic activity was recorded using a 306-channel whole-head magnetoencephalography (MEG) system. ERD was investigated in 15 subjects during training on a serial reaction time task and 10 min after initial training. The data were compared with performance during a randomly varying sequence serving as control condition. The data reveal a stepwise decline of alpha-band ERD associated with faster reaction times replicating previous findings. The amount of beta-band suppression was significantly correlated with reduction of reaction times. While changes of alpha power have been related to lower cognitive control after initial skill acquisition, the present data suggest that the amount of beta suppression represents a neurophysiological marker of early cortical reorganization associated with motor learning. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. The role of inattention and hyperactivity/impulsivity in the fine motor coordination in children with ADHD.

    PubMed

    Fenollar-Cortés, Javier; Gallego-Martínez, Ana; Fuentes, Luis J

    2017-10-01

    Deficits in fine motor coordination have been suggested to be associated with Attention-Deficit/Hyperactivity Disorder (ADHD). However, despite the negative impact of poor fine motor skills on academic achievement, researchers have paid little attention to this problem. The aim of this study was to explore the relationship between ADHD dimensions and fine motor performance. Participants were 43 children with a diagnosis of ADHD aged between 7 and 14 years (M=9.61; 81% male) and 42 typically developing (TP) children in the same age range (M=10.76; 75.2% male). Children with ADHD performed worse than TP on all tasks (δ Fine_motor_tasks, -0.19 to -0.44). After controlling for age and ADHD-HY (hyperactivity/impulsivity), higher scores on ADHD-IN (inattentiveness) predicted a larger number of mistakes among all psychomotricity tasks and conditions (β 0.39-0.58, ps<0.05). The ADHD group showed poorer fine motor performance than controls across all fine motor coordination tasks. However, lower performance (more mistakes), was related to the inattention dimension but not to the hyperactivity/impulsivity dimensions. Authors recommend including training and enhancement of the fine motor skills for more comprehensive ADHD treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Children's Initial Sleep-Associated Changes in Motor Skill Are Unrelated to Long-Term Skill Levels

    ERIC Educational Resources Information Center

    Zinke, Katharina; Wilhelm, Ines; Bayramoglu, Müge; Klein, Susanne; Born, Jan

    2017-01-01

    Sleep is considered to support the formation of skill memory. In juvenile but not adult song birds learning a tutor's song, a stronger initial deterioration of song performance over night-sleep predicts better song performance in the long run. This and similar observations have stimulated the view of sleep supporting skill formation during…

  11. Motor skills, haptic perception and social abilities in children with mild speech disorders.

    PubMed

    Müürsepp, Iti; Aibast, Herje; Gapeyeva, Helena; Pääsuke, Mati

    2012-02-01

    The aim of the study was to evaluate motor skills, haptic object recognition and social interaction in 5-year-old children with mild specific expressive language impairment (expressive-SLI) and articulation disorder (AD) in comparison of age- and gender matched healthy children. Twenty nine children (23 boys and 6 girls) with expressive-SLI, 27 children (20 boys and 7 girls) with AD and 30 children (23 boys and 7 girls) with typically developing language as controls participated in our study. The children were examined for manual dexterity, ball skills, static and dynamic balance by M-ABC test, haptic object recognition and for social interaction by questionnaire completed by teachers. Children with mild expressive-SLI demonstrated significantly poorer results in all subtests of motor skills (p<0.05), in haptic object recognition and social interaction (p<0.01) compared to controls. There were no statistically significant differences (p>0.05) in measured parameters between children with AD and controls. Children with expressive-SLI performed considerably poorer compared to AD group in balance subtest (p<0.05), and in overall M-ABC test (p<0.01). In children with mild expressive-SLI the functional motor performance, haptic perception and social interaction are considerably more affected than in children with AD. Although motor difficulties in speech production are prevalent in AD, it is localised and does not involve children's general motor skills, haptic perception or social interaction. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  12. Evidence from a cohort of able bodied adults to support the need for driver training for motorized scooters before community participation.

    PubMed

    Nitz, Jennifer C

    2008-02-01

    This study sought to utilize the implementation of a new competency test in order to define skills required to safely drive a motorized scooter. This test endeavours to reduce the number of driving and pedestrian related accidents, by determining an acceptable level of driver skill and awareness. Healthy subjects, who might at some time use a motorized scooter for mobility, were recruited from the local community. Each undertook a driver competency test including basic driving skills, traffic and multiple tasks. Ten subjects repeated the test three times to determine practice effect on proficiency. Thirty-three of the 50 participating subjects (mean age 34 years) failed at least one test item. Basic skills of reversing, weave and zigzag, and all traffic and performing multiple simultaneous tasks produced failures. Driving skills for motorized scooters need to be taught and learned with assessment for competency recommended before unrestricted community driving is allowed. Basic driving skills including weaving, steering in reverse and traffic and multiple tasking need to be taught and tested for all new users of this equipment.

  13. Acquisition of Motor and Cognitive Skills through Repetition in Typically Developing Children

    PubMed Central

    Magallón, Sara; Narbona, Juan; Crespo-Eguílaz, Nerea

    2016-01-01

    Background Procedural memory allows acquisition, consolidation and use of motor skills and cognitive routines. Automation of procedures is achieved through repeated practice. In children, improvement in procedural skills is a consequence of natural neurobiological development and experience. Methods The aim of the present research was to make a preliminary evaluation and description of repetition-based improvement of procedures in typically developing children (TDC). Ninety TDC children aged 6–12 years were asked to perform two procedural learning tasks. In an assembly learning task, which requires predominantly motor skills, we measured the number of assembled pieces in 60 seconds. In a mirror drawing learning task, which requires more cognitive functions, we measured time spent and efficiency. Participants were tested four times for each task: three trials were consecutive and the fourth trial was performed after a 10-minute nonverbal interference task. The influence of repeated practice on performance was evaluated by means of the analysis of variance with repeated measures and the paired-sample test. Correlation coefficients and simple linear regression test were used to examine the relationship between age and performance. Results TDC achieved higher scores in both tasks through repetition. Older children fitted more pieces than younger ones in assembling learning and they were faster and more efficient at the mirror drawing learning task. Conclusions These findings indicate that three consecutive trials at a procedural task increased speed and efficiency, and that age affected basal performance in motor-cognitive procedures. PMID:27384671

  14. Acquisition of Motor and Cognitive Skills through Repetition in Typically Developing Children.

    PubMed

    Magallón, Sara; Narbona, Juan; Crespo-Eguílaz, Nerea

    2016-01-01

    Procedural memory allows acquisition, consolidation and use of motor skills and cognitive routines. Automation of procedures is achieved through repeated practice. In children, improvement in procedural skills is a consequence of natural neurobiological development and experience. The aim of the present research was to make a preliminary evaluation and description of repetition-based improvement of procedures in typically developing children (TDC). Ninety TDC children aged 6-12 years were asked to perform two procedural learning tasks. In an assembly learning task, which requires predominantly motor skills, we measured the number of assembled pieces in 60 seconds. In a mirror drawing learning task, which requires more cognitive functions, we measured time spent and efficiency. Participants were tested four times for each task: three trials were consecutive and the fourth trial was performed after a 10-minute nonverbal interference task. The influence of repeated practice on performance was evaluated by means of the analysis of variance with repeated measures and the paired-sample test. Correlation coefficients and simple linear regression test were used to examine the relationship between age and performance. TDC achieved higher scores in both tasks through repetition. Older children fitted more pieces than younger ones in assembling learning and they were faster and more efficient at the mirror drawing learning task. These findings indicate that three consecutive trials at a procedural task increased speed and efficiency, and that age affected basal performance in motor-cognitive procedures.

  15. Paired associative stimulation modulates corticomotor excitability in chronic stroke: A preliminary investigation.

    PubMed

    Palmer, Jacqueline A; Wolf, Steven L; Borich, Michael R

    2018-01-01

    Paired associative stimulation (PAS) combining repeated pairing of electrical stimulation of a peripheral nerve with transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) can induce neuroplastic adaptations in the human brain and enhance motor learning in neurologically-intact individuals. However, the extent to which PAS is an effective technique for inducing associative plasticity and improving motor function in individuals post-stroke is unclear. The objective of this pilot study was to investigate the effects of a single session of PAS to modulate corticomotor excitability and motor skill performance in individuals post-stroke. Seven individuals with chronic stroke completed two separate visits separated by at least one week. We assessed general corticomotor excitability, intracortical network activity and behavioral outcomes prior to and at three time points following PAS and compared these outcomes to those following a sham PAS condition (PASSHAM). Following PAS, we found increased general corticomotor excitability but no significant difference in behavioral measures between PAS conditions. There was a relationship between PAS-induced corticomotor excitability increase and enhanced motor skill performance across post-PAS testing time points. These results provide preliminary evidence for the potential of PAS to increase corticomotor excitability that could favorably impact motor skill performance in chronic individuals post-stroke and are an important first step for future studies investigating the clinical application and behavioral relevance of PAS interventions in post stroke patient populations.

  16. Evaluation of Sensory and Motor Skills in Neurosurgery Applicants Using a Virtual Reality Neurosurgical Simulator: The Sensory-Motor Quotient.

    PubMed

    Roitberg, Ben Z; Kania, Patrick; Luciano, Cristian; Dharmavaram, Naga; Banerjee, Pat

    2015-01-01

    Manual skill is an important attribute for any surgeon. Current methods to evaluate sensory-motor skills in neurosurgical residency applicants are limited. We aim to develop an objective multifaceted measure of sensory-motor skills using a virtual reality surgical simulator. A set of 3 tests of sensory-motor function was performed using a 3-dimensional surgical simulator with head and arm tracking, collocalization, and haptic feedback. (1) Trajectory planning: virtual reality drilling of a pedicle. Entry point, target point, and trajectory were scored-evaluating spatial memory and orientation. (2) Motor planning: sequence, timing, and precision: hemostasis in a postresection cavity in the brain. (3) Haptic perception: touching virtual spheres to determine which is softest of the group, with progressive difficulty. Results were analyzed individually and for a combined score of all the tasks. The University of Chicago Hospital's tertiary care academic center. A total of 95 consecutive applicants interviewed at a neurosurgery residency program over 2 years were offered anonymous participation in the study; in 2 cohorts, 36 participants in year 1 and 27 participants in year 2 (validation cohort) agreed and completed all the tasks. We also tested 10 first-year medical students and 4 first- and second-year neurosurgery residents. A cumulative score was generated from the 3 tests. The mean score was 14.47 (standard deviation = 4.37), median score was 13.42, best score was 8.41, and worst score was 30.26. Separate analysis of applicants from each of 2 years yielded nearly identical results. Residents tended to cluster on the better performance side, and first-year students were not different from applicants. (1) Our cumulative score measures sensory-motor skills in an objective and reproducible way. (2) Better performance by residents hints at validity for neurosurgery. (3) We were able to demonstrate good psychometric qualities and generate a proposed sensory-motor quotient distribution in our tested population. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  17. Retrospectively Assessed Early Motor and Current Pragmatic Language Skills in Autistic and Neurotypical Children.

    PubMed

    Stevenson, Jennifer L; Lindley, Caitlin E; Murlo, Nicole

    2017-08-01

    Autistic individuals often struggle developmentally, even in areas that are not explicit diagnostic criteria, such as motor skills. This study explored the relation between early motor skills, assessed retrospectively, and current pragmatic language skills. Caregivers of neurotypical and autistic children, matched on gender and age, completed assessments of their child's early motor development and current language abilities. Early motor skills were correlated with later pragmatic language skills, and autistic children exhibited fewer motor skills than neurotypical children. In fact, motor skills were a better predictor of an autism spectrum diagnosis than were scores on a measure of current pragmatic language. These results highlight the important role of motor skills in autism spectrum disorders.

  18. Expertise facilitates the transfer of anticipation skill across domains.

    PubMed

    Rosalie, Simon M; Müller, Sean

    2014-02-01

    It is unclear whether perceptual-motor skill transfer is based upon similarity between the learning and transfer domains per identical elements theory, or facilitated by an understanding of underlying principles in accordance with general principle theory. Here, the predictions of identical elements theory, general principle theory, and aspects of a recently proposed model for the transfer of perceptual-motor skill with respect to expertise in the learning and transfer domains are examined. The capabilities of expert karate athletes, near-expert karate athletes, and novices to anticipate and respond to stimulus skills derived from taekwondo and Australian football were investigated in ecologically valid contexts using an in situ temporal occlusion paradigm and complex whole-body perceptual-motor skills. Results indicated that the karate experts and near-experts are as capable of using visual information to anticipate and guide motor skill responses as domain experts and near-experts in the taekwondo transfer domain, but only karate experts could perform like domain experts in the Australian football transfer domain. Findings suggest that transfer of anticipation skill is based upon expertise and an understanding of principles but may be supplemented by similarities that exist between the stimulus and response elements of the learning and transfer domains.

  19. Location versus task relevance: The impact of differing internal focus of attention instructions on motor performance.

    PubMed

    Pelleck, Valerie; Passmore, Steven R

    2017-05-01

    Impaired performance while executing a motor task is attributed to a disruption of normal automatic processes when an internal focus of attention is used. What remains unclear is whether the specificity of internally focused task instructions may impact task performance. The present study assessed the implications of changing the attentional focus of novice and skilled golfers by measuring behavioural, neurophysiological and kinematic changes during a golf putting task. Over six blocks of ten putting trials each, attention was directed either externally (towards the target) or internally in one of two ways: 1) proximal (keeping the elbows extended and the hands gripping the putter); or 2) distal (keeping the weight evenly distributed between both legs) to the critical elements of the task. Results provided evidence that when novice participants use an internal focus of attention more closely associated with task performance that their: 1) execution; 2) accuracy; 3) variability of surface electromyography (sEMG) activity; and 4) kinematics of the putter movement are all adversely affected. Skilled golfers are much more resilient to changes in attentional focus, while all participants interpret a distal internal focus of attention similar to an external focus. All participants produced decreased activity in the muscle (tibialis anterior) associated with the distal (less task relevant) focus of attention even when the "internal" focus was on the lower extremity. Our results provide evidence that the skill level of the participant and the distance of the internal focus of attention from the key elements of a motor skill directly impact the execution, muscle activity, and movement kinematics associated with skilled motor task performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The effect of a multi-component camp-based weight-loss program on children's motor skills and physical fitness: a randomized controlled trial.

    PubMed

    Larsen, Kristian Traberg; Huang, Tao; Larsen, Lisbeth Runge; Olesen, Line Grønholt; Andersen, Lars Bo; Møller, Niels Christian

    2016-07-15

    Many weight-loss programs in children are performed without specific foci on training both physical fitness and motor skills. The aim of this study was to describe the effect of a one-year weight-loss program on children's motor skills and physical fitness. Participants included 115 overweight fifth-grade children (12.0 years) randomized into either a Day-Camp Intervention Arm (DCIA), with a subsequent family-based support program or a low-intense Standard Intervention Arm (SIA). Physical fitness was assessed by vertical jump, hand grip strength, and a progressive cardio-respiratory fitness test. Motor skills were assessed by the Movement Assessment Battery for Children - second edition (M-ABC-2), age band 3. Loss to follow-up after 52 weeks was 19 % and 32 % in the DCIA and SIA, respectively. Balance skills were improved post-camp, but not after 52 weeks in children from the DCIA compared to the SIA. Contrary to the expected, children from the SIA improved aiming and catching skills relative to the DCIA children. Overall z-scores of the physical fitness components and cardio-respiratory fitness improved more in children from the DCIA compared to children from the SIA. In conclusion, the day-camp intervention led to improvements in physical fitness but not in motor skills compared to the standard intervention. Including both motor skills and physical fitness could advantageously be considered in future immersive intervention programmes. Clinicaltrials NCT01574352, March 26, 2012 (retrospectively registered).

  1. What is the evidence of impaired motor skills and motor control among children with attention deficit hyperactivity disorder (ADHD)? Systematic review of the literature.

    PubMed

    Kaiser, M-L; Schoemaker, M M; Albaret, J-M; Geuze, R H

    2014-11-06

    This article presents a review of the studies that have analysed the motor skills of ADHD children without medication and the influence of medication on their motor skills. The following two questions guided the study: What is the evidence of impairment of motor skills and aspects of motor control among children with ADHD aged between 6 and 16 years? What are the effects of ADHD medication on motor skills and motor control? The following keywords were introduced in the main databases: attention disorder and/or ADHD, motor skills and/or handwriting, children, medication. Of the 45 articles retrieved, 30 described motor skills of children with ADHD and 15 articles analysed the influence of ADHD medication on motor skills and motor control. More than half of the children with ADHD have difficulties with gross and fine motor skills. The children with ADHD inattentive subtype seem to present more impairment of fine motor skills, slow reaction time, and online motor control during complex tasks. The proportion of children with ADHD who improved their motor skills to the normal range by using medication varied from 28% to 67% between studies. The children who still show motor deficit while on medication might meet the diagnostic criteria of developmental coordination disorder (DCD). It is important to assess motor skills among children with ADHD because of the risk of reduced participation in activities of daily living that require motor coordination and attention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Integration of Temporal and Ordinal Information During Serial Interception Sequence Learning

    PubMed Central

    Gobel, Eric W.; Sanchez, Daniel J.; Reber, Paul J.

    2011-01-01

    The expression of expert motor skills typically involves learning to perform a precisely timed sequence of movements (e.g., language production, music performance, athletic skills). Research examining incidental sequence learning has previously relied on a perceptually-cued task that gives participants exposure to repeating motor sequences but does not require timing of responses for accuracy. Using a novel perceptual-motor sequence learning task, learning a precisely timed cued sequence of motor actions is shown to occur without explicit instruction. Participants learned a repeating sequence through practice and showed sequence-specific knowledge via a performance decrement when switched to an unfamiliar sequence. In a second experiment, the integration of representation of action order and timing sequence knowledge was examined. When either action order or timing sequence information was selectively disrupted, performance was reduced to levels similar to completely novel sequences. Unlike prior sequence-learning research that has found timing information to be secondary to learning action sequences, when the task demands require accurate action and timing information, an integrated representation of these types of information is acquired. These results provide the first evidence for incidental learning of fully integrated action and timing sequence information in the absence of an independent representation of action order, and suggest that this integrative mechanism may play a material role in the acquisition of complex motor skills. PMID:21417511

  3. Beneficial effects of an investigational wristband containing Synsepalum dulcificum (miracle fruit) seed oil on the performance of hand and finger motor skills in healthy subjects: A randomized controlled preliminary study.

    PubMed

    Gorin, Steven; Wakeford, Charles; Zhang, Guodong; Sukamtoh, Elvira; Matteliano, Charles Joseph; Finch, Alfred Earl

    2018-02-01

    Miracle fruit (Synsepalum dulcificum) seed oil (MFSO) contains phytochemicals and nutrients reported to affect musculoskeletal performance. The purpose of this study was to assess the safety and efficacy of a compression wristband containing MFSO on its ability to measurably improve the hand and finger motor skills of participants. Healthy right-handed participants (n = 38) were randomized in this double-blind, placebo-controlled study of MFSO and vehicle wristbands. Subjects wore the wristband on their left hand 4-6 weeks and then only on their right hand 2-4 weeks; the contralateral untreated hand served as an additional control. Twelve hand/finger motor skills were measured using quantitative bio-instrumentation tests, and subject self-assessment questionnaires were conducted. With each hand, in 9/12 tests, the MFSO group showed a clinically meaningful average improvement compared with an average worsening in the vehicle group. Statistical superiority to the control treatment group was exhibited in 9/12 tests for each hand (p < .01). After discontinuing the MFSO wristband on the left hand, test values regressed toward baseline levels. Subjects favored the MFSO wristband over the control, rating it as effective in improving their motor skills. Use of the MFSO wristband may improve an individual's manual dexterity skills and ability to maintain this performance. Copyright © 2017 The Authors Phytotherapy Research Published by John Wiley & Sons Ltd.

  4. Influence of mental practice and movement observation on motor memory, cognitive function and motor performance in the elderly

    PubMed Central

    Altermann, Caroline D. C.; Martins, Alexandre S.; Carpes, Felipe P.; Mello-Carpes, Pâmela B.

    2014-01-01

    Background With aging, it is important to maintain cognitive and motor functions to ensure autonomy and quality of life. During the acquisition of motor skills, it is necessary for the elderly to understand the purpose of the proposed activities. Physical and mental practice, as well as demonstrations, are strategies used to learn movements. Objectives To investigate the influence of mental practice and the observation of movement on motor memory and to understand the relationship between cognitive function and motor performance in the execution of a sequence of digital movements in the elderly. Method This was a cross-sectional study conducted with 45 young and 45 aged subjects. The instruments used were Mini-Mental State Examination (MMSE), Manual Preference Inventory and a Digital Motor Task (composed of a training of a sequence of movements, an interval and a test phase). The subjects were divided into three subgroups: control, mental practice and observation of movement. Results The elderly depend more strongly on mental practice for the acquisition of a motor memory. In comparing the performances of people in different age groups, we found that in the elderly, there was a negative correlation between the MMSE score and the execution time as well as the number of errors in the motor task. Conclusions For the elderly, mental practice can advantage motor performance. Also, there is a significant relationship between cognitive function, learning and the execution of new motor skills. PMID:24839046

  5. Effects of Physical Activity on Motor Skills and Cognitive Development in Early Childhood: A Systematic Review

    PubMed Central

    Wen, Xu; Xiang, Ping

    2017-01-01

    Objective This study synthesized literature concerning casual evidence of effects of various physical activity programs on motor skills and cognitive development in typically developed preschool children. Methods Electronic databases were searched through July 2017. Peer-reviewed randomized controlled trials (RCTs) examining the effectiveness of physical activity on motor skills and cognitive development in healthy young children (4–6 years) were screened. Results A total of 15 RCTs were included. Of the 10 studies assessing the effects of physical activity on motor skills, eight (80%) reported significant improvements in motor performance and one observed mixed findings, but one failed to promote any beneficial outcomes. Of the five studies investigating the influence of physical activity on cognitive development, four (80%) showed significant and positive changes in language learning, academic achievement, attention, and working memory. Notably, one indicated no significant improvements were observed after the intervention. Conclusions Findings support causal evidence of effects of physical activity on both motor skills and cognitive development in preschool children. Given the shortage of available studies, future research with large representative samples is warranted to explore the relationships between physical activity and cognitive domains as well as strengthen and confirm the dose-response evidence in early childhood. PMID:29387718

  6. Bend it like Beckham: Embodying the motor skills of famous athletes

    PubMed Central

    Bach, Patric; Tipper, Steven P.

    2007-01-01

    Observing an action activates the same representations as does the actual performance of the action. Here we show for the first time that the action system can also be activated in the complete absence of action perception. When the participants had to identify the faces of famous athletes, the responses were influenced by their similarity to the motor skills of the athletes. Thus, the motor skills of the viewed athletes were retrieved automatically during person identification and had a direct influence on the action system of the observer. However, our results also indicated that motor behaviours that are implicit characteristics of other people are represented differently from when actions are directly observed. That is, unlike the facilitatory effects reported when actions were seen, the embodiment of the motor behaviour that is not concurrently perceived gave rise to contrast effects where responses similar to the behaviour of the athletes were inhibited. PMID:17095484

  7. Bend it like Beckham: embodying the motor skills of famous athletes.

    PubMed

    Bach, Patric; Tipper, Steven P

    2006-12-01

    Observing an action activates the same representations as does the actual performance of the action. Here we show for the first time that the action system can also be activated in the complete absence of action perception. When the participants had to identify the faces of famous athletes, the responses were influenced by their similarity to the motor skills of the athletes. Thus, the motor skills of the viewed athletes were retrieved automatically during person identification and had a direct influence on the action system of the observer. However, our results also indicated that motor behaviours that are implicit characteristics of other people are represented differently from when actions are directly observed. That is, unlike the facilitatory effects reported when actions were seen, the embodiment of the motor behaviour that is not concurrently perceived gave rise to contrast effects where responses similar to the behaviour of the athletes were inhibited.

  8. Superior Visual Search and Crowding Abilities Are Not Characteristic of All Individuals on the Autism Spectrum.

    PubMed

    Lindor, Ebony; Rinehart, Nicole; Fielding, Joanne

    2018-05-22

    Individuals with Autism Spectrum Disorder (ASD) often excel on visual search and crowding tasks; however, inconsistent findings suggest that this 'islet of ability' may not be characteristic of the entire spectrum. We examined whether performance on these tasks changed as a function of motor proficiency in children with varying levels of ASD symptomology. Children with high ASD symptomology outperformed all others on complex visual search tasks, but only if their motor skills were rated at, or above, age expectations. For the visual crowding task, children with high ASD symptomology and superior motor skills exhibited enhanced target discrimination, whereas those with high ASD symptomology but poor motor skills experienced deficits. These findings may resolve some of the discrepancies in the literature.

  9. Can Robots Help the Learning of Skilled Actions?

    PubMed Central

    Reinkensmeyer, David J.; Patton, James L.

    2010-01-01

    Learning to move skillfully requires that the motor system adjusts muscle commands based on ongoing performance errors, a process influenced by the dynamics of the task being practiced. Recent experiments from our laboratories show how robotic devices can temporarily alter task dynamics in ways that contribute to the motor learning experience, suggesting possible applications in rehabilitation and sports training. PMID:19098524

  10. Experts bodies, experts minds: How physical and mental training shape the brain

    PubMed Central

    Debarnot, Ursula; Sperduti, Marco; Di Rienzo, Franck; Guillot, Aymeric

    2014-01-01

    Skill learning is the improvement in perceptual, cognitive, or motor performance following practice. Expert performance levels can be achieved with well-organized knowledge, using sophisticated and specific mental representations and cognitive processing, applying automatic sequences quickly and efficiently, being able to deal with large amounts of information, and many other challenging task demands and situations that otherwise paralyze the performance of novices. The neural reorganizations that occur with expertise reflect the optimization of the neurocognitive resources to deal with the complex computational load needed to achieve peak performance. As such, capitalizing on neuronal plasticity, brain modifications take place over time-practice and during the consolidation process. One major challenge is to investigate the neural substrates and cognitive mechanisms engaged in expertise, and to define “expertise” from its neural and cognitive underpinnings. Recent insights showed that many brain structures are recruited during task performance, but only activity in regions related to domain-specific knowledge distinguishes experts from novices. The present review focuses on three expertise domains placed across a motor to mental gradient of skill learning: sequential motor skill, mental simulation of the movement (motor imagery), and meditation as a paradigmatic example of “pure” mental training. We first describe results on each specific domain from the initial skill acquisition to expert performance, including recent results on the corresponding underlying neural mechanisms. We then discuss differences and similarities between these domains with the aim to identify the highlights of the neurocognitive processes underpinning expertise, and conclude with suggestions for future research. PMID:24847236

  11. Increased neuromuscular consistency in gait and balance after partnered, dance-based rehabilitation in Parkinson's disease.

    PubMed

    Allen, Jessica L; McKay, J Lucas; Sawers, Andrew; Hackney, Madeleine E; Ting, Lena H

    2017-07-01

    Here we examined changes in muscle coordination associated with improved motor performance after partnered, dance-based rehabilitation in individuals with mild to moderate idiopathic Parkinson's disease. Using motor module (a.k.a. muscle synergy) analysis, we identified changes in the modular control of overground walking and standing reactive balance that accompanied clinically meaningful improvements in behavioral measures of balance, gait, and disease symptoms after 3 wk of daily Adapted Tango classes. In contrast to previous studies that revealed a positive association between motor module number and motor performance, none of the six participants in this pilot study increased motor module number despite improvements in behavioral measures of balance and gait performance. Instead, motor modules were more consistently recruited and distinctly organized immediately after rehabilitation, suggesting more reliable motor output. Furthermore, the pool of motor modules shared between walking and reactive balance increased after rehabilitation, suggesting greater generalizability of motor module function across tasks. Our work is the first to show that motor module distinctness, consistency, and generalizability are more sensitive to improvements in gait and balance function after short-term rehabilitation than motor module number. Moreover, as similar differences in motor module distinctness, consistency, and generalizability have been demonstrated previously in healthy young adults with and without long-term motor training, our work suggests commonalities in the structure of muscle coordination associated with differences in motor performance across the spectrum from motor impairment to expertise. NEW & NOTEWORTHY We demonstrate changes in neuromuscular control of gait and balance in individuals with Parkinson's disease after short-term, dance-based rehabilitation. Our work is the first to show that motor module distinctness, consistency, and generalizability across gait and balance are more sensitive than motor module number to improvements in motor performance following short-term rehabilitation. Our results indicate commonalities in muscle coordination improvements associated with motor skill reacquisition due to rehabilitation and motor skill acquisition in healthy individuals. Copyright © 2017 the American Physiological Society.

  12. The Effects of a Performance Base Curriculum on the Gross Motor Development of Preschool Children during Teacher Training: A Pilot Study.

    ERIC Educational Resources Information Center

    van der Mars, Hans; Butterfield, Stephen A.

    This pilot study used a task-analyzed performance base curriculum as an intervention on the gross motor development of 24 children aged three to six, 15 in a treatment group, 9 in a control group. Pre- and post-training data on gross motor development (relating to 10 motor skills) were collected using the Ohio State University Scale of Intra Gross…

  13. Environmental enrichment mitigates the impact of ancestral stress on motor skill and corticospinal tract plasticity.

    PubMed

    McCreary, J Keiko; Erickson, Zachary T; Metz, Gerlinde A S

    2016-10-06

    An adverse fetal environment in utero has been associated with long-term alterations in brain structure and function, and a higher risk of neurological disorders in later life. A common consequence of early adverse experience is impaired motor system function. A causal relationship for stress-associated impairments and a suitable therapy, however, have not been determined yet. To investigate the impact of ancestral stress on corticospinal tract (CST) morphology and fine motor performance in rats, and to determine if adverse programming by ancestral stress can be mitigated by environmental enrichment therapy in rats. The study examined F3 offspring generated by three lineages; one with prenatal stress only in the F1 generation, one with compounding effects of multigenerational prenatal stress, and a non-stress control lineage. F3 offspring from each lineage were injected with biotinylated dextran amine (BDA) into the motor cortex for anterograde tracing of the CST. Examination of the CST revealed reduced axonal density in the ancestrally stressed lineages. These anatomical changes were associated with significant impairments in skilled walking, as indicated by reduced foot placement accuracy and disturbed inter-limb coordination. Therapeutic intervention by environmental enrichment reduced the neuromorphological consequences of ancestral stress and restored skilled walking ability. The data suggest a causal relationship between stress-induced abnormal CST function and loss of fine motor performance. Thus, ancestral stress may be a determinant of motor system development and motor skill. Environmental enrichment may represent an effective intervention for the adverse programming by ancestral stress and trauma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Impairment of motor skills in children with fetal alcohol spectrum disorders in remote Australia: The Lililwan Project.

    PubMed

    Lucas, Barbara R; Doney, Robyn; Latimer, Jane; Watkins, Rochelle E; Tsang, Tracey W; Hawkes, Genevieve; Fitzpatrick, James P; Oscar, June; Carter, Maureen; Elliott, Elizabeth J

    2016-11-01

    We aimed to characterise motor performance in predominantly Aboriginal children living in very remote Australia, where rates of prenatal alcohol exposure (PAE) are high. Motor performance was assessed, and the relationship between motor skills, fetal alcohol spectrum disorders (FASD) and PAE was explored. Motor performance was assessed using the Bruininks-Oseretsky Test of Motor Proficiency-Second Edition Complete Form, in a population-based study of children born in 2002 or 2003 living in the Fitzroy Valley, Western Australia. Composite scores ≥2SD (2nd percentile) and ≥1SD (16th percentile) below the mean were used respectively for FASD diagnosis and referral for treatment. FASD diagnoses were assigned using modified Canadian Guidelines. A total of 108 children (Aboriginal: 98.1%; male: 53%) with a mean age of 8.7 years was assessed. The cohort's mean total motor composite score (mean ± SD 47.2 ± 7.6) approached the Bruininks-Oseretsky Test of Motor Proficiency-Second Edition normative mean (50 ± 10). Motor performance was lower in children with FASD diagnosis than without (mean difference (MD) ± SD: -5.0 ± 1.8; confidence interval: -8.6 to -1.5). There was no difference between children with PAE than without (MD ± SE: -2.2 ± 1.5; confidence interval: -5.1 to 0.80). The prevalence of motor impairment (≥-2SD) was 1.9% in the entire cohort, 9.5% in children with FASD, 3.3% in children with PAE and 0.0% both in children without PAE or FASD. Almost of 10% of children with FASD has significant motor impairment. Evaluation of motor function should routinely be included in assessments for FASD, to document impairment and enable targeted early intervention.[Lucas BR, Doney R, Latimer J, Watkins RE, Tsang TW, Hawkes G, Fitzpatrick JP, Oscar J, Carter M, Elliott EJ. Impairment of motor skills in children with fetal alcohol spectrum disorders in remote Australia: The Lililwan Project. Drug Alcohol Rev 2016;35:719-727]. © 2016 Australasian Professional Society on Alcohol and other Drugs.

  15. Relations among motor, social, and cognitive skills in pre-kindergarten children with developmental disabilities.

    PubMed

    Kim, Helyn; Carlson, Abby G; Curby, Timothy W; Winsler, Adam

    2016-01-01

    Despite the comorbidity between motor difficulties and certain disabilities, limited research has examined links between early motor, cognitive, and social skills in preschool-aged children with developmental disabilities. The present study examined the relative contributions of gross motor and fine motor skills to the prediction of improvements in children's cognitive and social skills among 2,027 pre-kindergarten children with developmental disabilities, including specific learning disorder, speech/language impairment, intellectual disability, and autism spectrum disorder. Results indicated that for pre-kindergarten children with developmental disabilities, fine motor skills, but not gross motor skills, were predictive of improvements in cognitive and social skills, even after controlling for demographic information and initial skill levels. Moreover, depending on the type of developmental disability, the pattern of prediction of gross motor and fine motor skills to improvements in children's cognitive and social skills differed. Implications are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Deficit in implicit motor sequence learning among children and adolescents with spastic cerebral palsy.

    PubMed

    Gofer-Levi, Moran; Silberg, Tamar; Brezner, Amichai; Vakil, Eli

    2013-11-01

    Skill learning (SL) is learning as a result of repeated exposure and practice, which encompasses independent explicit (response to instructions) and implicit (response to hidden regularities) processes. Little is known about the effects of developmental disorders, such as Cerebral Palsy (CP), on the ability to acquire new skills. We compared performance of CP and typically developing (TD) children and adolescents in completing the serial reaction time (SRT) task, which is a motor sequence learning task, and examined the impact of various factors on this performance as indicative of the ability to acquire motor skills. While both groups improved in performance, participants with CP were significantly slower than TD controls and did not learn the implicit sequence. Our results indicate that SL in children and adolescents with CP is qualitatively and quantitatively different than that of their peers. Understanding the unique aspects of SL in children and adolescents with CP might help plan appropriate and efficient interventions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Transfer of motor and perceptual skills from basketball to darts

    PubMed Central

    Rienhoff, Rebecca; Hopwood, Melissa J.; Fischer, Lennart; Strauss, Bernd; Baker, Joseph; Schorer, Jörg

    2013-01-01

    The quiet eye is a perceptual skill associated with expertise and superior performance; however, little is known about the transfer of quiet eye across domains. We attempted to replicate previous skill-based differences in quiet eye and investigated whether transfer of motor and perceptual skills occurs between similar tasks. Throwing accuracy and quiet eye duration for skilled and less-skilled basketball players were examined in basketball free throw shooting and the transfer task of dart throwing. Skilled basketball players showed significantly higher throwing accuracy and longer quiet eye duration in the basketball free throw task compared to their less-skilled counterparts. Further, skilled basketball players showed positive transfer from basketball to dart throwing in accuracy but not in quiet eye duration. Our results raise interesting questions regarding the measurement of transfer between skills. PMID:24062703

  18. Movement skill assessment of typically developing preschool children: a review of seven movement skill assessment tools.

    PubMed

    Cools, Wouter; Martelaer, Kristine De; Samaey, Christiane; Andries, Caroline

    2009-06-01

    The importance of movement is often overlooked because it is such a natural part of human life. It is, however, crucial for a child's physical, cognitive and social development. In addition, experiences support learning and development of fundamental movement skills. The foundations of those skills are laid in early childhood and essential to encourage a physically active lifestyle. Fundamental movement skill performance can be examined with several assessment tools. The choice of a test will depend on the context in which the assessment is planned. This article compares seven assessment tools which are often referred to in European or international context. It discusses the tools' usefulness for the assessment of movement skill development in general population samples. After a brief description of each assessment tool the article focuses on contents, reliability, validity and normative data. A conclusion outline of strengths and weaknesses of all reviewed assessment tools focusing on their use in educational research settings is provided and stresses the importance of regular data collection of fundamental movement skill development among preschool children. Key pointsThis review discusses seven movement skill assessment tool's test content, reliability, validity and normative samples.The seven assessment tools all showed to be of great value. Strengths and weaknesses indicate that test choice will depend on specific purpose of test use.Further data collection should also include larger data samples of able bodied preschool children.Admitting PE specialists in assessment of fundamental movement skill performance among preschool children is recommended.The assessment tool's normative data samples would benefit from frequent movement skill performance follow-up of today's children. MOT 4-6: Motoriktest fur vier- bis sechsjährige Kinder, M-ABC: Movement Assessment Battery for Children, PDMS: Peabody Development Scales, KTK: Körper-Koordinationtest für Kinder, TGDM: Test of Gross Motor Development, MMT: Maastrichtse Motoriektest, BOTMP: Bruininks-Oseretsky Test of Motor Proficiency. ICC: intraclass correlation coefficient, NR: not reported, GM: gross motor, LV: long version, SV: short version, LF: long form, SF: short form, STV: subtest version, SEMs: standard errors of measurement, TMQ: Total Motor Quotient, TMC: Total Motor Composite, CSSA: Comprehensive Scales of Student Abilities MSEL: Mullen Scales of Early learning: AGS Edition AUC: Areas under curve BC: Battery composite ROC: Receiver operating characteristic.

  19. Movement Skill Assessment of Typically Developing Preschool Children: A Review of Seven Movement Skill Assessment Tools

    PubMed Central

    Cools, Wouter; Martelaer, Kristine De; Samaey, Christiane; Andries, Caroline

    2009-01-01

    The importance of movement is often overlooked because it is such a natural part of human life. It is, however, crucial for a child’s physical, cognitive and social development. In addition, experiences support learning and development of fundamental movement skills. The foundations of those skills are laid in early childhood and essential to encourage a physically active lifestyle. Fundamental movement skill performance can be examined with several assessment tools. The choice of a test will depend on the context in which the assessment is planned. This article compares seven assessment tools which are often referred to in European or international context. It discusses the tools’ usefulness for the assessment of movement skill development in general population samples. After a brief description of each assessment tool the article focuses on contents, reliability, validity and normative data. A conclusion outline of strengths and weaknesses of all reviewed assessment tools focusing on their use in educational research settings is provided and stresses the importance of regular data collection of fundamental movement skill development among preschool children. Key pointsThis review discusses seven movement skill assessment tool’s test content, reliability, validity and normative samples.The seven assessment tools all showed to be of great value. Strengths and weaknesses indicate that test choice will depend on specific purpose of test use.Further data collection should also include larger data samples of able bodied preschool children.Admitting PE specialists in assessment of fundamental movement skill performance among preschool children is recommended.The assessment tool’s normative data samples would benefit from frequent movement skill performance follow-up of today’s children. Abbreviations MOT 4-6: Motoriktest fur vier- bis sechsjährige Kinder, M-ABC: Movement Assessment Battery for Children, PDMS: Peabody Development Scales, KTK: Körper-Koordinationtest für Kinder, TGDM: Test of Gross Motor Development, MMT: Maastrichtse Motoriektest, BOTMP: Bruininks-Oseretsky Test of Motor Proficiency. ICC: intraclass correlation coefficient, NR: not reported, GM: gross motor, LV: long version, SV: short version, LF: long form, SF: short form, STV: subtest version, SEMs: standard errors of measurement, TMQ: Total Motor Quotient, TMC: Total Motor Composite, CSSA: Comprehensive Scales of Student Abilities MSEL: Mullen Scales of Early learning: AGS Edition AUC: Areas under curve BC: Battery composite ROC: Receiver operating characteristic PMID:24149522

  20. Mathematics ability and related skills in preschoolers born very preterm.

    PubMed

    Hasler, Holly M; Akshoomoff, Natacha

    2017-12-12

    Children born very preterm (VPT) are at risk for academic, behavioral, and/or emotional problems. Mathematics is a particular weakness and better understanding of the relationship between preterm birth and early mathematics ability is needed, particularly as early as possible to aid in early intervention. Preschoolers born VPT (n = 58) and those born full term (FT; n = 29) were administered a large battery of measures within 6 months of beginning kindergarten. A multiple-mediation model was utilized to characterize the difference in skills underlying mathematics ability between groups. Children born VPT performed significantly worse than FT-born children on a measure of mathematics ability as well as full-scale IQ, verbal skills, visual-motor integration, phonological awareness, phonological working memory, motor skills, and executive functioning. Mathematics was significantly correlated with verbal skills, visual-motor integration, phonological processing, and motor skills across both groups. When entered into the mediation model, verbal skills, visual-motor integration, and phonological awareness were significant mediators of the group differences. This analysis provides insights into the pre-academic skills that are weak in preschoolers born VPT and their relationship to mathematics. It is important to identify children who will have difficulties as early as possible, particularly for VPT children who are at higher risk for academic difficulties. Therefore, this model may be used in evaluating VPT children for emerging difficulties as well as an indicator that if other weaknesses are found, an assessment of mathematics should be conducted.

  1. [Motor Skills of Extremely Obese Children and Adolescents Based on the Multicentre Longitudinal Obesity Database (APV)].

    PubMed

    Koch, B; Graf, C; Hoffmeister, U; Platschek, A-M; Gruber, W; Holl, R

    2016-03-01

    Obese children and adolescents often exhibit progressively declining motor skills. To support young obese patients adequately, it is necessary to assess their individual physical and motor abilities, taking the degree of obesity into account. A total of 5 924 children and adolescents (mean age: 12.7±2.5 years, range 6.0-18.0 years, 3 195 girls) were examined in a standardised multicentre evaluation survey (APV). Fitness parameters were correlated with age- and gender-specific BMI-SDS (Standard Deviation Score) Methods: Anthropometric data were collected and patients performed the modified Munich fitness test (mMFT: maximal power, coordination, trunk flexibility) and a 6-min walk-test (aerobic endurance capacity). 33% of patients were extremely obese (BMI>99.5th percentile). Mean BMI-SDS was + 2.32±0.53 (♀-Δ=+ 0.06; p<0.001). The data indicated significant negative correlations between BMI-SDS and selected components of motor performance, especially maximal power (r=- 0,134), and particularly aerobic endurance capacity (r=- 0,214; all p<0.001). Motor performance was significantly below average (n=27 473, 6-18 years), especially among extremely obese patients. Performance in all motor tasks was lower in girls compared to boys, except for trunk flexibility (p<0.001). Correlations were found between BMI-SDS and motor performance. Extremely obese patients and obese girls showed the most pronounced motor deficits. These results emphasize the importance of standardized evaluation of individual motor performance in children and adolescents with obesity. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Developing an eBook-Integrated High-Fidelity Mobile App Prototype for Promoting Child Motor Skills and Taxonomically Assessing Children’s Emotional Responses Using Face and Sound Topology

    PubMed Central

    Brown, William; Liu, Connie; John, Rita Marie; Ford, Phoebe

    2014-01-01

    Developing gross and fine motor skills and expressing complex emotion is critical for child development. We introduce “StorySense”, an eBook-integrated mobile app prototype that can sense face and sound topologies and identify movement and expression to promote children’s motor skills and emotional developmental. Currently, most interactive eBooks on mobile devices only leverage “low-motor” interaction (i.e. tapping or swiping). Our app senses a greater breath of motion (e.g. clapping, snapping, and face tracking), and dynamically alters the storyline according to physical responses in ways that encourage the performance of predetermined motor skills ideal for a child’s gross and fine motor development. In addition, our app can capture changes in facial topology, which can later be mapped using the Facial Action Coding System (FACS) for later interpretation of emotion. StorySense expands the human computer interaction vocabulary for mobile devices. Potential clinical applications include child development, physical therapy, and autism. PMID:25954336

  3. What Does the DAP:IQ Measure?: Drawing Comparisons between Drawing Performance and Developmental Assessments.

    PubMed

    Rehrig, Gwendolyn; Stromswold, Karin

    2018-01-01

    Human figure drawing tasks such as the Draw-a-Person test have long been used to assess intelligence (F. Goodenough, 1926). The authors investigate the skills tapped by drawing and the risk factors associated with poor drawing. Self-portraits of 345 preschool children were scored by raters trained in using the Draw-a-Person Intellectual Ability test (DAP:IQ) rubric (C. R. Reynolds & J. A. Hickman, 2004). Analyses of children's fine motor, gross motor, social, cognitive, and language skills revealed that only fine motor skill was an independent predictor of DAP:IQ scores. Being a boy and having a low birth weight were associated with lower DAP:IQ scores. These findings suggest that although the DAP:IQ may not be a valid measure of cognitive ability, it may be a useful screening tool for fine motor disturbances in at-risk children, such as boys who were born at low birth weights. Furthermore, researchers who use human figure drawing tasks to measure intelligence should measure fine motor skill in addition to intelligence.

  4. Reliability and validity of the adapted Resistance Training Skills Battery for Children.

    PubMed

    Furzer, Bonnie J; Bebich-Philip, Marc D; Wright, Kemi E; Reid, Siobhan L; Thornton, Ashleigh L

    2017-12-29

    Resistance training (RT) is emerging as a training modality to improve motor function and facilitate physical activity participation in children across the motor proficiency spectrum. Although RT competency assessments have been established and validated among adolescent cohorts, the extent to which these methods are suitable for assessing children's RT skills is unknown. This project aimed to assess the psychometric properties of the adapted Resistance Training Skills Battery for Children (RTSBc), in children with varying motor proficiency. Repeated measures design with 40 participants (M age=8.2±1.7years) displaying varying levels of motor proficiency. Participants performed the adapted RTSBc on two occasions, receiving a score for their execution of each component, in addition to an overall RT skill quotient child (RTSQc). Cronbach's alpha, intra-class correlation (ICC), Bland-Altman analysis, and typical error were used to assess test-retest reliability. To examine construct validity, exploratory factor analysis was performed alongside computing correlations between participants' muscle strength, motor proficiency, age, lean muscle mass, and RTSQc. The RTSBc displayed an acceptable level of internal consistency (alpha=0.86) and test-retest reliability (ICC range=0.86-0.99). Exploratory factor analysis supported internal test structure, with all six RT skills loading strongly on a single factor (range 0.56-0.89). Analyses of structural validity revealed positive correlations for RTSQc in relation to motor proficiency (r=0.52, p<0.001) and strength scores (r=0.61, p<0.001). Analyses revealed support for the construct validity and test-retest reliability of the RTSBc, providing preliminary evidence that the RTSBc is appropriate for use in the assessment of children's RT competency. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Reliability of the test of gross motor development second edition (TGMD-2) for Kindergarten children in Myanmar

    PubMed Central

    Aye, Thanda; Oo, Khin Saw; Khin, Myo Thuzar; Kuramoto-Ahuja, Tsugumi; Maruyama, Hitoshi

    2017-01-01

    [Purpose] The purpose of this study was to investigate reliability of the test of gross motor development second edition (TGMD-2) for Kindergarten children in Myanmar. [Subjects and Methods] Fifty healthy Kindergarten children (23 males, 27 females) whose parents/guardians had given written consent were participated. The subjects were explained and demonstrated all 12 gross motor skills of TGMD-2 before the assessment. Each subject individually performed two trials for each gross motor skill and the performance was video recorded. Three raters separately watched the video recordings and rated for inter-rater reliability. The second assessment was done one month later with 25 out of 50 subjects for test-rest reliability. The video recordings of 12 subjects were randomly selected from the first 50 recordings for intra-rater reliability six weeks after the first assessment. The agreement on the locomotor and object control raw scores and the gross motor quotient (GMQ) were calculated. [Results] The findings of all the reliability coefficients for the locomotor and object control raw scores and the GMQ were interpreted as good and excellent reliability. [Conclusion] The results represented that TGMD-2 is a highly reliable and appropriate assessment tool for assessing gross motor skill development of Kindergarten children in Myanmar. PMID:29184278

  6. Reliability of the test of gross motor development second edition (TGMD-2) for Kindergarten children in Myanmar.

    PubMed

    Aye, Thanda; Oo, Khin Saw; Khin, Myo Thuzar; Kuramoto-Ahuja, Tsugumi; Maruyama, Hitoshi

    2017-10-01

    [Purpose] The purpose of this study was to investigate reliability of the test of gross motor development second edition (TGMD-2) for Kindergarten children in Myanmar. [Subjects and Methods] Fifty healthy Kindergarten children (23 males, 27 females) whose parents/guardians had given written consent were participated. The subjects were explained and demonstrated all 12 gross motor skills of TGMD-2 before the assessment. Each subject individually performed two trials for each gross motor skill and the performance was video recorded. Three raters separately watched the video recordings and rated for inter-rater reliability. The second assessment was done one month later with 25 out of 50 subjects for test-rest reliability. The video recordings of 12 subjects were randomly selected from the first 50 recordings for intra-rater reliability six weeks after the first assessment. The agreement on the locomotor and object control raw scores and the gross motor quotient (GMQ) were calculated. [Results] The findings of all the reliability coefficients for the locomotor and object control raw scores and the GMQ were interpreted as good and excellent reliability. [Conclusion] The results represented that TGMD-2 is a highly reliable and appropriate assessment tool for assessing gross motor skill development of Kindergarten children in Myanmar.

  7. The effect of haptic guidance and visual feedback on learning a complex tennis task.

    PubMed

    Marchal-Crespo, Laura; van Raai, Mark; Rauter, Georg; Wolf, Peter; Riener, Robert

    2013-11-01

    While haptic guidance can improve ongoing performance of a motor task, several studies have found that it ultimately impairs motor learning. However, some recent studies suggest that the haptic demonstration of optimal timing, rather than movement magnitude, enhances learning in subjects trained with haptic guidance. Timing of an action plays a crucial role in the proper accomplishment of many motor skills, such as hitting a moving object (discrete timing task) or learning a velocity profile (time-critical tracking task). The aim of the present study is to evaluate which feedback conditions-visual or haptic guidance-optimize learning of the discrete and continuous elements of a timing task. The experiment consisted in performing a fast tennis forehand stroke in a virtual environment. A tendon-based parallel robot connected to the end of a racket was used to apply haptic guidance during training. In two different experiments, we evaluated which feedback condition was more adequate for learning: (1) a time-dependent discrete task-learning to start a tennis stroke and (2) a tracking task-learning to follow a velocity profile. The effect that the task difficulty and subject's initial skill level have on the selection of the optimal training condition was further evaluated. Results showed that the training condition that maximizes learning of the discrete time-dependent motor task depends on the subjects' initial skill level. Haptic guidance was especially suitable for less-skilled subjects and in especially difficult discrete tasks, while visual feedback seems to benefit more skilled subjects. Additionally, haptic guidance seemed to promote learning in a time-critical tracking task, while visual feedback tended to deteriorate the performance independently of the task difficulty and subjects' initial skill level. Haptic guidance outperformed visual feedback, although additional studies are needed to further analyze the effect of other types of feedback visualization on motor learning of time-critical tasks.

  8. Fine Motor Skill Mediates Visual Memory Ability with Microstructural Neuro-correlates in Cerebellar Peduncles in Prematurely Born Adolescents.

    PubMed

    Thomas, Alyssa R; Lacadie, Cheryl; Vohr, Betty; Ment, Laura R; Scheinost, Dustin

    2017-01-01

    Adolescents born preterm (PT) with no evidence of neonatal brain injury are at risk of deficits in visual memory and fine motor skills that diminish academic performance. The association between these deficits and white matter microstructure is relatively unexplored. We studied 190 PTs with no brain injury and 92 term controls at age 16 years. The Rey-Osterrieth Complex Figure Test (ROCF), the Beery visual-motor integration (VMI), and the Grooved Pegboard Test (GPT) were collected for all participants, while a subset (40 PTs and 40 terms) underwent diffusion-weighted magnetic resonance imaging. PTs performed more poorly than terms on ROCF, VMI, and GPT (all P < 0.01). Mediation analysis showed fine motor skill (GPT score) significantly mediates group difference in ROCF and VMI (all P < 0.001). PTs showed a negative correlation (P < 0.05, corrected) between fractional anisotropy (FA) in the bilateral middle cerebellar peduncles and GPT score, with higher FA correlating to lower (faster task completion) GPT scores, and between FA in the right superior cerebellar peduncle and ROCF scores. PTs also had a positive correlation (P < 0.05, corrected) between VMI and left middle cerebellar peduncle FA. Novel strategies to target fine motor skills and the cerebellum may help PTs reach their full academic potential. © The Author 2017. Published by Oxford University Press.

  9. Cognitive and neural foundations of discrete sequence skill: a TMS study.

    PubMed

    Ruitenberg, Marit F L; Verwey, Willem B; Schutter, Dennis J L G; Abrahamse, Elger L

    2014-04-01

    Executing discrete movement sequences typically involves a shift with practice from a relatively slow, stimulus-based mode to a fast mode in which performance is based on retrieving and executing entire motor chunks. The dual processor model explains the performance of (skilled) discrete key-press sequences in terms of an interplay between a cognitive processor and a motor system. In the present study, we tested and confirmed the core assumptions of this model at the behavioral level. In addition, we explored the involvement of the pre-supplementary motor area (pre-SMA) in discrete sequence skill by applying inhibitory 20 min 1-Hz off-line repetitive transcranial magnetic stimulation (rTMS). Based on previous work, we predicted pre-SMA involvement in the selection/initiation of motor chunks, and this was confirmed by our results. The pre-SMA was further observed to be more involved in more complex than in simpler sequences, while no evidence was found for pre-SMA involvement in direct stimulus-response translations or associative learning processes. In conclusion, support is provided for the dual processor model, and for pre-SMA involvement in the initiation of motor chunks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Sleep-dependent learning and motor-skill complexity

    PubMed Central

    Kuriyama, Kenichi; Stickgold, Robert; Walker, Matthew P.

    2004-01-01

    Learning of a procedural motor-skill task is known to progress through a series of unique memory stages. Performance initially improves during training, and continues to improve, without further rehearsal, across subsequent periods of sleep. Here, we investigate how this delayed sleep-dependent learning is affected when the task characteristics are varied across several degrees of difficulty, and whether this improvement differentially enhances individual transitions of the motor-sequence pattern being learned. We report that subjects show similar overnight improvements in speed whether learning a five-element unimanual sequence (17.7% improvement), a nine-element unimanual sequence (20.2%), or a five-element bimanual sequence (17.5%), but show markedly increased overnight improvement (28.9%) with a nine-element bimanual sequence. In addition, individual transitions within the motor-sequence pattern that appeared most difficult at the end of training showed a significant 17.8% increase in speed overnight, whereas those transitions that were performed most rapidly at the end of training showed only a non-significant 1.4% improvement. Together, these findings suggest that the sleep-dependent learning process selectively provides maximum benefit to motor-skill procedures that proved to be most difficult prior to sleep. PMID:15576888

  11. Infant Motor Skills After a Cardiac Operation: The Need for Developmental Monitoring and Care.

    PubMed

    Uzark, Karen; Smith, Cynthia; Donohue, Janet; Yu, Sunkyung; Romano, Jennifer C

    2017-08-01

    Neurodevelopmental dysfunction is increasingly recognized as a common outcome of congenital heart defects and their treatment in infancy. The effects of the intensive care unit (ICU) experience and environment on these infants are unknown and potentially modifiable, but no validated metric is available for objective evaluation of early motor impairments in the ICU/hospital setting. The purpose of this study was to characterize the motor status of hospitalized infants after cardiac operations, including the development and field-testing of the Congenital Heart Assessment of Sensory and Motor Status (CHASMS) metric. CHASMS item generation was based on review of the literature, focused interviews with parents, and expert consensus. A nurse administered CHASMS to 100 infants aged younger than 10 months old undergoing cardiac operations. Preoperative and postoperative CHASMS scores were compared, and associations between CHASMS scores and patient characteristics were examined. Physical therapists assessed neuromotor skills by using the Test of Infant Motor Performance or the Alberta Infant Motor Scales for correlation with CHASMS scores. CHASMS gross motor scores declined postoperatively in 64% (25 of 39). Lower CHASMS scores, after adjusting for age, were associated with longer duration of mechanical ventilation (p < 0.001) and ICU length of stay (p = 0.001). Gross motor CHASMS scores were significantly correlated with Test of Infant Motor Performance (r = 0.70, p < 0.001) and Alberta Infant Motor Scales scores (r = 0.88, p < 0.001). Motor impairments in infants after cardiac operations are common and may be exacerbated by longer intubation and prolonged exposure to the ICU environment. The feasibility, reliability, and validity of CHASMS were supported for the evaluation of motor skills in this at-risk population. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  12. Volumetric Effects of Motor Cortex Injury on Recovery of Ipsilesional Dexterous Movements

    PubMed Central

    Darling, Warren G.; Pizzimenti, Marc A.; Hynes, Stephanie M.; Rotella, Diane L.; Headley, Grant; Ge, Jizhi; Stilwell-Morecraft, Kimberly S.; McNeal, David W.; Solon-Cline, Kathryn M.; Morecraft, Robert J.

    2011-01-01

    Damage to the motor cortex of one hemisphere has classically been associated with contralateral upper limb paresis, but recent patient studies have identified deficits in both upper limbs. In non-human primates, we tested the hypothesis that the severity of ipsilesional upper limb motor impairment in the early post-injury phase depends on the volume of gray and white matter damage of the motor areas of the frontal lobe. We also postulated that substantial recovery would accompany minimal task practice and that ipsilesional limb recovery would be correlated with recovery of the contralesional limb. Gross (reaching) and fine hand motor functions were assessed for 3-12 months post-injury using two motor tests. Volumes of white and gray matter lesions were assessed using quantitative histology. Early changes in post-lesion motor performance were inversely correlated with white matter lesion volume indicating that larger lesions produced greater decreases in ipsilesional hand movement control. All monkeys showed improvements in ipsilesional hand motor skill during the post-lesion period, with reaching skill improvements being positively correlated with total lesion volume indicating larger lesions were associate with greater ipsilesional motor skill recovery. We suggest that reduced trans-callosal inhibition from the lesioned hemisphere may play a role in the observed skill improvements. Our findings show that significant ipsilesional hand motor recovery is likely to accompany injury limited to frontal motor areas. In humans, more pronounced ipsilesional motor deficits that invariably develop after stroke may, in part, be a consequence of more extensive subcortical white and gray matter damage. PMID:21703261

  13. Shared and differentiated motor skill impairments in children with dyslexia and/or attention deficit disorder: From simple to complex sequential coordination

    PubMed Central

    Morin-Moncet, Olivier; Bélanger, Anne-Marie; Beauchamp, Miriam H.; Leonard, Gabriel

    2017-01-01

    Dyslexia and Attention deficit disorder (AD) are prevalent neurodevelopmental conditions in children and adolescents. They have high comorbidity rates and have both been associated with motor difficulties. Little is known, however, about what is shared or differentiated in dyslexia and AD in terms of motor abilities. Even when motor skill problems are identified, few studies have used the same measurement tools, resulting in inconstant findings. The present study assessed increasingly complex gross motor skills in children and adolescents with dyslexia, AD, and with both Dyslexia and AD. Our results suggest normal performance on simple motor-speed tests, whereas all three groups share a common impairment on unimanual and bimanual sequential motor tasks. Children in these groups generally improve with practice to the same level as normal subjects, though they make more errors. In addition, children with AD are the most impaired on complex bimanual out-of-phase movements and with manual dexterity. These latter findings are examined in light of the Multiple Deficit Model. PMID:28542319

  14. The effects of shift work and time of day on fine motor control during handwriting.

    PubMed

    Hölzle, Patricia; Hermsdörfer, Joachim; Vetter, Céline

    2014-01-01

    Handwriting is an elaborate and highly automatised skill relying on fine motor control. In laboratory conditions handwriting kinematics are modulated by the time of day. This study investigated handwriting kinematics in a rotational shift system and assessed whether similar time of day fluctuations at the work place can be observed. Handwriting performance was measured in two tasks of different levels of complexity in 34 shift workers across morning (6:00-14:00), evening (14:00-22:00) and night shifts (22:00-6:00). Participants were tested during all three shifts in 2-h intervals with mobile testing devices. We calculated average velocity, script size and writing frequency to quantify handwriting kinematics and fluency. Average velocity and script size were significantly affected by the shift work schedule with the worst performance during morning shifts and the best performance during evening shifts. Our data are of high economic relevance as fine motor skills are indispensable for accurate and effective production at the work place. Handwriting is one of the most complex fine motor skills in humans, which is frequently performed in daily life. In this study, we tested handwriting repeatedly at the work place in a rotational shift system. We found slower handwriting velocity and reduced script size during morning shifts.

  15. Impact of familiar and unfamiliar settings on cooking task assessments in frail older adults with poor and preserved executive functions.

    PubMed

    Provencher, Véronique; Demers, Louise; Gagnon, Lise; Gélinas, Isabelle

    2012-05-01

    Hospitalized frail older patients are usually assessed for their ability to perform some daily living activities in a clinical setting prior to discharge. However, assessments that take place in this unfamiliar environment might not be as representative of their functional performance as assessments at home. This may be related to a decline in some cognitive components, such as executive functions (EF), which enable one to cope with new environments. This study thus aims to compare cooking task performance in familiar and unfamiliar settings in a population of frail older adults with poor and preserved EF. Thirty-seven frail older adults were assigned to one of two groups: poor EF or preserved EF. Participants performed two cooking tasks in familiar and unfamiliar settings, using a counterbalanced design. Their performance was assessed with a reliable tool based on observation of motor and process skills (Assessment of Motor and Process Skills). Thirty-three participants were retained for analysis. They demonstrated significantly better motor skills (F = 5.536; p = 0.025) and process skills (F = 8.149; p = 0.008) in the familiar setting. The difference between settings was particularly marked for process skills in participants with poor EF (F = 16.920; p < 0.001). This study suggests that a home setting may be preferable for a more accurate assessment of cooking task performance in frail older adults, especially those with poor EF. These findings highlight the risk of underestimating frail older adults' performance when assessed in an unfamiliar setting (e.g. hospital), which could lead to inefficient allocation of home care services.

  16. Perception-action coupling in complex game play: Exploring the quiet eye in contested basketball jump shots.

    PubMed

    Klostermann, André; Panchuk, Derek; Farrow, Damian

    2018-05-01

    The duration of the final fixation before movement initiation - a gaze strategy labelled quiet eye - has been found to explain differences in motor expertise and performance in precision tasks. To date, research only addressed this phenomenon in situations without adversarial constraints. In the present study, we compared the quiet-eye behaviour of intermediately-skilled and highly-skilled basketball players in defended vs. undefended game situations. We predicted differences in quiet-eye duration as a function of skill and performance particularly resulting from late quiet-eye offsets. Results indicated performance-enhancing effects of long quiet-eye durations in the defended but not in the undefended game situation. Furthermore, in line with our prediction, later quiet-eye offsets were associated with superior performance elucidating the phenomenon's relevance in online-demanding motor tasks. Further, earlier quiet-eye onsets were linked to successful performance supporting earlier suggestions that it is not only the duration but also the timing that matters. These findings not only extend the positive effects of the quiet eye in motor performance to dynamic game-play situations but also support the role of the quiet eye in response to programming and information processing respectively.

  17. 49 CFR 240.215 - Retaining information supporting determinations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...; (3) Any relevant data furnished by a governmental agency concerning the person's motor vehicle... administered. (e) The information concerning demonstrated performance skills that the railroad shall retain... the performance skills test(s) that documents the relevant operating facts on which the evaluation is...

  18. The relationship between motor skills and cognitive skills in 4-16 year old typically developing children: A systematic review.

    PubMed

    van der Fels, Irene M J; Te Wierike, Sanne C M; Hartman, Esther; Elferink-Gemser, Marije T; Smith, Joanne; Visscher, Chris

    2015-11-01

    This review aims to give an overview of studies providing evidence for a relationship between motor and cognitive skills in typically developing children. A systematic review. PubMed, Web of Science, and PsychINFO were searched for relevant articles. A total of 21 articles were included in this study. Methodological quality was independently assessed by two reviewers. Motor and cognitive skills were divided into six categories. There was either no correlation in the literature, or insufficient evidence for or against many correlations between motor skills and cognitive skills. However, weak-to-strong evidence was found for some correlations between underlying categories of motor and cognitive skills, including complex motor skills and higher order cognitive skills. Furthermore, a stronger relationship between underlying categories of motor and cognitive skills was found in pre-pubertal children compared to pubertal children (older than 13 years). Weak-to-strong relations were found between some motor and cognitive skills. The results suggest that complex motor intervention programs can be used to stimulate both motor and higher order cognitive skills in pre-pubertal children. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  19. Handwriting Development, Competency, and Intervention

    ERIC Educational Resources Information Center

    Feder, Katya P.; Majnemer, Annette

    2007-01-01

    Failure to attain handwriting competency during the school-age years often has far-reaching negative effects on both academic success and self-esteem. This complex occupational task has many underlying component skills that may interfere with handwriting performance. Fine motor control, bilateral and visual-motor integration, motor planning,…

  20. Relationships between Fine-Motor, Visual-Motor, and Visual Perception Scores and Handwriting Legibility and Speed

    ERIC Educational Resources Information Center

    Klein, Sheryl; Guiltner, Val; Sollereder, Patti; Cui, Ying

    2011-01-01

    Occupational therapists assess fine motor, visual motor, visual perception, and visual skill development, but knowledge of the relationships between scores on sensorimotor performance measures and handwriting legibility and speed is limited. Ninety-nine students in grades three to six with learning and/or behavior problems completed the Upper-Limb…

  1. Effect of Wii-intervention on balance of children with poor motor performance.

    PubMed

    Mombarg, Remo; Jelsma, Dorothee; Hartman, Esther

    2013-09-01

    The purpose of this study was to investigate the effects of training with the Wii-balance board on balance and balance-related skills of children with poor motor performance. Twenty-nine children (23 boys, 6 girls; aged 7-12 years) participated in this study and were randomly assigned to an experimental and control group. All children scored below the 16th percentile on a standardized test of motor ability and balance skills (Movement Assessment Battery for children (M-ABC-2)). Before and after a six-week Wii-intervention (M=8h, 22 min, SD=53 min), the balance skills of the experimental group and control group were measured with the M-ABC-2 and the Bruininks-Oseretsky test of motor proficiency (BOT-2). Both groups improved on all tests. The M-ABC-2 and the BOT-2 total balance-scores of the experimental group improved significantly from pre to post intervention, whereas those of the control group showed no significant progress. This resulted in significant interaction-effects, favoring the experimental children. No transfer-effects of the intervention on balance-related skills were demonstrated. Our findings showed that the Wii-balance board is an effective intervention for children with poor balance control. Further development and investigation of the intervention could be directed toward the implementation of the newly acquired balance-skills in daily life. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Efficacy of a perceptual and visual-motor skill intervention program for students with dyslexia.

    PubMed

    Fusco, Natália; Germano, Giseli Donadon; Capellini, Simone Aparecida

    2015-01-01

    To verify the efficacy of a perceptual and visual-motor skill intervention program for students with dyslexia. The participants were 20 students from third to fifth grade of a public elementary school in Marília, São Paulo, aged from 8 years to 11 years and 11 months, distributed into the following groups: Group I (GI; 10 students with developmental dyslexia) and Group II (GII; 10 students with good academic performance). A perceptual and visual-motor intervention program was applied, which comprised exercises for visual-motor coordination, visual discrimination, visual memory, visual-spatial relationship, shape constancy, sequential memory, visual figure-ground coordination, and visual closure. In pre- and post-testing situations, both groups were submitted to the Test of Visual-Perceptual Skills (TVPS-3), and the quality of handwriting was analyzed using the Dysgraphia Scale. The analyzed statistical results showed that both groups of students had dysgraphia in pretesting situation. In visual perceptual skills, GI presented a lower performance compared to GII, as well as in the quality of writing. After undergoing the intervention program, GI increased the average of correct answers in TVPS-3 and improved the quality of handwriting. The developed intervention program proved appropriate for being applied to students with dyslexia, and showed positive effects because it provided improved visual perception skills and quality of writing for students with developmental dyslexia.

  3. Teaching Striking Skills in Elementary Physical Education Using Woodball

    ERIC Educational Resources Information Center

    Chang, Seung Ho; Lee, Jihyun

    2017-01-01

    Object control (OC) skills are a part of fundamental motor skills and basic functional skills, which work as a prerequisite to becoming a skilled performer in many sports. Of various OC skills, striking is one of the most difficult to master due to a variety of interrelated movement components. A form of vertical or underarm striking is a more…

  4. The Importance of Visual Feedback Design in BCIs; from Embodiment to Motor Imagery Learning

    PubMed Central

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2016-01-01

    Brain computer interfaces (BCIs) have been developed and implemented in many areas as a new communication channel between the human brain and external devices. Despite their rapid growth and broad popularity, the inaccurate performance and cost of user-training are yet the main issues that prevent their application out of the research and clinical environment. We previously introduced a BCI system for the control of a very humanlike android that could raise a sense of embodiment and agency in the operators only by imagining a movement (motor imagery) and watching the robot perform it. Also using the same setup, we further discovered that the positive bias of subjects’ performance both increased their sensation of embodiment and improved their motor imagery skills in a short period. In this work, we studied the shared mechanism between the experience of embodiment and motor imagery. We compared the trend of motor imagery learning when two groups of subjects BCI-operated different looking robots, a very humanlike android’s hands and a pair of metallic gripper. Although our experiments did not show a significant change of learning between the two groups immediately during one session, the android group revealed better motor imagery skills in the follow up session when both groups repeated the task using the non-humanlike gripper. This result shows that motor imagery skills learnt during the BCI-operation of humanlike hands are more robust to time and visual feedback changes. We discuss the role of embodiment and mirror neuron system in such outcome and propose the application of androids for efficient BCI training. PMID:27598310

  5. The Importance of Visual Feedback Design in BCIs; from Embodiment to Motor Imagery Learning.

    PubMed

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2016-01-01

    Brain computer interfaces (BCIs) have been developed and implemented in many areas as a new communication channel between the human brain and external devices. Despite their rapid growth and broad popularity, the inaccurate performance and cost of user-training are yet the main issues that prevent their application out of the research and clinical environment. We previously introduced a BCI system for the control of a very humanlike android that could raise a sense of embodiment and agency in the operators only by imagining a movement (motor imagery) and watching the robot perform it. Also using the same setup, we further discovered that the positive bias of subjects' performance both increased their sensation of embodiment and improved their motor imagery skills in a short period. In this work, we studied the shared mechanism between the experience of embodiment and motor imagery. We compared the trend of motor imagery learning when two groups of subjects BCI-operated different looking robots, a very humanlike android's hands and a pair of metallic gripper. Although our experiments did not show a significant change of learning between the two groups immediately during one session, the android group revealed better motor imagery skills in the follow up session when both groups repeated the task using the non-humanlike gripper. This result shows that motor imagery skills learnt during the BCI-operation of humanlike hands are more robust to time and visual feedback changes. We discuss the role of embodiment and mirror neuron system in such outcome and propose the application of androids for efficient BCI training.

  6. Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke.

    PubMed

    Wessel, Maximilian J; Zimerman, Máximo; Hummel, Friedhelm C

    2015-01-01

    Stroke is the leading cause of disability among adults. Motor deficit is the most common impairment after stroke. Especially, deficits in fine motor skills impair numerous activities of daily life. Re-acquisition of motor skills resulting in improved or more accurate motor performance is paramount to regain function, and is the basis of behavioral motor therapy after stroke. Within the past years, there has been a rapid technological and methodological development in neuroimaging leading to a significant progress in the understanding of the neural substrates that underlie motor skill acquisition and functional recovery in stroke patients. Based on this and the development of novel non-invasive brain stimulation (NIBS) techniques, new adjuvant interventional approaches that augment the response to behavioral training have been proposed. Transcranial direct current, transcranial magnetic, and paired associative (PAS) stimulation are NIBS techniques that can modulate cortical excitability, neuronal plasticity and interact with learning and memory in both healthy individuals and stroke patients. These techniques can enhance the effect of practice and facilitate the retention of tasks that mimic daily life activities. The purpose of the present review is to provide a comprehensive overview of neuroplastic phenomena in the motor system during learning of a motor skill, recovery after brain injury, and of interventional strategies to enhance the beneficial effects of customarily used neurorehabilitation after stroke.

  7. Non-Invasive Brain Stimulation: An Interventional Tool for Enhancing Behavioral Training after Stroke

    PubMed Central

    Wessel, Maximilian J.; Zimerman, Máximo; Hummel, Friedhelm C.

    2015-01-01

    Stroke is the leading cause of disability among adults. Motor deficit is the most common impairment after stroke. Especially, deficits in fine motor skills impair numerous activities of daily life. Re-acquisition of motor skills resulting in improved or more accurate motor performance is paramount to regain function, and is the basis of behavioral motor therapy after stroke. Within the past years, there has been a rapid technological and methodological development in neuroimaging leading to a significant progress in the understanding of the neural substrates that underlie motor skill acquisition and functional recovery in stroke patients. Based on this and the development of novel non-invasive brain stimulation (NIBS) techniques, new adjuvant interventional approaches that augment the response to behavioral training have been proposed. Transcranial direct current, transcranial magnetic, and paired associative (PAS) stimulation are NIBS techniques that can modulate cortical excitability, neuronal plasticity and interact with learning and memory in both healthy individuals and stroke patients. These techniques can enhance the effect of practice and facilitate the retention of tasks that mimic daily life activities. The purpose of the present review is to provide a comprehensive overview of neuroplastic phenomena in the motor system during learning of a motor skill, recovery after brain injury, and of interventional strategies to enhance the beneficial effects of customarily used neurorehabilitation after stroke. PMID:26029083

  8. Mathematical Skills and Motor Life Skills in Toddlers: Do Differences in Mathematical Skills Reflect Differences in Motor Skills?

    ERIC Educational Resources Information Center

    Reikerås, Elin; Moser, Thomas; Tønnessen, Finn Egil

    2017-01-01

    This study examines possible relations between early mathematical skills and motor life skills in 450 toddlers aged two years and nine months. The study employs baseline data from the longitudinal Stavanger Project--The Learning Child. The children's mathematical skills and motor life skills were assessed by structured observation in the natural…

  9. Motor Skill Competence and Perceived Motor Competence: Which Best Predicts Physical Activity among Girls?

    PubMed

    Khodaverdi, Zeinab; Bahram, Abbas; Khalaji, Hassan; Kazemnejad, Anoshirvan

    2013-10-01

    The main purpose of this study was to determine which correlate, perceived motor competence or motor skill competence, best predicts girls' physical activity behavior. A sample of 352 girls (mean age=8.7, SD=0.3 yr) participated in this study. To assess motor skill competence and perceived motor competence, each child completed the Test of Gross Motor Development-2 and Physical Ability sub-scale of Marsh's Self-Description Questionnaire. Children's physical activity was assessed by the Physical Activity Questionnaire for Older Children. Multiple linear regression model was used to determine whether perceived motor competence or motor skill competence best predicts moderate-to-vigorous self-report physical activity. Multiple regression analysis indicated that motor skill competence and perceived motor competence predicted 21% variance in physical activity (R(2)=0.21, F=48.9, P=0.001), and motor skill competence (R(2)=0.15, ᵝ=0.33, P= 0.001) resulted in more variance than perceived motor competence (R(2)=0.06, ᵝ=0.25, P=0.001) in physical activity. Results revealed motor skill competence had more influence in comparison with perceived motor competence on physical activity level. We suggest interventional programs based on motor skill competence and perceived motor competence should be administered or implemented to promote physical activity in young girls.

  10. Children benefit differently from night- and day-time sleep in motor learning.

    PubMed

    Yan, Jin H

    2017-08-01

    Motor skill acquisition occurs while practicing (on-line) and when asleep or awake (off-line). However, developmental questions still remain about whether children of various ages benefit similarly or differentially from night- and day-time sleeping. The likely circadian effects (time-of-day) and the possible between-test-interference (order effects) associated with children's off-line motor learning are currently unknown. Therefore, this study examines the contributions of over-night sleeping and mid-day napping to procedural skill learning. One hundred and eight children were instructed to practice a finger sequence task using computer keyboards. After an equivalent 11-h interval in one of the three states (sleep, nap, wakefulness), children performed the same sequence in retention tests and a novel sequence in transfer tests. Changes in the movement time and sequence accuracy were evaluated between ages (6-7, 8-9, 10-11years) during practice, and from skill training to retrievals across three states. Results suggest that night-time sleeping and day-time napping improved the tapping speed, especially for the 6-year-olds. The circadian factor did not affect off-line motor learning in children. The interference between the two counter-balanced retrieval tests was not found for the off-line motor learning. This research offers possible evidence about the age-related motor learning characteristics in children and a potential means for enhancing developmental motor skills. The dynamics between age, experience, memory formation, and the theoretical implications of motor skill acquisition are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. iPad applications that required a range of motor skills promoted motor coordination in children commencing primary school.

    PubMed

    Axford, Caitlin; Joosten, Annette V; Harris, Courtenay

    2018-04-01

    Children are reported to spend less time engaged in outdoor activity and object-related play than in the past. The increased use and mobility of technology, and the ease of use of tablet devices are some of the factors that have contributed to these changes. Concern has been raised that the use of such screen and surface devices in very young children is reducing their fine motor skill development. We examined the effectiveness of iPad applications that required specific motor skills designed to improve fine motor skills. We conducted a two-group non-randomised controlled trial with two pre-primary classrooms (53 children; 5-6 years) in an Australian co-educational school, using a pre- and post-test design. The effectiveness of 30 minutes daily use of specific iPad applications for 9 weeks was compared with a control class. Children completed the Beery Developmental Test of Visual Motor Integration (VMI) and observation checklist, the Shore Handwriting Screen, and self-care items from the Hawaii Early Learning Profile. On post testing, the experimental group made a statistically and clinically significant improvement on the VMI motor coordination standard scores with a moderate clinical effect size (P < 0.001; d = 0.67). Children's occupational performance in daily tasks also improved. Preliminary evidence was gained for using the iPad, with these motor skill-specific applications as an intervention in occupational therapy practice and as part of at home or school play. © 2018 Occupational Therapy Australia.

  12. Changes in Cerebral Hemodynamics during Complex Motor Learning by Character Entry into Touch-Screen Terminals.

    PubMed

    Sagari, Akira; Iso, Naoki; Moriuchi, Takefumi; Ogahara, Kakuya; Kitajima, Eiji; Tanaka, Koji; Tabira, Takayuki; Higashi, Toshio

    2015-01-01

    Studies of cerebral hemodynamics during motor learning have mostly focused on neurorehabilitation interventions and their effectiveness. However, only a few imaging studies of motor learning and the underlying complex cognitive processes have been performed. We measured cerebral hemodynamics using near-infrared spectroscopy (NIRS) in relation to acquisition patterns of motor skills in healthy subjects using character entry into a touch-screen terminal. Twenty healthy, right-handed subjects who had no previous experience with character entry using a touch-screen terminal participated in this study. They were asked to enter the characters of a randomly formed Japanese syllabary into the touch-screen terminal. All subjects performed the task with their right thumb for 15 s alternating with 25 s of rest for 30 repetitions. Performance was calculated by subtracting the number of incorrect answers from the number of correct answers, and gains in motor skills were evaluated according to the changes in performance across cycles. Behavioral and oxygenated hemoglobin concentration changes across task cycles were analyzed using Spearman's rank correlations. Performance correlated positively with task cycle, thus confirming motor learning. Hemodynamic activation over the left sensorimotor cortex (SMC) showed a positive correlation with task cycle, whereas activations over the right prefrontal cortex (PFC) and supplementary motor area (SMA) showed negative correlations. We suggest that increases in finger momentum with motor learning are reflected in the activity of the left SMC. We further speculate that the right PFC and SMA were activated during the early phases of motor learning, and that this activity was attenuated with learning progress.

  13. Transfer of motor learning engages specific neural substrates during motor memory consolidation dependent on the practice structure.

    PubMed

    Kantak, Shailesh S; Sullivan, Katherine J; Fisher, Beth E; Knowlton, Barbara J; Winstein, Carolee J

    2011-01-01

    The authors investigated how brain activity during motor-memory consolidation contributes to transfer of learning to novel versions of a motor skill following distinct practice structures. They used 1 Hz repetitive Transcranial Magnetic Stimulation (rTMS) immediately after constant or variable practice of an arm movement skill to interfere with primary motor cortex (M1) or dorsolateral prefrontal cortex (DLPFC). The effect of interference was assessed through skill performance on two transfer targets: one within and one outside the range of practiced movement parameters for the variable practice group. For the control (no rTMS) group, variable practice benefited delayed transfer performance more than constant practice. The rTMS effect on delayed transfer performance differed for the two transfer targets. For the within-range target, rTMS interference had no significant affect on the delayed transfer after either practice structure. However, for the outside-range target, rTMS interference to DLPFC but not M1 attenuated delayed transfer benefit following variable practice. Additionally, for the outside-range target, rTMS interference to M1 but not DLPFC attenuated delayed transfer following constant practice. This suggests that variable practice may promote reliance on DLPFC for memory consolidation associated with outside-range transfer of learning, whereas constant practice may promote reliance on M1 for consolidation and long-term transfer.

  14. Motor skills and calibrated autism severity in young children with autism spectrum disorder.

    PubMed

    MacDonald, Megan; Lord, Catherine; Ulrich, Dale A

    2014-04-01

    In addition to the core characteristics of autism spectrum disorder (ASD), motor skill deficits are present, persistent, and pervasive across age. Although motor skill deficits have been indicated in young children with autism, they have not been included in the primary discussion of early intervention content. One hundred fifty-nine young children with a confirmed diagnosis of ASD (n = 110), PDD-NOS (n = 26), and non-ASD (n = 23) between the ages of 14-33 months participated in this study.1 The univariate general linear model tested the relationship of fine and gross motor skills and social communicative skills (using calibrated autism severity scores). Fine motor and gross motor skills significantly predicted calibrated autism severity (p < .05). Children with weaker motor skills have greater social communicative skill deficits. Future directions and the role of motor skills in early intervention are discussed.

  15. A Motor-Skills Programme to Enhance Visual Motor Integration of Selected Pre-School Learners

    ERIC Educational Resources Information Center

    Africa, Eileen K.; van Deventer, Karel J.

    2017-01-01

    Pre-schoolers are in a window period for motor skill development. Visual-motor integration (VMI) is the foundation for academic and sport skills. Therefore, it must develop before formal schooling. This study attempted to improve VMI skills. VMI skills were measured with the "Beery-Buktenica developmental test of visual-motor integration 6th…

  16. Fine motor skills in children with prenatal alcohol exposure or fetal alcohol spectrum disorder.

    PubMed

    Doney, Robyn; Lucas, Barbara R; Jones, Taryn; Howat, Peter; Sauer, Kay; Elliott, Elizabeth J

    2014-01-01

    Prenatal alcohol exposure (PAE) can cause fetal alcohol spectrum disorders (FASD) and associated neurodevelopmental impairments. It is uncertain which types of fine motor skills are most likely to be affected after PAE or which assessment tools are most appropriate to use in FASD diagnostic assessments. This systematic review examined which types of fine motor skills are impaired in children with PAE or FASD; which fine motor assessments are appropriate for FASD diagnosis; and whether fine motor impairments are evident at both "low" and "high" PAE levels. A systematic review of relevant databases was undertaken using key terms. Relevant studies were extracted using a standardized form, and methodological quality was rated using a critical appraisal tool. Twenty-four studies met inclusion criteria. Complex fine motor skills, such as visual-motor integration, were more frequently impaired than basic fine motor skills, such as grip strength. Assessment tools that specifically assessed fine motor skills more consistently identified impairments than those which assessed fine motor skills as part of a generalized neurodevelopmental assessment. Fine motor impairments were associated with "moderate" to "high" PAE levels. Few studies reported fine motor skills of children with "low" PAE levels, so the effect of lower PAE levels on fine motor skills remains uncertain. Comprehensive assessment of a range of fine motor skills in children with PAE is important to ensure an accurate FASD diagnosis and develop appropriate therapeutic interventions for children with PAE-related fine motor impairments.

  17. Comparing motor performance, praxis, coordination, and interpersonal synchrony between children with and without Autism Spectrum Disorder (ASD).

    PubMed

    Kaur, Maninderjit; M Srinivasan, Sudha; N Bhat, Anjana

    2018-01-01

    Children with Autism Spectrum Disorder (ASD) have basic motor impairments in balance, gait, and coordination as well as autism-specific impairments in praxis/motor planning and interpersonal synchrony. Majority of the current literature focuses on isolated motor behaviors or domains. Additionally, the relationship between cognition, symptom severity, and motor performance in ASD is unclear. We used a comprehensive set of measures to compare gross and fine motor, praxis/imitation, motor coordination, and interpersonal synchrony skills across three groups of children between 5 and 12 years of age: children with ASD with high IQ (HASD), children with ASD with low IQ (LASD), and typically developing (TD) children. We used the Bruininks-Oseretsky Test of Motor Proficiency and the Bilateral Motor Coordination subtest of the Sensory Integration and Praxis Tests to assess motor performance and praxis skills respectively. Children were also examined while performing simple and complex rhythmic upper and lower limb actions on their own (solo context) and with a social partner (social context). Both ASD groups had lower gross and fine motor scores, greater praxis errors in total and within various error types, lower movement rates, greater movement variability, and weaker interpersonal synchrony compared to the TD group. In addition, the LASD group had lower gross motor scores and greater mirroring errors compared to the HASD group. Overall, a variety of motor impairments are present across the entire spectrum of children with ASD, regardless of their IQ scores. Both, fine and gross motor performance significantly correlated with IQ but not with autism severity; however, praxis errors (mainly, total, overflow, and rhythmicity) strongly correlated with autism severity and not IQ. Our study findings highlight the need for clinicians and therapists to include motor evaluations and interventions in the standard-of-care of children with ASD and for the broader autism community to recognize dyspraxia as an integral part of the definition of ASD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The relationship of motor skills and social communicative skills in school-aged children with autism spectrum disorder.

    PubMed

    MacDonald, Megan; Lord, Catherine; Ulrich, Dale A

    2013-07-01

    Motor skill deficits are present and persist in school-aged children with autism spectrum disorder (ASD; Staples & Reid, 2010). Yet the focus of intervention is on core impairments, which are part of the diagnostic criteria for ASD, deficits in social communication skills. The purpose of this study is to determine whether the functional motor skills, of 6- to 15-year-old children with high-functioning ASD, predict success in standardized social communicative skills. It is hypothesized that children with better motor skills will have better social communicative skills. A total of 35 children with ASD between the ages of 6-15 years participated in this study. The univariate GLM (general linear model) tested the relationship of motor skills on social communicative skills holding constant age, IQ, ethnicity, gender, and clinical ASD diagnosis. Object-control motor skills significantly predicted calibrated ASD severity (p < .05). Children with weaker motor skills have greater social communicative skill deficits. How this relationship exists behaviorally, needs to be explored further.

  19. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.

    PubMed

    Zareen, N; Shinozaki, M; Ryan, D; Alexander, H; Amer, A; Truong, D Q; Khadka, N; Sarkar, A; Naeem, S; Bikson, M; Martin, J H

    2017-11-01

    Cervical injuries are the most common form of SCI. In this study, we used a neuromodulatory approach to promote skilled movement recovery and repair of the corticospinal tract (CST) after a moderately severe C4 midline contusion in adult rats. We used bilateral epidural intermittent theta burst (iTBS) electrical stimulation of motor cortex to promote CST axonal sprouting and cathodal trans-spinal direct current stimulation (tsDCS) to enhance spinal cord activation to motor cortex stimulation after injury. We used Finite Element Method (FEM) modeling to direct tsDCS to the cervical enlargement. Combined iTBS-tsDCS was delivered for 30min daily for 10days. We compared the effect of stimulation on performance in the horizontal ladder and the Irvine Beattie and Bresnahan forepaw manipulation tasks and CST axonal sprouting in injury-only and injury+stimulation animals. The contusion eliminated the dorsal CST in all animals. tsDCS significantly enhanced motor cortex evoked responses after C4 injury. Using this combined spinal-M1 neuromodulatory approach, we found significant recovery of skilled locomotion and forepaw manipulation skills compared with injury-only controls. The spared CST axons caudal to the lesion in both animal groups derived mostly from lateral CST axons that populated the contralateral intermediate zone. Stimulation enhanced injury-dependent CST axonal outgrowth below and above the level of the injury. This dual neuromodulatory approach produced partial recovery of skilled motor behaviors that normally require integration of posture, upper limb sensory information, and intent for performance. We propose that the motor systems use these new CST projections to control movements better after injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Especial Skills: Their Emergence with Massive Amounts of Practice

    ERIC Educational Resources Information Center

    Keetch, Katherine M.; Schmidt, Richard A.; Lee, Timothy D.; Young, Douglas E.

    2005-01-01

    Differing viewpoints concerning the specificity and generality of motor skill representations in memory were compared by contrasting versions of a skill having either extensive or minimal specific practice. In Experiments 1 and 2, skilled basketball players more accurately performed set shots at the foul line than would be predicted on the basis…

  1. An Indexed Bibliography on Tracking

    DTIC Science & Technology

    1990-07-01

    Fitts, P. M., & Schneider, R. H. (1955). Reproduction of simple movements as a function of factors influencing proprioceptive feedback. Journal Qf...V dysfunction, dysmetric, dyslexia, and dyspraxia. Academic Therapy, 12(1), 5-27. 0314 Franks, I.M. & Wilberg, R.B. (1984). Consistent reproduction ...sensori-motor skills. ErggnQ jQ, 1.(4), 407-415. 0851 Pearson, P. (1982). Effects of post- hypnotic suggestion on the performance of a fine motor skill

  2. Description of the motor development of 3-12 month old infants with Down syndrome: the influence of the postural body position.

    PubMed

    Tudella, Eloisa; Pereira, Karina; Basso, Renata Pedrolongo; Savelsbergh, Geert J P

    2011-01-01

    The purpose of the present study was to describe the rate of motor development in infants with Down syndrome in the age range of 3-12 months and identify the difficulties both in performance and acquiring motor skills in prone, supine, sitting and standing positions. Nineteen infants with Down syndrome and 25 healthy full term typical infants were assessed using the Alberta Infant Motor Scale (AIMS) monthly from 3 to 12 months of age. The infants with Down syndrome achieved significant later the level of motor performance of the typical infants. In the supine posture, the performance was significantly lesser for the Down syndrome infants in comparison to the typical infants from the 3rd to 6th month and in the 8th month. In the prone, sitting and standing postures this difference is found for all the months. In conclusion, the sequence of motor development of the Down syndrome is the same as the typical infants. However infants with Down syndrome need more time to acquire skills, mainly antigravitational ones, among them the standing position. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. [Lateral dominance in 182 children. 1. The antimeres, the praxis, the structure-performance relation].

    PubMed

    Jordy, C F

    1995-09-01

    182 normal children from 6 to 14 years old presenting learning difficulties were neurologically examined. A 149 items questionnaire covering the intrauterine, peri and post partum life were answered by parents and afterwards detailed in interview consultation. Special procedures on motor skill were added to the usual neurological examination, to text motor performance differences between antimeros. Dextrallity appeared in 156 cases (85.71%), sinistrallity in 8 (4.39%) and in 18 cases (9.89%) the lateral dominance could not be determined. The concept of ambidextrallity was rejected for the bilateral equivalence in motor competence was not found in the subjects. The results lead to interpret the lateral dominance as a proportional distribution of motor performances in the right and left halves of the body in a process of constant improvement of motor skills which takes place in and belongs to the development of interdependence between the individuals and their environment. It is by way of such interrelationships that the significant motor activity (praxias) is acquired. Lateral dominance is considered a dynamic mechanism resulting from this interactive process which aim is directed together with other mechanisms to provide and improve the human being survival.

  4. The Relationship of Motor Coordination, Visual Perception, and Executive Function to the Development of 4–6-Year-Old Chinese Preschoolers' Visual Motor Integration Skills

    PubMed Central

    Fang, Ying; Zhang, Ying

    2017-01-01

    Visual motor integration (VMI) is a vital ability in childhood development, which is associated with the performance of many functional skills. By using the Beery Developmental Test Package and Executive Function Tasks, the present study explored the VMI development and its factors (visual perception, motor coordination, and executive function) among 151 Chinese preschoolers from 4 to 6 years. Results indicated that the VMI skills of children increased quickly at 4 years and peaked at 5 years and decreased at around 5 to 6 years. Motor coordination and cognitive flexibility were related to the VMI development of children from 4 to 6 years. Visual perception was associated with the VMI development at early 4 years and inhibitory control was also associated with it among 4-year-old and the beginning of 5-year-old children. Working memory had no impact on the VMI. In conclusion, the development of VMI skills among children in preschool was not stable but changed dynamically in this study. Meanwhile the factors of the VMI worked in different age range for preschoolers. These findings may give some guidance to researchers or health professionals on improving children's VMI skills in their early childhood. PMID:29457030

  5. Motor imagery learning modulates functional connectivity of multiple brain systems in resting state.

    PubMed

    Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun

    2014-01-01

    Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning.

  6. Women's Skills Linked to Estrogen Levels.

    ERIC Educational Resources Information Center

    Weiss, R.

    1988-01-01

    Summarizes the result of research which considers the effect of women's hormone level on specific skills. Reports that low estrogen levels allow women to excel at spatial skills, but perform poorly at complex motor tasks and speech articulation. Discusses some implications and further research ideas. (YP)

  7. The effect of a motor skills training program in the improvement of practiced and non-practiced tasks performance in children with developmental coordination disorder (DCD).

    PubMed

    Farhat, Faiçal; Hsairi, Ines; Baati, Hamza; Smits-Engelsman, B C M; Masmoudi, Kaouthar; Mchirgui, Radhouane; Triki, Chahnez; Moalla, Wassim

    2016-04-01

    The purpose of the present study was to examine the effect of a group-based task oriented skills training program on motor and physical ability for children with DCD. It was also investigated if there was an effect on fine motor and handwriting tasks that were not specifically practiced during the training program. Forty-one children aged 6-10years took part in this study. Children were assigned to three groups: an experimental training group consisting of 14 children with DCD, a control non-training group consisted of 13 children with DCD and a control non-training group consisting of 14 typically developed children. The measurements included were, the Movement Assessment Battery for Children (MABC), the Modified Agility Test (MAT), the Triple Hop Distance (THD), the 5 Jump-test (5JT) and the Handwriting Performance Test. All measures were administered pre and post an 8-week training program. The results showed that 10 children of the DCD training-group improved their performance in MABC test, attaining a score above the 15th percentile after their participation in the training program. DCD training-group showed a significant improvement on all cluster scores (manual dexterity (t (13)=5.3, p<.001), ball skills (t (13)=2.73, p<.05) and balance (t (13)=5.13, p<.001). Significant performance improvements were also found in MAT, THD, 5JT (t (13)=-4.55; p<.01), handwriting quality (t (12)=-2.73; p<.05) and speed (t (12)=-4.2; p<.01) after the training program. In conclusion, improvement in both practiced and non-practiced skills, in the training program, may reflect improvement in motor skill but also transfer to other skills. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Infants with Down syndrome: percentage and age for acquisition of gross motor skills.

    PubMed

    Pereira, Karina; Basso, Renata Pedrolongo; Lindquist, Ana Raquel Rodrigues; da Silva, Louise Gracelli Pereira; Tudella, Eloisa

    2013-03-01

    The literature is bereft of information about the age at which infants with Down syndrome (DS) acquire motor skills and the percentage of infants that do so by the age of 12 months. Therefore, it is necessary to identify the difference in age, in relation to typical infants, at which motor skills were acquired and the percentage of infants with DS that acquire them in the first year of life. Infants with DS (N=20) and typical infants (N=25), both aged between 3 and 12 months, were evaluated monthly using the AIMS. In the prone position, a difference of up to 3 months was found for the acquisition of the 3rd to 16th skill. There was a difference in the percentage of infants with DS who acquired the 10th to 21st skill (from 71% to 7%). In the supine position, a difference of up to one month was found from the 3rd to 7th skill; however, 100% were able to perform these skills. In the sitting position, a difference of 1-4 months was found from the 1st to 12th skill, ranging from 69% to 29% from the 9th to 12th. In the upright position, the difference was 2-3 months from the 3rd to 8th skill. Only 13% acquired the 8th skill and no other skill was acquired up to the age of 12 months. The more complex the skills the greater the difference in age between typical infants and those with DS and the lower the percentage of DS individuals who performed the skills in the prone, sitting and upright positions. None of the DS infants were able to stand without support. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Intermanual transfer and bilateral cortical plasticity is maintained in older adults after skilled motor training with simple and complex tasks

    PubMed Central

    Dickins, Daina S. E.; Sale, Martin V.; Kamke, Marc R.

    2015-01-01

    Intermanual transfer refers to the phenomenon whereby unilateral motor training induces performance gains in both the trained limb and in the opposite, untrained limb. Evidence indicates that intermanual transfer is attenuated in older adults following training on a simple ballistic movement task, but not after training on a complex task. This study investigated whether differences in plasticity in bilateral motor cortices underlie these differential intermanual transfer effects in older adults. Twenty young (<35 years-old) and older adults (>65 years) trained on a simple (repeated ballistic thumb abduction) and complex (sequential finger-thumb opposition) task in separate sessions. Behavioral performance was used to quantify intermanual transfer between the dominant (trained) and non-dominant (untrained) hands. The amplitude of motor-evoked potentials induced by single pulse transcranial magnetic stimulation was used to investigate excitability changes in bilateral motor cortices. Contrary to predictions, both age groups exhibited performance improvements in both hands after unilateral skilled motor training with simple and complex tasks. These performance gains were accompanied by bilateral increases in cortical excitability in both groups for the simple but not the complex task. The findings suggest that advancing age does not necessarily influence the capacity for intermanual transfer after training with the dominant hand. PMID:25999856

  10. Temperature dependency in motor skill learning.

    PubMed

    Immink, Maarten A; Wright, David L; Barnes, William S

    2012-01-01

    The present study investigated the role of temperature as a contextual condition for motor skill learning. Precision grip task training occurred while forearm cutaneous temperature was either heated (40-45 °C) or cooled (10-15 °C). At test, temperature was either reinstated or changed. Performance was comparable between training conditions while at test, temperature changes decreased accuracy, especially after hot training conditions. After cold training, temperature change deficits were only evident when concurrent force feedback was presented. These findings are the first evidence of localized temperature dependency in motor skill learning in humans. Results are not entirely accounted for by a context-dependent memory explanation and appear to represent an interaction of neuromuscular and sensory processes with the temperature present during training and test.

  11. Motor Skill Competence and Perceived Motor Competence: Which Best Predicts Physical Activity among Girls?

    PubMed Central

    Khodaverdi, Zeinab; Bahram, Abbas; Khalaji, Hassan; Kazemnejad, Anoshirvan

    2013-01-01

    Abstract Background The main purpose of this study was to determine which correlate, perceived motor competence or motor skill competence, best predicts girls’ physical activity behavior. Methods A sample of 352 girls (mean age=8.7, SD=0.3 yr) participated in this study. To assess motor skill competence and perceived motor competence, each child completed the Test of Gross Motor Development-2 and Physical Ability sub-scale of Marsh’s Self-Description Questionnaire. Children’s physical activity was assessed by the Physical Activity Questionnaire for Older Children. Multiple linear regression model was used to determine whether perceived motor competence or motor skill competence best predicts moderate-to-vigorous self-report physical activity. Results Multiple regression analysis indicated that motor skill competence and perceived motor competence predicted 21% variance in physical activity (R2=0.21, F=48.9, P=0.001), and motor skill competence (R2=0.15, ᵝ=0.33, P= 0.001) resulted in more variance than perceived motor competence (R2=0.06, ᵝ=0.25, P=0.001) in physical activity. Conclusion Results revealed motor skill competence had more influence in comparison with perceived motor competence on physical activity level. We suggest interventional programs based on motor skill competence and perceived motor competence should be administered or implemented to promote physical activity in young girls. PMID:26060623

  12. Action observation with kinesthetic illusion can produce human motor plasticity.

    PubMed

    Nojima, Ippei; Koganemaru, Satoko; Kawamata, Toshio; Fukuyama, Hidenao; Mima, Tatsuya

    2015-06-01

    After watching sports, people often feel as if their sports skills might have been improved, even without any actual training. On some occasions, this motor skill learning through observation actually occurs. This phenomenon may be due to the fact that both action and action observation (AO) can activate shared cortical areas. However, the neural basis of performance gain through AO has not yet been fully clarified. In the present study, we used transcranial magnetic stimulation to investigate whether primary motor cortex (M1) plasticity is a physiological substrate of AO-induced performance gain and whether AO itself is sufficient to change motor performance. The excitability of M1, especially that of its intracortical excitatory circuit, was enhanced after and during AO with kinesthetic illusion but not in interventions without this illusion. Moreover, behavioral improvement occurred only after AO with kinesthetic illusion, and a significant correlation existed between the performance gain and the degree of illusion. Our findings indicated that kinesthetic illusion is an essential component of the motor learning and M1 plasticity induced by AO, and this insight may be useful for the strategic rehabilitation of stroke patients. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. White matter microstructure changes induced by motor skill learning utilizing a body machine interface.

    PubMed

    Wang, Xue; Casadio, Maura; Weber, Kenneth A; Mussa-Ivaldi, Ferdinando A; Parrish, Todd B

    2014-03-01

    The purpose of this study is to identify white matter microstructure changes following bilateral upper extremity motor skill training to increase our understanding of learning-induced structural plasticity and enhance clinical strategies in physical rehabilitation. Eleven healthy subjects performed two visuo-spatial motor training tasks over 9 sessions (2-3 sessions per week). Subjects controlled a cursor with bilateral simultaneous movements of the shoulders and upper arms using a body machine interface. Before the start and within 2days of the completion of training, whole brain diffusion tensor MR imaging data were acquired. Motor training increased fractional anisotropy (FA) values in the posterior and anterior limbs of the internal capsule, the corona radiata, and the body of the corpus callosum by 4.19% on average indicating white matter microstructure changes induced by activity-dependent modulation of axon number, axon diameter, or myelin thickness. These changes may underlie the functional reorganization associated with motor skill learning. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Sleep spindles: a physiological marker of age-related changes in gray matter in brain regions supporting motor skill memory consolidation.

    PubMed

    Fogel, Stuart; Vien, Catherine; Karni, Avi; Benali, Habib; Carrier, Julie; Doyon, Julien

    2017-01-01

    Sleep is necessary for the optimal consolidation of procedural learning, and in particular, for motor sequential skills. Motor sequence learning remains intact with age, but sleep-dependent consolidation is impaired, suggesting that memory deficits for procedural skills are specifically impacted by age-related changes in sleep. Age-related changes in spindles may be responsible for impaired motor sequence learning consolidation, but the morphological basis for this deficit is unknown. Here, we found that gray matter in the hippocampus and cerebellum was positively correlated with both sleep spindles and offline improvements in performance in young participants but not in older participants. These results suggest that age-related changes in gray matter in the hippocampus relate to spindles and may underlie age-related deficits in sleep-related motor sequence memory consolidation. In this way, spindles can serve as a biological marker for structural brain changes and the related memory deficits in older adults. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Implicit motor learning promotes neural efficiency during laparoscopy.

    PubMed

    Zhu, Frank F; Poolton, Jamie M; Wilson, Mark R; Hu, Yong; Maxwell, Jon P; Masters, Rich S W

    2011-09-01

    An understanding of differences in expert and novice neural behavior can inform surgical skills training. Outside the surgical domain, electroencephalographic (EEG) coherence analyses have shown that during motor performance, experts display less coactivation between the verbal-analytic and motor planning regions than their less skilled counterparts. Reduced involvement of verbal-analytic processes suggests greater neural efficiency. The authors tested the utility of an implicit motor learning intervention specifically devised to promote neural efficiency by reducing verbal-analytic involvement in laparoscopic performance. In this study, 18 novices practiced a movement pattern on a laparoscopic trainer with either conscious awareness of the movement pattern (explicit motor learning) or suppressed awareness of the movement pattern (implicit motor learning). In a retention test, movement accuracy was compared between the conditions, and coactivation (EEG coherence) was assessed between the motor planning (Fz) region and both the verbal-analytic (T3) and the visuospatial (T4) cortical regions (T3-Fz and T4-Fz, respectively). Movement accuracy in the conditions was not different in a retention test (P = 0.231). Findings showed that the EEG coherence scores for the T3-Fz regions were lower for the implicit learners than for the explicit learners (P = 0.027), but no differences were apparent for the T4-Fz regions (P = 0.882). Implicit motor learning reduced EEG coactivation between verbal-analytic and motor planning regions, suggesting that verbal-analytic processes were less involved in laparoscopic performance. The findings imply that training techniques that discourage nonessential coactivation during motor performance may provide surgeons with more neural resources with which to manage other aspects of surgery.

  16. Skeletal maturation, fundamental motor skills and motor performance in preschool children.

    PubMed

    Freitas, D L; Lausen, B; Maia, J A; Gouveia, É R; Antunes, A M; Thomis, M; Lefevre, J; Malina, R M

    2018-06-01

    Relationships among skeletal age (SA), body size and fundamental motor skills (FMS) and motor performance were considered in 155 boys and 159 girls 3-6 years of age. Stature and body mass were measured. SA of the hand-wrist was assessed with the Tanner-Whitehouse II 20 bone method. The Test of Gross Motor Development, 2 nd edition (TGMD-2) and the Preschool Test Battery were used, respectively, to assess FMS and motor performance. Based on hierarchical regression analyses, the standardized residuals of SA on chronological age (SAsr) explained a maximum of 6.1% of the variance in FMS and motor performance in boys (ΔR 2 3 , range 0.0% to 6.1%) and a maximum of 20.4% of the variance in girls (ΔR 2 3 , range 0.0% to 20.4%) over that explained by body size and interactions of SAsr with body size (step 3). The interactions of the SAsr and stature and body mass (step 2) explained a maximum of 28.3% of the variance in boys (ΔR 2 2 , range 0.5% to 28.3%) and 16.7% of the variance in girls (ΔR 2 2 , range 0.7% to 16.7%) over that explained by body size alone. With the exception of balance, relationships among SAsr and FMS or motor performance differed between boys and girls. Overall, SA per se or interacting with body size had a relatively small influence in FMS and motor performance in children 3-6 years of age. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Bilateral transfer phenomenon: A functional magnetic resonance imaging pilot study of healthy subjects.

    PubMed

    Uggetti, Carla; Ausenda, Carlo D; Squarza, Silvia; Cadioli, Marcello; Grimoldi, Ludovico; Cerri, Cesare; Cariati, Maurizio

    2016-08-01

    The bilateral transfer of a motor skill is a physiological phenomenon: the development of a motor skill with one hand can trigger the development of the same ability of the other hand. The purpose of this study was to verify whether bilateral transfer is associated with a specific brain activation pattern using functional magnetic resonance imaging (fMRI). The motor task was implemented as the execution of the Nine Hole Peg Test. Fifteen healthy subjects (10 right-handers and five left-handers) underwent two identical fMRI runs performing the motor task with the non-dominant hand. Between the first and the second run, each subject was intensively trained for five minutes to perform the same motor task with the dominant hand. Comparing the two functional scans across the pool of subjects, a change of the motor activation pattern was observed. In particular, we observed, in the second run, a change in the activation pattern both in the cerebellum and in the cerebral cortex. We found activations in cortical areas involved in somatosensory integration, areas involved in procedural memory. Our study shows, in a small group of healthy subjects, the modification of the fMRI activation pathway of a motor task performed by the non-dominant hand after intensive exercise performing the same task with the dominant hand. © The Author(s) 2016.

  18. Analogy motor learning by young children: a study of rope skipping.

    PubMed

    Tse, Andy C Y; Fong, Shirley S M; Wong, Thomson W L; Masters, Rich

    2017-03-01

    Research in psychology suggests that provision of an instruction by analogy can enhance acquisition and understanding of knowledge. Limited research has been conducted to test this proposition in motor learning by children. The purpose of the present study was to examine the feasibility of analogy instructions in motor skill acquisition by children. Thirty-two children were randomly assigned to one of the two instruction protocols: analogy and explicit instruction protocols for a two-week rope skipping training. Each participant completed a pretest (Lesson 1), three practice sessions (Lesson 2-4), a posttest and a secondary task test (Lesson 5). Children in the analogy protocol displayed better rope skip performance than those in the explicit instruction protocol (p < .001). Moreover, a cognitive secondary task test indicated that children in the analogy protocol performed more effectively, whereas children in the explicit protocol displayed decrements in performance. Analogy learning may aid children to acquire complex motor skills, and have potential benefits related to reduced cognitive processing requirements.

  19. Transfer of piano practice in fast performance of skilled finger movements.

    PubMed

    Furuya, Shinichi; Nakamura, Ayumi; Nagata, Noriko

    2013-11-01

    Transfer of learning facilitates the efficient mastery of various skills without practicing all possible sensory-motor repertoires. The present study assessed whether motor practice at a submaximal speed, which is typical in sports and music performance, results in an increase in a maximum speed of finger movements of trained and untrained skills. Piano practice of sequential finger movements at a submaximal speed over days progressively increased the maximum speed of trained movements. This increased maximum speed of finger movements was maintained two months after the practice. The learning transferred within the hand to some extent, but not across the hands. The present study confirmed facilitation of fast finger movements following a piano practice at a submaximal speed. In addition, the findings indicated the intra-manual transfer effects of piano practice on the maximum speed of skilled finger movements.

  20. The Percentage of Body Fat in Children and the Level of their Motor Skills.

    PubMed

    Prskalo, Ivan; Badrić, Marko; Kunješić, Mateja

    2015-07-01

    The aim of this study was to determine the prevalence of overweight and obesity among primary education pupils and to identify differences in motor skills between normal weight, excessive and obese pupils. Partial aim was to determine differences in motor status of girls and boys and their anthropometric characteristics (Body Mass Index, body fat percentage). The study was conducted in two primary schools in Zagreb, Ivan Goran Kovačić and Davorin Trstenjak. Total of 333 pupils, aged 7-11, were measured (178 boys and 155 girls). Four anthropometric and seven motor variables were used to analyze differences in motor abilities of children. Children were divided into three groups within gender based on their body fat measures. We established a statistically significant difference in motor abilities between groups of subjects in three subsamples (1st-2nd class girls and 3rd-4th boys and girls). Children with normal weight have better results in explosive strength, coordination, static strength of arm and shoulder than children who are overweight and obese. The differences are not observed in motor variables where body weight is not a requisite for efficient execution of movement. Differences in motor skills by gender showed that boys are better in coordination, speed of the simple movements, explosive and repetitive strength, and girls are better in flexibility. The conclusion of this study confirmed the existence of differences in the development of motor skills in children with normal body weight compared to children who are overweight or obese. These facts prove that excessive body weight has negative repercussions on motor performance.

  1. Auditory-motor learning influences auditory memory for music.

    PubMed

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  2. The effect of age, sex and obesity on fundamental motor skills among 4 to 6 years-old children.

    PubMed

    Vameghi, Roshanak; Shams, Amir; Shamsipour Dehkordi, Parvane

    2013-04-01

    To examine the effect of age, sex and obesity on Fundamental Motor Skills (FMS) in 4 to 6 years-old children. A total of 400 preschool children (200 boys and 200 girls) between the ages of 4 to 6 years old participated in this research. Subjects were selected through multi-stage cluster random sampling. Fundamental motor skills (FMS) were assessed with using the OSU-SIGMA scale. Body mass index (BMI) was directly measured from height(m)(2)/weight(kg) for each child and based on CDC growth charts, normal weight, overweight and obesity were defined. The results showed that age and sex variables were a significant effect on walking and running skills, but BMI was not significant (P>0.05). Also, these variables had a significant effect on jumping, skipping, hopping and ladder climbing. In both ages, boys in jumping and ladder climbing skills were better than girls, but the girls were better in skipping and hopping skills (P<0.05). Moreover, the results showed that age and BMI variables have a significant effect on stair climbing skill, but sex was not significant (P>0.05). For object control skills, the results showed that age and sex variables were a significant effect on catching and throwing skills, but BMI was not significant (P>0.05). Finally, the age, sex and BMI variables were a significant effect on kicking and sticking skills. This research demonstrated that boys performed better than girls, and both overweight and obese children have lower performance than normal children.

  3. Motor Learning Versus StandardWalking Exercise in Older Adults with Subclinical Gait Dysfunction: A Randomized Clinical Trial

    PubMed Central

    Brach, Jennifer S.; Van Swearingen, Jessie M.; Perera, Subashan; Wert, David M.; Studenski, Stephanie

    2013-01-01

    Background Current exercise recommendationsfocus on endurance and strength, but rarely incorporate principles of motor learning. Motor learning exerciseis designed to address neurological aspects of movement. Motor learning exercise has not been evaluated in older adults with subclinical gait dysfunction. Objectives Tocompare motor learning versus standard exercise on measures of mobility and perceived function and disability. Design Single-blind randomized trial. Setting University research center. Participants Olderadults (n=40), mean age 77.1±6.0 years), who had normal walking speed (≥1.0 m/s) and impaired motor skill (Figure of 8 walk time > 8 s). Interventions The motor learning program (ML) incorporated goal-oriented stepping and walking to promote timing and coordination within the phases of the gait cycle. The standard program (S) employed endurance training by treadmill walking.Both included strength training and were offered twice weekly for one hour for 12 weeks. Measurements Primary outcomes included mobility performance (gait efficiency, motor skill in walking, gait speed, and walking endurance)and secondary outcomes included perceived function and disability (Late Life Function and Disability Instrument). Results 38 of 40 participants completed the trial (ML, n=18; S, n=20). ML improved more than Sin gait speed (0.13 vs. 0.05 m/s, p=0.008) and motor skill (−2.2 vs. −0.89 s, p<0.0001). Both groups improved in walking endurance (28.3 and 22.9m, but did not differ significantly p=0.14). Changes in gait efficiency and perceived function and disability were not different between the groups (p>0.10). Conclusion In older adults with subclinical gait dysfunction, motor learning exercise improved some parameters of mobility performance more than standard exercise. PMID:24219189

  4. An experimental paradigm to compare motor performance under laboratory and under everyday-like conditions.

    PubMed

    Bock, Otmar; Hagemann, Anne

    2010-10-30

    Research findings on human motor skills may not necessarily hold in everyday life, since laboratory and everyday scenarios typically differ with respect to the subjects' attention to the skill, their motivation to perform at their best, the goals they try to achieve, and the mode of movement initiation - extrinsic versus intrinsic. Here we present an experimental approach which can be used to substantiate the hypothesized effects of laboratory (L) versus everyday (E) settings on one type of motor skill, i.e., manual prehension. This approach is based on two tasks: In task L, subjects are told that they will participate in an experiment on grasping, and are instructed to seize and move a lever upon appearance of a visual target. In task E, they are told that they will play a computer game, and they have to seize and move the lever in order to proceed from one game level to the next. Both tasks include prehension movements from the same starting position and object to the same terminal position and object; movements differ only in their behavioural context. We exemplify the utility of our approach with a preliminary analysis of kinematic and force data. It shows that the two tasks differ with respect to several performance measures, and that some performance measures make independent contributions to that difference. The existence of independent contributions suggests that behavioural context may influence prehension via several distinct routes. Our approach can be used for comprehensive analyses of the context-dependence of motor skills in various reference groups. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Child Behaviors of Young Children With Autism Spectrum Disorder Across Play Settings.

    PubMed

    MacDonald, Megan; Hatfield, Bridget; Twardzik, Erica

    2017-01-01

    The hallmark characteristics of a diagnosis of autism spectrum disorder (ASD) are deficits in social communicative skills and the use of repetitive and/or stereotyped behaviors. In addition, children with ASD experience known motor-skill delays. The purpose of this study was to examine salient child behaviors of young children with and without ASD in 2 distinctly different play settings: a traditional social-play-based setting and a motor-behavior-based play setting. Child behavior (engagement toward parent, negativity, and attention) and dyad characteristics (connectedness) were examined in 2 distinctly different play settings. Results indicated that children with ASD performed more like their peers without ASD in a social-play-based setting and less like their peers in a motor-behavior-based play setting. Aspects of our results shed light on the critical need to develop creative methods of early intervention that combine efforts in all aspects of child development, including motor-skill development.

  6. Quantifying Contextual Interference and Its Effect on Skill Transfer in Skilled Youth Tennis Players

    PubMed Central

    Buszard, Tim; Reid, Machar; Krause, Lyndon; Kovalchik, Stephanie; Farrow, Damian

    2017-01-01

    The contextual interference effect is a well-established motor learning phenomenon. Most of the contextual interference effect literature has addressed simple skills, while less is known about the role of contextual interference in complex sport skill practice, particularly with respect to skilled performers. The purpose of this study was to assess contextual interference when practicing the tennis serve. Study 1 evaluated tennis serve practice of nine skilled youth tennis players using a novel statistical metric developed specifically to measure between-skill and within-skill variability as sources of contextual interference. This metric highlighted that skilled tennis players typically engaged in serve practice that featured low contextual interference. In Study 2, 16 skilled youth tennis players participated in 10 practice sessions that aimed to improve serving “down the T.” Participants were stratified into a low contextual interference practice group (Low CI) and a moderate contextual interference practice group (Moderate CI). Pre- and post-tests were conducted 1 week before and 1 week after the practice period. Testing involved a skill test, which assessed serving performance in a closed setting, and a transfer test, which assessed serving performance in a match-play setting. No significant contextual interference differences were observed with respect to practice performance. However, analysis of pre- and post-test serve performance revealed significant Group × Time interactions. The Moderate CI group showed no change in serving performance (service displacement from the T) from pre- to post-test in the skill test, but did display improvements in the transfer test. Conversely, the Low CI group improved serving performance (service displacement from the T) in the skill test but not the transfer test. Results suggest that the typical contextual interference effect is less clear when practicing a complex motor skill, at least with the tennis serve skill evaluated here. We encourage researchers and applied sport scientists to use our statistical metric to measure contextual interference. PMID:29163306

  7. Relationships Between Gross Motor Skills and Social Function in Young Boys With Autism Spectrum Disorder.

    PubMed

    Holloway, Jamie M; Long, Toby M; Biasini, Fred

    2018-05-02

    The purpose of this study was to examine the relationship between gross motor skills and social function in young boys with autism spectrum disorder. Twenty-one children with autism spectrum disorder participated in the study. The Peabody Developmental Motor Scales Second Edition and the Miller Function and Participation Scales were used to assess gross motor skills. The Social Skills Improvement System Rating Scales was used to assess social function. Moderately high correlations were found between overall gross motor and social skills (r = 0.644) and between the core stability motor subtest and overall social skills (r = -0.672). Specific motor impairments in stability, motor accuracy, and object manipulation scores were predictive of social function. This study suggests that motor skills and social function are related in young boys with autism. Implications for physical therapy intervention are also discussed.

  8. Conscious motor processing and movement self-consciousness: two dimensions of personality that influence laparoscopic training.

    PubMed

    Malhotra, Neha; Poolton, Jamie M; Wilson, Mark R; Fan, Joe K M; Masters, Rich S W

    2014-01-01

    Identifying personality factors that account for individual differences in surgical training and performance has practical implications for surgical education. Movement-specific reinvestment is a potentially relevant personality factor that has a moderating effect on laparoscopic performance under time pressure. Movement-specific reinvestment has 2 dimensions, which represent an individual's propensity to consciously control movements (conscious motor processing) or to consciously monitor their 'style' of movement (movement self-consciousness). This study aimed at investigating the moderating effects of the 2 dimensions of movement-specific reinvestment in the learning and updating (cross-handed technique) of laparoscopic skills. Medical students completed the Movement-Specific Reinvestment Scale, a psychometric assessment tool that evaluates the conscious motor processing and movement self-consciousness dimensions of movement-specific reinvestment. They were then trained to a criterion level of proficiency on a fundamental laparoscopic skills task and were tested on a novel cross-handed technique. Completion times were recorded for early-learning, late-learning, and cross-handed trials. Propensity for movement self-consciousness but not conscious motor processing was a significant predictor of task completion times both early (p = 0.036) and late (p = 0.002) in learning, but completion times during the cross-handed trials were predicted by the propensity for conscious motor processing (p = 0.04) rather than movement self-consciousness (p = 0.21). Higher propensity for movement self-consciousness is associated with slower performance times on novel and well-practiced laparoscopic tasks. For complex surgical techniques, however, conscious motor processing plays a more influential role in performance than movement self-consciousness. The findings imply that these 2 dimensions of movement-specific reinvestment have a differential influence in the learning and updating of laparoscopic skills. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  9. Sleep Consolidates Motor Learning of Complex Movement Sequences in Mice.

    PubMed

    Nagai, Hirotaka; de Vivo, Luisa; Bellesi, Michele; Ghilardi, Maria Felice; Tononi, Giulio; Cirelli, Chiara

    2017-02-01

    Sleep-dependent consolidation of motor learning has been extensively studied in humans, but it remains unclear why some, but not all, learned skills benefit from sleep. Here, we compared 2 different motor tasks, both requiring the mice to run on an accelerating device. In the rotarod task, mice learn to maintain balance while running on a small rod, while in the complex wheel task, mice run on an accelerating wheel with an irregular rung pattern. In the rotarod task, performance improved to the same extent after sleep or after sleep deprivation (SD). Overall, using 7 different experimental protocols (41 sleep deprived mice, 26 sleeping controls), we found large interindividual differences in the learning and consolidation of the rotarod task, but sleep before/after training did not account for this variability. By contrast, using the complex wheel, we found that sleep after training, relative to SD, led to better performance from the beginning of the retest session, and longer sleep was correlated with greater subsequent performance. As in humans, the effects of sleep showed large interindividual variability and varied between fast and slow learners, with sleep favoring the preservation of learned skills in fast learners and leading to a net offline gain in the performance in slow learners. Using Fos expression as a proxy for neuronal activation, we also found that complex wheel training engaged motor cortex and hippocampus more than the rotarod training. Sleep specifically consolidates a motor skill that requires complex movement sequences and strongly engages both motor cortex and hippocampus. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  10. Effects of a Program of Sport Schools on Development of Social and Psychomotor Skills of People with Autistic Spectrum Disorders: A Pilot Project

    ERIC Educational Resources Information Center

    López, José María; Moreno-Rodríguez, Ricardo; Alcover, Carlos-María; Garrote, Inmaculada; Sánchez, Sergio

    2017-01-01

    Individuals with Autistic Spectrum Disorder (ASD) present learning difficulties and limited performance of social skills, besides lower motor skills performance in comparison with their peers. Owing to these difficulties, most of children with ASD are at risk of social exclusion or a poor inclusion due to their behavior, mainly playing with other…

  11. Autism spectrum disorders and motor skills: the effect on socialization as measured by the Baby And Infant Screen For Children with aUtIsm Traits (BISCUIT).

    PubMed

    Sipes, Megan; Matson, Johnny L; Horovitz, Max

    2011-01-01

    To examine the effects of ASD diagnosis and motor skills on socialization in young children. Two samples were used: gross motor skills sample (n = 408) and fine motor skills sample (n = 402). The Battelle Developmental Inventory-Second Edition assessed motor skills, while the Baby and Infant Screen for Children with aUtIsm Traits, Part 1 assessed socialization. A main effect of diagnosis was found for both samples on socialization such that those with autism exhibited the most severe deficits followed by those with PDD-NOS and then atypically developing children. There was a main effect for gross motor skills, with high gross motor skills showing less social impairment. The interaction term was only significant in regards to fine motor skills. The individual effects of ASD diagnosis and motor impairment as well as the interaction have implications for the assessment and treatment in these individuals.

  12. Dynamic Re-wiring of Neural Circuits in the Motor Cortex in Mouse Models of Parkinson's Disease

    PubMed Central

    Lalchandani, Rupa R.; Cui, Yuting; Shu, Yu; Xu, Tonghui; Ding, Jun B.

    2015-01-01

    SUMMARY Dynamic adaptations in synaptic plasticity are critical for learning new motor skills and maintaining memory throughout life, which rapidly decline with Parkinson's disease (PD). Plasticity in the motor cortex is important for acquisition and maintenance of novel motor skills, but how the loss of dopamine in PD leads to disrupted structural and functional plasticity in the motor cortex is not well understood. Here, we utilized mouse models of PD and 2-photon imaging to show that dopamine depletion resulted in structural changes in the motor cortex. We further discovered that dopamine D1 and D2 receptor signaling were linked to selectively and distinctly regulating these aberrant changes in structural and functional plasticity. Our findings suggest that both D1 and D2 receptor signaling regulate motor cortex plasticity, and loss of dopamine results in atypical synaptic adaptations that may contribute to the impairment of motor performance and motor memory observed in PD. PMID:26237365

  13. Optimizing performance through intrinsic motivation and attention for learning: The OPTIMAL theory of motor learning.

    PubMed

    Wulf, Gabriele; Lewthwaite, Rebecca

    2016-10-01

    Effective motor performance is important for surviving and thriving, and skilled movement is critical in many activities. Much theorizing over the past few decades has focused on how certain practice conditions affect the processing of task-related information to affect learning. Yet, existing theoretical perspectives do not accommodate significant recent lines of evidence demonstrating motivational and attentional effects on performance and learning. These include research on (a) conditions that enhance expectancies for future performance, (b) variables that influence learners' autonomy, and (c) an external focus of attention on the intended movement effect. We propose the OPTIMAL (Optimizing Performance through Intrinsic Motivation and Attention for Learning) theory of motor learning. We suggest that motivational and attentional factors contribute to performance and learning by strengthening the coupling of goals to actions. We provide explanations for the performance and learning advantages of these variables on psychological and neuroscientific grounds. We describe a plausible mechanism for expectancy effects rooted in responses of dopamine to the anticipation of positive experience and temporally associated with skill practice. Learner autonomy acts perhaps largely through an enhanced expectancy pathway. Furthermore, we consider the influence of an external focus for the establishment of efficient functional connections across brain networks that subserve skilled movement. We speculate that enhanced expectancies and an external focus propel performers' cognitive and motor systems in productive "forward" directions and prevent "backsliding" into self- and non-task focused states. Expected success presumably breeds further success and helps consolidate memories. We discuss practical implications and future research directions.

  14. Childhood Motor Performance Traits on the Short Form Bruininks-Oseretsky Test.

    ERIC Educational Resources Information Center

    Broadhead, Geoffrey D.; Bruininks, Robert H.

    1982-01-01

    This paper describes the short form of the Bruininks-Oseretsky Test of Motor Proficiency, 14 items that measure motor skill development. The results of a standardization study of nonhandicapped students (5-14 years old) are presented. Uses of the test for evaluating students in need of special education are discussed. (PP)

  15. Development and Validation of a Survey Instrument for Detecting Basic Motor Competencies in Elementary School Children

    ERIC Educational Resources Information Center

    Scheuer, Claude; Bund, Andreas; Becker, Werner; Herrmann, Christian

    2017-01-01

    Basic motor competencies (in German: Motorische Basiskompetenzen; MOBAK) are motor performance dispositions formulated as minimum standards that empower children to participate in the culture of human movement. In opposition to movement-specific and process-oriented fundamental movement skills assessing the quality of movement execution, basic…

  16. Deliberate Laterality Practice Facilitates Sensory-Motor Processing in Developing Children

    ERIC Educational Resources Information Center

    Pedersen, Scott J.

    2014-01-01

    Background: The innate ability for typically developing children to attain developmental motor milestones early in life has been a thoroughly researched area of inquiry. Nonetheless, as children grow and are required to perform more complex motor skills in order to experience success in physical activity and sport pursuits, the range of…

  17. Co-occurring development of early childhood communication and motor skills: results from a population-based longitudinal study.

    PubMed

    Wang, M V; Lekhal, R; Aarø, L E; Schjølberg, S

    2014-01-01

    Communicative and motor development is frequently found to be associated. In the current study we investigate to what extent communication and motor skills at 1½ years predict skills in the same domains at 3 years of age. This study is based on the Norwegian Mother and Child Cohort Study (MoBa) conducted by the Norwegian Institute of Public Heath. Data stem from 62,944 children and their mothers. Mothers completed questionnaires on their child's communication and motor skills at ages 1½ and 3. Associations between communication and motor skills were estimated in a cross-lagged model with latent variables. Early communication skills were correlated with early motor skills (0.72). Stability was high (0.81) across time points for motor skills and somewhat lower (0.40) for communication skills. Early motor skills predicted later communication skills (0.38) whereas early communication skills negatively predicted later motor skills (-0.14). Our findings provide support for the hypothesis that these two difficulties are not symptoms of separate disorders, but might rather be different manifestations of a common underlying neurodevelopmental weakness. However, there also seem to be specific developmental pathways for each domain. Besides theoretical interest, more knowledge about the relationship between these early skills might shed light upon early intervention strategies and preventive efforts commonly used with children with problems in these areas. Our findings suggest that the relationship between language and motor skills is not likely to be simple and directional but rather to be complex and multifaceted. © 2012 John Wiley & Sons Ltd.

  18. Psychometric properties of the motor diagnostics in the German football talent identification and development programme.

    PubMed

    HÖner, Oliver; Votteler, Andreas; Schmid, Markus; Schultz, Florian; Roth, Klaus

    2015-01-01

    The utilisation of motor performance tests for talent identification in youth sports is discussed intensively in talent research. This article examines the reliability, differential stability and validity of the motor diagnostics conducted nationwide by the German football talent identification and development programme and provides reference values for a standardised interpretation of the diagnostics results. Highly selected players (the top 4% of their age groups, U12-U15) took part in the diagnostics at 17 measurement points between spring 2004 and spring 2012 (N = 68,158). The heterogeneous test battery measured speed abilities and football-specific technical skills (sprint, agility, dribbling, ball control, shooting, juggling). For all measurement points, the overall score and the speed tests showed high internal consistency, high test-retest reliability and satisfying differential stability. The diagnostics demonstrated satisfying factorial-related validity with plausible and stable loadings on the two empirical factors "speed" and "technical skills". The score, and the technical skills dribbling and juggling, differentiated the most among players of different performance levels and thus showed the highest criterion-related validity. Satisfactory psychometric properties for the diagnostics are an important prerequisite for a scientifically sound rating of players' actual motor performance and for the future examination of the prognostic validity for success in adulthood.

  19. Multiple systems for motor skill learning.

    PubMed

    Clark, Dav; Ivry, Richard B

    2010-07-01

    Motor learning is a ubiquitous feature of human competence. This review focuses on two particular classes of model tasks for studying skill acquisition. The serial reaction time (SRT) task is used to probe how people learn sequences of actions, while adaptation in the context of visuomotor or force field perturbations serves to illustrate how preexisting movements are recalibrated in novel environments. These tasks highlight important issues regarding the representational changes that occur during the course of motor learning. One important theme is that distinct mechanisms vary in their information processing costs during learning and performance. Fast learning processes may require few trials to produce large changes in performance but impose demands on cognitive resources. Slower processes are limited in their ability to integrate complex information but minimally demanding in terms of attention or processing resources. The representations derived from fast systems may be accessible to conscious processing and provide a relatively greater measure of flexibility, while the representations derived from slower systems are more inflexible and automatic in their behavior. In exploring these issues, we focus on how multiple neural systems may interact and compete during the acquisition and consolidation of new behaviors. Copyright © 2010 John Wiley & Sons, Ltd. This article is categorized under: Psychology > Motor Skill and Performance. Copyright © 2010 John Wiley & Sons, Ltd.

  20. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study.

    PubMed

    Jeunet, Camille; Jahanpour, Emilie; Lotte, Fabien

    2016-06-01

    While promising, electroencephaloraphy based brain-computer interfaces (BCIs) are barely used due to their lack of reliability: 15% to 30% of users are unable to control a BCI. Standard training protocols may be partly responsible as they do not satisfy recommendations from psychology. Our main objective was to determine in practice to what extent standard training protocols impact users' motor imagery based BCI (MI-BCI) control performance. We performed two experiments. The first consisted in evaluating the efficiency of a standard BCI training protocol for the acquisition of non-BCI related skills in a BCI-free context, which enabled us to rule out the possible impact of BCIs on the training outcome. Thus, participants (N = 54) were asked to perform simple motor tasks. The second experiment was aimed at measuring the correlations between motor tasks and MI-BCI performance. The ten best and ten worst performers of the first study were recruited for an MI-BCI experiment during which they had to learn to perform two MI tasks. We also assessed users' spatial ability and pre-training μ rhythm amplitude, as both have been related to MI-BCI performance in the literature. Around 17% of the participants were unable to learn to perform the motor tasks, which is close to the BCI illiteracy rate. This suggests that standard training protocols are suboptimal for skill teaching. No correlation was found between motor tasks and MI-BCI performance. However, spatial ability played an important role in MI-BCI performance. In addition, once the spatial ability covariable had been controlled for, using an ANCOVA, it appeared that participants who faced difficulty during the first experiment improved during the second while the others did not. These studies suggest that (1) standard MI-BCI training protocols are suboptimal for skill teaching, (2) spatial ability is confirmed as impacting on MI-BCI performance, and (3) when faced with difficult pre-training, subjects seemed to explore more strategies and therefore learn better.

  1. Motor Skill Acquisition: A Function of Gender or Sex-Role?

    ERIC Educational Resources Information Center

    Lombardo, John P.; And Others

    Previous research has found that males perform better than females on the pursuit rotor. To examine whether males and females with different sex role orientations would perform differently on a motor task, 120 students (classified as androgynous, traditional sex role, cross-sexed, or undifferentiated, based on scores on the Personal Attributes…

  2. Gross Motor Performance and Physical Fitness in Children with Psychiatric Disorders

    ERIC Educational Resources Information Center

    Emck, Claudia; Bosscher, Ruud J.; van Wieringen, Piet C. W.; Doreleijers, Theo; Beek, Peter J.

    2011-01-01

    Aim: Gross motor performance appears to be impaired in children with psychiatric disorders but little is known about which skill domains are affected in each disorder, nor about possible accompanying deficits in physical fitness. The present study has sought to provide information about these issues in children with emotional, behavioural, and…

  3. [Proceeding memory in Alzheimer's disease].

    PubMed

    Arroyo-Anlló, Eva Ma; Chamorro-Sánchez, Jorge; Díaz-Marta, Juan Poveda; Gil, Roger

    2013-01-01

    Procedural learning can acquire or develop skills through performance and repetition of a task unconsciously or unintentionally. Procedural skills are considered as the cornerstone in the neuropsychological rehabilitation to promote the autonomy of patients with brain damage, as those with Alzheimer's disease. This review presents data about procedural skills in Alzheimer's disease. Over the past three decades, we have found 40 articles studying various procedural skills in the Alzheimer's disease: motor, perceptual-motor, cognitive, perceptual-cognitive and those developed through serial reaction-time paradigm. We analyzed every study evaluating a procedural skill, indicating the used task and preservation or no preservation of procedural learning. Overall, most of the papers published describe conservation of learning procedures or relatively conserved in Alzheimer's disease, which could be used to promote patient autonomy.

  4. Patterned-string tasks: relation between fine motor skills and visual-spatial abilities in parrots.

    PubMed

    Krasheninnikova, Anastasia

    2013-01-01

    String-pulling and patterned-string tasks are often used to analyse perceptual and cognitive abilities in animals. In addition, the paradigm can be used to test the interrelation between visual-spatial and motor performance. Two Australian parrot species, the galah (Eolophus roseicapilla) and the cockatiel (Nymphicus hollandicus), forage on the ground, but only the galah uses its feet to manipulate food. I used a set of string pulling and patterned-string tasks to test whether usage of the feet during foraging is a prerequisite for solving the vertical string pulling problem. Indeed, the two species used techniques that clearly differed in the extent of beak-foot coordination but did not differ in terms of their success in solving the string pulling task. However, when the visual-spatial skills of the subjects were tested, the galahs outperformed the cockatiels. This supports the hypothesis that the fine motor skills needed for advanced beak-foot coordination may be interrelated with certain visual-spatial abilities needed for solving patterned-string tasks. This pattern was also found within each of the two species on the individual level: higher motor abilities positively correlated with performance in patterned-string tasks. This is the first evidence of an interrelation between visual-spatial and motor abilities in non-mammalian animals.

  5. Region and task-specific activation of Arc in primary motor cortex of rats following motor skill learning.

    PubMed

    Hosp, J A; Mann, S; Wegenast-Braun, B M; Calhoun, M E; Luft, A R

    2013-10-10

    Motor learning requires protein synthesis within the primary motor cortex (M1). Here, we show that the immediate early gene Arc/Arg3.1 is specifically induced in M1 by learning a motor skill. Arc mRNA was quantified using a fluorescent in situ hybridization assay in adult Long-Evans rats learning a skilled reaching task (SRT), in rats performing reaching-like forelimb movement without learning (ACT) and in rats that were trained in the operant but not the motor elements of the task (controls). Apart from M1, Arc expression was assessed within the rostral motor area (RMA), primary somatosensory cortex (S1), striatum (ST) and cerebellum. In SRT animals, Arc mRNA levels in M1 contralateral to the trained limb were 31% higher than ipsilateral (p<0.001), 31% higher than in the contralateral M1 of ACT animals (p<0.001) and 48% higher than in controls (p<0.001). Arc mRNA expression in SRT was positively correlated with learning success between two sessions (r=0.52; p=0.026). For RMA, S1, ST or cerebellum no significant differences in Arc mRNA expression were found between hemispheres or across behaviors. As Arc expression has been related to different forms of cellular plasticity, these findings suggest a link between M1 Arc expression and motor skill learning in rats. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Psychometric Properties of the Teacher-Reported Motor Skills Rating Scale

    ERIC Educational Resources Information Center

    Kim, Helyn; Murrah, William M.; Cameron, Claire E.; Brock, Laura L.; Cottone, Elizabeth A.; Grissmer, David

    2015-01-01

    Children's early motor competence is associated with social development and academic achievement. However, few studies have examined teacher reports of children's motor skills. This study evaluated the psychometric properties of the Motor Skills Rating Scale (MSRS), a 19-item measure of children's teacher-reported motor skills in the classroom.…

  7. Motor skills in kindergarten: Internal structure, cognitive correlates and relationships to background variables.

    PubMed

    Oberer, Nicole; Gashaj, Venera; Roebers, Claudia M

    2017-04-01

    The present study aimed to contribute to the discussion about the relation between motor coordination and executive functions in preschool children. Specifically, the relation between gross and fine motor skills and executive functions as well as the relation to possible background variables (SES, physical activity) were investigated. Based on the data of N=156 kindergarten children the internal structure of motor skills was investigated and confirmed the theoretically assumed subdivision of gross and fine motor skills. Both, gross and fine motor skills correlated significantly with executive functions, whereas the background variables seemed to have no significant impact on the executive functions and motor skills. Higher order control processes are discussed as an explanation of the relation between executive functions and motor skills. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Visuomotor coordination and cortical connectivity of modular motor learning.

    PubMed

    Burgos, Pablo I; Mariman, Juan J; Makeig, Scott; Rivera-Lillo, Gonzalo; Maldonado, Pedro E

    2018-05-15

    The ability to transfer sensorimotor skill components to new actions and the capacity to use skill components from whole actions are characteristic of the adaptability of the human sensorimotor system. However, behavioral evidence suggests complex limitations for transfer after combined or modular learning of motor adaptations. Also, to date, only behavioral analysis of the consequences of the modular learning has been reported, with little understanding of the sensorimotor mechanisms of control and the interaction between cortical areas. We programmed a video game with distorted kinematic and dynamic features to test the ability to combine sensorimotor skill components learned modularly (composition) and the capacity to use separate sensorimotor skill components learned in combination (decomposition). We examined motor performance, eye-hand coordination, and EEG connectivity. When tested for integrated learning, we found that combined practice initially performed better than separated practice, but differences disappeared after integrated practice. Separate learning promotes fewer anticipatory control mechanisms (depending more on feedback control), evidenced in a lower gaze leading behavior and in higher connectivity between visual and premotor domains, in comparison with the combined practice. The sensorimotor system can acquire motor modules in a separated or integrated manner. However, the system appears to require integrated practice to coordinate the adaptations with the skill learning and the networks involved in the integrated behavior. This integration seems to be related to the acquisition of anticipatory mechanism of control and with the decrement of feedback control. © 2018 Wiley Periodicals, Inc.

  9. Pushing typists back on the learning curve: revealing chunking in skilled typewriting.

    PubMed

    Yamaguchi, Motonori; Logan, Gordon D

    2014-04-01

    Theories of skilled performance propose that highly trained skills involve hierarchically structured control processes. The present study examined and demonstrated hierarchical control at several levels of processing in skilled typewriting. In the first two experiments, we scrambled the order of letters in words to prevent skilled typists from chunking letters, and compared typing words and scrambled words. Experiment 1 manipulated stimulus quality to reveal chunking in perception, and Experiment 2 manipulated concurrent memory load to reveal chunking in short-term memory (STM). Both experiments manipulated the number of letters in words and nonwords to reveal chunking in motor planning. In the next two experiments, we degraded typing skill by altering the usual haptic feedback by using a laser-projection keyboard, so that typists had to monitor keystrokes. Neither the number of motor chunks (Experiment 3) nor the number of STM items (Experiment 4) was influenced by the manipulation. The results indicate that the utilization of hierarchical control depends on whether the input allows chunking but not on whether the output is generated automatically. We consider the role of automaticity in hierarchical control of skilled performance.

  10. Decline in measured glomerular filtration rate is associated with a decrease in endurance, strength, balance and fine motor skills.

    PubMed

    Hellberg, Matthias; Höglund, Peter; Svensson, Philippa; Abdulahi, Huda; Clyne, Naomi

    2017-07-01

    Physical performance in chronic kidney disease affects morbidity and mortality. The aim was to find out which measures of physical performance are important in chronic kidney disease (CKD) and if there are associations with declining measured glomerular filtration rate (GFR). Endurance was assessed by 6 min walk test (6-MWT) and stair climbing, muscular endurance by 30 s sit to stand, heel rises and toe lifts, strength by quadriceps- and handgrip-strength, balance by functional reach and Berg's balance scale, and fine motor skills by Moberg's picking-up test. GFR was measured by Iohexol clearance. The study comprised 101 patients with CKD 3b-5 not started dialysis, 40 women and 61 men, with a mean age of 67 ± 13 (range: 22 - 87) years. All measures of physical performance were impaired. A decrease in GFR of 10 mL/min per 1.73 m 2 corresponded to a 35 metre shorter walking distance in the 6-MWT. Multivariable linear regression analysis showed significant relationships between decline in GFR and the 6-MWT (P = 0.04), isometric quadriceps strength left (P = 0.04), balance measured as functional reach (P = 0.02) and fine motor skills in the left hand as measured by Moberg's picking-up test (P = 0.01), respectively, after sex, age, comorbidity and the interaction between sex and age had been taken into account. Endurance, muscular endurance, strength, balance and fine motor skills were impaired in patients with CKD 3b-5. Walking capacity, isometric quadriceps strength, balance, and fine motor skills were associated with declining GFR. The left extremities were more susceptible to GFR, ageing and comorbidities and seem thus to be more sensitive. © 2016 Asian Pacific Society of Nephrology.

  11. [Relationship between the motor development of the body and the acquisition of oral skills].

    PubMed

    Telles, Mariângela Silva; Macedo, Célia Sperandeo

    2008-01-01

    the literature points to the influence of body posture on the oral skills of children which sensorimotor deficits. Only a few studies with normal children exist on this subject. to study the relationship between motor skills and oral motor skills in children, from the first day of life to 24 months of age. 42 children were video recorded at the first day of life, and at 1, 2, 3, 4, 5, 6, 9, 12 and 24 months of age. Recordings were made in the following postures: supine, prone, seated, standing and during breast and bottle feeding (until 5 months), using spoon (purée: 3 - 12 months); cup (water or juice: 6 - 24 months) and eating solid food (6 -24 months). Quantitative scores for body motor development and oral skills were established; and for the statistical analysis the Pearson Correlation Coefficient Test was used with a significance level of 5%. the results of motor development point to similar data between supine, prone, seated and standing positions; for the oral motor skills (during feeding/ breastfeeding, using spoon, cup and chewing). A similarity was observed in the acquisition of motor abilities related to the lips, tongue and jaw in each of the feeding situations. There was an association between the motor and the oral motor skills; the results indicate that the motor development (motor skills) occurred prior to the development of the oral skills from the 5th to 24 months and that the skills related to the jaw when using a cup and spoon occurred prior to the development of the skills related to the lips and tongue. there was a growing increase in the acquisition of motor and oral skills along the ages, as well as a variability of skills in the ages between the 3rd and 24 months and a significant association between the motor and oral skills.

  12. Age correction in cognitive, linguistic, and motor domains for infants born preterm: an analysis of the Bayley Scales of Infant and Toddler Development, Third Edition developmental patterns.

    PubMed

    Morsan, Valentina; Fantoni, Carlo; Tallandini, Maria Anna

    2018-03-15

    To verify whether it is appropriate to use age correction for infants born preterm in all the developmental domains (cognitive, linguistic, and motor) considered by the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). Seventy-three infants born preterm (26-35wks) without major neurological sequelae and 67 infants born at term were assessed at 12 months (corrected age for infants born preterm). The performance of the infants born preterm was assessed with two different evaluations: scores based on uncorrected age and scores based on corrected age. The developmental trends of infants born at term and infants born preterm differ across domains. Statistical analysis shows that age correction produces an overrated estimate of motor performance (12.5 points [95% confidence interval 9.05-16.01]) but not of cognitive performance. Given the broad use of the Bayley-III by psychologists and paediatricians, these results are important in the early diagnosis of developmental difficulties for children born preterm. Correction for gestational age should be applied for the cognitive domain only; whereas for the motor domain, chronological age should be used. No clear data emerged for language. Age correction with Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III) for infants born preterm should be applied differently in cognitive, language, and motor domains. Using corrected age with Bayley-III, the motor skills are overrated. Correction for preterm births adequately measures cognitive skills. No clear indication emerged about language skills. © 2018 Mac Keith Press.

  13. An Exploratory Product Evaluation of the Manchester Motor Skills Programme

    ERIC Educational Resources Information Center

    Lodal, Katherine; Bond, Caroline

    2017-01-01

    This study is an exploratory product evaluation of the Manchester Motor Skills Programme (MMSP). A mixed methodology was used to explore intended, unintended, positive and negative outcomes for four Key Stage 2 (KS2) children with motor skills difficulties who participated in the MMSP. The children's motor skills, social skills and self-esteem…

  14. Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children.

    PubMed

    Beck, Mikkel M; Lind, Rune R; Geertsen, Svend S; Ritz, Christian; Lundbye-Jensen, Jesper; Wienecke, Jacob

    2016-01-01

    Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning activities. Thus, the aim of this study was to investigate whether fine or gross motor activity integrated into math lessons (i.e., motor-enrichment) could improve children's mathematical performance. Methods: A 6-week within school cluster-randomized intervention study investigated the effects of motor-enriched mathematical teaching in Danish preadolescent children ( n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical teaching enriched with fine and gross motor activity, respectively. The children were tested before (T0), immediately after (T1) and 8 weeks after the intervention (T2). A standardized mathematical test (50 tasks) was used to evaluate mathematical performance. Furthermore, it was investigated whether motor-enriched math was accompanied by different effects in low and normal math performers. Additionally, the study investigated the potential contribution of cognitive functions and motor skills on mathematical performance. Results: All groups improved their mathematical performance from T0 to T1. However, from T0 to T1, the improvement was significantly greater in GMM compared to FMM (1.87 ± 0.71 correct answers) ( p = 0.02). At T2 no significant differences in mathematical performance were observed. A subgroup analysis revealed that normal math-performers benefitted from GMM compared to both CON 1.78 ± 0.73 correct answers ( p = 0.04) and FMM 2.14 ± 0.72 correct answers ( p = 0.008). These effects were not observed in low math-performers. The effects were partly accounted for by visuo-spatial short-term memory and gross motor skills. Conclusion: The study demonstrates that motor enriched learning activities can improve mathematical performance. In normal math performers GMM led to larger improvements than FMM and CON. This was not the case for the low math performers. Future studies should further elucidate the neurophysiological mechanisms underlying the observed behavioral effects.

  15. Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children

    PubMed Central

    Beck, Mikkel M.; Lind, Rune R.; Geertsen, Svend S.; Ritz, Christian; Lundbye-Jensen, Jesper; Wienecke, Jacob

    2016-01-01

    Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning activities. Thus, the aim of this study was to investigate whether fine or gross motor activity integrated into math lessons (i.e., motor-enrichment) could improve children's mathematical performance. Methods: A 6-week within school cluster-randomized intervention study investigated the effects of motor-enriched mathematical teaching in Danish preadolescent children (n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical teaching enriched with fine and gross motor activity, respectively. The children were tested before (T0), immediately after (T1) and 8 weeks after the intervention (T2). A standardized mathematical test (50 tasks) was used to evaluate mathematical performance. Furthermore, it was investigated whether motor-enriched math was accompanied by different effects in low and normal math performers. Additionally, the study investigated the potential contribution of cognitive functions and motor skills on mathematical performance. Results: All groups improved their mathematical performance from T0 to T1. However, from T0 to T1, the improvement was significantly greater in GMM compared to FMM (1.87 ± 0.71 correct answers) (p = 0.02). At T2 no significant differences in mathematical performance were observed. A subgroup analysis revealed that normal math-performers benefitted from GMM compared to both CON 1.78 ± 0.73 correct answers (p = 0.04) and FMM 2.14 ± 0.72 correct answers (p = 0.008). These effects were not observed in low math-performers. The effects were partly accounted for by visuo-spatial short-term memory and gross motor skills. Conclusion: The study demonstrates that motor enriched learning activities can improve mathematical performance. In normal math performers GMM led to larger improvements than FMM and CON. This was not the case for the low math performers. Future studies should further elucidate the neurophysiological mechanisms underlying the observed behavioral effects. PMID:28066215

  16. Development of fine motor skills in preterm infants.

    PubMed

    Bos, Arend F; Van Braeckel, Koenraad N J A; Hitzert, Marrit M; Tanis, Jozien C; Roze, Elise

    2013-11-01

    Fine motor skills are related to functioning in daily life and at school. We reviewed the status of knowledge, in preterm children, on the development of fine motor skills, the relation with gross motor skills, and risk factors for impaired fine motor skills. We searched the past 15 years in PubMed, using ['motor skills' or 'fine motor function' and 'preterm infant'] as the search string. Impaired gross and fine motor skills are among the most frequently occurring problems encountered by preterm children who do not develop cerebral palsy. The prevalence is around 40% for mild to moderate impairment and 20% for moderate impairment. Fine motor skill scores on the Movement Assessment Battery for Children are about 0.62 of a standard deviation lower compared with term children. Risk factors for fine motor impairments include moderately preterm birth (odds ratio [OR] 2.0) and, among very preterm children (<32 wk gestation), intra-uterine growth restriction (ORs 2-3), inflammatory conditions (late-onset sepsis and necrotizing enterocolitis, ORs 3-5), and dexamethasone therapy for bronchopulmonary dysplasia (OR 2.7). A better understanding of factors that play a role in the development of and recovery from brain injury could guide future intervention attempts aimed at improving fine motor skills of preterm children. © The Authors. Developmental Medicine & Child Neurology © 2013 Mac Keith Press.

  17. Fine motor skill proficiency in typically developing children: On or off the maturation track?

    PubMed

    Gaul, David; Issartel, Johann

    2016-04-01

    Fine motor skill proficiency is an essential component of numerous daily living activities such as dressing, feeding or playing. Poor fine motor skills can lead to difficulties in academic achievement, increased anxiety and poor self-esteem. Recent findings have shown that children's gross motor skill proficiency tends to fall below established developmental norms. A question remains: do fine motor skill proficiency levels also fall below developmental norms? The aim of this study was to examine the current level of fine motor skill in Irish children. Children (N=253) from 2nd, 4th and 6th grades (mean age=7.12, 9.11 and 11.02 respectively) completed the Fine Motor Composite of the Bruininks Oseretsky Test of Motor Proficiency 2nd Edition (BOT-2). Analysis revealed that only 2nd grade children met the expected level of fine motor skill proficiency. It was also found that despite children's raw scores improving with age, children's fine motor skill proficiency was not progressing at the expected rate given by normative data. This leads us to question the role and impact of modern society on fine motor skills development over the past number of decades. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Bidirectional association between weight status and motor skills in adolescents : A 4-year longitudinal study.

    PubMed

    Greier, Klaus; Drenowatz, Clemens

    2018-05-01

    Despite considerable efforts the prevalence of overweight and obesity in youth remains high. Poor motor skills have been associated with increased body weight but there is still limited information on the longitudinal association of these health parameters. This study examined the prospective association between motor skills and body weight in 10- to 14-year-old youth. Body weight, height and motor skills, assessed via the German motor test 16-18 (Deutscher Motorik Test, DMT6-18), were measured in 213 middle school students (57% male) every year over a 4‑year period. Club sports participation and migration status were assessed via a questionnaire. Besides an inverse cross-sectional association between body weight and motor skills, excess body weight was associated with impaired development of motor skills (p < 0.05). Furthermore, weight loss was associated with enhanced motor development and allowed previously overweight students to catch up with their normal weight peers. High motor skills at baseline also reduced the odds of becoming overweight/obese during the observation period. These results were independent of club sports participation. There is a bidirectional, synergistic association between body weight and motor skills. Facilitating the development of motor skills in children and adolescents may therefore be a viable intervention strategy targeting weight management and physical activity in youth.

  19. Measurement of the Robot Motor Capability of a Robot Motor System: A Fitts's-Law-Inspired Approach

    PubMed Central

    Lin, Hsien-I; George Lee, C. S.

    2013-01-01

    Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp) to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an index of performance in Fitts's law of human skills. Computer simulations and experiments on a PUMA 560 industrial robot were conducted to validate the proposed pIp for performing a motion accurately and rapidly. PMID:23820745

  20. Measurement of the robot motor capability of a robot motor system: a Fitts's-law-inspired approach.

    PubMed

    Lin, Hsien-I; Lee, C S George

    2013-07-02

    Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp) to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an index of performance in Fitts's law of human skills. Computer simulations and experiments on a PUMA 560 industrial robot were conducted to validate the proposed pIp for performing a motion accurately and rapidly.

  1. Handwriting development, competency, and intervention.

    PubMed

    Feder, Katya P; Majnemer, Annette

    2007-04-01

    Failure to attain handwriting competency during the school-age years often has far-reaching negative effects on both academic success and self-esteem. This complex occupational task has many underlying component skills that may interfere with handwriting performance. Fine motor control, bilateral and visual-motor integration, motor planning, in-hand manipulation, proprioception, visual perception, sustained attention, and sensory awareness of the fingers are some of the component skills identified. Poor handwriting may be related to intrinsic factors, which refer to the child's actual handwriting capabilities, or extrinsic factors which are related to environmental or biomechanical components, or both. It is important that handwriting performance be evaluated using a valid, reliable, standardized tool combined with informal classroom observation and teacher consultation. Studies of handwriting remediation suggest that intervention is effective. There is evidence to indicate that handwriting difficulties do not resolve without intervention and affect between 10 and 30% of school-aged children. Despite the widespread use of computers, legible handwriting remains an important life skill that deserves greater attention from educators and health practitioners.

  2. Skeletal maturation, fundamental motor skills and motor coordination in children 7-10 years.

    PubMed

    Freitas, Duarte L; Lausen, Berthold; Maia, José António; Lefevre, Johan; Gouveia, Élvio Rúbio; Thomis, Martine; Antunes, António Manuel; Claessens, Albrecht L; Beunen, Gaston; Malina, Robert M

    2015-01-01

    Relationships between skeletal maturation and fundamental motor skills and gross motor coordination were evaluated in 429 children (213 boys and 216 girls) 7-10 years. Skeletal age was assessed (Tanner-Whitehouse 2 method), and stature, body mass, motor coordination (Körperkoordinations Test für Kinder, KTK) and fundamental motor skills (Test of Gross Motor Development, TGMD-2) were measured. Relationships among chronological age, skeletal age (expressed as the standardised residual of skeletal age on chronological age) and body size and fundamental motor skills and motor coordination were analysed with hierarchical multiple regression. Standardised residual of skeletal age on chronological age interacting with stature and body mass explained a maximum of 7.0% of the variance in fundamental motor skills and motor coordination over that attributed to body size per se. Standardised residual of skeletal age on chronological age alone accounted for a maximum of 9.0% of variance in fundamental motor skills, and motor coordination over that attributed to body size per se and interactions between standardised residual of skeletal age on chronological age and body size. In conclusion, skeletal age alone or interacting with body size has a negligible influence on fundamental motor skills and motor coordination in children 7-10 years.

  3. [Procedural Motor Skills and Interference in the Academic Life Routine of a Group of Schoolchildren With Signs and Symptoms of ADHD].

    PubMed

    Rubio-Grillo, María Helena; Salazar-Torres, Lenis Judith; Rojas-Fajardo, Aida

    2014-03-01

    There is a rising prevalence of attention deficit and hyperactivity disorder (ADHD) in educational institutions. Difficulties in academic development manifest as: slow information processing, difficulty in planning and working memory, difficulty staying focused, struggle selecting data or stimuli relevant to the implementation and completion of tasks. If adequate educational measures and specialized intervention are not established, the characteristics may affect instrumental learning. The aim of this study is to identify procedural motor skills that interfere with academic activities in a group of elementary school children, with signs and symptoms of ADHD. Descriptive study including children from 2nd to 4th grade of elementary school in which teachers detected signs and symptoms of ADHD by using questionnaires and observing school behavior. Procedural motor skills were identified and it was evidenced which skills interfered in the execution of academic activities. The population that showed inattention and hyperactivity behaviors manifested behavioral problems, low academic performance, and in turn, greater difficulty in postural skills and skill related with organization of space and objects, which interfered with the activities of daily living academic routine, as expected. The assessment of procedural motor skills allowed to determine specific difficulties in routine activities, and to agree on intervention strategies in the classroom. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  4. Central neuronal motor behaviour in skilled and less skilled novices - Approaching sports-specific movement techniques.

    PubMed

    Vogt, Tobias; Kato, Kouki; Schneider, Stefan; Türk, Stefan; Kanosue, Kazuyuki

    2017-04-01

    Research on motor behavioural processes preceding voluntary movements often refers to analysing the readiness potential (RP). For this, decades of studies used laboratory setups with controlled sports-related actions. Further, recent applied approaches focus on athlete-non-athlete comparisons, omitting possible effects of training history on RP. However, RP preceding real sport-specific movements in accordance to skill acquisition remains to be elucidated. Therefore, after familiarization 16 right-handed males with no experience in archery volunteered to perform repeated sports-specific movements, i.e. 40 arrow-releasing shots at 60s rest on a 15m distant standard target. Continuous, synchronised EEG and right limb EMG recordings during arrow-releasing served to detect movement onsets for RP analyses over distinct cortical motor areas. Based on attained scores on target, archery novices were, a posteriori, subdivided into a skilled and less skilled group. EMG results for mean values revealed no significant changes (all p>0.05), whereas RP amplitudes and onsets differed between groups but not between motor areas. Arrow-releasing preceded larger RP amplitudes (p<0.05) and later RP onsets (p<0.05) in skilled compared to less skilled novices. We suggest this to reflect attentional orienting and greater effort that accompanies central neuronal preparatory states of a sports-specific movement. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Motor cortex is required for learning but not executing a motor skill

    PubMed Central

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu; Dhawale, Ashesh; Kampff, Adam R.; Ölveczky, Bence P.

    2018-01-01

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, yet its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex’s established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in ‘tutoring’ these circuits during learning. PMID:25892304

  6. Motor skill learning is associated with diffusion characteristics of white matter in individuals with chronic stroke.

    PubMed

    Borich, Michael R; Brown, Katlyn E; Boyd, Lara A

    2014-07-01

    Imaging advances allow investigation of white matter after stroke; a growing body of literature has shown links between diffusion-based measures of white matter microstructure and motor function. However, the relationship between these measures and motor skill learning has not been considered in individuals with stroke. The aim of this study was to investigate the relationships between posttraining white matter microstructural status, as indexed by diffusion tensor imaging within the ipsilesional posterior limb of the internal capsule (PLIC), and learning of a novel motor task in individuals with chronic stroke. A total of 13 participants with chronic stroke and 9 healthy controls practiced a visuomotor pursuit task across 5 sessions. Change in motor behavior associated with learning was indexed by comparing baseline performance with a delayed retention test. Fractional anisotropy (FA) indexed at the retention test was the primary diffusion tensor imaging-derived outcome measure. In individuals with chronic stroke, we discovered an association between posttraining ipsilesional PLIC FA and the magnitude of change associated with motor learning; hierarchical multiple linear regression analyses revealed that the combination of age, time poststroke, and ipsilesional PLIC FA posttraining was associated with motor learning-related change (R = 0.649; P = 0.02). Baseline motor performance was not related to posttraining ipsilesional PLIC FA. Diffusion characteristics of posttraining ipsilesional PLIC were linked to the magnitude of change in skilled motor behavior. These results imply that the microstructural properties of regional white matter indexed by diffusion behavior may be an important factor to consider when determining potential response to rehabilitation in persons with stroke. (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A59) for more insights from the authors.

  7. MotorSense: Using Motion Tracking Technology to Support the Identification and Treatment of Gross-Motor Dysfunction.

    PubMed

    Arnedillo-Sánchez, Inmaculada; Boyle, Bryan; Bossavit, Benoît

    2017-01-01

    MotorSense is a motion detection and tracking technology that can be implemented across a range of environments to assist in detecting delays in gross-motor skills development. The system utilises the motion tracking functionality of Microsoft's Kinect™. It features games that require children to perform graded gross-motor tasks matched with their chronological and developmental ages. This paper describes the rationale for MotorSense, provides an overview of the functionality of the system and illustrates sample activities.

  8. Motor Imagery Learning Modulates Functional Connectivity of Multiple Brain Systems in Resting State

    PubMed Central

    Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun

    2014-01-01

    Background Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. Methodology/Principal Findings We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. Conclusions/Significance These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning. PMID:24465577

  9. Influence of Fine Motor Skill on Accuracy of Measurements Using a Handheld Sliding Caliper at Adolescents Group Aged 19-20

    NASA Astrophysics Data System (ADS)

    Brychta, Petr; Hojk, Vladimír; Hrubý, Jiří; Pilc, Jozef

    2017-10-01

    This innovate ve interdisciplinary study deals with influence of fine motor skill level (finger dexterity) of individual on his measurement results in metrology practice. The main objective of this study was determinate fine motor skill level of individuals using a motor test. Further determinate the potential effect of different fine motor skill levels on accuracy of measuring using a mechanical handheld sliding caliper. Fine motor skill test and metrological test were implemented. Pursuant the results of fine motor skill test were probands divided into 2 groups. The groups are significantly different on accuracy of measurement (p=0,006). Pearson coefficient shows a significant correlation r = - 0.66 between the Purdue Pegboard test and a measurement error. Results confirmed that the fine motor skill of the upper limbs (especially finger coordination) significantly influence accuracy of measurement using a mechanical handheld sliding caliper.

  10. More active pre-school children have better motor competence at school starting age: an observational cohort study.

    PubMed

    Barnett, Lisa M; Salmon, Jo; Hesketh, Kylie D

    2016-10-10

    Almost half of young children do not achieve minimum recommendations of 60 daily minutes in physical activity. Physical activity is potentially an important determinant of the development of motor competence in children. This study is one of very few longitudinal studies in this area and the first to investigate early childhood physical activity as a predictor of subsequent motor skill competence. Children were assessed as part of the Melbourne InFANT Program longitudinal cohort study at 19 months, 3.5 years and 5 years. Moderate-to-vigorous physical activity (MVPA) (accelerometry) was assessed at each time point. At age 5, children were also assessed in actual (Test of Gross Motor Development-2) and perceived motor competence (Pictorial Scale of Perceived Movement Skill Competence). General linear models were performed with all 12 skills (six object control and six locomotor skills), both actual and perceived, at age 5 as the respective outcome variables. Predictor variables alternated between MVPA at 19 months, 3.5 years and 5 years. Based on standardized TGMD-2 scores most children were average or below in their skill level at age 5. MVPA at 19 months was not a predictor of actual or perceived skill at age 5. MVPA at 3.5 years was associated with actual locomotor skill (B = 0.073, p = 0.033) and perceived total skill at 5 years of age (B = 0.059, p = 0.044). MVPA was not a predictor of actual or perceived object control skill at any age. Parents and preschool staff should be informed that more time in MVPA as a preschool child contributes to locomotor skill and to perceptions of skill ability in a child of school starting age. Understanding this relationship will assist in intervention development.

  11. Obesity and motor skills among 4 to 6-year-old children in the United States: nationally-representative surveys.

    PubMed

    Castetbon, Katia; Andreyeva, Tatiana

    2012-03-15

    Few population-based studies have assessed relationships between body weight and motor skills in young children. Our objective was to estimate the association between obesity and motor skills at 4 years and 5-6 years of age in the United States. We used repeated cross-sectional assessments of the national sample from the Early Childhood Longitudinal Survey-Birth Cohort (ECLS-B) of preschool 4-year-old children (2005-2006; n = 5 100) and 5-6-year-old kindergarteners (2006-2007; n = 4 700). Height, weight, and fine and gross motor skills were assessed objectively via direct standardized procedures. We used categorical and continuous measures of body weight status, including obesity (Body Mass Index (BMI) ≥ 95th percentile) and BMI z-scores. Multivariate logistic and linear models estimated the association between obesity and gross and fine motor skills in very young children adjusting for individual, social, and economic characteristics and parental involvement. The prevalence of obesity was about 15%. The relationship between motor skills and obesity varied across types of skills. For hopping, obese boys and girls had significantly lower scores, 20% lower in obese preschoolers and 10% lower in obese kindergarteners than normal weight counterparts, p < 0.01. Obese girls could jump 1.6-1.7 inches shorter than normal weight peers (p < 0.01). Other gross motor skills and fine motor skills of young children were not consistently related to BMI z-scores and obesity. Based on objective assessment of children's motor skills and body weight and a full adjustment for confounding covariates, we find no reduction in overall coordination and fine motor skills in obese young children. Motor skills are adversely associated with childhood obesity only for skills most directly related to body weight.

  12. Obesity and motor skills among 4 to 6-year-old children in the united states: nationally-representative surveys

    PubMed Central

    2012-01-01

    Background Few population-based studies have assessed relationships between body weight and motor skills in young children. Our objective was to estimate the association between obesity and motor skills at 4 years and 5-6 years of age in the United States. We used repeated cross-sectional assessments of the national sample from the Early Childhood Longitudinal Survey-Birth Cohort (ECLS-B) of preschool 4-year-old children (2005-2006; n = 5 100) and 5-6-year-old kindergarteners (2006-2007; n = 4 700). Height, weight, and fine and gross motor skills were assessed objectively via direct standardized procedures. We used categorical and continuous measures of body weight status, including obesity (Body Mass Index (BMI) ≥ 95th percentile) and BMI z-scores. Multivariate logistic and linear models estimated the association between obesity and gross and fine motor skills in very young children adjusting for individual, social, and economic characteristics and parental involvement. Results The prevalence of obesity was about 15%. The relationship between motor skills and obesity varied across types of skills. For hopping, obese boys and girls had significantly lower scores, 20% lower in obese preschoolers and 10% lower in obese kindergarteners than normal weight counterparts, p < 0.01. Obese girls could jump 1.6-1.7 inches shorter than normal weight peers (p < 0.01). Other gross motor skills and fine motor skills of young children were not consistently related to BMI z-scores and obesity. Conclusions Based on objective assessment of children's motor skills and body weight and a full adjustment for confounding covariates, we find no reduction in overall coordination and fine motor skills in obese young children. Motor skills are adversely associated with childhood obesity only for skills most directly related to body weight. PMID:22420636

  13. Transfer of piano practice in fast performance of skilled finger movements

    PubMed Central

    2013-01-01

    Background Transfer of learning facilitates the efficient mastery of various skills without practicing all possible sensory-motor repertoires. The present study assessed whether motor practice at a submaximal speed, which is typical in sports and music performance, results in an increase in a maximum speed of finger movements of trained and untrained skills. Results Piano practice of sequential finger movements at a submaximal speed over days progressively increased the maximum speed of trained movements. This increased maximum speed of finger movements was maintained two months after the practice. The learning transferred within the hand to some extent, but not across the hands. Conclusions The present study confirmed facilitation of fast finger movements following a piano practice at a submaximal speed. In addition, the findings indicated the intra-manual transfer effects of piano practice on the maximum speed of skilled finger movements. PMID:24175946

  14. Obesity Leads to Declines in Motor Skills across Childhood

    PubMed Central

    Cheng, Jessica; East, Patricia; Blanco, Estela; Sim, Eastern Kang; Castillo, Marcela; Lozoff, Betsy; Gahagan, Sheila

    2016-01-01

    Background Poor motor skills have been consistently linked with a higher body weight in childhood, but the causal direction of this association is not fully understood. This study investigated the temporal ordering between children’s motor skills and weight status at 5 and 10 years. Methods Participants were 668 children (54% male) who were studied from infancy as part of an iron-deficiency anemia preventive trial and follow-up study in Santiago, Chile. All were healthy, full term, and weighing 3 kg or more at birth. Cross-lagged panel modeling was conducted to understand the temporal precedence between children’s weight status and motor proficiency. Analyses also examined differences in gross and fine motor skills among healthy weight, overweight, and obese children. Results A higher BMI at 5 years contributed to declines in motor proficiency from 5 to 10 years. There was no support for the reverse; that is, poor motor skills at 5 years did not predict increases in relative weight from 5 to 10 years. Obesity at 5 years also predicted declines in motor proficiency. When compared to normal weight children, obese children had significantly poorer total and gross motor skills at both 5 and 10 years. Overweight children had poorer total and gross motor skills at 10 years only. The differences in total and gross motor skills among normal-weight, overweight, and obese children appear to increase with age. There were small differences in fine motor skill between obese and non-obese children at 5 years only. Conclusions Obesity preceded declines in motor skills and not the reverse. Study findings suggest that early childhood obesity intervention efforts might help prevent declines in motor proficiency which, in turn, may positively impact children’s physical activity and overall fitness levels. PMID:27059409

  15. Obesity leads to declines in motor skills across childhood.

    PubMed

    Cheng, J; East, P; Blanco, E; Sim, E Kang; Castillo, M; Lozoff, B; Gahagan, S

    2016-05-01

    Poor motor skills have been consistently linked with a higher body weight in childhood, but the causal direction of this association is not fully understood. This study investigated the temporal ordering between children's motor skills and weight status at 5 and 10 years. Participants were 668 children (54% male) who were studied from infancy as part of an iron deficiency anaemia preventive trial and follow-up study in Santiago, Chile. All were healthy, full-term and weighing 3 kg or more at birth. Cross-lagged panel modelling was conducted to understand the temporal precedence between children's weight status and motor proficiency. Analyses also examined differences in gross and fine motor skills among healthy weight, overweight, and obese children. A higher BMI at 5 years contributed to declines in motor proficiency from 5 to 10 years. There was no support for the reverse, that is, poor motor skills at 5 years did not predict increases in relative weight from 5 to 10 years. Obesity at 5 years also predicted declines in motor proficiency. When compared with normal weight children, obese children had significantly poorer total and gross motor skills at both 5 and 10 years. Overweight children had poorer total and gross motor skills at 10 years only. The differences in total and gross motor skills among normal weight, overweight and obese children appear to increase with age. There were small differences in fine motor skill between obese and non-obese children at 5 years only. Obesity preceded declines in motor skills and not the reverse. Study findings suggest that early childhood obesity intervention efforts might help prevent declines in motor proficiency that, in turn, may positively impact children's physical activity and overall fitness levels. © 2016 John Wiley & Sons Ltd.

  16. Balance ability and athletic performance.

    PubMed

    Hrysomallis, Con

    2011-03-01

    The relationship between balance ability and sport injury risk has been established in many cases, but the relationship between balance ability and athletic performance is less clear. This review compares the balance ability of athletes from different sports, determines if there is a difference in balance ability of athletes at different levels of competition within the same sport, determines the relationship of balance ability with performance measures and examines the influence of balance training on sport performance or motor skills. Based on the available data from cross-sectional studies, gymnasts tended to have the best balance ability, followed by soccer players, swimmers, active control subjects and then basketball players. Surprisingly, no studies were found that compared the balance ability of rifle shooters with other athletes. There were some sports, such as rifle shooting, soccer and golf, where elite athletes were found to have superior balance ability compared with their less proficient counterparts, but this was not found to be the case for alpine skiing, surfing and judo. Balance ability was shown to be significantly related to rifle shooting accuracy, archery shooting accuracy, ice hockey maximum skating speed and simulated luge start speed, but not for baseball pitching accuracy or snowboarding ranking points. Prospective studies have shown that the addition of a balance training component to the activities of recreationally active subjects or physical education students has resulted in improvements in vertical jump, agility, shuttle run and downhill slalom skiing. A proposed mechanism for the enhancement in motor skills from balance training is an increase in the rate of force development. There are limited data on the influence of balance training on motor skills of elite athletes. When the effectiveness of balance training was compared with resistance training, it was found that resistance training produced superior performance results for jump height and sprint time. Balance ability was related to competition level for some sports, with the more proficient athletes displaying greater balance ability. There were significant relationships between balance ability and a number of performance measures. Evidence from prospective studies supports the notion that balance training can be a worthwhile adjunct to the usual training of non-elite athletes to enhance certain motor skills, but not in place of other conditioning such as resistance training. More research is required to determine the influence of balance training on the motor skills of elite athletes. © 2011 Adis Data Information BV. All rights reserved.

  17. Computer games and fine motor skills.

    PubMed

    Borecki, Lukasz; Tolstych, Katarzyna; Pokorski, Mieczyslaw

    2013-01-01

    The study seeks to determine the influence of computer games on fine motor skills in young adults, an area of incomplete understanding and verification. We hypothesized that computer gaming could have a positive influence on basic motor skills, such as precision, aiming, speed, dexterity, or tremor. We examined 30 habitual game users (F/M - 3/27; age range 20-25 years) of the highly interactive game Counter Strike, in which players impersonate soldiers on a battlefield, and 30 age- and gender-matched subjects who declared never to play games. Selected tests from the Vienna Test System were used to assess fine motor skills and tremor. The results demonstrate that the game users scored appreciably better than the control subjects in all tests employed. In particular, the players did significantly better in the precision of arm-hand movements, as expressed by a lower time of errors, 1.6 ± 0.6 vs. 2.8 ± 0.6 s, a lower error rate, 13.6 ± 0.3 vs. 20.4 ± 2.2, and a shorter total time of performing a task, 14.6 ± 2.9 vs. 32.1 ± 4.5 s in non-players, respectively; p < 0.001 all. The findings demonstrate a positive influence of computer games on psychomotor functioning. We submit that playing computer games may be a useful training tool to increase fine motor skills and movement coordination.

  18. Motor Skills Training Improves Sensorimotor Dysfunction and Increases Microtubule-Associated Protein 2 mRNA Expression in Rats with Intracerebral Hemorrhage.

    PubMed

    Tamakoshi, Keigo; Kawanaka, Kentaro; Onishi, Hideaki; Takamatsu, Yasuyuki; Ishida, Kazuto

    2016-08-01

    In this study, we examined the effects of motor skills training on the sensorimotor function and the expression of genes associated with synaptic plasticity after intracerebral hemorrhage (ICH) in rats. Male Wistar rats were subjected to ICH or sham operation. ICH was caused by the injection of collagenase into the left striatum. Rats were randomly assigned to no training, acrobatic training, and sham groups. The acrobatic group performed 5 types of acrobatic tasks from 4 to 28 days after surgery. The forelimb sensorimotor function was evaluated over time using forepaw grasping, forelimb placing, and postural instability tests. At 14 and 29 days after the lesion, we analyzed the mRNA expression levels of microtubule-associated protein 2 (MAP2), brain-derived neurotrophic factor, and growth-associated protein 43 in the bilateral sensorimotor cortex (forelimb area) by real-time reverse transcription-polymerase chain reaction. Motor skills training in ICH rats improved the sensorimotor dysfunction significantly from the early phase. The mRNA expression level of MAP2 was upregulated in the ipsilesional sensorimotor cortex by motor skills training at 29 days after the lesion. Our results suggest that sensorimotor functional recovery following motor skills training after ICH is promoted by dendritic growth in the ipsilesional sensorimotor cortex. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  19. Acquisition and reacquisition of motor coordination in musicians.

    PubMed

    Furuya, Shinichi; Altenmüller, Eckart

    2015-03-01

    Precise control of movement timing plays a key role in musical performance. This motor skill requires coordination across multiple joints and muscles, which is acquired through extensive musical training from childhood. However, extensive training has a potential risk of causing neurological disorders that impair fine motor control, such as task-specific tremor and focal dystonia. Recent technological advances in measurement and analysis of biological data, as well as noninvasive manipulation of neuronal activities, have promoted the understanding of computational and neurophysiological mechanisms underlying acquisition, loss, and reacquisition of dexterous movements through musical practice and rehabilitation. This paper aims to provide an overview of the behavioral and neurophysiological basis of motor virtuosity and disorder in musicians, representative extremes of human motor skill. We also report novel evidence of effects of noninvasive neurorehabilitation that combined transcranial direct-current stimulation and motor rehabilitation over multiple days on musician's dystonia, which offers a promising therapeutic means. © 2015 New York Academy of Sciences.

  20. Do cognitive training strategies improve motor and positive psychological skills development in soccer players? Insights from a systematic review.

    PubMed

    Slimani, Maamer; Bragazzi, Nicola Luigi; Tod, David; Dellal, Alexandre; Hue, Olivier; Cheour, Foued; Taylor, Lee; Chamari, Karim

    2016-12-01

    Soccer players are required to have well-developed physical, technical and cognitive abilities. The present systematic review, adhering to Preferred Reporting Items for Systematic reviews and Meta-Analysis guidelines, examined the effects of cognitive training strategies on motor and positive psychological skills development in soccer performance and identified the potential moderators of the "cognitive training-soccer performance" relationship. Thirteen databases were systematically searched using keywords related to psychological or cognitive training in soccer players. The review is based on 18 studies, employing 584 soccer players aged 7-39 years. Cognitive strategies, particularly imagery, appear to improve sports performance in soccer players. Regarding imagery, the combination of two different types of cognitive imagery training (i.e., cognitive general and cognitive specific) has a positive influence on soccer performance during training, whereas motivational imagery (i.e., motivational general-arousal, motivational general-mastery and motivational specific) enhance competition performance. Younger soccer players employ cognitive general and cognitive specific imagery techniques to a greater extent than older soccer players. Combined cognitive training strategies were more beneficial than a single cognitive strategy relative to motor skills enhancement in elite (particularly midfielders) and amateur (i.e., when practising complex and specific soccer skills in precompetitive period) soccer players. In conclusion, it appears that there are differences in cognitive/psychological training interventions, and their efficacy, according to whether they are directed towards training or competition, and the age, standard and playing position of the players.

  1. The Relationship between Fine-Motor Play and Fine-Motor Skill

    ERIC Educational Resources Information Center

    Marr, Deborah; Cermak, Sharon; Cohn, Ellen S.; Henderson, Anne

    2004-01-01

    This study examined the relationship between free-play choices and fine-motor skill in 4-year-old children attending Head Start. Children with poor fine-motor skill were matched for age and gender with children in the same classroom that exhibited good fine-motor skill. Each pair was observed during free-play sessions to examine the degree of…

  2. Development and Initial Validation of the Preschooler Gross Motor Quality Scale

    ERIC Educational Resources Information Center

    Sun, Shih-Heng; Zhu, Yi-Ching; Shih, Ching-Lin; Lin, Chien-Hui; Wu, Sheng K.

    2010-01-01

    Motor skills have great impact on children in adapting to an environment and developing interpersonal interaction, cognition, and social behavior. Understanding what children can do and how they perform it is essential. Most motor tests seldom contain quality evaluation in the items or criteria. The purpose of this study was to develop and…

  3. A School-Based Movement Programme for Children with Motor Learning Difficulty

    ERIC Educational Resources Information Center

    Mannisto, Juha-Pekka; Cantell, Marja; Huovinen, Tommi; Kooistra, Libbe; Larkin, Dawne

    2006-01-01

    The study investigated the effectiveness of a school-based movement programme for a population of 5 to 7 year old children. Performance profiles on the Movement ABC were used to classify the children and to assess skill changes over time. Children were assigned to four different groups: motor learning difficulty (n = 10), borderline motor learning…

  4. The relationship of motor skills and adaptive behavior skills in young children with autism spectrum disorders.

    PubMed

    MacDonald, Megan; Lord, Catherine; Ulrich, Dale

    2013-11-01

    To determine the relationship of motor skills and the core behaviors of young children with autism, social affective skills and repetitive behaviors, as indicated through the calibrated autism severity scores. The univariate GLM tested the relationship of gross and fine motor skills measured by the gross motor scale and the fine motor scale of the MSEL with autism symptomology as measured by calibrated autism severity scores. Majority of the data collected took place in an autism clinic. A cohort of 159 young children with ASD (n=110), PDD-NOS (n=26) and non-ASD (developmental delay, n=23) between the ages of 12-33 months were recruited from early intervention studies and clinical referrals. Children with non-ASD (developmental delay) were included in this study to provide a range of scores indicted through calibrated autism severity. Not applicable. The primary outcome measures in this study were calibrated autism severity scores. Fine motor skills and gross motor skills significantly predicted calibrated autism severity (p < 0.01). Children with weaker motor skills displayed higher levels of calibrated autism severity. The fine and gross motor skills are significantly related to autism symptomology. There is more to focus on and new avenues to explore in the realm of discovering how to implement early intervention and rehabilitation for young children with autism and motor skills need to be a part of the discussion.

  5. Autism Severity and Motor Abilities Correlates of Imitation Situations in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Zachor, Ditza A.; Ilanit, Tzaig; Itzchak, Esther Ben

    2010-01-01

    Impaired performance in a range of imitation tasks has been described in children with autism spectrum disorders (ASD) and several underlying mechanism have been suggested. This study examined whether imitation abilities are related to autism severity and to motor skills. Furthermore, the performance of children with ASD in four imitation…

  6. Fine motor skills predict performance in the Jebsen Taylor Hand Function Test after stroke.

    PubMed

    Allgöwer, Kathrin; Hermsdörfer, Joachim

    2017-10-01

    To determine factors characterizing the differences in fine motor performance between stroke patients and controls. To confirm the relevance of the factors by analyzing their predictive power with regard to the Jebsen Taylor Hand Function Test (JTHFT), a common clinical test of fine motor control. Twenty-two people with slight paresis in an early chronic phase following stroke and twenty-two healthy controls were examined. Performance on the JTHFT, Nine-Hole Peg Test and 2-point discrimination was evaluated. To analyze object manipulation skills, grip forces and temporal measures were examined during (1) lifting actions with variations of weight and surface (2) cyclic movements (3) predictive/reactive catching tasks. Three other aspects of force control included (4) visuomotor tracking (5) fast force changes and (6) grip strength. Based on 9 parameters which significantly distinguished fine motor performance in the two groups, we identified three principal components (factors): grip force scaling, motor coordination and speed of movement. The three factors are shown to predict JTHFT scores via linear regression (R 2 =0.687, p<0.001). We revealed a factor structure behind fine motor impairments following stroke and showed that it explains JTHFT results to a large extend. This result can serve as a basis for improving diagnostics and enabling more targeted therapy. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  7. Gross and fine motor skills of children with Hurler syndrome (MPS-IH) post umbilical cord blood transplantation: a case series report.

    PubMed

    Dusing, Stacey C; Rosenberg, Angela; Hiemenz, Jennifer R; Piner, Shelley; Escolar, Maria

    2005-01-01

    Recent advancements in medical treatment of Hurler syndrome have resulted in longer life expectancies and a greater need for therapeutic services. The purpose of this case series is to provide recommendations for assessing children with Hurler syndrome after umbilical cord blood transplant (UCBT). CLINICAL DESCRIPTIONS: Two children with Hurler syndrome were seen for longitudinal assessments following an UCBT for Hurler syndrome. The raw scores and percentage of fine and gross motor items each child completed on the Motor Scale of the Bayley Scales of Infant Development II (BSID-II) were reviewed. Both children gained new motor skills with each successive motor assessment. Both children were able to complete a higher percentage of fine motor skills than gross motor skills in the most advanced item set assessed. The children presented in these two case reports both had better fine motor skills than gross motor skills, which inflated their standard scores on the BSID-II. Clinicians assessing children with Hurler syndrome should use standardized assessments that allow for differentiation of fine and gross motor skills to prevent this situation.

  8. Gaze Behavior of Gymnastics Judges: Where Do Experienced Judges and Gymnasts Look While Judging?

    PubMed

    Pizzera, Alexandra; Möller, Carsten; Plessner, Henning

    2018-03-01

    Gymnastics judges and former gymnasts have been shown to be quite accurate in detecting errors and accurately judging performance. The purpose of the current study was to examine if this superior judging performance is reflected in judges' gaze behavior. Thirty-five judges were asked to judge 21 gymnasts who performed a skill on the vault in a video-based test. Classifying 1 sample on 2 different criteria, judging performance and gaze behavior were compared between judges with a higher license level and judges with a lower license level and between judges who were able to perform the skill (specific motor experience [SME]) and those who were not. The results revealed better judging performance among judges with a higher license level compared with judges with a lower license level and more fixations on the gymnast during the whole skill and the landing phase, specifically on the head and arms of the gymnast. Specific motor experience did not result in any differences in judging performance; however, judges with SME showed similar gaze patterns to those of judges with a high license level, with 1 difference in their increased focus on the gymnasts' feet. Superior judging performance seems to be reflected in a specific gaze behavior. This gaze behavior appears to partly stem from judges' own sensorimotor experiences for this skill and reflects the gymnasts' perspective onto the skill.

  9. Occupational Therapy in the Neonatal Intensive Care Unit for a Neonate with Perinatal Stroke: A Case Report.

    PubMed

    Roan, Cecilia; Bell, Alison

    2017-08-01

    This case report describes an occupational therapy intervention based on synactive theory for a neonate born full-term with a diagnosis of perinatal stroke. Occupational therapy was provided 4-5 times a week for 3 weeks. The focus was improving infant state regulation and motor skills to support developmentally appropriate behaviors through environmental modifications, positioning, guided progression of sensory stimulation, and promotion of motor and postural skills. At discharge on day 24, the infant had improved state regulation, behavioral organization, and motor performance. Occupational therapy based on synactive theory was an effective therapeutic approach for improving the behavioral and motor organization of a full term infant diagnosed with perinatal stroke.

  10. Mapping the structure of perceptual and visual-motor abilities in healthy young adults.

    PubMed

    Wang, Lingling; Krasich, Kristina; Bel-Bahar, Tarik; Hughes, Lauren; Mitroff, Stephen R; Appelbaum, L Gregory

    2015-05-01

    The ability to quickly detect and respond to visual stimuli in the environment is critical to many human activities. While such perceptual and visual-motor skills are important in a myriad of contexts, considerable variability exists between individuals in these abilities. To better understand the sources of this variability, we assessed perceptual and visual-motor skills in a large sample of 230 healthy individuals via the Nike SPARQ Sensory Station, and compared variability in their behavioral performance to demographic, state, sleep and consumption characteristics. Dimension reduction and regression analyses indicated three underlying factors: Visual-Motor Control, Visual Sensitivity, and Eye Quickness, which accounted for roughly half of the overall population variance in performance on this battery. Inter-individual variability in Visual-Motor Control was correlated with gender and circadian patters such that performance on this factor was better for males and for those who had been awake for a longer period of time before assessment. The current findings indicate that abilities involving coordinated hand movements in response to stimuli are subject to greater individual variability, while visual sensitivity and occulomotor control are largely stable across individuals. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. When Affordances Climb into Your Mind: Advantages of Motor Simulation in a Memory Task Performed by Novice and Expert Rock Climbers

    ERIC Educational Resources Information Center

    Pezzulo, Giovanni; Barca, Laura; Bocconi, Alessandro Lamberti; Borghi, Anna M.

    2010-01-01

    Does the sight of multiple climbing holds laid along a path activate a motor simulation of climbing that path? One way of testing whether multiple affordances and their displacement influence the formation of a motor simulation is to study acquired motor skills. We used a behavioral task in which expert and novice rock climbers were shown three…

  12. The relationship between motor skills, ADHD symptoms, and childhood body weight.

    PubMed

    Goulardins, Juliana B; Rigoli, Daniela; Piek, Jan P; Kane, Robert; Palácio, Siméia G; Casella, Erasmo B; Nascimento, Roseane O; Hasue, Renata H; Oliveira, Jorge A

    2016-08-01

    Research has suggested an important association between motor proficiency and overweight/obesity. Many children with motor difficulties experience ADHD symptoms which have also been linked with overweight/obesity. Previous research has not considered both ADHD and motor performance when investigating their relationship with overweight/obesity. To investigate the relationships between motor performance, ADHD symptoms, and overweight/obesity in children. A cross-sectional study was conducted involving189 children aged six to 10 years. Symptoms of ADHD were identified using the SNAP-IV rating scale. Motor impairment (MI) was identified using the Movement Battery Assessment for Children-2. Body composition was estimated from the Body Mass Index (BMI) based on World Health Organization child growth standards. Balance was the only motor skill associated with BMI even after controlling for gender and ADHD. Group comparisons revealed that the proportion of overweight ADHD children was significantly less than the proportion of overweight control children and overweight MI children; the proportion of underweight ADHD children was significantly greater than the proportion of underweight MI children. The results highlight the importance of taking into consideration both ADHD symptoms and motor difficulties in the assessment and intervention of physical health outcomes in children with ADHD and/or movement problems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effect of the home environment on motor and cognitive behavior of infants.

    PubMed

    Miquelote, Audrei F; Santos, Denise C C; Caçola, Priscila M; Montebelo, Maria Imaculada de L; Gabbard, Carl

    2012-06-01

    Although information is sparse, research suggests that affordances in the home provide essential resources that promote motor and cognitive skills in young children. The present study assessed over time, the association between motor affordances in the home and infant motor and cognitive behavior. Thirty-two (32) infants were assessed for characteristics of their home using the Affordances in the Home Environment for Motor Development--Infant Scale and motor and cognitive behavior with the Bayley Scales of Infant and Toddler Development--III. Infant's home and motor behavior were assessed at age 9 months and 6 months later with the inclusion of cognitive ability. Results for motor ability indicated that there was an overall improvement in performance from the 1st to the 2nd assessment. We found significant positive correlations between the dimensions of the home (daily activities and play materials) and global motor performance (1st assessment) and fine-motor performance on the 2nd assessment. In regard to cognitive performance (2nd assessment), results indicated a positive association with fine-motor performance. Our results suggest that motor affordances can have a positive impact on future motor ability and speculatively, later cognitive behavior in infants. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Functional MRI evidence for fine motor praxis dysfunction in children with persistent speech disorders

    PubMed Central

    Redle, Erin; Vannest, Jennifer; Maloney, Thomas; Tsevat, Rebecca K.; Eikenberry, Sarah; Lewis, Barbara; Shriberg, Lawrence D.; Tkach, Jean; Holland, Scott K.

    2014-01-01

    Children with persistent speech disorders (PSD) often present with overt or subtle motor deficits; the possibility that speech disorders and motor deficits could arise from a shared neurological base is currently unknown. Functional MRI (fMRI) was used to examine the brain networks supporting fine motor praxis in children with PSD and without clinically identified fine motor deficits. Methods This case-control study included 12 children with PSD (mean age 7.42 years, 4 female) and 12 controls (mean age 7.44 years, 4 female). Children completed behavioral evaluations using standardized motor assessments and parent reported functional measures. During fMRI scanning, participants completed a cued finger tapping task contrasted passive listening. A general linear model approach identified brain regions associated with finger tapping in each group and regions that differed between groups. The relationship between regional fMRI activation and fine motor skill was assessed using a regression analysis. Results Children with PSD had significantly poorer results for rapid speech production and fine motor praxis skills, but did not differ on classroom functional skills. Functional MRI results showed that children with PSD had significantly more activation in the cerebellum during finger tapping. Positive correlations between performance on a fine motor praxis test and activation multiple cortical regions were noted for children with PSD but not for controls. Conclusions Over-activation in the cerebellum during a motor task may reflect a subtle abnormality in the non-speech motor neural circuitry in children with PSD. PMID:25481413

  15. Associations of Body Mass Index, Motor Performance, and Perceived Athletic Competence with Physical Activity in Normal Weight and Overweight Children

    PubMed Central

    Cairney, John; Eisenmann, Joe; Pfeiffer, Karin; Gould, Dan

    2018-01-01

    Children who are overweight and obese display lower physical activity levels than normal weight peers. Measures of weight status, perceived motor competence, and motor skill performance have been identified as potential correlates explaining this discrepancy. 1881 children (955 males; 926 females; 9.9 years) were assessed as part of the Physical Health Activity Study Team project. The age, habitual physical activity participation (PAP), body mass index (BMI), socioeconomic status (SES), motor performance (MP), and perceived athletic competence (PAC) of each child included were assessed. Gender-specific linear regression analyses (main effects model) were conducted to identify the percent variance in PAP explained by the following variables: BMI, MP, and PAC. For males, 18.3% of the variance in PAP was explained by BMI, MP, and PAC. PAC explained 17% of the variance, while MP, BMI, and SES only accounted for 0.6%, 0.7%, and 0.5%, respectively. PAC explained 17.5% of PAP variance in females; MP explained 0.8%. BMI, SES, and chronological age were not significant correlates of PAP in girls. An established repertoire of motor skill performance has been seen as a vehicle to PAP in children; however, this study indicates that PAC should not be overlooked in intervention strategies to promote increased PAP. PMID:29854437

  16. Associations of Body Mass Index, Motor Performance, and Perceived Athletic Competence with Physical Activity in Normal Weight and Overweight Children.

    PubMed

    Morrison, Kyle M; Cairney, John; Eisenmann, Joe; Pfeiffer, Karin; Gould, Dan

    2018-01-01

    Children who are overweight and obese display lower physical activity levels than normal weight peers. Measures of weight status, perceived motor competence, and motor skill performance have been identified as potential correlates explaining this discrepancy. 1881 children (955 males; 926 females; 9.9 years) were assessed as part of the Physical Health Activity Study Team project. The age, habitual physical activity participation (PAP), body mass index (BMI), socioeconomic status (SES), motor performance (MP), and perceived athletic competence (PAC) of each child included were assessed. Gender-specific linear regression analyses (main effects model) were conducted to identify the percent variance in PAP explained by the following variables: BMI, MP, and PAC. For males, 18.3% of the variance in PAP was explained by BMI, MP, and PAC. PAC explained 17% of the variance, while MP, BMI, and SES only accounted for 0.6%, 0.7%, and 0.5%, respectively. PAC explained 17.5% of PAP variance in females; MP explained 0.8%. BMI, SES, and chronological age were not significant correlates of PAP in girls. An established repertoire of motor skill performance has been seen as a vehicle to PAP in children; however, this study indicates that PAC should not be overlooked in intervention strategies to promote increased PAP.

  17. Motor dysfunction in NF1: Mediated by attention deficit or inherent to the disorder?

    PubMed

    Haas-Lude, Karin; Heimgärtner, Magdalena; Winter, Sarah; Mautner, Victor-Felix; Krägeloh-Mann, Ingeborg; Lidzba, Karen

    2018-01-01

    Attention deficit and compromised motor skills are both prevalent in Neurofibromatosis type 1 (NF1), but the relationship is unclear. We investigated motor function in children with NF1 and in children with Attention Deficit/Hyperactivity Disorder (ADHD), and explored if, in patients with NF1, attention deficit influences motor performance. Motor performance was measured using the Movement Assessment Battery for Children (M-ABC) in 71 children (26 with NF1 plus ADHD, 14 with NF1 without ADHD, and 31 with ADHD without NF1) aged 6-12 years. There was a significant effect of group on motor performance. Both NF1 groups scored below children with ADHD without NF1. Attention performance mediated motor performance in children with ADHD without NF1, but not in children with NF1. Motor function is not mediated by attention performance in children with NF1. While in ADHD, attention deficit influences motor performance, motor problems in NF1 seem to be independent from attention deficit. This argues for different pathomechanisms in these two groups of developmental disorders. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  18. Motor impairment in children with Neurofibromatosis type 1: Effect of the comorbidity with language disorders.

    PubMed

    Iannuzzi, Stéphanie; Albaret, Jean-Michel; Chignac, Céline; Faure-Marie, Nathalie; Barry, Isabelle; Karsenty, Caroline; Chaix, Yves

    2016-02-01

    There is a body of evidence demonstrating comorbidity of motor and cognitive deficit in «idiopathic» developmental disorders. These associations are also found in developmental disorders secondary to monogenic disorders as in Neurofibromatosis type 1 for which the principal complication during childhood is learning disabilities. The comparison of motor impairment between developmental disorders either idiopathic or secondary as in NF1 could help us to better understand the cause of the combined language/motor deficit in these populations. The aim of this current study was to investigate motor impairment in children with NF1 for which oral language had been specified and then to compare the motors skills of the NF1 group to motor performance of children with Specific Language Disorder (SLD). Two groups of 49 children between 5 and 12years old were included and compared, the NF1 group and the SLD (Specific Language Disorder) group. Each child completed evaluation involving cognitive, language and motor assessment. In NF1 group, motor impairment was more frequent and more severe and concerned specifically balance rather than manual dexterity or ball skills, compared to a group of children with SLD. This motor impairment was independent of language status in the NF1 group. These results as well as other studies on the same topic could suggest that in NF1 children, fine motor skills impairment would be dependent on the existence of comorbidity with language disorders. Also, that gross motor skills impairment, and more precisely the balance deficit would be characteristic of NF1. This issue encourages studies of procedural learning that can involve the fronto-striatal or the fronto-cerebellar loops according to the type of motor tasks and the stage of learning. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  19. Children show limited movement repertoire when learning a novel motor skill.

    PubMed

    Lee, Mei-Hua; Farshchiansadegh, Ali; Ranganathan, Rajiv

    2017-09-27

    Examining age differences in motor learning using real-world tasks is often problematic due to task novelty and biomechanical confounds. Here, we investigated how children and adults acquire a novel motor skill in a virtual environment. Participants of three different age groups (9-year-olds, 12-year-olds, and adults) learned to use their upper body movements to control a cursor on a computer screen. Results showed that 9-year-old and 12-year-old children showed poorer ability to control the cursor at the end of practice. Critically, when we investigated the movement coordination, we found that the lower task performance of children was associated with limited exploration of their movement repertoire. These results reveal the critical role of motor exploration in understanding developmental differences in motor learning. © 2017 John Wiley & Sons Ltd.

  20. Association between fine motor skills and binocular visual function in children with reading difficulties.

    PubMed

    Niechwiej-Szwedo, Ewa; Alramis, Fatimah; Christian, Lisa W

    2017-12-01

    Performance of fine motor skills (FMS) assessed by a clinical test battery has been associated with reading achievement in school-age children. However, the nature of this association remains to be established. The aim of this study was to assess FMS in children with reading difficulties using two experimental tasks, and to determine if performance is associated with reduced binocular function. We hypothesized that in comparison to an age- and sex-matched control group, children identified with reading difficulties will perform worse only on a motor task that has been shown to rely on binocular input. To test this hypothesis, motor performance was assessed using two tasks: bead-threading and peg-board in 19 children who were reading below expected grade and age-level. Binocular vision assessment included tests for stereoacuity, fusional vergence, amplitude of accommodation, and accommodative facility. In comparison to the control group, children with reading difficulties performed significantly worse on the bead-threading task. In contrast, performance on the peg-board task was similar in both groups. Accommodative facility was the only measure of binocular function significantly associated with motor performance. Findings from our exploratory study suggest that normal binocular vision may provide an important sensory input for the optimal development of FMS and reading. Given the small sample size tested in the current study, further investigation to assess the contribution of binocular vision to the development and performance of FMS and reading is warranted. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Motor Skill Development in Italian Pre-School Children Induced by Structured Activities in a Specific Playground.

    PubMed

    Tortella, Patrizia; Haga, Monika; Loras, Håvard; Sigmundsson, Hermundur; Fumagalli, Guido

    2016-01-01

    This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s) appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens.

  2. Motor Skill Development in Italian Pre-School Children Induced by Structured Activities in a Specific Playground

    PubMed Central

    Tortella, Patrizia; Haga, Monika; Loras, Håvard

    2016-01-01

    This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s) appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens. PMID:27462985

  3. Flying the Needles: Flight Deck Automation Erodes Fine-Motor Flying Skills Among Airline Pilots.

    PubMed

    Haslbeck, Andreas; Hoermann, Hans-Juergen

    2016-06-01

    The aim of this study was to evaluate the influence of practice and training on fine-motor flying skills during a manual instrument landing system (ILS) approach. There is an ongoing debate that manual flying skills of long-haul crews suffer from a lack of flight practice due to conducting only a few flights per month and the intensive use of automation. However, objective evidence is rare. One hundred twenty-six randomly selected airline pilots had to perform a manual flight scenario with a raw data precision approach. Pilots were assigned to four equal groups according to their level of practice and training by fleet (short-haul, long-haul) and rank (first officer, captain). Average ILS deviation scores differed significantly in relation to the group assignments. The strongest predictor variable was fleet, indicating degraded performance among long-haul pilots. Manual flying skills are subject to erosion due to a lack of practice on long-haul fleets: All results support the conclusion that recent flight practice is a significantly stronger predictor for fine-motor flying performance than the time period since flight school or even the total or type-specific flight experience. Long-haul crews have to be supported in a timely manner by adequate training tailored to address manual skills or by operational provisions like mixed-fleet flying or more frequent transitions between short-haul and long-haul operation. © 2016, Human Factors and Ergonomics Society.

  4. Spectrum of gross motor function in extremely low birth weight children with cerebral palsy at 18 months of age.

    PubMed

    Vohr, Betty R; Msall, Michael E; Wilson, Dee; Wright, Linda L; McDonald, Scott; Poole, W Kenneth

    2005-07-01

    The purpose of this study was to evaluate the relationship between cerebral palsy (CP) diagnoses as measured by the topographic distribution of the tone abnormality with level of function on the Gross Motor Function Classification System (GMFCS) and developmental performance on the Bayley Scales of Infant Development II (BSID-II). It was hypothesized that (1) the greater the number of limbs involved, the higher the GMFCS and the lower the BSID-II Motor Scores and (2) there would be a spectrum of function and skill achievement on the GMFCS and BSID-II Motor Scores for children in each of the CP categories. A multicenter, longitudinal cohort study was conducted of 1860 extremely low birth weight (ELBW) infants who were born between August 1, 1995 and February 1, 1998, and evaluated at 18 to 22 months' corrected age. Children were categorized into impairment groups on the basis of the typography of neurologic findings: spastic quadriplegia, triplegia, diplegia, hemiplegia, monoplegia, hypotonic and/or athetotic CP, other abnormal neurologic findings, and normal. The neurologic category then was compared with GMFCS level and BSID-II Motor Scores. A total of 282 (15.2%) of the 1860 children evaluated had CP. Children with more limbs involved had more abnormal GMFCS levels and lower BSID-II scores, reflecting more severe functional limitations. However, for each CP diagnostic category, there was a spectrum of gross motor functional levels and BSID-II scores. Although more than 1 (26.6%) in 4 of the children with CP had moderate to severe gross motor functional impairment, 1 (27.6%) in 4 had motor functional skills that allowed for ambulation. Given the range of gross motor skill outcomes for specific types of CP, the GMFCS is a better indicator of gross motor functional impairment than the traditional categorization of CP that specifies the number of limbs with neurologic impairment. The neurodevelopmental assessment of young children is optimized by combining a standard neurologic examination with measures of gross and fine motor function (GMFCS and Bayley Psychomotor Developmental Index). Additional studies to examine longer term functional motor and adaptive-functional developmental skills are required to devise strategies that delineate therapies to optimize functional performance.

  5. Motor and mental training in older people: Transfer, interference, and associated functional neural responses.

    PubMed

    Boraxbekk, C J; Hagkvist, Filip; Lindner, Philip

    2016-08-01

    Learning new motor skills may become more difficult with advanced age. In the present study, we randomized 56 older individuals, including 30 women (mean age 70.6 years), to 6 weeks of motor training, mental (motor imagery) training, or a combination of motor and mental training of a finger tapping sequence. Performance improvements and post-training functional magnetic resonance imaging (fMRI) were used to investigate performance gains and associated underlying neural processes. Motor-only training and a combination of motor and mental training improved performance in the trained task more than mental-only training. The fMRI data showed that motor training was associated with a representation in the premotor cortex and mental training with a representation in the secondary visual cortex. Combining motor and mental training resulted in both premotor and visual cortex representations. During fMRI scanning, reduced performance was observed in the combined motor and mental training group, possibly indicating interference between the two training methods. We concluded that motor and motor imagery training in older individuals is associated with different functional brain responses. Furthermore, adding mental training to motor training did not result in additional performance gains compared to motor-only training and combining training methods may result in interference between representations, reducing performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Motor cortex is required for learning but not for executing a motor skill.

    PubMed

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu L; Dhawale, Ashesh K; Kampff, Adam R; Ölveczky, Bence P

    2015-05-06

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, but its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex's established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in "tutoring" these circuits during learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Driving and off-road impairments underlying failure on road testing in Parkinson's disease.

    PubMed

    Devos, Hannes; Vandenberghe, Wim; Tant, Mark; Akinwuntan, Abiodun E; De Weerdt, Willy; Nieuwboer, Alice; Uc, Ergun Y

    2013-12-01

    Parkinson's disease (PD) affects driving ability. We aimed to determine the most critical impairments in specific road skills and in clinical characteristics leading to failure on a road test in PD. In this cross-sectional study, certified driving assessment experts evaluated specific driving skills in 104 active, licensed drivers with PD using a standardized, on-road checklist and issued a global decision of pass/fail. Participants also completed an off-road evaluation assessing demographic features, disease characteristics, motor function, vision, and cognition. The most important driving skills and off-road predictors of the pass/fail outcome were identified using multivariate stepwise regression analyses. Eighty-six (65%) passed and 36 (35%) failed the on-road driving evaluation. Persons who failed performed worse on all on-road items. When adjusted for age and gender, poor performances on lateral positioning at low speed, speed adaptations at high speed, and left turning maneuvers yielded the best model that determined the pass/fail decision (R(2) = 0.56). The fail group performed poorer on all motor, visual, and cognitive tests. Measures of visual scanning, motor severity, PD subtype, visual acuity, executive functions, and divided attention were independent predictors of pass/fail decisions in the multivariate model (R(2) = 0.60). Our study demonstrated that failure on a road test in PD is determined by impairments in specific driving skills and associated with deficits in motor, visual, executive, and visuospatial functions. These findings point to specific driving and off-road impairments that can be targeted in multimodal rehabilitation programs for drivers with PD. © 2013 Movement Disorder Society.

  8. Media use, sports activities, and motor fitness in childhood and adolescence.

    PubMed

    Kaiser-Jovy, Sebastian; Scheu, Anja; Greier, Klaus

    2017-07-01

    Physical activity is one of the key determinants of physical, mental, and social health of children and adolescents. Therefore, the early development of health-relevant behavior patterns is of high relevance. To examine the impact of selected socioeconomic factors as well as media consumption, on sports activities and the motor skills of 10- to 14-year-old secondary school students. Body height and body weight were measured. The motor skills were determined with the Deutschen Motorik Test (DMT 6‑18; German Motor Test). Information about media use, media equipment, recreational sports activities, migration status, and the parents' profession was collected by means of a standardized questionnaire. A total of 391 adolescents have been tested (male 235; female 156). Body mass index (BMI) types are evenly distributed on gender. On a weekday, the pupils spend 10.3 h using media (SD ± 9.1 h). On weekends, media use increases up to 12 h per day on average (SD ± 9.7 h). The number of available media is independent from the age of the respondents and the social status of their families. According to bivariate correlations, heavy media use, a high BMI as well as migration status correlate negatively with both sports activities and motor skills. BMI seems to have the strongest influence on athletic performance (b = 0.41). Media use is an important determinant of juvenile sports activity and motor performance, being part of a complex juvenile leisure behavior.

  9. The effect of handedness on spatial and motor representation of pitch patterns in pianists

    PubMed Central

    2018-01-01

    This study investigated the effect of handedness on pianists’ abilities to adjust their keyboard performance skills to new spatial and motor mappings. Left- and right-handed pianists practiced simple melodies on a regular MIDI piano keyboard (practice) and were then asked to perform these with modified melodic contours (the same or reversed melodic contour causing a change of fingering) and on a reversed MIDI piano keyboard (test). The difference of performance duration between the practice and the test phase as well as the amount of errors played were used as test measures. Overall, a stronger effect for modified melodic contours than for the reversed keyboard was observed. Furthermore, we observed a trend of left-handed pianists to be quicker and more accurate in playing melodies when reversing their fingering with reversed contours in their left-hand performances. This suggests that handedness may influence pianists’ skill to adjust to new spatial and motor mappings. PMID:29718946

  10. Skill transfer from symmetric and asymmetric bimanual training using a robotic system to single limb performance

    PubMed Central

    2012-01-01

    Background Humans are capable of fast adaptation to new unknown dynamics that affect their movements. Such motor learning is also believed to be an important part of motor rehabilitation. Bimanual training can improve post-stroke rehabilitation outcome and is associated with interlimb coordination between both limbs. Some studies indicate partial transfer of skills among limbs of healthy individuals. Another aspect of bimanual training is the (a)symmetry of bimanual movements and how these affect motor learning and possibly post-stroke rehabilitation. Methods A novel bimanual 2-DOF robotic system was used for both bimanual and unimanual reaching movements. 35 young healthy adults participated in the study. They were divided into 5 test groups that performed movements under different conditions (bimanual or unimanual movements and symmetric or asymmetric bimanual arm loads). The subjects performed a simple tracking exercise with the bimanual system. The exercise was developed to stimulate motor learning by applying a velocity-dependent disturbance torque to the handlebar. Each subject performed 255 trials divided into three phases: baseline without disturbance torque, training phase with disturbance torque and evaluation phase with disturbance torque. Results Performance was assessed with the maximal values of rotation errors of the handlebar. After exposure to disturbance torque, the errors decreased for both unimanual and bimanual training. Errors in unimanual evaluation following the bimanual training phase were not significantly different from errors in unimanual evaluation following unimanual training. There was no difference in performance following symmetric or asymmetric training. Changing the arm force symmetry during bimanual movements from asymmetric to symmetric had little influence on performance. Conclusions Subjects could adapt to an unknown disturbance torque that was changing the dynamics of the movements. The learning effect was present during both unimanual and bimanual training. Transfer of learned skills from bimanual training to unimanual movements was also observed, as bimanual training also improved single limb performance with the dominant arm. Changes of force symmetry did not have an effect on motor learning. As motor learning is believed to be an important mechanism of rehabilitation, our findings could be tested for future post-stroke rehabilitation systems. PMID:22805223

  11. Longitudinal Change in the Relationship between Fundamental Motor Skills and Perceived Competence: Kindergarten to Grade 2

    PubMed Central

    Naylor, Patti-Jean

    2017-01-01

    As children transition from early to middle childhood, the relationship between motor skill proficiency and perceptions of physical competence should strengthen as skills improve and inflated early childhood perceptions decrease. This study examined change in motor skills and perceptions of physical competence and the relationship between those variables from kindergarten to grade 2. Participants were 250 boys and girls (Mean age = 5 years 8 months in kindergarten). Motor skills were assessed using the Test of Gross Motor Development-2 and perceptions were assessed using a pictorial scale of perceived competence. Mixed-design analyses of variance revealed there was a significant increase in object-control skills and perceptions from kindergarten to grade 2, but no change in locomotor skills. In kindergarten, linear regression showed that locomotor skills and object-control skills explained 10% and 9% of the variance, respectively, in perceived competence for girls, and 7% and 11%, respectively, for boys. In grade 2, locomotor skills predicted 11% and object-control skills predicted 19% of the variance in perceptions of physical competence, but only among the boys. Furthermore, the relationship between motor skills and perceptions of physical competence strengthened for boys only from early to middle childhood. However, it seems that forces other than motor skill proficiency influenced girls’ perceptions of their abilities in grade 2.

  12. The relationship between perceived physical competence and fundamental motor skills in preschool children.

    PubMed

    Robinson, Leah E

    2011-07-01

    The purpose of this investigation had two folds. First, it aimed to discover the relationship between perceived physical competence and fundamental motor skills in preschoolers. Secondly, it examined the effect of sex on perceived physical competence and fundamental motor skills within the sample. A total of 119 children (mean age 4.00, SD 0.55 years) participated in this study. The Test of Gross Motor Development--2nd Edition was used to assess fundamental motor skills and the Pictorial Scale of Perceived Competence and Social Acceptance was used to assess perceived physical competence. The results show a moderate and significant correlation between perceived physical competence and fundamental motor skills. Sex differences were also found with boys demonstrating more proficient motor skills and reporting higher perceived physical competence compared with girls. The findings provide relevant information to the child development literature and suggest that a positive relationship exist between preschoolers' self-perceptions of the physical ability and fundamental motor skills. © 2010 Blackwell Publishing Ltd.

  13. Motor Skill Abilities in Toddlers with Autistic Disorder, Pervasive Developmental Disorder-Not Otherwise Specified, and Atypical Development

    ERIC Educational Resources Information Center

    Matson, Johnny L.; Mahan, Sara; Fodstad, Jill C.; Hess, Julie A.; Neal, Daniene

    2010-01-01

    Motor skills were assessed in 397 toddlers, and it was demonstrated that atypically developing toddlers exhibited significantly greater motor skill abilities than toddlers with autistic disorder. No significant difference on gross or fine motor skill abilities were found between atypically developing toddlers and toddlers with pervasive…

  14. 45 CFR 1308.12 - Eligibility criteria: Orthopedic impairment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... characterized by impaired ability to maneuver in educational or non-educational settings, to perform fine or gross motor activities, or to perform self-help skills and by adversely affected educational performance...

  15. 45 CFR 1308.12 - Eligibility criteria: Orthopedic impairment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... characterized by impaired ability to maneuver in educational or non-educational settings, to perform fine or gross motor activities, or to perform self-help skills and by adversely affected educational performance...

  16. 45 CFR 1308.12 - Eligibility criteria: Orthopedic impairment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... characterized by impaired ability to maneuver in educational or non-educational settings, to perform fine or gross motor activities, or to perform self-help skills and by adversely affected educational performance...

  17. 45 CFR 1308.12 - Eligibility criteria: Orthopedic impairment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... characterized by impaired ability to maneuver in educational or non-educational settings, to perform fine or gross motor activities, or to perform self-help skills and by adversely affected educational performance...

  18. 45 CFR 1308.12 - Eligibility criteria: Orthopedic impairment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... characterized by impaired ability to maneuver in educational or non-educational settings, to perform fine or gross motor activities, or to perform self-help skills and by adversely affected educational performance...

  19. High-Impact, Self-Motivated Training Within an Enriched Environment With Single Animal Tracking Dose-Dependently Promotes Motor Skill Acquisition and Functional Recovery.

    PubMed

    Starkey, Michelle L; Bleul, Christiane; Kasper, Hansjörg; Mosberger, Alice C; Zörner, Björn; Giger, Stefan; Gullo, Miriam; Buschmann, Frank; Schwab, Martin E

    2014-07-01

    Functional recovery following central nervous system injuries is strongly influenced by rehabilitative training. In the clinical setting, the intensity of training and the level of motivation for a particular task are known to play important roles. With increasing neuroscience studies investigating the effects of training and rehabilitation, it is important to understand how the amount and type of training of individuals influences outcome. However, little is known about the influence of spontaneous "self-training" during daily life as it is often uncontrolled, not recorded, and mostly disregarded. Here, we investigated the effects of the intensity of self-training on motor skill acquisition in normal, intact rats and on the recovery of functional motor behavior following spinal cord injury in adult rats. We used a custom-designed small animal tracking system, "RatTrack," to continuously record the activity of multiple rats, simultaneously in a complex Natural Habitat-enriched environment. Naïve, adult rats performed high-intensity, self-motivated motor training, which resulted in them out-performing rats that were conventionally housed and trained on skilled movement tasks, for example, skilled prehension (grasping) and ladder walking. Following spinal cord injury the amount of self-training was correlated with improved functional recovery. These data suggest that high-impact, self-motivated training leads to superior skill acquisition and functional recovery than conventional training paradigms. These findings have important implications for the design of animal studies investigating rehabilitation and for the planning of human rehabilitation programs. © The Author(s) 2014.

  20. The relationship of motor skills and adaptive behavior skills in young children with autism spectrum disorders

    PubMed Central

    MacDonald, Megan; Lord, Catherine; Ulrich, Dale

    2015-01-01

    Objective To determine the relationship of motor skills and the core behaviors of young children with autism, social affective skills and repetitive behaviors, as indicated through the calibrated autism severity scores. Design The univariate GLM tested the relationship of gross and fine motor skills measured by the gross motor scale and the fine motor scale of the MSEL with autism symptomology as measured by calibrated autism severity scores. Setting Majority of the data collected took place in an autism clinic. Participants A cohort of 159 young children with ASD (n=110), PDD-NOS (n=26) and non-ASD (developmental delay, n=23) between the ages of 12–33 months were recruited from early intervention studies and clinical referrals. Children with non-ASD (developmental delay) were included in this study to provide a range of scores indicted through calibrated autism severity. Interventions Not applicable. Main Outcome Measures The primary outcome measures in this study were calibrated autism severity scores. Results Fine motor skills and gross motor skills significantly predicted calibrated autism severity (p < 0.01). Children with weaker motor skills displayed higher levels of calibrated autism severity. Conclusions The fine and gross motor skills are significantly related to autism symptomology. There is more to focus on and new avenues to explore in the realm of discovering how to implement early intervention and rehabilitation for young children with autism and motor skills need to be a part of the discussion. PMID:25774214

  1. Motor Skills in Hearing Impaired Children with or without Cochlear Implant--A Systematic Review.

    PubMed

    Vidranski, Tihomir; Farkaš, Daria

    2015-07-01

    Hearing impairment is a major limitation in communication, and it can obstruct psychological development, development of social skills and motor development. Hearing impairment is the third most common contemporary chronic health condition, and it has become a public health problem. The effectiveness of problem solving in everyday life and in emergency situations depends greatly on the amount and quality of the motor programs. Therefore, it is evident that the normal motor development in persons with hearing impairment is essential for everyday life. The aim of this research is to analyze the available information pertaining to motor skills of hearing impaired children both with and without a cochlear implant (CI) and to analyze possibilities of influencing their motor skills. The relevant studies on motor skills of hearing impaired children both with and without CI were obtained by an extensive computer search of various databases using special keywords and extraction with respect to certain criteria, resulting in 22 studies. The overall results of this systematic review indicate that the children with hearing impairment exhibit suboptimal levels of motor skills especially balance. Very few studies compared children with hearing impairment with CI units and without CI units and the results of those studies are quite contradictory. Numerous studies have confirmed that the regular and appropriate physical exercise can improve motor skills of children with hearing impairment, especially balance. The fact that the development of motor skills is crucial for the child's interaction with the outside world, action, perception and acquisition of academic skills and other skills necessary for life shows the importance of motor skills development for children with hearing impairment.

  2. BDNF Val66Met polymorphism is associated with abnormal interhemispheric transfer of a newly acquired motor skill.

    PubMed

    Morin-Moncet, Olivier; Beaumont, Vincent; de Beaumont, Louis; Lepage, Jean-Francois; Théoret, Hugo

    2014-05-01

    Recent data suggest that the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene can alter cortical plasticity within the motor cortex of carriers, which exhibits abnormally low rates of cortical reorganization after repetitive motor tasks. To verify whether long-term retention of a motor skill is also modulated by the presence of the polymorphism, 20 participants (10 Val66Val, 10 Val66Met) were tested twice at a 1-wk interval. During each visit, excitability of the motor cortex was measured by transcranial magnetic stimulations (TMS) before and after performance of a procedural motor learning task (serial reaction time task) designed to study sequence-specific learning of the right hand and sequence-specific transfer from the right to the left hand. Behavioral results showed a motor learning effect that persisted for at least a week and task-related increases in corticospinal excitability identical for both sessions and without distinction for genetic group. Sequence-specific transfer of the motor skill from the right hand to the left hand was greater in session 2 than in session 1 only in the Val66Met genetic group. Further analysis revealed that the sequence-specific transfer occurred equally at both sessions in the Val66Val genotype group. In the Val66Met genotype group, sequence-specific transfer did not occur at session 1 but did at session 2. These data suggest a limited impact of Val66Met polymorphism on the learning and retention of a complex motor skill and its associated changes in corticospinal excitability over time, and a possible modulation of the interhemispheric transfer of procedural learning. Copyright © 2014 the American Physiological Society.

  3. Music Games: Potential Application and Considerations for Rhythmic Training

    PubMed Central

    Bégel, Valentin; Di Loreto, Ines; Seilles, Antoine; Dalla Bella, Simone

    2017-01-01

    Rhythmic skills are natural and widespread in the general population. The majority can track the beat of music and move along with it. These abilities are meaningful from a cognitive standpoint given their tight links with prominent motor and cognitive functions such as language and memory. When rhythmic skills are challenged by brain damage or neurodevelopmental disorders, remediation strategies based on rhythm can be considered. For example, rhythmic training can be used to improve motor performance (e.g., gait) as well as cognitive and language skills. Here, we review the games readily available in the market and assess whether they are well-suited for rhythmic training. Games that train rhythm skills may serve as useful tools for retraining motor and cognitive functions in patients with motor or neurodevelopmental disorders (e.g., Parkinson’s disease, dyslexia, or ADHD). Our criteria were the peripheral used to capture and record the response, the type of response and the output measure. None of the existing games provides sufficient temporal precision in stimulus presentation and/or data acquisition. In addition, games do not train selectively rhythmic skills. Hence, the available music games, in their present form, are not satisfying for training rhythmic skills. Yet, some features such as the device used, the interface or the game scenario provide good indications for devising efficient training protocols. Guidelines are provided for devising serious music games targeting rhythmic training in the future. PMID:28611610

  4. Music Games: Potential Application and Considerations for Rhythmic Training.

    PubMed

    Bégel, Valentin; Di Loreto, Ines; Seilles, Antoine; Dalla Bella, Simone

    2017-01-01

    Rhythmic skills are natural and widespread in the general population. The majority can track the beat of music and move along with it. These abilities are meaningful from a cognitive standpoint given their tight links with prominent motor and cognitive functions such as language and memory. When rhythmic skills are challenged by brain damage or neurodevelopmental disorders, remediation strategies based on rhythm can be considered. For example, rhythmic training can be used to improve motor performance (e.g., gait) as well as cognitive and language skills. Here, we review the games readily available in the market and assess whether they are well-suited for rhythmic training. Games that train rhythm skills may serve as useful tools for retraining motor and cognitive functions in patients with motor or neurodevelopmental disorders (e.g., Parkinson's disease, dyslexia, or ADHD). Our criteria were the peripheral used to capture and record the response, the type of response and the output measure. None of the existing games provides sufficient temporal precision in stimulus presentation and/or data acquisition. In addition, games do not train selectively rhythmic skills. Hence, the available music games, in their present form, are not satisfying for training rhythmic skills. Yet, some features such as the device used, the interface or the game scenario provide good indications for devising efficient training protocols. Guidelines are provided for devising serious music games targeting rhythmic training in the future.

  5. Motor learning characterization in people with autism spectrum disorder: A systematic review

    PubMed Central

    de Moraes, Íbis Ariana Peña; Massetti, Thais; Crocetta, Tânia Brusque; da Silva, Talita Dias; de Menezes, Lilian Del Ciello; Monteiro, Carlos Bandeira de Mello; Magalhães, Fernando Henrique

    2017-01-01

    ABSTRACT Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder primarily characterized by deficits in social interaction, communication and implicit skill learning. OBJECTIVE: To analyse the results of research on "motor learning" and the means used for measuring "autistic disorder". METHODS: A systematic literature search was done using Medline/PubMed, Web of Science, BVS (virtual health library), and PsycINFO. We included articles that contained the keywords "autism" and "motor learning". The variables considered were the methodological aspects; results presented, and the methodological quality of the studies. RESULTS: A total of 42 studies were identified; 33 articles were excluded because they did not meet the inclusion criteria. Data were extracted from nine eligible studies and summarized. CONCLUSION: We concluded that although individuals with ASD showed performance difficulties in different memory and motor learning tasks, acquisition of skills still takes place in this population; however, this skill acquisition is related to heterogeneous events, occurring without the awareness of the individual. PMID:29213525

  6. Occupational Therapy (For Parents)

    MedlinePlus

    ... needs improve their cognitive, physical, sensory, and motor skills and enhance their self-esteem and sense of accomplishment. Some people may think that occupational therapy is only for adults; kids, after all, do not have ... kids' skills for playing, school performance, and daily activities and ...

  7. On the Relationship between Motor Performance and Executive Functioning in Children with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Hartman, E.; Houwen, S.; Scherder, E.; Visscher, C.

    2010-01-01

    Background: It has been suggested that children with intellectual disabilities (ID) have motor problems and higher-order cognitive deficits. The aim of this study was to examine the motor skills and executive functions in school-age children with borderline and mild ID. The second aim was to investigate the relationship between the two performance…

  8. Motor and cognitive growth following a Football Training Program.

    PubMed

    Alesi, Marianna; Bianco, Antonino; Padulo, Johnny; Luppina, Giorgio; Petrucci, Marco; Paoli, Antonio; Palma, Antonio; Pepi, Annamaria

    2015-01-01

    Motor and cognitive growth in children may be influenced by football practice. Therefore the aim of this study was to assess whether a Football Training Program taken over 6 months would improve motor and cognitive performances in children. Motor skills concerned coordinative skills, running, and explosive legs strength. Cognitive abilities involved visual discrimination times and visual selective attention times. Forty-six children with chronological age of ∼9.10 years, were divided into two groups: Group 1 (n = 24) attended a Football Exercise Program and Group 2 (n = 22) was composed of sedentary children. Their abilities were measured by a battery of tests including motor and cognitive tasks. Football Exercise Program resulted in improved running, coordination, and explosive leg strength performances as well as shorter visual discrimination times in children regularly attending football courses compared with their sedentary peers. On the whole these results support the thesis that the improvement of motor and cognitive abilities is related not only to general physical activity but also to specific ability related to the ball. Football Exercise Programs is assumed to be a "natural and enjoyable tool" to enhance cognitive resources as well as promoting and encouraging the participation in sport activities from early development.

  9. Motor and cognitive growth following a Football Training Program

    PubMed Central

    Alesi, Marianna; Bianco, Antonino; Padulo, Johnny; Luppina, Giorgio; Petrucci, Marco; Paoli, Antonio; Palma, Antonio; Pepi, Annamaria

    2015-01-01

    Motor and cognitive growth in children may be influenced by football practice. Therefore the aim of this study was to assess whether a Football Training Program taken over 6 months would improve motor and cognitive performances in children. Motor skills concerned coordinative skills, running, and explosive legs strength. Cognitive abilities involved visual discrimination times and visual selective attention times. Forty-six children with chronological age of ∼9.10 years, were divided into two groups: Group 1 (n = 24) attended a Football Exercise Program and Group 2 (n = 22) was composed of sedentary children. Their abilities were measured by a battery of tests including motor and cognitive tasks. Football Exercise Program resulted in improved running, coordination, and explosive leg strength performances as well as shorter visual discrimination times in children regularly attending football courses compared with their sedentary peers. On the whole these results support the thesis that the improvement of motor and cognitive abilities is related not only to general physical activity but also to specific ability related to the ball. Football Exercise Programs is assumed to be a “natural and enjoyable tool” to enhance cognitive resources as well as promoting and encouraging the participation in sport activities from early development. PMID:26579014

  10. The effect of a physical activity intervention on preschoolers' fundamental motor skills - A cluster RCT.

    PubMed

    Wasenius, Niko S; Grattan, Kimberly P; Harvey, Alysha L J; Naylor, Patti-Jean; Goldfield, Gary S; Adamo, Kristi B

    2018-07-01

    To assess the effect of a physical activity intervention delivered in the childcare centres (CC), with or without a parent-driven home physical activity component, on children's fundamental motor skills (FMS). Six-month 3-arm cluster randomized controlled trial. Preschoolers were recruited from 18 licensed CC. CC were randomly assigned to a typical curriculum comparison group (COM), childcare intervention alone (CC), or childcare intervention with parental component (CC+HOME). FMS was measured with the Test of Gross Motor Development-2. Linear mixed models were performed at the level of the individual while accounting for clustering. Raw locomotor skills score increased significantly in the CC group (mean difference=2.5 units, 95% Confidence Intervals, CI, 1.0-4.1, p<0.001) and the CC+HOME group (mean difference=2.4 units, 95% CI, 0.8-4.0, p<0.001) compared to the COM group. No significant (p>0.05) between group differences were observed in the raw object control skills, sum of raw scores, or gross motor quotient. No significant sex differences were found in any of the measured outcomes. A physical activity intervention delivered in childcare with or without parents' involvement was effective in increasing locomotor skills in preschoolers. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  11. External Control of Knowledge of Results: Learner Involvement Enhances Motor Skill Transfer.

    PubMed

    Figueiredo, L S; Ugrinowitsch, H; Freire, A B; Shea, J B; Benda, R N

    2018-04-01

    Providing the learner control over aspects of practice has improved the process of motor skill acquisition, and self-controlled knowledge of results (KR) schedules have shown specific advantages over externally controlled ones. A possible explanation is that self-controlled KR schedules lead learners to more active task involvement, permitting deeper information processing. This study tested this explanatory hypothesis. Thirty undergraduate volunteers of both sexes, aged 18 to 35, all novices in the task, practiced transporting a tennis ball in a specified sequence within a time goal. We compared a high-involvement group (involvement yoked, IY), notified in advance about upcoming KR trials, to self-controlled KR (SC) and yoked KR (YK) groups. The experiment consisted of three phases: acquisition, retention, and transfer. We found both IY and SC groups to be superior to YK for transfer of learning. Postexperiment participant questionnaires confirmed a preference for receiving KR after learner-perceived good trials, even though performance on those trials did not differ from performance on trials without KR. Equivalent IY and SC performances provide support for the benefits of task involvement and deeper information processing when KR is self-controlled in motor skill acquisition.

  12. Rats' learning of a new motor skill: insight into the evolution of motor sequence learning.

    PubMed

    Hermer-Vazquez, Linda; Moshtagh, Nasim

    2009-05-01

    Recent behavioral and neural evidence has suggested that ethologically relevant sub-movements (movement primitives) are used by primates for more complex motor skill learning. These primitives include extending the hand, grasping an object, and holding food while moving it toward the mouth. In prior experiments with rats performing a reach-to-grasp-food task, we observed that especially during early task learning, rats appeared to have movement primitives similar to those seen in primates. Unlike primates, however, during task learning the rats performed these sub-movements in a disordered manner not seen in humans or macaques, e.g. with the rat chewing before placing the food pellet in its mouth. Here, in two experiments, we tested the hypothesis that for rats, learning this ecologically relevant skill involved learning to concatenate the sub-movements in the correct order. The results confirmed our initial observations, and suggested that several aspects of forepaw/hand use, taken for granted in primate studies, must be learned by rats to perform a logically connected and seemingly ecologically important series of sub-movements. We discuss our results from a comparative and evolutionary perspective.

  13. Impact of a Peer-Tutoring Course on Skill Performance, Assessment, and Instruction

    ERIC Educational Resources Information Center

    Pulling, Andy R.; Allen, Ray

    2014-01-01

    The purpose of this study was to investigate how the completion of a peer-teaching course impacted pre-service teachers ability to perform, teach, and assess motor skills. Central Michigan University (CMU) implemented a required course for physical education teacher education majors in which enrollees were evaluated on how well they performed…

  14. Intensification of the Learning Process: Gross Motor Performance Scale. A Series of Reports Designed for Classroom Use.

    ERIC Educational Resources Information Center

    Bucks County Public Schools, Doylestown, PA.

    The Gross Motor Performance Screening Test was designed to aid the classroom teacher in obtaining specific information about the child's physical abilities. The test includes items which have been found to measure the various factors of physical fitness. It also includes items to measure skills important to the child and adult. Included also are…

  15. Fundamental motor skills, nutritional status, perceived competence, and school performance of Brazilian children in social vulnerability: Gender comparison.

    PubMed

    Nobre, Glauber Carvalho; Valentini, Nadia Cristina; Nobre, Francisco Salviano Sales

    2018-06-01

    Being at risk or in social vulnerability situations can affect important aspects of child development. The aim of this study was to investigate fundamental motor skills (locomotor and object control) and school (writing, arithmetic, reading) performances, the perceived competence and the nutritional status of girls and boys living in social vulnerability in the poorest regions of Brazil. Two hundred eleven (211) children (87 girls, 41%), 7-10-year-old (M = 8.3, SD = 0.9), from public schools in Ceará (Brazil), living in social vulnerability, participated in the study. Children were assessed using the Test of Gross Motor Development - 2, the Body Mass Index (BMI), the Self-Perception Profile for Children, and the School Performance Test. Multivariate analysis of covariance (MANCOVA), adjusted for age, did not show any significant effect for locomotion. There was an effect of gender on the object control. Boys showed higher scores in striking, kicking, throwing, and rolling a ball. Quade's nonparametric analysis showed no difference in BMI between the genders. Most children presented healthy weight. The MANCOVA showed no effect of gender on children's scores on perceived competence on the subscales; moderate scores were found for most children. There were no gender effects on school performance; both boys and girls demonstrated inferior performance. Boys and girls in social vulnerability showed inferior performance in most motor skills, moderate perceived competence and inferior school performance. These results reveal that the appropriate development of these children is at risk and that intervention strategies should be implemented to compensate the difficulties presented. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Investigating the social behavioral dynamics and differentiation of skill in a martial arts technique.

    PubMed

    Caron, Robert R; Coey, Charles A; Dhaim, Ashley N; Schmidt, R C

    2017-08-01

    Coordinating interpersonal motor activity is crucial in martial arts, where managing spatiotemporal parameters is emphasized to produce effective techniques. Modeling arm movements in an Aikido technique as coupled oscillators, we investigated whether more-skilled participants would adapt to the perturbation of weighted arms in different and predictable ways compared to less-skilled participants. Thirty-four participants ranging from complete novice to veterans of more than twenty years were asked to perform an Aikido exercise with a repeated attack and response, resulting in a period of steady-state coordination, followed by a take down. We used mean relative phase and its variability to measure the steady-state dynamics of both the inter- and intrapersonal coordination. Our findings suggest that interpersonal coordination of less-skilled participants is disrupted in highly predictable ways based on oscillatory dynamics; however, more-skilled participants overcome these natural dynamics to maintain critical performance variables. Interestingly, the more-skilled participants exhibited more variability in their intrapersonal dynamics while meeting these interpersonal demands. This work lends insight to the development of skill in competitive social motor activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Trained, Generalized, and Collateral Behavior Changes of Preschool Children Receiving Gross-Motor Skills Training.

    ERIC Educational Resources Information Center

    Kirby, Kimberly C.; Holborn, Stephen W.

    1986-01-01

    Three preschool children participated in a behavioral training program to improve their gross-motor skills. Results indicated that the program improved the 10 targeted gross-motor skills and that improvements sometimes generalized to other settings. The program did not produce changes in fine-motor skills or social behaviors. Implications are…

  18. Why Do Fine Motor Skills Predict Mathematics? Construct Validity of the Design Copying Task

    ERIC Educational Resources Information Center

    Murrah, William M.; Chen, Wei-Bing; Cameron, Claire E.

    2013-01-01

    Recent educational studies have found evidence that measures of fine motor skills are predictive of educational outcomes. However, the precise nature of fine motor skills has received little attention in these studies. With evidence mounting that fine motor skills are an important indicator of school readiness, investigating the nature of this…

  19. Joint attention and oromotor abilities in young children with and without autism spectrum disorder.

    PubMed

    Dalton, Jennifer C; Crais, Elizabeth R; Velleman, Shelley L

    2017-09-01

    This study examined the relationship between joint attention ability and oromotor imitation skill in three groups of young children with and without Autism Spectrum Disorder using both nonverbal oral and verbal motor imitation tasks. Research questions addressed a) differences among joint attention and oromotor imitation abilities; b) the relationship between independently measured joint attention and oromotor imitation, both nonverbal oral and verbal motor; c) the relationships between joint attention and verbal motor imitation during interpersonal interaction; and d) the relationship between the sensory input demands (auditory, visual, and tactile) and oromotor imitation, both nonverbal oral and verbal motor. A descriptive, nonexperimental design was used to compare joint attention and oromotor skills of 10 preschool-aged children with ASD, with those of two control groups: 6 typically developing children (TD), and 6 children with suspected Childhood Apraxia of Speech (sCAS) or apraxic-like symptoms. All children had at least a 3.0 mean length utterance. Children with ASD had poorer joint attention skills overall than children with sCAS or typically developing children. Typically developing children demonstrated higher verbal motor imitation skills overall compared to children with sCAS. Correlational analyses revealed that nonverbal oral imitation and verbal motor imitation were positively related to joint attention abilities only in the children with ASD. Strong positive relationships between joint attention in a naturalistic context (e.g., shared story experience) and oromotor imitation skills, both nonverbal oral and verbal motor, were found only for children with ASD. These data suggest there is a strong positive relationship between joint attention skills and the ability to sequence nonverbal oral and verbal motor movements in children with ASD. The combined sensory input approach involving auditory, visual, and tactile modalities contributed to significantly higher nonverbal oral and verbal motor imitation performance for all groups of children. Verbal children with ASD in this study had difficulties with both the social and cognitive demands of oromotor imitation within a natural environment that demanded cross-modal processing of incoming stimuli within an interpersonal interaction. Further, joint attention and oral praxis may serve as components of an important coupling mechanism in the development of spoken communication and later developing socialcognitive skills. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Skilled movements require non-apoptotic Bax/Bak pathway-mediated corticospinal circuit reorganization

    PubMed Central

    Gu, Zirong; Serradj, Najet; Ueno, Masaki; Liang, Mishi; Li, Jie; Baccei, Mark L.; Martin, John H.; Yoshida, Yutaka

    2017-01-01

    Early postnatal mammals, including human babies, can perform only basic motor tasks. The acquisition of skilled behaviors occurs later, requiring anatomical changes in neural circuitry to support the development of coordinated activation or suppression of functionally related muscle groups. How this circuit reorganization occurs during postnatal development remains poorly understood. Here we explore the connectivity between corticospinal (CS) neurons in the motor cortex and muscles in mice. Using trans-synaptic viral and electrophysiological assays, we identify the early postnatal reorganization of CS circuitry for antagonistic muscle pairs. We further show that this synaptic rearrangement requires the activity-dependent, non-apoptotic Bax/Bak-caspase signaling cascade. Adult Bax/Bak mutant mice exhibit aberrant co-activation of antagonistic muscle pairs and skilled grasping deficits but normal reaching and retrieval behaviors. Our findings reveal key cellular and molecular mechanisms driving postnatal motor circuit reorganization and the resulting impacts on muscle activation patterns and the execution of skilled movements. PMID:28472660

  1. Transfer and interference of motor skills in people with intellectual disability.

    PubMed

    Mohan, A; Singh, A P; Mandal, M K

    2001-08-01

    Atypical laterality (i.e. the lack of a clear pattern of lateralization) has been found to be a characteristic feature of individuals with intellectual disability (ID). The evidence for this has been based on 'handedness' studies which have contained little information about the ability of people with ID to carry out interhemispheric tasks reflecting bilateral transfer or interference. The present study examined this capacity in individuals with ID by utilizing bilateral transfer and interference paradigms. Right-handed subjects with ID (IQ = 55-76) and controls matched for age and sex were tested for bilateral transfer of motor skill in contralateral hands with a mirror-drawing task. The subjects were also tested for their ability to perform a finger-tapping task while processing verbal and non-verbal stimuli. The findings indicated that people with ID are significantly deficient relative to matched controls in bilateral transfer of motor skills from their non-preferred (left) hand to their preferred (right) one. The effect of interference during performance of the dual task was significantly greater in individuals with ID. Subjects with ID were found to perform better with their non-preferred than with their preferred hand. A within-group comparison revealed that right-handed performance was more affected by interference than left in these subjects.

  2. In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience.

    PubMed

    Monfils, Marie-H; Plautz, Erik J; Kleim, Jeffrey A

    2005-10-01

    Motor skill acquisition occurs through modification and organization of muscle synergies into effective movement sequences. The learning process is reflected neurophysiologically as a reorganization of movement representations within the primary motor cortex, suggesting that the motor map is a motor engram. However, the specific neural mechanisms underlying map plasticity are unknown. Here the authors review evidence that 1) motor map topography reflects the capacity for skilled movement, 2) motor skill learning induces reorganization of motor maps in a manner that reflects the kinematics of acquired skilled movement, 3) map plasticity is supported by a reorganization of cortical microcircuitry involving changes in synaptic efficacy, and 4) motor map integrity and topography are influenced by various neurochemical signals that coordinate changes in cortical circuitry to encode motor experience. Finally, the role of motor map plasticity in recovery of motor function after brain damage is discussed.

  3. Genetic basis in motor skill and hand preference for tool use in chimpanzees (Pan troglodytes).

    PubMed

    Hopkins, William D; Reamer, Lisa; Mareno, Mary Catherine; Schapiro, Steven J

    2015-02-07

    Chimpanzees are well known for their tool using abilities. Numerous studies have documented variability in tool use among chimpanzees and the role that social learning and other factors play in their development. There are also findings on hand use in both captive and wild chimpanzees; however, less understood are the potential roles of genetic and non-genetic mechanisms in determining individual differences in tool use skill and laterality. Here, we examined heritability in tool use skill and handedness for a probing task in a sample of 243 captive chimpanzees. Quantitative genetic analysis, based on the extant pedigrees, showed that overall both tool use skill and handedness were significantly heritable. Significant heritability in motor skill was evident in two genetically distinct populations of apes, and between two cohorts that received different early social rearing experiences. We further found that motor skill decreased with age and that males were more commonly left-handed than females. Collectively, these data suggest that though non-genetic factors do influence tool use performance and handedness in chimpanzees, genetic factors also play a significant role, as has been reported in humans. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Design and Use of Task Cards in the Reciprocal Style of Teaching

    ERIC Educational Resources Information Center

    Iserbyt, Peter; Byra, Mark

    2013-01-01

    Task cards are instructional tools that combine a picture of a skill with written instructions about how to perform the skill. This article provides practical guidelines for developing research-based task cards for use in physical education classes. Fitness-related motor skills are used as examples to clarify design principles for task cards. The…

  5. Can Quantitative Muscle Strength and Functional Motor Ability Differentiate the Influence of Age and Corticosteroids in Ambulatory Boys with Duchenne Muscular Dystrophy?

    PubMed

    Buckon, Cathleen; Sienko, Susan; Bagley, Anita; Sison-Williamson, Mitell; Fowler, Eileen; Staudt, Loretta; Heberer, Kent; McDonald, Craig M; Sussman, Michael

    2016-07-08

    In the absence of a curative treatment for Duchenne Muscular Dystrophy (DMD), corticosteroid therapy (prednisone, deflazacort) has been adopted as the standard of care, as it slows the progression of muscle weakness and enables longer retention of functional mobility. The ongoing development of novel pharmacological agents that target the genetic defect underlying DMD offer hope for a significant alteration in disease progression; however, substantiation of therapeutic efficacy has proved challenging. Identifying functional outcomes sensitive to the early, subtle changes in muscle function has confounded clinical trials. Additionally, the alterations in disease progression secondary to corticosteroid therapy are not well described making it difficult to ascertain the benefits of novel agents, often taken concurrently with corticosteroids. The purpose of this study was to examine outcome responsiveness to corticosteroid therapy and age at the onset of a natural history study of ambulatory boys with DMD. Eighty-five ambulatory boys with DMD (mean age 93 mo, range 49 to 180 mo) were recruited into this study. Fifty participants were on corticosteroid therapy, while 33 were corticosteroid naïve at the baseline assessment. Within each treatment group boys were divided in two age groups, 4 to 7 years and 8 and greater years of age. The Biodex System 3 Pro isokinetic dynamometer was used to assess muscle strength. Motor skills were assessed using the upper two dimensions (standing/walking, running & jumping) of the Gross Motor Function Measure (GMFM 88) and Timed Motor Tests (TMTs) (10-meter run, sit to stand, supine to stand, climb 4-stairs). Two way analysis of variance and Pearson correlations were used for analysis. A main effect for age was seen in select lower extremity muscle groups (hip flexors, knee extensors and ankle dorsiflexors), standing dimension skills, and all TMTs with significantly greater weakness and loss of motor skill ability seen in the older age group regardless of treatment group. Interaction effects were seen for the walking, running, and jumping dimension of the GMFM with the naïve boys scoring higher in the younger group and boys on corticosteroid therapy scoring higher in the older group. The TMT of climb 4-stairs demonstrated a significant treatment effect with the boys on corticosteroid therapy climbing stairs faster than those who were naïve, regardless of age. Examination of individual items within the upper level GMFM dimensions revealed select motor skills are more informative of disease progression than others; indicating their potential to be sensitive indicators of alterations in disease progression and intervention efficacy. Analysis of the relationship between muscle group strength and motor skill performance revealed differences in use patterns in the corticosteroid versus naïve boys. Significant muscle weakness is apparent in young boys with DMD regardless of corticosteroid treatment; however, older boys on corticosteroid therapy tend to have greater retention of muscle strength and motor skill ability than those who are naive. Quantification of muscle strength via isokinetic dynamometry is feasible and sensitive to the variable rates of disease progression in lower extremity muscle groups, but possibly most informative are the subtle changes in the performance characteristics of select motor skills. Further analysis of longitudinal data from this study will explore the influence of corticosteroid therapy on muscle strength and further clarify its impact on motor performance.

  6. Using "human state aware" robots to enhance physical human-robot interaction in a cooperative scenario.

    PubMed

    Guerrero, Carlos Rodriguez; Fraile Marinero, Juan Carlos; Turiel, Javier Perez; Muñoz, Victor

    2013-11-01

    Human motor performance, speed and variability are highly susceptible to emotional states. This paper reviews the impact of the emotions on the motor control performance, and studies the possibility of improving the perceived skill/challenge relation on a multimodal neural rehabilitation scenario, by means of a biocybernetic controller that modulates the assistance provided by a haptic controlled robot in reaction to undesirable physical and mental states. Results from psychophysiological, performance and self assessment data for closed loop experiments in contrast with their open loop counterparts, suggest that the proposed method had a positive impact on the overall challenge/skill relation leading to an enhanced physical human-robot interaction experience. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Associations between gross motor skills and physical activity in Australian toddlers.

    PubMed

    Veldman, Sanne L C; Jones, Rachel A; Santos, Rute; Sousa-Sá, Eduarda; Pereira, João R; Zhang, Zhiguang; Okely, Anthony D

    2018-08-01

    Physical activity can be promoted by high levels of gross motor skills. A systematic review found a positive relationship in children (3-18 years) but only few studies examined this in younger children. The aim of this study was to examine the association between gross motor skills and physical activity in children aged 11-29 months. Cross-sectional study. This study involved 284 children from 30 childcare services in NSW, Australia (Mean age=19.77±4.18months, 53.2% boys). Physical activity was measured using accelerometers (Actigraph GT3X+). Gross motor skills were assessed using the Peabody Developmental Motor Scales Second Edition (PDMS-2). Multilevel linear regression analyses were computed to assess associations between gross motor skills and physical activity, adjusting for sex, age and BMI. Children spent 53.08% of their time in physical activity and 10.39% in moderate to vigorous physical activity (MVPA). Boys had higher total physical activity (p<0.01) and MVPA (p<0.01) than girls. The average gross motor skills score was 96.16. Boys scored higher than girls in object manipulation (p<0.001). There was no association between gross motor skills and total physical activity or MVPA. Although gross motor skills were not associated with physical activity in this sample, stronger associations are apparent in older children. This study therefore highlights a potential important age to promote gross motor skills. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  8. [Timed up and go test for fingers in the form of the 20 cents test. Psychometric criteria of a simple performance test of fine motor skills].

    PubMed

    Krupp, Sonja; Kasper, Jennifer; Balck, Friedrich; Schnoor, Maike; Eisemann, Nora; Lohse, Kristina; Brunk, Juliane; Katalinic, Alexander; Willkomm, Martin

    2015-02-01

    Although many activities depend on intact fine motor skills no standardized assessment has been broadly established. The 20 cents test (20-C-T) was developed in 2009 and takes less than 5 mins. The quality criteria were investigated within the framework of this study. A total of 300 geriatric patients participated in the study. The classification of occupational therapists based on standardized anamnesis and clinical examination served as the gold standard. Physiotherapists blinded to the study particulars applied the 20-C-T. Every fourth patient suffered from deficits in fine motor skills relevant to everyday life. The 20-C-T correlated with the clinical severity level and was also feasible for patients with intermediate impairment of cognition or vision. Handedness, age and sex were without significant influence. Intrarater and interrater reliability were good. Standardized testing of fine motor skills should be included in geriatric screening and basic assessment. The quality criteria of the 20-C-T show that it can be used for this purpose. Further diagnostic steps are recommended whenever a geriatric patient needs more than 40 s for the task.

  9. Assessment of motor balance and coordination in mice using the balance beam.

    PubMed

    Luong, Tinh N; Carlisle, Holly J; Southwell, Amber; Patterson, Paul H

    2011-03-10

    Brain injury, genetic manipulations, and pharmacological treatments can result in alterations of motor skills in mice. Fine motor coordination and balance can be assessed by the beam walking assay. The goal of this test is for the mouse to stay upright and walk across an elevated narrow beam to a safe platform. This test takes place over 3 consecutive days: 2 days of training and 1 day of testing. Performance on the beam is quantified by measuring the time it takes for the mouse to traverse the beam and the number of paw slips that occur in the process. Here we report the protocol used in our laboratory, and representative results from a cohort of C57BL/6 mice. This task is particularly useful for detecting subtle deficits in motor skills and balance that may not be detected by other motor tests, such as the Rotarod.

  10. Assessment of Motor Balance and Coordination in Mice using the Balance Beam

    PubMed Central

    Southwell, Amber; Patterson, Paul H.

    2011-01-01

    Brain injury, genetic manipulations, and pharmacological treatments can result in alterations of motor skills in mice. Fine motor coordination and balance can be assessed by the beam walking assay. The goal of this test is for the mouse to stay upright and walk across an elevated narrow beam to a safe platform. This test takes place over 3 consecutive days: 2 days of training and 1 day of testing. Performance on the beam is quantified by measuring the time it takes for the mouse to traverse the beam and the number of paw slips that occur in the process. Here we report the protocol used in our laboratory, and representative results from a cohort of C57BL/6 mice. This task is particularly useful for detecting subtle deficits in motor skills and balance that may not be detected by other motor tests, such as the Rotarod. PMID:21445033

  11. A neural circuit mechanism for regulating vocal variability during song learning in zebra finches.

    PubMed

    Garst-Orozco, Jonathan; Babadi, Baktash; Ölveczky, Bence P

    2014-12-15

    Motor skill learning is characterized by improved performance and reduced motor variability. The neural mechanisms that couple skill level and variability, however, are not known. The zebra finch, a songbird, presents a unique opportunity to address this question because production of learned song and induction of vocal variability are instantiated in distinct circuits that converge on a motor cortex analogue controlling vocal output. To probe the interplay between learning and variability, we made intracellular recordings from neurons in this area, characterizing how their inputs from the functionally distinct pathways change throughout song development. We found that inputs that drive stereotyped song-patterns are strengthened and pruned, while inputs that induce variability remain unchanged. A simple network model showed that strengthening and pruning of action-specific connections reduces the sensitivity of motor control circuits to variable input and neural 'noise'. This identifies a simple and general mechanism for learning-related regulation of motor variability.

  12. Is autonomy related to the quality of performance of everyday activities in children with spina bifida?

    PubMed

    Peny-Dahlstrand, Marie; Krumlinde-Sundholm, Lena; Gosman-Hedström, Gunilla

    2012-01-01

    To investigate the relationship between the level of autonomy and the quality of performance of everyday activities in a population-based cohort of children with spina bifida and to study the agreement between the children's and the parents' ratings of autonomy. 50 dyads of children (aged 6-14) with spina bifida and their parents rated the children's level of autonomy with an adapted, Swedish version of the Autonomy Scale from the Arc's Self-Determination Scale. Each child's quality of performance of everyday activities was assessed with the Assessment of Motor and Process Skills (AMPS). The autonomy levels of the children with spina bifida were rated to be lowest in daily routines and highest in leisure activities. Binary logistic regression analyses revealed that age, motor skills and process skills were all significantly related to the autonomy level, but that process skills appeared to predominate in this respect. Concerning the perception of the autonomy level, little agreement was found between each child and his/her parent. It is important to understand and support the development of process skills as expressed in task performance in children with spina bifida and to pay attention to both the parent's and the child's opinion when setting goals and plans for interventions.

  13. Oral motor deficits in speech-impaired children with autism

    PubMed Central

    Belmonte, Matthew K.; Saxena-Chandhok, Tanushree; Cherian, Ruth; Muneer, Reema; George, Lisa; Karanth, Prathibha

    2013-01-01

    Absence of communicative speech in autism has been presumed to reflect a fundamental deficit in the use of language, but at least in a subpopulation may instead stem from motor and oral motor issues. Clinical reports of disparity between receptive vs. expressive speech/language abilities reinforce this hypothesis. Our early-intervention clinic develops skills prerequisite to learning and communication, including sitting, attending, and pointing or reference, in children below 6 years of age. In a cohort of 31 children, gross and fine motor skills and activities of daily living as well as receptive and expressive speech were assessed at intake and after 6 and 10 months of intervention. Oral motor skills were evaluated separately within the first 5 months of the child's enrolment in the intervention programme and again at 10 months of intervention. Assessment used a clinician-rated structured report, normed against samples of 360 (for motor and speech skills) and 90 (for oral motor skills) typically developing children matched for age, cultural environment and socio-economic status. In the full sample, oral and other motor skills correlated with receptive and expressive language both in terms of pre-intervention measures and in terms of learning rates during the intervention. A motor-impaired group comprising a third of the sample was discriminated by an uneven profile of skills with oral motor and expressive language deficits out of proportion to the receptive language deficit. This group learnt language more slowly, and ended intervention lagging in oral motor skills. In individuals incapable of the degree of motor sequencing and timing necessary for speech movements, receptive language may outstrip expressive speech. Our data suggest that autistic motor difficulties could range from more basic skills such as pointing to more refined skills such as articulation, and need to be assessed and addressed across this entire range in each individual. PMID:23847480

  14. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study

    NASA Astrophysics Data System (ADS)

    Jeunet, Camille; Jahanpour, Emilie; Lotte, Fabien

    2016-06-01

    Objective. While promising, electroencephaloraphy based brain-computer interfaces (BCIs) are barely used due to their lack of reliability: 15% to 30% of users are unable to control a BCI. Standard training protocols may be partly responsible as they do not satisfy recommendations from psychology. Our main objective was to determine in practice to what extent standard training protocols impact users’ motor imagery based BCI (MI-BCI) control performance. Approach. We performed two experiments. The first consisted in evaluating the efficiency of a standard BCI training protocol for the acquisition of non-BCI related skills in a BCI-free context, which enabled us to rule out the possible impact of BCIs on the training outcome. Thus, participants (N = 54) were asked to perform simple motor tasks. The second experiment was aimed at measuring the correlations between motor tasks and MI-BCI performance. The ten best and ten worst performers of the first study were recruited for an MI-BCI experiment during which they had to learn to perform two MI tasks. We also assessed users’ spatial ability and pre-training μ rhythm amplitude, as both have been related to MI-BCI performance in the literature. Main results. Around 17% of the participants were unable to learn to perform the motor tasks, which is close to the BCI illiteracy rate. This suggests that standard training protocols are suboptimal for skill teaching. No correlation was found between motor tasks and MI-BCI performance. However, spatial ability played an important role in MI-BCI performance. In addition, once the spatial ability covariable had been controlled for, using an ANCOVA, it appeared that participants who faced difficulty during the first experiment improved during the second while the others did not. Significance. These studies suggest that (1) standard MI-BCI training protocols are suboptimal for skill teaching, (2) spatial ability is confirmed as impacting on MI-BCI performance, and (3) when faced with difficult pre-training, subjects seemed to explore more strategies and therefore learn better.

  15. Communication Deficits and the Motor System: Exploring Patterns of Associations in Autism Spectrum Disorder (ASD).

    PubMed

    Mody, M; Shui, A M; Nowinski, L A; Golas, S B; Ferrone, C; O'Rourke, J A; McDougle, C J

    2017-01-01

    Many children with autism spectrum disorder (ASD) have notable difficulties in motor, speech and language domains. The connection between motor skills (oral-motor, manual-motor) and speech and language deficits reported in other developmental disorders raises important questions about a potential relationship between motor skills and speech-language deficits in ASD. To this end, we examined data from children with ASD (n = 1781), 2-17 years of age, enrolled in the Autism Speaks-Autism Treatment Network (AS-ATN) registry who completed a multidisciplinary evaluation that included diagnostic, physical, cognitive and behavioral assessments as part of a routine standard of care protocol. After adjusting for age, non-verbal IQ, Attention Deficit Hyperactivity Disorder (ADHD) medication use, and muscle tone, separate multiple linear regression analyses revealed significant positive associations of fine motor skills (FM) with both expressive language (EL) and receptive language (RL) skills in an impaired FM subgroup; in contrast, the impaired gross motor (GM) subgroup showed no association with EL but a significant negative association with RL. Similar analyses between motor skills and interpersonal relationships across the sample found both GM skills and FM skills to be associated with social interactions. These results suggest potential differences in the contributions of fine versus gross motor skills to autistic profiles and may provide another lens with which to view communication differences across the autism spectrum for use in treatment interventions.

  16. Probing sensorimotor integration during musical performance.

    PubMed

    Furuya, Shinichi; Furukawa, Yuta; Uehara, Kazumasa; Oku, Takanori

    2018-03-10

    An integration of afferent sensory information from the visual, auditory, and proprioceptive systems into execution and update of motor programs plays crucial roles in control and acquisition of skillful sequential movements in musical performance. However, conventional behavioral and neurophysiological techniques that have been applied to study simplistic motor behaviors limit elucidating online sensorimotor integration processes underlying skillful musical performance. Here, we propose two novel techniques that were developed to investigate the roles of auditory and proprioceptive feedback in piano performance. First, a closed-loop noninvasive brain stimulation system that consists of transcranial magnetic stimulation, a motion sensor, and a microcomputer enabled to assess time-varying cortical processes subserving auditory-motor integration during piano playing. Second, a force-field system capable of manipulating the weight of a piano key allowed for characterizing movement adaptation based on the feedback obtained, which can shed light on the formation of an internal representation of the piano. Results of neurophysiological and psychophysics experiments provided evidence validating these systems as effective means for disentangling computational and neural processes of sensorimotor integration in musical performance. © 2018 New York Academy of Sciences.

  17. Damaging de novo mutations diminish motor skills in children on the autism spectrum

    PubMed Central

    Buja, Andreas; Volfovsky, Natalia; Krieger, Abba M.; Lord, Catherine; Lash, Alex E.; Wigler, Michael; Iossifov, Ivan

    2018-01-01

    In individuals with autism spectrum disorder (ASD), de novo mutations have previously been shown to be significantly correlated with lower IQ but not with the core characteristics of ASD: deficits in social communication and interaction and restricted interests and repetitive patterns of behavior. We extend these findings by demonstrating in the Simons Simplex Collection that damaging de novo mutations in ASD individuals are also significantly and convincingly correlated with measures of impaired motor skills. This correlation is not explained by a correlation between IQ and motor skills. We find that IQ and motor skills are distinctly associated with damaging mutations and, in particular, that motor skills are a more sensitive indicator of mutational severity than is IQ, as judged by mutational type and target gene. We use this finding to propose a combined classification of phenotypic severity: mild (little impairment of either), moderate (impairment mainly to motor skills), and severe (impairment of both IQ and motor skills). PMID:29434036

  18. Damaging de novo mutations diminish motor skills in children on the autism spectrum.

    PubMed

    Buja, Andreas; Volfovsky, Natalia; Krieger, Abba M; Lord, Catherine; Lash, Alex E; Wigler, Michael; Iossifov, Ivan

    2018-02-20

    In individuals with autism spectrum disorder (ASD), de novo mutations have previously been shown to be significantly correlated with lower IQ but not with the core characteristics of ASD: deficits in social communication and interaction and restricted interests and repetitive patterns of behavior. We extend these findings by demonstrating in the Simons Simplex Collection that damaging de novo mutations in ASD individuals are also significantly and convincingly correlated with measures of impaired motor skills. This correlation is not explained by a correlation between IQ and motor skills. We find that IQ and motor skills are distinctly associated with damaging mutations and, in particular, that motor skills are a more sensitive indicator of mutational severity than is IQ, as judged by mutational type and target gene. We use this finding to propose a combined classification of phenotypic severity: mild (little impairment of either), moderate (impairment mainly to motor skills), and severe (impairment of both IQ and motor skills). Copyright © 2018 the Author(s). Published by PNAS.

  19. Functional MRI evidence for fine motor praxis dysfunction in children with persistent speech disorders.

    PubMed

    Redle, Erin; Vannest, Jennifer; Maloney, Thomas; Tsevat, Rebecca K; Eikenberry, Sarah; Lewis, Barbara; Shriberg, Lawrence D; Tkach, Jean; Holland, Scott K

    2015-02-09

    Children with persistent speech disorders (PSD) often present with overt or subtle motor deficits; the possibility that speech disorders and motor deficits could arise from a shared neurological base is currently unknown. Functional MRI (fMRI) was used to examine the brain networks supporting fine motor praxis in children with PSD and without clinically identified fine motor deficits. This case-control study included 12 children with PSD (mean age 7.42 years, four female) and 12 controls (mean age 7.44 years, four female). Children completed behavioral evaluations using standardized motor assessments and parent reported functional measures. During fMRI scanning, participants completed a cued finger tapping task contrasted passive listening. A general linear model approach identified brain regions associated with finger tapping in each group and regions that differed between groups. The relationship between regional fMRI activation and fine motor skill was assessed using a regression analysis. Children with PSD had significantly poorer results for rapid speech production and fine motor praxis skills, but did not differ on classroom functional skills. Functional MRI results showed that children with PSD had significantly more activation in the cerebellum during finger tapping. Positive correlations between performance on a fine motor praxis test and activation multiple cortical regions were noted for children with PSD but not for controls. Over-activation in the cerebellum during a motor task may reflect a subtle abnormality in the non-speech motor neural circuitry in children with PSD. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Skill-memory consolidation in the striatum

    PubMed Central

    Willuhn, Ingo; Steiner, Heinz

    2008-01-01

    The sensorimotor striatum is important for procedural learning, including skill learning. Our previous findings indicate that this part of the striatum mediates the acquisition of a motor skill in a running-wheel task and that this skill learning is dependent on striatal D1 dopamine receptors. Here, we investigated whether the sensorimotor striatum is also involved in the consolidation of this skill memory and whether this consolidation is modified by the indirect dopamine receptor agonist cocaine. Rats were trained on a running wheel for two days (40 min/day) to learn a new motor skill, that is, the ability to control the movement of the wheel. Before each training session, the animals received an injection of vehicle or cocaine (25 mg/kg; i.p.). Immediately following the training session, an intrastriatal infusion of 2% lidocaine (1 μl) or a sham infusion were administered. Wheel-skill performance was tested before and repeatedly after the training. Our results show that post-trial intrastriatal infusion of lidocaine disrupted late-stage long-term skill memory (post-training days 6-26), but spared early long-term memory (1 day after the training). Skill consolidation was more susceptible to such disruption in animals that practiced less during the training. Cocaine given pre-trial prevented this post-trial disruption of skill consolidation. These findings indicate that the sensorimotor striatum is critical for consolidation of late but not early long-term skill memory. Furthermore, cocaine appeared to stabilize motor memory formation by protecting consolidation processes after the training. PMID:18687364

Top