Science.gov

Sample records for motor speech cortex

  1. The auditory representation of speech sounds in human motor cortex

    PubMed Central

    Cheung, Connie; Hamilton, Liberty S; Johnson, Keith; Chang, Edward F

    2016-01-01

    In humans, listening to speech evokes neural responses in the motor cortex. This has been controversially interpreted as evidence that speech sounds are processed as articulatory gestures. However, it is unclear what information is actually encoded by such neural activity. We used high-density direct human cortical recordings while participants spoke and listened to speech sounds. Motor cortex neural patterns during listening were substantially different than during articulation of the same sounds. During listening, we observed neural activity in the superior and inferior regions of ventral motor cortex. During speaking, responses were distributed throughout somatotopic representations of speech articulators in motor cortex. The structure of responses in motor cortex during listening was organized along acoustic features similar to auditory cortex, rather than along articulatory features as during speaking. Motor cortex does not contain articulatory representations of perceived actions in speech, but rather, represents auditory vocal information. DOI: http://dx.doi.org/10.7554/eLife.12577.001 PMID:26943778

  2. A little more conversation, a little less action - candidate roles for motor cortex in speech perception

    PubMed Central

    Scott, Sophie K; McGettigan, Carolyn; Eisner, Frank

    2014-01-01

    The motor theory of speech perception assumes that activation of the motor system is essential in the perception of speech. However, deficits in speech perception and comprehension do not arise from damage that is restricted to the motor cortex, few functional imaging studies reveal activity in motor cortex during speech perception, and the motor cortex is strongly activated by many different sound categories. Here, we evaluate alternative roles for the motor cortex in spoken communication and suggest a specific role in sensorimotor processing in conversation. We argue that motor-cortex activation it is essential in joint speech, particularly for the timing of turn-taking. PMID:19277052

  3. The Somatotopy of Speech: Phonation and Articulation in the Human Motor Cortex

    ERIC Educational Resources Information Center

    Brown, Steven; Laird, Angela R.; Pfordresher, Peter Q.; Thelen, Sarah M.; Turkeltaub, Peter; Liotti, Mario

    2009-01-01

    A sizable literature on the neuroimaging of speech production has reliably shown activations in the orofacial region of the primary motor cortex. These activations have invariably been interpreted as reflecting "mouth" functioning and thus articulation. We used functional magnetic resonance imaging to compare an overt speech task with tongue…

  4. Representation of the Speech Effectors in the Human Motor Cortex: Somatotopy or Overlap?

    ERIC Educational Resources Information Center

    Takai, Osamu; Brown, Steven; Liotti, Mario

    2010-01-01

    Somatotopy within the orofacial region of the human motor cortex has been a central concept in interpreting the results of neuroimaging and transcranial magnetic stimulation studies of normal and disordered speech. Yet, somatotopy has been challenged by studies showing overlap among the effectors within the homunculus. In order to address this…

  5. Speech dynamics are coded in the left motor cortex in fluent speakers but not in adults who stutter

    PubMed Central

    Hoang, T. N. Linh; Neef, Andreas; Paulus, Walter; Sommer, Martin

    2015-01-01

    The precise excitability regulation of neuronal circuits in the primary motor cortex is central to the successful and fluent production of speech. Our question was whether the involuntary execution of undesirable movements, e.g. stuttering, is linked to an insufficient excitability tuning of neural populations in the orofacial region of the primary motor cortex. We determined the speech-related time course of excitability modulation in the left and right primary motor tongue representation. Thirteen fluent speakers (four females, nine males; aged 23–44) and 13 adults who stutter (four females, nine males, aged 21–55) were asked to build verbs with the verbal prefix ‘auf’. Single-pulse transcranial magnetic stimulation was applied over the primary motor cortex during the transition phase between a fixed labiodental articulatory configuration and immediately following articulatory configurations, at different latencies after transition onset. Bilateral electromyography was recorded from self-adhesive electrodes placed on the surface of the tongue. Off-line, we extracted the motor evoked potential amplitudes and normalized these amplitudes to the individual baseline excitability during the fixed configuration. Fluent speakers demonstrated a prominent left hemisphere increase of motor cortex excitability in the transition phase (P = 0.009). In contrast, the excitability of the right primary motor tongue representation was unchanged. Interestingly, adults afflicted with stuttering revealed a lack of left-hemisphere facilitation. Moreover, the magnitude of facilitation was negatively correlated with stuttering frequency. Although orofacial midline muscles are bilaterally innervated from corticobulbar projections of both hemispheres, our results indicate that speech motor plans are controlled primarily in the left primary speech motor cortex. This speech motor planning-related asymmetry towards the left orofacial motor cortex is missing in stuttering. Moreover, a

  6. Speech dynamics are coded in the left motor cortex in fluent speakers but not in adults who stutter.

    PubMed

    Neef, Nicole E; Hoang, T N Linh; Neef, Andreas; Paulus, Walter; Sommer, Martin

    2015-03-01

    The precise excitability regulation of neuronal circuits in the primary motor cortex is central to the successful and fluent production of speech. Our question was whether the involuntary execution of undesirable movements, e.g. stuttering, is linked to an insufficient excitability tuning of neural populations in the orofacial region of the primary motor cortex. We determined the speech-related time course of excitability modulation in the left and right primary motor tongue representation. Thirteen fluent speakers (four females, nine males; aged 23-44) and 13 adults who stutter (four females, nine males, aged 21-55) were asked to build verbs with the verbal prefix 'auf'. Single-pulse transcranial magnetic stimulation was applied over the primary motor cortex during the transition phase between a fixed labiodental articulatory configuration and immediately following articulatory configurations, at different latencies after transition onset. Bilateral electromyography was recorded from self-adhesive electrodes placed on the surface of the tongue. Off-line, we extracted the motor evoked potential amplitudes and normalized these amplitudes to the individual baseline excitability during the fixed configuration. Fluent speakers demonstrated a prominent left hemisphere increase of motor cortex excitability in the transition phase (P = 0.009). In contrast, the excitability of the right primary motor tongue representation was unchanged. Interestingly, adults afflicted with stuttering revealed a lack of left-hemisphere facilitation. Moreover, the magnitude of facilitation was negatively correlated with stuttering frequency. Although orofacial midline muscles are bilaterally innervated from corticobulbar projections of both hemispheres, our results indicate that speech motor plans are controlled primarily in the left primary speech motor cortex. This speech motor planning-related asymmetry towards the left orofacial motor cortex is missing in stuttering. Moreover, a negative

  7. Are there excitability changes in the hand motor cortex during speech in left-handed subjects?

    PubMed

    Tokimura, Hiroshi; Tokimura, Yoshika; Arita, Kazunori

    2012-01-01

    Hemispheric dominance was investigated in left-handed subjects using single transcranial magnetic stimulation to assess the possible effect of forced change in the dominant hand. Single transcranial magnetic stimuli were delivered randomly over the hand area of the left or right motor cortex of 8 Japanese self-declared left-handed adult volunteers. Electromyographic responses were recorded in the relaxed first dorsal interosseous muscle while the subjects read aloud. Laterality quotient calculated by the Edinburgh Inventory ranged from -100 to -5.26 and laterality index calculated from motor evoked potentials ranged from -86.2 to 38.8. There was no significant correlation between laterality quotient and laterality index. Mean data values across all 8 subjects indicated significant increases only in the left hand. Our ratio analysis of facilitation of the hand motor potentials showed that 2 each of the 8 self-declared left-handers were right- and left-hand dominant and the other 4 were bilateral-hand dominant. Speech dominancy was localized primarily in the right cerebral hemisphere in left-handed subjects, but some individuals exhibited bilateral or left dominance, possibly attributable to the forced change of hand preference for writing in childhood. Our findings suggest changes in the connections between the speech and hand motor areas.

  8. Two distinct auditory-motor circuits for monitoring speech production as revealed by content-specific suppression of auditory cortex.

    PubMed

    Ylinen, Sari; Nora, Anni; Leminen, Alina; Hakala, Tero; Huotilainen, Minna; Shtyrov, Yury; Mäkelä, Jyrki P; Service, Elisabet

    2015-06-01

    Speech production, both overt and covert, down-regulates the activation of auditory cortex. This is thought to be due to forward prediction of the sensory consequences of speech, contributing to a feedback control mechanism for speech production. Critically, however, these regulatory effects should be specific to speech content to enable accurate speech monitoring. To determine the extent to which such forward prediction is content-specific, we recorded the brain's neuromagnetic responses to heard multisyllabic pseudowords during covert rehearsal in working memory, contrasted with a control task. The cortical auditory processing of target syllables was significantly suppressed during rehearsal compared with control, but only when they matched the rehearsed items. This critical specificity to speech content enables accurate speech monitoring by forward prediction, as proposed by current models of speech production. The one-to-one phonological motor-to-auditory mappings also appear to serve the maintenance of information in phonological working memory. Further findings of right-hemispheric suppression in the case of whole-item matches and left-hemispheric enhancement for last-syllable mismatches suggest that speech production is monitored by 2 auditory-motor circuits operating on different timescales: Finer grain in the left versus coarser grain in the right hemisphere. Taken together, our findings provide hemisphere-specific evidence of the interface between inner and heard speech.

  9. Increased activity in frontal motor cortex compensates impaired speech perception in older adults

    PubMed Central

    Du, Yi; Buchsbaum, Bradley R.; Grady, Cheryl L.; Alain, Claude

    2016-01-01

    Understanding speech in noisy environments is challenging, especially for seniors. Although evidence suggests that older adults increasingly recruit prefrontal cortices to offset reduced periphery and central auditory processing, the brain mechanisms underlying such compensation remain elusive. Here we show that relative to young adults, older adults show higher activation of frontal speech motor areas as measured by functional MRI during a syllable identification task at varying signal-to-noise ratios. This increased activity correlates with improved speech discrimination performance in older adults. Multivoxel pattern classification reveals that despite an overall phoneme dedifferentiation, older adults show greater specificity of phoneme representations in frontal articulatory regions than auditory regions. Moreover, older adults with stronger frontal activity have higher phoneme specificity in frontal and auditory regions. Thus, preserved phoneme specificity and upregulation of activity in speech motor regions provide a means of compensation in older adults for decoding impoverished speech representations in adverse listening conditions. PMID:27483187

  10. Excitability changes in the left primary motor cortex innervating the hand muscles induced during speech about hand or leg movements.

    PubMed

    Onmyoji, Yusuke; Kubota, Shinji; Hirano, Masato; Tanaka, Megumi; Morishita, Takuya; Uehara, Kazumasa; Funase, Kozo

    2015-05-01

    In the present study, we used transcranial magnetic stimulation (TMS) to investigate the changes in the excitability of the left primary motor cortex (M1) innervating the hand muscles and in short-interval intracortical inhibition (SICI) during speech describing hand or leg movements. In experiment 1, we investigated the effects of the contents of speech on the amplitude of the motor evoked potentials (MEPs) induced during reading aloud and silent reading. In experiment 2, we repeated experiment 1 with an additional condition, the non-vocal oral movement (No-Voc OM) condition, and investigated the change in SICI induced in each condition using the paired TMS paradigm. The MEP observed in the reading aloud and No-Voc OM conditions exhibited significantly greater amplitudes than those seen in the silent reading conditions, irrespective of the content of the sentences spoken by the subjects or the timing of the TMS. There were no significant differences in SICI between the experimental conditions. Our findings suggest that the increased excitability of the left M1 hand area detected during speech was mainly caused by speech-related oral movements and the activation of language processing-related brain functions. The increased left M1 excitability was probably also mediated by neural mechanisms other than reduced SICI; i.e., disinhibition.

  11. Effective Connectivity Hierarchically Links Temporoparietal and Frontal Areas of the Auditory Dorsal Stream with the Motor Cortex Lip Area during Speech Perception

    ERIC Educational Resources Information Center

    Murakami, Takenobu; Restle, Julia; Ziemann, Ulf

    2012-01-01

    A left-hemispheric cortico-cortical network involving areas of the temporoparietal junction (Tpj) and the posterior inferior frontal gyrus (pIFG) is thought to support sensorimotor integration of speech perception into articulatory motor activation, but how this network links with the lip area of the primary motor cortex (M1) during speech…

  12. Direct classification of all American English phonemes using signals from functional speech motor cortex

    NASA Astrophysics Data System (ADS)

    Mugler, Emily M.; Patton, James L.; Flint, Robert D.; Wright, Zachary A.; Schuele, Stephan U.; Rosenow, Joshua; Shih, Jerry J.; Krusienski, Dean J.; Slutzky, Marc W.

    2014-06-01

    Objective. Although brain-computer interfaces (BCIs) can be used in several different ways to restore communication, communicative BCI has not approached the rate or efficiency of natural human speech. Electrocorticography (ECoG) has precise spatiotemporal resolution that enables recording of brain activity distributed over a wide area of cortex, such as during speech production. In this study, we sought to decode elements of speech production using ECoG. Approach. We investigated words that contain the entire set of phonemes in the general American accent using ECoG with four subjects. Using a linear classifier, we evaluated the degree to which individual phonemes within each word could be correctly identified from cortical signal. Main results. We classified phonemes with up to 36% accuracy when classifying all phonemes and up to 63% accuracy for a single phoneme. Further, misclassified phonemes follow articulation organization described in phonology literature, aiding classification of whole words. Precise temporal alignment to phoneme onset was crucial for classification success. Significance. We identified specific spatiotemporal features that aid classification, which could guide future applications. Word identification was equivalent to information transfer rates as high as 3.0 bits s-1 (33.6 words min-1), supporting pursuit of speech articulation for BCI control.

  13. Dissociating motor cortex from the motor

    PubMed Central

    Schieber, Marc H

    2011-01-01

    Abstract During closed-loop control of a brain–computer interface, neurons in the primary motor cortex can be intensely active even though the subject may be making no detectable movement or muscle contraction. How can neural activity in the primary motor cortex become dissociated from the movements and muscles of the native limb that it normally controls? Here we examine circumstances in which motor cortex activity is known to dissociate from movement – including mental imagery, visuo-motor dissociation and instructed delay. Many such motor cortex neurons may be related to muscle activity only indirectly. Furthermore, the integration of thousands of synaptic inputs by individual α-motoneurons means that under certain circumstances even cortico-motoneuronal cells, which make monosynaptic connections to α-motoneurons, can become dissociated from muscle activity. The natural ability of motor cortex neurons under voluntarily control to become dissociated from bodily movement may underlie the utility of this cortical area for controlling brain–computer interfaces. PMID:22005673

  14. The neural correlates of speech motor sequence learning.

    PubMed

    Segawa, Jennifer A; Tourville, Jason A; Beal, Deryk S; Guenther, Frank H

    2015-04-01

    Speech is perhaps the most sophisticated example of a species-wide movement capability in the animal kingdom, requiring split-second sequencing of approximately 100 muscles in the respiratory, laryngeal, and oral movement systems. Despite the unique role speech plays in human interaction and the debilitating impact of its disruption, little is known about the neural mechanisms underlying speech motor learning. Here, we studied the behavioral and neural correlates of learning new speech motor sequences. Participants repeatedly produced novel, meaningless syllables comprising illegal consonant clusters (e.g., GVAZF) over 2 days of practice. Following practice, participants produced the sequences with fewer errors and shorter durations, indicative of motor learning. Using fMRI, we compared brain activity during production of the learned illegal sequences and novel illegal sequences. Greater activity was noted during production of novel sequences in brain regions linked to non-speech motor sequence learning, including the BG and pre-SMA. Activity during novel sequence production was also greater in brain regions associated with learning and maintaining speech motor programs, including lateral premotor cortex, frontal operculum, and posterior superior temporal cortex. Measures of learning success correlated positively with activity in left frontal operculum and white matter integrity under left posterior superior temporal sulcus. These findings indicate speech motor sequence learning relies not only on brain areas involved generally in motor sequencing learning but also those associated with feedback-based speech motor learning. Furthermore, learning success is modulated by the integrity of structural connectivity between these motor and sensory brain regions.

  15. Motor induced suppression of auditory cortex

    PubMed Central

    Aliu, Sheye O.; Houde, John F.; Nagarajan, Srikantan S.

    2010-01-01

    Sensory responses to stimuli that are triggered by a self-initiated motor act are suppressed when compared with the response to the same stimuli triggered externally, a phenomenon referred to as motor-induced suppression (MIS) of sensory cortical feedback. Studies in the somatosensory system suggest that such suppression might be sensitive to delays between the motor act and the stimulus-onset, and a recent study in the auditory system suggests that such MIS develops rapidly. In three MEG experiments, we characterize the properties of MIS, by examining the M100 response from the auditory cortex to a simple tone triggered by a button press. In Experiment 1, we found that MIS develops for zero-delays but does not generalize to non-zero delays. In Experiment 2, we found that MIS developed for 100 ms delays within 300 trials and occurs in excess of auditory habituation. In Experiment 3, we found that unlike MIS for zero-delays, MIS for non-zero delays does not exhibit sensitivity to sensory, delay or motor-command changes. These results are discussed in relation to suppression to self-produced speech and a general model of sensory motor control. PMID:18593265

  16. Sensorimotor Oscillations Prior to Speech Onset Reflect Altered Motor Networks in Adults Who Stutter

    PubMed Central

    Mersov, Anna-Maria; Jobst, Cecilia; Cheyne, Douglas O.; De Nil, Luc

    2016-01-01

    Adults who stutter (AWS) have demonstrated atypical coordination of motor and sensory regions during speech production. Yet little is known of the speech-motor network in AWS in the brief time window preceding audible speech onset. The purpose of the current study was to characterize neural oscillations in the speech-motor network during preparation for and execution of overt speech production in AWS using magnetoencephalography (MEG). Twelve AWS and 12 age-matched controls were presented with 220 words, each word embedded in a carrier phrase. Controls were presented with the same word list as their matched AWS participant. Neural oscillatory activity was localized using minimum-variance beamforming during two time periods of interest: speech preparation (prior to speech onset) and speech execution (following speech onset). Compared to controls, AWS showed stronger beta (15–25 Hz) suppression in the speech preparation stage, followed by stronger beta synchronization in the bilateral mouth motor cortex. AWS also recruited the right mouth motor cortex significantly earlier in the speech preparation stage compared to controls. Exaggerated motor preparation is discussed in the context of reduced coordination in the speech-motor network of AWS. It is further proposed that exaggerated beta synchronization may reflect a more strongly inhibited motor system that requires a stronger beta suppression to disengage prior to speech initiation. These novel findings highlight critical differences in the speech-motor network of AWS that occur prior to speech onset and emphasize the need to investigate further the speech-motor assembly in the stuttering population.

  17. Sensorimotor Oscillations Prior to Speech Onset Reflect Altered Motor Networks in Adults Who Stutter.

    PubMed

    Mersov, Anna-Maria; Jobst, Cecilia; Cheyne, Douglas O; De Nil, Luc

    2016-01-01

    Adults who stutter (AWS) have demonstrated atypical coordination of motor and sensory regions during speech production. Yet little is known of the speech-motor network in AWS in the brief time window preceding audible speech onset. The purpose of the current study was to characterize neural oscillations in the speech-motor network during preparation for and execution of overt speech production in AWS using magnetoencephalography (MEG). Twelve AWS and 12 age-matched controls were presented with 220 words, each word embedded in a carrier phrase. Controls were presented with the same word list as their matched AWS participant. Neural oscillatory activity was localized using minimum-variance beamforming during two time periods of interest: speech preparation (prior to speech onset) and speech execution (following speech onset). Compared to controls, AWS showed stronger beta (15-25 Hz) suppression in the speech preparation stage, followed by stronger beta synchronization in the bilateral mouth motor cortex. AWS also recruited the right mouth motor cortex significantly earlier in the speech preparation stage compared to controls. Exaggerated motor preparation is discussed in the context of reduced coordination in the speech-motor network of AWS. It is further proposed that exaggerated beta synchronization may reflect a more strongly inhibited motor system that requires a stronger beta suppression to disengage prior to speech initiation. These novel findings highlight critical differences in the speech-motor network of AWS that occur prior to speech onset and emphasize the need to investigate further the speech-motor assembly in the stuttering population. PMID:27642279

  18. Sensorimotor Oscillations Prior to Speech Onset Reflect Altered Motor Networks in Adults Who Stutter

    PubMed Central

    Mersov, Anna-Maria; Jobst, Cecilia; Cheyne, Douglas O.; De Nil, Luc

    2016-01-01

    Adults who stutter (AWS) have demonstrated atypical coordination of motor and sensory regions during speech production. Yet little is known of the speech-motor network in AWS in the brief time window preceding audible speech onset. The purpose of the current study was to characterize neural oscillations in the speech-motor network during preparation for and execution of overt speech production in AWS using magnetoencephalography (MEG). Twelve AWS and 12 age-matched controls were presented with 220 words, each word embedded in a carrier phrase. Controls were presented with the same word list as their matched AWS participant. Neural oscillatory activity was localized using minimum-variance beamforming during two time periods of interest: speech preparation (prior to speech onset) and speech execution (following speech onset). Compared to controls, AWS showed stronger beta (15–25 Hz) suppression in the speech preparation stage, followed by stronger beta synchronization in the bilateral mouth motor cortex. AWS also recruited the right mouth motor cortex significantly earlier in the speech preparation stage compared to controls. Exaggerated motor preparation is discussed in the context of reduced coordination in the speech-motor network of AWS. It is further proposed that exaggerated beta synchronization may reflect a more strongly inhibited motor system that requires a stronger beta suppression to disengage prior to speech initiation. These novel findings highlight critical differences in the speech-motor network of AWS that occur prior to speech onset and emphasize the need to investigate further the speech-motor assembly in the stuttering population. PMID:27642279

  19. Speech Motor Learning in Profoundly Deaf Adults

    PubMed Central

    Nasir, Sazzad M.; Ostry, David J.

    2008-01-01

    Speech production, like other sensorimotor behaviors, relies on multiple sensory inputs — audition, proprioceptive inputs from muscle spindles, and cutaneous inputs from mechanoreceptors in the skin and soft tissues of the vocal tract. However, the capacity for intelligible speech by deaf speakers suggests that somatosensory input on its own may contribute to speech motor control and perhaps even to speech learning. We assessed speech motor learning in cochlear implant recipients who were tested with their implants turned off. A robotic device was used to alter somatosensory feedback by displacing the jaw during speech. We found that with training implant subjects progressively adapted to the mechanical perturbation. Moreover, the corrections we observed were for movement deviations that were exceedingly small, on the order of millimetres, indicating that speakers have precise somatosensory expectations. Speech motor learning is significantly dependent on somatosensory input. PMID:18794839

  20. Somatosensory responses in a human motor cortex.

    PubMed

    Shaikhouni, Ammar; Donoghue, John P; Hochberg, Leigh R

    2013-04-01

    Somatic sensory signals provide a major source of feedback to motor cortex. Changes in somatosensory systems after stroke or injury could profoundly influence brain computer interfaces (BCI) being developed to create new output signals from motor cortex activity patterns. We had the unique opportunity to study the responses of hand/arm area neurons in primary motor cortex to passive joint manipulation in a person with a long-standing brain stem stroke but intact sensory pathways. Neurons responded to passive manipulation of the contralateral shoulder, elbow, or wrist as predicted from prior studies of intact primates. Thus fundamental properties and organization were preserved despite arm/hand paralysis and damage to cortical outputs. The same neurons were engaged by attempted arm actions. These results indicate that intact sensory pathways retain the potential to influence primary motor cortex firing rates years after cortical outputs are interrupted and may contribute to online decoding of motor intentions for BCI applications.

  1. Somatosensory responses in a human motor cortex

    PubMed Central

    Donoghue, John P.; Hochberg, Leigh R.

    2013-01-01

    Somatic sensory signals provide a major source of feedback to motor cortex. Changes in somatosensory systems after stroke or injury could profoundly influence brain computer interfaces (BCI) being developed to create new output signals from motor cortex activity patterns. We had the unique opportunity to study the responses of hand/arm area neurons in primary motor cortex to passive joint manipulation in a person with a long-standing brain stem stroke but intact sensory pathways. Neurons responded to passive manipulation of the contralateral shoulder, elbow, or wrist as predicted from prior studies of intact primates. Thus fundamental properties and organization were preserved despite arm/hand paralysis and damage to cortical outputs. The same neurons were engaged by attempted arm actions. These results indicate that intact sensory pathways retain the potential to influence primary motor cortex firing rates years after cortical outputs are interrupted and may contribute to online decoding of motor intentions for BCI applications. PMID:23343902

  2. Motor Programming in Apraxia of Speech

    ERIC Educational Resources Information Center

    Maas, Edwin; Robin, Donald A.; Wright, David L.; Ballard, Kirrie J.

    2008-01-01

    Apraxia of Speech (AOS) is an impairment of motor programming. However, the exact nature of this deficit remains unclear. The present study examined motor programming in AOS in the context of a recent two-stage model [Klapp, S. T. (1995). Motor response programming during simple and choice reaction time: The role of practice. "Journal of…

  3. Motor Cortex Reorganization across the Lifespan

    ERIC Educational Resources Information Center

    Plowman, Emily K.; Kleim, Jeffrey A.

    2010-01-01

    The brain is a highly dynamic structure with the capacity for profound structural and functional change. Such neural plasticity has been well characterized within motor cortex and is believed to represent one of the neural mechanisms for acquiring and modifying motor behaviors. A number of behavioral and neural signals have been identified that…

  4. A Cool Approach to Probing Speech Cortex.

    PubMed

    Flinker, Adeen; Knight, Robert T

    2016-03-16

    In this issue of Neuron, Long et al. (2016) employ a novel technique of intraoperative cortical cooling in humans during speech production. They demonstrate that cooling Broca's area interferes with speech timing but not speech quality. PMID:26985719

  5. A Cool Approach to Probing Speech Cortex

    PubMed Central

    Flinker, Adeen; Knight, Robert T.

    2016-01-01

    In this issue of Neuron, Long et al. (2016) employ a novel technique of intraoperative cortical cooling in humans during speech production. They demonstrate that cooling Broca’s area interferes with speech timing but not speech quality. PMID:26985719

  6. Speech Motor Control in Fluent and Dysfluent Speech Production of an Individual with Apraxia of Speech and Broca's Aphasia

    ERIC Educational Resources Information Center

    van Lieshout, Pascal H. H. M.; Bose, Arpita; Square, Paula A.; Steele, Catriona M.

    2007-01-01

    Apraxia of speech (AOS) is typically described as a motor-speech disorder with clinically well-defined symptoms, but without a clear understanding of the underlying problems in motor control. A number of studies have compared the speech of subjects with AOS to the fluent speech of controls, but only a few have included speech movement data and if…

  7. The motor theory of speech perception reviewed

    PubMed Central

    GALANTUCCI, BRUNO; FOWLER, CAROL A.; TURVEY, M. T.

    2009-01-01

    More than 50 years after the appearance of the motor theory of speech perception, it is timely to evaluate its three main claims that (1) speech processing is special, (2) perceiving speech is perceiving gestures, and (3) the motor system is recruited for perceiving speech. We argue that to the extent that it can be evaluated, the first claim is likely false. As for the second claim, we review findings that support it and argue that although each of these findings may be explained by alternative accounts, the claim provides a single coherent account. As for the third claim, we review findings in the literature that support it at different levels of generality and argue that the claim anticipated a theme that has become widespread in cognitive science. PMID:17048719

  8. Linear summation of cat motor cortex outputs.

    PubMed

    Ethier, Christian; Brizzi, Laurent; Darling, Warren G; Capaday, Charles

    2006-05-17

    Recruitment of movement-related muscle synergies involves the functional linking of motor cortical points. We asked how the outputs of two simultaneously stimulated motor cortical points would interact. To this end, experiments were done in ketamine-anesthetized cats. When prolonged (e.g., 500 ms) trains of intracortical microstimulation were applied in the primary motor cortex, stimulus currents as low as 10-20 microA evoked coordinated movements of the contralateral forelimb. Paw kinematics in three dimensions and the electromyographic (EMG) activity of eight muscles were simultaneously recorded. We show that the EMG outputs of two cortical points simultaneously stimulated are additive. The movements were represented as displacement vectors pointing from initial to final paw position. The displacement vectors resulting from simultaneous stimulation of two cortical points pointed in nearly the same direction as the algebraic resultant vector. Linear summation of outputs was also found when inhibition at one of the cortical points was reduced by GABAA receptor antagonists. A simple principle emerges from these results. Notwithstanding the underlying complex neuronal circuitry, motor cortex outputs combine nearly linearly in terms of movement direction and muscle activation patterns. Importantly, simultaneous activation does not change the nature of the output at each point. An additional implication is that not all possible movements need be explicitly represented in the motor cortex; a large number of different movements may be synthesized from a smaller repertoire.

  9. Auditory-Perceptual Learning Improves Speech Motor Adaptation in Children

    PubMed Central

    Shiller, Douglas M.; Rochon, Marie-Lyne

    2015-01-01

    Auditory feedback plays an important role in children’s speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback, however it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5–7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children’s ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation. PMID:24842067

  10. Auditory-perceptual learning improves speech motor adaptation in children.

    PubMed

    Shiller, Douglas M; Rochon, Marie-Lyne

    2014-08-01

    Auditory feedback plays an important role in children's speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback; however, it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5- to 7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children's ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation.

  11. The Tracking of Speech Envelope in the Human Cortex

    PubMed Central

    Kubanek, Jan; Brunner, Peter; Gunduz, Aysegul; Poeppel, David; Schalk, Gerwin

    2013-01-01

    Humans are highly adept at processing speech. Recently, it has been shown that slow temporal information in speech (i.e., the envelope of speech) is critical for speech comprehension. Furthermore, it has been found that evoked electric potentials in human cortex are correlated with the speech envelope. However, it has been unclear whether this essential linguistic feature is encoded differentially in specific regions, or whether it is represented throughout the auditory system. To answer this question, we recorded neural data with high temporal resolution directly from the cortex while human subjects listened to a spoken story. We found that the gamma activity in human auditory cortex robustly tracks the speech envelope. The effect is so marked that it is observed during a single presentation of the spoken story to each subject. The effect is stronger in regions situated relatively early in the auditory pathway (belt areas) compared to other regions involved in speech processing, including the superior temporal gyrus (STG) and the posterior inferior frontal gyrus (Broca's region). To further distinguish whether speech envelope is encoded in the auditory system as a phonological (speech-related), or instead as a more general acoustic feature, we also probed the auditory system with a melodic stimulus. We found that belt areas track melody envelope weakly, and as the only region considered. Together, our data provide the first direct electrophysiological evidence that the envelope of speech is robustly tracked in non-primary auditory cortex (belt areas in particular), and suggest that the considered higher-order regions (STG and Broca's region) partake in a more abstract linguistic analysis. PMID:23408924

  12. The left parietal cortex and motor attention.

    PubMed

    Rushworth, M F; Nixon, P D; Renowden, S; Wade, D T; Passingham, R E

    1997-09-01

    The posterior parietal cortex, particularly in the right hemisphere, is crucially important for covert orienting; lesions impair the ability to disengage the focus of covert orienting attention from one potential saccade target to another (Posner, M. I. et al., Journal of Neuroscience, 1984, 4, 1863-1874). We have developed a task where precues allow subjects to covertly prepare subsequent cued hand movements, as opposed to an orienting or eye movement. We refer to this process as motor attention to distinguish it from orienting attention. Nine subjects with lesions that included the left parietal cortex and nine subjects with lesions including the right parietal cortex were compared with control subjects on the task. The left hemisphere subjects showed the same ability as controls to engage attention to a movement when they were forewarned by a valid precue. The left hemisphere subjects, however, were impaired in their ability to disengage the focus of motor attention from one movement to another when the precue was incorrect. The results support the existence of two distinct attentional systems allied to the orienting and limb motor systems. Damage to either system causes analogous problems in disengaging from one orienting/movement target to another. The left parietal cortex, particularly the supramarginal gyrus, is associated with motor attention. All the left hemisphere subjects had ideomotor apraxia and had particular problems performing sequences of movements. We suggest that the well documented left hemisphere and apraxic impairment in movement sequencing is the consequence of a difficulty in shifting the focus of motor attention from one movement in a sequence to the next. PMID:9364496

  13. Structural Organization of the Laryngeal Motor Cortical Network and Its Implication for Evolution of Speech Production

    PubMed Central

    Kumar, Veena; Croxson, Paula L.

    2016-01-01

    The laryngeal motor cortex (LMC) is essential for the production of learned vocal behaviors because bilateral damage to this area renders humans unable to speak but has no apparent effect on innate vocalizations such as human laughing and crying or monkey calls. Several hypotheses have been put forward attempting to explain the evolutionary changes from monkeys to humans that potentially led to enhanced LMC functionality for finer motor control of speech production. These views, however, remain limited to the position of the larynx area within the motor cortex, as well as its connections with the phonatory brainstem regions responsible for the direct control of laryngeal muscles. Using probabilistic diffusion tractography in healthy humans and rhesus monkeys, we show that, whereas the LMC structural network is largely comparable in both species, the LMC establishes nearly 7-fold stronger connectivity with the somatosensory and inferior parietal cortices in humans than in macaques. These findings suggest that important “hard-wired” components of the human LMC network controlling the laryngeal component of speech motor output evolved from an already existing, similar network in nonhuman primates. However, the evolution of enhanced LMC–parietal connections likely allowed for more complex synchrony of higher-order sensorimotor coordination, proprioceptive and tactile feedback, and modulation of learned voice for speech production. SIGNIFICANCE STATEMENT The role of the primary motor cortex in the formation of a comprehensive network controlling speech and language has been long underestimated and poorly studied. Here, we provide comparative and quantitative evidence for the significance of this region in the control of a highly learned and uniquely human behavior: speech production. From the viewpoint of structural network organization, we discuss potential evolutionary advances of enhanced temporoparietal cortical connections with the laryngeal motor cortex in

  14. Sensory-motor transformations for speech occur bilaterally.

    PubMed

    Cogan, Gregory B; Thesen, Thomas; Carlson, Chad; Doyle, Werner; Devinsky, Orrin; Pesaran, Bijan

    2014-03-01

    Historically, the study of speech processing has emphasized a strong link between auditory perceptual input and motor production output. A kind of 'parity' is essential, as both perception- and production-based representations must form a unified interface to facilitate access to higher-order language processes such as syntax and semantics, believed to be computed in the dominant, typically left hemisphere. Although various theories have been proposed to unite perception and production, the underlying neural mechanisms are unclear. Early models of speech and language processing proposed that perceptual processing occurred in the left posterior superior temporal gyrus (Wernicke's area) and motor production processes occurred in the left inferior frontal gyrus (Broca's area). Sensory activity was proposed to link to production activity through connecting fibre tracts, forming the left lateralized speech sensory-motor system. Although recent evidence indicates that speech perception occurs bilaterally, prevailing models maintain that the speech sensory-motor system is left lateralized and facilitates the transformation from sensory-based auditory representations to motor-based production representations. However, evidence for the lateralized computation of sensory-motor speech transformations is indirect and primarily comes from stroke patients that have speech repetition deficits (conduction aphasia) and studies using covert speech and haemodynamic functional imaging. Whether the speech sensory-motor system is lateralized, like higher-order language processes, or bilateral, like speech perception, is controversial. Here we use direct neural recordings in subjects performing sensory-motor tasks involving overt speech production to show that sensory-motor transformations occur bilaterally. We demonstrate that electrodes over bilateral inferior frontal, inferior parietal, superior temporal, premotor and somatosensory cortices exhibit robust sensory-motor neural

  15. Sensory-motor transformations for speech occur bilaterally.

    PubMed

    Cogan, Gregory B; Thesen, Thomas; Carlson, Chad; Doyle, Werner; Devinsky, Orrin; Pesaran, Bijan

    2014-03-01

    Historically, the study of speech processing has emphasized a strong link between auditory perceptual input and motor production output. A kind of 'parity' is essential, as both perception- and production-based representations must form a unified interface to facilitate access to higher-order language processes such as syntax and semantics, believed to be computed in the dominant, typically left hemisphere. Although various theories have been proposed to unite perception and production, the underlying neural mechanisms are unclear. Early models of speech and language processing proposed that perceptual processing occurred in the left posterior superior temporal gyrus (Wernicke's area) and motor production processes occurred in the left inferior frontal gyrus (Broca's area). Sensory activity was proposed to link to production activity through connecting fibre tracts, forming the left lateralized speech sensory-motor system. Although recent evidence indicates that speech perception occurs bilaterally, prevailing models maintain that the speech sensory-motor system is left lateralized and facilitates the transformation from sensory-based auditory representations to motor-based production representations. However, evidence for the lateralized computation of sensory-motor speech transformations is indirect and primarily comes from stroke patients that have speech repetition deficits (conduction aphasia) and studies using covert speech and haemodynamic functional imaging. Whether the speech sensory-motor system is lateralized, like higher-order language processes, or bilateral, like speech perception, is controversial. Here we use direct neural recordings in subjects performing sensory-motor tasks involving overt speech production to show that sensory-motor transformations occur bilaterally. We demonstrate that electrodes over bilateral inferior frontal, inferior parietal, superior temporal, premotor and somatosensory cortices exhibit robust sensory-motor neural

  16. A causal test of the motor theory of speech perception: A case of impaired speech production and spared speech perception

    PubMed Central

    Stasenko, Alena; Bonn, Cory; Teghipco, Alex; Garcea, Frank E.; Sweet, Catherine; Dombovy, Mary; McDonough, Joyce; Mahon, Bradford Z.

    2015-01-01

    In the last decade, the debate about the causal role of the motor system in speech perception has been reignited by demonstrations that motor processes are engaged during the processing of speech sounds. However, the exact role of the motor system in auditory speech processing remains elusive. Here we evaluate which aspects of auditory speech processing are affected, and which are not, in a stroke patient with dysfunction of the speech motor system. The patient’s spontaneous speech was marked by frequent phonological/articulatory errors, and those errors were caused, at least in part, by motor-level impairments with speech production. We found that the patient showed a normal phonemic categorical boundary when discriminating two nonwords that differ by a minimal pair (e.g., ADA-AGA). However, using the same stimuli, the patient was unable to identify or label the nonword stimuli (using a button-press response). A control task showed that he could identify speech sounds by speaker gender, ruling out a general labeling impairment. These data suggest that the identification (i.e. labeling) of nonword speech sounds may involve the speech motor system, but that the perception of speech sounds (i.e., discrimination) does not require the motor system. This means that motor processes are not causally involved in perception of the speech signal, and suggest that the motor system may be used when other cues (e.g., meaning, context) are not available. PMID:25951749

  17. Causal Influence of Articulatory Motor Cortex on Comprehending Single Spoken Words: TMS Evidence

    PubMed Central

    Schomers, Malte R.; Kirilina, Evgeniya; Weigand, Anne; Bajbouj, Malek; Pulvermüller, Friedemann

    2015-01-01

    Classic wisdom had been that motor and premotor cortex contribute to motor execution but not to higher cognition and language comprehension. In contrast, mounting evidence from neuroimaging, patient research, and transcranial magnetic stimulation (TMS) suggest sensorimotor interaction and, specifically, that the articulatory motor cortex is important for classifying meaningless speech sounds into phonemic categories. However, whether these findings speak to the comprehension issue is unclear, because language comprehension does not require explicit phonemic classification and previous results may therefore relate to factors alien to semantic understanding. We here used the standard psycholinguistic test of spoken word comprehension, the word-to-picture-matching task, and concordant TMS to articulatory motor cortex. TMS pulses were applied to primary motor cortex controlling either the lips or the tongue as subjects heard critical word stimuli starting with bilabial lip-related or alveolar tongue-related stop consonants (e.g., “pool” or “tool”). A significant cross-over interaction showed that articulatory motor cortex stimulation delayed comprehension responses for phonologically incongruent words relative to congruous ones (i.e., lip area TMS delayed “tool” relative to “pool” responses). As local TMS to articulatory motor areas differentially delays the comprehension of phonologically incongruous spoken words, we conclude that motor systems can take a causal role in semantic comprehension and, hence, higher cognition. PMID:25452575

  18. Representation of speech in human auditory cortex: Is it special?

    PubMed Central

    Steinschneider, Mitchell; Nourski, Kirill V.; Fishman, Yonatan I.

    2013-01-01

    Successful categorization of phonemes in speech requires that the brain analyze the acoustic signal along both spectral and temporal dimensions. Neural encoding of the stimulus amplitude envelope is critical for parsing the speech stream into syllabic units. Encoding of voice onset time (VOT) and place of articulation (POA), cues necessary for determining phonemic identity, occurs within shorter time frames. An unresolved question is whether the neural representation of speech is based on processing mechanisms that are unique to humans and shaped by learning and experience, or is based on rules governing general auditory processing that are also present in non-human animals. This question was examined by comparing the neural activity elicited by speech and other complex vocalizations in primary auditory cortex of macaques, who are limited vocal learners, with that in Heschl’s gyrus, the putative location of primary auditory cortex in humans. Entrainment to the amplitude envelope is neither specific to humans nor to human speech. VOT is represented by responses time-locked to consonant release and voicing onset in both humans and monkeys. Temporal representation of VOT is observed both for isolated syllables and for syllables embedded in the more naturalistic context of running speech. The fundamental frequency of male speakers is represented by more rapid neural activity phase-locked to the glottal pulsation rate in both humans and monkeys. In both species, the differential representation of stop consonants varying in their POA can be predicted by the relationship between the frequency selectivity of neurons and the onset spectra of the speech sounds. These findings indicate that the neurophysiology of primary auditory cortex is similar in monkeys and humans despite their vastly different experience with human speech, and that Heschl’s gyrus is engaged in general auditory, and not language-specific, processing. PMID:23792076

  19. Discriminating between auditory and motor cortical responses to speech and non-speech mouth sounds

    PubMed Central

    Agnew, Z.K.; McGettigan, C.; Scott, S.K.

    2012-01-01

    Several perspectives on speech perception posit a central role for the representation of articulations in speech comprehension, supported by evidence for premotor activation when participants listen to speech. However no experiments have directly tested whether motor responses mirror the profile of selective auditory cortical responses to native speech sounds, or whether motor and auditory areas respond in different ways to sounds. We used fMRI to investigate cortical responses to speech and non-speech mouth (ingressive click) sounds. Speech sounds activated bilateral superior temporal gyri more than other sounds, a profile not seen in motor and premotor cortices. These results suggest that there are qualitative differences in the ways that temporal and motor areas are activated by speech and click sounds: anterior temporal lobe areas are sensitive to the acoustic/phonetic properties while motor responses may show more generalised responses to the acoustic stimuli. PMID:21812557

  20. Three speech sounds, one motor action: Evidence for speech-motor disparity from English flap production

    PubMed Central

    Derrick, Donald; Stavness, Ian; Gick, Bryan

    2015-01-01

    The assumption that units of speech production bear a one-to-one relationship to speech motor actions pervades otherwise widely varying theories of speech motor behavior. This speech production and simulation study demonstrates that commonly occurring flap sequences may violate this assumption. In the word “Saturday,” a sequence of three sounds may be produced using a single, cyclic motor action. Under this view, the initial upward tongue tip motion, starting with the first vowel and moving to contact the hard palate on the way to a retroflex position, is under active muscular control, while the downward movement of the tongue tip, including the second contact with the hard palate, results from gravity and elasticity during tongue muscle relaxation. This sequence is reproduced using a three-dimensional computer simulation of human vocal tract biomechanics and differs greatly from other observed sequences for the same word, which employ multiple targeted speech motor actions. This outcome suggests that a goal of a speaker is to produce an entire sequence in a biomechanically efficient way at the expense of maintaining parity within the individual parts of the sequence. PMID:25786960

  1. Forelimb training drives transient map reorganization in ipsilateral motor cortex.

    PubMed

    Pruitt, David T; Schmid, Ariel N; Danaphongse, Tanya T; Flanagan, Kate E; Morrison, Robert A; Kilgard, Michael P; Rennaker, Robert L; Hays, Seth A

    2016-10-15

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury.

  2. Forelimb training drives transient map reorganization in ipsilateral motor cortex.

    PubMed

    Pruitt, David T; Schmid, Ariel N; Danaphongse, Tanya T; Flanagan, Kate E; Morrison, Robert A; Kilgard, Michael P; Rennaker, Robert L; Hays, Seth A

    2016-10-15

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. PMID:27392641

  3. Long-Term Potentiation in the Motor Cortex

    NASA Astrophysics Data System (ADS)

    Iriki, Atsushi; Pavlides, Constantine; Keller, Asaf; Asanuma, Hiroshi

    1989-09-01

    Long-term potentiation (LTP) is a model for learning and memory processes. Tetanic stimulation of the sensory cortex produces LTP in motor cortical neurons, whereas tetanization of the ventrolateral nucleus of the thalamus, which also projects to the motor cortex, does not. However, after simultaneous high-frequency stimulation of both the sensory cortex and the ventrolateral nucleus of the thalamus, LTP of thalamic input to motor cortical neurons is induced. This associative LTP occurs only in neurons in the superficial layers of the motor cortex that receive monosynaptic input from both the sensory cortex and the ventrolateral nucleus of the thalamus. Associative LTP in the motor cortex may constitute a basis for the retention of motor skills.

  4. Is the Sensorimotor Cortex Relevant for Speech Perception and Understanding? An Integrative Review

    PubMed Central

    Schomers, Malte R.; Pulvermüller, Friedemann

    2016-01-01

    In the neuroscience of language, phonemes are frequently described as multimodal units whose neuronal representations are distributed across perisylvian cortical regions, including auditory and sensorimotor areas. A different position views phonemes primarily as acoustic entities with posterior temporal localization, which are functionally independent from frontoparietal articulatory programs. To address this current controversy, we here discuss experimental results from functional magnetic resonance imaging (fMRI) as well as transcranial magnetic stimulation (TMS) studies. On first glance, a mixed picture emerges, with earlier research documenting neurofunctional distinctions between phonemes in both temporal and frontoparietal sensorimotor systems, but some recent work seemingly failing to replicate the latter. Detailed analysis of methodological differences between studies reveals that the way experiments are set up explains whether sensorimotor cortex maps phonological information during speech perception or not. In particular, acoustic noise during the experiment and ‘motor noise’ caused by button press tasks work against the frontoparietal manifestation of phonemes. We highlight recent studies using sparse imaging and passive speech perception tasks along with multivariate pattern analysis (MVPA) and especially representational similarity analysis (RSA), which succeeded in separating acoustic-phonological from general-acoustic processes and in mapping specific phonological information on temporal and frontoparietal regions. The question about a causal role of sensorimotor cortex on speech perception and understanding is addressed by reviewing recent TMS studies. We conclude that frontoparietal cortices, including ventral motor and somatosensory areas, reflect phonological information during speech perception and exert a causal influence on language understanding. PMID:27708566

  5. Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults

    PubMed Central

    Meinzer, Marcus; Lindenberg, Robert; Sieg, Mira M.; Nachtigall, Laura; Ulm, Lena; Flöel, Agnes

    2014-01-01

    Language facilitation by transcranial direct current stimulation (tDCS) in healthy individuals has generated hope that tDCS may also allow improving language impairment after stroke (aphasia). However, current stimulation protocols have yielded variable results and may require identification of residual language cortex using functional magnetic resonance imaging (fMRI), which complicates incorporation into clinical practice. Based on previous behavioral studies that demonstrated improved language processing by motor system pre-activation, the present study assessed whether tDCS administered to the primary motor cortex (M1) can enhance language functions. This proof-of-concept study employed a sham-tDCS controlled, cross-over, within-subject design and assessed the impact of unilateral excitatory (anodal) and bihemispheric (dual) tDCS in 18 healthy older adults during semantic word-retrieval and motor speech tasks. Simultaneous fMRI scrutinized the neural mechanisms underlying tDCS effects. Both active tDCS conditions significantly improved word-retrieval compared to sham-tDCS. The direct comparison of activity elicited by word-retrieval vs. motor-speech trials revealed bilateral frontal activity increases during both anodal- and dual-tDCS compared to sham-tDCS. This effect was driven by more pronounced deactivation of frontal regions during the motor-speech task, while activity during word-retrieval trials was unaffected by the stimulation. No effects were found in M1 and secondary motor regions. Our results show that tDCS administered to M1 can improve word-retrieval in healthy individuals, thereby providing a rationale to explore whether M1-tDCS may offer a novel approach to improve language functions in aphasia. Functional magnetic resonance imaging revealed neural facilitation specifically during motor speech trials, which may have reduced switching costs between the overlapping neural systems for lexical retrieval and speech processing, thereby resulting in

  6. Individual Differences in Premotor and Motor Recruitment during Speech Perception

    ERIC Educational Resources Information Center

    Szenkovits, Gayaneh; Peelle, Jonathan E.; Norris, Dennis; Davis, Matthew H.

    2012-01-01

    Although activity in premotor and motor cortices is commonly observed in neuroimaging studies of spoken language processing, the degree to which this activity is an obligatory part of everyday speech comprehension remains unclear. We hypothesised that rather than being a unitary phenomenon, the neural response to speech perception in motor regions…

  7. Functional Organization of Human Sensorimotor Cortex for Speech Articulation

    PubMed Central

    Bouchard, Kristofer E.; Mesgarani, Nima; Johnson, Keith; Chang, Edward F.

    2013-01-01

    Speaking is one of the most complex actions we perform, yet nearly all of us learn to do it effortlessly. Production of fluent speech requires the precise, coordinated movement of multiple articulators (e.g., lips, jaw, tongue, larynx) over rapid time scales. Here, we used high-resolution, multi-electrode cortical recordings during the production of consonant-vowel syllables to determine the organization of speech sensorimotor cortex in humans. We found speech articulator representations that were somatotopically arranged on ventral pre- and post-central gyri and partially overlapping at individual electrodes. These representations were temporally coordinated as sequences during syllable production. Spatial patterns of cortical activity revealed an emergent, population-level representation, which was organized by phonetic features. Over tens of milliseconds, the spatial patterns transitioned between distinct representations for different consonants and vowels. These results reveal the dynamic organization of speech sensorimotor cortex during the generation of multi-articulator movements underlying our ability to speak. PMID:23426266

  8. The contribution of the insula to motor aspects of speech production: a review and a hypothesis.

    PubMed

    Ackermann, Hermann; Riecker, Axel

    2004-05-01

    Based on clinical and functional imaging data, the left anterior insula has been assumed to support prearticulatory functions of speech motor control such as the "programming" of vocal tract gestures. In order to further elucidate this model, a recent functional magnetic resonance imaging (fMRI) study of our group (Riecker, Ackermann, Wildgruber, Dogil, & Grodd, 200) investigated both overt (aloud) and covert (silent) production of highly overlearned word strings ("automatic speech"), based on the suggestion that "inner speech" might provide a "window" into preparatory motor activities (Jeannerod, 1994). As a control condition, subjects were asked to reproduce a nonlyrical tune. In contrast to hemodynamic responses within motor cortex and cerebellum, activation of the intrasylvian cortex turned out to be bound to overt task performance. Rather than prearticulatory processes, these findings suggest the left insula to contribute to the actual coordination of the up to 100 muscles engaged in articulation and phonation. Conceivably, the association of speech production with intrasylvian cortex might have evolved within the framework of phylogenetically older connections between the insula and limbic structures, on the one hand, and nonspeech functions of the upper midline musculature such as swallowing, on the other. Whereas (overt) speech tasks predominantly elicit activation within left anterior insula, reproduction of a nonlyrical tune yielded an opposite response pattern. Conceivably, the opposite distributional pattern of speaking and singing at the level of intrasylvian cortex reflects operation of the two hemispheres across different time domains ("double filtering by frequency theory": left hemisphere=segmental information, right hemisphere=intonation contours of verbal utterances and musical melodies; ). In line with this suggestion, a further study of our group (Ackermann et al., 2001) provided first evidence that differential hemispheric filtering might be

  9. Statistical Signal Processing and the Motor Cortex

    PubMed Central

    Brockwell, A.E.; Kass, R.E.; Schwartz, A.B.

    2011-01-01

    Over the past few decades, developments in technology have significantly improved the ability to measure activity in the brain. This has spurred a great deal of research into brain function and its relation to external stimuli, and has important implications in medicine and other fields. As a result of improved understanding of brain function, it is now possible to build devices that provide direct interfaces between the brain and the external world. We describe some of the current understanding of function of the motor cortex region. We then discuss a typical likelihood-based state-space model and filtering based approach to address the problems associated with building a motor cortical-controlled cursor or robotic prosthetic device. As a variation on previous work using this approach, we introduce the idea of using Markov chain Monte Carlo methods for parameter estimation in this context. By doing this instead of performing maximum likelihood estimation, it is possible to expand the range of possible models that can be explored, at a cost in terms of computational load. We demonstrate results obtained applying this methodology to experimental data gathered from a monkey. PMID:21765538

  10. A causal test of the motor theory of speech perception: a case of impaired speech production and spared speech perception.

    PubMed

    Stasenko, Alena; Bonn, Cory; Teghipco, Alex; Garcea, Frank E; Sweet, Catherine; Dombovy, Mary; McDonough, Joyce; Mahon, Bradford Z

    2015-01-01

    The debate about the causal role of the motor system in speech perception has been reignited by demonstrations that motor processes are engaged during the processing of speech sounds. Here, we evaluate which aspects of auditory speech processing are affected, and which are not, in a stroke patient with dysfunction of the speech motor system. We found that the patient showed a normal phonemic categorical boundary when discriminating two non-words that differ by a minimal pair (e.g., ADA-AGA). However, using the same stimuli, the patient was unable to identify or label the non-word stimuli (using a button-press response). A control task showed that he could identify speech sounds by speaker gender, ruling out a general labelling impairment. These data suggest that while the motor system is not causally involved in perception of the speech signal, it may be used when other cues (e.g., meaning, context) are not available. PMID:25951749

  11. A causal test of the motor theory of speech perception: a case of impaired speech production and spared speech perception.

    PubMed

    Stasenko, Alena; Bonn, Cory; Teghipco, Alex; Garcea, Frank E; Sweet, Catherine; Dombovy, Mary; McDonough, Joyce; Mahon, Bradford Z

    2015-01-01

    The debate about the causal role of the motor system in speech perception has been reignited by demonstrations that motor processes are engaged during the processing of speech sounds. Here, we evaluate which aspects of auditory speech processing are affected, and which are not, in a stroke patient with dysfunction of the speech motor system. We found that the patient showed a normal phonemic categorical boundary when discriminating two non-words that differ by a minimal pair (e.g., ADA-AGA). However, using the same stimuli, the patient was unable to identify or label the non-word stimuli (using a button-press response). A control task showed that he could identify speech sounds by speaker gender, ruling out a general labelling impairment. These data suggest that while the motor system is not causally involved in perception of the speech signal, it may be used when other cues (e.g., meaning, context) are not available.

  12. On the context-dependent nature of the contribution of the ventral premotor cortex to speech perception

    PubMed Central

    Tremblay, Pascale; Small, Steven L.

    2011-01-01

    What is the nature of the interface between speech perception and production, where auditory and motor representations converge? One set of explanations suggests that during perception, the motor circuits involved in producing a perceived action are in some way enacting the action without actually causing movement (covert simulation) or sending along the motor information to be used to predict its sensory consequences (i.e., efference copy). Other accounts either reject entirely the involvement of motor representations in perception, or explain their role as being more supportive than integral, and not employing the identical circuits used in production. Using fMRI, we investigated whether there are brain regions that are conjointly active for both speech perception and production, and whether these regions are sensitive to articulatory (syllabic) complexity during both processes, which is predicted by a covert simulation account. A group of healthy young adults (1) observed a female speaker produce a set of familiar words (perception), and (2) observed and then repeated the words (production). There were two types of words, varying in articulatory complexity, as measured by the presence or absence of consonant clusters. The simple words contained no consonant cluster (e.g. “palace”), while the complex words contained one to three consonant clusters (e.g. “planet”). Results indicate that the left ventral premotor cortex (PMv) was significantly active during speech perception and speech production but that activation in this region was scaled to articulatory complexity only during speech production, revealing an incompletely specified efferent motor signal during speech perception. The right planum temporal (PT) was also active during speech perception and speech production, and activation in this region was scaled to articulatory complexity during both production and perception. These findings are discussed in the context of current theories theory of

  13. Speech motor control and acute mountain sickness

    NASA Technical Reports Server (NTRS)

    Cymerman, Allen; Lieberman, Philip; Hochstadt, Jesse; Rock, Paul B.; Butterfield, Gail E.; Moore, Lorna G.

    2002-01-01

    BACKGROUND: An objective method that accurately quantifies the severity of Acute Mountain Sickness (AMS) symptoms is needed to enable more reliable evaluation of altitude acclimatization and testing of potentially beneficial interventions. HYPOTHESIS: Changes in human articulation, as quantified by timed variations in acoustic waveforms of specific spoken words (voice onset time; VOT), are correlated with the severity of AMS. METHODS: Fifteen volunteers were exposed to a simulated altitude of 4300 m (446 mm Hg) in a hypobaric chamber for 48 h. Speech motor control was determined from digitally recorded and analyzed timing patterns of 30 different monosyllabic words characterized as voiced and unvoiced, and as labial, alveolar, or velar. The Environmental Symptoms Questionnaire (ESQ) was used to assess AMS. RESULTS: Significant AMS symptoms occurred after 4 h, peaked at 16 h, and returned toward baseline after 48 h. Labial VOTs were shorter after 4 and 39 h of exposure; velar VOTs were altered only after 4 h; and there were no changes in alveolar VOTs. The duration of vowel sounds was increased after 4 h of exposure and returned to normal thereafter. Only 1 of 15 subjects did not increase vowel time after 4 h of exposure. The 39-h labial (p = 0.009) and velar (p = 0.037) voiced-unvoiced timed separations consonants and the symptoms of AMS were significantly correlated. CONCLUSIONS: Two objective measures of speech production were affected by exposure to 4300 m altitude and correlated with AMS severity. Alterations in speech production may represent an objective measure of AMS and central vulnerability to hypoxia.

  14. Area Spt in the human planum temporale supports sensory-motor integration for speech processing.

    PubMed

    Hickok, Gregory; Okada, Kayoko; Serences, John T

    2009-05-01

    Processing incoming sensory information and transforming this input into appropriate motor responses is a critical and ongoing aspect of our moment-to-moment interaction with the environment. While the neural mechanisms in the posterior parietal cortex (PPC) that support the transformation of sensory inputs into simple eye or limb movements has received a great deal of empirical attention-in part because these processes are easy to study in nonhuman primates-little work has been done on sensory-motor transformations in the domain of speech. Here we used functional magnetic resonance imaging and multivariate analysis techniques to demonstrate that a region of the planum temporale (Spt) shows distinct spatial activation patterns during sensory and motor aspects of a speech task. This result suggests that just as the PPC supports sensorimotor integration for eye and limb movements, area Spt forms part of a sensory-motor integration circuit for the vocal tract.

  15. Motor cortex activity predicts response alternation during sensorimotor decisions

    PubMed Central

    Pape, Anna-Antonia; Siegel, Markus

    2016-01-01

    Our actions are constantly guided by decisions based on sensory information. The motor cortex is traditionally viewed as the final output stage in this process, merely executing motor responses based on these decisions. However, it is not clear if, beyond this role, the motor cortex itself impacts response selection. Here, we report activity fluctuations over motor cortex measured using MEG, which are unrelated to choice content and predict responses to a visuomotor task seconds before decisions are made. These fluctuations are strongly influenced by the previous trial's response and predict a tendency to switch between response alternatives for consecutive decisions. This alternation behaviour depends on the size of neural signals still present from the previous response. Our results uncover a response-alternation bias in sensorimotor decision making. Furthermore, they suggest that motor cortex is more than an output stage and instead shapes response selection during sensorimotor decision making. PMID:27713396

  16. Recurrent Supplementary Motor Area Syndrome Following Repeat Brain Tumor Resection Involving Supplementary Motor Cortex

    PubMed Central

    Abel, Taylor J.; Buckley, Robert T.; Morton, Ryan; Gabikian, Patrik; Silbergeld, Daniel L.

    2015-01-01

    Background Supplementary motor area (SMA) syndrome occurs after surgery involving the SMA and is characterized by contralateral hemiparesis with or without speech impairment (dependent on involvement of the dominant SMA), which is transient and characteristically resolves over the course of weeks to months. Objective Recurrent SMA syndrome after repeat craniotomy has not been previously described. In this manuscript, we describe the presentation and clinical course of patients who developed recurrent SMA syndrome after redo resection of tumors involving the SMA. Methods We performed a retrospective review of 15 patients who underwent repeated resection of low grade glioma from the superior and middle frontal gyrus (SFG, MFG). Of these patients we identified six cases of recurrent SMA syndrome. Results Six patient had a documented SMA syndrome occurring after initial and subsequent resection of tumor in proximity to the SMA. Intraoperative localization of eloquent motor and language cortex was achieved in each patient using a combination of somatosensory evoked potentials (SSEPs) and electrocortical stimulation mapping. Location of tumor and extent of resection was examined with magnetic resonance (MR) imaging. Conclusion This series demonstrates that recurrent SMA syndrome occurs in patients undergoing repeat resection of tumors involving the SMA. The presence of recurrent SMA syndrome provides support for reorganization of SMA function to adjacent ipsilateral cortex after resection. Patients with recurrent neoplasms of the SMA should be counseled on the possibility of recurrent SMA syndrome. PMID:26087004

  17. Postnatal development of the motor representation in primary motor cortex.

    PubMed

    Chakrabarty, S; Martin, J H

    2000-11-01

    The purpose of this study was to examine when the muscles and joints of the forelimb become represented in primary motor cortex (M1) during postnatal life and how local representation patterns change. We examined these questions in cats that were anesthetized (45-90 days, n = 14; adults, n = 3) and awake (n = 4; 52-86 days). We used intracortical microstimulation (45 ms duration train, 330 Hz, 0.2-ms balanced biphasic pulses, with a leading cathodic pulse; up to 100 microA). In young animals (less than day 70), we also used stimulus trains and pulses that could produce greater temporal summation (up to 200-ms train duration, down to 143-Hz stimulus frequency, up to 0.8-ms pulse width). Anesthetized animals were areflexic, and muscle tone was similar to that of the awake cats (i.e., relaxed, not weight or load bearing, with minimal resistance to passive stretch). We monitored the kinematic effects of microstimulation and changes in electromyographic (EMG) activity in forelimb muscles. There was an age-dependent reduction in the number of sites where microstimulation did not produce a motor effect (i.e., ineffective sites), from 95% in animals younger than 60 days to 33% between 81 and 90 days. In adults, 24% of sites were ineffective. Median current thresholds for evoking movements dropped from 79 microA in animals younger than day 60 to 38 and 28 microA in day 81-90 animals and adults, respectively. There was a proximal-to-distal development of the somatotopic organization of the motor map. Stimulation at the majority of sites in animals younger than day 71 produced shoulder and elbow movement. Wrist sites were first present by day 71, and digit sites by day 81. Sites at which multiple responses were evoked, between 1.0 and 1.5 times threshold, were present after day 71, and increased with age. A higher percentage of distal joints were co-represented with other joints, rather than being represented alone. We found that effective sites initially were scattered and

  18. Motor Speech Disorders Associated with Primary Progressive Aphasia

    PubMed Central

    Duffy, Joseph R.; Strand, Edythe A.; Josephs, Keith A.

    2014-01-01

    Background Primary progressive aphasia (PPA) and conditions that overlap with it can be accompanied by motor speech disorders. Recognition and understanding of motor speech disorders can contribute to a fuller clinical understanding of PPA and its management as well as its localization and underlying pathology. Aims To review the types of motor speech disorders that may occur with PPA, its primary variants, and its overlap syndromes (progressive supranuclear palsy syndrome, corticobasal syndrome, motor neuron disease), as well as with primary progressive apraxia of speech. Main Contribution The review should assist clinicians' and researchers' understanding of the relationship between motor speech disorders and PPA and its major variants. It also highlights the importance of recognizing neurodegenerative apraxia of speech as a condition that can occur with little or no evidence of aphasia. Conclusion Motor speech disorders can occur with PPA. Their recognition can contribute to clinical diagnosis and management of PPA and to understanding and predicting the localization and pathology associated with PPA variants and conditions that can overlap with them. PMID:25309017

  19. Oral motor deficits in speech-impaired children with autism.

    PubMed

    Belmonte, Matthew K; Saxena-Chandhok, Tanushree; Cherian, Ruth; Muneer, Reema; George, Lisa; Karanth, Prathibha

    2013-01-01

    Absence of communicative speech in autism has been presumed to reflect a fundamental deficit in the use of language, but at least in a subpopulation may instead stem from motor and oral motor issues. Clinical reports of disparity between receptive vs. expressive speech/language abilities reinforce this hypothesis. Our early-intervention clinic develops skills prerequisite to learning and communication, including sitting, attending, and pointing or reference, in children below 6 years of age. In a cohort of 31 children, gross and fine motor skills and activities of daily living as well as receptive and expressive speech were assessed at intake and after 6 and 10 months of intervention. Oral motor skills were evaluated separately within the first 5 months of the child's enrolment in the intervention programme and again at 10 months of intervention. Assessment used a clinician-rated structured report, normed against samples of 360 (for motor and speech skills) and 90 (for oral motor skills) typically developing children matched for age, cultural environment and socio-economic status. In the full sample, oral and other motor skills correlated with receptive and expressive language both in terms of pre-intervention measures and in terms of learning rates during the intervention. A motor-impaired group comprising a third of the sample was discriminated by an uneven profile of skills with oral motor and expressive language deficits out of proportion to the receptive language deficit. This group learnt language more slowly, and ended intervention lagging in oral motor skills. In individuals incapable of the degree of motor sequencing and timing necessary for speech movements, receptive language may outstrip expressive speech. Our data suggest that autistic motor difficulties could range from more basic skills such as pointing to more refined skills such as articulation, and need to be assessed and addressed across this entire range in each individual.

  20. Preference for Audiovisual Speech Congruency in Superior Temporal Cortex.

    PubMed

    Lüttke, Claudia S; Ekman, Matthias; van Gerven, Marcel A J; de Lange, Floris P

    2016-01-01

    Auditory speech perception can be altered by concurrent visual information. The superior temporal cortex is an important combining site for this integration process. This area was previously found to be sensitive to audiovisual congruency. However, the direction of this congruency effect (i.e., stronger or weaker activity for congruent compared to incongruent stimulation) has been more equivocal. Here, we used fMRI to look at the neural responses of human participants during the McGurk illusion--in which auditory /aba/ and visual /aga/ inputs are fused to perceived /ada/--in a large homogenous sample of participants who consistently experienced this illusion. This enabled us to compare the neuronal responses during congruent audiovisual stimulation with incongruent audiovisual stimulation leading to the McGurk illusion while avoiding the possible confounding factor of sensory surprise that can occur when McGurk stimuli are only occasionally perceived. We found larger activity for congruent audiovisual stimuli than for incongruent (McGurk) stimuli in bilateral superior temporal cortex, extending into the primary auditory cortex. This finding suggests that superior temporal cortex prefers when auditory and visual input support the same representation.

  1. Preference for Audiovisual Speech Congruency in Superior Temporal Cortex.

    PubMed

    Lüttke, Claudia S; Ekman, Matthias; van Gerven, Marcel A J; de Lange, Floris P

    2016-01-01

    Auditory speech perception can be altered by concurrent visual information. The superior temporal cortex is an important combining site for this integration process. This area was previously found to be sensitive to audiovisual congruency. However, the direction of this congruency effect (i.e., stronger or weaker activity for congruent compared to incongruent stimulation) has been more equivocal. Here, we used fMRI to look at the neural responses of human participants during the McGurk illusion--in which auditory /aba/ and visual /aga/ inputs are fused to perceived /ada/--in a large homogenous sample of participants who consistently experienced this illusion. This enabled us to compare the neuronal responses during congruent audiovisual stimulation with incongruent audiovisual stimulation leading to the McGurk illusion while avoiding the possible confounding factor of sensory surprise that can occur when McGurk stimuli are only occasionally perceived. We found larger activity for congruent audiovisual stimuli than for incongruent (McGurk) stimuli in bilateral superior temporal cortex, extending into the primary auditory cortex. This finding suggests that superior temporal cortex prefers when auditory and visual input support the same representation. PMID:26351991

  2. Special Panel Session: Driving Critical Initiatives in Motor Speech

    PubMed Central

    Weismer, Gary; Barlow, Steven; Smith, Anne; Caviness, John

    2008-01-01

    The following report is a summary of the Special Panel Session, entitled, “Driving Critical Initiatives in Motor Speech,” that was conducted at the Conference on Motor Speech, March 2008, in Monterey California. Don Finan (Program Chair for Speech Motor Control) and Julie Liss (Program Chair for Motor Speech Disorders) invited four distinguished scientists (Drs. Gary Weismer, Steven Barlow, Anne Smith, and John Caviness) to share, briefly, their opinions and views on selected topics. This was followed by an hour-long general discussion session with conference attendees. This report contains an introductory statement followed by the panel members' own summaries of the opinions and ideas expressed in their talks. We then summarize the major topics that were considered during the discussion session. This summary reflects the biases and opinions of the participants, and is meant to serve as a thought-piece for the readership of JMSLP, rather than as a scientific report. PMID:19421339

  3. Control of spoken vowel acoustics and the influence of phonetic context in human speech sensorimotor cortex.

    PubMed

    Bouchard, Kristofer E; Chang, Edward F

    2014-09-17

    Speech production requires the precise control of vocal tract movements to generate individual speech sounds (phonemes) which, in turn, are rapidly organized into complex sequences. Multiple productions of the same phoneme can exhibit substantial variability, some of which is inherent to control of the vocal tract and its biomechanics, and some of which reflects the contextual effects of surrounding phonemes ("coarticulation"). The role of the CNS in these aspects of speech motor control is not well understood. To address these issues, we recorded multielectrode cortical activity directly from human ventral sensory-motor cortex (vSMC) during the production of consonant-vowel syllables. We analyzed the relationship between the acoustic parameters of vowels (pitch and formants) and cortical activity on a single-trial level. We found that vSMC activity robustly predicted acoustic parameters across vowel categories (up to 80% of variance), as well as different renditions of the same vowel (up to 25% of variance). Furthermore, we observed significant contextual effects on vSMC representations of produced phonemes that suggest active control of coarticulation: vSMC representations for vowels were biased toward the representations of the preceding consonant, and conversely, representations for consonants were biased toward upcoming vowels. These results reveal that vSMC activity for phonemes are not invariant and provide insight into the cortical mechanisms of coarticulation.

  4. Control of Spoken Vowel Acoustics and the Influence of Phonetic Context in Human Speech Sensorimotor Cortex

    PubMed Central

    Bouchard, Kristofer E.

    2014-01-01

    Speech production requires the precise control of vocal tract movements to generate individual speech sounds (phonemes) which, in turn, are rapidly organized into complex sequences. Multiple productions of the same phoneme can exhibit substantial variability, some of which is inherent to control of the vocal tract and its biomechanics, and some of which reflects the contextual effects of surrounding phonemes (“coarticulation”). The role of the CNS in these aspects of speech motor control is not well understood. To address these issues, we recorded multielectrode cortical activity directly from human ventral sensory-motor cortex (vSMC) during the production of consonant-vowel syllables. We analyzed the relationship between the acoustic parameters of vowels (pitch and formants) and cortical activity on a single-trial level. We found that vSMC activity robustly predicted acoustic parameters across vowel categories (up to 80% of variance), as well as different renditions of the same vowel (up to 25% of variance). Furthermore, we observed significant contextual effects on vSMC representations of produced phonemes that suggest active control of coarticulation: vSMC representations for vowels were biased toward the representations of the preceding consonant, and conversely, representations for consonants were biased toward upcoming vowels. These results reveal that vSMC activity for phonemes are not invariant and provide insight into the cortical mechanisms of coarticulation. PMID:25232105

  5. Plasticity in the human speech motor system drives changes in speech perception.

    PubMed

    Lametti, Daniel R; Rochet-Capellan, Amélie; Neufeld, Emily; Shiller, Douglas M; Ostry, David J

    2014-07-30

    Recent studies of human speech motor learning suggest that learning is accompanied by changes in auditory perception. But what drives the perceptual change? Is it a consequence of changes in the motor system? Or is it a result of sensory inflow during learning? Here, subjects participated in a speech motor-learning task involving adaptation to altered auditory feedback and they were subsequently tested for perceptual change. In two separate experiments, involving two different auditory perceptual continua, we show that changes in the speech motor system that accompany learning drive changes in auditory speech perception. Specifically, we obtained changes in speech perception when adaptation to altered auditory feedback led to speech production that fell into the phonetic range of the speech perceptual tests. However, a similar change in perception was not observed when the auditory feedback that subjects' received during learning fell into the phonetic range of the perceptual tests. This indicates that the central motor outflow associated with vocal sensorimotor adaptation drives changes to the perceptual classification of speech sounds.

  6. Auditory-Motor Interactions in Pediatric Motor Speech Disorders: Neurocomputational Modeling of Disordered Development

    PubMed Central

    Terband, H.; Maassen, B.; Guenther, F.H.; Brumberg, J.

    2014-01-01

    Background/Purpose Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. Method In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Results Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. Conclusions These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. PMID:24491630

  7. Primary Motor Cortex Involvement in Initial Learning during Visuomotor Adaptation

    ERIC Educational Resources Information Center

    Riek, Stephan; Hinder, Mark R.; Carson, Richard G.

    2012-01-01

    Human motor behaviour is continually modified on the basis of errors between desired and actual movement outcomes. It is emerging that the role played by the primary motor cortex (M1) in this process is contingent upon a variety of factors, including the nature of the task being performed, and the stage of learning. Here we used repetitive TMS to…

  8. Feedback delays eliminate auditory-motor learning in speech production.

    PubMed

    Max, Ludo; Maffett, Derek G

    2015-03-30

    Neurologically healthy individuals use sensory feedback to alter future movements by updating internal models of the effector system and environment. For example, when visual feedback about limb movements or auditory feedback about speech movements is experimentally perturbed, the planning of subsequent movements is adjusted - i.e., sensorimotor adaptation occurs. A separate line of studies has demonstrated that experimentally delaying the sensory consequences of limb movements causes the sensory input to be attributed to external sources rather than to one's own actions. Yet similar feedback delays have remarkably little effect on visuo-motor adaptation (although the rate of learning varies, the amount of adaptation is only moderately affected with delays of 100-200ms, and adaptation still occurs even with a delay as long as 5000ms). Thus, limb motor learning remains largely intact even in conditions where error assignment favors external factors. Here, we show a fundamentally different result for sensorimotor control of speech articulation: auditory-motor adaptation to formant-shifted feedback is completely eliminated with delays of 100ms or more. Thus, for speech motor learning, real-time auditory feedback is critical. This novel finding informs theoretical models of human motor control in general and speech motor control in particular, and it has direct implications for the application of motor learning principles in the habilitation and rehabilitation of individuals with various sensorimotor speech disorders.

  9. Physiology of the motor cortex in polio survivors.

    PubMed

    Lupu, Vitalie D; Danielian, Laura; Johnsen, Jacqueline A; Vasconcelos, Olavo M; Prokhorenko, Olga A; Jabbari, Bahman; Campbell, William W; Floeter, Mary Kay

    2008-02-01

    We hypothesized that the corticospinal system undergoes functional changes in long-term polio survivors. Central motor conduction times (CMCTs) to the four limbs were measured in 24 polio survivors using transcranial magnetic stimulation (TMS). Resting motor thresholds and CMCTs were normal. In 17 subjects whose legs were affected by polio and 13 healthy controls, single- and paired-pulse TMS was used to assess motor cortex excitability while recording from tibialis anterior (TA) muscles at rest and following maximal contraction until fatigue. In polio survivors the slope of the recruitment curve was normal, but maximal motor evoked potentials (MEPs) were larger than in controls. MEPs were depressed after fatiguing exercise. Three patients with central fatigue by twitch interpolation had a trend toward slower recovery. There was no association with symptoms of post-polio syndrome. These changes occurring after polio may allow the motor cortex to activate a greater proportion of the motor neurons innervating affected muscles.

  10. The discovery of motor cortex and its background.

    PubMed

    Gross, Charles G

    2007-01-01

    In 1870 Gustav Fritsch and Edvard Hitzig showed that electrical stimulation of the cerebral cortex of a dog produced movements. This was a crucial event in the development of modern neuroscience because it was the first good experimental evidence for a) cerebral cortex involvement in motor function, b) the electrical excitability of the cortex, c) topographic representation in the brain, and d) localization of function in different regions of the cerebral cortex. This paper discusses their experiment and some developments in the previous two centuries that led to it including the ideas of Thomas Willis and Emanuel Swedenborg, the widespread interest in electricity and the localizations of function of Franz Joseph Gall, John Hughlings Jackson, and Paul Broca. We also consider the subsequent study of the motor cortex by David Ferrier and others.

  11. Speech and oral motor profile after childhood hemispherectomy.

    PubMed

    Liégeois, Frédérique; Morgan, Angela T; Stewart, Lorna H; Helen Cross, J; Vogel, Adam P; Vargha-Khadem, Faraneh

    2010-08-01

    Hemispherectomy (disconnection or removal of an entire cerebral hemisphere) is a rare surgical procedure used for the relief of drug-resistant epilepsy in children. After hemispherectomy, contralateral hemiplegia persists whereas gross expressive and receptive language functions can be remarkably spared. Motor speech deficits have rarely been examined systematically, thus limiting the accuracy of postoperative prognosis. We describe the speech profiles of hemispherectomized participants characterizing their intelligibility, articulation, phonological speech errors, dysarthric features, and execution and sequencing of orofacial speech and non-speech movements. Thirteen participants who had undergone hemispherectomy (six left, seven right; nine with congenital, four with acquired hemiplegia; operated between four months and 13 years) were investigated. Results showed that all participants were intelligible but showed a mild dysarthric profile characterized by neuromuscular asymmetry and reduced quality and coordination of movements, features that are characteristic of adult-onset unilateral upper motor neuron dysarthria, flaccid-ataxic variant. In addition, one left and four right hemispherectomy cases presented with impaired production of speech and non-speech sequences. No participant showed evidence of verbal or oral dyspraxia. It is concluded that mild dysarthria is persistent after left or right hemispherectomy, irrespective of age at onset of hemiplegia. These results indicate incomplete functional re-organization for the control of fine speech motor movements throughout childhood, and provide no evidence of hemispheric differences. PMID:20096448

  12. Speech and oral motor profile after childhood hemispherectomy.

    PubMed

    Liégeois, Frédérique; Morgan, Angela T; Stewart, Lorna H; Helen Cross, J; Vogel, Adam P; Vargha-Khadem, Faraneh

    2010-08-01

    Hemispherectomy (disconnection or removal of an entire cerebral hemisphere) is a rare surgical procedure used for the relief of drug-resistant epilepsy in children. After hemispherectomy, contralateral hemiplegia persists whereas gross expressive and receptive language functions can be remarkably spared. Motor speech deficits have rarely been examined systematically, thus limiting the accuracy of postoperative prognosis. We describe the speech profiles of hemispherectomized participants characterizing their intelligibility, articulation, phonological speech errors, dysarthric features, and execution and sequencing of orofacial speech and non-speech movements. Thirteen participants who had undergone hemispherectomy (six left, seven right; nine with congenital, four with acquired hemiplegia; operated between four months and 13 years) were investigated. Results showed that all participants were intelligible but showed a mild dysarthric profile characterized by neuromuscular asymmetry and reduced quality and coordination of movements, features that are characteristic of adult-onset unilateral upper motor neuron dysarthria, flaccid-ataxic variant. In addition, one left and four right hemispherectomy cases presented with impaired production of speech and non-speech sequences. No participant showed evidence of verbal or oral dyspraxia. It is concluded that mild dysarthria is persistent after left or right hemispherectomy, irrespective of age at onset of hemiplegia. These results indicate incomplete functional re-organization for the control of fine speech motor movements throughout childhood, and provide no evidence of hemispheric differences.

  13. Long-range neuronal circuits underlying the interaction between sensory and motor cortex.

    PubMed

    Mao, Tianyi; Kusefoglu, Deniz; Hooks, Bryan M; Huber, Daniel; Petreanu, Leopoldo; Svoboda, Karel

    2011-10-01

    In the rodent vibrissal system, active sensation and sensorimotor integration are mediated in part by connections between barrel cortex and vibrissal motor cortex. Little is known about how these structures interact at the level of neurons. We used Channelrhodopsin-2 (ChR2) expression, combined with anterograde and retrograde labeling, to map connections between barrel cortex and pyramidal neurons in mouse motor cortex. Barrel cortex axons preferentially targeted upper layer (L2/3, L5A) neurons in motor cortex; input to neurons projecting back to barrel cortex was particularly strong. Barrel cortex input to deeper layers (L5B, L6) of motor cortex, including neurons projecting to the brainstem, was weak, despite pronounced geometric overlap of dendrites with axons from barrel cortex. Neurons in different layers received barrel cortex input within stereotyped dendritic domains. The cortico-cortical neurons in superficial layers of motor cortex thus couple motor and sensory signals and might mediate sensorimotor integration and motor learning.

  14. Dynamic encoding of speech sequence probability in human temporal cortex.

    PubMed

    Leonard, Matthew K; Bouchard, Kristofer E; Tang, Claire; Chang, Edward F

    2015-05-01

    Sensory processing involves identification of stimulus features, but also integration with the surrounding sensory and cognitive context. Previous work in animals and humans has shown fine-scale sensitivity to context in the form of learned knowledge about the statistics of the sensory environment, including relative probabilities of discrete units in a stream of sequential auditory input. These statistics are a defining characteristic of one of the most important sequential signals humans encounter: speech. For speech, extensive exposure to a language tunes listeners to the statistics of sound sequences. To address how speech sequence statistics are neurally encoded, we used high-resolution direct cortical recordings from human lateral superior temporal cortex as subjects listened to words and nonwords with varying transition probabilities between sound segments. In addition to their sensitivity to acoustic features (including contextual features, such as coarticulation), we found that neural responses dynamically encoded the language-level probability of both preceding and upcoming speech sounds. Transition probability first negatively modulated neural responses, followed by positive modulation of neural responses, consistent with coordinated predictive and retrospective recognition processes, respectively. Furthermore, transition probability encoding was different for real English words compared with nonwords, providing evidence for online interactions with high-order linguistic knowledge. These results demonstrate that sensory processing of deeply learned stimuli involves integrating physical stimulus features with their contextual sequential structure. Despite not being consciously aware of phoneme sequence statistics, listeners use this information to process spoken input and to link low-level acoustic representations with linguistic information about word identity and meaning.

  15. Speech Motor Programming in Apraxia of Speech: Evidence from a Delayed Picture-Word Interference Task

    ERIC Educational Resources Information Center

    Mailend, Marja-Liisa; Maas, Edwin

    2013-01-01

    Purpose: Apraxia of speech (AOS) is considered a speech motor programming impairment, but the specific nature of the impairment remains a matter of debate. This study investigated 2 hypotheses about the underlying impairment in AOS framed within the Directions Into Velocities of Articulators (DIVA; Guenther, Ghosh, & Tourville, 2006) model: The…

  16. A Motor Speech Assessment for Children with Severe Speech Disorders: Reliability and Validity Evidence

    ERIC Educational Resources Information Center

    Strand, Edythe A.; McCauley, Rebecca J.; Weigand, Stephen D.; Stoeckel, Ruth E.; Baas, Becky S.

    2013-01-01

    Purpose: In this article, the authors report reliability and validity evidence for the Dynamic Evaluation of Motor Speech Skill (DEMSS), a new test that uses dynamic assessment to aid in the differential diagnosis of childhood apraxia of speech (CAS). Method: Participants were 81 children between 36 and 79 months of age who were referred to the…

  17. Language and Motor Speech Skills in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Pirila, Silja; van der Meere, Jaap; Pentikainen, Taina; Ruusu-Niemi, Pirjo; Korpela, Raija; Kilpinen, Jenni; Nieminen, Pirkko

    2007-01-01

    The aim of the study was to investigate associations between the severity of motor limitations, cognitive difficulties, language and motor speech problems in children with cerebral palsy. Also, the predictive power of neonatal cranial ultrasound findings on later outcome was investigated. For this purpose, 36 children (age range 1 year 10 months…

  18. Similarities between GCS and human motor cortex: complex movement coordination

    NASA Astrophysics Data System (ADS)

    Rodríguez, Jose A.; Macias, Rosa; Molgo, Jordi; Guerra, Dailos

    2014-07-01

    The "Gran Telescopio de Canarias" (GTC1) is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). The GTC control system (GCS), the brain of the telescope, is is a distributed object & component oriented system based on RT-CORBA and it is responsible for the management and operation of the telescope, including its instrumentation. On the other hand, the Human motor cortex (HMC) is a region of the cerebrum responsible for the coordination of planning, control, and executing voluntary movements. If we analyze both systems, as far as the movement control of their mechanisms and body parts is concerned, we can find extraordinary similarities in their architectures. Both are structured in layers, and their functionalities are comparable from the movement conception until the movement action itself: In the GCS we can enumerate the Sequencer high level components, the Coordination libraries, the Control Kit library and the Device Driver library as the subsystems involved in the telescope movement control. If we look at the motor cortex, we can also enumerate the primary motor cortex, the secondary motor cortices, which include the posterior parietal cortex, the premotor cortex, and the supplementary motor area (SMA), the motor units, the sensory organs and the basal ganglia. From all these components/areas we will analyze in depth the several subcortical regions, of the the motor cortex, that are involved in organizing motor programs for complex movements and the GCS coordination framework, which is composed by a set of classes that allow to the high level components to transparently control a group of mechanisms simultaneously.

  19. Silent lipreading and covert speech production suppress processing of non-linguistic sounds in auditory cortex

    PubMed Central

    Balk, Marja H.; Kari, Heini; Kauramäki, Jaakko; Ahveninen, Jyrki; Sams, Mikko; Autti, Taina; Jääskeläinen, Iiro P.

    2013-01-01

    Previous studies have suggested that speech motor system mediates suppression by silent lipreading of electromagnetic auditory cortex responses to pure tones at about 100 ms from sound onset. We used sparse sampling functional magnetic resonance imaging (fMRI) at 3 Tesla to map auditory-cortex foci of suppressant effects during silent lipreading and covert self-production. Streams of video clips were presented simultaneously with 1/3 octave noise bursts centered at 250 Hz (low frequency, LF) or 2000 Hz (mid-frequency, MF), or during no auditory stimulation. In different conditions, the subjects were a) to press a button whenever they lipread the face articulate the same consecutive Finnish vowels /a/, /i/, /o/, and /y/, b) covertly selfproducing vowels while viewing still face image, or c) to press a button whenever a circle pictured on top of the lips expanded into oval shape of the same orientation twice in a row. The regions of interest (ROIs) within the superior temporal lobes of each hemisphere were defined by contrasting MF and LF stimulation against silence. Contrasting the nonlinguistic (i.e., expanding circle) vs. linguistic (i.e., lipreading and covert self-production) conditions within these ROIs showed significant suppression of hemodynamic activity to MF sounds in the linguistic condition in left hemisphere first transverse sulcus (FTS) and right hemisphere superior temporal gyrus (STG) lateral to Heschl’s sulcus (HS). These findings suggest that the speech motor system mediates suppression of auditory-cortex processing of non-linguistic sounds during silent lipreading and covert self-production in left hemisphere FST and right hemisphere STG lateral to HS. PMID:23956838

  20. Repetitive Transcranial Magnetic Stimulation to the Primary Motor Cortex Interferes with Motor Learning by Observing

    ERIC Educational Resources Information Center

    Brown, Liana E.; Wilson, Elizabeth T.; Gribble, Paul L.

    2009-01-01

    Neural representations of novel motor skills can be acquired through visual observation. We used repetitive transcranial magnetic stimulation (rTMS) to test the idea that this "motor learning by observing" is based on engagement of neural processes for learning in the primary motor cortex (M1). Human subjects who observed another person learning…

  1. Transcranial static magnetic field stimulation of the human motor cortex.

    PubMed

    Oliviero, Antonio; Mordillo-Mateos, Laura; Arias, Pablo; Panyavin, Ivan; Foffani, Guglielmo; Aguilar, Juan

    2011-10-15

    The aim of the present study was to investigate in healthy humans the possibility of a non-invasive modulation of motor cortex excitability by the application of static magnetic fields through the scalp. Static magnetic fields were obtained by using cylindrical NdFeB magnets. We performed four sets of experiments. In Experiment 1, we recorded motor potentials evoked by single-pulse transcranial magnetic stimulation (TMS) of the motor cortex before and after 10 min of transcranial static magnetic field stimulation (tSMS) in conscious subjects. We observed an average reduction of motor cortex excitability of up to 25%, as revealed by TMS, which lasted for several minutes after the end of tSMS, and was dose dependent (intensity of the magnetic field) but not polarity dependent. In Experiment 2, we confirmed the reduction of motor cortex excitability induced by tSMS using a double-blind sham-controlled design. In Experiment 3, we investigated the duration of tSMS that was necessary to modulate motor cortex excitability. We found that 10 min of tSMS (compared to 1 min and 5 min) were necessary to induce significant effects. In Experiment 4, we used transcranial electric stimulation (TES) to establish that the tSMS-induced reduction of motor cortex excitability was not due to corticospinal axon and/or spinal excitability, but specifically involved intracortical networks. These results suggest that tSMS using small static magnets may be a promising tool to modulate cerebral excitability in a non-invasive, painless, and reversible way.

  2. Transcranial static magnetic field stimulation of the human motor cortex.

    PubMed

    Oliviero, Antonio; Mordillo-Mateos, Laura; Arias, Pablo; Panyavin, Ivan; Foffani, Guglielmo; Aguilar, Juan

    2011-10-15

    The aim of the present study was to investigate in healthy humans the possibility of a non-invasive modulation of motor cortex excitability by the application of static magnetic fields through the scalp. Static magnetic fields were obtained by using cylindrical NdFeB magnets. We performed four sets of experiments. In Experiment 1, we recorded motor potentials evoked by single-pulse transcranial magnetic stimulation (TMS) of the motor cortex before and after 10 min of transcranial static magnetic field stimulation (tSMS) in conscious subjects. We observed an average reduction of motor cortex excitability of up to 25%, as revealed by TMS, which lasted for several minutes after the end of tSMS, and was dose dependent (intensity of the magnetic field) but not polarity dependent. In Experiment 2, we confirmed the reduction of motor cortex excitability induced by tSMS using a double-blind sham-controlled design. In Experiment 3, we investigated the duration of tSMS that was necessary to modulate motor cortex excitability. We found that 10 min of tSMS (compared to 1 min and 5 min) were necessary to induce significant effects. In Experiment 4, we used transcranial electric stimulation (TES) to establish that the tSMS-induced reduction of motor cortex excitability was not due to corticospinal axon and/or spinal excitability, but specifically involved intracortical networks. These results suggest that tSMS using small static magnets may be a promising tool to modulate cerebral excitability in a non-invasive, painless, and reversible way. PMID:21807616

  3. Seeing fearful body language rapidly freezes the observer's motor cortex.

    PubMed

    Borgomaneri, Sara; Vitale, Francesca; Gazzola, Valeria; Avenanti, Alessio

    2015-04-01

    Fearful body language is a salient signal alerting the observer to the presence of a potential threat in the surrounding environment. Although detecting potential threats may trigger an immediate reduction of motor output in animals (i.e., freezing behavior), it is unclear at what point in time similar reductions occur in the human motor cortex and whether they originate from excitatory or inhibitory processes. Using single-pulse and paired-pulse transcranial magnetic stimulation (TMS), here we tested the hypothesis that the observer's motor cortex implements extremely fast suppression of motor readiness when seeing emotional bodies - and fearful body expressions in particular. Participants observed pictures of body postures and categorized them as happy, fearful or neutral while receiving TMS over the right or left motor cortex at 100-125 msec after picture onset. In three different sessions, we assessed corticospinal excitability, short intracortical inhibition (SICI) and intracortical facilitation (ICF). Independently of the stimulated hemisphere and the time of the stimulation, watching fearful bodies suppressed ICF relative to happy and neutral body expressions. Moreover, happy expressions reduced ICF relative to neutral actions. No changes in corticospinal excitability or SICI were found during the task. These findings show extremely rapid bilateral modulation of the motor cortices when seeing emotional bodies, with stronger suppression of motor readiness when seeing fearful bodies. Our results provide neurophysiological support for the evolutionary notions that emotion perception is inherently linked to action systems and that fear-related cues induce an urgent mobilization of motor reactions.

  4. Motor cortex guides selection of predictable movement targets.

    PubMed

    Woodgate, Philip J W; Strauss, Soeren; Sami, Saber A; Heinke, Dietmar

    2015-01-01

    The present paper asks whether the motor cortex contributes to prediction-based guidance of target selection. This question was inspired by recent evidence that suggests (i) recurrent connections from the motor system into the attentional system may extract movement-relevant perceptual information and (ii) that the motor cortex cannot only generate predictions of the sensory consequences of movements but may also operate as predictor of perceptual events in general. To test this idea we employed a choice reaching task requiring participants to rapidly reach and touch a predictable or unpredictable colour target. Motor cortex activity was modulated via transcranial direct current stimulation (tDCS). In Experiment 1 target colour repetitions were predictable. Under such conditions anodal tDCS facilitated selection versus sham and cathodal tDCS. This improvement was apparent for trajectory curvature but not movement initiation. Conversely, where no predictability of colour was embedded reach performance was unaffected by tDCS. Finally, the results of a key-press experiment suggested that motor cortex involvement is restricted to tasks where the predictable target colour is movement-relevant. The outcomes are interpreted as evidence that the motor system contributes to the top-down guidance of selective attention to movement targets.

  5. Motor field sensitivity for preoperative localization of motor cortex

    PubMed Central

    Lin, Peter T.; Berger, Mitchel S.; Nagarajan, Srikantan S.

    2014-01-01

    Object In this study the role of magnetic source imaging for preoperative motor mapping was evaluated by using a single-dipole localization method to analyze motor field data in 41 patients. Methods Data from affected and unaffected hemispheres were collected in patients performing voluntary finger flexion movements. Somatosensory evoked field (SSEF) data were also obtained using tactile stimulation. Dipole localization using motor field (MF) data was successful in only 49% of patients, whereas localization with movement evoked field (MEF) data was successful in 66% of patients. When the spatial distribution of MF and MEF dipoles in relation to SSEF dipoles was analyzed, the motor dipoles were not spatially distinct from somatosensory dipoles. Conclusions The findings in this study suggest that single-dipole localization for the analysis of motor data is not sufficiently sensitive and is nonspecific, and thus not clinically useful. PMID:17044563

  6. Computational validation of the motor contribution to speech perception.

    PubMed

    Badino, Leonardo; D'Ausilio, Alessandro; Fadiga, Luciano; Metta, Giorgio

    2014-07-01

    Action perception and recognition are core abilities fundamental for human social interaction. A parieto-frontal network (the mirror neuron system) matches visually presented biological motion information onto observers' motor representations. This process of matching the actions of others onto our own sensorimotor repertoire is thought to be important for action recognition, providing a non-mediated "motor perception" based on a bidirectional flow of information along the mirror parieto-frontal circuits. State-of-the-art machine learning strategies for hand action identification have shown better performances when sensorimotor data, as opposed to visual information only, are available during learning. As speech is a particular type of action (with acoustic targets), it is expected to activate a mirror neuron mechanism. Indeed, in speech perception, motor centers have been shown to be causally involved in the discrimination of speech sounds. In this paper, we review recent neurophysiological and machine learning-based studies showing (a) the specific contribution of the motor system to speech perception and (b) that automatic phone recognition is significantly improved when motor data are used during training of classifiers (as opposed to learning from purely auditory data).

  7. Research on Speech Motor Control and Its Disorders: A Review and Prospective.

    ERIC Educational Resources Information Center

    Kent, Ray D.

    2000-01-01

    This article reviews issues in speech motor control and a class of communication disorders known as motor speech disorders that include dysarthrias, apraxia of speech, developmental apraxia of speech, developmental stuttering, acquired (neurogenic and psychogenic) stuttering, and cluttering. Assessment, classification, and treatment of these…

  8. A comparison of sensory-motor activity during speech in first and second languages.

    PubMed

    Simmonds, Anna J; Wise, Richard J S; Dhanjal, Novraj S; Leech, Robert

    2011-07-01

    A foreign language (L2) learned after childhood results in an accent. This functional neuroimaging study investigated speech in L2 as a sensory-motor skill. The hypothesis was that there would be an altered response in auditory and somatosensory association cortex, specifically the planum temporale and parietal operculum, respectively, when speaking in L2 relative to L1, independent of rate of speaking. These regions were selected for three reasons. First, an influential computational model proposes that these cortices integrate predictive feedforward and postarticulatory sensory feedback signals during articulation. Second, these adjacent regions (known as Spt) have been identified as a "sensory-motor interface" for speech production. Third, probabilistic anatomical atlases exist for these regions, to ensure the analyses are confined to sensory-motor differences between L2 and L1. The study used functional magnetic resonance imaging (fMRI), and participants produced connected overt speech. The first hypothesis was that there would be greater activity in the planum temporale and the parietal operculum when subjects spoke in L2 compared with L1, one interpretation being that there is less efficient postarticulatory sensory monitoring when speaking in the less familiar L2. The second hypothesis was that this effect would be observed in both cerebral hemispheres. Although Spt is considered to be left-lateralized, this is based on studies of covert speech, whereas overt speech is accompanied by sensory feedback to bilateral auditory and somatosensory cortices. Both hypotheses were confirmed by the results. These findings provide the basis for future investigations of sensory-motor aspects of language learning using serial fMRI studies.

  9. Modification of motor cortex excitability during muscle relaxation in motor learning.

    PubMed

    Sugawara, Kenichi; Tanabe, Shigeo; Suzuki, Tomotaka; Saitoh, Kei; Higashi, Toshio

    2016-01-01

    We postulated that gradual muscle relaxation during motor learning would dynamically change activity in the primary motor cortex (M1) and modify short-interval intracortical inhibition (SICI). Thus, we compared changes in M1 excitability both pre and post motor learning during gradual muscle relaxation. Thirteen healthy participants were asked to gradually relax their muscles from an isometric right wrist extension (30% maximum voluntary contraction; MVC) using a tracking task for motor learning. Single or paired transcranial magnetic stimulation (TMS) was applied at either 20% or 80% of the downward force output during muscle release from 30% MVC, and we compared the effects of motor learning immediately after the 1st and 10th blocks. Motor-evoked potentials (MEPs) from the extensor and flexor carpi radialis (ECR and FCR) were then measured and compared to evaluate their relationship before and after motor learning. In both muscles and each downward force output, motor cortex excitability during muscle relaxation was significantly increased following motor learning. In the ECR, the SICI in the 10th block was significantly increased during the 80% waveform decline compared to the SICI in the 1st block. In the FCR, the SICI also exhibited a greater inhibitory effect when muscle relaxation was terminated following motor learning. During motor training, acquisition of the ability to control muscle relaxation increased the SICI in both the ECR and FCR during motor termination. This finding aids in our understanding of the cortical mechanisms that underlie muscle relaxation during motor learning.

  10. Cerebellar Processing of Sensory Inputs Primes Motor Cortex Plasticity

    PubMed Central

    Velayudhan, B.; Hubsch, C.; Pradeep, S.; Roze, E.; Vidailhet, M.; Meunier, S.; Kishore, A.

    2013-01-01

    Plasticity of the human primary motor cortex (M1) has a critical role in motor control and learning. The cerebellum facilitates these functions using sensory feedback. We investigated whether cerebellar processing of sensory afferent information influences the plasticity of the primary motor cortex (M1). Theta-burst stimulation protocols (TBS), both excitatory and inhibitory, were used to modulate the excitability of the posterior cerebellar cortex and to condition an ongoing M1 plasticity. M1 plasticity was subsequently induced in 2 different ways: by paired associative stimulation (PAS) involving sensory processing and TBS that exclusively involves intracortical circuits of M1. Cerebellar excitation attenuated the PAS-induced M1 plasticity, whereas cerebellar inhibition enhanced and prolonged it. Furthermore, cerebellar inhibition abolished the topography-specific response of PAS-induced M1 plasticity, with the effects spreading to adjacent motor maps. Conversely, cerebellar excitation had no effect on the TBS-induced M1 plasticity. This demonstrates the key role of the cerebellum in priming M1 plasticity, and we propose that it is likely to occur at the thalamic or olivo-dentate nuclear level by influencing the sensory processing. We suggest that such a cerebellar priming of M1 plasticity could shape the impending motor command by favoring or inhibiting the recruitment of several muscle representations. PMID:22351647

  11. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation.

    PubMed

    Rioult-Pedotti, Mengia-Seraina; Pekanovic, Ana; Atiemo, Clement Osei; Marshall, John; Luft, Andreas Rüdiger

    2015-01-01

    Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease.

  12. Robust neuronal dynamics in premotor cortex during motor planning

    PubMed Central

    Li, Nuo; Daie, Kayvon; Svoboda, Karel; Druckmann, Shaul

    2016-01-01

    Neural activity maintains representations that bridge past and future events, often over many seconds. Network models can produce persistent and ramping activity, but the positive feedback that is critical for these slow dynamics can cause sensitivity to perturbations. Here we use electrophysiology and optogenetic perturbations in mouse premotor cortex to probe robustness of persistent neural representations during motor planning. Preparatory activity is remarkably robust to large-scale unilateral silencing: detailed neural dynamics that drive specific future movements were quickly and selectively restored by the network. Selectivity did not recover after bilateral silencing of premotor cortex. Perturbations to one hemisphere are thus corrected by information from the other hemisphere. Corpus callosum bisections demonstrated that premotor cortex hemispheres can maintain preparatory activity independently. Redundancy across selectively coupled modules, as we observed in premotor cortex, is a hallmark of robust control systems. Network models incorporating these principles show robustness that is consistent with data. PMID:27074502

  13. The Uniqueness of Speech among Motor Systems

    ERIC Educational Resources Information Center

    Kent, Ray

    2004-01-01

    This paper considers evidence that the speech muscles are unique in their genetic, developmental, functional and phenotypical properties. The literature was reviewed using PubMed, ScienceDirect, ComDisDome and other literature-retrieval systems to identify studies reporting on the craniofacial and laryngeal muscles. Particular emphasis was given…

  14. Motor cortex excitability in vascular depression.

    PubMed

    Bella, Rita; Ferri, Raffaele; Cantone, Mariagiovanna; Pennisi, Manuela; Lanza, Giuseppe; Malaguarnera, Giulia; Spampinato, Concetto; Giordano, Daniela; Raggi, Alberto; Pennisi, Giovanni

    2011-12-01

    The aim of this study was to evaluate excitatory/inhibitory intracortical circuit changes in patients with vascular depression, and whether there are any interhemispheric differences of motor cortical excitability. Fifteen vascular depressed elderly (VD), ten nondepressed subcortical vascular disease patients (SVD) and ten age-matched controls underwent bilateral motor threshold and paired-pulse studies. They were also assessed for their brain vascular burden at MRI and neuropsychological profile. Executive dysfunction and apathy were significantly higher in VD; we were unable to find significant differences in resting motor threshold, cortical silent period and paired-pulse curves between VD, SVD and controls, and between the two hemispheres in the VD group. Our findings might suggest that neurophysiological mechanisms underlying VD differ from those previously reported in Major Depression (reduced excitability in the left hemisphere) and seem to be similar to those of patients with SVD. Our findings also, support the "vascular depression" hypothesis, suggesting that in VD patients the depressive syndrome is not the primary disease but can be considered as one of the clinical manifestations in the wide symptom spectrum of the cerebral small vessel disease.

  15. Early Speech Motor Development: Cognitive and Linguistic Considerations

    ERIC Educational Resources Information Center

    Nip, Ignatius S. B.; Green, Jordan R.; Marx, David B.

    2009-01-01

    This longitudinal investigation examines developmental changes in orofacial movements occurring during the early stages of communication development. The goals were to identify developmental trends in early speech motor performance and to determine how these trends differ across orofacial behaviors thought to vary in cognitive and linguistic…

  16. Speech and Oral Motor Profile after Childhood Hemispherectomy

    ERIC Educational Resources Information Center

    Liegeois, Frederique; Morgan, Angela T.; Stewart, Lorna H.; Cross, J. Helen; Vogel, Adam P.; Vargha-Khadem, Faraneh

    2010-01-01

    Hemispherectomy (disconnection or removal of an entire cerebral hemisphere) is a rare surgical procedure used for the relief of drug-resistant epilepsy in children. After hemispherectomy, contralateral hemiplegia persists whereas gross expressive and receptive language functions can be remarkably spared. Motor speech deficits have rarely been…

  17. Psycholinguistic and motor theories of apraxia of speech.

    PubMed

    Ziegler, Wolfram

    2002-11-01

    This article sketches the relationships between modern conceptions of apraxia of speech (AOS) and current models of neuromotor and neurolinguistic disorders. The first section is devoted to neurophysiological perspectives of AOS, and its relation to dysarthrias and to limb apraxia is discussed. The second section introduces the logogen model and considers AOS in relation to supramodal aspects of aphasia. In the third section, AOS with the background of psycholinguistic models of spoken language production, including the Levelt model and connectionist models, is discussed. In the fourth section, the view of AOS as a disorder of speech motor programming is discussed against the background of theories from experimental psychology. The final section considers two models of speech motor control and their relation to AOS. The article discusses the strengths and weaknesses of these approaches. PMID:12461723

  18. Distributed Processing and Cortical Specialization for Speech and Environmental Sounds in Human Temporal Cortex

    ERIC Educational Resources Information Center

    Leech, Robert; Saygin, Ayse Pinar

    2011-01-01

    Using functional MRI, we investigated whether auditory processing of both speech and meaningful non-linguistic environmental sounds in superior and middle temporal cortex relies on a complex and spatially distributed neural system. We found that evidence for spatially distributed processing of speech and environmental sounds in a substantial…

  19. Evolution of somatosensory and motor cortex in primates.

    PubMed

    Kaas, Jon H

    2004-11-01

    Inferences about how the complex somatosensory systems of anthropoid primates evolved are based on comparative studies of such systems in extant mammals. Experimental studies of members of the major clades of extant mammals suggest that somatosensory cortex of early mammals consisted of only a few areas, including a primary area, S1, bordered by strip-like rostral and caudal somatosensory fields, SR and SC. In addition, the second somatosensory area, S2, and the parietal ventral area, PV, were probably present. S1, S2, and PV were activated independently via parallel projections from the ventroposterior nucleus, VP. Little posterior parietal cortex existed, and it was unlikely that a separate primary motor area, M1, existed until placental mammals evolved. Early primates retained this basic organization and also had a larger posterior parietal region that mediated sensorimotor functions via connections with motor and premotor areas. The frontal cortex included M1, dorsal and ventral premotor areas, supplementary motor area, and cingulate motor fields. Ventroposterior superior and ventroposterior inferior nuclei were distinct from the ventroposterior nucleus in the thalamus. In early anthropoid primates, areas S1, SR, and SC had differentiated into the fields now recognized as areas 3b, 3a, and 1. Areas 3b and 1 contained parallel mirror-image representations of cutaneous receptors and a parallel representation in area 2 was probable. Serial processing became dominant, so that neurons in areas 1, S2, and PV became dependent on area 3b for activation. Posterior parietal cortex expanded into more areas that related to frontal cortex. Less is known about changes that might have occurred with the emergence of apes and humans, but their brains were larger and posed scaling problems most likely solved by increasing the number of cortical areas and reducing the proportion of long connections.

  20. Impairment of auditory-motor timing and compensatory reorganization after ventral premotor cortex stimulation.

    PubMed

    Kornysheva, Katja; Schubotz, Ricarda I

    2011-01-01

    Integrating auditory and motor information often requires precise timing as in speech and music. In humans, the position of the ventral premotor cortex (PMv) in the dorsal auditory stream renders this area a node for auditory-motor integration. Yet, it remains unknown whether the PMv is critical for auditory-motor timing and which activity increases help to preserve task performance following its disruption. 16 healthy volunteers participated in two sessions with fMRI measured at baseline and following rTMS (rTMS) of either the left PMv or a control region. Subjects synchronized left or right finger tapping to sub-second beat rates of auditory rhythms in the experimental task, and produced self-paced tapping during spectrally matched auditory stimuli in the control task. Left PMv rTMS impaired auditory-motor synchronization accuracy in the first sub-block following stimulation (p<0.01, Bonferroni corrected), but spared motor timing and attention to task. Task-related activity increased in the homologue right PMv, but did not predict the behavioral effect of rTMS. In contrast, anterior midline cerebellum revealed most pronounced activity increase in less impaired subjects. The present findings suggest a critical role of the left PMv in feed-forward computations enabling accurate auditory-motor timing, which can be compensated by activity modulations in the cerebellum, but not in the homologue region contralateral to stimulation. PMID:21738657

  1. Thinking About Better Speech: Mental Practice for Stroke-Induced Motor Speech Impairments

    PubMed Central

    Page, Stephen J.; Harnish, Stacy

    2012-01-01

    Background Mental practice (MP) is a mind-body technique in which physical movements are cognitively rehearsed. It has shown efficacy in reducing the severity of a number of neurological impairments. Aims In the present review, we highlight recent developments in MP research, and the basis for MP use after stroke-induced motor speech disorders. Main Contribution In this review, we: (a) propose a novel conceptual model regarding the development of learned nonuse in people with motor speech impairments; (b) review the rationale and efficacy of MP for reducing the severity of stroke-induced impairments; (c) review evidence demonstrating muscular and neural activations during and following MP use; (d) review evidence showing that MP increases skill acquisition, use, and function in stroke; (e) review literature regarding neuroplasticity after stroke, including MP-induced neuroplasticity and the neural substrates underlying motor and language reacquisition; and (f) based on the above, review the rationale and clinical application of MP for stroke-induced motor speech impairments. Conclusions Support for MP use includes decades of MP neurobiological and behavioral efficacy data in a number of populations. Most recently, these data have expanded to the application of MP in neurological populations. Given increasingly demanding managed care environments, efficacious strategies that can be easily administered are needed. We also encounter clinicians who aspire to use MP, but their protocols do not contain several of the elements shown to be fundamental to effective MP implementation. Given shortfalls of some conventional aphasia and motor speech rehabilitative techniques, and uncertainty regarding optimal MP implementation, this paper introduces the neurophysiologic bases for MP, the evidence for MP use in stroke rehabilitation, and discusses its applications and considerations in patients with stroke-induced motor speech impairments. PMID:22308050

  2. The effects of speech motor preparation on auditory perception

    NASA Astrophysics Data System (ADS)

    Myers, John

    Perception and action are coupled via bidirectional relationships between sensory and motor systems. Motor systems influence sensory areas by imparting a feedforward influence on sensory processing termed "motor efference copy" (MEC). MEC is suggested to occur in humans because speech preparation and production modulate neural measures of auditory cortical activity. However, it is not known if MEC can affect auditory perception. We tested the hypothesis that during speech preparation auditory thresholds will increase relative to a control condition, and that the increase would be most evident for frequencies that match the upcoming vocal response. Participants performed trials in a speech condition that contained a visual cue indicating a vocal response to prepare (one of two frequencies), followed by a go signal to speak. To determine threshold shifts, voice-matched or -mismatched pure tones were presented at one of three time points between the cue and target. The control condition was the same except the visual cues did not specify a response and subjects did not speak. For each participant, we measured f0 thresholds in isolation from the task in order to establish baselines. Results indicated that auditory thresholds were highest during speech preparation, relative to baselines and a non-speech control condition, especially at suprathreshold levels. Thresholds for tones that matched the frequency of planned responses gradually increased over time, but sharply declined for the mismatched tones shortly before targets. Findings support the hypothesis that MEC influences auditory perception by modulating thresholds during speech preparation, with some specificity relative to the planned response. The threshold increase in tasks vs. baseline may reflect attentional demands of the tasks.

  3. Bridging music and speech rhythm: rhythmic priming and audio-motor training affect speech perception.

    PubMed

    Cason, Nia; Astésano, Corine; Schön, Daniele

    2015-02-01

    Following findings that musical rhythmic priming enhances subsequent speech perception, we investigated whether rhythmic priming for spoken sentences can enhance phonological processing - the building blocks of speech - and whether audio-motor training enhances this effect. Participants heard a metrical prime followed by a sentence (with a matching/mismatching prosodic structure), for which they performed a phoneme detection task. Behavioural (RT) data was collected from two groups: one who received audio-motor training, and one who did not. We hypothesised that 1) phonological processing would be enhanced in matching conditions, and 2) audio-motor training with the musical rhythms would enhance this effect. Indeed, providing a matching rhythmic prime context resulted in faster phoneme detection, thus revealing a cross-domain effect of musical rhythm on phonological processing. In addition, our results indicate that rhythmic audio-motor training enhances this priming effect. These results have important implications for rhythm-based speech therapies, and suggest that metrical rhythm in music and speech may rely on shared temporal processing brain resources. PMID:25553343

  4. Bridging music and speech rhythm: rhythmic priming and audio-motor training affect speech perception.

    PubMed

    Cason, Nia; Astésano, Corine; Schön, Daniele

    2015-02-01

    Following findings that musical rhythmic priming enhances subsequent speech perception, we investigated whether rhythmic priming for spoken sentences can enhance phonological processing - the building blocks of speech - and whether audio-motor training enhances this effect. Participants heard a metrical prime followed by a sentence (with a matching/mismatching prosodic structure), for which they performed a phoneme detection task. Behavioural (RT) data was collected from two groups: one who received audio-motor training, and one who did not. We hypothesised that 1) phonological processing would be enhanced in matching conditions, and 2) audio-motor training with the musical rhythms would enhance this effect. Indeed, providing a matching rhythmic prime context resulted in faster phoneme detection, thus revealing a cross-domain effect of musical rhythm on phonological processing. In addition, our results indicate that rhythmic audio-motor training enhances this priming effect. These results have important implications for rhythm-based speech therapies, and suggest that metrical rhythm in music and speech may rely on shared temporal processing brain resources.

  5. A systematic review of non-motor rTMS induced motor cortex plasticity

    PubMed Central

    Nordmann, Grégory; Azorina, Valeriya; Langguth, Berthold; Schecklmann, Martin

    2015-01-01

    Motor cortex excitability can be measured by single- and paired-pulse transcranial magnetic stimulation (TMS). Repetitive transcranial magnetic stimulation (rTMS) can induce neuroplastic effects in stimulated and in functionally connected cortical regions. Due to its ability to non-invasively modulate cortical activity, rTMS has been investigated for the treatment of various neurological and psychiatric disorders. However, such studies revealed a high variability of both clinical and neuronal effects induced by rTMS. In order to better elucidate this meta-plasticity, rTMS-induced changes in motor cortex excitability have been monitored in various studies in a pre-post stimulation design. Here, we give a literature review of studies investigating motor cortex excitability changes as a neuronal marker for rTMS effects over non-motor cortical areas. A systematic literature review in April 2014 resulted in 29 articles in which motor cortex excitability was assessed before and after rTMS over non-motor areas. The majority of the studies focused on the stimulation of one of three separate cortical areas: the prefrontal area (17 studies), the cerebellum (8 studies), or the temporal cortex (3 studies). One study assessed the effects of multi-site rTMS. Most studies investigated healthy controls but some also stimulated patients with neuropsychiatric conditions (e.g., affective disorders, tinnitus). Methods and findings of the identified studies were highly variable showing no clear systematic pattern of interaction of non-motor rTMS with measures of motor cortex excitability. Based on the available literature, the measurement of motor cortex excitability changes before and after non-motor rTMS has only limited value in the investigation of rTMS related meta-plasticity as a neuronal state or as a trait marker for neuropsychiatric diseases. Our results do not suggest that there are systematic alterations of cortical excitability changes during rTMS treatment, which calls

  6. Is one motor cortex enough for two hands?

    PubMed

    Fiori, Simona; Staudt, Martin; Pannek, Kerstin; Borghetti, Davide; Biagi, Laura; Scelfo, Danilo; Rose, Stephen E; Tosetti, Michela; Cioni, Giovanni; Guzzetta, Andrea

    2015-10-01

    We report on a patient with mirror movements sustained by a mono-hemispheric fast control of bilateral hand muscles and normal hand function. Transcranial magnetic stimulation of the right motor cortex evoked contractions of muscles in both hands while no responses were observed from the left hemisphere. Somatosensory-evoked potentials, functional magnetic resonance, and diffusion tractography showed evidence of sensorimotor dissociation and asymmetry of corticospinal projections, suggestive of reorganization after early unilateral left brain lesion. This is the first evidence that, in certain rare conditions, good hand function is possible with ipsilateral corticospinal reorganization, supporting the role of unexplored mechanisms of motor recovery. PMID:26104046

  7. Measurements of evoked electroencephalograph by transcranial magnetic stimulation applied to motor cortex and posterior parietal cortex

    NASA Astrophysics Data System (ADS)

    Iwahashi, Masakuni; Koyama, Yohei; Hyodo, Akira; Hayami, Takehito; Ueno, Shoogo; Iramina, Keiji

    2009-04-01

    To investigate the functional connectivity, the evoked potentials by stimulating at the motor cortex, the posterior parietal cortex, and the cerebellum by transcranial magnetic stimulation (TMS) were measured. It is difficult to measure the evoked electroencephalograph (EEG) by the magnetic stimulation because of the large artifact induced by the magnetic pulse. We used an EEG measurement system with sample-and-hold circuit and an independent component analysis to eliminate the electromagnetic interaction emitted from TMS. It was possible to measure EEG signals from all electrodes over the head within 10 ms after applying the TMS. When the motor area was stimulated by TMS, the spread of evoked electrical activity to the contralateral hemisphere was observed at 20 ms after stimulation. However, when the posterior parietal cortex was stimulated, the evoked electrical activity to the contralateral hemisphere was not observed. When the cerebellum was stimulated, the cortical activity propagated from the stimulated point to the frontal area and the contralateral hemisphere at around 20 ms after stimulation. These results suggest that the motor area has a strong interhemispheric connection and the posterior parietal cortex has no interhemispheric connection.

  8. Dramatic effects of speech task on motor and linguistic planning in severely dysfluent parkinsonian speech

    PubMed Central

    Van Lancker Sidtis, Diana; Cameron, Krista; Sidtis, John J.

    2015-01-01

    In motor speech disorders, dysarthric features impacting intelligibility, articulation, fluency, and voice emerge more saliently in conversation than in repetition, reading, or singing. A role of the basal ganglia in these task discrepancies has been identified. Further, more recent studies of naturalistic speech in basal ganglia dysfunction have revealed that formulaic language is more impaired than novel language. This descriptive study extends these observations to a case of severely dysfluent dysarthria due to a parkinsonian syndrome. Dysfluencies were quantified and compared for conversation, two forms of repetition, reading, recited speech, and singing. Other measures examined phonetic inventories, word forms, and formulaic language. Phonetic, syllabic, and lexical dysfluencies were more abundant in conversation than in other task conditions. Formulaic expressions in conversation were reduced compared to normal speakers. A proposed explanation supports the notion that the basal ganglia contribute to formulation of internal models for execution of speech. PMID:22774929

  9. Magnetoelectrical stimulation of motor cortex in children with motor disturbances.

    PubMed

    Müller, K; Hömberg, V; Aulich, A; Lenard, H G

    1992-04-01

    Transcranial magnetoelectrical stimulation (TMS) is now widely used as a diagnostic tool in adults. In this study we report our experiences with this technique in children with central motor disturbances. We used a Cadwell MES10 magnetoelectrical stimulator with a maximal magnetic field of 2 tesla. The stimulation procedure followed a standardized protocol, with the patients being as relaxed as possible in order to avoid contamination of parameters with different preinnervational levels. Stimulation data were compared to a data base obtained in 58 normal children. The first group of patients consisted of 20 children aged from 7 months to 16 years with hemiparesis of different etiologies. Neuroimaging data were correlated with the results of magnetoelectrical stimulation. In 13 patients a pathological pattern of TMS could be detected, and in 7 of these a corresponding lesion of the cortico-spinal tract was found in CT or MRI scans. In 7 children TMS was normal, in spite of a clear-cut lesion of the cortico-spinal tract in CT or MRI scans in 4 of them. The second group of patients consisted of 16 children with extrapyramidal disease, mostly of hereditary origin, such as DOPA-responsive dystonia or benign hereditary chorea. TMS showed a normal response pattern in this group. We discuss problems and possible pitfalls in TMS in childhood in evaluating the diagnostic value of TMS. At the moment the diagnostic usefulness of TMS in children with motor disturbances appears limited and calls for careful interpretation. PMID:1373370

  10. Musical groove modulates motor cortex excitability: a TMS investigation.

    PubMed

    Stupacher, Jan; Hove, Michael J; Novembre, Giacomo; Schütz-Bosbach, Simone; Keller, Peter E

    2013-07-01

    Groove is often described as a musical quality that can induce movement in a listener. This study examines the effects of listening to groove music on corticospinal excitability. Musicians and non-musicians listened to high-groove music, low-groove music, and spectrally matched noise, while receiving single-pulse transcranial magnetic stimulation (TMS) over the primary motor cortex either on-beat or off-beat. We examined changes in the amplitude of the motor-evoked potentials (MEPs), recorded from hand and arm muscles, as an index of activity within the motor system. Musicians and non-musicians rated groove similarly. MEP results showed that high-groove music modulated corticospinal excitability, whereas no difference occurred between low-groove music and noise. More specifically, musicians' MEPs were larger with high-groove than low-groove music, and this effect was especially pronounced for on-beat compared to off-beat pulses. These results indicate that high-groove music increasingly engages the motor system, and the temporal modulation of corticospinal excitability with the beat could stem from tight auditory-motor links in musicians. Conversely, non-musicians' MEPs were smaller for high-groove than low-groove music, and there was no effect of on- versus off-beat pulses, potentially stemming from suppression of overt movement. In sum, high-groove music engages the motor system, and previous training modulates how listening to music with a strong groove activates the motor system.

  11. Cerebellum to motor cortex paired associative stimulation induces bidirectional STDP-like plasticity in human motor cortex

    PubMed Central

    Lu, Ming-Kuei; Tsai, Chon-Haw; Ziemann, Ulf

    2012-01-01

    The cerebellum is crucially important for motor control and adaptation. Recent non-invasive brain stimulation studies have indicated the possibility to alter the excitability of the cerebellum and its projections to the contralateral motor cortex, with behavioral consequences on motor control and adaptation. Here we sought to induce bidirectional spike-timing dependent plasticity (STDP)-like modifications of motor cortex (M1) excitability by application of paired associative stimulation (PAS) in healthy subjects. Conditioning stimulation over the right lateral cerebellum (CB) preceded focal transcranial magnetic stimulation (TMS) of the left M1 hand area at an interstimulus interval of 2 ms (CB→M1 PAS2 ms), 6 ms (CB→M1 PAS6 ms) or 10 ms (CB→M1 PAS10 ms) or randomly alternating intervals of 2 and 10 ms (CB→M1 PASControl). Effects of PAS on M1 excitability were assessed by the motor-evoked potential (MEP) amplitude, short-interval intracortical inhibition (SICI), intracortical facilitation (ICF) and cerebellar-motor cortex inhibition (CBI) in the first dorsal interosseous muscle of the right hand. CB→M1 PAS2 ms resulted in MEP potentiation, CB→M1 PAS6 ms and CB→M1 PAS10 ms in MEP depression, and CB→M1 PASControl in no change. The MEP changes lasted for 30–60 min after PAS. SICI and CBI decreased non-specifically after all PAS protocols, while ICF remained unaltered. The physiological mechanisms underlying these MEP changes are carefully discussed. Findings support the notion of bidirectional STDP-like plasticity in M1 mediated by associative stimulation of the cerebello-dentato-thalamo-cortical pathway and M1. Future studies may investigate the behavioral significance of this plasticity. PMID:23049508

  12. Functional Plasticity in Somatosensory Cortex Supports Motor Learning by Observing.

    PubMed

    McGregor, Heather R; Cashaback, Joshua G A; Gribble, Paul L

    2016-04-01

    An influential idea in neuroscience is that the sensory-motor system is activated when observing the actions of others [1, 2]. This idea has recently been extended to motor learning, in which observation results in sensory-motor plasticity and behavioral changes in both motor and somatosensory domains [3-9]. However, it is unclear how the brain maps visual information onto motor circuits for learning. Here we test the idea that the somatosensory system, and specifically primary somatosensory cortex (S1), plays a role in motor learning by observing. In experiment 1, we applied stimulation to the median nerve to occupy the somatosensory system with unrelated inputs while participants observed a tutor learning to reach in a force field. Stimulation disrupted motor learning by observing in a limb-specific manner. Stimulation delivered to the right arm (the same arm used by the tutor) disrupted learning, whereas left arm stimulation did not. This is consistent with the idea that a somatosensory representation of the observed effector must be available during observation for learning to occur. In experiment 2, we assessed S1 cortical processing before and after observation by measuring somatosensory evoked potentials (SEPs) associated with median nerve stimulation. SEP amplitudes increased only for participants who observed learning. Moreover, SEPs increased more for participants who exhibited greater motor learning following observation. Taken together, these findings support the idea that motor learning by observing relies on functional plasticity in S1. We propose that visual signals about the movements of others are mapped onto motor circuits for learning via the somatosensory system.

  13. Functional Plasticity in Somatosensory Cortex Supports Motor Learning by Observing.

    PubMed

    McGregor, Heather R; Cashaback, Joshua G A; Gribble, Paul L

    2016-04-01

    An influential idea in neuroscience is that the sensory-motor system is activated when observing the actions of others [1, 2]. This idea has recently been extended to motor learning, in which observation results in sensory-motor plasticity and behavioral changes in both motor and somatosensory domains [3-9]. However, it is unclear how the brain maps visual information onto motor circuits for learning. Here we test the idea that the somatosensory system, and specifically primary somatosensory cortex (S1), plays a role in motor learning by observing. In experiment 1, we applied stimulation to the median nerve to occupy the somatosensory system with unrelated inputs while participants observed a tutor learning to reach in a force field. Stimulation disrupted motor learning by observing in a limb-specific manner. Stimulation delivered to the right arm (the same arm used by the tutor) disrupted learning, whereas left arm stimulation did not. This is consistent with the idea that a somatosensory representation of the observed effector must be available during observation for learning to occur. In experiment 2, we assessed S1 cortical processing before and after observation by measuring somatosensory evoked potentials (SEPs) associated with median nerve stimulation. SEP amplitudes increased only for participants who observed learning. Moreover, SEPs increased more for participants who exhibited greater motor learning following observation. Taken together, these findings support the idea that motor learning by observing relies on functional plasticity in S1. We propose that visual signals about the movements of others are mapped onto motor circuits for learning via the somatosensory system. PMID:26972317

  14. Auditory-motor interaction revealed by fMRI: speech, music, and working memory in area Spt.

    PubMed

    Hickok, Gregory; Buchsbaum, Bradley; Humphries, Colin; Muftuler, Tugan

    2003-07-01

    The concept of auditory-motor interaction pervades speech science research, yet the cortical systems supporting this interface have not been elucidated. Drawing on experimental designs used in recent work in sensory-motor integration in the cortical visual system, we used fMRI in an effort to identify human auditory regions with both sensory and motor response properties, analogous to single-unit responses in known visuomotor integration areas. The sensory phase of the task involved listening to speech (nonsense sentences) or music (novel piano melodies); the "motor" phase of the task involved covert rehearsal/humming of the auditory stimuli. A small set of areas in the superior temporal and temporal-parietal cortex responded both during the listening phase and the rehearsal/humming phase. A left lateralized region in the posterior Sylvian fissure at the parietal-temporal boundary, area Spt, showed particularly robust responses to both phases of the task. Frontal areas also showed combined auditory + rehearsal responsivity consistent with the claim that the posterior activations are part of a larger auditory-motor integration circuit. We hypothesize that this circuit plays an important role in speech development as part of the network that enables acoustic-phonetic input to guide the acquisition of language-specific articulatory-phonetic gestures; this circuit may play a role in analogous musical abilities. In the adult, this system continues to support aspects of speech production, and, we suggest, supports verbal working memory. PMID:12965041

  15. Auditory-motor interaction revealed by fMRI: speech, music, and working memory in area Spt.

    PubMed

    Hickok, Gregory; Buchsbaum, Bradley; Humphries, Colin; Muftuler, Tugan

    2003-07-01

    The concept of auditory-motor interaction pervades speech science research, yet the cortical systems supporting this interface have not been elucidated. Drawing on experimental designs used in recent work in sensory-motor integration in the cortical visual system, we used fMRI in an effort to identify human auditory regions with both sensory and motor response properties, analogous to single-unit responses in known visuomotor integration areas. The sensory phase of the task involved listening to speech (nonsense sentences) or music (novel piano melodies); the "motor" phase of the task involved covert rehearsal/humming of the auditory stimuli. A small set of areas in the superior temporal and temporal-parietal cortex responded both during the listening phase and the rehearsal/humming phase. A left lateralized region in the posterior Sylvian fissure at the parietal-temporal boundary, area Spt, showed particularly robust responses to both phases of the task. Frontal areas also showed combined auditory + rehearsal responsivity consistent with the claim that the posterior activations are part of a larger auditory-motor integration circuit. We hypothesize that this circuit plays an important role in speech development as part of the network that enables acoustic-phonetic input to guide the acquisition of language-specific articulatory-phonetic gestures; this circuit may play a role in analogous musical abilities. In the adult, this system continues to support aspects of speech production, and, we suggest, supports verbal working memory.

  16. Transspinal direct current stimulation immediately modifies motor cortex sensorimotor maps

    PubMed Central

    Song, Weiguo; Truong, Dennis Q.; Bikson, Marom

    2015-01-01

    Motor cortex (MCX) motor representation reorganization occurs after injury, learning, and different long-term stimulation paradigms. The neuromodulatory approach of transspinal direct current stimulation (tsDCS) has been used to promote evoked cortical motor responses. In the present study, we used cathodal tsDCS (c-tsDCS) of the rat cervical cord to determine if spinal cord activation can modify the MCX forelimb motor map. We used a finite-element method model based on coregistered high-resolution rat MRI and microcomputed tomography imaging data to predict spinal current density to target stimulation to the caudal cervical enlargement. We examined the effects of cathodal and anodal tsDCS on the H-reflex and c-tsDCS on responses evoked by intracortical microstimulation (ICMS). To determine if cervical c-tsDCS also modified MCX somatic sensory processing, we examined sensory evoked potentials (SEPs) produced by wrist electrical stimulation and induced changes in ongoing activity. Cervical c-tsDCS enhanced the H-reflex, and anodal depressed the H-reflex. Using cathodal stimulation to examine cortical effects, we found that cervical c-tsDCS immediately modified the forelimb MCX motor map, with decreased thresholds and an expanded area. c-tsDCS also increased SEP amplitude in the MCX. The magnitude of changes produced by c-tsDCS were greater on the motor than sensory response. Cervical c-tsDCS more strongly enhanced forelimb than hindlimb motor representation and had no effect on vibrissal representation. The finite-element model indicated current density localized to caudal cervical segments, informing forelimb motor selectivity. Our results suggest that c-tsDCS augments spinal excitability in a spatially selective manner and may improve voluntary motor function through MCX representational plasticity. PMID:25673738

  17. Evidence-Based Systematic Review: Effects of Nonspeech Oral Motor Exercises on Speech

    ERIC Educational Resources Information Center

    McCauley, Rebecca J.; Strand, Edythe; Lof, Gregory L.; Schooling, Tracy; Frymark, Tobi

    2009-01-01

    Purpose: The purpose of this systematic review was to examine the current evidence for the use of oral motor exercises (OMEs) on speech (i.e., speech physiology, speech production, and functional speech outcomes) as a means of supporting further research and clinicians' use of evidence-based practice. Method: The peer-reviewed literature from 1960…

  18. Nonhomogeneous transfer reveals specificity in speech motor learning.

    PubMed

    Rochet-Capellan, Amélie; Richer, Lara; Ostry, David J

    2012-03-01

    Does motor learning generalize to new situations that are not experienced during training, or is motor learning essentially specific to the training situation? In the present experiments, we use speech production as a model to investigate generalization in motor learning. We tested for generalization from training to transfer utterances by varying the acoustical similarity between these two sets of utterances. During the training phase of the experiment, subjects received auditory feedback that was altered in real time as they repeated a single consonant-vowel-consonant utterance. Different groups of subjects were trained with different consonant-vowel-consonant utterances, which differed from a subsequent transfer utterance in terms of the initial consonant or vowel. During the adaptation phase of the experiment, we observed that subjects in all groups progressively changed their speech output to compensate for the perturbation (altered auditory feedback). After learning, we tested for generalization by having all subjects produce the same single transfer utterance while receiving unaltered auditory feedback. We observed limited transfer of learning, which depended on the acoustical similarity between the training and the transfer utterances. The gradients of generalization observed here are comparable to those observed in limb movement. The present findings are consistent with the conclusion that speech learning remains specific to individual instances of learning.

  19. Nonhomogeneous transfer reveals specificity in speech motor learning

    PubMed Central

    Rochet-Capellan, Amélie; Richer, Lara

    2012-01-01

    Does motor learning generalize to new situations that are not experienced during training, or is motor learning essentially specific to the training situation? In the present experiments, we use speech production as a model to investigate generalization in motor learning. We tested for generalization from training to transfer utterances by varying the acoustical similarity between these two sets of utterances. During the training phase of the experiment, subjects received auditory feedback that was altered in real time as they repeated a single consonant-vowel-consonant utterance. Different groups of subjects were trained with different consonant-vowel-consonant utterances, which differed from a subsequent transfer utterance in terms of the initial consonant or vowel. During the adaptation phase of the experiment, we observed that subjects in all groups progressively changed their speech output to compensate for the perturbation (altered auditory feedback). After learning, we tested for generalization by having all subjects produce the same single transfer utterance while receiving unaltered auditory feedback. We observed limited transfer of learning, which depended on the acoustical similarity between the training and the transfer utterances. The gradients of generalization observed here are comparable to those observed in limb movement. The present findings are consistent with the conclusion that speech learning remains specific to individual instances of learning. PMID:22190628

  20. Sensory-motor networks involved in speech production and motor control: an fMRI study.

    PubMed

    Behroozmand, Roozbeh; Shebek, Rachel; Hansen, Daniel R; Oya, Hiroyuki; Robin, Donald A; Howard, Matthew A; Greenlee, Jeremy D W

    2015-04-01

    Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve sensory-motor interactions that incorporate feedback information for online monitoring and control of produced speech sounds. In the present study, we adopted an auditory feedback pitch perturbation paradigm and combined it with functional magnetic resonance imaging (fMRI) recordings in order to identify brain areas involved in speech production and motor control. Subjects underwent fMRI scanning while they produced a steady vowel sound /a/ (speaking) or listened to the playback of their own vowel production (playback). During each condition, the auditory feedback from vowel production was either normal (no perturbation) or perturbed by an upward (+600 cents) pitch-shift stimulus randomly. Analysis of BOLD responses during speaking (with and without shift) vs. rest revealed activation of a complex network including bilateral superior temporal gyrus (STG), Heschl's gyrus, precentral gyrus, supplementary motor area (SMA), Rolandic operculum, postcentral gyrus and right inferior frontal gyrus (IFG). Performance correlation analysis showed that the subjects produced compensatory vocal responses that significantly correlated with BOLD response increases in bilateral STG and left precentral gyrus. However, during playback, the activation network was limited to cortical auditory areas including bilateral STG and Heschl's gyrus. Moreover, the contrast between speaking vs. playback highlighted a distinct functional network that included bilateral precentral gyrus, SMA, IFG, postcentral gyrus and insula. These findings suggest that speech motor control involves feedback error detection in sensory (e.g. auditory) cortices that subsequently activate motor-related areas for the adjustment of speech parameters during speaking.

  1. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    PubMed Central

    Carmel, Jason B.; Martin, John H.

    2014-01-01

    The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay. PMID:24994971

  2. The role of the motor system in discriminating normal and degraded speech sounds.

    PubMed

    D'Ausilio, Alessandro; Bufalari, Ilaria; Salmas, Paola; Fadiga, Luciano

    2012-07-01

    Listening to speech recruits a network of fronto-temporo-parietal cortical areas. Classical models consider anterior, motor, sites involved in speech production whereas posterior sites involved in comprehension. This functional segregation is more and more challenged by action-perception theories suggesting that brain circuits for speech articulation and speech perception are functionally interdependent. Recent studies report that speech listening elicits motor activities analogous to production. However, the motor system could be crucially recruited only under certain conditions that make speech discrimination hard. Here, by using event-related double-pulse transcranial magnetic stimulation (TMS) on lips and tongue motor areas, we show data suggesting that the motor system may play a role in noisy, but crucially not in noise-free environments, for the discrimination of speech signals.

  3. Discriminating between auditory and motor cortical responses to speech and nonspeech mouth sounds.

    PubMed

    Agnew, Zarinah K; McGettigan, Carolyn; Scott, Sophie K

    2011-12-01

    Several perspectives on speech perception posit a central role for the representation of articulations in speech comprehension, supported by evidence for premotor activation when participants listen to speech. However, no experiments have directly tested whether motor responses mirror the profile of selective auditory cortical responses to native speech sounds or whether motor and auditory areas respond in different ways to sounds. We used fMRI to investigate cortical responses to speech and nonspeech mouth (ingressive click) sounds. Speech sounds activated bilateral superior temporal gyri more than other sounds, a profile not seen in motor and premotor cortices. These results suggest that there are qualitative differences in the ways that temporal and motor areas are activated by speech and click sounds: Anterior temporal lobe areas are sensitive to the acoustic or phonetic properties, whereas motor responses may show more generalized responses to the acoustic stimuli.

  4. Beta rhythm modulation by speech sounds: somatotopic mapping in somatosensory cortex.

    PubMed

    Bartoli, Eleonora; Maffongelli, Laura; Campus, Claudio; D'Ausilio, Alessandro

    2016-01-01

    During speech listening motor regions are somatotopically activated, resembling the activity that subtends actual speech production, suggesting that motor commands can be retrieved from sensory inputs. Crucially, the efficient motor control of the articulators relies on the accurate anticipation of the somatosensory reafference. Nevertheless, evidence about somatosensory activities elicited by auditory speech processing is sparse. The present work looked for specific interactions between auditory speech presentation and somatosensory cortical information processing. We used an auditory speech identification task with sounds having different place of articulation (bilabials and dentals). We tested whether coupling the auditory task with a peripheral electrical stimulation of the lips would affect the pattern of sensorimotor electroencephalographic rhythms. Peripheral electrical stimulation elicits a series of spectral perturbations of which the beta rebound reflects the return-to-baseline stage of somatosensory processing. We show a left-lateralized and selective reduction in the beta rebound following lip somatosensory stimulation when listening to speech sounds produced with the lips (i.e. bilabials). Thus, the somatosensory processing could not return to baseline due to the recruitment of the same neural resources by speech stimuli. Our results are a clear demonstration that heard speech sounds are somatotopically mapped onto somatosensory cortices, according to place of articulation. PMID:27499204

  5. Beta rhythm modulation by speech sounds: somatotopic mapping in somatosensory cortex

    PubMed Central

    Bartoli, Eleonora; Maffongelli, Laura; Campus, Claudio; D’Ausilio, Alessandro

    2016-01-01

    During speech listening motor regions are somatotopically activated, resembling the activity that subtends actual speech production, suggesting that motor commands can be retrieved from sensory inputs. Crucially, the efficient motor control of the articulators relies on the accurate anticipation of the somatosensory reafference. Nevertheless, evidence about somatosensory activities elicited by auditory speech processing is sparse. The present work looked for specific interactions between auditory speech presentation and somatosensory cortical information processing. We used an auditory speech identification task with sounds having different place of articulation (bilabials and dentals). We tested whether coupling the auditory task with a peripheral electrical stimulation of the lips would affect the pattern of sensorimotor electroencephalographic rhythms. Peripheral electrical stimulation elicits a series of spectral perturbations of which the beta rebound reflects the return-to-baseline stage of somatosensory processing. We show a left-lateralized and selective reduction in the beta rebound following lip somatosensory stimulation when listening to speech sounds produced with the lips (i.e. bilabials). Thus, the somatosensory processing could not return to baseline due to the recruitment of the same neural resources by speech stimuli. Our results are a clear demonstration that heard speech sounds are somatotopically mapped onto somatosensory cortices, according to place of articulation. PMID:27499204

  6. Kick with the finger: symbolic actions shape motor cortex excitability.

    PubMed

    Betti, Sonia; Castiello, Umberto; Sartori, Luisa

    2015-11-01

    A large body of research indicates that observing actions made by others is associated with corresponding motor facilitation of the observer's corticospinal system. However, it is still controversial whether this matching mechanism strictly reflects the kinematics of the observed action or its meaning. To test this issue, motor evoked potentials induced by single-pulse transcranial magnetic stimulation were recorded from hand and leg muscles while participants observed a symbolic action carried out with the index finger, but classically performed with the leg (i.e., a soccer penalty kick). A control condition in which participants observed a similar (but not symbolic) hand movement was also included. Results showed that motor facilitation occurs both in the observer's hand (first dorsal interosseous) and leg (quadriceps femoris) muscles. The present study provides evidence that both the kinematics and the symbolic value of an observed action are able to modulate motor cortex excitability. The human motor system is thus not only involved in mirroring observed actions but is also finely tuned to their symbolic value. PMID:26354677

  7. Long-Range Neuronal Circuits Underlying the Interaction between Sensory and Motor Cortex

    PubMed Central

    Mao, Tianyi; Kusefoglu, Deniz; Hooks, Bryan M.; Huber, Daniel; Petreanu, Leopoldo; Svoboda, Karel

    2016-01-01

    SUMMARY In the rodent vibrissal system, active sensation and sensorimotor integration are mediated in part by connections between barrel cortex and vibrissal motor cortex. Little is known about how these structures interact at the level of neurons. We used Channelrhodopsin-2 (ChR2) expression, combined with anterograde and retrograde labeling, to map connections between barrel cortex and pyramidal neurons in mouse motor cortex. Barrel cortex axons preferentially targeted upper layer (L2/3, L5A) neurons in motor cortex; input to neurons projecting back to barrel cortex was particularly strong. Barrel cortex input to deeper layers (L5B, L6) of motor cortex, including neurons projecting to the brainstem, was weak, despite pronounced geometric overlap of dendrites with axons from barrel cortex. Neurons in different layers received barrel cortex input within stereotyped dendritic domains. The cortico-cortical neurons in superficial layers of motor cortex thus couple motor and sensory signals and might mediate sensorimotor integration and motor learning. PMID:21982373

  8. From motor cortex to visual cortex: the application of noninvasive brain stimulation to amblyopia.

    PubMed

    Thompson, Benjamin; Mansouri, Behzad; Koski, Lisa; Hess, Robert F

    2012-04-01

    Noninvasive brain stimulation is a technique for inducing changes in the excitability of discrete neural populations in the human brain. A current model of the underlying pathological processes contributing to the loss of motor function after stroke has motivated a number of research groups to investigate the potential therapeutic application of brain stimulation to stroke rehabilitation. The loss of motor function is modeled as resulting from a combination of reduced excitability in the lesioned motor cortex and an increased inhibitory drive from the nonlesioned hemisphere over the lesioned hemisphere. This combination of impaired neural function and pathological suppression resonates with current views on the cause of the visual impairment in amblyopia. Here, we discuss how the rationale for using noninvasive brain stimulation in stroke rehabilitation can be applied to amblyopia, review a proof-of-principle study demonstrating that brain stimulation can temporarily improve amblyopic eye function, and propose future research avenues. PMID:22415915

  9. Therapy induces widespread reorganization of motor cortex after complete spinal transection that supports motor recovery.

    PubMed

    Ganzer, Patrick D; Manohar, Anitha; Shumsky, Jed S; Moxon, Karen A

    2016-05-01

    Reorganization of the somatosensory system and its relationship to functional recovery after spinal cord injury (SCI) has been well studied. However, little is known about the impact of SCI on organization of the motor system. Recent studies suggest that step-training paradigms in combination with spinal stimulation, either electrically or through pharmacology, are more effective than step training alone at inducing recovery and that reorganization of descending corticospinal circuits is necessary. However, simpler, passive exercise combined with pharmacotherapy has also shown functional improvement after SCI and reorganization of, at least, the sensory cortex. In this study we assessed the effect of passive exercise and serotonergic (5-HT) pharmacological therapies on behavioral recovery and organization of the motor cortex. We compared the effects of passive hindlimb bike exercise to bike exercise combined with daily injections of 5-HT agonists in a rat model of complete mid-thoracic transection. 5-HT pharmacotherapy combined with bike exercise allowed the animals to achieve unassisted weight support in the open field. This combination of therapies also produced extensive expansion of the axial trunk motor cortex into the deafferented hindlimb motor cortex and, surprisingly, reorganization within the caudal and even the rostral forelimb motor cortex areas. The extent of the axial trunk expansion was correlated to improvement in behavioral recovery of hindlimbs during open field locomotion, including weight support. From a translational perspective, these data suggest a rationale for developing and optimizing cost-effective, non-invasive, pharmacological and passive exercise regimes to promote plasticity that supports restoration of movement after spinal cord injury. PMID:26826448

  10. Therapy induces widespread reorganization of motor cortex after complete spinal transection that supports motor recovery.

    PubMed

    Ganzer, Patrick D; Manohar, Anitha; Shumsky, Jed S; Moxon, Karen A

    2016-05-01

    Reorganization of the somatosensory system and its relationship to functional recovery after spinal cord injury (SCI) has been well studied. However, little is known about the impact of SCI on organization of the motor system. Recent studies suggest that step-training paradigms in combination with spinal stimulation, either electrically or through pharmacology, are more effective than step training alone at inducing recovery and that reorganization of descending corticospinal circuits is necessary. However, simpler, passive exercise combined with pharmacotherapy has also shown functional improvement after SCI and reorganization of, at least, the sensory cortex. In this study we assessed the effect of passive exercise and serotonergic (5-HT) pharmacological therapies on behavioral recovery and organization of the motor cortex. We compared the effects of passive hindlimb bike exercise to bike exercise combined with daily injections of 5-HT agonists in a rat model of complete mid-thoracic transection. 5-HT pharmacotherapy combined with bike exercise allowed the animals to achieve unassisted weight support in the open field. This combination of therapies also produced extensive expansion of the axial trunk motor cortex into the deafferented hindlimb motor cortex and, surprisingly, reorganization within the caudal and even the rostral forelimb motor cortex areas. The extent of the axial trunk expansion was correlated to improvement in behavioral recovery of hindlimbs during open field locomotion, including weight support. From a translational perspective, these data suggest a rationale for developing and optimizing cost-effective, non-invasive, pharmacological and passive exercise regimes to promote plasticity that supports restoration of movement after spinal cord injury.

  11. The Importance of Premotor Cortex for Supporting Speech Production after Left Capsular-Putaminal Damage

    PubMed Central

    Bagdasaryan, Juliana; Jung, Dorit E.; Price, Cathy J.

    2014-01-01

    The left putamen is known to be important for speech production, but some patients with left putamen damage can produce speech remarkably well. We investigated the neural mechanisms that support this recovery by using a combination of techniques to identify the neural regions and pathways that compensate for loss of the left putamen during speech production. First, we used fMRI to identify the brain regions that were activated during reading aloud and picture naming in a patient with left putamen damage. This revealed that the patient had abnormally high activity in the left premotor cortex. Second, we used dynamic causal modeling of the patient's fMRI data to understand how this premotor activity influenced other speech production regions and whether the same neural pathway was used by our 24 neurologically normal control subjects. Third, we validated the compensatory relationship between putamen and premotor cortex by showing, in the control subjects, that lower connectivity through the putamen increased connectivity through premotor cortex. Finally, in a lesion-deficit analysis, we demonstrate the explanatory power of our fMRI results in new patients who had damage to the left putamen, left premotor cortex, or both. Those with damage to both had worse reading and naming scores. The results of our four-pronged approach therefore have clinical implications for predicting which patients are more or less likely to recover their speech after left putaminal damage. PMID:25339747

  12. [The mechanism of movement instrumental learning in a Hopfield environment in the feline motor cortex].

    PubMed

    Maĭorov, V I

    1998-01-01

    A model of the neuronal processes in the motor cortex is proposed, which provides the mechanism for instrumentalization (voluntary reproduction) of movements primarily evoked by stimulation of the parietal cortex. The main propositions of the model are as follows: the late NMDA-dependent response of the motor cortex neurons to stimulation of the parietal cortex reflects the discharges in the recurrent collaterals of the pyramidal cell axons; learning processes in the motor cortex are based on the long-term potentiation of the efficiency of the recurrent collaterals; the Hopfield's theory of neuronal nets is applied to the processes of motor learning in the cortex. The movement instrumentalization is viewed as the stable state formation in the collaterally linked neuronal structure; the voluntary reproduction of the previously learned movement in considered as the process of transition of the neuronal structure into the stable state. The data on acetylcholine and dopamine modulatory influences on the reactions of motor cortex neurons are discussed.

  13. Dorsal anterior cingulate cortex modulates supplementary motor area in coordinated unimanual motor behavior

    PubMed Central

    Asemi, Avisa; Ramaseshan, Karthik; Burgess, Ashley; Diwadkar, Vaibhav A.; Bressler, Steven L.

    2015-01-01

    Motor control is integral to all types of human behavior, and the dorsal Anterior Cingulate Cortex (dACC) is thought to play an important role in the brain network underlying motor control. Yet the role of the dACC in motor control is under-characterized. Here we aimed to characterize the dACC’s role in adolescent brain network interactions during a simple motor control task involving visually coordinated unimanual finger movements. Network interactions were assessed using both undirected and directed functional connectivity analysis of functional Magnetic Resonance Imaging (fMRI) Blood-Oxygen-Level-Dependent (BOLD) signals, comparing the task with a rest condition. The relation between the dACC and Supplementary Motor Area (SMA) was compared to that between the dACC and Primary Motor Cortex (M1). The directed signal from dACC to SMA was significantly elevated during motor control in the task. By contrast, the directed signal from SMA to dACC, both directed signals between dACC and M1, and the undirected functional connections of dACC with SMA and M1, all did not differ between task and rest. Undirected coupling of dACC with both SMA and dACC, and only the dACC-to-SMA directed signal, were significantly greater for a proactive than a reactive task condition, suggesting that dACC plays a role in motor control by maintaining stimulus timing expectancy. Overall, these results suggest that the dACC selectively modulates the SMA during visually coordinated unimanual behavior in adolescence. The role of the dACC as an important brain area for the mediation of task-related motor control may be in place in adolescence, continuing into adulthood. The task and analytic approach described here should be extended to the study of healthy adults to examine network profiles of the dACC during basic motor behavior. PMID:26089783

  14. Speech training alters tone frequency tuning in rat primary auditory cortex

    PubMed Central

    Engineer, Crystal T.; Perez, Claudia A.; Carraway, Ryan S.; Chang, Kevin Q.; Roland, Jarod L.; Kilgard, Michael P.

    2013-01-01

    Previous studies in both humans and animals have documented improved performance following discrimination training. This enhanced performance is often associated with cortical response changes. In this study, we tested the hypothesis that long-term speech training on multiple tasks can improve primary auditory cortex (A1) responses compared to rats trained on a single speech discrimination task or experimentally naïve rats. Specifically, we compared the percent of A1 responding to trained sounds, the responses to both trained and untrained sounds, receptive field properties of A1 neurons, and the neural discrimination of pairs of speech sounds in speech trained and naïve rats. Speech training led to accurate discrimination of consonant and vowel sounds, but did not enhance A1 response strength or the neural discrimination of these sounds. Speech training altered tone responses in rats trained on six speech discrimination tasks but not in rats trained on a single speech discrimination task. Extensive speech training resulted in broader frequency tuning, shorter onset latencies, a decreased driven response to tones, and caused a shift in the frequency map to favor tones in the range where speech sounds are the loudest. Both the number of trained tasks and the number of days of training strongly predict the percent of A1 responding to a low frequency tone. Rats trained on a single speech discrimination task performed less accurately than rats trained on multiple tasks and did not exhibit A1 response changes. Our results indicate that extensive speech training can reorganize the A1 frequency map, which may have downstream consequences on speech sound processing. PMID:24344364

  15. Early speech motor development: Cognitive and linguistic considerations

    PubMed Central

    Nip, Ignatius S. B.; Green, Jordan R.; Marx, David B.

    2009-01-01

    This longitudinal investigation examines developmental changes in orofacial movements occurring during the early stages of communication development. The goals were to identify developmental trends in early speech motor performance and to determine how these trends differ across orofacial behaviors thought to vary in cognitive and linguistic demands (i.e., silent spontaneous movements, babble, and first words). Movements of the lower lip and jaw were recorded using a three-dimensional motion capture system. Twenty-four infants were observed every three months, from 9 to 21 months of age. Jaw and lower lip speed, and lower lip range of movement increased with age. Spontaneous movements were consistently slower than words, whereas kinematic measures associated with babble did not differ from those associated with words. These findings suggest that speech movements may reflect linguistic and cognitive processing demands and that the continuity hypothesis between babbling and words may also be observed at the kinematic level. PMID:19439318

  16. Counterfactual thinking affects the excitability of the motor cortex.

    PubMed

    Vicario, Carmelo M; Rafal, Robert D; Avenanti, Alessio

    2015-04-01

    Evidence suggests that monetary reward and affective experiences induce activity in the cortical motor system. Nevertheless, it is unclear whether counterfactual thinking related to wrong choices that lead to monetary loss and regret affects motor excitability. Using transcranial magnetic stimulation (TMS) of the motor cortex, we measured corticospinal excitability of 2 groups of healthy humans asked to actively guess the winning key among two possible alternatives (choice group); or passively assist to monetary outcomes randomly selected by the computer program (follow group). Results document a selective increment of the corticospinal excitability when a monetary loss outcome followed the key selection (i.e., in the choice group). On the other hand, no change in corticospinal excitability was found when participants passively assisted to a monetary loss randomly selected by the computer program (i.e., follow group). These findings suggest that counterfactual thinking and the negative emotional experiences arising from choices causing monetary loss--i.e., "I would have won instead of lost money if I'd made a different choice"--are mapped in the motor system.

  17. Speech motor brain regions are differentially recruited during perception of native and foreign-accented phonemes for first and second language listeners

    PubMed Central

    Callan, Daniel; Callan, Akiko; Jones, Jeffery A.

    2014-01-01

    Brain imaging studies indicate that speech motor areas are recruited for auditory speech perception, especially when intelligibility is low due to environmental noise or when speech is accented. The purpose of the present study was to determine the relative contribution of brain regions to the processing of speech containing phonetic categories from one's own language, speech with accented samples of one's native phonetic categories, and speech with unfamiliar phonetic categories. To that end, native English and Japanese speakers identified the speech sounds /r/ and /l/ that were produced by native English speakers (unaccented) and Japanese speakers (foreign-accented) while functional magnetic resonance imaging measured their brain activity. For native English speakers, the Japanese accented speech was more difficult to categorize than the unaccented English speech. In contrast, Japanese speakers have difficulty distinguishing between /r/ and /l/, so both the Japanese accented and English unaccented speech were difficult to categorize. Brain regions involved with listening to foreign-accented productions of a first language included primarily the right cerebellum, left ventral inferior premotor cortex PMvi, and Broca's area. Brain regions most involved with listening to a second-language phonetic contrast (foreign-accented and unaccented productions) also included the left PMvi and the right cerebellum. Additionally, increased activity was observed in the right PMvi, the left and right ventral superior premotor cortex PMvs, and the left cerebellum. These results support a role for speech motor regions during the perception of foreign-accented native speech and for perception of difficult second-language phonetic contrasts. PMID:25232302

  18. Activity of motor cortex neurons during backward locomotion.

    PubMed

    Zelenin, P V; Deliagina, T G; Orlovsky, G N; Karayannidou, A; Stout, E E; Sirota, M G; Beloozerova, I N

    2011-06-01

    Forward walking (FW) and backward walking (BW) are two important forms of locomotion in quadrupeds. Participation of the motor cortex in the control of FW has been intensively studied, whereas cortical activity during BW has never been investigated. The aim of this study was to analyze locomotion-related activity of the motor cortex during BW and compare it with that during FW. For this purpose, we recorded activity of individual neurons in the cat during BW and FW. We found that the discharge frequency in almost all neurons was modulated in the rhythm of stepping during both FW and BW. However, the modulation patterns during BW and FW were different in 80% of neurons. To determine the source of modulating influences (forelimb controllers vs. hindlimb controllers), the neurons were recorded not only during quadrupedal locomotion but also during bipedal locomotion (with either forelimbs or hindlimbs walking), and their modulation patterns were compared. We found that during BW (like during FW), modulation in some neurons was determined by inputs from limb controllers of only one girdle, whereas the other neurons received inputs from both girdles. The combinations of inputs could depend on the direction of locomotion. Most often (in 51% of forelimb-related neurons and in 34% of the hindlimb-related neurons), the neurons received inputs only from their own girdle when this girdle was leading and from both girdles when this girdle was trailing. This reconfiguration of inputs suggests flexibility of the functional roles of individual cortical neurons during different forms of locomotion.

  19. Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving.

    PubMed

    Tachtsidis, Ilias; Leung, Terence S; Tisdall, Martin M; Devendra, Presheena; Smith, Martin; Delpy, David T; Elwell, Clare E

    2008-01-01

    We have previously reported changes in the concentrations of oxy-(delta[HbO2]) deoxy- (delta[HHb]) and total haemoglobin (delta[HbT] = delta[HbO2] + delta[HHb]) measured using near infrared spectroscopy (NIRS) over the frontal cortex (FC) during an anagram solving task. These changes were associated with a significant increase in both mean blood pressure (MBP) and heart rate (HR). The aim of this study was to investigate whether the changes in MBP previously recorded during an anagram solving task produces associated changes in scalp blood flow (flux) measured by laser Doppler and whether any changes are seen in NIRS haemodynamic measurements over a control region of the brain (motor cortex: MC). During the 4-Letter anagram task significant changes were observed in the delta[HbO2], delta[HHb] and delta[HbT] in both the frontal and motor cortex (n = 11, FC p < 0.01, MC p < 0.01). These changes were accompanied by significant changes in both MBP (n = 11, p < 0.01) and scalp flux (n = 9, p = 0.01). During the 7-Letter anagram task significant changes were observed in the delta[HbO2] and delta[HbT] (n = 11, FC p < 0.01, MC p < 0.01), which were accompanied by significant changes in both MBP (n = 11, p = 0.05) and flux (n = 9, p = 0.05). The task-related changes seen in MBP and flux in this study appear to contribute to the changes in the NIRS signals over both the activated and control regions of the cortex.

  20. Abnormal motor cortex excitability during linguistic tasks in adductor-type spasmodic dysphonia.

    PubMed

    Suppa, A; Marsili, L; Giovannelli, F; Di Stasio, F; Rocchi, L; Upadhyay, N; Ruoppolo, G; Cincotta, M; Berardelli, A

    2015-08-01

    In healthy subjects (HS), transcranial magnetic stimulation (TMS) applied during 'linguistic' tasks discloses excitability changes in the dominant hemisphere primary motor cortex (M1). We investigated 'linguistic' task-related cortical excitability modulation in patients with adductor-type spasmodic dysphonia (ASD), a speech-related focal dystonia. We studied 10 ASD patients and 10 HS. Speech examination included voice cepstral analysis. We investigated the dominant/non-dominant M1 excitability at baseline, during 'linguistic' (reading aloud/silent reading/producing simple phonation) and 'non-linguistic' tasks (looking at non-letter strings/producing oral movements). Motor evoked potentials (MEPs) were recorded from the contralateral hand muscles. We measured the cortical silent period (CSP) length and tested MEPs in HS and patients performing the 'linguistic' tasks with different voice intensities. We also examined MEPs in HS and ASD during hand-related 'action-verb' observation. Patients were studied under and not-under botulinum neurotoxin-type A (BoNT-A). In HS, TMS over the dominant M1 elicited larger MEPs during 'reading aloud' than during the other 'linguistic'/'non-linguistic' tasks. Conversely, in ASD, TMS over the dominant M1 elicited increased-amplitude MEPs during 'reading aloud' and 'syllabic phonation' tasks. CSP length was shorter in ASD than in HS and remained unchanged in both groups performing 'linguistic'/'non-linguistic' tasks. In HS and ASD, 'linguistic' task-related excitability changes were present regardless of the different voice intensities. During hand-related 'action-verb' observation, MEPs decreased in HS, whereas in ASD they increased. In ASD, BoNT-A improved speech, as demonstrated by cepstral analysis and restored the TMS abnormalities. ASD reflects dominant hemisphere excitability changes related to 'linguistic' tasks; BoNT-A returns these excitability changes to normal.

  1. Motor Speech Disorders: Where Will We Be in 10 Years?

    PubMed

    Duffy, Joseph R

    2016-08-01

    Research and practice in the area of motor speech disorders (MSDs) will change in the next 10 years, most likely in evolutionary rather revolutionary ways. We are likely to see an increase in the understanding of the underpinnings of MSDs and refinements in assessment and diagnosis. Management approaches probably will be refined, as will how outcomes are measured. The evidence base for treatment efficacy will grow. Technology and changes in the health care system will have strong and overarching, but not easily predicted, influences. This article provides a broad overview of these and related issues, with some cautious predictions. PMID:27232096

  2. Different motor learning effects on excitability changes of motor cortex in muscle contraction state.

    PubMed

    Sugawara, Kenichi; Tanabe, Shigeo; Suzuki, Tomotaka; Higashi, Toshio

    2013-09-01

    We aimed to investigate whether motor learning induces different excitability changes in the human motor cortex (M1) between two different muscle contraction states (before voluntary contraction [static] or during voluntary contraction [dynamic]). For the same, using motor evoked potentials (MEPs) obtained by transcranial magnetic stimulation (TMS), we compared excitability changes during these two states after pinch-grip motor skill learning. The participants performed a force output tracking task by pinch grip on a computer screen. TMS was applied prior to the pinch grip (static) and after initiation of voluntary contraction (dynamic). MEPs of the following muscles were recorded: first dorsal interosseous (FDI), thenar muscle (Thenar), flexor carpi radialis (FCR), and extensor carpi radialis (ECR) muscles. During both the states, motor skill training led to significant improvement of motor performance. During the static state, MEPs of the FDI muscle were significantly facilitated after motor learning; however, during the dynamic state, MEPs of the FDI, Thenar, and FCR muscles were significantly decreased. Based on the results of this study, we concluded that excitability changes in the human M1 are differentially influenced during different voluntary contraction states (static and dynamic) after motor learning.

  3. Reduced motor cortex activity during movement preparation following a period of motor skill practice.

    PubMed

    Wright, David J; Holmes, Paul; Di Russo, Francesco; Loporto, Michela; Smith, Dave

    2012-01-01

    Experts in a skill produce movement-related cortical potentials (MRCPs) of smaller amplitude and later onset than novices. This may indicate that, following long-term training, experts require less effort to plan motor skill performance. However, no longitudinal evidence exists to support this claim. To address this, EEG was used to study the effect of motor skill training on cortical activity related to motor planning. Ten non-musicians took part in a 5-week training study learning to play guitar. At week 1, the MRCP was recorded from motor areas whilst participants played the G Major scale. Following a period of practice of the scale, the MRCP was recorded again at week 5. Results showed that the amplitude of the later pre-movement components were smaller at week 5 compared to week 1. This may indicate that, following training, less activity at motor cortex sites is involved in motor skill preparation. This supports claims for a more efficient motor preparation following motor skill training. PMID:23251647

  4. Sublexical properties of spoken words modulate activity in Broca's area but not superior temporal cortex: implications for models of speech recognition.

    PubMed

    Vaden, Kenneth I; Piquado, Tepring; Hickok, Gregory

    2011-10-01

    Many models of spoken word recognition posit that the acoustic stream is parsed into phoneme level units, which in turn activate larger representations [McClelland, J. L., & Elman, J. L. The TRACE model of speech perception. Cognitive Psychology, 18, 1-86, 1986], whereas others suggest that larger units of analysis are activated without the need for segmental mediation [Greenberg, S. A multitier theoretical framework for understanding spoken language. In S. Greenberg & W. A. Ainsworth (Eds.), Listening to speech: An auditory perspective (pp. 411-433). Mahwah, NJ: Erlbaum, 2005; Klatt, D. H. Speech perception: A model of acoustic-phonetic analysis and lexical access. Journal of Phonetics, 7, 279-312, 1979; Massaro, D. W. Preperceptual images, processing time, and perceptual units in auditory perception. Psychological Review, 79, 124-145, 1972]. Identifying segmental effects in the brain's response to speech may speak to this question. For example, if such effects were localized to relatively early processing stages in auditory cortex, this would support a model of speech recognition in which segmental units are explicitly parsed out. In contrast, segmental processes that occur outside auditory cortex may indicate that alternative models should be considered. The current fMRI experiment manipulated the phonotactic frequency (PF) of words that were auditorily presented in short lists while participants performed a pseudoword detection task. PF is thought to modulate networks in which phoneme level units are represented. The present experiment identified activity in the left inferior frontal gyrus that was positively correlated with PF. No effects of PF were found in temporal lobe regions. We propose that the observed phonotactic effects during speech listening reflect the strength of the association between acoustic speech patterns and articulatory speech codes involving phoneme level units. On the basis of existing lesion evidence, we interpret the function of this

  5. Maturation of human auditory cortex: implications for speech perception.

    PubMed

    Moore, Jean K

    2002-05-01

    This project traced the maturation of the human auditory cortex from midgestation to young adulthood, using immunostaining of axonal neurofilaments to determine the time of onset of rapid conduction. The study identified 3 developmental periods, each characterized by maturation of a different axonal system. During the perinatal period (3rd trimester to 4th postnatal month), neurofilament expression occurs only in axons of the marginal layer. These axons drive the structural and functional development of cells in the deeper cortical layers, but do not relay external stimuli. In early childhood (6 months to 5 years), maturing thalamocortical afferents to the deeper cortical layers are the first source of input to the auditory cortex from lower levels of the auditory system. During later childhood (5 to 12 years), maturation of commissural and association axons in the superficial cortical layers allows communication between different subdivisions of the auditory cortex, thus forming a basis for more complex cortical processing of auditory stimuli. PMID:12018354

  6. Modeling the motor cortex: Optimality, recurrent neural networks, and spatial dynamics.

    PubMed

    Tanaka, Hirokazu

    2016-03-01

    Specialization of motor function in the frontal lobe was first discovered in the seminal experiments by Fritsch and Hitzig and subsequently by Ferrier in the 19th century. It is, however, ironical that the functional and computational role of the motor cortex still remains unresolved. A computational understanding of the motor cortex equals to understanding what movement variables the motor neurons represent (movement representation problem) and how such movement variables are computed through the interaction with anatomically connected areas (neural computation problem). Electrophysiological experiments in the 20th century demonstrated that the neural activities in motor cortex correlated with a number of motor-related and cognitive variables, thereby igniting the controversy over movement representations in motor cortex. Despite substantial experimental efforts, the overwhelming complexity found in neural activities has impeded our understanding of how movements are represented in the motor cortex. Recent progresses in computational modeling have rekindled this controversy in the 21st century. Here, I review the recent developments in computational models of the motor cortex, with a focus on optimality models, recurrent neural network models and spatial dynamics models. Although individual models provide consistent pictures within their domains, our current understanding about functions of the motor cortex is still fragmented.

  7. Non-Speech Oro-Motor Exercise Use in Acquired Dysarthria Management: Regimes and Rationales

    ERIC Educational Resources Information Center

    Mackenzie, Catherine; Muir, Margaret; Allen, Carolyn

    2010-01-01

    Background: Non-speech oro-motor exercises (NSOMExs) are described in speech and language therapy manuals and are thought to be much used in acquired dysarthria intervention, though there is no robust evidence of an influence on speech outcome. Opinions differ as to whether, and for which dysarthria presentations, NSOMExs are appropriate. Aims:…

  8. The Influence of Psycholinguistic Variables on Articulatory Errors in Naming in Progressive Motor Speech Degeneration

    ERIC Educational Resources Information Center

    Code, Chris; Tree, Jeremy; Ball, Martin

    2011-01-01

    We describe an analysis of speech errors on a confrontation naming task in a man with progressive speech degeneration of 10-year duration from Pick's disease. C.S. had a progressive non-fluent aphasia together with a motor speech impairment and early assessment indicated some naming impairments. There was also an absence of significant…

  9. Using TMS to study the role of the articulatory motor system in speech perception

    PubMed Central

    Möttönen, Riikka; Watkins, Kate E.

    2011-01-01

    Background: The ability to communicate using speech is a remarkable skill, which requires precise coordination of articulatory movements and decoding of complex acoustic signals. According to the traditional view, speech production and perception rely on motor and auditory brain areas, respectively. However, there is growing evidence that auditory-motor circuits support both speech production and perception. Aims: In this article we provide a review of how transcranial magnetic stimulation (TMS) has been used to investigate the excitability of the motor system during listening to speech and the contribution of the motor system to performance in various speech perception tasks. We also discuss how TMS can be used in combination with brain-imaging techniques to study interactions between motor and auditory systems during speech perception. Main contribution: TMS has proven to be a powerful tool to investigate the role of the articulatory motor system in speech perception. Conclusions: TMS studies have provided support for the view that the motor structures that control the movements of the articulators contribute not only to speech production but also to speech perception. PMID:22942513

  10. Laterality affects spontaneous recovery of contralateral hand motor function following motor cortex injury in rhesus monkeys.

    PubMed

    Darling, Warren G; Helle, Nicole; Pizzimenti, Marc A; Rotella, Diane L; Hynes, Stephanie M; Ge, Jizhi; Stilwell-Morecraft, Kimberly S; Morecraft, Robert J

    2013-07-01

    The purpose of this study was to test whether brain laterality influences spontaneous recovery of hand motor function after controlled brain injuries to arm areas of M1 and lateral premotor cortex (LPMC) of the hemisphere contralateral to the preferred hand in rhesus monkeys. We hypothesized that monkeys with stronger hand preference would exhibit poorer recovery of skilled hand use after such brain injury. Degree of handedness was assessed using a standard dexterity board task in which subjects could use either hand to retrieve small food pellets. Fine hand/digit motor function was assessed using a modified dexterity board before and after the M1 and LPMC lesions in ten monkeys. We found a strong negative relationship between the degree of handedness and the recovery of manipulation skill, demonstrating that higher hand preference was associated with poorer recovery of hand fine motor function. We also observed that monkeys with larger lesions within M1 and LPMC had greater initial impairment of manipulation and poorer recovery of reaching skill. We conclude that monkeys with a stronger hand preference are likely to show poorer recovery of contralesional hand fine motor skill after isolated brain lesions affecting the lateral frontal motor areas. These data may be extended to suggest that humans who exhibit weak hand dominance, and perhaps individuals who use both hands for fine motor tasks, may have a more favorable potential for recovery after a unilateral stroke or brain injury affecting the lateral cortical motor areas than individuals with a high degree of hand dominance.

  11. Parameter estimation of labial movements in speech production: implications for speech motor control.

    PubMed

    Hinton, V A; Robey, R R

    1995-08-01

    Central to theories of speech motor control are estimates on magnitudes of lip activity expressed in terms of central tendency, variability, and interrelatedness. In fact, the tenability of each of two competing theories of motor control for speech production rests solely on the observation of the predicted direction of the correlation coefficient (one positive and one negative) that indexes the relationship of concurrent lip activity. Each theory, however, predicts a relationship that is the complete opposite of the relationship predicted by the other. That is, one theory proposes that the labial system functions on the basis of complementary variation, whereas the other assumes positive covariation, or complementary modulation. In apparent contradiction, each prediction has been observed under laboratory conditions. The explanation for this apparent contradiction resides in the small sample sizes upon which each estimate was based. The minimum number of observations that are necessary to achieve accurate estimates of lip displacement parameters has remained unclear. This paper addresses three fundamental questions: (a) how many observations of on-task behavior are necessary to accurately estimate mean and variance values for the magnitude of upper lip displacement in a speech production experiment?, (b) what is the analogous number of observations for estimating the same values of lower lip displacement (together with the mandible) in the same context?, and (c) how many observations are necessary to accurately estimate the correlation coefficient indexing the relationship of lip displacements during the production of speech? Answers to these questions are accomplished through a review of estimator properties, a Monte Carlo computer simulation, and through laboratory observations.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Concurrent TMS to the primary motor cortex augments slow motor learning.

    PubMed

    Narayana, Shalini; Zhang, Wei; Rogers, William; Strickland, Casey; Franklin, Crystal; Lancaster, Jack L; Fox, Peter T

    2014-01-15

    Transcranial magnetic stimulation (TMS) has shown promise as a treatment tool, with one FDA approved use. While TMS alone is able to up- (or down-) regulate a targeted neural system, we argue that TMS applied as an adjuvant is more effective for repetitive physical, behavioral and cognitive therapies, that is, therapies which are designed to alter the network properties of neural systems through Hebbian learning. We tested this hypothesis in the context of a slow motor learning paradigm. Healthy right-handed individuals were assigned to receive 5 Hz TMS (TMS group) or sham TMS (sham group) to the right primary motor cortex (M1) as they performed daily motor practice of a digit sequence task with their non-dominant hand for 4 weeks. Resting cerebral blood flow (CBF) was measured by H2(15)O PET at baseline and after 4 weeks of practice. Sequence performance was measured daily as the number of correct sequences performed, and modeled using a hyperbolic function. Sequence performance increased significantly at 4 weeks relative to baseline in both groups. The TMS group had a significant additional improvement in performance, specifically, in the rate of skill acquisition. In both groups, an improvement in sequence timing and transfer of skills to non-trained motor domains was also found. Compared to the sham group, the TMS group demonstrated increases in resting CBF specifically in regions known to mediate skill learning namely, the M1, cingulate cortex, putamen, hippocampus, and cerebellum. These results indicate that TMS applied concomitantly augments behavioral effects of motor practice, with corresponding neural plasticity in motor sequence learning network. These findings are the first demonstration of the behavioral and neural enhancing effects of TMS on slow motor practice and have direct application in neurorehabilitation where TMS could be applied in conjunction with physical therapy.

  13. Concurrent TMS to the primary motor cortex augments slow motor learning

    PubMed Central

    Narayana, Shalini; Zhang, Wei; Rogers, William; Strickland, Casey; Franklin, Crystal; Lancaster, Jack L.; Fox, Peter T.

    2013-01-01

    Transcranial magnetic stimulation (TMS) has shown promise as a treatment tool, with one FDA approved use. While TMS alone is able to up- (or down-) regulate a targeted neural system, we argue that TMS applied as an adjuvant is more effective for repetitive physical, behavioral and cognitive therapies, that is, therapies which are designed to alter the network properties of neural systems through Hebbian learning. We tested this hypothesis in the context of a slow motor learning paradigm. Healthy right-handed individuals were assigned to receive 5 Hz TMS (TMS group) or sham TMS (sham group) to the right primary motor cortex (M1) as they performed daily motor practice of a digit sequence task with their non-dominant hand for 4 weeks. Resting cerebral blood flow (CBF) was measured by H215O PET at baseline and after 4 weeks of practice. Sequence performance was measured daily as the number of correct sequences performed, and modeled using a hyperbolic function. Sequence performance increased significantly at 4 weeks relative to baseline in both groups. The TMS group had a significant additional improvement in performance, specifically, in the rate of skill acquisition. In both groups, an improvement in sequence timing and transfer of skills to non-trained motor domains was also found. Compared to the sham group, the TMS group demonstrated increases in resting CBF specifically in regions known to mediate skill learning namely, the M1, cingulate cortex, putamen, hippocampus, and cerebellum. These results indicate that TMS applied concomitantly augments behavioral effects of motor practice, with corresponding neural plasticity in motor sequence learning network. These findings are the first demonstration of the behavioral and neural enhancing effects of TMS on slow motor practice and have direct application in neurorehabilitation where TMS could be applied in conjunction with physical therapy. PMID:23867557

  14. The alluring but misleading analogy between mirror neurons and the motor theory of speech.

    PubMed

    Holt, Lori L; Lotto, Andrew J

    2014-04-01

    Speech is commonly claimed to relate to mirror neurons because of the alluring surface analogy of mirror neurons to the Motor Theory of speech perception, which posits that perception and production draw upon common motor-articulatory representations. We argue that the analogy fails and highlight examples of systems-level developmental approaches that have been more fruitful in revealing perception-production associations.

  15. Perceptual characteristics of Parkinsonian speech: a comparison of the pharmacological effects of levodopa across speech and non-speech motor systems.

    PubMed

    Plowman-Prine, E K; Okun, M S; Sapienza, C M; Shrivastav, R; Fernandez, H H; Foote, K D; Ellis, C; Rodriguez, A D; Burkhead, L M; Rosenbek, J C

    2009-01-01

    The purpose of this study was to: (1) define perceptual speech characteristics of idiopathic Parkinson disease (IPD) across 35 speech dimensions adapted from Darley et al. [19] and grouped under six speech-sign clusters (respiration, phonation, resonance, articulation, prosody and rate); (2) examine the effects of levodopa on the 35 perceptual speech dimensions and speech-sign clusters; and (3) to compare the relative effectiveness of levodopa on global motor functioning vs. speech production. Sixteen patients with IPD read the 'Grandfather Passage' both 'on' and 'off' levodopa. Three blinded speech-language pathologists performed perceptual speech analyses using a seven-point scale. The diagnosis of IPD was made by a movement disorders fellowship trained neurologist who applied UK Brain bank criteria and administered the Unified Parkinson Disease Rating Scale. Concordant with previous studies, the results of this experiment indicated that IPD disrupted multiple speech production subsystems, with prosody being the most severely affected domain. The perceptual dimensions that were most severely affected included: (1) sound imprecision; (2) mono-loudness; (3) mono-pitch; (4) reduced stress and (5) harsh voice. No significant differences were obtained between medicated states ('on'/'off') for any of the 35 individual speech dimensions and speech-sign clusters. Global motor function significantly improved following dopaminergic medications.

  16. Auditory-Motor Learning during Speech Production in 9-11-Year-Old Children

    PubMed Central

    Shiller, Douglas M.; Gracco, Vincent L.; Rvachew, Susan

    2010-01-01

    Background Hearing ability is essential for normal speech development, however the precise mechanisms linking auditory input and the improvement of speaking ability remain poorly understood. Auditory feedback during speech production is believed to play a critical role by providing the nervous system with information about speech outcomes that is used to learn and subsequently fine-tune speech motor output. Surprisingly, few studies have directly investigated such auditory-motor learning in the speech production of typically developing children. Methodology/Principal Findings In the present study, we manipulated auditory feedback during speech production in a group of 9–11-year old children, as well as in adults. Following a period of speech practice under conditions of altered auditory feedback, compensatory changes in speech production and perception were examined. Consistent with prior studies, the adults exhibited compensatory changes in both their speech motor output and their perceptual representations of speech sound categories. The children exhibited compensatory changes in the motor domain, with a change in speech output that was similar in magnitude to that of the adults, however the children showed no reliable compensatory effect on their perceptual representations. Conclusions The results indicate that 9–11-year-old children, whose speech motor and perceptual abilities are still not fully developed, are nonetheless capable of auditory-feedback-based sensorimotor adaptation, supporting a role for such learning processes in speech motor development. Auditory feedback may play a more limited role, however, in the fine-tuning of children's perceptual representations of speech sound categories. PMID:20886033

  17. Modulation of the ∽20-Hz motor-cortex rhythm to passive movement and tactile stimulation

    PubMed Central

    Parkkonen, Eeva; Laaksonen, Kristina; Piitulainen, Harri; Parkkonen, Lauri; Forss, Nina

    2015-01-01

    Background Integration of afferent somatosensory input with motor-cortex output is essential for accurate movements. Prior studies have shown that tactile input modulates motor-cortex excitability, which is reflected in the reactivity of the ∽20-Hz motor-cortex rhythm. ∽20-Hz rebound is connected to inhibition or deactivation of motor cortex whereas suppression has been associated with increased motor cortex activity. Although tactile sense carries important information for controlling voluntary actions, proprioception likely provides the most essential feedback for motor control. Methods To clarify how passive movement modulates motor-cortex excitability, we studied with magnetoencephalography (MEG) the amplitudes and peak latencies of suppression and rebound of the ∽20-Hz rhythm elicited by tactile stimulation and passive movement of right and left index fingers in 22 healthy volunteers. Results Passive movement elicited a stronger and more robust ∽20-Hz rebound than tactile stimulation. In contrast, the suppression amplitudes did not differ between the two stimulus types. Conclusion Our findings suggest that suppression and rebound represent activity of two functionally distinct neuronal populations. The ∽20-Hz rebound to passive movement could be a suitable tool to study the functional state of the motor cortex both in healthy subjects and in patients with motor disorders. PMID:25874163

  18. Disrupting the ipsilateral motor cortex interferes with training of a complex motor task in older adults.

    PubMed

    Zimerman, Máximo; Heise, Kirstin-F; Gerloff, Christian; Cohen, Leonardo G; Hummel, Friedhelm C

    2014-04-01

    Performance of unimanual movements is associated with bihemispheric activity in the motor cortex in old adults. However, the causal functional role of the ipsilateral MC (iMC) for motor control is still not completely known. Here, the behavioral consequences of interference of the iMC during training of a complex motor skill were tested. Healthy old (58-85 years) and young volunteers (22-35 years) were tested in a double-blind, cross-over, sham-controlled design. Participants attended 2 different study arms with either cathodal transcranial direct current stimulation (ctDCS) or sham concurrent with training. Motor performance was evaluated before, during, 90 min, and 24 h after training. During training, a reduced slope of performance with ctDCS relative to sham was observed in old compared with young (F = 5.8, P = 0.02), with a decrease of correctly rehearsed sequences, an effect that was evident even after 2 consecutive retraining periods without intervention. Furthermore, the older the subject, the more prominent was the disruptive effect of ctDCS (R(2) = 0.50, P = 0.01). These data provide direct evidence for a causal functional link between the iMC and motor skill acquisition in old subjects pointing toward the concept that the recruitment of iMC in old is an adaptive process in response to age-related declines in motor functions.

  19. Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice

    PubMed Central

    Hasan, Mazahir T.; Hernández-González, Samuel; Dogbevia, Godwin; Treviño, Mario; Bertocchi, Ilaria; Gruart, Agnès; Delgado-García, José M.

    2013-01-01

    The primary motor cortex has an important role in the precise execution of learned motor responses. During motor learning, synaptic efficacy between sensory and primary motor cortical neurons is enhanced, possibly involving long-term potentiation and N-methyl-D-aspartate (NMDA)-specific glutamate receptor function. To investigate whether NMDA receptor in the primary motor cortex can act as a coincidence detector for activity-dependent changes in synaptic strength and associative learning, here we generate mice with deletion of the Grin1 gene, encoding the essential NMDA receptor subunit 1 (GluN1), specifically in the primary motor cortex. The loss of NMDA receptor function impairs primary motor cortex long-term potentiation in vivo. Importantly, it impairs the synaptic efficacy between the primary somatosensory and primary motor cortices and significantly reduces classically conditioned eyeblink responses. Furthermore, compared with wild-type littermates, mice lacking primary motor cortex show slower learning in Skinner-box tasks. Thus, primary motor cortex NMDA receptors are necessary for activity-dependent synaptic strengthening and associative learning. PMID:23978820

  20. Phase-locked responses to speech in human auditory cortex are enhanced during comprehension.

    PubMed

    Peelle, Jonathan E; Gross, Joachim; Davis, Matthew H

    2013-06-01

    A growing body of evidence shows that ongoing oscillations in auditory cortex modulate their phase to match the rhythm of temporally regular acoustic stimuli, increasing sensitivity to relevant environmental cues and improving detection accuracy. In the current study, we test the hypothesis that nonsensory information provided by linguistic content enhances phase-locked responses to intelligible speech in the human brain. Sixteen adults listened to meaningful sentences while we recorded neural activity using magnetoencephalography. Stimuli were processed using a noise-vocoding technique to vary intelligibility while keeping the temporal acoustic envelope consistent. We show that the acoustic envelopes of sentences contain most power between 4 and 7 Hz and that it is in this frequency band that phase locking between neural activity and envelopes is strongest. Bilateral oscillatory neural activity phase-locked to unintelligible speech, but this cerebro-acoustic phase locking was enhanced when speech was intelligible. This enhanced phase locking was left lateralized and localized to left temporal cortex. Together, our results demonstrate that entrainment to connected speech does not only depend on acoustic characteristics, but is also affected by listeners' ability to extract linguistic information. This suggests a biological framework for speech comprehension in which acoustic and linguistic cues reciprocally aid in stimulus prediction.

  1. Motor Cortex Stimulation for Pain Relief: Do Corollary Discharges Play a Role?

    PubMed Central

    Brasil-Neto, Joaquim P.

    2016-01-01

    Both invasive and non-invasive motor cortex stimulation techniques have been successfully employed in the treatment of chronic pain, but the precise mechanism of action of such treatments is not fully understood. It has been hypothesized that a mismatch of normal interaction between motor intention and sensory feedback may result in central pain. Sensory feedback may come from peripheral nerves, vision and also from corollary discharges originating from the motor cortex itself. Therefore, a possible mechanism of action of motor cortex stimulation might be corollary discharge reinforcement, which could counterbalance sensory feedback deficiency. In other instances, primary deficiency in the production of corollary discharges by the motor cortex might be the culprit and stimulation of cortical motor areas might then be beneficial by enhancing production of such discharges. Here we review evidence for a possible role of motor cortex corollary discharges upon both the pathophysiology and the response to motor cortex stimulation of different types of chronic pain. We further suggest that the right dorsolateral prefrontal cortex (DLPC), thought to constantly monitor incongruity between corollary discharges, vision and proprioception, might be an interesting target for non-invasive neuromodulation in cases of chronic neuropathic pain. PMID:27445763

  2. Testing the Role of Dorsal Premotor Cortex in Auditory-Motor Association Learning Using Transcranical Magnetic Stimulation (TMS)

    PubMed Central

    Lega, Carlotta; Stephan, Marianne A.; Zatorre, Robert J.; Penhune, Virginia

    2016-01-01

    Interactions between the auditory and the motor systems are critical in music as well as in other domains, such as speech. The premotor cortex, specifically the dorsal premotor cortex (dPMC), seems to play a key role in auditory-motor integration, and in mapping the association between a sound and the movement used to produce it. In the present studies we tested the causal role of the dPMC in learning and applying auditory-motor associations using 1 Hz repetitive Transcranical Magnetic Stimulation (rTMS). In this paradigm, non-musicians learn a set of auditory-motor associations through melody training in two contexts: first when the sound to key-press mapping was in a conventional sequential order (low to high tones mapped onto keys from left to right), and then when it was in a novel scrambled order. Participant’s ability to match the four pitches to four computer keys was tested before and after the training. In both experiments, the group that received 1 Hz rTMS over the dPMC showed no significant improvement on the pitch-matching task following training, whereas the control group (who received rTMS to visual cortex) did. Moreover, in Experiment 2 where the pitch-key mapping was novel, rTMS over the dPMC also interfered with learning. These findings suggest that rTMS over dPMC disturbs the formation of auditory-motor associations, especially when the association is novel and must be learned rather explicitly. The present results contribute to a better understanding of the role of dPMC in auditory-motor integration, suggesting a critical role of dPMC in learning the link between an action and its associated sound. PMID:27684369

  3. Contributions of the cerebellum and the motor cortex to acquisition and retention of motor memories

    PubMed Central

    Herzfeld, David J.; Pastor, Damien; Haith, Adrian M.; Rossetti, Yves; Shadmehr, Reza; O’Shea, Jacinta

    2014-01-01

    We investigated the contributions of the cerebellum and the motor cortex (M1) to acquisition and retention of human motor memories in a force field reaching task. We found that anodal transcranial direct current stimulation (tDCS) of the cerebellum, a technique that is thought to increase neuronal excitability, increased the ability to learn from error and form an internal model of the field, while cathodal cerebellar stimulation reduced this error-dependent learning. In addition, cathodal cerebellar stimulation disrupted the ability to respond to error within a reaching movement, reducing the gain of the sensory-motor feedback loop. By contrast, anodal M1 stimulation had no significant effects on these variables. During sham stimulation, early in training the acquired motor memory exhibited rapid decay in error-clamp trials. With further training the rate of decay decreased, suggesting that with training the motor memory was transformed from a labile to a more stable state. Surprisingly, neither cerebellar nor M1 stimulation altered these decay patterns. Participants returned 24 hours later and were re-tested in error-clamp trials without stimulation. The cerebellar group that had learned the task with cathodal stimulation exhibited significantly impaired retention, and retention was not improved by M1 anodal stimulation. In summary, non-invasive cerebellar stimulation resulted in polarity-dependent up- or down-regulation of error-dependent motor learning. In addition, cathodal cerebellar stimulation during acquisition impaired the ability to retain the motor memory overnight. Thus, in the force field task we found a critical role for the cerebellum in both formation of motor memory and its retention. PMID:24816533

  4. Crosslinguistic Application of English-Centric Rhythm Descriptors in Motor Speech Disorders

    PubMed Central

    Liss, Julie M.; Utianski, Rene; Lansford, Kaitlin

    2014-01-01

    Background Rhythmic disturbances are a hallmark of motor speech disorders, in which the motor control deficits interfere with the outward flow of speech and by extension speech understanding. As the functions of rhythm are language-specific, breakdowns in rhythm should have language-specific consequences for communication. Objective The goals of this paper are to (i) provide a review of the cognitive- linguistic role of rhythm in speech perception in a general sense and crosslinguistically; (ii) present new results of lexical segmentation challenges posed by different types of dysarthria in American English, and (iii) offer a framework for crosslinguistic considerations for speech rhythm disturbances in the diagnosis and treatment of communication disorders associated with motor speech disorders. Summary This review presents theoretical and empirical reasons for considering speech rhythm as a critical component of communication deficits in motor speech disorders, and addresses the need for crosslinguistic research to explore language-universal versus language-specific aspects of motor speech disorders. PMID:24157596

  5. Effect of tactile stimulation on primary motor cortex excitability during action observation combined with motor imagery.

    PubMed

    Tanaka, Megumi; Kubota, Shinji; Onmyoji, Yusuke; Hirano, Masato; Uehara, Kazumasa; Morishita, Takuya; Funase, Kozo

    2015-07-23

    We aimed to investigate the effects of the tactile stimulation to an observer's fingertips at the moment that they saw an object being pinched by another person on the excitability of observer's primary motor cortex (M1) using transcranial magnetic stimulation (TMS). In addition, the above effects were also examined during action observation combined with the motor imagery. Motor evoked potentials (MEP) were evoked from the subjects' right first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles. Electrical stimulation (ES) inducing tactile sensation was delivered to the subjects' first and second fingertips at the moment of pinching action performed by another person. Although neither the ES nor action observation alone had significant effects on the MEP amplitude of the FDI or ADM, the FDI MEP amplitude which acts as the prime mover during pinching was reduced when ES and action observation were combined; however, no such changes were seen in the ADM. Conversely, that reduced FDI MEP amplitude was increased during the motor imagery. These results indicated that the M1 excitability during the action observation of pinching action combined with motor imagery could be enhanced by the tactile stimulation delivered to the observer's fingertips at the moment corresponding to the pinching being observed.

  6. Development of speech motor control: lip movement variability.

    PubMed

    Schötz, Susanne; Frid, Johan; Löfqvist, Anders

    2013-06-01

    This study examined variability of lip movements across repetitions of the same utterance as a function of age in Swedish speakers. The specific purpose was to extend earlier findings by examining variability in both phase and amplitude. Subjects were 50 typically developed native Swedish children and adults (28 females, 22 males, aged 5 to 31 yr). Lip movements were recorded during 15 to 20 repetitions of a short Swedish phrase using three-dimensional articulography. After correction for head movements, the kinematic records were expressed in a maxilla-based coordinate system. Movement onset and offset of the utterance were identified using kinematic landmarks. The Euclidean distance between receivers on the upper and lower lips was calculated and subjected to functional data analysis to assess both phase and amplitude variability. Results show a decrease in both indices as a function of age, with a greater reduction of amplitude variability. There was no difference between males and females for either index. The two indices were moderately correlated with each other, suggesting that they capture different aspects of speech production. Utterance duration also decreased with age, but variability was unrelated to duration. The standard deviation of utterance duration also decreased with age. The present results thus suggest that age related changes in speech motor control continue up until 30 years of age.

  7. Rat whisker motor cortex is subdivided into sensory-input and motor-output areas

    PubMed Central

    Smith, Jared B.; Alloway, Kevin D.

    2013-01-01

    Rodent whisking is an exploratory behavior that can be modified by sensory feedback. Consistent with this, many whisker-sensitive cortical regions project to agranular motor [motor cortex (MI)] cortex, but the relative topography of these afferent projections has not been established. Intracortical microstimulation (ICMS) evokes whisker movements that are used to map the functional organization of MI, but no study has compared the whisker-related inputs to MI with the ICMS sites that evoke whisker movements. To elucidate this relationship, anterograde tracers were placed in posterior parietal cortex (PPC) and in the primary somatosensory (SI) and secondary somatosensory (SII) cortical areas so that their labeled projections to MI could be analyzed with respect to ICMS sites that evoke whisker movements. Projections from SI and SII terminate in a narrow zone that marks the transition between the medial agranular (AGm) and lateral agranular (AGl) cortical areas, but PPC projects more medially and terminates in AGm proper. Paired recordings of MI neurons indicate that the region between AGm and AGl is highly responsive to whisker deflections, but neurons in AGm display negligible responses to whisker stimulation. By contrast, AGm microstimulation is more effective in evoking whisker movements than microstimulation of the transitional region between AGm and AGl. The AGm region was also found to contain a larger concentration of corticotectal neurons, which could convey whisker-related information to the facial nucleus. These results indicate that rat whisker MI is comprised of at least two functionally distinct subregions: a sensory processing zone in the transitional region between AGm and AGl, and a motor-output region located more medially in AGm proper. PMID:23372545

  8. Lipreading and covert speech production similarly modulate human auditory-cortex responses to pure tones

    PubMed Central

    Kauramäki, Jaakko; Jääskeläinen, Iiro P.; Hari, Riitta; Möttönen, Riikka; Rauschecker, Josef P.; Sams, Mikko

    2010-01-01

    Watching the lips of a speaker enhances speech perception. At the same time, the 100-ms response to speech sounds is suppressed in the observer’s auditory cortex. Here, we used whole-scalp 306-channel magnetoencephalography (MEG) to study whether lipreading modulates human auditory processing already at the level of the most elementary sound features, i.e., pure tones. We further envisioned the temporal dynamics of the suppression to tell whether the effect is driven by top-down influences. Nineteen subjects were presented with 50-ms tones spanning six octaves (125–8000 Hz) (1) during “lipreading”, i.e. when they watched video clips of silent articulations of Finnish vowels /a/, /i/, /o/, /y/, and reacted to vowels presented twice in a row, (2) during a visual control task, (3) during a still-face passive control condition, and, in a separate experiment with a subset of nine subjects, (4) during covert production of the same vowels. Auditory-cortex 100-ms responses (N100m) were equally suppressed in the lipreading and covert speech-production tasks compared with the visual control and baseline tasks; the effects involved all frequencies and were most prominent in the left hemisphere. Responses to tones presented at different times with respect to the onset of the visual articulation showed significantly increased N100m suppression immediately after the articulatory gesture. These findings suggest that the lipreading-related suppression in the auditory cortex is caused by top-down influences, possibly by an efference copy from the speech-production system, generated during both own speech and lipreading. PMID:20107058

  9. Lipreading and covert speech production similarly modulate human auditory-cortex responses to pure tones.

    PubMed

    Kauramäki, Jaakko; Jääskeläinen, Iiro P; Hari, Riitta; Möttönen, Riikka; Rauschecker, Josef P; Sams, Mikko

    2010-01-27

    Watching the lips of a speaker enhances speech perception. At the same time, the 100 ms response to speech sounds is suppressed in the observer's auditory cortex. Here, we used whole-scalp 306-channel magnetoencephalography (MEG) to study whether lipreading modulates human auditory processing already at the level of the most elementary sound features, i.e., pure tones. We further envisioned the temporal dynamics of the suppression to tell whether the effect is driven by top-down influences. Nineteen subjects were presented with 50 ms tones spanning six octaves (125-8000 Hz) (1) during "lipreading," i.e., when they watched video clips of silent articulations of Finnish vowels /a/, /i/, /o/, and /y/, and reacted to vowels presented twice in a row; (2) during a visual control task; (3) during a still-face passive control condition; and (4) in a separate experiment with a subset of nine subjects, during covert production of the same vowels. Auditory-cortex 100 ms responses (N100m) were equally suppressed in the lipreading and covert-speech-production tasks compared with the visual control and baseline tasks; the effects involved all frequencies and were most prominent in the left hemisphere. Responses to tones presented at different times with respect to the onset of the visual articulation showed significantly increased N100m suppression immediately after the articulatory gesture. These findings suggest that the lipreading-related suppression in the auditory cortex is caused by top-down influences, possibly by an efference copy from the speech-production system, generated during both own speech and lipreading. PMID:20107058

  10. Neural population dynamics in human motor cortex during movements in people with ALS

    PubMed Central

    Pandarinath, Chethan; Gilja, Vikash; Blabe, Christine H; Nuyujukian, Paul; Sarma, Anish A; Sorice, Brittany L; Eskandar, Emad N; Hochberg, Leigh R; Henderson, Jaimie M; Shenoy, Krishna V

    2015-01-01

    The prevailing view of motor cortex holds that motor cortical neural activity represents muscle or movement parameters. However, recent studies in non-human primates have shown that neural activity does not simply represent muscle or movement parameters; instead, its temporal structure is well-described by a dynamical system where activity during movement evolves lawfully from an initial pre-movement state. In this study, we analyze neuronal ensemble activity in motor cortex in two clinical trial participants diagnosed with Amyotrophic Lateral Sclerosis (ALS). We find that activity in human motor cortex has similar dynamical structure to that of non-human primates, indicating that human motor cortex contains a similar underlying dynamical system for movement generation. Clinical trial registration: NCT00912041. DOI: http://dx.doi.org/10.7554/eLife.07436.001 PMID:26099302

  11. Functional Magnetic Resonance Imaging of Motor Cortex: Hemispheric Asymmetry and Handedness

    NASA Astrophysics Data System (ADS)

    Kim, Seong-Gi; Ashe, James; Hendrich, Kristy; Ellermann, Jutta M.; Merkle, Hellmut; Ugurbil, Kamil; Georgopoulos, Apostolos P.

    1993-07-01

    A hemispheric asymmetry in the functional activation of the human motor cortex during contralateral (C) and ipsilateral (I) finger movements, especially in right-handed subjects, was documented with nuclear magnetic resonance imaging at high field strength (4 tesla). Whereas the right motor cortex was activated mostly during contralateral finger movements in both right-handed (C/I mean area of activation = 36.8) and left-handed (C/I = 29.9) subjects, the left motor cortex was activated substantially during ipsilateral movements in left-handed subjects (C/I = 5.4) and even more so in right-handed subjects (C/I = 1.3).

  12. Increased resting state connectivity between ipsilesional motor cortex and contralesional premotor cortex after transcranial direct current stimulation with physical therapy

    PubMed Central

    Chen, Joyce L; Schlaug, Gottfried

    2016-01-01

    Non-invasive stimulation of the brain using transcranial direct current stimulation (tDCS) during motor rehabilitation can improve the recovery of movements in individuals with stroke. However, the neural substrates that underlie the clinical improvements are not well understood. In this proof-of-principle open-label pilot study, five individuals with stroke received 10 sessions of tDCS while undergoing usual care physical/occupational therapy for the arm and hand. Motor impairment as indexed by the Upper Extremity Fugl Meyer assessment was significantly reduced after the intervention. Resting state fMRI connectivity increased between ipsilesional motor cortex and contralesional premotor cortex after the intervention. These findings provide preliminary evidence that the neural underpinnings of tDCS coupled with rehabilitation exercises, may be mediated by interactions between motor and premotor cortex. The latter, of which has been shown to play an important role in the recovery of movements post-stroke. Our data suggest premotor cortex could be tested as a target region for non-invasive brain-stimulation to enhance connectivity between regions that might be beneficial for stroke motor recovery. PMID:26980052

  13. Redistribution of neural phase coherence reflects establishment of feedforward map in speech motor adaptation.

    PubMed

    Sengupta, Ranit; Nasir, Sazzad M

    2015-04-01

    Despite recent progress in our understanding of sensorimotor integration in speech learning, a comprehensive framework to investigate its neural basis is lacking at behaviorally relevant timescales. Structural and functional imaging studies in humans have helped us identify brain networks that support speech but fail to capture the precise spatiotemporal coordination within the networks that takes place during speech learning. Here we use neuronal oscillations to investigate interactions within speech motor networks in a paradigm of speech motor adaptation under altered feedback with continuous recording of EEG in which subjects adapted to the real-time auditory perturbation of a target vowel sound. As subjects adapted to the task, concurrent changes were observed in the theta-gamma phase coherence during speech planning at several distinct scalp regions that is consistent with the establishment of a feedforward map. In particular, there was an increase in coherence over the central region and a decrease over the fronto-temporal regions, revealing a redistribution of coherence over an interacting network of brain regions that could be a general feature of error-based motor learning in general. Our findings have implications for understanding the neural basis of speech motor learning and could elucidate how transient breakdown of neuronal communication within speech networks relates to speech disorders.

  14. Interactions between Pain and the Motor Cortex: Insights from Research on Phantom Limb Pain and Complex Regional Pain Syndrome

    PubMed Central

    Léonard, Guillaume

    2011-01-01

    ABSTRACT Purpose: Pain is a significantly disabling problem that often interacts with other deficits during the rehabilitation process. The aim of this paper is to review evidence of interactions between pain and the motor cortex in order to attempt to answer the following questions: (1) Does acute pain interfere with motor-cortex activity? (2) Does chronic pain interfere with motor-cortex activity, and, conversely, does motor-cortex plasticity contribute to chronic pain? (3) Can the induction of motor plasticity by means of motor-cortex stimulation decrease pain? (4) Can motor training result in both motor-cortex reorganization and pain relief? Summary of Key Points: Acute experimental pain has been clearly shown to exert an inhibitory influence over the motor cortex, which can interfere with motor learning capacities. Current evidence also suggests a relationship between chronic pain and motor-cortex reorganization, but it is still unclear whether one causes the other. However, there is growing evidence that interventions aimed at normalizing motor-cortex organization can lead to pain relief. Conclusions: Interactions between pain and the motor cortex are complex, and more studies are needed to understand these interactions in our patients, as well as to develop optimal rehabilitative strategies. PMID:22654236

  15. Sensory-motor integration during speech production localizes to both left and right plana temporale.

    PubMed

    Simmonds, Anna J; Leech, Robert; Collins, Catherine; Redjep, Ozlem; Wise, Richard J S

    2014-09-24

    Speech production relies on fine voluntary motor control of respiration, phonation, and articulation. The cortical initiation of complex sequences of coordinated movements is thought to result in parallel outputs, one directed toward motor neurons while the "efference copy" projects to auditory and somatosensory fields. It is proposed that the latter encodes the expected sensory consequences of speech and compares expected with actual postarticulatory sensory feedback. Previous functional neuroimaging evidence has indicated that the cortical target for the merging of feedforward motor and feedback sensory signals is left-lateralized and lies at the junction of the supratemporal plane with the parietal operculum, located mainly in the posterior half of the planum temporale (PT). The design of these studies required participants to imagine speaking or generating nonverbal vocalizations in response to external stimuli. The resulting assumption is that verbal and nonverbal vocal motor imagery activates neural systems that integrate the sensory-motor consequences of speech, even in the absence of primary motor cortical activity or sensory feedback. The present human functional magnetic resonance imaging study used univariate and multivariate analyses to investigate both overt and covert (internally generated) propositional and nonpropositional speech (noun definition and counting, respectively). Activity in response to overt, but not covert, speech was present in bilateral anterior PT, with no increased activity observed in posterior PT or parietal opercula for either speech type. On this evidence, the response of the left and right anterior PTs better fulfills the criteria for sensory target and state maps during overt speech production. PMID:25253845

  16. Protein Synthesis Inhibition in the Peri-Infarct Cortex Slows Motor Recovery in Rats.

    PubMed

    Schubring-Giese, Maximilian; Leemburg, Susan; Luft, Andreas Rüdiger; Hosp, Jonas Aurel

    2016-01-01

    Neuroplasticity and reorganization of brain motor networks are thought to enable recovery of motor function after ischemic stroke. Especially in the cortex surrounding the ischemic scar (i.e., peri-infarct cortex), evidence for lasting reorganization has been found at the level of neurons and networks. This reorganization depends on expression of specific genes and subsequent protein synthesis. To test the functional relevance of the peri-infarct cortex for recovery we assessed the effect of protein synthesis inhibition within this region after experimental stroke. Long-Evans rats were trained to perform a skilled-reaching task (SRT) until they reached plateau performance. A photothrombotic stroke was induced in the forelimb representation of the primary motor cortex (M1) contralateral to the trained paw. The SRT was re-trained after stroke while the protein synthesis inhibitor anisomycin (ANI) or saline were injected into the peri-infarct cortex through implanted cannulas. ANI injections reduced protein synthesis within the peri-infarct cortex by 69% and significantly impaired recovery of reaching performance through re-training. Improvement of motor performance within a single training session remained intact, while improvement between training sessions was impaired. ANI injections did not affect infarct size. Thus, protein synthesis inhibition within the peri-infarct cortex impairs recovery of motor deficits after ischemic stroke by interfering with consolidation of motor memory between training sessions but not short-term improvements within one session. PMID:27314672

  17. Protein Synthesis Inhibition in the Peri-Infarct Cortex Slows Motor Recovery in Rats

    PubMed Central

    Schubring-Giese, Maximilian; Leemburg, Susan; Luft, Andreas Rüdiger; Hosp, Jonas Aurel

    2016-01-01

    Neuroplasticity and reorganization of brain motor networks are thought to enable recovery of motor function after ischemic stroke. Especially in the cortex surrounding the ischemic scar (i.e., peri-infarct cortex), evidence for lasting reorganization has been found at the level of neurons and networks. This reorganization depends on expression of specific genes and subsequent protein synthesis. To test the functional relevance of the peri-infarct cortex for recovery we assessed the effect of protein synthesis inhibition within this region after experimental stroke. Long-Evans rats were trained to perform a skilled-reaching task (SRT) until they reached plateau performance. A photothrombotic stroke was induced in the forelimb representation of the primary motor cortex (M1) contralateral to the trained paw. The SRT was re-trained after stroke while the protein synthesis inhibitor anisomycin (ANI) or saline were injected into the peri-infarct cortex through implanted cannulas. ANI injections reduced protein synthesis within the peri-infarct cortex by 69% and significantly impaired recovery of reaching performance through re-training. Improvement of motor performance within a single training session remained intact, while improvement between training sessions was impaired. ANI injections did not affect infarct size. Thus, protein synthesis inhibition within the peri-infarct cortex impairs recovery of motor deficits after ischemic stroke by interfering with consolidation of motor memory between training sessions but not short-term improvements within one session. PMID:27314672

  18. A threat to a virtual hand elicits motor cortex activation.

    PubMed

    González-Franco, Mar; Peck, Tabitha C; Rodríguez-Fornells, Antoni; Slater, Mel

    2014-03-01

    We report an experiment where participants observed an attack on their virtual body as experienced in an immersive virtual reality (IVR) system. Participants sat by a table with their right hand resting upon it. In IVR, they saw a virtual table that was registered with the real one, and they had a virtual body that substituted their real body seen from a first person perspective. The virtual right hand was collocated with their real right hand. Event-related brain potentials were recorded in two conditions, one where the participant's virtual hand was attacked with a knife and a control condition where the knife only struck the virtual table. Significantly greater P450 potentials were obtained in the attack condition confirming our expectations that participants had a strong illusion of the virtual hand being their own, which was also strongly supported by questionnaire responses. Higher levels of subjective virtual hand ownership correlated with larger P450 amplitudes. Mu-rhythm event-related desynchronization in the motor cortex and readiness potential (C3-C4) negativity were clearly observed when the virtual hand was threatened-as would be expected, if the real hand was threatened and the participant tried to avoid harm. Our results support the idea that event-related potentials may provide a promising non-subjective measure of virtual embodiment. They also support previous experiments on pain observation and are placed into context of similar experiments and studies of body perception and body ownership within cognitive neuroscience.

  19. Pallidal stimulation suppresses pathological dysrhythmia in the parkinsonian motor cortex

    PubMed Central

    Turner, Robert S.

    2015-01-01

    Although there is general consensus that deep brain stimulation (DBS) yields substantial clinical benefit in patients with Parkinson's disease (PD), the therapeutic mechanism of DBS remains a matter of debate. Recent studies demonstrate that DBS targeting the globus pallidus internus (GPi-DBS) suppresses pathological oscillations in firing rate and between-cell spike synchrony in the vicinity of the electrode but has negligible effects on population-level firing rate or the prevalence of burst firing. The present investigation examines the downstream consequences of GPi-DBS at the level of the primary motor cortex (M1). Multielectrode, single cell recordings were conducted in the M1 of two parkinsonian nonhuman primates (Macaca fasicularis). GPi-DBS that induced significant reductions in muscular rigidity also reduced the prevalence of both beta (12–30 Hz) oscillations in single unit firing rates and of coherent spiking between pairs of M1 neurons. In individual neurons, GPi-DBS-induced increases in mean firing rate were three times more common than decreases; however, averaged across the population of M1 neurons, GPi-DBS induced no net change in mean firing rate. The population-level prevalence of burst firing was also not affected by GPi-DBS. The results are consistent with the hypothesis that suppression of both pathological, beta oscillations and synchronous activity throughout the cortico-basal ganglia network is a major therapeutic mechanism of GPi-DBS. PMID:25652922

  20. The importance of being agranular: a comparative account of visual and motor cortex

    PubMed Central

    Shipp, Stewart

    2005-01-01

    The agranular cortex is an important landmark—anatomically, as the architectural flag of mammalian motor cortex, and historically, as a spur to the development of theories of localization of function. But why, exactly, do agranularity and motor function go together? To address this question, it should be noted that not only does motor cortex lack granular layer four, it also has a relatively thinner layer three. Therefore, it is the two layers which principally constitute the ascending pathways through the sensory (granular) cortex that have regressed in motor cortex: simply stated, motor cortex does not engage in serial reprocessing of incoming sensory data. But why should a granular architecture not be demanded by the downstream relay of motor instructions through the motor cortex? The scant anatomical evidence available regarding laminar patterns suggests that the pathways from frontal and premotor areas to the primary motor cortex actually bear a greater resemblance to the descending, or feedback connections of sensory cortex that avoid the granular layer. The action of feedback connections is generally described as ‘modulatory’ at a cellular level, or ‘selective’ in terms of systems analysis. By contrast, ascending connections may be labelled ‘driving’ or ‘instructive’. Where the motor cortex uses driving inputs, they are most readily identified as sensory signals instructing the visual location of targets and the kinaesthetic state of the body. Visual signals may activate motor concepts, e.g. ‘mirror neurons’, and the motor plan must select the appropriate muscles and forces to put the plan into action, if the decision to move is taken. This, perhaps, is why ‘driving’ motor signals might be inappropriate—the optimal selection and its execution are conditional upon both kinaesthetic and motivational factors. The argument, summarized above, is constructed in honour of Korbinian Brodmann's centenary, and follows two of the fundamental

  1. Echoes of the spoken past: how auditory cortex hears context during speech perception

    PubMed Central

    Skipper, Jeremy I.

    2014-01-01

    What do we hear when someone speaks and what does auditory cortex (AC) do with that sound? Given how meaningful speech is, it might be hypothesized that AC is most active when other people talk so that their productions get decoded. Here, neuroimaging meta-analyses show the opposite: AC is least active and sometimes deactivated when participants listened to meaningful speech compared to less meaningful sounds. Results are explained by an active hypothesis-and-test mechanism where speech production (SP) regions are neurally re-used to predict auditory objects associated with available context. By this model, more AC activity for less meaningful sounds occurs because predictions are less successful from context, requiring further hypotheses be tested. This also explains the large overlap of AC co-activity for less meaningful sounds with meta-analyses of SP. An experiment showed a similar pattern of results for non-verbal context. Specifically, words produced less activity in AC and SP regions when preceded by co-speech gestures that visually described those words compared to those words without gestures. Results collectively suggest that what we ‘hear’ during real-world speech perception may come more from the brain than our ears and that the function of AC is to confirm or deny internal predictions about the identity of sounds. PMID:25092665

  2. Motor movement matters: the flexible abstractness of inner speech.

    PubMed

    Oppenheim, Gary M; Dell, Gary S

    2010-12-01

    Inner speech is typically characterized as either the activation of abstract linguistic representations or a detailed articulatory simulation that lacks only the production of sound. We present a study of the speech errors that occur during the inner recitation of tongue-twister-like phrases. Two forms of inner speech were tested: inner speech without articulatory movements and articulated (mouthed) inner speech. Although mouthing one's inner speech could reasonably be assumed to require more articulatory planning, prominent theories assume that such planning should not affect the experience of inner speech and, consequently, the errors that are "heard" during its production. The errors occurring in articulated inner speech exhibited the phonemic similarity effect and the lexical bias effect--two speech-error phenomena that, in overt speech, have been localized to an articulatory-feature-processing level and a lexical-phonological level, respectively. In contrast, errors in unarticulated inner speech did not exhibit the phonemic similarity effect--just the lexical bias effect. The results are interpreted as support for a flexible abstraction account of inner speech. This conclusion has ramifications for the embodiment of language and speech and for the theories of speech production. PMID:21156877

  3. Photoacoustic imaging of functional domains in primary motor cortex in rhesus macaques

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Zhang, Hongyu; Cheney, Paul; Yang, Xinmai

    2012-02-01

    Functional detection in primate brains has particular advantages because of the similarity between non-human primate brain and human brain and the potential for relevance to a wide range of conditions such as stroke and Parkinson's disease. In this research, we used photoacoustic imaging (PAI) technique to detect functional changes in primary motor cortex of awake rhesus monkeys. We observed strong increases in photoacoustic signal amplitude during both passive and active forelimb movement, which indicates an increase in total hemoglobin concentration resulting from activation of primary motor cortex. Further, with PAI approach, we were able to obtain depthresolved functional information from primary motor cortex. The results show that PAI can reliably detect primary motor cortex activation associated with forelimb movement in rhesus macaques with a minimal-invasive approach.

  4. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery.

    PubMed

    Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele

    2015-01-01

    A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10-12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant's MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation.

  5. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery

    PubMed Central

    Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele

    2015-01-01

    A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10–12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant’s MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation. PMID:26347642

  6. Left anterior temporal cortex actively engages in speech perception: A direct cortical stimulation study.

    PubMed

    Matsumoto, Riki; Imamura, Hisaji; Inouchi, Morito; Nakagawa, Tomokazu; Yokoyama, Yohei; Matsuhashi, Masao; Mikuni, Nobuhiro; Miyamoto, Susumu; Fukuyama, Hidenao; Takahashi, Ryosuke; Ikeda, Akio

    2011-04-01

    Recent neuroimaging studies proposed the importance of the anterior auditory pathway for speech comprehension. Its clinical significance is implicated by semantic dementia or pure word deafness. Neurodegenerative or cerebrovascular nature, however, precluded precise localization of the cortex responsible for speech perception. Electrical cortical stimulation could delineate such localization by producing transient, functional impairment. We investigated engagement of the left anterior temporal cortex in speech perception by means of direct electrical cortical stimulation. Subjects were two partial epilepsy patients, who underwent direct cortical stimulation as a part of invasive presurgical evaluations. Stimulus sites were coregistered to presurgical 3D-MRI, and then to MNI standard space for anatomical localization. Separate from the posterior temporal language area, electrical cortical stimulation revealed a well-restricted language area in the anterior part of the superior temporal sulcus and gyrus (aSTS/STG) in both patients. Auditory sentence comprehension was impaired upon electrical stimulation of aSTS/STG. In one patient, additional investigation revealed that the functional impairment was restricted to auditory sentence comprehension with preserved visual sentence comprehension and perception of music and environmental sounds. Both patients reported that they could hear the voice but not understand the sentence well (e.g., heard as a series of meaningless utterance). The standard coordinates of this restricted area at left aSTS/STG well corresponded with the coordinates of speech perception reported in neuroimaging activation studies in healthy subjects. The present combined anatomo-functional case study, for the first time, demonstrated that aSTS/STG in the language dominant hemisphere actively engages in speech perception.

  7. Multisynaptic projections from the ventrolateral prefrontal cortex to hand and mouth representations of the monkey primary motor cortex.

    PubMed

    Miyachi, Shigehiro; Hirata, Yoshihiro; Inoue, Ken-ichi; Lu, Xiaofeng; Nambu, Atsushi; Takada, Masahiko

    2013-07-01

    Different sectors of the prefrontal cortex have distinct neuronal connections with higher-order sensory areas and/or limbic structures and are related to diverse aspects of cognitive functions, such as visual working memory and reward-based decision-making. Recent studies have revealed that the prefrontal cortex (PF), especially the lateral PF, is also involved in motor control. Hence, different sectors of the PF may contribute to motor behaviors with distinct body parts. To test this hypothesis anatomically, we examined the patterns of multisynaptic projections from the PF to regions of the primary motor cortex (MI) that represent the arm, hand, and mouth, using retrograde transsynaptic transport of rabies virus. Four days after rabies injections into the hand or mouth region, particularly dense neuron labeling was observed in the ventrolateral PF, including the convexity part of ventral area 46. After the rabies injections into the mouth region, another dense cluster of labeled neurons was seen in the orbitofrontal cortex (area 13). By contrast, rabies labeling of PF neurons was rather sparse in the arm-injection cases. The present results suggest that the PF-MI multisynaptic projections may be organized such that the MI hand and mouth regions preferentially receive cognitive information for execution of elaborate motor actions. PMID:23664864

  8. Functional MRI evidence for fine motor praxis dysfunction in children with persistent speech disorders

    PubMed Central

    Redle, Erin; Vannest, Jennifer; Maloney, Thomas; Tsevat, Rebecca K.; Eikenberry, Sarah; Lewis, Barbara; Shriberg, Lawrence D.; Tkach, Jean; Holland, Scott K.

    2014-01-01

    Children with persistent speech disorders (PSD) often present with overt or subtle motor deficits; the possibility that speech disorders and motor deficits could arise from a shared neurological base is currently unknown. Functional MRI (fMRI) was used to examine the brain networks supporting fine motor praxis in children with PSD and without clinically identified fine motor deficits. Methods This case-control study included 12 children with PSD (mean age 7.42 years, 4 female) and 12 controls (mean age 7.44 years, 4 female). Children completed behavioral evaluations using standardized motor assessments and parent reported functional measures. During fMRI scanning, participants completed a cued finger tapping task contrasted passive listening. A general linear model approach identified brain regions associated with finger tapping in each group and regions that differed between groups. The relationship between regional fMRI activation and fine motor skill was assessed using a regression analysis. Results Children with PSD had significantly poorer results for rapid speech production and fine motor praxis skills, but did not differ on classroom functional skills. Functional MRI results showed that children with PSD had significantly more activation in the cerebellum during finger tapping. Positive correlations between performance on a fine motor praxis test and activation multiple cortical regions were noted for children with PSD but not for controls. Conclusions Over-activation in the cerebellum during a motor task may reflect a subtle abnormality in the non-speech motor neural circuitry in children with PSD. PMID:25481413

  9. "The Caterpillar": A Novel Reading Passage for Assessment of Motor Speech Disorders

    ERIC Educational Resources Information Center

    Patel, Rupal; Connaghan, Kathryn; Franco, Diana; Edsall, Erika; Forgit, Dory; Olsen, Laura; Ramage, Lianna; Tyler, Emily; Russell, Scott

    2013-01-01

    Purpose: A review of the salient characteristics of motor speech disorders and common assessment protocols revealed the need for a novel reading passage tailored specifically to differentiate between and among the dysarthrias (DYSs) and apraxia of speech (AOS). Method: "The Caterpillar" passage was designed to provide a contemporary, easily read,…

  10. An Internet-Based Telerehabilitation System for the Assessment of Motor Speech Disorders: A Pilot Study

    ERIC Educational Resources Information Center

    Hill, Anne J.; Theodoros, Deborah G.; Russell, Trevor G.; Cahill, Louise M.; Ward, Elizabeth C.; Clark, Kathy M.

    2006-01-01

    Purpose: This pilot study explored the feasibility and effectiveness of an Internet-based telerehabilitation application for the assessment of motor speech disorders in adults with acquired neurological impairment. Method: Using a counterbalanced, repeated measures research design, 2 speech-language pathologists assessed 19 speakers with…

  11. Translating Principles of Neural Plasticity into Research on Speech Motor Control Recovery and Rehabilitation

    ERIC Educational Resources Information Center

    Ludlow, Christy L.; Hoit, Jeannette; Kent, Raymond; Ramig, Lorraine O.; Shrivastav, Rahul; Strand, Edythe; Yorkston, Kathryn; Sapienza, Christine M.

    2008-01-01

    Purpose: To review the principles of neural plasticity and make recommendations for research on the neural bases for rehabilitation of neurogenic speech disorders. Method: A working group in speech motor control and disorders developed this report, which examines the potential relevance of basic research on the brain mechanisms involved in neural…

  12. Reading, Why Not? Literacy Skills in Children with Motor and Speech Impairments

    ERIC Educational Resources Information Center

    Ferreira, Janna; Ronnberg, Jerker; Gustafson, Stefan; Wengelin, Asa

    2007-01-01

    In this study, 12 participants with various levels of motor and speech deficits were tested to explore their reading skills in relation to letter knowledge, speech level, auditory discrimination, phonological awareness, language skills, digit span, and nonverbal IQ. Two subgroups, based on a median split of reading performance, are described: the…

  13. Signals from the ventrolateral thalamus to the motor cortex during locomotion

    PubMed Central

    Marlinski, Vladimir; Nilaweera, Wijitha U.; Zelenin, Pavel V.; Sirota, Mikhail G.

    2012-01-01

    The activity of the motor cortex during locomotion is profoundly modulated in the rhythm of strides. The source of modulation is not known. In this study we examined the activity of one of the major sources of afferent input to the motor cortex, the ventrolateral thalamus (VL). Experiments were conducted in chronically implanted cats with an extracellular single-neuron recording technique. VL neurons projecting to the motor cortex were identified by antidromic responses. During locomotion, the activity of 92% of neurons was modulated in the rhythm of strides; 67% of cells discharged one activity burst per stride, a pattern typical for the motor cortex. The characteristics of these discharges in most VL neurons appeared to be well suited to contribute to the locomotion-related activity of the motor cortex. In addition to simple locomotion, we examined VL activity during walking on a horizontal ladder, a task that requires vision for correct foot placement. Upon transition from simple to ladder locomotion, the activity of most VL neurons exhibited the same changes that have been reported for the motor cortex, i.e., an increase in the strength of stride-related modulation and shortening of the discharge duration. Five modes of integration of simple and ladder locomotion-related information were recognized in the VL. We suggest that, in addition to contributing to the locomotion-related activity in the motor cortex during simple locomotion, the VL integrates and transmits signals needed for correct foot placement on a complex terrain to the motor cortex. PMID:21994259

  14. Motor speech impairment, activity, and participation in children with cerebral palsy.

    PubMed

    Mei, Cristina; Reilly, Sheena; Reddihough, Dinah; Mensah, Fiona; Morgan, Angela

    2014-08-01

    The present study used a population-based sample of children with cerebral palsy (CP) to estimate the prevalence of motor speech impairment and its association with activity and participation. A sample of 79 Victorian children aged 4 years 11 months to 6 years 5 months was recruited through the Victorian CP Register. The presence of motor speech impairment was recorded using the Viking Speech Scale (VSS). Activity and participation outcomes included speech intelligibility (the National Technical Institute for the Deaf rating scale, NTID), the Functional Communication Classification System (FCCS) and Communication Function Classification System (CFCS). A parent completed rating scale was used to examine the association between motor speech impairment and participation. Ninety per cent (71/79) of children demonstrated a motor speech impairment. Strong associations were found between the VSS and NTID (< .001), CFCS (< .001), and FCCS levels (<.001). VSS levels III-IV were significantly associated with restrictions in home, school, and community-based participation as perceived by parents. Although some diversity in activity and participation outcomes was observed within specific VSS levels, the results of this study suggested that children with mild motor speech impairments are more likely to demonstrate superior activity and participation outcomes compared to children with moderate or severe deficits.

  15. [Non-speech oral motor treatment efficacy for children with developmental speech sound disorders].

    PubMed

    Ygual-Fernandez, A; Cervera-Merida, J F

    2016-01-01

    Introduccion. En el tratamiento logopedico de las dificultades de habla se practican dos enfoques metodologicos antagonicos: los no verbales, basados en ejercicios de motricidad oral (EMO), y los verbales, que se basan en tareas de procesamiento de habla con silabas, fonemas y palabras. En España, los programas de EMO se llaman 'programas de praxias', estan muy difundidos y son apreciados por los logopedas. Objetivo. Revisar los estudios sobre la eficacia de los tratamientos basados en EMO aplicados a niños con trastornos de habla y los argumentos teoricos que podrian justificar o no su utilidad. Desarrollo. Durante las ultimas decadas se han acumulado pruebas sobre la falta de eficacia de este enfoque en el tratamiento de los trastornos evolutivos del habla y en las dificultades de pronunciacion de poblaciones sin alteracion neurologica de la funcion motriz. La American Speech-Language-Hearing Association ha desaconsejado su uso atendiendo a los principios de practica basada en la evidencia. Los conocimientos acumulados sobre el control motor demuestran que el patron de movilidad y su correspondiente organizacion cerebral son diferentes en el habla y en otras funciones no verbales ligadas a la alimentacion y la respiracion. Conclusiones. Ni los estudios sobre su eficacia ni los argumentos a partir de estudios del control motor aconsejan el uso de los programas basados en EMO para el tratamiento de las dificultades de pronunciacion en niños con trastornos evolutivos del lenguaje.

  16. Developmental changes in motor cortex activity as infants develop functional motor skills.

    PubMed

    Nishiyori, Ryota; Bisconti, Silvia; Meehan, Sean K; Ulrich, Beverly D

    2016-09-01

    Despite extensive research examining overt behavioral changes of motor skills in infants, the neural basis underlying the emergence of functional motor control has yet to be determined. We used functional near-infrared spectroscopy (fNIRS) to record hemodynamic activity of the primary motor cortex (M1) from 22 infants (11 six month-olds, 11 twelve month-olds) as they reached for an object, and stepped while supported over a treadmill. Based on the developmental systems framework, we hypothesized that as infants increased goal-directed experience, neural activity shifts from a diffused to focal pattern. Results showed that for reaching, younger infants showed diffuse areas of M1 activity that became focused by 12 months. For elicited stepping, younger infants produced much less M1 activity which shifted to diffuse activity by 12 months. Thus, the data suggest that as infants gain goal-directed experience, M1 activity emerges, initially showing a diffuse area of activity, becoming refined as the behavior stabilizes. Our data begin to document the cortical activity underlying early functional skill acquisition.

  17. Redundant information encoding in primary motor cortex during natural and prosthetic motor control.

    PubMed

    So, Kelvin; Ganguly, Karunesh; Jimenez, Jessica; Gastpar, Michael C; Carmena, Jose M

    2012-06-01

    Redundant encoding of information facilitates reliable distributed information processing. To explore this hypothesis in the motor system, we applied concepts from information theory to quantify the redundancy of movement-related information encoded in the macaque primary motor cortex (M1) during natural and neuroprosthetic control. Two macaque monkeys were trained to perform a delay center-out reaching task controlling a computer cursor under natural arm movement (manual control, 'MC'), and using a brain-machine interface (BMI) via volitional control of neural ensemble activity (brain control, 'BC'). During MC, we found neurons in contralateral M1 to contain higher and more redundant information about target direction than ipsilateral M1 neurons, consistent with the laterality of movement control. During BC, we found that the M1 neurons directly incorporated into the BMI ('direct' neurons) contained the highest and most redundant target information compared to neurons that were not incorporated into the BMI ('indirect' neurons). This effect was even more significant when comparing to M1 neurons of the opposite hemisphere. Interestingly, when we retrained the BMI to use ipsilateral M1 activity, we found that these neurons were more redundant and contained higher information than contralateral M1 neurons, even though ensembles from this hemisphere were previously less redundant during natural arm movement. These results indicate that ensembles most associated to movement contain highest redundancy and information encoding, which suggests a role for redundancy in proficient natural and prosthetic motor control.

  18. High-gamma band fronto-temporal coherence as a measure of functional connectivity in speech motor control

    PubMed Central

    Kingyon, Johnathan; Behroozmand, Roozbeh; Kelley, Ryan; Oya, Hiroyuki; Kawasaki, Hiroto; Narayanan, Nandakumar S.; Greenlee, Jeremy D. W.

    2015-01-01

    The neural basis of human speech is unclear. Intracranial electrophysiological recordings have revealed that high-gamma band oscillations (70–150 Hz) are observed in frontal lobe during speech production and in the temporal lobe during speech perception. Here, we tested the hypothesis that the frontal and temporal brain regions had high-gamma coherence during speech. We recorded electrocorticography (ECoG) from the frontal and temporal cortices of five humans who underwent surgery for medically intractable epilepsy, and studied coherence between frontal and temporal cortex during vocalization and playback of vocalization. We report two novel results. First, we observed high-gamma band as well as theta (4–8 Hz) coherence between frontal and temporal lobes. Second, both high-gamma and theta coherence were stronger when subjects were actively vocalizing as compared to playback of the same vocalizations. These findings provide evidence that coupling between sensory-motor networks measured by high-gamma coherence plays a key role in feedback-based monitoring and control of vocal output for human vocalization. PMID:26232713

  19. High-gamma band fronto-temporal coherence as a measure of functional connectivity in speech motor control.

    PubMed

    Kingyon, J; Behroozmand, R; Kelley, R; Oya, H; Kawasaki, H; Narayanan, N S; Greenlee, J D W

    2015-10-01

    The neural basis of human speech is unclear. Intracranial electrophysiological recordings have revealed that high-gamma band oscillations (70-150Hz) are observed in the frontal lobe during speech production and in the temporal lobe during speech perception. Here, we tested the hypothesis that the frontal and temporal brain regions had high-gamma coherence during speech. We recorded electrocorticography (ECoG) from the frontal and temporal cortices of five humans who underwent surgery for medically intractable epilepsy, and studied coherence between the frontal and temporal cortex during vocalization and playback of vocalization. We report two novel results. First, we observed high-gamma band as well as theta (4-8Hz) coherence between frontal and temporal lobes. Second, both high-gamma and theta coherence were stronger when subjects were actively vocalizing as compared to playback of the same vocalizations. These findings provide evidence that coupling between sensory-motor networks measured by high-gamma coherence plays a key role in feedback-based monitoring and control of vocal output for human vocalization.

  20. Putting an "end" to the motor cortex representations of action words.

    PubMed

    de Zubicaray, Greig; Arciuli, Joanne; McMahon, Katie

    2013-11-01

    Language processing is an example of implicit learning of multiple statistical cues that provide probabilistic information regarding word structure and use. Much of the current debate about language embodiment is devoted to how action words are represented in the brain, with motor cortex activity evoked by these words assumed to selectively reflect conceptual content and/or its simulation. We investigated whether motor cortex activity evoked by manual action words (e.g., caress) might reflect sensitivity to probabilistic orthographic-phonological cues to grammatical category embedded within individual words. We first review neuroimaging data demonstrating that nonwords evoke activity much more reliably than action words along the entire motor strip, encompassing regions proposed to be action category specific. Using fMRI, we found that disyllabic words denoting manual actions evoked increased motor cortex activity compared with non-body-part-related words (e.g., canyon), activity which overlaps that evoked by observing and executing hand movements. This result is typically interpreted in support of language embodiment. Crucially, we also found that disyllabic nonwords containing endings with probabilistic cues predictive of verb status (e.g., -eve) evoked increased activity compared with nonwords with endings predictive of noun status (e.g., -age) in the identical motor area. Thus, motor cortex responses to action words cannot be assumed to selectively reflect conceptual content and/or its simulation. Our results clearly demonstrate motor cortex activity reflects implicit processing of ortho-phonological statistical regularities that help to distinguish a word's grammatical class. PMID:23806137

  1. Laterality of movement-related activity reflects transformation of coordinates in ventral premotor cortex and primary motor cortex of monkeys.

    PubMed

    Kurata, Kiyoshi

    2007-10-01

    The ventral premotor cortex (PMv) and the primary motor cortex (MI) of monkeys participate in various sensorimotor integrations, such as the transformation of coordinates from visual to motor space, because the areas contain movement-related neuronal activity reflecting either visual or motor space. In addition to relationship to visual and motor space, laterality of the activity could indicate stages in the visuomotor transformation. Thus we examined laterality and relationship to visual and motor space of movement-related neuronal activity in the PMv and MI of monkeys performing a fast-reaching task with the left or right arm, toward targets with visual and motor coordinates that had been dissociated by shift prisms. We determined laterality of each activity quantitatively and classified it into four types: activity that consistently depended on target locations in either head-centered visual coordinates (V-type) or motor coordinates (M-type) and those that had either differential or nondifferential activity for both coordinates (B- and N-types). A majority of M-type neurons in the areas had preferences for reaching movements with the arm contralateral to the hemisphere where neuronal activity was recorded. In contrast, most of the V-type neurons were recorded in the PMv and exhibited less laterality than the M-type. The B- and N-types were recorded in the PMv and MI and exhibited intermediate properties between the V- and M-types when laterality and correlations to visual and motor space of them were jointly examined. These results suggest that the cortical motor areas contribute to the transformation of coordinates to generate final motor commands.

  2. Cortical spreading depression and involvement of the motor cortex, auditory cortex, and cerebellum in eyeblink classical conditioning of the rabbit.

    PubMed

    Case, Gilbert R; Lavond, David G; Thompson, Richard F

    2002-09-01

    The interrelationships of cerebellar and cerebral neural circuits in the eyeblink paradigm were explored with the controlled application of cortical spreading depression (CSD) and lidocaine in the New Zealand albino rabbit. The initial research focus was directed toward the involvement of the motor cortex in the conditioned eyeblink response. However, CSD timing and triangulation results indicate that other areas in the cerebral cortex, particularly the auditory cortex (acoustic conditioned stimulus), appear to be critical for the CSD effect on the eyeblink response. In summary: (1) CSD can be elicited, monitored, and timed and its side effects controlled in 97% of awake rabbits in the right and/or left cerebral hemisphere(s) during eyeblink conditioning. (2) The motor cortex appears to play little or no part in classical conditioning of the eyeblink in the rabbit in the delay paradigm. (3) Inactivating the auditory cortex with CSD or lidocaine temporarily impairs the conditioned response during the first 5 to 15 days of training, but has little effect past that point.

  3. Infant and Toddler Oral- and Manual-Motor Skills Predict Later Speech Fluency in Autism

    ERIC Educational Resources Information Center

    Gernsbacher, Morton Ann; Sauer, Eve A.; Geye, Heather M.; Schweigert, Emily K.; Goldsmith, H. Hill

    2008-01-01

    Background: Spoken and gestural communication proficiency varies greatly among autistic individuals. Three studies examined the role of oral- and manual-motor skill in predicting autistic children's speech development. Methods: Study 1 investigated whether infant and toddler oral- and manual-motor skills predict middle childhood and teenage speech…

  4. Activation of the motor cortex during phasic rapid eye movement sleep

    PubMed Central

    De Carli, Fabrizio; Proserpio, Paola; Morrone, Elisa; Sartori, Ivana; Ferrara, Michele; Gibbs, Steve Alex; De Gennaro, Luigi; Lo Russo, Giorgio

    2016-01-01

    When dreaming during rapid eye movement (REM) sleep, we can perform complex motor behaviors while remaining motionless. How the motor cortex behaves during this state remains unknown. Here, using intracerebral electrodes sampling the human motor cortex in pharmacoresistant epileptic patients, we report a pattern of electroencephalographic activation during REM sleep similar to that observed during the performance of a voluntary movement during wakefulness. This pattern is present during phasic REM sleep but not during tonic REM sleep, the latter resembling relaxed wakefulness. This finding may help clarify certain phenomenological aspects observed in REM sleep behavior disorder. Ann Neurol 2016;79:326–330 PMID:26575212

  5. Oscillations in local field potentials of the primate motor cortex during voluntary movement.

    PubMed Central

    Sanes, J N; Donoghue, J P

    1993-01-01

    We investigated the occurrence and distribution of oscillatory activity in local field potentials (LFPs) recorded from the frontal motor cortex of behaving monkeys performing skilled voluntary movements. LFPs were recorded simultaneously from up to 12 sites distributed throughout motor cortex while monkeys performed a visually guided, instructed delay task using the wrist or digits. Oscillatory activity between 15 and 50 Hz was evident in the LFP recorded from both primary motor cortex and premotor areas. Oscillations occurred preferentially before the visual cue to initiate movement but were infrequent during movement. Oscillations typically stopped before movement initiation during the wrist task, although they often continued into the initial phases of movement during the digit task. The relationship of oscillations to task performance was consistent across trials over periods of many months, although the amplitude and duration of oscillations varied across trials and days. Interactions between pairs of LFP recordings, evaluated with cross-correlation analysis, revealed synchronous oscillations over long distances (> 7 mm) and across primary motor cortex and premotor recording sites. These studies demonstrate that oscillations recorded in the LFP in motor cortex during trained motor tasks are not related to the details of movement execution but may be related to aspects of movement preparation. PMID:8506287

  6. Complex Organization of Human Primary Motor Cortex: A High-Resolution fMRI Study

    PubMed Central

    Meier, Jeffrey D.; Aflalo, Tyson N.; Kastner, Sabine; Graziano, Michael S. A.

    2008-01-01

    A traditional view of the human motor cortex is that it contains an overlapping sequence of body part representations from the tongue in a ventral location to the foot in a dorsal location. In this study, high-resolution functional MRI (1.5 × 1.5 × 2 mm) was used to examine the somatotopic map in the lateral motor cortex of humans, to determine whether it followed the traditional somatotopic order or whether it contained any violations of that somatotopic order. The arm and hand representation had a complex organization in which the arm was relatively emphasized in two areas: one dorsal and the other ventral to a region that emphasized the fingers. This violation of a traditional somatotopic order suggests that the motor cortex is not merely a map of the body but is topographically shaped by other influences, perhaps including correlations in the use of body parts in the motor repertoire. PMID:18684903

  7. Motor-based intervention protocols in treatment of childhood apraxia of speech (CAS)

    PubMed Central

    Maas, Edwin; Gildersleeve-Neumann, Christina; Jakielski, Kathy J.; Stoeckel, Ruth

    2014-01-01

    This paper reviews current trends in treatment for childhood apraxia of speech (CAS), with a particular emphasis on motor-based intervention protocols. The paper first briefly discusses how CAS fits into the typology of speech sound disorders, followed by a discussion of the potential relevance of principles derived from the motor learning literature for CAS treatment. Next, different motor-based treatment protocols are reviewed, along with their evidence base. The paper concludes with a summary and discussion of future research needs. PMID:25313348

  8. Inhibitory and Excitatory Motor Cortex Dysfunction Persists in the Chronic Post-Stroke Recovery Phase

    PubMed Central

    Malcolm, M.P.; Vaughn, H.N.; Greene, D.

    2014-01-01

    Purpose Establish differences in intracortical facilitation (ICF) and inhibition (ICI) between survivors of stroke and healthy individuals. Methods Fourteen chronic stroke survivors and 19 healthy subjects were investigated using single and paired-pulse transcranial magnetic stimulation (TMS). TMS was applied over the motor cortex in thelesioned (stroke survivors) or left (healthy subjects) hemisphere. Motor evoked potentials (MEPs) were collected from the contra lateral first dorsal interosseus. Subjects received 40 pseudo-randomized trials consisting of 10 trials for each: conditioning stimulus, test stimulus (TS), ICF, and ICI. Between the groups, we compared MEP amplitudes for TS, ICF, and ICI, motor threshold (MT), and ICF/ICI ratio. Results Compared to healthy individuals, the stroke group exhibited higher MT and lower ICI; the difference ICF neared significance. The ICF/ICI ratio was significantly lower in the stroke group and close to 1, indicating little difference between ICF and ICI responses. These differences demonstrate that motor cortex excitatory and inhibitory mechanisms are impaired for individuals in the chronic post-stroke recovery phase. Conclusions Compared to healthy individuals, both global and intracortical TMS measures reveal reduced motor cortex excitability in survivors of stroke. Interventions that normalize motor cortex excitability may promote better neurophysiological conditions for motor recovery to occur. PMID:25350636

  9. Correlation of near-infrared spectroscopy and transcranial magnetic stimulation of the motor cortex in overt reading and musical tasks.

    PubMed

    Lo, Y L; Zhang, H H; Wang, C C; Chin, Z Y; Fook-Chong, S; Gabriel, C; Guan, C T

    2009-01-01

    In overt reading and singing tasks, actual vocalization of words in a rhythmic fashion is performed. During execution of these tasks, the role of underlying vascular processes in relation to cortical excitability changes in a spatial manner is uncertain. Our objective was to investigate cortical excitability changes during reading and singing with transcranial magnetic stimulation (TMS), as well as vascular changes with nearinfrared spectroscopy (NIRS). Findings with TMS and NIRS were correlated. TMS and NIRS recordings were performed in 5 normal subjects while they performed reading and singing tasks separately. TMS was applied over the left motor cortex at 9 positions 2.5 cm apart. NIRS recordings were made over these identical positions. Although both TMS and NIRS showed significant mean cortical excitability and hemodynamic changes from baseline during vocalization tasks, there was no significant spatial correlation of these changes evaluated with the 2 techniques over the left motor cortex. Our findings suggest that increased left-sided cortical excitability from overt vocalization tasks in the corresponding "hand area" were the result of "functional connectivity," rather than an underlying "vascular overflow mechanism" from the adjacent speech processing or face/mouth areas. Our findings also imply that functional neurophysiological and vascular methods may evaluate separate underlying processes, although subjects performed identical vocalization tasks. Future research combining similar methodologies should embrace this aspect and harness their separate capabilities.

  10. A Dendritic Mechanism for Decoding Traveling Waves: Principles and Applications to Motor Cortex

    PubMed Central

    Heitmann, Stewart; Boonstra, Tjeerd; Breakspear, Michael

    2013-01-01

    Traveling waves of neuronal oscillations have been observed in many cortical regions, including the motor and sensory cortex. Such waves are often modulated in a task-dependent fashion although their precise functional role remains a matter of debate. Here we conjecture that the cortex can utilize the direction and wavelength of traveling waves to encode information. We present a novel neural mechanism by which such information may be decoded by the spatial arrangement of receptors within the dendritic receptor field. In particular, we show how the density distributions of excitatory and inhibitory receptors can combine to act as a spatial filter of wave patterns. The proposed dendritic mechanism ensures that the neuron selectively responds to specific wave patterns, thus constituting a neural basis of pattern decoding. We validate this proposal in the descending motor system, where we model the large receptor fields of the pyramidal tract neurons — the principle outputs of the motor cortex — decoding motor commands encoded in the direction of traveling wave patterns in motor cortex. We use an existing model of field oscillations in motor cortex to investigate how the topology of the pyramidal cell receptor field acts to tune the cells responses to specific oscillatory wave patterns, even when those patterns are highly degraded. The model replicates key findings of the descending motor system during simple motor tasks, including variable interspike intervals and weak corticospinal coherence. By additionally showing how the nature of the wave patterns can be controlled by modulating the topology of local intra-cortical connections, we hence propose a novel integrated neuronal model of encoding and decoding motor commands. PMID:24204220

  11. Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla

    PubMed Central

    Dum, Richard P.; Levinthal, David J.; Strick, Peter L.

    2016-01-01

    Modern medicine has generally viewed the concept of “psychosomatic” disease with suspicion. This view arose partly because no neural networks were known for the mind, conceptually associated with the cerebral cortex, to influence autonomic and endocrine systems that control internal organs. Here, we used transneuronal transport of rabies virus to identify the areas of the primate cerebral cortex that communicate through multisynaptic connections with a major sympathetic effector, the adrenal medulla. We demonstrate that two broad networks in the cerebral cortex have access to the adrenal medulla. The larger network includes all of the cortical motor areas in the frontal lobe and portions of somatosensory cortex. A major component of this network originates from the supplementary motor area and the cingulate motor areas on the medial wall of the hemisphere. These cortical areas are involved in all aspects of skeletomotor control from response selection to motor preparation and movement execution. The second, smaller network originates in regions of medial prefrontal cortex, including a major contribution from pregenual and subgenual regions of anterior cingulate cortex. These cortical areas are involved in higher-order aspects of cognition and affect. These results indicate that specific multisynaptic circuits exist to link movement, cognition, and affect to the function of the adrenal medulla. This circuitry may mediate the effects of internal states like chronic stress and depression on organ function and, thus, provide a concrete neural substrate for some psychosomatic illness. PMID:27528671

  12. Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla.

    PubMed

    Dum, Richard P; Levinthal, David J; Strick, Peter L

    2016-08-30

    Modern medicine has generally viewed the concept of "psychosomatic" disease with suspicion. This view arose partly because no neural networks were known for the mind, conceptually associated with the cerebral cortex, to influence autonomic and endocrine systems that control internal organs. Here, we used transneuronal transport of rabies virus to identify the areas of the primate cerebral cortex that communicate through multisynaptic connections with a major sympathetic effector, the adrenal medulla. We demonstrate that two broad networks in the cerebral cortex have access to the adrenal medulla. The larger network includes all of the cortical motor areas in the frontal lobe and portions of somatosensory cortex. A major component of this network originates from the supplementary motor area and the cingulate motor areas on the medial wall of the hemisphere. These cortical areas are involved in all aspects of skeletomotor control from response selection to motor preparation and movement execution. The second, smaller network originates in regions of medial prefrontal cortex, including a major contribution from pregenual and subgenual regions of anterior cingulate cortex. These cortical areas are involved in higher-order aspects of cognition and affect. These results indicate that specific multisynaptic circuits exist to link movement, cognition, and affect to the function of the adrenal medulla. This circuitry may mediate the effects of internal states like chronic stress and depression on organ function and, thus, provide a concrete neural substrate for some psychosomatic illness. PMID:27528671

  13. Translating Principles of Neural Plasticity into Research on Speech Motor Control Recovery and Rehabilitation

    PubMed Central

    Ludlow, Christy L.; Hoit, Jeannette; Kent, Raymond; Ramig, Lorraine O.; Shrivastav, Rahul; Strand, Edythe; Yorkston, Kathryn; Sapienza, Christine

    2008-01-01

    Purpose To review the principles of neural plasticity and make recommendations for research on the neural bases for rehabilitation of neurogenic speech disorders. Method A working group in speech motor control and disorders developed this report, which examines the potential relevance of basic research on the brain mechanisms involved in neural plasticity and discusses possible similarities and differences for application to speech motor control disorders. The possible involvement of neural plasticity in changes in speech production in normalcy, development, aging, and neurological diseases and disorders was considered. This report focuses on the appropriate use of functional and structural neuroimaging and the design of feasibility studies aimed at understanding how brain mechanisms are altered by environmental manipulations such as training and stimulation and how these changes might enhance the future development of rehabilitative methods for persons with speech motor control disorders. Conclusions Increased collaboration with neuroscientists working in clinical research centers addressing human communication disorders might foster research in this area. It is hoped that this paper will encourage future research on speech motor control disorders to address the principles of neural plasticity and their application for rehabilitation. PMID:18230849

  14. Differential grey matter changes in sensorimotor cortex related to exceptional fine motor skills.

    PubMed

    Stoeckel, M Cornelia; Morgenroth, Farina; Buetefisch, Cathrin M; Seitz, Rüdiger J

    2012-01-01

    Functional changes in sensorimotor representation occur in response to use and lesion throughout life. Emerging evidence suggests that functional changes are paralleled by respective macroscopic structural changes. In the present study we used voxel-based morphometry to investigate sensorimotor cortex in subjects with congenitally malformed upper extremities. We expected increased or decreased grey matter to parallel the enlarged or reduced functional representations we reported previously. More specifically, we expected decreased grey matter values in lateral sensorimotor cortex related to compromised hand function and increased grey matter values in medial sensorimotor cortex due to compensatory foot use. We found a medial cluster of grey matter increase in subjects with frequent, hand-like compensatory foot use. This increase was predominantly seen for lateral premotor, supplementary motor, and motor areas and only marginally involved somatosensory cortex. Contrary to our expectation, subjects with a reduced number of fingers, who had shown shrinkage of the functional hand representation previously, did not show decreased grey matter values within lateral sensorimotor cortex. Our data suggest that functional plastic changes in sensorimotor cortex can be associated with increases in grey matter but may also occur in otherwise macroscopically normal appearing grey matter volumes. Furthermore, macroscopic structural changes in motor and premotor areas may be observed without respective changes in somatosensory cortex.

  15. Sensory-Motor Integration during Speech Production Localizes to Both Left and Right Plana Temporale

    PubMed Central

    Leech, Robert; Collins, Catherine; Redjep, Ozlem; Wise, Richard J.S.

    2014-01-01

    Speech production relies on fine voluntary motor control of respiration, phonation, and articulation. The cortical initiation of complex sequences of coordinated movements is thought to result in parallel outputs, one directed toward motor neurons while the “efference copy” projects to auditory and somatosensory fields. It is proposed that the latter encodes the expected sensory consequences of speech and compares expected with actual postarticulatory sensory feedback. Previous functional neuroimaging evidence has indicated that the cortical target for the merging of feedforward motor and feedback sensory signals is left-lateralized and lies at the junction of the supratemporal plane with the parietal operculum, located mainly in the posterior half of the planum temporale (PT). The design of these studies required participants to imagine speaking or generating nonverbal vocalizations in response to external stimuli. The resulting assumption is that verbal and nonverbal vocal motor imagery activates neural systems that integrate the sensory-motor consequences of speech, even in the absence of primary motor cortical activity or sensory feedback. The present human functional magnetic resonance imaging study used univariate and multivariate analyses to investigate both overt and covert (internally generated) propositional and nonpropositional speech (noun definition and counting, respectively). Activity in response to overt, but not covert, speech was present in bilateral anterior PT, with no increased activity observed in posterior PT or parietal opercula for either speech type. On this evidence, the response of the left and right anterior PTs better fulfills the criteria for sensory target and state maps during overt speech production. PMID:25253845

  16. Sexual motivation is reflected by stimulus-dependent motor cortex excitability

    PubMed Central

    Schecklmann, Martin; Engelhardt, Kristina; Konzok, Julian; Rupprecht, Rainer; Greenlee, Mark W.; Mokros, Andreas; Langguth, Berthold

    2015-01-01

    Sexual behavior involves motivational processes. Findings from both animal models and neuroimaging in humans suggest that the recruitment of neural motor networks is an integral part of the sexual response. However, no study so far has directly linked sexual motivation to physiologically measurable changes in cerebral motor systems in humans. Using transcranial magnetic stimulation in hetero- and homosexual men, we here show that sexual motivation modulates cortical excitability. More specifically, our results demonstrate that visual sexual stimuli corresponding with one’s sexual orientation, compared with non-corresponding visual sexual stimuli, increase the excitability of the motor cortex. The reflection of sexual motivation in motor cortex excitability provides evidence for motor preparation processes in sexual behavior in humans. Moreover, such interrelationship links theoretical models and previous neuroimaging findings of sexual behavior. PMID:25556214

  17. Sexual motivation is reflected by stimulus-dependent motor cortex excitability.

    PubMed

    Schecklmann, Martin; Engelhardt, Kristina; Konzok, Julian; Rupprecht, Rainer; Greenlee, Mark W; Mokros, Andreas; Langguth, Berthold; Poeppl, Timm B

    2015-08-01

    Sexual behavior involves motivational processes. Findings from both animal models and neuroimaging in humans suggest that the recruitment of neural motor networks is an integral part of the sexual response. However, no study so far has directly linked sexual motivation to physiologically measurable changes in cerebral motor systems in humans. Using transcranial magnetic stimulation in hetero- and homosexual men, we here show that sexual motivation modulates cortical excitability. More specifically, our results demonstrate that visual sexual stimuli corresponding with one's sexual orientation, compared with non-corresponding visual sexual stimuli, increase the excitability of the motor cortex. The reflection of sexual motivation in motor cortex excitability provides evidence for motor preparation processes in sexual behavior in humans. Moreover, such interrelationship links theoretical models and previous neuroimaging findings of sexual behavior. PMID:25556214

  18. Sexual motivation is reflected by stimulus-dependent motor cortex excitability.

    PubMed

    Schecklmann, Martin; Engelhardt, Kristina; Konzok, Julian; Rupprecht, Rainer; Greenlee, Mark W; Mokros, Andreas; Langguth, Berthold; Poeppl, Timm B

    2015-08-01

    Sexual behavior involves motivational processes. Findings from both animal models and neuroimaging in humans suggest that the recruitment of neural motor networks is an integral part of the sexual response. However, no study so far has directly linked sexual motivation to physiologically measurable changes in cerebral motor systems in humans. Using transcranial magnetic stimulation in hetero- and homosexual men, we here show that sexual motivation modulates cortical excitability. More specifically, our results demonstrate that visual sexual stimuli corresponding with one's sexual orientation, compared with non-corresponding visual sexual stimuli, increase the excitability of the motor cortex. The reflection of sexual motivation in motor cortex excitability provides evidence for motor preparation processes in sexual behavior in humans. Moreover, such interrelationship links theoretical models and previous neuroimaging findings of sexual behavior.

  19. Is There an Interaction between Task Complexity and Practice Variability in Speech-Motor learning?

    PubMed Central

    Kaipa, Ramesh

    2016-01-01

    Background Prior studies have investigated the influence of principles of motor learning (PMLs) on speech-motor learning. However, the interactive effect of different PMLs on speech-motor learning remains unknown. Purpose This study is aimed at investigating the interaction of 2 PMLs, that is, practice variability and task complexity and their influence on speech-motor learning. Method Forty healthy individuals (aged 18-30 years) were randomly and equally allocated to 2 groups where they had to either practice a simple (simple group) or a complex phrase (complex group). Two levels of practice variability (constant and variable) were considered in training participants in simple and complex groups. Participants practiced 50 practice trials of either complex or simple phrase during the first 2 days. At the end of training on each day, participants produced 10 trials of the phrase they practiced without feedback. On the third day, participants returned for a delayed retention test. The participant utterances on all the 3 days were recorded for later analysis. Results Data analysis revealed that there was no major effect of practice condition, and there was no interaction of task complexity and practice condition. However, there was an interaction between data collection points and complexity. Conclusion The findings suggest that irrespective of the complexity of the to-be-learned speech task, there is no preponderance of variable over constant practice, which contradicts the findings of the non-speech-motor learning literature. PMID:27721581

  20. Functional lateralization in cingulate cortex predicts motor recovery after basal ganglia stroke.

    PubMed

    Li, Yao; Chen, Zengai; Su, Xin; Zhang, Xiaoliu; Wang, Ping; Zhu, Yajing; Xu, Qun; Xu, Jianrong; Tong, Shanbao

    2016-02-01

    The basal ganglia (BG) is involved in higher order motor control such as movement planning and execution of complex motor synergies. Neuroimaging study on stroke patients specifically with BG lesions would help to clarify the consequence of BG damage on motor control. In this paper, we performed a longitudinal study in the stroke patients with lesions in BG regions across three motor recovery stages, i.e., less than 2week (Session 1), 1-3m (Session 2) and more than 3m (Session 3). The patients showed an activation shift from bilateral hemispheres during early sessions (<3m) to the ipsilesional cortex in late session (>3m), suggesting a compensation effect from the contralesional hemisphere during motor recovery. We found that the lateralization of cerebellum(CB) for affected hand task correlated with patients' concurrent Fugl-Meyer index (FMI) in Session 2. Moreover, the cingulate cortex lateralization index in Session 2 was shown to significantly correlate with subsequent FMI change between Session 3 and Session 2, which serves as a prognostic marker for motor recovery. Our findings consolidated the close interactions between BG and CB during the motor recovery after stroke. The dominance of activation in contralateral cingulate cortex was associated with a better motor recovery, suggesting the important role of ipsilesional attention modulation in the early stage after BG stroke. PMID:26742641

  1. Action Verbs and the Primary Motor Cortex: A Comparative TMS Study of Silent Reading, Frequency Judgments, and Motor Imagery

    ERIC Educational Resources Information Center

    Tomasino, Barbara; Fink, Gereon R.; Sparing, Roland; Dafotakis, Manuel; Weiss, Peter H.

    2008-01-01

    Single pulse transcranial magnetic stimulation (TMS) was applied to the hand area of the left primary motor cortex or, as a control, to the vertex (STIMULATION: TMS[subscript M1] vs. TMS[subscript vertex]) while right-handed volunteers silently read verbs related to hand actions. We examined three different tasks and time points for stimulation…

  2. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study.

    PubMed

    Kim, Soyoung; Stephenson, Mary C; Morris, Peter G; Jackson, Stephen R

    2014-10-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability in a polarity specific manner and has been shown to influence learning and memory. tDCS may have both on-line and after-effects on learning and memory, and the latter are thought to be based upon tDCS-induced alterations in neurochemistry and synaptic function. We used ultra-high-field (7 T) magnetic resonance spectroscopy (MRS), together with a robotic force adaptation and de-adaptation task, to investigate whether tDCS-induced alterations in GABA and Glutamate within motor cortex predict motor learning and memory. Note that adaptation to a robot-induced force field has long been considered to be a form of model-based learning that is closely associated with the computation and 'supervised' learning of internal 'forward' models within the cerebellum. Importantly, previous studies have shown that on-line tDCS to the cerebellum, but not to motor cortex, enhances model-based motor learning. Here we demonstrate that anodal tDCS delivered to the hand area of the left primary motor cortex induces a significant reduction in GABA concentration. This effect was specific to GABA, localised to the left motor cortex, and was polarity specific insofar as it was not observed following either cathodal or sham stimulation. Importantly, we show that the magnitude of tDCS-induced alterations in GABA concentration within motor cortex predicts individual differences in both motor learning and motor memory on the robotic force adaptation and de-adaptation task.

  3. Hierarchical Organization of Auditory and Motor Representations in Speech Perception: Evidence from Searchlight Similarity Analysis.

    PubMed

    Evans, Samuel; Davis, Matthew H

    2015-12-01

    How humans extract the identity of speech sounds from highly variable acoustic signals remains unclear. Here, we use searchlight representational similarity analysis (RSA) to localize and characterize neural representations of syllables at different levels of the hierarchically organized temporo-frontal pathways for speech perception. We asked participants to listen to spoken syllables that differed considerably in their surface acoustic form by changing speaker and degrading surface acoustics using noise-vocoding and sine wave synthesis while we recorded neural responses with functional magnetic resonance imaging. We found evidence for a graded hierarchy of abstraction across the brain. At the peak of the hierarchy, neural representations in somatomotor cortex encoded syllable identity but not surface acoustic form, at the base of the hierarchy, primary auditory cortex showed the reverse. In contrast, bilateral temporal cortex exhibited an intermediate response, encoding both syllable identity and the surface acoustic form of speech. Regions of somatomotor cortex associated with encoding syllable identity in perception were also engaged when producing the same syllables in a separate session. These findings are consistent with a hierarchical account of how variable acoustic signals are transformed into abstract representations of the identity of speech sounds. PMID:26157026

  4. Hierarchical Organization of Auditory and Motor Representations in Speech Perception: Evidence from Searchlight Similarity Analysis

    PubMed Central

    Evans, Samuel; Davis, Matthew H.

    2015-01-01

    How humans extract the identity of speech sounds from highly variable acoustic signals remains unclear. Here, we use searchlight representational similarity analysis (RSA) to localize and characterize neural representations of syllables at different levels of the hierarchically organized temporo-frontal pathways for speech perception. We asked participants to listen to spoken syllables that differed considerably in their surface acoustic form by changing speaker and degrading surface acoustics using noise-vocoding and sine wave synthesis while we recorded neural responses with functional magnetic resonance imaging. We found evidence for a graded hierarchy of abstraction across the brain. At the peak of the hierarchy, neural representations in somatomotor cortex encoded syllable identity but not surface acoustic form, at the base of the hierarchy, primary auditory cortex showed the reverse. In contrast, bilateral temporal cortex exhibited an intermediate response, encoding both syllable identity and the surface acoustic form of speech. Regions of somatomotor cortex associated with encoding syllable identity in perception were also engaged when producing the same syllables in a separate session. These findings are consistent with a hierarchical account of how variable acoustic signals are transformed into abstract representations of the identity of speech sounds. PMID:26157026

  5. Peabody Developmental Motor Scales Gross and Fine Motor Skill Performance of Young Children with Speech and Language Delays versus the National Norms.

    ERIC Educational Resources Information Center

    Reeves, Lynda P.

    This study compared the skills performance of 60 children, ages 3 to 5, with speech and language delays on the Peabody Developmental Motor Scales (PDMS) with that of national norms on the PDMS. It found that the children with speech and language delays performed the PDMS gross motor skills significantly lower than the norm at each age level. The…

  6. Dynamic Re-wiring of Neural Circuits in the Motor Cortex in Mouse Models of Parkinson's Disease

    PubMed Central

    Lalchandani, Rupa R.; Cui, Yuting; Shu, Yu; Xu, Tonghui; Ding, Jun B.

    2015-01-01

    SUMMARY Dynamic adaptations in synaptic plasticity are critical for learning new motor skills and maintaining memory throughout life, which rapidly decline with Parkinson's disease (PD). Plasticity in the motor cortex is important for acquisition and maintenance of novel motor skills, but how the loss of dopamine in PD leads to disrupted structural and functional plasticity in the motor cortex is not well understood. Here, we utilized mouse models of PD and 2-photon imaging to show that dopamine depletion resulted in structural changes in the motor cortex. We further discovered that dopamine D1 and D2 receptor signaling were linked to selectively and distinctly regulating these aberrant changes in structural and functional plasticity. Our findings suggest that both D1 and D2 receptor signaling regulate motor cortex plasticity, and loss of dopamine results in atypical synaptic adaptations that may contribute to the impairment of motor performance and motor memory observed in PD. PMID:26237365

  7. Motor cortex bilateral motor representation depends on subcortical and interhemispheric interactions.

    PubMed

    Brus-Ramer, Marcel; Carmel, Jason B; Martin, John H

    2009-05-13

    The corticospinal tract is a predominantly crossed pathway. Nevertheless, the primary motor cortex (M1) is activated bilaterally during unilateral movements and several animal studies showed that M1 has a bilateral motor representation. A better understanding of the uncrossed corticospinal system is especially important for elucidating its role in recovery of limb control after unilateral injury. We used intracortical microstimulation (ICMS) to determine the representation of contralateral and ipsilateral forelimb joints at single M1 sites in the rat. Most sites representing an ipsilateral joint corepresented the same joint contralaterally. We next determined whether ipsilateral responses evoked in one hemisphere depended on the function of M1 in the opposite hemisphere using reversible inactivation and pyramidal tract lesion. Ipsilateral responses were eliminated when the homotopic forelimb area of M1 in the opposite hemisphere was inactivated or when the pyramidal tract on the nonstimulated side was sectioned. To determine the role of transfer between M1 in each hemisphere we sectioned the corpus callosum, which produced a 33% increase in ipsilateral ICMS thresholds. Neither M1 inactivation nor callosal section changed contralateral response thresholds, indicating the absence of tonic excitatory or inhibitory drive to the opposite M1. Finally, ipsilateral responses following M1 inactivation and pyramidal tract lesion could be evoked after systemic administration of the K(+) channel blocker 4-aminopyridine, suggesting the presence of latent connections. Our findings show important interactions between the corticospinal systems from each side, especially at the spinal level. This has important implications for recruiting the ipsilateral corticospinal system after injury. PMID:19439597

  8. [Participation of the primary motor cortex in programming of muscle activity during catching of falling object].

    PubMed

    Kazennikov, O V; Lipshits, M I

    2011-01-01

    Object fell into the cup that sitting subject held between thumb and index fingers. Transcranial magnetic stimulation (TMS) of the primary motor cortex was performed early before and during anticipatory grip force increasing. Comparison of current EMG activity of adductor pollicis brevis and first dorsal interosseous muscles and responses of these muscles on TMS showed that responses were increased before the raising of muscle activity. From the other side only slight augmentation of responses was observed during subsequent strong muscle activation. It is assumed that the increasing of the TMS responses that occurred before the initiation of muscle activity reflects the enhancement ofthe motor cortex excitability associated to specific processes related to the motor cortex participation in programming of the muscles activities. PMID:22117465

  9. A computational role for bistability and traveling waves in motor cortex

    PubMed Central

    Heitmann, Stewart; Gong, Pulin; Breakspear, Michael

    2012-01-01

    Adaptive changes in behavior require rapid changes in brain states yet the brain must also remain stable. We investigated two neural mechanisms for evoking rapid transitions between spatiotemporal synchronization patterns of beta oscillations (13–30 Hz) in motor cortex. Cortex was modeled as a sheet of neural oscillators that were spatially coupled using a center-surround connection topology. Manipulating the inhibitory surround was found to evoke reliable transitions between synchronous oscillation patterns and traveling waves. These transitions modulated the simulated local field potential in agreement with physiological observations in humans. Intermediate levels of surround inhibition were also found to produce bistable coupling topologies that supported both waves and synchrony. State-dependent perturbation between bistable states produced very rapid transitions but were less reliable. We surmise that motor cortex may thus employ state-dependent computation to achieve very rapid changes between bistable motor states when the demand for speed exceeds the demand for accuracy. PMID:22973223

  10. Oscillatory dynamics track motor performance improvement in human cortex.

    PubMed

    Dürschmid, Stefan; Quandt, Fanny; Krämer, Ulrike M; Hinrichs, Hermann; Heinze, Hans-Jochen; Schulz, Reinhard; Pannek, Heinz; Chang, Edward F; Knight, Robert T

    2014-01-01

    Improving performance in motor skill acquisition is proposed to be supported by tuning of neural networks. To address this issue we investigated changes of phase-amplitude cross-frequency coupling (paCFC) in neuronal networks during motor performance improvement. We recorded intracranially from subdural electrodes (electrocorticogram; ECoG) from 6 patients who learned 3 distinct motor tasks requiring coordination of finger movements with an external cue (serial response task, auditory motor coordination task, go/no-go). Performance improved in all subjects and all tasks during the first block and plateaued in subsequent blocks. Performance improvement was paralled by increasing neural changes in the trial-to-trial paCFC between theta ([Formula: see text]; 4-8 Hz) phase and high gamma (HG; 80-180 Hz) amplitude. Electrodes showing this covariation pattern (Pearson's r ranging up to .45) were located contralateral to the limb performing the task and were observed predominantly in motor brain regions. We observed stable paCFC when task performance asymptoted. Our results indicate that motor performance improvement is accompanied by adjustments in the dynamics and topology of neuronal network interactions in the [Formula: see text] and HG range. The location of the involved electrodes suggests that oscillatory dynamics in motor cortices support performance improvement with practice. PMID:24586885

  11. Oscillatory Dynamics Track Motor Performance Improvement in Human Cortex

    PubMed Central

    Dürschmid, Stefan; Quandt, Fanny; Krämer, Ulrike M.; Hinrichs, Hermann; Heinze, Hans-Jochen; Schulz, Reinhard; Pannek, Heinz; Chang, Edward F.; Knight, Robert T.

    2014-01-01

    Improving performance in motor skill acquisition is proposed to be supported by tuning of neural networks. To address this issue we investigated changes of phase-amplitude cross-frequency coupling (paCFC) in neuronal networks during motor performance improvement. We recorded intracranially from subdural electrodes (electrocorticogram; ECoG) from 6 patients who learned 3 distinct motor tasks requiring coordination of finger movements with an external cue (serial response task, auditory motor coordination task, go/no-go). Performance improved in all subjects and all tasks during the first block and plateaued in subsequent blocks. Performance improvement was paralled by increasing neural changes in the trial-to-trial paCFC between theta (; 4–8 Hz) phase and high gamma (HG; 80–180 Hz) amplitude. Electrodes showing this covariation pattern (Pearson's r ranging up to .45) were located contralateral to the limb performing the task and were observed predominantly in motor brain regions. We observed stable paCFC when task performance asymptoted. Our results indicate that motor performance improvement is accompanied by adjustments in the dynamics and topology of neuronal network interactions in the and HG range. The location of the involved electrodes suggests that oscillatory dynamics in motor cortices support performance improvement with practice. PMID:24586885

  12. Oscillatory dynamics track motor performance improvement in human cortex.

    PubMed

    Dürschmid, Stefan; Quandt, Fanny; Krämer, Ulrike M; Hinrichs, Hermann; Heinze, Hans-Jochen; Schulz, Reinhard; Pannek, Heinz; Chang, Edward F; Knight, Robert T

    2014-01-01

    Improving performance in motor skill acquisition is proposed to be supported by tuning of neural networks. To address this issue we investigated changes of phase-amplitude cross-frequency coupling (paCFC) in neuronal networks during motor performance improvement. We recorded intracranially from subdural electrodes (electrocorticogram; ECoG) from 6 patients who learned 3 distinct motor tasks requiring coordination of finger movements with an external cue (serial response task, auditory motor coordination task, go/no-go). Performance improved in all subjects and all tasks during the first block and plateaued in subsequent blocks. Performance improvement was paralled by increasing neural changes in the trial-to-trial paCFC between theta ([Formula: see text]; 4-8 Hz) phase and high gamma (HG; 80-180 Hz) amplitude. Electrodes showing this covariation pattern (Pearson's r ranging up to .45) were located contralateral to the limb performing the task and were observed predominantly in motor brain regions. We observed stable paCFC when task performance asymptoted. Our results indicate that motor performance improvement is accompanied by adjustments in the dynamics and topology of neuronal network interactions in the [Formula: see text] and HG range. The location of the involved electrodes suggests that oscillatory dynamics in motor cortices support performance improvement with practice.

  13. The ipsilateral motor cortex contributes to cross-limb transfer of performance gains after ballistic motor practice.

    PubMed

    Lee, Michael; Hinder, Mark R; Gandevia, Simon C; Carroll, Timothy J

    2010-01-01

    Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly understood. Here we tested the hypothesis that improved performance with the untrained limb on a fastest possible (i.e. ballistic) movement task depends partly on cortical circuits located ipsilateral to the trained limb. The idea that crossed effects, which are important for the learning process, might occur in the 'untrained' hemisphere following ballistic training is based on the observation that tasks requiring strong descending drive generate extensive bilateral cortical activity. Twenty-one volunteers practiced a ballistic index finger abduction task with their right hand, and corticospinal excitability was assessed in two hand muscles (first dorsal interosseus, FDI; adductor digiti minimi, ADM). Eight control subjects did not train. After training, repetitive transcranial magnetic stimulation (rTMS; 15 min at 1 Hz) was applied to the left (trained) or right (untrained) motor cortex to induce a 'virtual lesion'. A third training group received sham rTMS, and control subjects received rTMS to the right motor cortex. Performance and corticospinal excitability (for FDI) increased in both hands for training but not control subjects. rTMS of the left, trained motor cortex specifically reduced training-induced gains in motor performance for the right, trained hand, and rTMS of the right, untrained motor cortex specifically reduced performance gains for the left, untrained hand. Thus, cortical processes within the untrained hemisphere, ipsilateral to the trained hand, contribute to early retention of ballistic performance gains for the untrained limb.

  14. Motor Cortex Plasticity during Unilateral Finger Movement with Mirror Visual Feedback

    PubMed Central

    Kumru, Hatice; Albu, Sergiu; Pelayo, Raul; Rothwell, John; Opisso, Eloy; Leon, Daniel; Soler, Dolor; Tormos, Josep Maria

    2016-01-01

    Plasticity is one of the most important physiological mechanisms underlying motor recovery from brain lesions. Rehabilitation methods, such as mirror visual feedback therapy, which are based on multisensory integration of motor, cognitive, and perceptual processes, are considered effective methods to induce cortical reorganization. The present study investigated 3 different types of visual feedback (direct, mirrored, and blocked visual feedback: DVF, MVF, and BVF, resp.) on M1 cortex excitability and intracortical inhibition/facilitation at rest and during phasic unimanual motor task in 11 healthy individuals. The excitability of the ipsilateral M1 cortex and the intracortical facilitation increased during motor task performance in the DVF and MVF but not in the BVF condition. In addition, MVF induced cortical disinhibition of the ipsilateral hemisphere to the index finger performing the motor task, which was greater when compared to the BVF and restricted to the homologue first dorsal interosseous muscle. The visual feedback is relevant to M1 cortex excitability modulation but the MVF plays a crucial role in promoting changes in intracortical inhibition in comparison to BVF. Altogether, it can be concluded that a combination of motor training with MVF therapy may induce more robust neuroplastic changes through multisensory integration that is relevant to motor rehabilitation. PMID:26881121

  15. Dr. Otto Soltmann (1876) on development of the motor cortex and recovery after its removal in infancy.

    PubMed

    Finger, S; Beyer, T; Koehler, P J

    2000-09-15

    In 1870, Fritsch and Hitzig demonstrated that dogs have a motor cortex. In a chapter published 6 years later, Otto Soltmann studied the functional development of the motor cortex, which he believed functioned in willed movement. He was the first to show that the dog's motor cortex becomes electrically excitable at about 10 days of age, with the contralateral forepaw area appearing first. He also studied the effects of ablating the cortical motor regions unilaterally and bilaterally, and encountered a remarkable degree of sparing of function in his animals operated on as newborns, but not in older-operated dogs. Soltmann turned to the theory of functional take-over (vicariation) to account for the absence of deficits in his young animals. He was especially intrigued by the fact that electrical stimulation of a healthy motor cortex could produce bilateral matched movements, but only in dogs that sustained opposite motor cortex lesions very early in life.

  16. Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats.

    PubMed

    Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto

    2014-03-01

    We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. PMID:24304717

  17. Motor Cortex Activity Organizes the Developing Rubrospinal System.

    PubMed

    Williams, Preston T J A; Martin, John H

    2015-09-30

    The corticospinal and rubrospinal systems function in skilled movement control. A key question is how do these systems develop the capacity to coordinate their motor functions and, in turn, if the red nucleus/rubrospinal tract (RN/RST) compensates for developmental corticospinal injury? We used the cat to investigate whether the developing rubrospinal system is shaped by activity-dependent interactions with the developing corticospinal system. We unilaterally inactivated M1 by muscimol microinfusion between postnatal weeks 5 and 7 to examine activity-dependent interactions and whether the RN/RST compensates for corticospinal tract (CST) developmental motor impairments and CST misprojections after M1 inactivation. We examined the RN motor map and RST cervical projections at 7 weeks of age, while the corticospinal system was inactivated, and at 14 weeks, after activity returned. During M1 inactivation, the RN on the same side showed normal RST projections and reduced motor thresholds, suggestive of precocious development. By contrast, the RN on the untreated/active M1 side showed sparse RST projections and an immature motor map. After M1 activity returned later in adolescent cat development, RN on the active M1/CST side continued to show a substantial loss of spinal terminations and an impaired motor map. RN/RST on the inactivated side regressed to a smaller map and fewer axons. Our findings suggest that the developing rubrospinal system is under activity-dependent regulation by the corticospinal system for establishing mature RST connections and RN motor map. The lack of RS compensation on the non-inactivated side can be explained by development of ipsilateral misprojections from the active M1 that outcompete the RST. Significance statement: Skilled movements reflect the activity of multiple descending motor systems and their interactions with spinal motor circuits. Currently, there is little insight into whether motor systems interact during development to

  18. Motor Cortex Activity Organizes the Developing Rubrospinal System

    PubMed Central

    Williams, Preston T.J.A.

    2015-01-01

    The corticospinal and rubrospinal systems function in skilled movement control. A key question is how do these systems develop the capacity to coordinate their motor functions and, in turn, if the red nucleus/rubrospinal tract (RN/RST) compensates for developmental corticospinal injury? We used the cat to investigate whether the developing rubrospinal system is shaped by activity-dependent interactions with the developing corticospinal system. We unilaterally inactivated M1 by muscimol microinfusion between postnatal weeks 5 and 7 to examine activity-dependent interactions and whether the RN/RST compensates for corticospinal tract (CST) developmental motor impairments and CST misprojections after M1 inactivation. We examined the RN motor map and RST cervical projections at 7 weeks of age, while the corticospinal system was inactivated, and at 14 weeks, after activity returned. During M1 inactivation, the RN on the same side showed normal RST projections and reduced motor thresholds, suggestive of precocious development. By contrast, the RN on the untreated/active M1 side showed sparse RST projections and an immature motor map. After M1 activity returned later in adolescent cat development, RN on the active M1/CST side continued to show a substantial loss of spinal terminations and an impaired motor map. RN/RST on the inactivated side regressed to a smaller map and fewer axons. Our findings suggest that the developing rubrospinal system is under activity-dependent regulation by the corticospinal system for establishing mature RST connections and RN motor map. The lack of RS compensation on the non-inactivated side can be explained by development of ipsilateral misprojections from the active M1 that outcompete the RST. SIGNIFICANCE STATEMENT Skilled movements reflect the activity of multiple descending motor systems and their interactions with spinal motor circuits. Currently, there is little insight into whether motor systems interact during development to

  19. Motor Cortex Activity Organizes the Developing Rubrospinal System.

    PubMed

    Williams, Preston T J A; Martin, John H

    2015-09-30

    The corticospinal and rubrospinal systems function in skilled movement control. A key question is how do these systems develop the capacity to coordinate their motor functions and, in turn, if the red nucleus/rubrospinal tract (RN/RST) compensates for developmental corticospinal injury? We used the cat to investigate whether the developing rubrospinal system is shaped by activity-dependent interactions with the developing corticospinal system. We unilaterally inactivated M1 by muscimol microinfusion between postnatal weeks 5 and 7 to examine activity-dependent interactions and whether the RN/RST compensates for corticospinal tract (CST) developmental motor impairments and CST misprojections after M1 inactivation. We examined the RN motor map and RST cervical projections at 7 weeks of age, while the corticospinal system was inactivated, and at 14 weeks, after activity returned. During M1 inactivation, the RN on the same side showed normal RST projections and reduced motor thresholds, suggestive of precocious development. By contrast, the RN on the untreated/active M1 side showed sparse RST projections and an immature motor map. After M1 activity returned later in adolescent cat development, RN on the active M1/CST side continued to show a substantial loss of spinal terminations and an impaired motor map. RN/RST on the inactivated side regressed to a smaller map and fewer axons. Our findings suggest that the developing rubrospinal system is under activity-dependent regulation by the corticospinal system for establishing mature RST connections and RN motor map. The lack of RS compensation on the non-inactivated side can be explained by development of ipsilateral misprojections from the active M1 that outcompete the RST. Significance statement: Skilled movements reflect the activity of multiple descending motor systems and their interactions with spinal motor circuits. Currently, there is little insight into whether motor systems interact during development to

  20. Event-related desynchronization reflects downregulation of intracortical inhibition in human primary motor cortex.

    PubMed

    Takemi, Mitsuaki; Masakado, Yoshihisa; Liu, Meigen; Ushiba, Junichi

    2013-09-01

    There is increasing interest in electroencephalogram (EEG)-based brain-computer interface (BCI) as a tool for rehabilitation of upper limb motor functions in hemiplegic stroke patients. This type of BCI often exploits mu and beta oscillations in EEG recorded over the sensorimotor areas, and their event-related desynchronization (ERD) following motor imagery is believed to represent increased sensorimotor cortex excitability. However, it remains unclear whether the sensorimotor cortex excitability is actually correlated with ERD. Thus we assessed the association of ERD with primary motor cortex (M1) excitability during motor imagery of right wrist movement. M1 excitability was tested by motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF) with transcranial magnetic stimulation (TMS). Twenty healthy participants were recruited. The participants performed 7 s of rest followed by 5 s of motor imagery and received online visual feedback of the ERD magnitude of the contralateral hand M1 while performing the motor imagery task. TMS was applied to the right hand M1 when ERD exceeded predetermined thresholds during motor imagery. MEP amplitudes, SICI, and ICF were recorded from the agonist muscle of the imagined hand movement. Results showed that the large ERD during wrist motor imagery was associated with significantly increased MEP amplitudes and reduced SICI but no significant changes in ICF. Thus ERD magnitude during wrist motor imagery represents M1 excitability. This study provides electrophysiological evidence that a motor imagery task involving ERD may induce changes in corticospinal excitability similar to changes accompanying actual movements.

  1. Homuncular organization of human motor cortex as indicated by neuromagnetic recordings.

    PubMed

    Cheyne, D; Kristeva, R; Deecke, L

    1991-01-14

    Sources of neural activity identified using non-invasive measurements of cerebral magnetic fields (magnetoencephalography) were found to confirm the somatotopic organization of primary motor cortex for movements of different parts of the body in normal human subjects. Somatotopic maps produced with this technique showed slight differences to the 'classic' homunculus obtained from studies using direct cortical stimulation. These findings indicate that neuromagnetic recordings are capable of localizing cortical activity associated with voluntarily produced movements without the use of external stimulation and provide a new method for studying the functional organization of human motor cortex and its role in voluntary movement.

  2. SPEEDY babies: A putative new behavioral syndrome of unbalanced motor-speech development.

    PubMed

    Haapanen, Marja-Leena; Aro, Tuomo; Isotalo, Elina

    2008-12-01

    Even though difficulties in motor development in children with speech and language disorders are widely known, hardly any attention is paid to the association between atypically rapidly occurring unassisted walking and delayed speech development. The four children described here presented with a developmental behavioral triad: 1) atypically speedy motor development, 2) impaired expressive speech, and 3) tongue carriage dysfunction resulting in related misarticulations. Those characteristics might be phenotypically or genetically clustered. These children didn't have impaired cognition, neurological or mental disease, defective sense organs, craniofacial dysmorphology or susceptibility to upper respiratory infections, particularly recurrent otitis media. Attention should be paid on discordant and unbalanced achievement of developmental milestones. Present children are termed SPEEDY babies, where SPEEDY refers to rapid independent walking, SPEE and DY to dyspractic or dysfunctional speech development and lingual dysfunction resulting in linguoalveolar misarticulations. SPEEDY babies require health care that recognizes and respects their motor skills and supports their needs for motor activities and on the other hand include treatment for impaired speech. The parents may need advice and support with these children.

  3. Postnatal development of differential projections from the caudal and rostral motor cortex subregions.

    PubMed

    Li, Q; Martin, J H

    2000-09-01

    The primary motor cortex of cats, monkeys, and humans has distinct rostral and caudal subregions. In the cat, projections from the caudal subregion terminate predominantly in laminae 4-6 and, from the rostral subregion, in laminae 6-8. The purpose of this study was to determine if these distinctive termination patterns are present during early postnatal development, when corticospinal axons are establishing connections with spinal neurons, or if there was postnatal refinement of the distribution of terminations. We used the anterograde tracer biotinylated dextran amine (BDA) to label selectively projections from the two subregions in immature (postnatal days 25, 35 at time of analysis) and mature animals. We compared the distribution of spinal gray matter labeling from caudal and rostral motor cortex. In immature animals, substantial bilateral terminations were present after tracer injection into either subregion. Partial axon reconstructions revealed that individual axons terminated bilaterally. The dorso-ventral laminar distribution of contralateral labeling after caudal motor cortex injections was significantly more extensive for immature than mature animals. In immature animals, most of the labeling was present in laminae 5-7 (dorsal portion). with lesser amounts in laminae 1-4 and 7 (ventral portion), 8, and 9. In mature animals, there were significant reductions in the amount of label in laminae 7-9, resulting in contraction of the labeled territory. The distribution of dorsal horn-ventral horn labeling shifted from 41% and 59% in immature animals to 77% and 23% in maturity. The distribution of contralateral labeling after rostral motor cortex injections also was different in immature and mature animals, but the changes were less extensive than for the caudal motor cortex. In immature animals, the distribution of labeling was similar to that after caudal motor cortex injections in animals of the same age. In mature animals, there was a significant reduction

  4. The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys.

    PubMed

    Dum, Richard P; Levinthal, David J; Strick, Peter L

    2009-11-11

    Classically, the spinothalamic (ST) system has been viewed as the major pathway for transmitting nociceptive and thermoceptive information to the cerebral cortex. There is a long-standing controversy about the cortical targets of this system. We used anterograde transneuronal transport of the H129 strain of herpes simplex virus type 1 in the Cebus monkey to label the cortical areas that receive ST input. We found that the ST system reaches multiple cortical areas located in the contralateral hemisphere. The major targets are granular insular cortex, secondary somatosensory cortex and several cortical areas in the cingulate sulcus. It is noteworthy that comparable cortical regions in humans consistently display activation when subjects are acutely exposed to painful stimuli. We next combined anterograde transneuronal transport of virus with injections of a conventional tracer into the ventral premotor area (PMv). We used the PMv injection to identify the cingulate motor areas on the medial wall of the hemisphere. This combined approach demonstrated that each of the cingulate motor areas receives ST input. Our meta-analysis of imaging studies indicates that the human equivalents of the three cingulate motor areas also correspond to sites of pain-related activation. The cingulate motor areas in the monkey project directly to the primary motor cortex and to the spinal cord. Thus, the substrate exists for the ST system to have an important influence on the cortical control of movement. PMID:19906970

  5. Fetal frontal cortex transplant (/sup 14/C) 2-deoxyglucose uptake and histology: survival in cavities of host rat brain motor cortex

    SciTech Connect

    Sharp, F.R.; Gonzalez, M.F.

    1984-10-01

    Fetal frontal neocortex from 18-day-old rat embryonic brain was transplanted into cavities in 30-day-old host motor cortex. Sixty days after transplantation, 5 of 15 transplanted rats had surviving fetal transplants. The fetal cortex transplants were physically attached to the host brain, completely filled the original cavity, and had numerous surviving cells including pyramidal neurons. Cell lamination within the fetal transplant was abnormal. The (/sup 14/C) 2-deoxyglucose uptake of all five of the fetal neocortex transplants was less than adjacent cortex and contralateral host motor-sensory cortex, but more than adjacent corpus callosum white matter. The results indicate that fetal frontal neocortex can be transplanted into damaged rat motor cortex. The metabolic rate of the transplants suggests they could be partially functional.

  6. Development of closed-loop neural interface technology in a rat model: combining motor cortex operant conditioning with visual cortex microstimulation.

    PubMed

    Marzullo, Timothy Charles; Lehmkuhle, Mark J; Gage, Gregory J; Kipke, Daryl R

    2010-04-01

    Closed-loop neural interface technology that combines neural ensemble decoding with simultaneous electrical microstimulation feedback is hypothesized to improve deep brain stimulation techniques, neuromotor prosthetic applications, and epilepsy treatment. Here we describe our iterative results in a rat model of a sensory and motor neurophysiological feedback control system. Three rats were chronically implanted with microelectrode arrays in both the motor and visual cortices. The rats were subsequently trained over a period of weeks to modulate their motor cortex ensemble unit activity upon delivery of intra-cortical microstimulation (ICMS) of the visual cortex in order to receive a food reward. Rats were given continuous feedback via visual cortex ICMS during the response periods that was representative of the motor cortex ensemble dynamics. Analysis revealed that the feedback provided the animals with indicators of the behavioral trials. At the hardware level, this preparation provides a tractable test model for improving the technology of closed-loop neural devices.

  7. Improvement in precision grip force control with self-modulation of primary motor cortex during motor imagery

    PubMed Central

    Blefari, Maria L.; Sulzer, James; Hepp-Reymond, Marie-Claude; Kollias, Spyros; Gassert, Roger

    2015-01-01

    Motor imagery (MI) has shown effectiveness in enhancing motor performance. This may be due to the common neural mechanisms underlying MI and motor execution (ME). The main region of the ME network, the primary motor cortex (M1), has been consistently linked to motor performance. However, the activation of M1 during motor imagery is controversial, which may account for inconsistent rehabilitation therapy outcomes using MI. Here, we examined the relationship between contralateral M1 (cM1) activation during MI and changes in sensorimotor performance. To aid cM1 activity modulation during MI, we used real-time fMRI neurofeedback-guided MI based on cM1 hand area blood oxygen level dependent (BOLD) signal in healthy subjects, performing kinesthetic MI of pinching. We used multiple regression analysis to examine the correlation between cM1 BOLD signal and changes in motor performance during an isometric pinching task of those subjects who were able to activate cM1 during motor imagery. Activities in premotor and parietal regions were used as covariates. We found that cM1 activity was positively correlated to improvements in accuracy as well as overall performance improvements, whereas other regions in the sensorimotor network were not. The association between cM1 activation during MI with performance changes indicates that subjects with stronger cM1 activation during MI may benefit more from MI training, with implications toward targeted neurotherapy. PMID:25762907

  8. Repetition suppression for speech processing in the associative occipital and parietal cortex of congenitally blind adults.

    PubMed

    Arnaud, Laureline; Sato, Marc; Ménard, Lucie; Gracco, Vincent L

    2013-01-01

    In the congenitally blind (CB), sensory deprivation results in cross-modal plasticity, with visual cortical activity observed for various auditory tasks. This reorganization has been associated with enhanced auditory abilities and the recruitment of visual brain areas during sound and language processing. The questions we addressed are whether visual cortical activity might also be observed in CB during passive listening to auditory speech and whether cross-modal plasticity is associated with adaptive differences in neuronal populations compared to sighted individuals (SI). We focused on the neural substrate of vowel processing in CB and SI adults using a repetition suppression (RS) paradigm. RS has been associated with enhanced or accelerated neural processing efficiency and synchronous activity between interacting brain regions. We evaluated whether cortical areas in CB were sensitive to RS during repeated vowel processing and whether there were differences across the two groups. In accordance with previous studies, both groups displayed a RS effect in the posterior temporal cortex. In the blind, however, additional occipital, temporal and parietal cortical regions were associated with predictive processing of repeated vowel sounds. The findings suggest a more expanded role for cross-modal compensatory effects in blind persons during sound and speech processing and a functional transfer of specific adaptive properties across neural regions as a consequence of sensory deprivation at birth.

  9. Comparing Motor Skills in Autism Spectrum Individuals With and Without Speech Delay

    PubMed Central

    Barbeau, Elise B.; Meilleur, Andrée‐Anne S.; Zeffiro, Thomas A.

    2015-01-01

    Movement atypicalities in speed, coordination, posture, and gait have been observed across the autism spectrum (AS) and atypicalities in coordination are more commonly observed in AS individuals without delayed speech (DSM‐IV Asperger) than in those with atypical or delayed speech onset. However, few studies have provided quantitative data to support these mostly clinical observations. Here, we compared perceptual and motor performance between 30 typically developing and AS individuals (21 with speech delay and 18 without speech delay) to examine the associations between limb movement control and atypical speech development. Groups were matched for age, intelligence, and sex. The experimental design included: an inspection time task, which measures visual processing speed; the Purdue Pegboard, which measures finger dexterity, bimanual performance, and hand‐eye coordination; the Annett Peg Moving Task, which measures unimanual goal‐directed arm movement; and a simple reaction time task. We used analysis of covariance to investigate group differences in task performance and linear regression models to explore potential associations between intelligence, language skills, simple reaction time, and visually guided movement performance. AS participants without speech delay performed slower than typical participants in the Purdue Pegboard subtests. AS participants without speech delay showed poorer bimanual coordination than those with speech delay. Visual processing speed was slightly faster in both AS groups than in the typical group. Altogether, these results suggest that AS individuals with and without speech delay differ in visually guided and visually triggered behavior and show that early language skills are associated with slower movement in simple and complex motor tasks. Autism Res 2015, 8: 682–693. © 2015 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research PMID:25820662

  10. Comparing Motor Skills in Autism Spectrum Individuals With and Without Speech Delay.

    PubMed

    Barbeau, Elise B; Meilleur, Andrée-Anne S; Zeffiro, Thomas A; Mottron, Laurent

    2015-12-01

    Movement atypicalities in speed, coordination, posture, and gait have been observed across the autism spectrum (AS) and atypicalities in coordination are more commonly observed in AS individuals without delayed speech (DSM-IV Asperger) than in those with atypical or delayed speech onset. However, few studies have provided quantitative data to support these mostly clinical observations. Here, we compared perceptual and motor performance between 30 typically developing and AS individuals (21 with speech delay and 18 without speech delay) to examine the associations between limb movement control and atypical speech development. Groups were matched for age, intelligence, and sex. The experimental design included: an inspection time task, which measures visual processing speed; the Purdue Pegboard, which measures finger dexterity, bimanual performance, and hand-eye coordination; the Annett Peg Moving Task, which measures unimanual goal-directed arm movement; and a simple reaction time task. We used analysis of covariance to investigate group differences in task performance and linear regression models to explore potential associations between intelligence, language skills, simple reaction time, and visually guided movement performance. AS participants without speech delay performed slower than typical participants in the Purdue Pegboard subtests. AS participants without speech delay showed poorer bimanual coordination than those with speech delay. Visual processing speed was slightly faster in both AS groups than in the typical group. Altogether, these results suggest that AS individuals with and without speech delay differ in visually guided and visually triggered behavior and show that early language skills are associated with slower movement in simple and complex motor tasks.

  11. Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex.

    PubMed

    Coffman, Keith A; Dum, Richard P; Strick, Peter L

    2011-09-20

    The cerebellum has a medial, cortico-nuclear zone consisting of the cerebellar vermis and the fastigial nucleus. Functionally, this zone is concerned with whole-body posture and locomotion. The vermis classically is thought to be included within the "spinocerebellum" and to receive somatic sensory input from ascending spinal pathways. In contrast, the lateral zone of the cerebellum is included in the "cerebro-cerebellum" because it is densely interconnected with the cerebral cortex. Here we report the surprising result that a portion of the vermis receives dense input from the cerebral cortex. We injected rabies virus into lobules VB-VIIIB of the vermis and used retrograde transneuronal transport of the virus to define disynaptic inputs to it. We found that large numbers of neurons in the primary motor cortex and in several motor areas on the medial wall of the hemisphere project to the vermis. Thus, our results challenge the classical view of the vermis and indicate that it no longer should be considered as entirely isolated from the cerebral cortex. Instead, lobules VB-VIIIB represent a site where the cortical motor areas can influence descending control systems involved in the regulation of whole-body posture and locomotion. We argue that the projection from the cerebral cortex to the vermis is part of the neural substrate for anticipatory postural adjustments and speculate that dysfunction of this system may underlie some forms of dystonia. PMID:21911381

  12. Influence of the amount of use on hand motor cortex representation: effects of immobilization and motor training.

    PubMed

    Ngomo, S; Leonard, G; Mercier, C

    2012-09-18

    Converging evidence from animal and human studies has revealed that increased or decreased use of an extremity can lead to changes in cortical representation of the involved muscles. However, opposite experimental manipulations such as immobilization and motor training have sometimes been associated with similar cortical changes. Therefore, the behavioral relevance of these changes remains unclear. The purpose of this study was to observe the effect of the amount of use on hand muscle motor cortex representation by contrasting the effect of unspecific motor training and immobilization. Nine healthy volunteers were tested prior and after a 4-day exposure to two experimental conditions using a randomized cross-over design: a motor training condition (to play Guitar Hero 2h/day with the tested (nondominant) hand on the fret board) and an immobilization condition (to wear an immobilization splint 24h/day). Before and after each condition, motor cortex representation of the nondominant first dorsal interosseous (FDI) muscle was mapped using image-guided transcranial magnetic stimulation (TMS). At the behavioral level, results show that the training condition led to a 20% improvement in the trained task, while the immobilization condition resulted in a 36% decrease in the FDI maximal voluntary contraction. At the neurophysiological level, corticospinal excitability (e.g. Motor-evoked potential amplitude) was found to be decreased in response to immobilization, while no change was observed in response to motor training. No change was found for other TMS variables (motor thresholds or map location/volume/area) in either condition. In conclusion, our results indicate that a 4-day decrease, but not increase, in the amount of use of nondominant hand muscles is sufficient to induce a change in corticospinal excitability. The lack of a training effect might be explained by the use of an unspecific task (that is nevertheless representative of "real-life" training situations) and

  13. Multitarget Multiscale Simulation for Pharmacological Treatment of Dystonia in Motor Cortex

    PubMed Central

    Neymotin, Samuel A.; Dura-Bernal, Salvador; Lakatos, Peter; Sanger, Terence D.; Lytton, William W.

    2016-01-01

    A large number of physiomic pathologies can produce hyperexcitability in cortex. Depending on severity, cortical hyperexcitability may manifest clinically as a hyperkinetic movement disorder or as epilpesy. We focus here on dystonia, a movement disorder that produces involuntary muscle contractions and involves pathology in multiple brain areas including basal ganglia, thalamus, cerebellum, and sensory and motor cortices. Most research in dystonia has focused on basal ganglia, while much pharmacological treatment is provided directly at muscles to prevent contraction. Motor cortex is another potential target for therapy that exhibits pathological dynamics in dystonia, including heightened activity and altered beta oscillations. We developed a multiscale model of primary motor cortex, ranging from molecular, up to cellular, and network levels, containing 1715 compartmental model neurons with multiple ion channels and intracellular molecular dynamics. We wired the model based on electrophysiological data obtained from mouse motor cortex circuit mapping experiments. We used the model to reproduce patterns of heightened activity seen in dystonia by applying independent random variations in parameters to identify pathological parameter sets. These models demonstrated degeneracy, meaning that there were many ways of obtaining the pathological syndrome. There was no single parameter alteration which would consistently distinguish pathological from physiological dynamics. At higher dimensions in parameter space, we were able to use support vector machines to distinguish the two patterns in different regions of space and thereby trace multitarget routes from dystonic to physiological dynamics. These results suggest the use of in silico models for discovery of multitarget drug cocktails. PMID:27378922

  14. Spontaneously Fluctuating Motor Cortex Excitability in Alternating Hemiplegia of Childhood: A Transcranial Magnetic Stimulation Study

    PubMed Central

    Stern, William M.; Desikan, Mahalekshmi; Hoad, Damon; Jaffer, Fatima; Strigaro, Gionata; Sander, Josemir W.; Rothwell, John C.; Sisodiya, Sanjay M.

    2016-01-01

    Background Alternating hemiplegia of childhood is a very rare and serious neurodevelopmental syndrome; its genetic basis has recently been established. Its characteristic features include typically-unprovoked episodes of hemiplegia and other transient or more persistent neurological abnormalities. Methods We used transcranial magnetic stimulation to assess the effect of the condition on motor cortex neurophysiology both during and between attacks of hemiplegia. Nine people with alternating hemiplegia of childhood were recruited; eight were successfully tested using transcranial magnetic stimulation to study motor cortex excitability, using single and paired pulse paradigms. For comparison, data from ten people with epilepsy but not alternating hemiplegia, and ten healthy controls, were used. Results One person with alternating hemiplegia tested during the onset of a hemiplegic attack showed progressively diminishing motor cortex excitability until no response could be evoked; a second person tested during a prolonged bilateral hemiplegic attack showed unusually low excitability. Three people tested between attacks showed asymptomatic variation in cortical excitability, not seen in controls. Paired pulse paradigms, which probe intracortical inhibitory and excitatory circuits, gave results similar to controls. Conclusions We report symptomatic and asymptomatic fluctuations in motor cortex excitability in people with alternating hemiplegia of childhood, not seen in controls. We propose that such fluctuations underlie hemiplegic attacks, and speculate that the asymptomatic fluctuation we detected may be useful as a biomarker for disease activity. PMID:26999520

  15. Quantification of motor cortex activity and full-body biomechanics during unconstrained locomotion.

    PubMed

    Prilutsky, Boris I; Sirota, Mikhail G; Gregor, Robert J; Beloozerova, Irina N

    2005-10-01

    Recent progress in the understanding of motor cortex function has been achieved primarily by simultaneously recording motor cortex neuron activity and the movement kinematics of the corresponding limb. We have expanded this approach by combining high-quality cortical single-unit activity recordings with synchronized recordings of full-body kinematics and kinetics in the freely behaving cat. The method is illustrated by selected results obtained from two cats tested while walking on a flat surface. Using this method, the activity of 43 pyramidal tract neurons (PTNs) was recorded, averaged over 10 bins of a locomotion cycle, and compared with full-body mechanics by means of principal component and multivariate linear regression analyses. Patterns of 24 PTNs (56%) and 219 biomechanical variables (73%) were classified into just four groups of inter-correlated variables that accounted for 91% of the total variance, indicating that many of the recorded variables had similar patterns. The ensemble activity of different groups of two to eight PTNs accurately predicted the 10-bin patterns of all biomechanical variables (neural decoding) and vice versa; different small groups of mechanical variables accurately predicted the 10-bin pattern of each PTN (neural encoding). We conclude that comparison of motor cortex activity with full-body biomechanics may be a useful tool in further elucidating the function of the motor cortex.

  16. Contribution of different limb controllers to modulation of motor cortex neurons during locomotion.

    PubMed

    Zelenin, Pavel V; Deliagina, Tatiana G; Orlovsky, Grigori N; Karayannidou, Anastasia; Dasgupta, Namrata M; Sirota, Mikhail G; Beloozerova, Irina N

    2011-03-23

    During locomotion, neurons in motor cortex exhibit profound step-related frequency modulation. The source of this modulation is unclear. The aim of this study was to reveal the contribution of different limb controllers (locomotor mechanisms of individual limbs) to the periodic modulation of motor cortex neurons during locomotion. Experiments were conducted in chronically instrumented cats. The activity of single neurons was recorded during regular quadrupedal locomotion (control), as well as when only one pair of limbs (fore, hind, right, or left) was walking while another pair was standing. Comparison of the modulation patterns in these neurons (their discharge profile with respect to the step cycle) during control and different bipedal locomotor tasks revealed several groups of neurons that receive distinct combinations of inputs from different limb controllers. In the majority (73%) of neurons from the forelimb area of motor cortex, modulation during control was determined exclusively by forelimb controllers (right, left, or both), while in the minority (27%), hindlimb controllers also contributed. By contrast, only in 30% of neurons from the hindlimb area was modulation determined exclusively by hindlimb controllers (right or both), while in 70% of them, the controllers of forelimbs also contributed. We suggest that such organization of inputs allows the motor cortex to contribute to the right-left limbs' coordination within each of the girdles during locomotion, and that it also allows hindlimb neurons to participate in coordination of the movements of the hindlimbs with those of the forelimbs.

  17. Optimal speech motor control and token-to-token variability: a Bayesian modeling approach.

    PubMed

    Patri, Jean-François; Diard, Julien; Perrier, Pascal

    2015-12-01

    The remarkable capacity of the speech motor system to adapt to various speech conditions is due to an excess of degrees of freedom, which enables producing similar acoustical properties with different sets of control strategies. To explain how the central nervous system selects one of the possible strategies, a common approach, in line with optimal motor control theories, is to model speech motor planning as the solution of an optimality problem based on cost functions. Despite the success of this approach, one of its drawbacks is the intrinsic contradiction between the concept of optimality and the observed experimental intra-speaker token-to-token variability. The present paper proposes an alternative approach by formulating feedforward optimal control in a probabilistic Bayesian modeling framework. This is illustrated by controlling a biomechanical model of the vocal tract for speech production and by comparing it with an existing optimal control model (GEPPETO). The essential elements of this optimal control model are presented first. From them the Bayesian model is constructed in a progressive way. Performance of the Bayesian model is evaluated based on computer simulations and compared to the optimal control model. This approach is shown to be appropriate for solving the speech planning problem while accounting for variability in a principled way. PMID:26497359

  18. Optimal speech motor control and token-to-token variability: a Bayesian modeling approach.

    PubMed

    Patri, Jean-François; Diard, Julien; Perrier, Pascal

    2015-12-01

    The remarkable capacity of the speech motor system to adapt to various speech conditions is due to an excess of degrees of freedom, which enables producing similar acoustical properties with different sets of control strategies. To explain how the central nervous system selects one of the possible strategies, a common approach, in line with optimal motor control theories, is to model speech motor planning as the solution of an optimality problem based on cost functions. Despite the success of this approach, one of its drawbacks is the intrinsic contradiction between the concept of optimality and the observed experimental intra-speaker token-to-token variability. The present paper proposes an alternative approach by formulating feedforward optimal control in a probabilistic Bayesian modeling framework. This is illustrated by controlling a biomechanical model of the vocal tract for speech production and by comparing it with an existing optimal control model (GEPPETO). The essential elements of this optimal control model are presented first. From them the Bayesian model is constructed in a progressive way. Performance of the Bayesian model is evaluated based on computer simulations and compared to the optimal control model. This approach is shown to be appropriate for solving the speech planning problem while accounting for variability in a principled way.

  19. Alterations of motor performance and brain cortex mitochondrial function during ethanol hangover.

    PubMed

    Bustamante, Juanita; Karadayian, Analia G; Lores-Arnaiz, Silvia; Cutrera, Rodolfo A

    2012-08-01

    Ethanol has been known to affect various behavioral parameters in experimental animals, even several hours after ethanol (EtOH) is absent from blood circulation, in the period known as hangover. The aim of this study was to assess the effects of acute ethanol hangover on motor performance in association with the brain cortex energetic metabolism. Evaluation of motor performance and brain cortex mitochondrial function during alcohol hangover was performed in mice 6 hours after a high ethanol dose (hangover onset). Animals were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Ethanol hangover group showed a bad motor performance compared with control animals (p < .05). Oxygen uptake in brain cortex mitochondria from hangover animals showed a 34% decrease in the respiratory control rate as compared with the control group. Mitochondrial complex activities were decreased being the complex I-III the less affected by the hangover condition; complex II-III was markedly decreased by ethanol hangover showing 50% less activity than controls. Complex IV was 42% decreased as compared with control animals. Hydrogen peroxide production was 51% increased in brain cortex mitochondria from the hangover group, as compared with the control animals. Quantification of the mitochondrial transmembrane potential indicated that ethanol injected animals presented 17% less ability to maintain the polarized condition as compared with controls. These results indicate that a clear decrease in proton motive force occurs in brain cortex mitochondria during hangover conditions. We can conclude that a decreased motor performance observed in the hangover group of animals could be associated with brain cortex mitochondrial dysfunction and the resulting impairment of its energetic metabolism.

  20. The role of the supplementary motor area for speech and language processing.

    PubMed

    Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann

    2016-09-01

    Apart from its function in speech motor control, the supplementary motor area (SMA) has largely been neglected in models of speech and language processing in the brain. The aim of this review paper is to summarize more recent work, suggesting that the SMA has various superordinate control functions during speech communication and language reception, which is particularly relevant in case of increased task demands. The SMA is subdivided into a posterior region serving predominantly motor-related functions (SMA proper) whereas the anterior part (pre-SMA) is involved in higher-order cognitive control mechanisms. In analogy to motor triggering functions of the SMA proper, the pre-SMA seems to manage procedural aspects of cognitive processing. These latter functions, among others, comprise attentional switching, ambiguity resolution, context integration, and coordination between procedural and declarative memory structures. Regarding language processing, this refers, for example, to the use of inner speech mechanisms during language encoding, but also to lexical disambiguation, syntax and prosody integration, and context-tracking. PMID:27343998

  1. Infant Vocal-Motor Coordination: Precursor to the Gesture-Speech System?

    ERIC Educational Resources Information Center

    Iverson, Jana M.; Fagan, Mary K.

    2004-01-01

    This study was designed to provide a general picture of infant vocal-motor coordination and test predictions generated by Iverson and Thelen's (1999) model of the development of the gesture-speech system. Forty-seven 6- to 9-month-old infants were videotaped with a primary caregiver during rattle and toy play. Results indicated an age-related…

  2. Nonspeech Oral Motor Treatment Issues Related to Children with Developmental Speech Sound Disorders

    ERIC Educational Resources Information Center

    Ruscello, Dennis M.

    2008-01-01

    Purpose: This article examines nonspeech oral motor treatments (NSOMTs) in the population of clients with developmental speech sound disorders. NSOMTs are a collection of nonspeech methods and procedures that claim to influence tongue, lip, and jaw resting postures; increase strength; improve muscle tone; facilitate range of motion; and develop…

  3. The role of the supplementary motor area for speech and language processing.

    PubMed

    Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann

    2016-09-01

    Apart from its function in speech motor control, the supplementary motor area (SMA) has largely been neglected in models of speech and language processing in the brain. The aim of this review paper is to summarize more recent work, suggesting that the SMA has various superordinate control functions during speech communication and language reception, which is particularly relevant in case of increased task demands. The SMA is subdivided into a posterior region serving predominantly motor-related functions (SMA proper) whereas the anterior part (pre-SMA) is involved in higher-order cognitive control mechanisms. In analogy to motor triggering functions of the SMA proper, the pre-SMA seems to manage procedural aspects of cognitive processing. These latter functions, among others, comprise attentional switching, ambiguity resolution, context integration, and coordination between procedural and declarative memory structures. Regarding language processing, this refers, for example, to the use of inner speech mechanisms during language encoding, but also to lexical disambiguation, syntax and prosody integration, and context-tracking.

  4. Proficiency and Linguistic Complexity Influence Speech Motor Control and Performance in Spanish Language Learners

    ERIC Educational Resources Information Center

    Nip, Ignatius S. B.; Blumenfeld, Henrike K.

    2015-01-01

    Purpose: Second-language (L2) production requires greater cognitive resources to inhibit the native language and to retrieve less robust lexical representations. The current investigation identifies how proficiency and linguistic complexity, specifically syntactic and lexical factors, influence speech motor control and performance. Method: Speech…

  5. The Contribution of the Insula to Motor Aspects of Speech Production: A Review and a Hypothesis

    ERIC Educational Resources Information Center

    Ackermann, Hermann; Riecker, Axel

    2004-01-01

    Based on clinical and functional imaging data, the left anterior insula has been assumed to support prearticulatory functions of speech motor control such as the ''programming'' of vocal tract gestures. In order to further elucidate this model, a recent functional magnetic resonance imaging (fMRI) study of our group (Riecker, Ackermann,…

  6. Influences of Sentence Length and Syntactic Complexity on the Speech Motor Control of Children Who Stutter

    ERIC Educational Resources Information Center

    MacPherson, Megan K.; Smith, Anne

    2013-01-01

    Purpose: To investigate the potential effects of increased sentence length and syntactic complexity on the speech motor control of children who stutter (CWS). Method: Participants repeated sentences of varied length and syntactic complexity. Kinematic measures of articulatory coordination variability and movement duration during perceptually…

  7. Progressive Apraxia of Speech as a Sign of Motor Neuron Disease

    ERIC Educational Resources Information Center

    Duffy, Joseph R.; Peach, Richard K.; Strand, Edythe A.

    2007-01-01

    Purpose: To document and describe in detail the occurrence of apraxia of speech (AOS) in a group of individuals with a diagnosis of motor neuron disease (MND). Method: Seven individuals with MND and AOS were identified from among 80 patients with a variety of neurodegenerative diseases and AOS (J. R. Duffy, 2006). The history, presenting…

  8. The Influence of Syllable Onset Complexity and Syllable Frequency on Speech Motor Control

    ERIC Educational Resources Information Center

    Riecker, Axel; Brendel, Bettina; Ziegler, Wolfram; Erb, Michael; Ackermann, Hermann

    2008-01-01

    Functional imaging studies have delineated a "minimal network for overt speech production," encompassing mesiofrontal structures (supplementary motor area, anterior cingulate gyrus), bilateral pre- and postcentral convolutions, extending rostrally into posterior parts of the inferior frontal gyrus (IFG) of the language-dominant hemisphere, left…

  9. The Effects of Divided Attention on Speech Motor, Verbal Fluency, and Manual Task Performance

    ERIC Educational Resources Information Center

    Dromey, Christopher; Shim, Erin

    2008-01-01

    Purpose: The goal of this study was to evaluate aspects of the "functional distance hypothesis," which predicts that tasks regulated by brain networks in closer anatomic proximity will interfere more with each other than tasks controlled by spatially distant regions. Speech, verbal fluency, and manual motor tasks were examined to ascertain whether…

  10. Proton magnetic resonance spectroscopy of the motor cortex in cervical myelopathy.

    PubMed

    Kowalczyk, Izabela; Duggal, Neil; Bartha, Robert

    2012-02-01

    Alterations in motor function in cervical myelopathy secondary to degenerative disease may be due to local effects of spinal compression or distal effects related to cortical reorganization. This prospective study characterizes differences in metabolite levels in the motor cortex, specifically N-acetylaspartate, creatine, choline, myo-inositol and glutamate plus glutamine, due to alterations in cortical function in patients with reversible spinal cord compression compared with healthy controls. We hypothesized that N-acetylaspartate/creatine levels would be decreased in the motor cortex of patients with cervical myelopathy due to reduced neuronal integrity/function and myo-inositol/creatine levels would be increased due to reactive gliosis. Twenty-four patients with cervical myelopathy and 11 healthy controls underwent proton-magnetic resonance spectroscopy on a 3.0 Tesla Siemens Magnetom Tim Trio MRI. Areas of activation from functional magnetic resonance imaging scans of a finger-tapping paradigm were used to localize a voxel on the side of greater motor deficit in the myelopathy group (n = 10 on right side and n = 14 on left side of the brain) and on each side of the motor cortex in controls. Neurological function was measured with the Neck Disability Index, modified Japanese Orthopaedic Association and American Spinal Injury Association questionnaires. Metabolite levels were measured relative to total creatine within the voxel of interest. No metabolite differences were detected between the right side and left side of the motor cortex in controls. The myelopathy group had significantly decreased neurological function compared with the control group (Neck Disability Index: P < 0.001 and modified Japanese Orthopaedic Association: P < 0.001). There was a significant decrease in the N-acetylaspartate/creatine metabolite ratio in the motor cortex of the myelopathy group (1.21 ± 0.07) compared with the right (1.37 ± 0.03; P = 0.01) and

  11. Lower layers in the motor cortex are more effective targets for penetrating microelectrodes in cortical prostheses

    NASA Astrophysics Data System (ADS)

    Parikh, Hirak; Marzullo, Timothy C.; Kipke, Daryl R.

    2009-04-01

    Improving cortical prostheses requires the development of recording neural interfaces that are efficient in terms of providing maximal control information with minimal interface complexity. While the typical approaches have targeted neurons in the motor cortex with multiple penetrating shanks, an alternative approach is to determine an efficient distribution of electrode sites within the layers of the cortex with fewer penetrating shanks. The objective of this study was to compare unit activity in the upper and lower layers of the cortex with respect to movement and direction in order to inform the design of penetrating microelectrodes. Four rats were implanted bilaterally with multi-site single-shank silicon microelectrode arrays in the neck/shoulder region of the motor cortex. We simultaneously recorded unit activity across all layers of the motor cortex while the animal was engaged in a movement direction task. Localization of the electrode array within the different layers of the cortex was determined by histology. We denoted units from layers 2 and 3 and units as upper layer units, and units from layers 5 and 6 as lower layer units. Analysis of unit spiking activity demonstrated that both the upper and lower layers encode movement and direction information. Unit responses in either cortical layer of the cortex were not preferentially associated with contralateral or ipsilateral movement. Aggregate analysis (633 neurons) and best session analysis (75 neurons) indicated that units in the lower layers (layers 5, 6) are more likely to encode direction information when compared to units in the upper layers (layers 2, 3) (p< 0.05). These results suggest that electrode sites clustered in the lower layers provide access to more salient control information for cortical neuroprostheses.

  12. Transformation of a virtual action plan into a motor plan in the premotor cortex.

    PubMed

    Nakayama, Yoshihisa; Yamagata, Tomoko; Tanji, Jun; Hoshi, Eiji

    2008-10-01

    Before preparing to initiate a forthcoming motion, we often acquire information about the future action without specifying actual motor parameters. The information for planning an action at this conceptual level can be provided with verbal commands or nonverbal signals even before the associated motor targets are visible. Under these conditions, the information signifying a virtual action plan must be transformed to information that can be used for constructing a motor plan to initiate specific movements. To determine whether the premotor cortex is involved in this process, we examined neuronal activity in the dorsal premotor cortex (PMd) of monkeys performing a behavioral task designed to isolate the behavioral stages of the acquisition of information for a future action and the construction of a motor plan. We trained the animals to receive a symbolic instruction (color and shape of an instruction cue) to determine whether to select the right or left of targets to reach, despite the physical absence of targets. Subsequently, two targets appeared on a screen at different locations. The animals then determined the correct target (left or right) based on the previous instruction and prepared to initiate a reaching movement to an actual target. The experimental design dissociated the selection of the right/left at an abstract level (action plan) from the physical motor plan. Here, we show that activity of individual PMd neurons initially reflects a virtual action plan transcending motor specifics, before these neurons contribute to a transformation process that leads to activity encoding a motor plan. PMID:18842888

  13. Temporal plasticity involved in recovery from manual dexterity deficit after motor cortex lesion in macaque monkeys.

    PubMed

    Murata, Yumi; Higo, Noriyuki; Hayashi, Takuya; Nishimura, Yukio; Sugiyama, Yoko; Oishi, Takao; Tsukada, Hideo; Isa, Tadashi; Onoe, Hirotaka

    2015-01-01

    The question of how intensive motor training restores motor function after brain damage or stroke remains unresolved. Here we show that the ipsilesional ventral premotor cortex (PMv) and perilesional primary motor cortex (M1) of rhesus macaque monkeys are involved in the recovery of manual dexterity after a lesion of M1. A focal lesion of the hand digit area in M1 was made by means of ibotenic acid injection. This lesion initially caused flaccid paralysis in the contralateral hand but was followed by functional recovery of hand movements, including precision grip, during the course of daily postlesion motor training. Brain imaging of regional cerebral blood flow by means of H2 (15)O-positron emission tomography revealed enhanced activity of the PMv during the early postrecovery period and increased functional connectivity within M1 during the late postrecovery period. The causal role of these areas in motor recovery was confirmed by means of pharmacological inactivation by muscimol during the different recovery periods. These findings indicate that, in both the remaining primary motor and premotor cortical areas, time-dependent plastic changes in neural activity and connectivity are involved in functional recovery from the motor deficit caused by the M1 lesion. Therefore, it is likely that the PMv, an area distant from the core of the lesion, plays an important role during the early postrecovery period, whereas the perilesional M1 contributes to functional recovery especially during the late postrecovery period.

  14. Microscale recording from human motor cortex: implications for minimally invasive electrocorticographic brain-computer interfaces

    PubMed Central

    Leuthardt, Eric C.; Freudenberg, Zac; Bundy, David; Roland, Jarod

    2010-01-01

    Object There is a growing interest in the use of recording from the surface of the brain, known as electrocorticography (ECoG), as a practical signal platform for brain-computer interface application. The signal has a combination of high signal quality and long-term stability that may be the ideal intermediate modality for future application. The research paradigm for studying ECoG signals uses patients requiring invasive monitoring for seizure localization. The implanted arrays span cortex areas on the order of centimeters. Currently, it is unknown what level of motor information can be discerned from small regions of human cortex with microscale ECoG recording. Methods In this study, a patient requiring invasive monitoring for seizure localization underwent concurrent implantation with a 16-microwire array (1-mm electrode spacing) placed over primary motor cortex. Microscale activity was recorded while the patient performed simple contra- and ipsilateral wrist movements that were monitored in parallel with electromyography. Using various statistical methods, linear and nonlinear relationships between these microcortical changes and recorded electromyography activity were defined. Results Small regions of primary motor cortex (< 5 mm) carry sufficient information to separate multiple aspects of motor movements (that is, wrist flexion/extension and ipsilateral/contralateral movements). Conclusions These findings support the conclusion that small regions of cortex investigated by ECoG recording may provide sufficient information about motor intentions to support brain-computer interface operations in the future. Given the small scale of the cortical region required, the requisite implanted array would be minimally invasive in terms of surgical placement of the electrode array. PMID:19569885

  15. Linear summation of outputs in a balanced network model of motor cortex

    PubMed Central

    Capaday, Charles; van Vreeswijk, Carl

    2015-01-01

    Given the non-linearities of the neural circuitry's elements, we would expect cortical circuits to respond non-linearly when activated. Surprisingly, when two points in the motor cortex are activated simultaneously, the EMG responses are the linear sum of the responses evoked by each of the points activated separately. Additionally, the corticospinal transfer function is close to linear, implying that the synaptic interactions in motor cortex must be effectively linear. To account for this, here we develop a model of motor cortex composed of multiple interconnected points, each comprised of reciprocally connected excitatory and inhibitory neurons. We show how non-linearities in neuronal transfer functions are eschewed by strong synaptic interactions within each point. Consequently, the simultaneous activation of multiple points results in a linear summation of their respective outputs. We also consider the effects of reduction of inhibition at a cortical point when one or more surrounding points are active. The network response in this condition is linear over an approximately two- to three-fold decrease of inhibitory feedback strength. This result supports the idea that focal disinhibition allows linear coupling of motor cortical points to generate movement related muscle activation patterns; albeit with a limitation on gain control. The model also explains why neural activity does not spread as far out as the axonal connectivity allows, whilst also explaining why distant cortical points can be, nonetheless, functionally coupled by focal disinhibition. Finally, we discuss the advantages that linear interactions at the cortical level afford to motor command synthesis. PMID:26097452

  16. Effects of high frequency electromagnetic field (EMF) emitted by mobile phones on the human motor cortex.

    PubMed

    Inomata-Terada, Satomi; Okabe, Shingo; Arai, Noritoshi; Hanajima, Ritsuko; Terao, Yasuo; Frubayashi, Toshiaki; Ugawa, Yoshikazu

    2007-10-01

    We investigated whether the pulsed high frequency electromagnetic field (EMF) emitted by a mobile phone has short term effects on the human motor cortex. We measured motor evoked potentials (MEPs) elicited by single pulse transcranial magnetic stimulation (TMS), before and after mobile phone exposure (active and sham) in 10 normal volunteers. Three sites were stimulated (motor cortex (CTX), brainstem (BST) and spinal nerve (Sp)). The short interval intracortical inhibition (SICI) of the motor cortex reflecting GABAergic interneuronal function was also studied by paired pulse TMS method. MEPs to single pulse TMS were also recorded in two patients with multiple sclerosis showing temperature dependent neurological symptoms (hot bath effect). Neither MEPs to single pulse TMS nor the SICI was affected by 30 min of EMF exposure from mobile phones or sham exposure. In two MS patients, mobile phone exposure had no effect on any parameters of MEPs even though conduction block occurred at the corticospinal tracts after taking a bath. As far as available methods are concerned, we did not detect any short-term effects of 30 min mobile phone exposure on the human motor cortical output neurons or interneurons even though we can not exclude the possibility that we failed to detect some mild effects due to a small sample size in the present study. This is the first study of MEPs after electromagnetic exposure from a mobile phone in neurological patients. PMID:17516508

  17. [Quality of neuronal signal registered in the monkey motor cortex with chronically implanted multiple microwires].

    PubMed

    Bondar', I V; Vasil'eva, L N; Badakva, A M; Miller, N V; Zobova, L N; Roshchin, V Iu

    2014-01-01

    Disconnection of central and peripheral parts of motor system leads to severe forms of disability. However, current research of brain-computer interfaces will solve the problem of rehabilitation of patients with motor disorders in future. Chronic recordings of single-unit activity in specialized areas of cerebral cortex could provide appropriate control signal for effectors with multiple degrees of freedom. In present article we evaluated the quality of chronic single-unit recordings in the primary motor cortex of awake behaving monkeys obtained with bundles of multiple microwires. Action potentials of proper quality were recorded from single units during three months. In some cases up to 7 single units could be extracted on a channel. Recording quality stabilized after 40 days since electrodes were implanted. Ultimately, functionality of multiple electrodes bundle makes it highly usable and reliable instrument for obtaining of control neurophysiologic signal from populations of neurons for brain-computer interfaces.

  18. Primary motor cortex reports efferent control of vibrissa motion on multiple time scales

    PubMed Central

    Hill, Daniel N.; Curtis, John C.; Moore, Jeffrey D.; Kleinfeld, David

    2011-01-01

    Exploratory whisking in rat is an example of self-generated movement on multiple time scales, from slow variations in the envelope of whisking to the rapid sequence of muscle contractions during a single whisk cycle. We find that, as a population, spike trains of single units in primary vibrissa motor cortex report the absolute angle of vibrissa position. This representation persists after sensory nerve transection, indicating an efferent source. About two-thirds of the units are modulated by slow variations in the envelope of whisking while relatively few units report rapid changes in position within the whisk cycle. The combined results from this study and past measurements, which show that primary sensory cortex codes the whisking envelope as a motor copy signal, imply that signals present in both sensory and motor cortices are necessary to compute coordinates based on vibrissa touch. PMID:22017992

  19. Constructing Visual Perception of Body Movement with the Motor Cortex.

    PubMed

    Orgs, Guido; Dovern, Anna; Hagura, Nobuhiro; Haggard, Patrick; Fink, Gereon R; Weiss, Peter H

    2016-01-01

    The human brain readily perceives fluent movement from static input. Using functional magnetic resonance imaging, we investigated brain mechanisms that mediate fluent apparent biological motion (ABM) perception from sequences of body postures. We presented body and nonbody stimuli varying in objective sequence duration and fluency of apparent movement. Three body postures were ordered to produce a fluent (ABC) or a nonfluent (ACB) apparent movement. This enabled us to identify brain areas involved in the perceptual reconstruction of body movement from identical lower-level static input. Participants judged the duration of a rectangle containing body/nonbody sequences, as an implicit measure of movement fluency. For body stimuli, fluent apparent motion sequences produced subjectively longer durations than nonfluent sequences of the same objective duration. This difference was reduced for nonbody stimuli. This body-specific bias in duration perception was associated with increased blood oxygen level-dependent responses in the primary (M1) and supplementary motor areas. Moreover, fluent ABM was associated with increased functional connectivity between M1/SMA and right fusiform body area. We show that perceptual reconstruction of fluent movement from static body postures does not merely enlist areas traditionally associated with visual body processing, but involves cooperative recruitment of motor areas, consistent with a "motor way of seeing". PMID:26534907

  20. Action verbs and the primary motor cortex: a comparative TMS study of silent reading, frequency judgments, and motor imagery.

    PubMed

    Tomasino, Barbara; Fink, Gereon R; Sparing, Roland; Dafotakis, Manuel; Weiss, Peter H

    2008-01-01

    Single pulse transcranial magnetic stimulation (TMS) was applied to the hand area of the left primary motor cortex or, as a control, to the vertex (STIMULATION: TMS(M1) vs. TMS(vertex)) while right-handed volunteers silently read verbs related to hand actions. We examined three different tasks and time points for stimulation within the same experiment: subjects indicated with their left foot when they (i) had finished reading, (ii) had judged whether the corresponding movement involved a hand rotation after simulating the hand movement, and (iii) had judged whether they would frequently encounter the action verb in a newspaper (TASK: silent reading, motor imagery, and frequency judgment). Response times were compared between TMS(M1) and TMS(vertex), both applied at different time points after stimulus onset (DELAY: 150, 300, 450, 600, and 750 ms). TMS(M1) differentially modulated task performance: there was a significant facilitatory effect of TMS(M1) for the imagery task only (about 88 ms), with subjects responding about 10% faster (compared to TMS(vertex)). In contrast, response times for silent reading and frequency judgments were unaffected by TMS(M1). No differential effect of the time point of TMS(M1) was observed. The differential effect of TMS(M1) when subjects performed a motor imagery task (relative to performing silent reading or frequency judgments with the same set of verbs) suggests that the primary motor cortex is critically involved in processing action verbs only when subjects are simulating the corresponding movement. This task-dependent effect of hand motor cortex TMS on the processing of hand-related action verbs is discussed with respect to the notion of embodied cognition and the associationist theory. PMID:18328510

  1. Speed of processing in the primary motor cortex: a continuous theta burst stimulation study.

    PubMed

    Lakhani, Bimal; Bolton, David A E; Miyasike-Dasilva, Veronica; Vette, Albert H; McIlroy, William E

    2014-03-15

    'Temporally urgent' reactions are extremely rapid, spatially precise movements that are evoked following discrete stimuli. The involvement of primary motor cortex (M1) and its relationship to stimulus intensity in such reactions is not well understood. Continuous theta burst stimulation (cTBS) suppresses focal regions of the cortex and can assess the involvement of motor cortex in speed of processing. The primary objective of this study was to explore the involvement of M1 in speed of processing with respect to stimulus intensity. Thirteen healthy young adults participated in this experiment. Behavioral testing consisted of a simple button press using the index finger following median nerve stimulation of the opposite limb, at either high or low stimulus intensity. Reaction time was measured by the onset of electromyographic activity from the first dorsal interosseous (FDI) muscle of each limb. Participants completed a 30 min bout of behavioral testing prior to, and 15 min following, the delivery of cTBS to the motor cortical representation of the right FDI. The effect of cTBS on motor cortex was measured by recording the average of 30 motor evoked potentials (MEPs) just prior to, and 5 min following, cTBS. Paired t-tests revealed that, of thirteen participants, five demonstrated a significant attenuation, three demonstrated a significant facilitation and five demonstrated no significant change in MEP amplitude following cTBS. Of the group that demonstrated attenuated MEPs, there was a biologically significant interaction between stimulus intensity and effect of cTBS on reaction time and amplitude of muscle activation. This study demonstrates the variability of potential outcomes associated with the use of cTBS and further study on the mechanisms that underscore the methodology is required. Importantly, changes in motor cortical excitability may be an important determinant of speed of processing following high intensity stimulation.

  2. Reversible Deactivation of Motor Cortex Reveals Functional Connectivity with Posterior Parietal Cortex in the Prosimian Galago (Otolemur garnettii)

    PubMed Central

    Cooke, Dylan F.; Stepniewska, Iwona; Miller, Daniel J.; Kaas, Jon H.

    2015-01-01

    We examined the functional macrocircuitry of frontoparietal networks in the neocortex of prosimian primates (Otolemur garnettii) using a microfluidic thermal regulator to reversibly deactivate selected regions of motor cortex (M1). During deactivation of either forelimb or mouth/face movement domains within M1, we used long-train intracortical microstimulation techniques to evoke movements from the rostral division of posterior parietal cortex (PPCr). We found that deactivation of M1 movement domains in most instances abolished movements evoked in PPCr. The most common effect of deactivating M1 was to abolish evoked movements in a homotopic domain in PPCr. For example, deactivating M1 forelimb lift domains resulted in loss of evoked movement in forelimb domains in PPCr. However, at some sites, we also observed heterotopic effects; deactivating a specific domain in M1 (e.g., forelimb lift) resulted in loss of evoked movement in a different movement domain in PPCr (e.g., hand-to-mouth or eye-blink). At most sites examined in PPCr, rewarming M1 resulted in a reestablishment of the baseline movement at the same amplitude as that observed before cooling. However, at some sites, reactivation did not result in a return to baseline movement or to the full amplitude of the baseline movement. We discuss our findings in the context of frontoparietal circuits and how they may subserve a repertoire of ecologically relevant behaviors. SIGNIFICANCE STATEMENT The posterior parietal cortex (PPC) of primates integrates sensory information used to guide movements. Different modules within PPC and motor cortex (M1) appear to control various motor behaviors (e.g., reaching, defense, and feeding). How these modules work together may vary across species and may explain differences in dexterity and even the capacity for tool use. We investigated the functional connectivity of these modules in galagos, a prosimian primate with relatively simple frontoparietal circuitry. By deactivating a

  3. Dynamic modulation of shared sensory and motor cortical rhythms mediates speech and non-speech discrimination performance

    PubMed Central

    Bowers, Andrew L.; Saltuklaroglu, Tim; Harkrider, Ashley; Wilson, Matt; Toner, Mary A.

    2014-01-01

    Oscillatory models of speech processing have proposed that rhythmic cortical oscillations in sensory and motor regions modulate speech sound processing from the bottom-up via phase reset at low frequencies (3–10 Hz) and from the top-down via the disinhibition of alpha/beta rhythms (8–30 Hz). To investigate how the proposed rhythms mediate perceptual performance, electroencephalographic (EEG) was recorded while participants passively listened to or actively identified speech and tone-sweeps in a two-force choice in noise discrimination task presented at high and low signal-to-noise ratios. EEG data were decomposed using independent component analysis and clustered across participants using principle component methods in EEGLAB. Left and right hemisphere sensorimotor and posterior temporal lobe clusters were identified. Alpha and beta suppression was associated with active tasks only in sensorimotor and temporal clusters. In posterior temporal clusters, increases in phase reset at low frequencies were driven by the quality of bottom-up acoustic information for speech and non-speech stimuli, whereas phase reset in sensorimotor clusters was associated with top-down active task demands. A comparison of correct discrimination trials to those identified at chance showed an earlier performance related effect for the left sensorimotor cluster relative to the left-temporal lobe cluster during the syllable discrimination task only. The right sensorimotor cluster was associated with performance related differences for tone–sweep stimuli only. Findings are consistent with internal model accounts suggesting that early efferent sensorimotor models transmitted along alpha and beta channels reflect a release from inhibition related to active attention to auditory discrimination. Results are discussed in the broader context of dynamic, oscillatory models of cognition proposing that top-down internally generated states interact with bottom-up sensory processing to enhance task

  4. Neutralization of Nogo-A Enhances Synaptic Plasticity in the Rodent Motor Cortex and Improves Motor Learning in Vivo

    PubMed Central

    Weinmann, Oliver; Kellner, Yves; Yu, Xinzhu; Vicente, Raul; Gullo, Miriam; Kasper, Hansjörg; Lussi, Karin; Ristic, Zorica; Luft, Andreas R.; Rioult-Pedotti, Mengia; Zuo, Yi; Zagrebelsky, Marta; Schwab, Martin E.

    2014-01-01

    The membrane protein Nogo-A is known as an inhibitor of axonal outgrowth and regeneration in the CNS. However, its physiological functions in the normal adult CNS remain incompletely understood. Here, we investigated the role of Nogo-A in cortical synaptic plasticity and motor learning in the uninjured adult rodent motor cortex. Nogo-A and its receptor NgR1 are present at cortical synapses. Acute treatment of slices with function-blocking antibodies (Abs) against Nogo-A or against NgR1 increased long-term potentiation (LTP) induced by stimulation of layer 2/3 horizontal fibers. Furthermore, anti-Nogo-A Ab treatment increased LTP saturation levels, whereas long-term depression remained unchanged, thus leading to an enlarged synaptic modification range. In vivo, intrathecal application of Nogo-A-blocking Abs resulted in a higher dendritic spine density at cortical pyramidal neurons due to an increase in spine formation as revealed by in vivo two-photon microscopy. To investigate whether these changes in synaptic plasticity correlate with motor learning, we trained rats to learn a skilled forelimb-reaching task while receiving anti-Nogo-A Abs. Learning of this cortically controlled precision movement was improved upon anti-Nogo-A Ab treatment. Our results identify Nogo-A as an influential molecular modulator of synaptic plasticity and as a regulator for learning of skilled movements in the motor cortex. PMID:24966370

  5. Healthy and diseased corticospinal motor neurons are selectively transduced upon direct AAV2-2 injection into the motor cortex.

    PubMed

    Jara, J H; Stanford, M J; Zhu, Y; Tu, M; Hauswirth, W W; Bohn, M C; DeVries, S H; Özdinler, P H

    2016-03-01

    Direct gene delivery to the neurons of interest, without affecting other neuron populations in the cerebral cortex, represent a challenge owing to the heterogeneity and cellular complexity of the brain. Genetic modulation of corticospinal motor neurons (CSMN) is required for developing effective and long-term treatment strategies for motor neuron diseases, in which voluntary movement is impaired. Adeno-associated viruses (AAV) have been widely used for neuronal transduction studies owing to long-term and stable gene expression as well as low immunoreactivity in humans. Here we report that AAV2-2 transduces CSMN with high efficiency upon direct cortex injection and that transduction efficiencies are similar during presymptomatic and symptomatic stages in hSOD1(G93A) transgenic amyotrophic lateral sclerosis (ALS) mice. Our findings reveal that choice of promoter improves selectivity as AAV2-2 chicken β-actin promoter injection results in about 70% CSMN transduction, the highest percentage reported to date. CSMN transduction in both wild-type and transgenic ALS mice allows detailed analysis of single axon fibers within the corticospinal tract in both cervical and lumbar spinal cord and reveals circuitry defects, which mainly occur between CSMN and spinal motor neurons in hSOD1(G93A) transgenic ALS mice. Our findings set the stage for CSMN gene therapy in ALS and related motor neuron diseases. PMID:26704722

  6. Healthy and diseased corticospinal motor neurons are selectively transduced upon direct AAV2-2 injection into the motor cortex

    PubMed Central

    Jara, J H; Stanford, M J; Zhu, Y; Tu, M; Hauswirth, W W; Bohn, M C; DeVries, S H; Özdinler, P H

    2016-01-01

    Direct gene delivery to the neurons of interest, without affecting other neuron populations in the cerebral cortex, represent a challenge owing to the heterogeneity and cellular complexity of the brain. Genetic modulation of corticospinal motor neurons (CSMN) is required for developing effective and long-term treatment strategies for motor neuron diseases, in which voluntary movement is impaired. Adeno-associated viruses (AAV) have been widely used for neuronal transduction studies owing to long-term and stable gene expression as well as low immunoreactivity in humans. Here we report that AAV2-2 transduces CSMN with high efficiency upon direct cortex injection and that transduction efficiencies are similar during presymptomatic and symptomatic stages in hSOD1G93A transgenic amyotrophic lateral sclerosis (ALS) mice. Our findings reveal that choice of promoter improves selectivity as AAV2-2 chicken β-actin promoter injection results in about 70% CSMN transduction, the highest percentage reported to date. CSMN transduction in both wild-type and transgenic ALS mice allows detailed analysis of single axon fibers within the corticospinal tract in both cervical and lumbar spinal cord and reveals circuitry defects, which mainly occur between CSMN and spinal motor neurons in hSOD1G93A transgenic ALS mice. Our findings set the stage for CSMN gene therapy in ALS and related motor neuron diseases. PMID:26704722

  7. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.

    PubMed

    Oza, Chintan S; Giszter, Simon F

    2015-05-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI.

  8. Trunk Robot Rehabilitation Training with Active Stepping Reorganizes and Enriches Trunk Motor Cortex Representations in Spinal Transected Rats

    PubMed Central

    Oza, Chintan S.

    2015-01-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. PMID:25948267

  9. fMRI investigation of unexpected somatosensory feedback perturbation during speech

    PubMed Central

    Golfinopoulos, Elisa; Tourville, Jason A.; Bohland, Jason W.; Ghosh, Satrajit S.; Nieto-Castanon, Alfonso; Guenther, Frank H.

    2011-01-01

    Somatosensory feedback plays a critical role in the coordination of articulator movements for speech production. In response to unexpected resistance to lip or jaw movements during speech, fluent speakers can use the difference between the somatosensory expectations of a speech sound and the actual somatosensory feedback to adjust the trajectories of functionally relevant but unimpeded articulators. In an effort to investigate the neural substrates underlying the somatosensory feedback control of speech, we used an event-related sparse sampling functional magnetic resonance imaging paradigm and a novel pneumatic device that unpredictably blocked subjects’ jaw movements. In comparison to speech, perturbed speech, in which jaw perturbation prompted the generation of compensatory speech motor commands, demonstrated increased effects in bilateral ventral motor cortex, right-lateralized anterior supramarginal gyrus, inferior frontal gyrus pars triangularis and ventral premotor cortex, and bilateral inferior posterior cerebellum (lobule VIII). Structural equation modeling revealed a significant increased influence from left anterior supramarginal gyrus to right anterior supramarginal gyrus and from left anterior supramarginal gyrus to right ventral premotor cortex as well as a significant increased reciprocal influence between right ventral premotor cortex and right ventral motor cortex and right anterior supramarginal gyrus and right inferior frontal gyrus pars triangularis for perturbed speech relative to speech. These results suggest that bilateral anterior supramarginal gyrus, right inferior frontal gyrus pars triangularis, right ventral premotor and motor cortices are functionally coupled and influence speech motor output when somatosensory feedback is unexpectedly perturbed during speech production. PMID:21195191

  10. Aberrant Neuromagnetic Activation in the Motor Cortex in Children with Acute Migraine: A Magnetoencephalography Study

    PubMed Central

    Guo, Xinyao; Xiang, Jing; Wang, Yingying; O’Brien, Hope; Kabbouche, Marielle; Horn, Paul; Powers, Scott W.; Hershey, Andrew D.

    2012-01-01

    Migraine attacks have been shown to interfere with normal function in the brain such as motor or sensory function. However, to date, there has been no clinical neurophysiology study focusing on the motor function in children with migraine during headache attacks. To investigate the motor function in children with migraine, twenty-six children with acute migraine, meeting International Classification of Headache Disorders criteria and age- and gender-matched healthy children were studied using a 275-channel magnetoencephalography system. A finger-tapping paradigm was designed to elicit neuromagnetic activation in the motor cortex. Children with migraine showed significantly prolonged latency of movement-evoked magnetic fields (MEF) during finger movement compared with the controls. The correlation coefficient of MEF latency and age in children with migraine was significantly different from that in healthy controls. The spectral power of high gamma (65–150 Hz) oscillations during finger movement in the primary motor cortex is also significantly higher in children with migraine than in controls. The alteration of responding latency and aberrant high gamma oscillations suggest that the developmental trajectory of motor function in children with migraine is impaired during migraine attacks and/or developmentally delayed. This finding indicates that childhood migraine may affect the development of brain function and result in long-term problems. PMID:23185541

  11. Aberrant neuromagnetic activation in the motor cortex in children with acute migraine: a magnetoencephalography study.

    PubMed

    Guo, Xinyao; Xiang, Jing; Wang, Yingying; O'Brien, Hope; Kabbouche, Marielle; Horn, Paul; Powers, Scott W; Hershey, Andrew D

    2012-01-01

    Migraine attacks have been shown to interfere with normal function in the brain such as motor or sensory function. However, to date, there has been no clinical neurophysiology study focusing on the motor function in children with migraine during headache attacks. To investigate the motor function in children with migraine, twenty-six children with acute migraine, meeting International Classification of Headache Disorders criteria and age- and gender-matched healthy children were studied using a 275-channel magnetoencephalography system. A finger-tapping paradigm was designed to elicit neuromagnetic activation in the motor cortex. Children with migraine showed significantly prolonged latency of movement-evoked magnetic fields (MEF) during finger movement compared with the controls. The correlation coefficient of MEF latency and age in children with migraine was significantly different from that in healthy controls. The spectral power of high gamma (65-150 Hz) oscillations during finger movement in the primary motor cortex is also significantly higher in children with migraine than in controls. The alteration of responding latency and aberrant high gamma oscillations suggest that the developmental trajectory of motor function in children with migraine is impaired during migraine attacks and/or developmentally delayed. This finding indicates that childhood migraine may affect the development of brain function and result in long-term problems.

  12. Human Motor Cortex Functional Changes in Acute Stroke: Gender Effects

    PubMed Central

    Di Lazzaro, Vincenzo; Pellegrino, Giovanni; Di Pino, Giovanni; Ranieri, Federico; Lotti, Fiorenza; Florio, Lucia; Capone, Fioravante

    2016-01-01

    The acute phase of stroke is accompanied by functional changes in the activity and interplay of both hemispheres. In healthy subjects, gender is known to impact the functional brain organization. We investigated whether gender influences also acute stroke functional changes. In thirty-five ischemic stroke patients, we evaluated the excitability of the affected (AH) and unaffected hemisphere (UH) by measuring resting and active motor threshold (AMT) and motor-evoked potential amplitude under baseline conditions and after intermittent theta burst stimulation (iTBS) of AH. We also computed an index of the excitability balance between the hemispheres, laterality indexes (LI), to evidence hemispheric asymmetry. AMT differed significantly between AH and UH only in the male group (p = 0.004), not in females (p > 0.200), and both LIAMT and LIRMT were significantly higher in males than in females (respectively p = 0.033 and p = 0.042). LTP-like activity induced by iTBS in AH was more frequent in females. Gender influences the functional excitability changes that take place after human stroke and the level of LTP that can be induced by repetitive stimulation. This knowledge is of high value in the attempt of individualizing to different genders any non-invasive stimulation strategy designed to foster stroke recovery. PMID:26858590

  13. Photoacoustic detection of functional responses in the motor cortex of awake behaving monkey during forelimb movement

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Zhang, Hongyu; Cheney, Paul D.; Yang, Xinmai

    2012-11-01

    Photoacoustic (PA) imaging was applied to detect the neuronal activity in the motor cortex of an awake, behaving monkey during forelimb movement. An adult macaque monkey was trained to perform a reach-to-grasp task while PA images were acquired through a 30-mm diameter implanted cranial chamber. Increased PA signal amplitude results from an increase in regional blood volume and is interpreted as increased neuronal activity. Additionally, depth-resolved PA signals enabled the study of functional responses in deep cortical areas. The results demonstrate the feasibility of utilizing PA imaging for studies of functional activation of cerebral cortex in awake monkeys performing behavioral tasks.

  14. Speech Motor Correlates of Treatment-Related Changes in Stuttering Severity and Speech Naturalness

    ERIC Educational Resources Information Center

    Tasko, Stephen M.; McClean, Michael D.; Runyan, Charles M.

    2007-01-01

    Participants of stuttering treatment programs provide an opportunity to evaluate persons who stutter as they demonstrate varying levels of fluency. Identifying physiologic correlates of altered fluency levels may lead to insights about mechanisms of speech disfluency. This study examined respiratory, orofacial kinematic and acoustic measures in 35…

  15. Computational Neural Modeling of Speech Motor Control in Childhood Apraxia of Speech (CAS)

    ERIC Educational Resources Information Center

    Terband, Hayo; Maassen, Ben; Guenther, Frank H.; Brumberg, Jonathan

    2009-01-01

    Purpose: Childhood apraxia of speech (CAS) has been associated with a wide variety of diagnostic descriptions and has been shown to involve different symptoms during successive stages of development. In the present study, the authors attempted to associate the symptoms of CAS in a particular developmental stage with particular…

  16. Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography

    NASA Astrophysics Data System (ADS)

    Muller, Leah; Hamilton, Liberty S.; Edwards, Erik; Bouchard, Kristofer E.; Chang, Edward F.

    2016-10-01

    Objective. Electrocorticography (ECoG) has become an important tool in human neuroscience and has tremendous potential for emerging applications in neural interface technology. Electrode array design parameters are outstanding issues for both research and clinical applications, and these parameters depend critically on the nature of the neural signals to be recorded. Here, we investigate the functional spatial resolution of neural signals recorded at the human cortical surface. We empirically derive spatial spread functions to quantify the shared neural activity for each frequency band of the electrocorticogram. Approach. Five subjects with high-density (4 mm center-to-center spacing) ECoG grid implants participated in speech perception and production tasks while neural activity was recorded from the speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The cortical surface field potential was decomposed into traditional EEG frequency bands. Signal similarity between electrode pairs for each frequency band was quantified using a Pearson correlation coefficient. Main results. The correlation of neural activity between electrode pairs was inversely related to the distance between the electrodes; this relationship was used to quantify spatial falloff functions for cortical subdomains. As expected, lower frequencies remained correlated over larger distances than higher frequencies. However, both the envelope and phase of gamma and high gamma frequencies (30-150 Hz) are largely uncorrelated (<90%) at 4 mm, the smallest spacing of the high-density arrays. Thus, ECoG arrays smaller than 4 mm have significant promise for increasing signal resolution at high frequencies, whereas less additional gain is achieved for lower frequencies. Significance. Our findings quantitatively demonstrate the dependence of ECoG spatial resolution on the neural frequency of interest. We demonstrate that this relationship is consistent across patients and

  17. Topographical organization of projections to cat motor cortex from nucleus interpositus anterior and forelimb skin

    PubMed Central

    Jörntell, Henrik; Ekerot, Carl-Fredrik

    1999-01-01

    The activation of the motor cortex from focal electrical stimulation of sites in the forelimb area of cerebellar nucleus interpositus anterior (NIA) was investigated in barbiturate-anaesthetized cats. Using a microelectrode, nuclear sites were identified by the cutaneous climbing fibre receptive fields of their afferent Purkinje cells. These cutaneous receptive fields can be identified by positive field potentials reflecting inhibition from Purkinje cells activated on natural stimulation of the skin. Thereafter, the sites were microstimulated and the evoked responses were systematically recorded over the cortical surface with a ball-tipped electrode. The topographical organization in the motor cortex of responses evoked by electrical stimulation of the forelimb skin was also analysed.Generally, sites in the forelimb area of NIA projected to the lateral part of the anterior sigmoid gyrus (ASG). Sites in the hindlimb area of NIA also projected to lateral ASG and in addition to a more medial region. Sites in the face area of NIA, however, projected mainly to the middle part of the posterior sigmoid gyrus (PSG).For sites in the forelimb area of NIA, the topographical organization and strength of the projections varied specifically with the cutaneous climbing fibre receptive field of the site. The largest cortical responses were evoked from sites with receptive fields on the distal or ventral skin of the forelimb.Microelectrode recordings in the depth of the motor cortex revealed that responses evoked by cerebellar nuclear stimulation were due to an excitatory process in layer III.Short latency surface responses evoked from the forelimb skin were found in the caudolateral part of the motor cortex. At gradually longer latencies, responses appeared in sequentially more rostromedial parts of the motor cortex. Since the responses displayed several temporal peaks that appeared in specific cortical regions for different areas of the forelimb skin, several somatotopic maps

  18. Interaction between visual and motor cortex: a transcranial magnetic stimulation study

    PubMed Central

    Strigaro, Gionata; Ruge, Diane; Chen, Jui-Cheng; Marshall, Louise; Desikan, Mahalekshmi; Cantello, Roberto; Rothwell, John C

    2015-01-01

    The major link between the visual and motor systems is via the dorsal stream pathways from visual to parietal and frontal areas of the cortex. Although the pathway appears to be indirect, there is evidence that visual input can reach the motor cortex at relatively short latency. To shed some light on its neural basis, we studied the visuomotor interaction using paired transcranial magnetic stimulation (TMS). Motor-evoked potentials (MEPs) were recorded from the right first dorsal interosseous in sixteen healthy volunteers. A conditioning stimulus (CS) was applied over the phosphene hotspot of the visual cortex, followed by a test stimulus over the left primary motor cortex (M1) with a random interstimulus interval (ISI)  in range 12–40 ms. The effects of paired stimulation were retested during visual and auditory reaction-time tasks (RT). Finally, we measured the effects of a CS on short-interval intracortical inhibition (SICI). At rest, a CS over the occiput significantly (P < 0.001) suppressed test MEPs with an ISI in the range 18–40 ms. In the visual RT, inhibition with an ISI of 40 ms (but not 18 ms) was replaced by a time-specific facilitation (P < 0.001), whereas, in the auditory RT, the CS no longer had any effect on MEPs. Finally, an occipital CS facilitated SICI with an ISI of 40 ms (P < 0.01). We conclude that it is possible to study separate functional connections from visual to motor cortices using paired-TMS with an ISI in the range 18–40 ms. The connections are inhibitory at rest and possibly mediated by inhibitory interneurones in the motor cortex. The effect with an ISI of 40 ms reverses into facilitation during a visuomotor RT but not an audiomotor RT. This suggests that it plays a role in visuomotor integration. Key points We studied the interaction between the primary visual cortex and the primary motor cortex using paired transcranial magnetic stimulation (TMS) with an interstimulus interval (ISI) in the range 12–40

  19. Probing the corticospinal link between the motor cortex and motoneurones: some neglected aspects of human motor cortical function.

    PubMed

    Petersen, N C; Butler, J E; Taylor, J L; Gandevia, S C

    2010-04-01

    This review considers the operation of the corticospinal system in primates. There is a relatively widespread cortical area containing corticospinal outputs to a single muscle and thus a motoneurone pool receives corticospinal input from a wide region of the cortex. In addition, corticospinal cells themselves have divergent intraspinal branches which innervate more than one motoneuronal pool but the synergistic couplings involving the many hand muscles are likely to be more diverse than can be accommodated simply by fixed patterns of corticospinal divergence. Many studies using transcranial magnetic stimulation of the human motor cortex have highlighted the capacity of the cortex to modify its apparent excitability in response to altered afferent inputs, training and various pathologies. Studies using cortical stimulation at 'very low' intensities which elicit only short-latency suppression of the discharge of motor units have revealed that the rapidly conducting corticospinal axons (stimulated at higher intensities) drive motoneurones in normal voluntary contractions. There are also major non-linearities generated at a spinal level in the relation between corticospinal output and the output from the motoneurone pool. For example, recent studies have revealed that the efficacy of the human corticospinal connection with motoneurones undergoes activity-dependent changes which influence the size of voluntary contractions. Hence, corticospinal drives must be sculpted continuously to compensate for the changing functional efficacy of the descending systems which activate the motoneurones. This highlights the need for proprioceptive monitoring of movements to ensure their accurate execution. PMID:20003100

  20. Dissociable somatotopic representations of Chinese action verbs in the motor and premotor cortex.

    PubMed

    Wu, Haiyan; Mai, Xiaoqin; Tang, Honghong; Ge, Yue; Luo, Yue-Jia; Liu, Chao

    2013-01-01

    The embodied view of language processing holds that language comprehension involves the recruitment of sensorimotor information, as evidenced by the somatotopic representation of action verbs in the motor system. However, this review has not yet been examined in logographic scripts such as Chinese, in which action verbs can provide explicit linguistic cues to the effectors (arm, leg, mouth) that conduct the action (hit, jump, drink). We compared the somatotopic representation of Chinese verbs that contain such effector cues and those that do not. The results showed that uncued verbs elicited similar somatotopic representation in the motor and premotor cortex as found in alphabetic scripts. However, effector-cued verbs demonstrated an inverse somatotopic pattern by showing reduced activation in corresponding motor areas, despite that effector-cued verbs actually are rated higher in imageability than uncued verbs. Our results support the universality of somatotopic representation of action verbs in the motor system.

  1. Multimodality in infancy: vocal-motor and speech-gesture coordinations in typical and atypical development

    PubMed Central

    Iverson, Jana M.

    2011-01-01

    From very early in life, expressive behavior is multimodal, with early behavioral coordinations being refined and strengthened over time as they become used for the communication of meaning. Of these communicative coordinations, those that involve gesture and speech have received perhaps the greatest empirical attention, but little is known about the developmental origins of the gesture-speech link. One possibility is that the origins of speech-gesture coordinations lie in hand-mouth linkages that are observed in the everyday sensorimotor activity of very young infants who do not yet use the hand or mouth to communicate meaning. In this article, I review evidence suggesting that the study of gesture-speech links and developmentally prior couplings between the vocal and motor systems in infancy can provide valuable insight into a number of later developments that reflect the cognitive interdependence of gesture and speech. These include aspects of language development and delay, the infant origins of the adult speech-gesture system, and early signs of autism spectrum disorder. Implications of these findings for studying the development of multimodal communication are considered. PMID:21494413

  2. Language and motor cortex response to comprehending accidental and intentional action sentences.

    PubMed

    Kana, Rajesh K; Ammons, Carla J; Doss, Constance F; Waite, Megan E; Kana, Bhumika; Herringshaw, Abbey J; Ver Hoef, Lawrence

    2015-10-01

    Understanding the meaning of others' actions involves mentally simulating those actions by oneself. Embodied theories of language espouse a prominent role for motor simulation in reading comprehension, especially when words, sentences, or narratives portray everyday actions. Inherent in these actions is the level of agency of the actor. Motor cortex activity in response to processing action verbs has been relatively well-established. What has been less explored, however, are: (1) the neural bases of determining whether an action is intentional or accidental (agency); and (2) whether agency influences level of motor simulation. This functional MRI study investigated how language and motor areas of the brain respond to sentences depicting intentional versus accidental action. 25 healthy adults read a series of sentences in the MRI scanner and determined whether the actions described were accidental or intentional. The main results include: (1) left hemisphere language areas (left inferior frontal gyrus, LIFG; left superior temporal gyrus, LSTG), premotor cortex (PM), and presupplementary motor area (pSMA) were strongly activated by both sentence types; (2) processing accidental action, relative to intentional action, elicited greater activity in LIFG, medial prefrontal cortex (MPFC), and left amygdala; no statistically significant activity was found in the opposite contrast; and (3) greater percent signal change was observed in LIFG while processing accidental action and in right precentral gyrus for intentional action. The results of this study support language and motor region involvement in action sentence comprehension in accordance with embodiment theories. Additionally, it provides new insight into the linguistic, integrative, and emotional demands of comprehending accidental action, its underlying neural circuitry, and its relationship to intentionality bias: the predisposition to ascribe purpose to action. PMID:26300387

  3. Parallel pathways from motor and somatosensory cortex for controlling whisker movements in mice

    PubMed Central

    Sreenivasan, Varun; Karmakar, Kajari; Rijli, Filippo M; Petersen, Carl C H

    2015-01-01

    Mice can gather tactile sensory information by actively moving their whiskers to palpate objects in their immediate surroundings. Whisker sensory perception therefore requires integration of sensory and motor information, which occurs prominently in the neocortex. The signalling pathways from the neocortex for controlling whisker movements are currently poorly understood in mice. Here, we delineate two pathways, one originating from primary whisker somatosensory cortex (wS1) and the other from whisker motor cortex (wM1), that control qualitatively distinct movements of contralateral whiskers. Optogenetic stimulation of wS1 drove retraction of contralateral whiskers while stimulation of wM1 drove rhythmic whisker protraction. To map brainstem pathways connecting these cortical areas to whisker motor neurons, we used a combination of anterograde tracing using adenoassociated virus injected into neocortex and retrograde tracing using monosynaptic rabies virus injected into whisker muscles. Our data are consistent with wS1 driving whisker retraction by exciting glutamatergic premotor neurons in the rostral spinal trigeminal interpolaris nucleus, which in turn activate the motor neurons innervating the extrinsic retractor muscle nasolabialis. The rhythmic whisker protraction evoked by wM1 stimulation might be driven by excitation of excitatory and inhibitory premotor neurons in the brainstem reticular formation innervating both intrinsic and extrinsic muscles. Our data therefore begin to unravel the neuronal circuits linking the neocortex to whisker motor neurons. PMID:25476605

  4. Comparison of abstract decision encoding in the monkey prefrontal cortex, the presupplementary, and cingulate motor areas.

    PubMed

    Merten, Katharina; Nieder, Andreas

    2013-07-01

    Deciding between alternatives is a critical element of flexible behavior. Perceptual decisions have been studied extensively in an action-based framework. Recently, we have shown that abstract perceptual decisions are encoded in prefrontal cortex (PFC) neurons (Merten and Nieder 2012). However, the role of other frontal cortex areas remained elusive. Here, we trained monkeys to perform a rule-based visual detection task that disentangled abstract perceptual decisions from motor preparation. We recorded the single-neuron activity in the presupplementary (preSMA) and the rostral part of the cingulate motor area (CMAr) and compared it to the results previously found in the PFC. Neurons in both areas traditionally identified with motor planning process the abstract decision independently of any motor preparatory activity by similar mechanisms as the PFC. A larger proportion of decision neurons and a higher strength of decision encoding was found in the preSMA than in the PFC. Neurons in both areas reliably predicted the monkeys' decisions. The fraction of CMAr decision neurons and their strength of the decision encoding were comparable to the PFC. Our findings highlight the role of both preSMA and CMAr in abstract cognitive processing and emphasize that both frontal areas encode decisions prior to the preparation of a motor output.

  5. Large-scale spatiotemporal spike patterning consistent with wave propagation in motor cortex.

    PubMed

    Takahashi, Kazutaka; Kim, Sanggyun; Coleman, Todd P; Brown, Kevin A; Suminski, Aaron J; Best, Matthew D; Hatsopoulos, Nicholas G

    2015-05-21

    Aggregate signals in cortex are known to be spatiotemporally organized as propagating waves across the cortical surface, but it remains unclear whether the same is true for spiking activity in individual neurons. Furthermore, the functional interactions between cortical neurons are well documented but their spatial arrangement on the cortical surface has been largely ignored. Here we use a functional network analysis to demonstrate that a subset of motor cortical neurons in non-human primates spatially coordinate their spiking activity in a manner that closely matches wave propagation measured in the beta oscillatory band of the local field potential. We also demonstrate that sequential spiking of pairs of neuron contains task-relevant information that peaks when the neurons are spatially oriented along the wave axis. We hypothesize that the spatial anisotropy of spike patterning may reflect the underlying organization of motor cortex and may be a general property shared by other cortical areas.

  6. [Instrumentalization of movements induced by stimulation of motor cortex with food reinforcement in dogs].

    PubMed

    Frolov, A G; Pavlova, O G

    2002-01-01

    Contrary to some literature data, the possibility to instrumentalize the movements (liftings) of the hind limb elicited by stimulation of the corresponding contralateral area of the motor cortex was shown. The instrumental reflex (spontaneous high lifting of the hind limb) was acquired after a number of uniform trials: cortical stimulation--movement--food. Food delivery was preceded by a click, which was presented during the hind limb lifting and served as a secondary reinforcement. The acquisition was rather prolonged (50-200 trials) and demanded some special conditions. The results count in favor of the viewpoint that the motor cortex can directly participate in establishing the instrumental conditioned connection (motivation--movement), and simple instrumental movements can be initiated through this connection.

  7. Instrumentalization of movements evoked by stimulation of the motor cortex by food reinforcement in dogs.

    PubMed

    Frolov, A G; Pavlova, O G

    2003-03-01

    The possibility that hindlimb movements (elevations) evoked by stimulation of the corresponding contralateral area of the motor cortex could be instrumentalized by reinforcement with food was demonstrated, contradicting some previously published data. Operant movements (interstimulus voluntary high elevations of the hindlimb) were acquired as a result of consistent combinations: cortical stimulation - movement - food. Acquisition required more than 50-200 combinations. Delivery of food was accompanied by a click at exactly the moment at which the hindlimb reached the required height. The click became the food-related conditioned signal and served as a secondary operant reinforcement, which facilitated acquisition of the operant movement. These results support the view that the motor cortex can have an immediate role in forming "operant" temporary connections (motivation-movement) and that simple operant movements can be initiated via this arc.

  8. Large-scale spatiotemporal spike patterning consistent with wave propagation in motor cortex.

    PubMed

    Takahashi, Kazutaka; Kim, Sanggyun; Coleman, Todd P; Brown, Kevin A; Suminski, Aaron J; Best, Matthew D; Hatsopoulos, Nicholas G

    2015-01-01

    Aggregate signals in cortex are known to be spatiotemporally organized as propagating waves across the cortical surface, but it remains unclear whether the same is true for spiking activity in individual neurons. Furthermore, the functional interactions between cortical neurons are well documented but their spatial arrangement on the cortical surface has been largely ignored. Here we use a functional network analysis to demonstrate that a subset of motor cortical neurons in non-human primates spatially coordinate their spiking activity in a manner that closely matches wave propagation measured in the beta oscillatory band of the local field potential. We also demonstrate that sequential spiking of pairs of neuron contains task-relevant information that peaks when the neurons are spatially oriented along the wave axis. We hypothesize that the spatial anisotropy of spike patterning may reflect the underlying organization of motor cortex and may be a general property shared by other cortical areas. PMID:25994554

  9. Dorsal premotor cortex is involved in switching motor plans

    PubMed Central

    Pastor-Bernier, Alexandre; Tremblay, Elsa; Cisek, Paul

    2012-01-01

    Previous studies have shown that neural activity in primate dorsal premotor cortex (PMd) can simultaneously represent multiple potential movement plans, and that activity related to these movement options is modulated by their relative subjective desirability. These findings support the hypothesis that decisions about actions are made through a competition within the same circuits that guide the actions themselves. This hypothesis further predicts that the very same cells that guide initial decisions will continue to update their activities if an animal changes its mind. For example, if a previously selected movement option suddenly becomes unavailable, the correction will be performed by the same cells that selected the initial movement, as opposed to some different group of cells responsible for online guidance. We tested this prediction by recording neural activity in the PMd of a monkey performing an instructed-delay reach selection task. In the task, two targets were simultaneously presented and their border styles indicated whether each would be worth 1, 2, or 3 juice drops. In a random subset of trials (FREE), the monkey was allowed a choice while in the remaining trials (FORCED) one of the targets disappeared at the time of the GO signal. In FORCED-LOW trials the monkey was forced to move to the less valuable target and started moving either toward the new target (Direct) or toward the target that vanished and then curved to reach the remaining one (Curved). Prior to the GO signal, PMd activity clearly reflected the monkey's subjective preference, predicting his choices in FREE trials even with equally valued options. In FORCED-LOW trials, PMd activity reflected the switch of the monkey's plan as early as 100 ms after the GO signal, well before movement onset (MO). This confirms that the activity is not related to feedback from the movement itself, and suggests that PMd continues to participate in action selection even when the animal changes its mind on

  10. Motor Training Promotes Both Synaptic and Intrinsic Plasticity of Layer II/III Pyramidal Neurons in the Primary Motor Cortex

    PubMed Central

    Kida, Hiroyuki; Tsuda, Yasumasa; Ito, Nana; Yamamoto, Yui; Owada, Yuji; Kamiya, Yoshinori; Mitsushima, Dai

    2016-01-01

    Motor skill training induces structural plasticity at dendritic spines in the primary motor cortex (M1). To further analyze both synaptic and intrinsic plasticity in the layer II/III area of M1, we subjected rats to a rotor rod test and then prepared acute brain slices. Motor skill consistently improved within 2 days of training. Voltage clamp analysis showed significantly higher α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-d-aspartate (AMPA/NMDA) ratios and miniature EPSC amplitudes in 1-day trained rats compared with untrained rats, suggesting increased postsynaptic AMPA receptors in the early phase of motor learning. Compared with untrained controls, 2-days trained rats showed significantly higher miniature EPSC amplitude and frequency. Paired-pulse analysis further demonstrated lower rates in 2-days trained rats, suggesting increased presynaptic glutamate release during the late phase of learning. One-day trained rats showed decreased miniature IPSC frequency and increased paired-pulse analysis of evoked IPSC, suggesting a transient decrease in presynaptic γ-aminobutyric acid (GABA) release. Moreover, current clamp analysis revealed lower resting membrane potential, higher spike threshold, and deeper afterhyperpolarization in 1-day trained rats—while 2-days trained rats showed higher membrane potential, suggesting dynamic changes in intrinsic properties. Our present results indicate dynamic changes in glutamatergic, GABAergic, and intrinsic plasticity in M1 layer II/III neurons after the motor training. PMID:27193420

  11. Knockdown of the Dyslexia-Associated Gene Kiaa0319 Impairs Temporal Responses to Speech Stimuli in Rat Primary Auditory Cortex

    PubMed Central

    Centanni, T. M.; Booker, A. B.; Sloan, A. M.; Chen, F.; Maher, B. J.; Carraway, R. S.; Khodaparast, N.; Rennaker, R.; LoTurco, J. J.; Kilgard, M. P.

    2014-01-01

    One in 15 school age children have dyslexia, which is characterized by phoneme-processing problems and difficulty learning to read. Dyslexia is associated with mutations in the gene KIAA0319. It is not known whether reduced expression of KIAA0319 can degrade the brain's ability to process phonemes. In the current study, we used RNA interference (RNAi) to reduce expression of Kiaa0319 (the rat homolog of the human gene KIAA0319) and evaluate the effect in a rat model of phoneme discrimination. Speech discrimination thresholds in normal rats are nearly identical to human thresholds. We recorded multiunit neural responses to isolated speech sounds in primary auditory cortex (A1) of rats that received in utero RNAi of Kiaa0319. Reduced expression of Kiaa0319 increased the trial-by-trial variability of speech responses and reduced the neural discrimination ability of speech sounds. Intracellular recordings from affected neurons revealed that reduced expression of Kiaa0319 increased neural excitability and input resistance. These results provide the first evidence that decreased expression of the dyslexia-associated gene Kiaa0319 can alter cortical responses and impair phoneme processing in auditory cortex. PMID:23395846

  12. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    PubMed

    Pleger, Burkhard; Draganski, Bogdan; Schwenkreis, Peter; Lenz, Melanie; Nicolas, Volkmar; Maier, Christoph; Tegenthoff, Martin

    2014-01-01

    The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  13. Investigating Speech Motor Practice and Learning in People Who Stutter

    ERIC Educational Resources Information Center

    Namasivayam, Aravind Kumar; van Lieshout, Pascal

    2008-01-01

    In this exploratory study, we investigated whether or not people who stutter (PWS) show motor practice and learning changes similar to those of people who do not stutter (PNS). To this end, five PWS and five PNS repeated a set of non-words at two different rates (normal and fast) across three test sessions (T1, T2 on the same day and T3 on a…

  14. Fezf2 expression in layer 5 projection neurons of mature mouse motor cortex.

    PubMed

    Tantirigama, Malinda L S; Oswald, Manfred J; Clare, Alison J; Wicky, Hollie E; Day, Robert C; Hughes, Stephanie M; Empson, Ruth M

    2016-03-01

    The mature cerebral cortex contains a wide diversity of neuron phenotypes. This diversity is specified during development by neuron-specific expression of key transcription factors, some of which are retained for the life of the animal. One of these key developmental transcription factors that is also retained in the adult is Fezf2, but the neuron types expressing it in the mature cortex are unknown. With a validated Fezf2-Gfp reporter mouse, whole-cell electrophysiology with morphology reconstruction, cluster analysis, in vivo retrograde labeling, and immunohistochemistry, we identify a heterogeneous population of Fezf2(+) neurons in both layer 5A and layer 5B of the mature motor cortex. Functional electrophysiology identified two distinct subtypes of Fezf2(+) neurons that resembled pyramidal tract projection neurons (PT-PNs) and intratelencephalic projection neurons (IT-PNs). Retrograde labeling confirmed the former type to include corticospinal projection neurons (CSpPNs) and corticothalamic projection neurons (CThPNs), whereas the latter type included crossed corticostriatal projection neurons (cCStrPNs) and crossed-corticocortical projection neurons (cCCPNs). The two Fezf2(+) subtypes expressed either CTIP2 or SATB2 to distinguish their physiological identity and confirmed that specific expression combinations of key transcription factors persist in the mature motor cortex. Our findings indicate a wider role for Fezf2 within gene expression networks that underpin the diversity of layer 5 cortical projection neurons.

  15. Hemispheric asymmetry in cerebrovascular reactivity of the human primary motor cortex: an in vivo study at 7 T.

    PubMed

    Driver, Ian D; Andoh, Jamila; Blockley, Nicholas P; Francis, Susan T; Gowland, Penny A; Paus, Tomáš

    2015-05-01

    Current functional MRI (fMRI) approaches assess underlying neuronal activity through monitoring the related local variations in cerebral blood oxygenation, blood volume and blood flow. This vascular response is likely to vary across brain regions and across individuals, depending on the composition of the local vascular bed and on the vascular capacity to dilate. The most widely used technique uses the blood oxygen level dependent (BOLD) fMRI signal, which arises from a complex combination of all of these factors. The model of handedness provides a case where one brain region (dominant motor cortex) is known to have a stronger BOLD response over another (non-dominant motor cortex) during hand motor task performance. We predict that this is accompanied by a higher vascular reactivity in the dominant motor cortex, when compared with the non-dominant motor cortex. Precise measurement of end-tidal CO2 and a novel sinusoidal CO2 respiratory challenge were combined with the high sensitivity and finer spatial resolution available for fMRI at 7 T to measure BOLD cerebrovascular reactivity (CVR) in eight healthy male participants. BOLD CVR was compared between the left (dominant) and right (non-dominant) primary motor cortices of right-handed adults. Hemispheric asymmetry in vascular reactivity was predicted and observed in the primary motor cortex (left CVR = 0.60 ± 0.15%/mm Hg; right CVR = 0.47 ± 0.08%/mm Hg; left CVR > right CVR, P = 0.04), the first reported evidence of such a vascular difference. These findings demonstrate a cerebral vascular asymmetry between the left and right primary motor cortex. The origin of this asymmetry largely arises from the contribution of large draining veins. This work has implications for future motor laterality studies that use BOLD, and it is also suggestive of a vascular plasticity in the human primary motor cortex. PMID:25788020

  16. Application of a Motor Learning Treatment for Speech Sound Disorders in Small Groups.

    PubMed

    Skelton, Steven L; Richard, Jennifer T

    2016-06-01

    Speech sound treatment in the public schools is often conducted in small groups, but there are minimal data on the efficacy of group treatment. This study evaluated the efficacy of a motor learning-based treatment (Concurrent Treatment) provided to elementary-school students in small groups. Concurrent Treatment incorporates the randomized sequencing of various practice tasks (e.g., words, sentences, or storytelling) and can result in rapid speech sound acquisition during individual treatment settings. Twenty-eight 6- to 9-year-old children participated in a randomized pretest-posttest control group design. The experimental group received Concurrent Treatment, while the control group received treatment (if needed) after the study. Participants in the experimental group acquired their target speech sounds within 40 30-minute sessions in groups of up to four participants (effect size, d = 1.31).

  17. Application of a Motor Learning Treatment for Speech Sound Disorders in Small Groups.

    PubMed

    Skelton, Steven L; Richard, Jennifer T

    2016-06-01

    Speech sound treatment in the public schools is often conducted in small groups, but there are minimal data on the efficacy of group treatment. This study evaluated the efficacy of a motor learning-based treatment (Concurrent Treatment) provided to elementary-school students in small groups. Concurrent Treatment incorporates the randomized sequencing of various practice tasks (e.g., words, sentences, or storytelling) and can result in rapid speech sound acquisition during individual treatment settings. Twenty-eight 6- to 9-year-old children participated in a randomized pretest-posttest control group design. The experimental group received Concurrent Treatment, while the control group received treatment (if needed) after the study. Participants in the experimental group acquired their target speech sounds within 40 30-minute sessions in groups of up to four participants (effect size, d = 1.31). PMID:27160738

  18. The neurophysiology of response competition: motor cortex activation and inhibition following subliminal response priming.

    PubMed

    Praamstra, Peter; Seiss, Ellen

    2005-03-01

    Some widely used tasks in cognitive neuroscience depend on the induction of a response conflict between choice alternatives, involving partial activation of the incorrect response before the correct response is emitted. Although such ''conflict tasks'' are often used to investigate frontal-lobe-based conflict-monitoring processes, it is not known how response competition evolves in the motor cortex. To investigate the dynamics of motor cortex activation during response competition, we used a subliminal priming task that induced response competition while bypassing pre-response stage processing conflict. Analyses of movement-related EEG potentials supported an interaction between competing responses characterized by reciprocal inhibition. Inhibitory interactions between response channels contribute to the resolution of response conflict. However, the reciprocal inhibition at motor cortex level seemed to operate independent of higher level conflict-monitoring processes, which were relatively insensitive to response conflict induced by subliminal priming. These results elucidate how response conflict causes interference as well as the conditions under which frontal-lobe-based interference control processes are engaged.

  19. Physical activity-associated gene expression signature in nonhuman primate motor cortex.

    PubMed

    Mitchell, Amanda C; Leak, Rehana K; Garbett, Krassimira; Zigmond, Michael J; Cameron, Judy L; Mirnics, Károly

    2012-03-01

    It has been established that weight gain and weight loss are heavily influenced by activity level. In this study, we hypothesized that the motor cortex exhibits a distinct physical activity-associated gene expression profile, which may underlie changes in weight associated with movement. Using DNA microarrays we profiled gene expression in the motor cortex of a group of 14 female rhesus monkeys (Macaca mulatta) with a wide range of stable physical activity levels. We found that neuronal growth factor signaling and nutrient sensing transcripts in the brain were highly correlated with physical activity. A follow-up of AKT3 expression changes (a gene at the apex of neuronal survival and nutrient sensing) revealed increased protein levels of total AKT, phosphorylated AKT, and forkhead box O3 (FOXO3), one of AKT's main downstream effectors. In addition, we successfully validated three other genes via quantitative polymerase chain reaction (qPCR) (cereblon (CRBN), origin recognition complex subunit 4-like, and pyruvate dehydrogenase 4 (PDK4)). We conclude that these genes are important in the physical activity-associated pathway in the motor cortex, and may be critical for physical activity-associated changes in body weight and neuroprotection.

  20. Temporal dynamics of motor cortex excitability during perception of natural emotional scenes.

    PubMed

    Borgomaneri, Sara; Gazzola, Valeria; Avenanti, Alessio

    2014-10-01

    Although it is widely assumed that emotions prime the body for action, the effects of visual perception of natural emotional scenes on the temporal dynamics of the human motor system have scarcely been investigated. Here, we used single-pulse transcranial magnetic stimulation (TMS) to assess motor excitability during observation and categorization of positive, neutral and negative pictures from the International Affective Picture System database. Motor-evoked potentials (MEPs) from TMS of the left motor cortex were recorded from hand muscles, at 150 and 300 ms after picture onset. In the early temporal condition we found an increase in hand motor excitability that was specific for the perception of negative pictures. This early negative bias was predicted by interindividual differences in the disposition to experience aversive feelings (personal distress) in interpersonal emotional contexts. In the later temporal condition, we found that MEPs were similarly increased for both positive and negative pictures, suggesting an increased reactivity to emotionally arousing scenes. By highlighting the temporal course of motor excitability during perception of emotional pictures, our study provides direct neurophysiological support for the evolutionary notions that emotion perception is closely linked to action systems and that emotionally negative events require motor reactions to be more urgently mobilized.

  1. Temporal dynamics of motor cortex excitability during perception of natural emotional scenes

    PubMed Central

    Borgomaneri, Sara; Gazzola, Valeria

    2014-01-01

    Although it is widely assumed that emotions prime the body for action, the effects of visual perception of natural emotional scenes on the temporal dynamics of the human motor system have scarcely been investigated. Here, we used single-pulse transcranial magnetic stimulation (TMS) to assess motor excitability during observation and categorization of positive, neutral and negative pictures from the International Affective Picture System database. Motor-evoked potentials (MEPs) from TMS of the left motor cortex were recorded from hand muscles, at 150 and 300 ms after picture onset. In the early temporal condition we found an increase in hand motor excitability that was specific for the perception of negative pictures. This early negative bias was predicted by interindividual differences in the disposition to experience aversive feelings (personal distress) in interpersonal emotional contexts. In the later temporal condition, we found that MEPs were similarly increased for both positive and negative pictures, suggesting an increased reactivity to emotionally arousing scenes. By highlighting the temporal course of motor excitability during perception of emotional pictures, our study provides direct neurophysiological support for the evolutionary notions that emotion perception is closely linked to action systems and that emotionally negative events require motor reactions to be more urgently mobilized. PMID:23945998

  2. Five Decades of Research in Speech Motor Control: What Have We Learned, and Where Should We Go from Here?

    ERIC Educational Resources Information Center

    Perkell, Joseph S.

    2013-01-01

    Purpose: The author presents a view of research in speech motor control over the past 5 decades, as observed from within Ken Stevens's Speech Communication Group (SCG) in the Research Laboratory of Electronics at MIT. Method: The author presents a limited overview of some important developments and discoveries. The perspective is based…

  3. Non-Speech Oro-Motor Exercises in Post-Stroke Dysarthria Intervention: A Randomized Feasibility Trial

    ERIC Educational Resources Information Center

    Mackenzie, C.; Muir, M.; Allen, C.; Jensen, A.

    2014-01-01

    Background: There has been little robust evaluation of the outcome of speech and language therapy (SLT) intervention for post-stroke dysarthria. Non-speech oro-motor exercises (NSOMExs) are a common component of dysarthria intervention. A feasibility study was designed and executed, with participants randomized into two groups, in one of which…

  4. [Percutaneous electric and magnetic stimulation of the motor cortex in man. Physiological aspects and clinical applications].

    PubMed

    Maertens de Noordhout, A; Rothwell, J C; Day, B L; Thompson, P D; Delwaide, P J; Marsden, C D

    1989-01-01

    The new techniques of percutaneous electric and magnetic stimulation of the motor cortex in conscious man provide a unique opportunity of functional testing of the central motor pathways. These techniques seem to be safe and no immediate or delayed adverse reactions have been reported. The physiological studies so far performed suggest that the structures which are preferentially excited by these methods are the fast conducting pyramidal neurones. It has been shown that a single cortical stimulus is able to activate spinal motoneurones repeatedly. This phenomenon can easily be explained if the cortical stimulus generates multiple descending volleys in the central motor pathways. By comparison with experiments of stimulation of the exposed motor cortex in animals, it is likely that electric brain stimulation directly activates the axons of the pyramidal neurons at their origin and to a lesser extent also recruits these neurons transsynaptically, via some cortical interneurones. Magnetic stimulation of the brain at the vertex seems to act mostly by the latter mechanism. These different modes of action of the two methods of cortical stimulation explain the latency differences of the EMG responses obtained with either technique. Increased excitability of the spinal motoneurones and the existence of multiple descending volleys in response to a single cortical stimulus result in shortening of the latencies and greater amplitude of the responses recorded during voluntary contraction of the target muscle. Stimulation of the motor cortex has been used in pilot studies conducted on patients suffering from various disorders of the central motor pathways, such as multiple sclerosis, cervical spondylosis, motor neurone disease or stroke. The sensitivity of the technique looks promising. In M.S., the EMG responses usually show an increased central conduction latency, a reduced amplitude and a prolonged duration. The severity of the electrophysiological abnormalities is not very

  5. Functional connectivity of primary motor cortex is dependent on genetic burden in prodromal Huntington disease.

    PubMed

    Koenig, Katherine A; Lowe, Mark J; Harrington, Deborah L; Lin, Jian; Durgerian, Sally; Mourany, Lyla; Paulsen, Jane S; Rao, Stephen M

    2014-09-01

    Subtle changes in motor function have been observed in individuals with prodromal Huntington disease (prHD), but the underlying neural mechanisms are not well understood nor is the cumulative effect of the disease (disease burden) on functional connectivity. The present study examined the resting-state functional magnetic resonance imaging (rs-fMRI) connectivity of the primary motor cortex (M1) in 16 gene-negative (NEG) controls and 48 gene-positive prHD participants with various levels of disease burden. The results showed that the strength of the left M1 connectivity with the ipsilateral M1 and somatosensory areas decreased as disease burden increased and correlated with motor symptoms. Weakened M1 connectivity within the motor areas was also associated with abnormalities in long-range connections that evolved with disease burden. In this study, M1 connectivity was decreased with visual centers (bilateral cuneus), but increased with a hub of the default mode network (DMN; posterior cingulate cortex). Changes in connectivity measures were associated with worse performance on measures of cognitive-motor functioning. Short- and long-range functional connectivity disturbances were also associated with volume loss in the basal ganglia, suggesting that weakened M1 connectivity is partly a manifestation of striatal atrophy. Altogether, the results indicate that the prodromal phase of HD is associated with abnormal interhemispheric interactions among motor areas and disturbances in the connectivity of M1 with visual centers and the DMN. These changes may, respectively, contribute to increased motor symptoms, visuomotor integration problems, and deficits in the executive control of movement as individuals approach a manifest diagnosis.

  6. Primary Motor Cortex Representation of Handgrip Muscles in Patients with Leprosy

    PubMed Central

    Rangel, Maria Luíza Sales; Sanchez, Tiago Arruda; Moreira, Filipe Azaline; Hoefle, Sebastian; Souto, Inaiacy Bittencourt; da Cunha, Antônio José Ledo Alves

    2015-01-01

    Background Leprosy is an endemic infectious disease caused by Mycobacterium leprae that predominantly attacks the skin and peripheral nerves, leading to progressive impairment of motor, sensory and autonomic function. Little is known about how this peripheral neuropathy affects corticospinal excitability of handgrip muscles. Our purpose was to explore the motor cortex organization after progressive peripheral nerve injury and upper-limb dysfunction induced by leprosy using noninvasive transcranial magnetic stimulation (TMS). Methods In a cross-sectional study design, we mapped bilaterally in the primary motor cortex (M1) the representations of the hand flexor digitorum superficialis (FDS), as well as of the intrinsic hand muscles abductor pollicis brevis (APB), first dorsal interosseous (FDI) and abductor digiti minimi (ADM). All participants underwent clinical assessment, handgrip dynamometry and motor and sensory nerve conduction exams 30 days before mapping. Wilcoxon signed rank and Mann-Whitney tests were performed with an alpha-value of p<0.05. Findings Dynamometry performance of the patients’ most affected hand (MAH), was worse than that of the less affected hand (LAH) and of healthy controls participants (p = 0.031), confirming handgrip impairment. Motor threshold (MT) of the FDS muscle was higher in both hemispheres in patients as compared to controls, and lower in the hemisphere contralateral to the MAH when compared to that of the LAH. Moreover, motor evoked potential (MEP) amplitudes collected in the FDS of the MAH were higher in comparison to those of controls. Strikingly, MEPs in the intrinsic hand muscle FDI had lower amplitudes in the hemisphere contralateral to MAH as compared to those of the LAH and the control group. Taken together, these results are suggestive of a more robust representation of an extrinsic hand flexor and impaired intrinsic hand muscle function in the hemisphere contralateral to the MAH due to leprosy. Conclusion Decreased

  7. Cortical oscillatory activity and the induction of plasticity in the human motor cortex.

    PubMed

    McAllister, Suzanne M; Rothwell, John C; Ridding, Michael C

    2011-05-01

    Repetitive transcranial magnetic stimulation paradigms such as continuous theta burst stimulation (cTBS) induce long-term potentiation- and long-term depression-like plasticity in the human motor cortex. However, responses to cTBS are highly variable and may depend on the activity of the cortex at the time of stimulation. We investigated whether power in different electroencephalogram (EEG) frequency bands predicted the response to subsequent cTBS, and conversely whether cTBS had after-effects on the EEG. cTBS may utilize similar mechanisms of plasticity to motor learning; thus, we conducted a parallel set of experiments to test whether ongoing electroencephalography could predict performance of a visuomotor training task, and whether training itself had effects on the EEG. Motor evoked potentials (MEPs) provided an index of cortical excitability pre- and post-intervention. The EEG was recorded over the motor cortex pre- and post-intervention, and power spectra were computed. cTBS reduced MEP amplitudes; however, baseline power in the delta, theta, alpha or beta frequencies did not predict responses to cTBS or learning of the visuomotor training task. cTBS had no effect on delta, theta, alpha or beta power. In contrast, there was an increase in alpha power following visuomotor training that was positively correlated with changes in MEP amplitude post-training. The results suggest that the EEG is not a useful state-marker for predicting responses to plasticity-inducing paradigms. The correlation between alpha power and changes in corticospinal excitability following visuomotor training requires further investigation, but may be related to disengagement of the somatosensory system important for motor memory consolidation. PMID:21488985

  8. Speech motor program maintenance, but not switching, is enhanced by left-hemispheric deep brain stimulation in Parkinson's disease.

    PubMed

    Jones, Harrison N; Kendall, Diane L; Okun, Michael S; Wu, Samuel S; Velozo, Craig; Fernandez, Hubert H; Spencer, Kristie A; Rosenbek, John C

    2010-10-01

    Speech reaction time (SRT) was measured in a response priming protocol in 12 participants with Parkinson's disease (PD) and hypokinetic dysarthria "on" and "off" left-hemispheric deep brain stimulation (DBS). Speech preparation was measured during speech motor programming in two randomly ordered speech conditions: speech maintenance and switching. Double blind testing was completed in participants with DBS of globus pallidus pars interna (GPi) (n = 5) or subthalamic nucleus (STN) (n = 7). SRT was significantly faster in the maintenance vs switch task, regardless of DBS state. SRT was faster in the speech maintenance task "on" stimulation, while there was no difference in speech switching "on" and "off" DBS. These data suggest that left-hemispheric DBS may have differential effects on aspects of speech preparation in PD. It is hypothesized that speech maintenance improvements may result from DBS-induced cortical enhancements, while the lack of difference in switching may be related to inhibition deficits mediated by the right-hemisphere. Alternatively, DBS may have little influence on the higher level motor processes (i.e., motor planning) which it is believed the switch task engaged to a greater extent than the maintenance task.

  9. Auditory–motor interactions for the production of native and non-native speech

    PubMed Central

    Jones, ‘Ōiwi Parker; Seghier, Mohamed L.; Duncan, Keith J. Kawabata; Leff, Alex P.; Green, David W.; Price, Cathy J.

    2013-01-01

    During speech production, auditory processing of self-generated speech is used to adjust subsequent articulations. The current study investigated how the proposed auditory–motor interactions are manifest at the neural level in native and non-native speakers of English who were overtly naming pictures of objects and reading their written names. Data were acquired with fMRI and analysed with dynamic causal modelling (DCM). We found that: (1) higher activity in articulatory regions caused activity in auditory regions to decrease (i.e., auditory suppression); and (2) higher activity in auditory regions caused activity in articulatory regions to increase (i.e., auditory feedback). In addition, we were able to demonstrate that: (3) speaking in a non-native language involves more auditory feedback and less auditory suppression than speaking in a native language. The difference between native and non-native speakers was further supported by finding that, within non-native speakers, there was less auditory feedback for those with better verbal fluency. Consequently, the networks of more fluent non-native speakers looked more like those of native speakers. Together, these findings provide a foundation on which to explore auditory–motor interactions during speech production in other human populations, particularly those with speech difficulties. PMID:23392667

  10. Influences of Sentence Length and Syntactic Complexity on the Speech Motor Control of Children Who Stutter

    PubMed Central

    MacPherson, Megan K.; Smith, Anne

    2014-01-01

    Purpose To investigate the potential effects of increased sentence length and syntactic complexity on the speech motor control of children who stutter (CWS). Method Participants repeated sentences of varied length and syntactic complexity. Kinematic measures of articulatory coordination variability and movement duration during perceptually fluent speech were analyzed for 16 CWS and 16 typically developing children (CTD) between 4 and 6 years of age. Behavioral data from a larger pool of children were also examined. Results For both groups, articulatory coordination variability increased with sentence length. For syntactically simple sentences, CWS had higher coordination variability than CTD. There was no group difference in coordination variability for complex sentences. Coordination variability increased significantly with complexity for CTD, while that of CWS remained at the high levels seen for simple sentences. There was a trend for higher overall coordination variability in CWS, compared to CTD. For both groups, movement duration was greater for syntactically complex, as compared to simple, sentences. Conclusions Results indicate more variable speech motor coordination during fluent speech production in many CWS, as compared to CTD. Disproportionate effects of sentence length and syntactic complexity on articulatory coordination variability and movement duration were not found for CWS. Considerable individual differences in performance were observed. PMID:22490621

  11. When will a stuttering moment occur? The determining role of speech motor preparation.

    PubMed

    Vanhoutte, Sarah; Cosyns, Marjan; van Mierlo, Pieter; Batens, Katja; Corthals, Paul; De Letter, Miet; Van Borsel, John; Santens, Patrick

    2016-06-01

    The present study aimed to evaluate whether increased activity related to speech motor preparation preceding fluently produced words reflects a successful compensation strategy in stuttering. For this purpose, a contingent negative variation (CNV) was evoked during a picture naming task and measured by use of electro-encephalography. A CNV is a slow, negative event-related potential known to reflect motor preparation generated by the basal ganglia-thalamo-cortical (BGTC) - loop. In a previous analysis, the CNV of 25 adults with developmental stuttering (AWS) was significantly increased, especially over the right hemisphere, compared to the CNV of 35 fluent speakers (FS) when both groups were speaking fluently (Vanhoutte et al., (2015) doi: 10.1016/j.neuropsychologia.2015.05.013). To elucidate whether this increase is a compensation strategy enabling fluent speech in AWS, the present analysis evaluated the CNV of 7 AWS who stuttered during this picture naming task. The CNV preceding AWS stuttered words was statistically compared to the CNV preceding AWS fluent words and FS fluent words. Though no difference emerged between the CNV of the AWS stuttered words and the FS fluent words, a significant reduction was observed when comparing the CNV preceding AWS stuttered words to the CNV preceding AWS fluent words. The latter seems to confirm the compensation hypothesis: the increased CNV prior to AWS fluent words is a successful compensation strategy, especially when it occurs over the right hemisphere. The words are produced fluently because of an enlarged activity during speech motor preparation. The left CNV preceding AWS stuttered words correlated negatively with stuttering frequency and severity suggestive for a link between the left BGTC - network and the stuttering pathology. Overall, speech motor preparatory activity generated by the BGTC - loop seems to have a determining role in stuttering. An important divergence between left and right hemisphere is

  12. Sensory-evoked and spontaneous gamma and spindle bursts in neonatal rat motor cortex.

    PubMed

    An, Shuming; Kilb, Werner; Luhmann, Heiko J

    2014-08-13

    Self-generated neuronal activity originating from subcortical regions drives early spontaneous motor activity, which is a hallmark of the developing sensorimotor system. However, the neural activity patterns and role of primary motor cortex (M1) in these early movements are still unknown. Combining voltage-sensitive dye imaging (VSDI) with simultaneous extracellular multielectrode recordings in postnatal day 3 (P3)-P5 rat primary somatosensory cortex (S1) and M1 in vivo, we observed that tactile forepaw stimulation induced spindle bursts in S1 and gamma and spindle bursts in M1. Approximately 40% of the spontaneous gamma and spindle bursts in M1 were driven by early motor activity, whereas 23.7% of the M1 bursts triggered forepaw movements. Approximately 35% of the M1 bursts were uncorrelated to movements and these bursts had significantly fewer spikes and shorter burst duration. Focal electrical stimulation of layer V neurons in M1 mimicking physiologically relevant 40 Hz gamma or 10 Hz spindle burst activity reliably elicited forepaw movements. We conclude that M1 is already involved in somatosensory information processing during early development. M1 is mainly activated by tactile stimuli triggered by preceding spontaneous movements, which reach M1 via S1. Only a fraction of M1 activity transients trigger motor responses directly. We suggest that both spontaneously occurring and sensory-evoked gamma and spindle bursts in M1 contribute to the maturation of corticospinal and sensorimotor networks required for the refinement of sensorimotor coordination.

  13. Two whisker motor areas in the rat cortex: evidence from thalamocortical connections.

    PubMed

    Mohammed, Hisham; Jain, Neeraj

    2014-02-15

    In primates, the motor cortex consists of at least seven different areas, which are involved in movement planning, coordination, initiation, and execution. However, for rats, only the primary motor cortex has been well described. A rostrally located second motor area has been proposed, but its extent, organization, and even definitive existence remain uncertain. Only a rostral forelimb area (RFA) has been definitively described, besides few reports of a rostral hindlimb area. We have previously proposed existence of a second whisker area, which we termed the rostral whisker area (RWA), based on its differential response to intracortical microstimulation compared with the caudal whisker area (CWA) in animals under deep anesthesia (Tandon et al. [2008] Eur J Neurosci 27:228). To establish that RWA is distinct from the caudally contiguous CWA, we determined sources of thalamic inputs to the two proposed whisker areas. Sources of inputs to RFA, caudal forelimb area (CFA), and caudal hindlimb region were determined for comparison. The results show that RWA and CWA can be distinguished based on differences in their thalamic inputs. RWA receives major projections from mediodorsal and ventromedial nuclei, whereas the major projections to CWA are from the ventral anterior, ventrolateral, and posterior nuclei. Moreover, the thalamic nuclei that provide major inputs to RWA are the same as for RFA, and the nuclei projecting to CWA are same as for CFA. The results suggest that rats have a second rostrally located motor area with RWA and RFA as its constituents. PMID:23853077

  14. [Primary motor cortex as one of the levels of the construction of movements].

    PubMed

    Pavlova, O G

    2014-01-01

    The data obtained during the recent decades led to revision of the dominant in neurophysiology view of primary motor cortex as "the cord area" which transfers the motor commands to the spinal cord. Contrary to this point of view, it was shown that MI primates neurons participate in all stages of organization of motor behavior and that the final postures of complex coordinated movements are represented in the MI map. Characteristics of movements controlled by MI revealed by currently available methods were predicted and explained by N.A. Bernstein about 70 years ago. According to his concept, there are some levels of the construction of movements that exist in the central nervous system. Area 4 (i.e. MI), which is one of them, appeared on the definite stage of evolution for resolving the particular movement tasks. In support of this conception we are showing that: 1) MI controls the movements that differ from the movements of other levels by their characteristics (the mode of operating and the sense content); 2) some voluntary movements can be executed without participation of MI; 3) different motor areas of the cortex are coupled with different aspects of movement behavior.

  15. Anodal transcranial direct current stimulation over premotor cortex facilitates observational learning of a motor sequence.

    PubMed

    Wade, Stephanie; Hammond, Geoff

    2015-06-01

    Motor skills, including complex movement sequences, can be acquired by observing a model without physical practice of the skill, a phenomenon known as observational learning. Observational learning of motor skills engages the same memory substrate as physical practice, and is thought to be mediated by the action observation network, a bilateral fronto-parietal circuit with mirror-like properties. We examined the effects of anodal transcranial direct current stimulation (tDCS) over premotor cortex, a key node of the action observation network, on observational learning of a serial response time task. Results showed that anodal tDCS during observation of the to-be-learned sequence facilitated reaction times in the subsequent behavioral test. The study provides evidence that increasing excitability of the action observation network during observation can facilitate later motor skill acquisition.

  16. Modulation of motor cortex neuronal activity and motor behavior during subthalamic nucleus stimulation in the normal primate.

    PubMed

    Johnson, Luke A; Xu, Weidong; Baker, Kenneth B; Zhang, Jianyu; Vitek, Jerrold L

    2015-04-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established surgical therapy for advanced Parkinson's disease (PD). An emerging hypothesis is that the therapeutic benefit of DBS is derived from direct modulation of primary motor cortex (M1), yet little is known about the influence of STN DBS on individual neurons in M1. We investigated the effect of STN DBS, delivered at discrete interval intensities (20, 40, 60, 80, and 100%) of corticospinal tract threshold (CSTT), on motor performance and M1 neuronal activity in a naive nonhuman primate. Motor performance during a food reach and retrieval task improved during low-intensity stimulation (20% CSTT) but worsened as intensity approached the threshold for activation of corticospinal fibers (80% and 100% CSTT). To assess cortical effects of STN DBS, spontaneous, extracellular neuronal activity was collected from M1 neurons before, during, and after DBS at the same CSTT stimulus intensities. STN DBS significantly modulated the firing of a majority of M1 neurons; however, the direction of effect varied with stimulus intensity such that, at 20% CSTT, most neurons were suppressed, whereas at the highest stimulus intensities the majority of neurons were activated. At a population level, firing rates increased as stimulus intensity increased. These results show that STN DBS influences both motor performance and M1 neuronal activity systematically according to stimulus intensity. In addition, the unanticipated reduction in reach times suggests that STN DBS, at stimulus intensities lower than typically used for treatment of PD motor signs, can enhance normal motor performance.

  17. Utility of TMS to understand the neurobiology of speech.

    PubMed

    Murakami, Takenobu; Ugawa, Yoshikazu; Ziemann, Ulf

    2013-01-01

    According to a traditional view, speech perception and production are processed largely separately in sensory and motor brain areas. Recent psycholinguistic and neuroimaging studies provide novel evidence that the sensory and motor systems dynamically interact in speech processing, by demonstrating that speech perception and imitation share regional brain activations. However, the exact nature and mechanisms of these sensorimotor interactions are not completely understood yet. Transcranial magnetic stimulation (TMS) has often been used in the cognitive neurosciences, including speech research, as a complementary technique to behavioral and neuroimaging studies. Here we provide an up-to-date review focusing on TMS studies that explored speech perception and imitation. Single-pulse TMS of the primary motor cortex (M1) demonstrated a speech specific and somatotopically specific increase of excitability of the M1 lip area during speech perception (listening to speech or lip reading). A paired-coil TMS approach showed increases in effective connectivity from brain regions that are involved in speech processing to the M1 lip area when listening to speech. TMS in virtual lesion mode applied to speech processing areas modulated performance of phonological recognition and imitation of perceived speech. In summary, TMS is an innovative tool to investigate processing of speech perception and imitation. TMS studies have provided strong evidence that the sensory system is critically involved in mapping sensory input onto motor output and that the motor system plays an important role in speech perception.

  18. Melodic Priming of Motor Sequence Performance: The Role of the Dorsal Premotor Cortex.

    PubMed

    Stephan, Marianne A; Brown, Rachel; Lega, Carlotta; Penhune, Virginia

    2016-01-01

    The purpose of this study was to determine whether exposure to specific auditory sequences leads to the induction of new motor memories and to investigate the role of the dorsal premotor cortex (dPMC) in this crossmodal learning process. Fifty-two young healthy non-musicians were familiarized with the sound to key-press mapping on a computer keyboard and tested on their baseline motor performance. Each participant received subsequently either continuous theta burst stimulation (cTBS) or sham stimulation over the dPMC and was then asked to remember a 12-note melody without moving. For half of the participants, the contour of the melody memorized was congruent to a subsequently performed, but never practiced, finger movement sequence (Congruent group). For the other half, the melody memorized was incongruent to the subsequent finger movement sequence (Incongruent group). Hearing a congruent melody led to significantly faster performance of a motor sequence immediately thereafter compared to hearing an incongruent melody. In addition, cTBS speeded up motor performance in both groups, possibly by relieving motor consolidation from interference by the declarative melody memorization task. Our findings substantiate recent evidence that exposure to a movement-related tone sequence can induce specific, crossmodal encoding of a movement sequence representation. They further suggest that cTBS over the dPMC may enhance early offline procedural motor skill consolidation in cognitive states where motor consolidation would normally be disturbed by concurrent declarative memory processes. These findings may contribute to a better understanding of auditory-motor system interactions and have implications for the development of new motor rehabilitation approaches using sound and non-invasive brain stimulation as neuromodulatory tools. PMID:27242414

  19. Melodic Priming of Motor Sequence Performance: The Role of the Dorsal Premotor Cortex

    PubMed Central

    Stephan, Marianne A.; Brown, Rachel; Lega, Carlotta; Penhune, Virginia

    2016-01-01

    The purpose of this study was to determine whether exposure to specific auditory sequences leads to the induction of new motor memories and to investigate the role of the dorsal premotor cortex (dPMC) in this crossmodal learning process. Fifty-two young healthy non-musicians were familiarized with the sound to key-press mapping on a computer keyboard and tested on their baseline motor performance. Each participant received subsequently either continuous theta burst stimulation (cTBS) or sham stimulation over the dPMC and was then asked to remember a 12-note melody without moving. For half of the participants, the contour of the melody memorized was congruent to a subsequently performed, but never practiced, finger movement sequence (Congruent group). For the other half, the melody memorized was incongruent to the subsequent finger movement sequence (Incongruent group). Hearing a congruent melody led to significantly faster performance of a motor sequence immediately thereafter compared to hearing an incongruent melody. In addition, cTBS speeded up motor performance in both groups, possibly by relieving motor consolidation from interference by the declarative melody memorization task. Our findings substantiate recent evidence that exposure to a movement-related tone sequence can induce specific, crossmodal encoding of a movement sequence representation. They further suggest that cTBS over the dPMC may enhance early offline procedural motor skill consolidation in cognitive states where motor consolidation would normally be disturbed by concurrent declarative memory processes. These findings may contribute to a better understanding of auditory-motor system interactions and have implications for the development of new motor rehabilitation approaches using sound and non-invasive brain stimulation as neuromodulatory tools. PMID:27242414

  20. Antinociception induced by motor cortex stimulation: somatotopy of behavioral response and profile of neuronal activation.

    PubMed

    França, Nubia R M; Toniolo, Elaine F; Franciosi, Adriano C; Alves, Adilson S; de Andrade, Daniel C; Fonoff, Erich T; Britto, Luiz R; Dale, Camila S

    2013-08-01

    Motor cortex stimulation (MCS) is used as a therapy for patients with refractory neuropathic pain. Experimental evidence suggests that the motor cortex (MC) is involved in the modulation of normal nociceptive response, but the underlying mechanisms have not been clarified yet. In previous studies, we demonstrated that MCS increases the nociceptive threshold of naive conscious rats by inhibiting thalamic sensory neurons and disinhibiting the neurons in periaqueductal gray (PAG), with the involvement of the opioid system. The aim of this study was to investigate the possible somatotopy of the motor cortex on MCS-induced antinociception and the pattern of neuronal activation evaluated by Fos and Egr-1 immunolabel in an attempt to better understand the relation between MC and analgesia. Rats received epidural electrode implants placed over the MC, in three distinct areas (forelimb, hindlimb or tail), according to a functional mapping established in previous studies. Nociceptive threshold was evaluated under 15-min electrical stimulating sessions. MCS induced selective antinociception in the limb related to the stimulated cortex, with no changes in other evaluated areas. MCS decreased Fos immunoreactivity (Fos-IR) in the superficial layers of the dorsal horn of the spinal cord for all evaluated groups and increased Fos-IR in the PAG, although no changes were observed in the PAG for the tail group. Egr-1 results were similar to those obtained for Fos. Data shown herein demonstrate that MCS elicits a substantial and selective antinociceptive effect, which is mediated, at least in part, by the activation of descendent inhibitory pain pathway.

  1. Neuromuscular Plasticity: Disentangling Stable and Variable Motor Maps in the Human Sensorimotor Cortex.

    PubMed

    Kraus, Dominic; Gharabaghi, Alireza

    2016-01-01

    Motor maps acquired with transcranial magnetic stimulation (TMS) are evolving as a biomarker for monitoring disease progression or the effects of therapeutic interventions. High test-retest reliability of this technique for long observation periods is therefore required to differentiate daily or weekly fluctuations from stable plastic reorganization of corticospinal connectivity. In this study, a novel projection, interpolation, and coregistration technique, which considers the individual gyral anatomy, was applied in healthy subjects for biweekly acquired TMS motor maps over a period of twelve weeks. The intraclass correlation coefficient revealed long-term reliability of motor maps with relevant interhemispheric differences. The sensorimotor cortex and nonprimary motor areas of the dominant hemisphere showed more extended and more stable corticospinal connectivity. Long-term correlations of the MEP amplitudes at each stimulation site revealed mosaic-like clusters of consistent corticospinal excitability. The resting motor threshold, centre of gravity, and mean MEPs across all TMS sites, as highly reliable cortical map parameters, could be disentangled from more variable parameters such as MEP area and volume. Cortical TMS motor maps provide high test-retest reliability for long-term monitoring when analyzed with refined techniques. They may guide restorative interventions which target dormant corticospinal connectivity for neurorehabilitation.

  2. Neuromuscular Plasticity: Disentangling Stable and Variable Motor Maps in the Human Sensorimotor Cortex.

    PubMed

    Kraus, Dominic; Gharabaghi, Alireza

    2016-01-01

    Motor maps acquired with transcranial magnetic stimulation (TMS) are evolving as a biomarker for monitoring disease progression or the effects of therapeutic interventions. High test-retest reliability of this technique for long observation periods is therefore required to differentiate daily or weekly fluctuations from stable plastic reorganization of corticospinal connectivity. In this study, a novel projection, interpolation, and coregistration technique, which considers the individual gyral anatomy, was applied in healthy subjects for biweekly acquired TMS motor maps over a period of twelve weeks. The intraclass correlation coefficient revealed long-term reliability of motor maps with relevant interhemispheric differences. The sensorimotor cortex and nonprimary motor areas of the dominant hemisphere showed more extended and more stable corticospinal connectivity. Long-term correlations of the MEP amplitudes at each stimulation site revealed mosaic-like clusters of consistent corticospinal excitability. The resting motor threshold, centre of gravity, and mean MEPs across all TMS sites, as highly reliable cortical map parameters, could be disentangled from more variable parameters such as MEP area and volume. Cortical TMS motor maps provide high test-retest reliability for long-term monitoring when analyzed with refined techniques. They may guide restorative interventions which target dormant corticospinal connectivity for neurorehabilitation. PMID:27610248

  3. Neuromuscular Plasticity: Disentangling Stable and Variable Motor Maps in the Human Sensorimotor Cortex

    PubMed Central

    Kraus, Dominic

    2016-01-01

    Motor maps acquired with transcranial magnetic stimulation (TMS) are evolving as a biomarker for monitoring disease progression or the effects of therapeutic interventions. High test-retest reliability of this technique for long observation periods is therefore required to differentiate daily or weekly fluctuations from stable plastic reorganization of corticospinal connectivity. In this study, a novel projection, interpolation, and coregistration technique, which considers the individual gyral anatomy, was applied in healthy subjects for biweekly acquired TMS motor maps over a period of twelve weeks. The intraclass correlation coefficient revealed long-term reliability of motor maps with relevant interhemispheric differences. The sensorimotor cortex and nonprimary motor areas of the dominant hemisphere showed more extended and more stable corticospinal connectivity. Long-term correlations of the MEP amplitudes at each stimulation site revealed mosaic-like clusters of consistent corticospinal excitability. The resting motor threshold, centre of gravity, and mean MEPs across all TMS sites, as highly reliable cortical map parameters, could be disentangled from more variable parameters such as MEP area and volume. Cortical TMS motor maps provide high test-retest reliability for long-term monitoring when analyzed with refined techniques. They may guide restorative interventions which target dormant corticospinal connectivity for neurorehabilitation. PMID:27610248

  4. Sleep-Dependent Reactivation of Ensembles in Motor Cortex Promotes Skill Consolidation

    PubMed Central

    Ramanathan, Dhakshin S.; Gulati, Tanuj; Ganguly, Karunesh

    2015-01-01

    Despite many prior studies demonstrating offline behavioral gains in motor skills after sleep, the underlying neural mechanisms remain poorly understood. To investigate the neurophysiological basis for offline gains, we performed single-unit recordings in motor cortex as rats learned a skilled upper-limb task. We found that sleep improved movement speed with preservation of accuracy. These offline improvements were linked to both replay of task-related ensembles during non-rapid eye movement (NREM) sleep and temporal shifts that more tightly bound motor cortical ensembles to movements; such offline gains and temporal shifts were not evident with sleep restriction. Interestingly, replay was linked to the coincidence of slow-wave events and bursts of spindle activity. Neurons that experienced the most consistent replay also underwent the most significant temporal shift and binding to the motor task. Significantly, replay and the associated performance gains after sleep only occurred when animals first learned the skill; continued practice during later stages of learning (i.e., after motor kinematics had stabilized) did not show evidence of replay. Our results highlight how replay of synchronous neural activity during sleep mediates large-scale neural plasticity and stabilizes kinematics during early motor learning. PMID:26382320

  5. Neuromuscular Plasticity: Disentangling Stable and Variable Motor Maps in the Human Sensorimotor Cortex

    PubMed Central

    Kraus, Dominic

    2016-01-01

    Motor maps acquired with transcranial magnetic stimulation (TMS) are evolving as a biomarker for monitoring disease progression or the effects of therapeutic interventions. High test-retest reliability of this technique for long observation periods is therefore required to differentiate daily or weekly fluctuations from stable plastic reorganization of corticospinal connectivity. In this study, a novel projection, interpolation, and coregistration technique, which considers the individual gyral anatomy, was applied in healthy subjects for biweekly acquired TMS motor maps over a period of twelve weeks. The intraclass correlation coefficient revealed long-term reliability of motor maps with relevant interhemispheric differences. The sensorimotor cortex and nonprimary motor areas of the dominant hemisphere showed more extended and more stable corticospinal connectivity. Long-term correlations of the MEP amplitudes at each stimulation site revealed mosaic-like clusters of consistent corticospinal excitability. The resting motor threshold, centre of gravity, and mean MEPs across all TMS sites, as highly reliable cortical map parameters, could be disentangled from more variable parameters such as MEP area and volume. Cortical TMS motor maps provide high test-retest reliability for long-term monitoring when analyzed with refined techniques. They may guide restorative interventions which target dormant corticospinal connectivity for neurorehabilitation.

  6. The Effect of Aerobic Exercise on Neuroplasticity within the Motor Cortex following Stroke

    PubMed Central

    Murdoch, Kate; Buckley, Jonathan D.; McDonnell, Michelle N.

    2016-01-01

    Background Aerobic exercise is associated with enhanced plasticity in the motor cortex of healthy individuals, but the effect of aerobic exercise on neuroplasticity following a stroke is unknown. Objective The aim of this study was to compare corticomotoneuronal excitability and neuroplasticity in the upper limb cortical representation following a single session of low intensity lower limb cycling, or a rest control condition. Methods We recruited chronic stroke survivors to take part in three experimental conditions in a randomised, cross-over design. Corticomotoneuronal excitability was examined using transcranial magnetic stimulation to elicit motor evoked potentials in the affected first dorsal interosseus muscle. Following baseline measures, participants either cycled on a stationary bike at a low exercise intensity for 30 minutes, or remained resting in a seated position for 30 minutes. Neuroplasticity within the motor cortex was then examined using an intermittent theta burst stimulation (iTBS) paradigm. During the third experimental condition, participants cycled for the 30 minutes but did not receive any iTBS. Results Twelve participants completed the study. We found no significant effect of aerobic exercise on corticomotoneuronal excitability when compared to the no exercise condition (P > 0.05 for all group and time comparisons). The use of iTBS did not induce a neuroplastic-like response in the motor cortex with or without the addition of aerobic exercise. Conclusions Our results suggest that following a stroke, the brain may be less responsive to non-invasive brain stimulation paradigms that aim to induce short-term reorganisation, and aerobic exercise was unable to induce or improve this response. PMID:27018862

  7. Effects of stimulation parameters and electrode location on thresholds for epidural stimulation of cat motor cortex

    NASA Astrophysics Data System (ADS)

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2011-12-01

    Epidural electrical stimulation (ECS) of the motor cortex is a developing therapy for neurological disorders. Both placement and programming of ECS systems may affect the therapeutic outcome, but the treatment parameters that will maximize therapeutic outcomes and minimize side effects are not known. We delivered ECS to the motor cortex of anesthetized cats and investigated the effects of electrode placement and stimulation parameters on thresholds for evoking motor responses in the contralateral forelimb. Thresholds were inversely related to stimulation frequency and the number of pulses per stimulus train. Thresholds were lower over the forelimb representation in motor cortex (primary site) than surrounding sites (secondary sites), and thresholds at sites <4 mm away from the primary site were significantly lower than at sites >4 mm away. Electrode location and montage influenced the effects of polarity on thresholds: monopolar anodic and cathodic thresholds were not significantly different over the primary site, cathodic thresholds were significantly lower than anodic thresholds over secondary sites and bipolar thresholds were significantly lower with the anode over the primary site than with the cathode over the primary site. A majority of bipolar thresholds were either between or equal to the respective monopolar thresholds, but several bipolar thresholds were greater than or less than the monopolar thresholds of both the anode and cathode. During bipolar stimulation, thresholds were influenced by both electric field superposition and indirect, synaptically mediated interactions. These results demonstrate the influence of stimulation parameters and electrode location during cortical stimulation, and these effects should be considered during the programming of systems for therapeutic cortical stimulation.

  8. Motor Cortex Excitability and BDNF Levels in Chronic Musculoskeletal Pain According to Structural Pathology.

    PubMed

    Caumo, Wolnei; Deitos, Alícia; Carvalho, Sandra; Leite, Jorge; Carvalho, Fabiana; Dussán-Sarria, Jairo Alberto; Lopes Tarragó, Maria da Graça; Souza, Andressa; Torres, Iraci Lucena da Silva; Fregni, Felipe

    2016-01-01

    The central sensitization syndrome (CSS) encompasses disorders with overlapping symptoms in a structural pathology spectrum ranging from persistent nociception [e.g., osteoarthritis (OA)] to an absence of tissue injuries such as the one presented in fibromyalgia (FM) and myofascial pain syndrome (MPS). First, we hypothesized that these syndromes present differences in their cortical excitability parameters assessed by transcranial magnetic stimulation (TMS), namely motor evoked potential (MEP), cortical silent period (CSP), short intracortical inhibition (SICI) and short intracortical facilitation (SICF). Second, considering that the presence of tissue injury could be detected by serum neurotrophins, we hypothesized that the spectrum of structural pathology (i.e., from persistent nociception like in OA, to the absence of tissue injury like in FM and MPS), could be detected by differential efficiency of their descending pain inhibitory system, as assessed by the conditioned pain modulation (CPM) paradigm. Third, we explored whether brain-derived neurotrophic factor (BDNF) had an influence on the relationship between motor cortex excitability and structural pathology. This cross-sectional study pooled baseline data from three randomized clinical trials. We included females (n = 114), aged 19-65 years old with disability by chronic pain syndromes (CPS): FM (n = 19), MPS (n = 54), OA (n = 27) and healthy subjects (n = 14). We assessed the serum BDNF, the motor cortex excitability by parameters the TMS measures and the change on numerical pain scale [NPS (0-10)] during CPM-task. The adjusted mean (SD) on the SICI observed in the absence of tissue injury was 56.36% lower than with persistent nociceptive input [0.31(0.18) vs. 0.55 (0.32)], respectively. The BDNF was inversely correlated with the SICI and with the change on NPS (0-10)during CPM-task. These findings suggest greater disinhibition in the motor cortex and the descending pain inhibitory system in FM and MPS

  9. Motor Cortex Excitability and BDNF Levels in Chronic Musculoskeletal Pain According to Structural Pathology

    PubMed Central

    Caumo, Wolnei; Deitos, Alícia; Carvalho, Sandra; Leite, Jorge; Carvalho, Fabiana; Dussán-Sarria, Jairo Alberto; Lopes Tarragó, Maria da Graça; Souza, Andressa; Torres, Iraci Lucena da Silva; Fregni, Felipe

    2016-01-01

    The central sensitization syndrome (CSS) encompasses disorders with overlapping symptoms in a structural pathology spectrum ranging from persistent nociception [e.g., osteoarthritis (OA)] to an absence of tissue injuries such as the one presented in fibromyalgia (FM) and myofascial pain syndrome (MPS). First, we hypothesized that these syndromes present differences in their cortical excitability parameters assessed by transcranial magnetic stimulation (TMS), namely motor evoked potential (MEP), cortical silent period (CSP), short intracortical inhibition (SICI) and short intracortical facilitation (SICF). Second, considering that the presence of tissue injury could be detected by serum neurotrophins, we hypothesized that the spectrum of structural pathology (i.e., from persistent nociception like in OA, to the absence of tissue injury like in FM and MPS), could be detected by differential efficiency of their descending pain inhibitory system, as assessed by the conditioned pain modulation (CPM) paradigm. Third, we explored whether brain-derived neurotrophic factor (BDNF) had an influence on the relationship between motor cortex excitability and structural pathology. This cross-sectional study pooled baseline data from three randomized clinical trials. We included females (n = 114), aged 19–65 years old with disability by chronic pain syndromes (CPS): FM (n = 19), MPS (n = 54), OA (n = 27) and healthy subjects (n = 14). We assessed the serum BDNF, the motor cortex excitability by parameters the TMS measures and the change on numerical pain scale [NPS (0–10)] during CPM-task. The adjusted mean (SD) on the SICI observed in the absence of tissue injury was 56.36% lower than with persistent nociceptive input [0.31(0.18) vs. 0.55 (0.32)], respectively. The BDNF was inversely correlated with the SICI and with the change on NPS (0–10)during CPM-task. These findings suggest greater disinhibition in the motor cortex and the descending pain inhibitory system in FM and

  10. Motor Cortex Excitability and BDNF Levels in Chronic Musculoskeletal Pain According to Structural Pathology.

    PubMed

    Caumo, Wolnei; Deitos, Alícia; Carvalho, Sandra; Leite, Jorge; Carvalho, Fabiana; Dussán-Sarria, Jairo Alberto; Lopes Tarragó, Maria da Graça; Souza, Andressa; Torres, Iraci Lucena da Silva; Fregni, Felipe

    2016-01-01

    The central sensitization syndrome (CSS) encompasses disorders with overlapping symptoms in a structural pathology spectrum ranging from persistent nociception [e.g., osteoarthritis (OA)] to an absence of tissue injuries such as the one presented in fibromyalgia (FM) and myofascial pain syndrome (MPS). First, we hypothesized that these syndromes present differences in their cortical excitability parameters assessed by transcranial magnetic stimulation (TMS), namely motor evoked potential (MEP), cortical silent period (CSP), short intracortical inhibition (SICI) and short intracortical facilitation (SICF). Second, considering that the presence of tissue injury could be detected by serum neurotrophins, we hypothesized that the spectrum of structural pathology (i.e., from persistent nociception like in OA, to the absence of tissue injury like in FM and MPS), could be detected by differential efficiency of their descending pain inhibitory system, as assessed by the conditioned pain modulation (CPM) paradigm. Third, we explored whether brain-derived neurotrophic factor (BDNF) had an influence on the relationship between motor cortex excitability and structural pathology. This cross-sectional study pooled baseline data from three randomized clinical trials. We included females (n = 114), aged 19-65 years old with disability by chronic pain syndromes (CPS): FM (n = 19), MPS (n = 54), OA (n = 27) and healthy subjects (n = 14). We assessed the serum BDNF, the motor cortex excitability by parameters the TMS measures and the change on numerical pain scale [NPS (0-10)] during CPM-task. The adjusted mean (SD) on the SICI observed in the absence of tissue injury was 56.36% lower than with persistent nociceptive input [0.31(0.18) vs. 0.55 (0.32)], respectively. The BDNF was inversely correlated with the SICI and with the change on NPS (0-10)during CPM-task. These findings suggest greater disinhibition in the motor cortex and the descending pain inhibitory system in FM and MPS

  11. Degraded Auditory Processing in a Rat Model of Autism Limits the Speech Representation in Non-primary Auditory Cortex

    PubMed Central

    Engineer, C.T.; Centanni, T.M.; Im, K.W.; Borland, M.S.; Moreno, N.A.; Carraway, R.S.; Wilson, L.G.; Kilgard, M.P.

    2014-01-01

    Although individuals with autism are known to have significant communication problems, the cellular mechanisms responsible for impaired communication are poorly understood. Valproic acid (VPA) is an anticonvulsant that is a known risk factor for autism in prenatally exposed children. Prenatal VPA exposure in rats causes numerous neural and behavioral abnormalities that mimic autism. We predicted that VPA exposure may lead to auditory processing impairments which may contribute to the deficits in communication observed in individuals with autism. In this study, we document auditory cortex responses in rats prenatally exposed to VPA. We recorded local field potentials and multiunit responses to speech sounds in primary auditory cortex, anterior auditory field, ventral auditory field. and posterior auditory field in VPA exposed and control rats. Prenatal VPA exposure severely degrades the precise spatiotemporal patterns evoked by speech sounds in secondary, but not primary auditory cortex. This result parallels findings in humans and suggests that secondary auditory fields may be more sensitive to environmental disturbances and may provide insight into possible mechanisms related to auditory deficits in individuals with autism. PMID:24639033

  12. Learning-Dependent Potentiation in the Vibrissal Motor Cortex Is Closely Related to the Acquisition of Conditioned Whisker Responses in Behaving Mice

    ERIC Educational Resources Information Center

    Delgado-Garcia, Jose Maria; Troncoso, Julieta; Munera, Alejandro

    2007-01-01

    The role of the primary motor cortex in the acquisition of new motor skills was evaluated during classical conditioning of vibrissal protraction responses in behaving mice, using a trace paradigm. Conditioned stimulus (CS) presentation elicited a characteristic field potential in the vibrissal motor cortex, which was dependent on the synchronized…

  13. Motor Cortex Stimulation: Mild Transient Benefit in a Primate Model of Parkinson’s Disease

    PubMed Central

    Wu, Alex K.; McCairn, Kevin W.; Zada, Gabriel; Wu, Tiffany; Turner, Robert S.

    2015-01-01

    Objective We sought to examine the therapeutic efficacy of motor cortex stimulation (MCS) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated macaques, and to characterize therapeutic differences with varying modes, frequencies, and durations of stimulation. Methods MCS was delivered at currents below motor threshold and at frequencies between 5Hz and 150Hz through epidural electrodes over primary motor cortex. The animals were studied on and off MCS using video analysis, activity logging, and food retrieval tasks. Animals were examined using two different stimulation protocols. The first protocol consisted of one hour of MCS therapy daily. The second protocol exposed the animal to continuous MCS for over 24 hours with at least 2 weeks between MCS therapy. Conclusions Daily MCS revealed no consistent change in symptoms, but MCS at two-week intervals resulted in significant increases in activity. Effects of biweekly MCS disappeared, however, within 24 hours of the onset of continuous MCS. In this study, MCS only temporarily reduced the severity of MPTP-induced parkinsonism. PMID:17432724

  14. Continuous Force Decoding from Local Field Potentials of the Primary Motor Cortex in Freely Moving Rats

    PubMed Central

    Khorasani, Abed; Heydari Beni, Nargess; Shalchyan, Vahid; Daliri, Mohammad Reza

    2016-01-01

    Local field potential (LFP) signals recorded by intracortical microelectrodes implanted in primary motor cortex can be used as a high informative input for decoding of motor functions. Recent studies show that different kinematic parameters such as position and velocity can be inferred from multiple LFP signals as precisely as spiking activities, however, continuous decoding of the force magnitude from the LFP signals in freely moving animals has remained an open problem. Here, we trained three rats to press a force sensor for getting a drop of water as a reward. A 16-channel micro-wire array was implanted in the primary motor cortex of each trained rat, and obtained LFP signals were used for decoding of the continuous values recorded by the force sensor. Average coefficient of correlation and the coefficient of determination between decoded and actual force signals were r = 0.66 and R2 = 0.42, respectively. We found that LFP signal on gamma frequency bands (30–120 Hz) had the most contribution in the trained decoding model. This study suggests the feasibility of using low number of LFP channels for the continuous force decoding in freely moving animals resembling BMI systems in real life applications. PMID:27767063

  15. Training the motor cortex by observing the actions of others during immobilization.

    PubMed

    Bassolino, Michela; Campanella, Martina; Bove, Marco; Pozzo, Thierry; Fadiga, Luciano

    2014-12-01

    Limb immobilization and nonuse are well-known causes of corticomotor depression. While physical training can drive the recovery from nonuse-dependent corticomotor effects, it remains unclear if it is possible to gain access to motor cortex in alternative ways, such as through motor imagery (MI) or action observation (AO). Transcranial magnetic stimulation was used to study the excitability of the hand left motor cortex in normal subjects immediately before and after 10 h of right arm immobilization. During immobilization, subjects were requested either to imagine to act with their constrained limb or to observe hand actions performed by other individuals. A third group of control subjects watched a nature documentary presented on a computer screen. Hand corticomotor maps and recruitment curves reliably showed that AO, but not MI, prevented the corticomotor depression induced by immobilization. Our results demonstrate the existence of a visuomotor mechanism in humans that links AO and execution which is able to effect cortical plasticity in a beneficial way. This facilitation was not related to the action simulation, because it was not induced by explicit MI.

  16. Motor overflow in children with attention-deficit/hyperactivity disorder is associated with decreased extent of neural activation in the motor cortex.

    PubMed

    Gaddis, Andrew; Rosch, Keri S; Dirlikov, Benjamin; Crocetti, Deana; MacNeil, Lindsey; Barber, Anita D; Muschelli, John; Caffo, Brian; Pekar, James J; Mostofsky, Stewart H

    2015-09-30

    Motor overflow is a developmental phenomenon that typically disappears by late childhood. Abnormal persistence of motor overflow is often present in children with attention-deficit/hyperactivity disorder (ADHD). This study employed functional magnetic resonance imaging (fMRI) during a finger-sequencing task to examine whether excessive motor overflow in children with ADHD is associated with decreased extent of motor circuit activation. Thirty-four right-handed children (18 typically developing controls, 16 ADHD) completed fMRI while performing a finger-sequencing task. Motor overflow was evaluated during a finger-sequencing task and a motor examination (the PANESS) performed outside the scanner. Diagnostic differences in behavioral measures of overflow and extent of activation in the contralateral and ipsilateral motor network ROIs were examined, along with correlations between overflow and extent of activation. Children with ADHD demonstrated greater overflow and lesser extent of activation in left primary motor cortex (BA4) and bilateral premotor cortex (BA6) and supplementary motor area (SMA) during right-hand finger-sequencing compared to controls. Decreased extent of primary motor and premotor activation correlated with increased hand-related overflow movements in children with ADHD but not controls. These findings suggest that overflow movements in children with ADHD may reflect decreased recruitment of neural circuitry involved in active inhibition of homologous motor circuitry unnecessary to task execution.

  17. Stimulus-response profile during single-pulse transcranial magnetic stimulation to the primary motor cortex.

    PubMed

    Hanakawa, Takashi; Mima, Tatsuya; Matsumoto, Riki; Abe, Mitsunari; Inouchi, Morito; Urayama, Shin-Ichi; Anami, Kimitaka; Honda, Manabu; Fukuyama, Hidenao

    2009-11-01

    We examined the stimulus-response profile during single-pulse transcranial magnetic stimulation (TMS) by measuring motor-evoked potentials (MEPs) with electromyographic monitoring and hemodynamic responses with functional magnetic resonance imaging (fMRI) at 3 Tesla. In 16 healthy subjects, single TMS pulses were irregularly delivered to the left primary motor cortex at a mean frequency of 0.15 Hz with a wide range of stimulus intensities. The measurement of MEP proved a typical relationship between stimulus intensity and MEP amplitude in the concurrent TMS-fMRI environment. In the population-level analysis of the suprathreshold stimulation conditions, significant increases in hemodynamic responses were detected in the motor/somatosensory network, reflecting both direct and remote effects of TMS, and also the auditory/cognitive areas, perhaps related to detection of clicks. The stimulus-response profile showed both linear and nonlinear components in the direct and remote motor/somatosensory network. A detailed analysis suggested that the nonlinear components of the motor/somatosensory network activity might be induced by nonlinear recruitment of neurons in addition to sensory afferents resulting from movement. These findings expand our basic knowledge of the quantitative relationship between TMS-induced neural activations and hemodynamic signals measured by neuroimaging techniques.

  18. [The functional role of the motor area of the cortex in the acquisition of escape reactions in dogs].

    PubMed

    Frolov, A G; Maslov, A V; Pavlova, O G

    1993-01-01

    The model of escape conditioning similar to classical (pavlovian) was proposed. During shock application to the hind limb (a conditioned stimulus) the ipsilateral foreleg flexion was elicited by a stimulation of the motor cortex (an unconditioned stimulus); both stimuli were turned off in the course of the forepaw lifting. Such uniform pairings resulted in elaboration of a reaction of the foreleg flexion in response to the shock. Prolonging the shock by 3 s after the cortical stimulation led to a rapid extinction of the acquired response. So a possibility to instrumentalize movements elicited by stimulation of the motor cortex (MI) was proved. This is in argument in favour of an assumption that the established "instrumental" connection (drive-motor structures) can be addressed directly to the motor cortex.

  19. Variation in the topography of the speech production cortex verified by cortical stimulation and high gamma activity.

    PubMed

    Babajani-Feremi, Abbas; Rezaie, Roozbeh; Narayana, Shalini; Choudhri, Asim F; Fulton, Stephen P; Boop, Frederick A; Wheless, James W; Papanicolaou, Andrew C

    2014-12-17

    In this study, we have addressed the question of functional brain reorganization for language in the presence and absence of anatomical lesions in two patients with epilepsy using cortical stimulation mapping and high gamma (HG) activity in subdural grid recordings. In both, the expressive language cortex was defined as the cortical patch below the electrode(s) that when stimulated resulted in speech arrest, and during speech expression tasks generated HG activity. This patch fell within the borders of Broca's area, as defined anatomically, in the case of the patient with a lesion, but outside that area in the other, lesion-free patient. Such results highlight the necessity for presurgical language mapping in all cases of surgery involving the language-dominant hemisphere and suggest that HG activity during expressive language tasks can be informative and helpful in conjunction with cortical stimulation mapping for expressive language mapping.

  20. Variation in the topography of the speech production cortex verified by cortical stimulation and high gamma activity

    PubMed Central

    Rezaie, Roozbeh; Narayana, Shalini; Choudhri, Asim F.; Fulton, Stephen P.; Boop, Frederick A.; Wheless, James W.; Papanicolaou, Andrew C.

    2014-01-01

    In this study, we have addressed the question of functional brain reorganization for language in the presence and absence of anatomical lesions in two patients with epilepsy using cortical stimulation mapping and high gamma (HG) activity in subdural grid recordings. In both, the expressive language cortex was defined as the cortical patch below the electrode(s) that when stimulated resulted in speech arrest, and during speech expression tasks generated HG activity. This patch fell within the borders of Broca’s area, as defined anatomically, in the case of the patient with a lesion, but outside that area in the other, lesion-free patient. Such results highlight the necessity for presurgical language mapping in all cases of surgery involving the language-dominant hemisphere and suggest that HG activity during expressive language tasks can be informative and helpful in conjunction with cortical stimulation mapping for expressive language mapping. PMID:25371284

  1. Decoding spectrotemporal features of overt and covert speech from the human cortex

    PubMed Central

    Martin, Stéphanie; Brunner, Peter; Holdgraf, Chris; Heinze, Hans-Jochen; Crone, Nathan E.; Rieger, Jochem; Schalk, Gerwin; Knight, Robert T.; Pasley, Brian N.

    2014-01-01

    Auditory perception and auditory imagery have been shown to activate overlapping brain regions. We hypothesized that these phenomena also share a common underlying neural representation. To assess this, we used electrocorticography intracranial recordings from epileptic patients performing an out loud or a silent reading task. In these tasks, short stories scrolled across a video screen in two conditions: subjects read the same stories both aloud (overt) and silently (covert). In a control condition the subject remained in a resting state. We first built a high gamma (70–150 Hz) neural decoding model to reconstruct spectrotemporal auditory features of self-generated overt speech. We then evaluated whether this same model could reconstruct auditory speech features in the covert speech condition. Two speech models were tested: a spectrogram and a modulation-based feature space. For the overt condition, reconstruction accuracy was evaluated as the correlation between original and predicted speech features, and was significant in each subject (p < 10−5; paired two-sample t-test). For the covert speech condition, dynamic time warping was first used to realign the covert speech reconstruction with the corresponding original speech from the overt condition. Reconstruction accuracy was then evaluated as the correlation between original and reconstructed speech features. Covert reconstruction accuracy was compared to the accuracy obtained from reconstructions in the baseline control condition. Reconstruction accuracy for the covert condition was significantly better than for the control condition (p < 0.005; paired two-sample t-test). The superior temporal gyrus, pre- and post-central gyrus provided the highest reconstruction information. The relationship between overt and covert speech reconstruction depended on anatomy. These results provide evidence that auditory representations of covert speech can be reconstructed from models that are built from an overt speech

  2. Shaping the effects of transcranial direct current stimulation of the human motor cortex.

    PubMed

    Nitsche, M A; Doemkes, S; Karaköse, T; Antal, A; Liebetanz, D; Lang, N; Tergau, F; Paulus, W

    2007-04-01

    Transcranial DC stimulation (tDCS) induces stimulation polarity-dependent neuroplastic excitability shifts in the human brain. Because it accomplishes long-lasting effects and its application is simple, it is used increasingly. However, one drawback is its low focality, caused by 1) the large stimulation electrode and 2) the functionally effective reference electrode, which is also situated on the scalp. We aimed to increase the focality of tDCS, which might improve the interpretation of the functional effects of stimulation because it will restrict its effects to more clearly defined cortical areas. Moreover, it will avoid unwanted reversed effects of tDCS under the reference electrode, which is of special importance in clinical settings, when a homogeneous shift of cortical excitability is needed. Because current density (current strength/electrode size) determines the efficacy of tDCS, increased focality should be accomplished by 1) reducing stimulation electrode size, but keeping current density constant; or 2) increasing reference electrode size under constant current strength. We tested these hypotheses for motor cortex tDCS. The results show that reducing the size of the motor cortex DC-stimulation electrode focalized the respective tDCS-induced excitability changes. Increasing the size of the frontopolar reference electrode rendered stimulation over this cortex functionally inefficient, but did not compromise the tDCS-generated motor cortical excitability shifts. Thus tDCS-generated modulations of cortical excitability can be focused by reducing the size of the stimulation electrode and by increasing the size of the reference electrode. For future applications of tDCS, such paradigms may help to achieve more selective tDCS effects.

  3. Body stability and muscle and motor cortex activity during walking with wide stance

    PubMed Central

    Farrell, Brad J.; Bulgakova, Margarita A.; Beloozerova, Irina N.; Sirota, Mikhail G.

    2014-01-01

    Biomechanical and neural mechanisms of balance control during walking are still poorly understood. In this study, we examined the body dynamic stability, activity of limb muscles, and activity of motor cortex neurons [primarily pyramidal tract neurons (PTNs)] in the cat during unconstrained walking and walking with a wide base of support (wide-stance walking). By recording three-dimensional full-body kinematics we found for the first time that during unconstrained walking the cat is dynamically unstable in the forward direction during stride phases when only two diagonal limbs support the body. In contrast to standing, an increased lateral between-paw distance during walking dramatically decreased the cat's body dynamic stability in double-support phases and prompted the cat to spend more time in three-legged support phases. Muscles contributing to abduction-adduction actions had higher activity during stance, while flexor muscles had higher activity during swing of wide-stance walking. The overwhelming majority of neurons in layer V of the motor cortex, 82% and 83% in the forelimb and hindlimb representation areas, respectively, were active differently during wide-stance walking compared with unconstrained condition, most often by having a different depth of stride-related frequency modulation along with a different mean discharge rate and/or preferred activity phase. Upon transition from unconstrained to wide-stance walking, proximal limb-related neuronal groups subtly but statistically significantly shifted their activity toward the swing phase, the stride phase where most of body instability occurs during this task. The data suggest that the motor cortex participates in maintenance of body dynamic stability during locomotion. PMID:24790167

  4. Principal components of hand kinematics and neurophysiological signals in motor cortex during reach to grasp movements.

    PubMed

    Mollazadeh, Mohsen; Aggarwal, Vikram; Thakor, Nitish V; Schieber, Marc H

    2014-10-15

    A few kinematic synergies identified by principal component analysis (PCA) account for most of the variance in the coordinated joint rotations of the fingers and wrist used for a wide variety of hand movements. To examine the possibility that motor cortex might control the hand through such synergies, we collected simultaneous kinematic and neurophysiological data from monkeys performing a reach-to-grasp task. We used PCA, jPCA and isomap to extract kinematic synergies from 18 joint angles in the fingers and wrist and analyzed the relationships of both single-unit and multiunit spike recordings, as well as local field potentials (LFPs), to these synergies. For most spike recordings, the maximal absolute cross-correlations of firing rates were somewhat stronger with an individual joint angle than with any principal component (PC), any jPC or any isomap dimension. In decoding analyses, where spikes and LFP power in the 100- to 170-Hz band each provided better decoding than other LFP-based signals, the first PC was decoded as well as the best decoded joint angle. But the remaining PCs and jPCs were predicted with lower accuracy than individual joint angles. Although PCs, jPCs or isomap dimensions might provide a more parsimonious description of kinematics, our findings indicate that the kinematic synergies identified with these techniques are not represented in motor cortex more strongly than the original joint angles. We suggest that the motor cortex might act to sculpt the synergies generated by subcortical centers, superimposing an ability to individuate finger movements and adapt the hand to grasp a wide variety of objects.

  5. Potential Mechanisms Supporting the Value of Motor Cortex Stimulation to Treat Chronic Pain Syndromes

    PubMed Central

    DosSantos, Marcos F.; Ferreira, Natália; Toback, Rebecca L.; Carvalho, Antônio C.; DaSilva, Alexandre F.

    2016-01-01

    Throughout the first years of the twenty-first century, neurotechnologies such as motor cortex stimulation (MCS), transcranial magnetic stimulation (TMS), and transcranial direct current stimulation (tDCS) have attracted scientific attention and been considered as potential tools to centrally modulate chronic pain, especially for those conditions more difficult to manage and refractory to all types of available pharmacological therapies. Interestingly, although the role of the motor cortex in pain has not been fully clarified, it is one of the cortical areas most commonly targeted by invasive and non-invasive neuromodulation technologies. Recent studies have provided significant advances concerning the establishment of the clinical effectiveness of primary MCS to treat different chronic pain syndromes. Concurrently, the neuromechanisms related to each method of primary motor cortex (M1) modulation have been unveiled. In this respect, the most consistent scientific evidence originates from MCS studies, which indicate the activation of top-down controls driven by M1 stimulation. This concept has also been applied to explain M1-TMS mechanisms. Nevertheless, activation of remote areas in the brain, including cortical and subcortical structures, has been reported with both invasive and non-invasive methods and the participation of major neurotransmitters (e.g., glutamate, GABA, and serotonin) as well as the release of endogenous opioids has been demonstrated. In this critical review, the putative mechanisms underlying the use of MCS to provide relief from chronic migraine and other types of chronic pain are discussed. Emphasis is placed on the most recent scientific evidence obtained from chronic pain research studies involving MCS and non-invasive neuromodulation methods (e.g., tDCS and TMS), which are analyzed comparatively. PMID:26903788

  6. Body stability and muscle and motor cortex activity during walking with wide stance.

    PubMed

    Farrell, Brad J; Bulgakova, Margarita A; Beloozerova, Irina N; Sirota, Mikhail G; Prilutsky, Boris I

    2014-08-01

    Biomechanical and neural mechanisms of balance control during walking are still poorly understood. In this study, we examined the body dynamic stability, activity of limb muscles, and activity of motor cortex neurons [primarily pyramidal tract neurons (PTNs)] in the cat during unconstrained walking and walking with a wide base of support (wide-stance walking). By recording three-dimensional full-body kinematics we found for the first time that during unconstrained walking the cat is dynamically unstable in the forward direction during stride phases when only two diagonal limbs support the body. In contrast to standing, an increased lateral between-paw distance during walking dramatically decreased the cat's body dynamic stability in double-support phases and prompted the cat to spend more time in three-legged support phases. Muscles contributing to abduction-adduction actions had higher activity during stance, while flexor muscles had higher activity during swing of wide-stance walking. The overwhelming majority of neurons in layer V of the motor cortex, 82% and 83% in the forelimb and hindlimb representation areas, respectively, were active differently during wide-stance walking compared with unconstrained condition, most often by having a different depth of stride-related frequency modulation along with a different mean discharge rate and/or preferred activity phase. Upon transition from unconstrained to wide-stance walking, proximal limb-related neuronal groups subtly but statistically significantly shifted their activity toward the swing phase, the stride phase where most of body instability occurs during this task. The data suggest that the motor cortex participates in maintenance of body dynamic stability during locomotion.

  7. Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex.

    PubMed

    Di Lazzaro, Vincenzo; Rothwell, John C

    2014-10-01

    A number of methods have been developed recently that stimulate the human brain non-invasively through the intact scalp. The most common are transcranial magnetic stimulation (TMS), transcranial electric stimulation (TES) and transcranial direct current stimulation (TDCS). They are widely used to probe function and connectivity of brain areas as well as therapeutically in a variety of conditions such as depression or stroke. They are much less focal than conventional invasive methods which use small electrodes placed on or in the brain and are often thought to activate all classes of neurones in the stimulated area. However, this is not true. A large body of evidence from experiments on the motor cortex shows that non-invasive methods of brain stimulation can be surprisingly selective and that adjusting the intensity and direction of stimulation can activate different classes of inhibitory and excitatory inputs to the corticospinal output cells. Here we review data that have elucidated the action of TMS and TES, concentrating mainly on the most direct evidence available from spinal epidural recordings of the descending corticospinal volleys. The results show that it is potentially possible to test and condition specific neural circuits in motor cortex that could be affected differentially by disease, or be used in different forms of natural behaviour. However, there is substantial interindividual variability in the specificity of these protocols. Perhaps in the future it will be possible, with the advances currently being made to model the electrical fields induced in individual brains, to develop forms of stimulation that can reliably target more specific populations of neurones, and open up the internal circuitry of the motor cortex for study in behaving humans. PMID:25172954

  8. Skilled Bimanual Training Drives Motor Cortex Plasticity in Children With Unilateral Cerebral Palsy.

    PubMed

    Friel, Kathleen M; Kuo, Hsing-Ching; Fuller, Jason; Ferre, Claudio L; Brandão, Marina; Carmel, Jason B; Bleyenheuft, Yannick; Gowatsky, Jaimie L; Stanford, Arielle D; Rowny, Stefan B; Luber, Bruce; Bassi, Bruce; Murphy, David L K; Lisanby, Sarah H; Gordon, Andrew M

    2016-10-01

    Background Intensive bimanual therapy can improve hand function in children with unilateral spastic cerebral palsy (USCP). We compared the effects of structured bimanual skill training versus unstructured bimanual practice on motor outcomes and motor map plasticity in children with USCP. Objective We hypothesized that structured skill training would produce greater motor map plasticity than unstructured practice. Methods Twenty children with USCP (average age 9.5; 12 males) received therapy in a day camp setting, 6 h/day, 5 days/week, for 3 weeks. In structured skill training (n = 10), children performed progressively more difficult movements and practiced functional goals. In unstructured practice (n = 10), children engaged in bimanual activities but did not practice skillful movements or functional goals. We used the Assisting Hand Assessment (AHA), Jebsen-Taylor Test of Hand Function (JTTHF), and Canadian Occupational Performance Measure (COPM) to measure hand function. We used single-pulse transcranial magnetic stimulation to map the representation of first dorsal interosseous and flexor carpi radialis muscles bilaterally. Results Both groups showed significant improvements in bimanual hand use (AHA; P < .05) and hand dexterity (JTTHF; P < .001). However, only the structured skill group showed increases in the size of the affected hand motor map and amplitudes of motor evoked potentials (P < .01). Most children who showed the most functional improvements (COPM) had the largest changes in map size. Conclusions These findings uncover a dichotomy of plasticity: the unstructured practice group improved hand function but did not show changes in motor maps. Skill training is important for driving motor cortex plasticity in children with USCP.

  9. Characterizing Intonation Deficit in Motor Speech Disorders: An Autosegmental-Metrical Analysis of Spontaneous Speech in Hypokinetic Dysarthria, Ataxic Dysarthria, and Foreign Accent Syndrome

    ERIC Educational Resources Information Center

    Lowit, Anja; Kuschmann, Anja

    2012-01-01

    Purpose: The autosegmental-metrical (AM) framework represents an established methodology for intonational analysis in unimpaired speaker populations but has found little application in describing intonation in motor speech disorders (MSDs). This study compared the intonation patterns of unimpaired participants (CON) and those with Parkinson's…

  10. Contribution of LFP dynamics to single-neuron spiking variability in motor cortex during movement execution

    PubMed Central

    Rule, Michael E.; Vargas-Irwin, Carlos; Donoghue, John P.; Truccolo, Wilson

    2015-01-01

    Understanding the sources of variability in single-neuron spiking responses is an important open problem for the theory of neural coding. This variability is thought to result primarily from spontaneous collective dynamics in neuronal networks. Here, we investigate how well collective dynamics reflected in motor cortex local field potentials (LFPs) can account for spiking variability during motor behavior. Neural activity was recorded via microelectrode arrays implanted in ventral and dorsal premotor and primary motor cortices of non-human primates performing naturalistic 3-D reaching and grasping actions. Point process models were used to quantify how well LFP features accounted for spiking variability not explained by the measured 3-D reach and grasp kinematics. LFP features included the instantaneous magnitude, phase and analytic-signal components of narrow band-pass filtered (δ,θ,α,β) LFPs, and analytic signal and amplitude envelope features in higher-frequency bands. Multiband LFP features predicted single-neuron spiking (1ms resolution) with substantial accuracy as assessed via ROC analysis. Notably, however, models including both LFP and kinematics features displayed marginal improvement over kinematics-only models. Furthermore, the small predictive information added by LFP features to kinematic models was redundant to information available in fast-timescale (<100 ms) spiking history. Overall, information in multiband LFP features, although predictive of single-neuron spiking during movement execution, was redundant to information available in movement parameters and spiking history. Our findings suggest that, during movement execution, collective dynamics reflected in motor cortex LFPs primarily relate to sensorimotor processes directly controlling movement output, adding little explanatory power to variability not accounted by movement parameters. PMID:26157365

  11. Speech repetition as a window on the neurobiology of auditory-motor integration for speech: A voxel-based lesion symptom mapping study.

    PubMed

    Rogalsky, Corianne; Poppa, Tasha; Chen, Kuan-Hua; Anderson, Steven W; Damasio, Hanna; Love, Tracy; Hickok, Gregory

    2015-05-01

    For more than a century, speech repetition has been used as an assay for gauging the integrity of the auditory-motor pathway in aphasia, thought classically to involve a linkage between Wernicke's area and Broca's area via the arcuate fasciculus. During the last decade, evidence primarily from functional imaging in healthy individuals has refined this picture both computationally and anatomically, suggesting the existence of a cortical hub located at the parietal-temporal boundary (area Spt) that functions to integrate auditory and motor speech networks for both repetition and spontaneous speech production. While functional imaging research can pinpoint the regions activated in repetition/auditory-motor integration, lesion-based studies are needed to infer causal involvement. Previous lesion studies of repetition have yielded mixed results with respect to Spt's critical involvement in speech repetition. The present study used voxel-based lesion symptom mapping (VLSM) to investigate the neuroanatomy of repetition of both real words and non-words in a sample of 47 patients with focal left hemisphere brain damage. VLSMs identified a large voxel cluster spanning gray and white matter in the left temporal-parietal junction, including area Spt, where damage was significantly related to poor non-word repetition. Repetition of real words implicated a very similar dorsal network including area Spt. Cortical regions including Spt were implicated in repetition performance even when white matter damage was factored out. In addition, removing variance associated with speech perception abilities did not alter the overall lesion pattern for either task. Together with past functional imaging work, our results suggest that area Spt is integral in both word and non-word repetition, that its contribution is above and beyond that made by white matter pathways, and is not driven by perceptual processes alone. These findings are highly consistent with the claim that Spt is an area of

  12. Speech repetition as a window on the neurobiology of auditory-motor integration for speech: A voxel-based lesion symptom mapping study

    PubMed Central

    Rogalsky, Corianne; Poppa, Tasha; Chen, Kuan-Hua; Anderson, Steven W.; Damasio, Hanna; Love, Tracy; Hickok, Gregory

    2015-01-01

    For more than a century, speech repetition has been used as an assay for gauging the integrity of the auditory-motor pathway in aphasia, thought classically to involve a linkage between Wernicke’s area and Broca’s area via the arcuate fasciculus. During the last decade, evidence primarily from functional imaging in healthy individuals has refined this picture both computationally and anatomically, suggesting the existence of a cortical hub located at the parietal-temporal boundary (area Spt) that functions to integrate auditory and motor speech networks for both repetition and spontaneous speech production. While functional imaging research can pinpoint the regions activated in repetition/auditory-motor integration, lesion-based studies are needed to infer causal involvement. Previous lesion studies of repetition have yielded mixed results with respect to Spt’s critical involvement in speech repetition. The present study used voxel-based lesion symptom mapping (VLSM) to investigate the neuroanatomy of repetition of both real words and non-words in a sample of 47 patients with focal left hemisphere brain damage. VLSMs identified a large voxel cluster spanning gray and white matter in the left temporal-parietal junction, including area Spt, where damage was significantly related to poor non-word repetition. Repetition of real words implicated a very similar dorsal network including area Spt. Cortical regions including Spt were implicated in repetition performance even when white matter damage was factored out. In addition, removing variance associated with speech perception abilities did not alter the overall lesion pattern for either task. Together with past functional imaging work, our results suggest that area Spt is integral in both word and non-word repetition, that its contribution is above and beyond that made by white matter pathways, and is not driven by perceptual processes alone. These findings are highly consistent with the claim that Spt is an area

  13. Speech repetition as a window on the neurobiology of auditory-motor integration for speech: A voxel-based lesion symptom mapping study.

    PubMed

    Rogalsky, Corianne; Poppa, Tasha; Chen, Kuan-Hua; Anderson, Steven W; Damasio, Hanna; Love, Tracy; Hickok, Gregory

    2015-05-01

    For more than a century, speech repetition has been used as an assay for gauging the integrity of the auditory-motor pathway in aphasia, thought classically to involve a linkage between Wernicke's area and Broca's area via the arcuate fasciculus. During the last decade, evidence primarily from functional imaging in healthy individuals has refined this picture both computationally and anatomically, suggesting the existence of a cortical hub located at the parietal-temporal boundary (area Spt) that functions to integrate auditory and motor speech networks for both repetition and spontaneous speech production. While functional imaging research can pinpoint the regions activated in repetition/auditory-motor integration, lesion-based studies are needed to infer causal involvement. Previous lesion studies of repetition have yielded mixed results with respect to Spt's critical involvement in speech repetition. The present study used voxel-based lesion symptom mapping (VLSM) to investigate the neuroanatomy of repetition of both real words and non-words in a sample of 47 patients with focal left hemisphere brain damage. VLSMs identified a large voxel cluster spanning gray and white matter in the left temporal-parietal junction, including area Spt, where damage was significantly related to poor non-word repetition. Repetition of real words implicated a very similar dorsal network including area Spt. Cortical regions including Spt were implicated in repetition performance even when white matter damage was factored out. In addition, removing variance associated with speech perception abilities did not alter the overall lesion pattern for either task. Together with past functional imaging work, our results suggest that area Spt is integral in both word and non-word repetition, that its contribution is above and beyond that made by white matter pathways, and is not driven by perceptual processes alone. These findings are highly consistent with the claim that Spt is an area of

  14. Transfer Effect of Speech-sound Learning on Auditory-motor Processing of Perceived Vocal Pitch Errors.

    PubMed

    Chen, Zhaocong; Wong, Francis C K; Jones, Jeffery A; Li, Weifeng; Liu, Peng; Chen, Xi; Liu, Hanjun

    2015-08-17

    Speech perception and production are intimately linked. There is evidence that speech motor learning results in changes to auditory processing of speech. Whether speech motor control benefits from perceptual learning in speech, however, remains unclear. This event-related potential study investigated whether speech-sound learning can modulate the processing of feedback errors during vocal pitch regulation. Mandarin speakers were trained to perceive five Thai lexical tones while learning to associate pictures with spoken words over 5 days. Before and after training, participants produced sustained vowel sounds while they heard their vocal pitch feedback unexpectedly perturbed. As compared to the pre-training session, the magnitude of vocal compensation significantly decreased for the control group, but remained consistent for the trained group at the post-training session. However, the trained group had smaller and faster N1 responses to pitch perturbations and exhibited enhanced P2 responses that correlated significantly with their learning performance. These findings indicate that the cortical processing of vocal pitch regulation can be shaped by learning new speech-sound associations, suggesting that perceptual learning in speech can produce transfer effects to facilitating the neural mechanisms underlying the online monitoring of auditory feedback regarding vocal production.

  15. Transfer Effect of Speech-sound Learning on Auditory-motor Processing of Perceived Vocal Pitch Errors

    PubMed Central

    Chen, Zhaocong; Wong, Francis C. K.; Jones, Jeffery A.; Li, Weifeng; Liu, Peng; Chen, Xi; Liu, Hanjun

    2015-01-01

    Speech perception and production are intimately linked. There is evidence that speech motor learning results in changes to auditory processing of speech. Whether speech motor control benefits from perceptual learning in speech, however, remains unclear. This event-related potential study investigated whether speech-sound learning can modulate the processing of feedback errors during vocal pitch regulation. Mandarin speakers were trained to perceive five Thai lexical tones while learning to associate pictures with spoken words over 5 days. Before and after training, participants produced sustained vowel sounds while they heard their vocal pitch feedback unexpectedly perturbed. As compared to the pre-training session, the magnitude of vocal compensation significantly decreased for the control group, but remained consistent for the trained group at the post-training session. However, the trained group had smaller and faster N1 responses to pitch perturbations and exhibited enhanced P2 responses that correlated significantly with their learning performance. These findings indicate that the cortical processing of vocal pitch regulation can be shaped by learning new speech-sound associations, suggesting that perceptual learning in speech can produce transfer effects to facilitating the neural mechanisms underlying the online monitoring of auditory feedback regarding vocal production. PMID:26278337

  16. Dynamic reorganization of neural activity in motor cortex during new sequence production.

    PubMed

    Lu, Xiaofeng; Ashe, James

    2015-09-01

    Although previous studies have shown that primary motor cortex (M1) neurons are modulated during the performance of a sequence of movements, it is not known how this neural activity in the M1 reorganizes during new learning of sequence-dependent motor skills. Here we trained monkeys to move to each of four spatial targets to produce multiple distinct sequences of movements in which the spatial organization of the targets determined uniquely the serial order of the movements. After the monkeys memorized the sequences, we changed one element of these over-practised sequences and the subjects were required to learn the new sequence through trial and error. When one element in an over-learned four-element sequence was changed, the sequence-specific neural activity was totally disrupted, but relatively minor changes in the direction-specific activity were observed. The data suggest that sequential motor skills are represented within M1 in the context of the complete sequential behavior rather than as a series of single consecutive movements; and sequence-specific neurons in the M1 are involved in new learning of sequence by using memorized knowledge to acquire complex motor skill efficiently.

  17. Dynamic reorganization of neural activity in motor cortex during new sequence production.

    PubMed

    Lu, Xiaofeng; Ashe, James

    2015-09-01

    Although previous studies have shown that primary motor cortex (M1) neurons are modulated during the performance of a sequence of movements, it is not known how this neural activity in the M1 reorganizes during new learning of sequence-dependent motor skills. Here we trained monkeys to move to each of four spatial targets to produce multiple distinct sequences of movements in which the spatial organization of the targets determined uniquely the serial order of the movements. After the monkeys memorized the sequences, we changed one element of these over-practised sequences and the subjects were required to learn the new sequence through trial and error. When one element in an over-learned four-element sequence was changed, the sequence-specific neural activity was totally disrupted, but relatively minor changes in the direction-specific activity were observed. The data suggest that sequential motor skills are represented within M1 in the context of the complete sequential behavior rather than as a series of single consecutive movements; and sequence-specific neurons in the M1 are involved in new learning of sequence by using memorized knowledge to acquire complex motor skill efficiently. PMID:26202600

  18. Recovery of motor deficit, cerebellar serotonin and lipid peroxidation levels in the cortex of injured rats.

    PubMed

    Bueno-Nava, Antonio; Gonzalez-Pina, Rigoberto; Alfaro-Rodriguez, Alfonso; Nekrassov-Protasova, Vladimir; Durand-Rivera, Alfredo; Montes, Sergio; Ayala-Guerrero, Fructuoso

    2010-10-01

    The sensorimotor cortex and the cerebellum are interconnected by the corticopontocerebellar (CPC) pathway and by neuronal groups such as the serotonergic system. Our aims were to determine the levels of cerebellar serotonin (5-HT) and lipid peroxidation (LP) after cortical iron injection and to analyze the motor function produced by the injury. Rats were divided into the following three groups: control, injured and recovering. Motor function was evaluated using the beam-walking test as an assessment of overall locomotor function and the footprint test as an assessment of gait. We also determined the levels of 5-HT and LP two and twenty days post-lesion. We found an increase in cerebellar 5-HT and a concomitant increase in LP in the pons and cerebellum of injured rats, which correlated with their motor deficits. Recovering rats showed normal 5-HT and LP levels. The increase of 5-HT in injured rats could be a result of serotonergic axonal injury after cortical iron injection. The LP and motor deficits could be due to impairments in neuronal connectivity affecting the corticospinal and CPC tracts and dysmetric stride could be indicative of an ataxic gait that involves the cerebellum. PMID:20535555

  19. Labelling and optical erasure of synaptic memory traces in the motor cortex

    PubMed Central

    Hayashi-Takagi, Akiko; Yagishita, Sho; Nakamura, Mayumi; Shirai, Fukutoshi; Wu, Yi; Loshbaugh, Amanda L.; Kuhlman, Brian; Hahn, Klaus M.; Kasai, Haruo

    2015-01-01

    Summary Dendritic spines are the major loci of synaptic plasticity and are considered as possible structural correlates of memory. Nonetheless, systematic manipulation of specific subsets of spines in the cortex has been unattainable, and thus, the link between spines and memory has been correlational. We developed a novel synaptic optoprobe, AS-PaRac1 (activated synapse targeting photoactivatable Rac1), which can label recently potentiated spines specifically, and induce the selective shrinkage of AS-PaRac1-containing spines. In vivo imaging of AS-PaRac1 revealed that a motor learning induced substantial synaptic remodelling in a small subset of neurons. The acquired motor learning was disrupted by the optical shrinkage of the potentiated spines, whereas it was not affected by the identical manipulation of spines evoked by a distinct motor task in the same cortical region. Taken together, our results demonstrate that a newly acquired motor skill depends on the formation of a task-specific dense synaptic ensemble. PMID:26352471

  20. Plasticity and alterations of trunk motor cortex following spinal cord injury and non-stepping robot and treadmill training.

    PubMed

    Oza, Chintan S; Giszter, Simon F

    2014-06-01

    Spinal cord injury (SCI) induces significant reorganization in the sensorimotor cortex. Trunk motor control is crucial for postural stability and propulsion after low thoracic SCI and several rehabilitative strategies are aimed at trunk stability and control. However little is known about the effect of SCI and rehabilitation training on trunk motor representations and their plasticity in the cortex. Here, we used intracortical microstimulation to examine the motor cortex representations of the trunk in relation to other representations in three groups of chronic adult complete low thoracic SCI rats: chronic untrained, treadmill trained (but 'non-stepping') and robot assisted treadmill trained (but 'non-stepping') and compared with a group of normal rats. Our results demonstrate extensive and significant reorganization of the trunk motor cortex after chronic adult SCI which includes (1) expansion and rostral displacement of trunk motor representations in the cortex, with the greatest significant increase observed for rostral (to injury) trunk, and slight but significant increase of motor representation for caudal (to injury) trunk at low thoracic levels in all spinalized rats; (2) significant changes in coactivation and the synergy representation (or map overlap) between different trunk muscles and between trunk and forelimb. No significant differences were observed between the groups of transected rats for the majority of the comparisons. However, (3) the treadmill and robot-treadmill trained groups of rats showed a further small but significant rostral migration of the trunk representations, beyond the shift caused by transection alone. We conclude that SCI induces a significant reorganization of the trunk motor cortex, which is not qualitatively altered by non-stepping treadmill training or non-stepping robot assisted treadmill training, but is shifted further from normal topography by the training. This shift may potentially make subsequent rehabilitation with

  1. Enhancing Motor Network Activity Using Real-Time Functional MRI Neurofeedback of Left Premotor Cortex.

    PubMed

    Marins, Theo F; Rodrigues, Erika C; Engel, Annerose; Hoefle, Sebastian; Basílio, Rodrigo; Lent, Roberto; Moll, Jorge; Tovar-Moll, Fernanda

    2015-01-01

    Neurofeedback by functional magnetic resonance imaging (fMRI) is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC), important for motor recovery after brain injury. We investigated (i) whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI) task while receiving continuous fMRI-neurofeedback, and (ii) whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB) received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL) group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and MI, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke. PMID:26733832

  2. The Importance of Lateral Connections in the Parietal Cortex for Generating Motor Plans

    PubMed Central

    Asher, Derrik E.; Oros, Nicolas; Krichmar, Jeffrey L.

    2015-01-01

    Substantial evidence has highlighted the significant role of associative brain areas, such as the posterior parietal cortex (PPC) in transforming multimodal sensory information into motor plans. However, little is known about how different sensory information, which can have different delays or be absent, combines to produce a motor plan, such as executing a reaching movement. To address these issues, we constructed four biologically plausible network architectures to simulate PPC: 1) feedforward from sensory input to the PPC to a motor output area, 2) feedforward with the addition of an efference copy from the motor area, 3) feedforward with the addition of lateral or recurrent connectivity across PPC neurons, and 4) feedforward plus efference copy, and lateral connections. Using an evolutionary strategy, the connectivity of these network architectures was evolved to execute visually guided movements, where the target stimulus provided visual input for the entirety of each trial. The models were then tested on a memory guided motor task, where the visual target disappeared after a short duration. Sensory input to the neural networks had sensory delays consistent with results from monkey studies. We found that lateral connections within the PPC resulted in smoother movements and were necessary for accurate movements in the absence of visual input. The addition of lateral connections resulted in velocity profiles consistent with those observed in human and non-human primate visually guided studies of reaching, and allowed for smooth, rapid, and accurate movements under all conditions. In contrast, Feedforward or Feedback architectures were insufficient to overcome these challenges. Our results suggest that intrinsic lateral connections are critical for executing accurate, smooth motor plans. PMID:26252871

  3. Enhancing Motor Network Activity Using Real-Time Functional MRI Neurofeedback of Left Premotor Cortex

    PubMed Central

    Marins, Theo F.; Rodrigues, Erika C.; Engel, Annerose; Hoefle, Sebastian; Basílio, Rodrigo; Lent, Roberto; Moll, Jorge; Tovar-Moll, Fernanda

    2015-01-01

    Neurofeedback by functional magnetic resonance imaging (fMRI) is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC), important for motor recovery after brain injury. We investigated (i) whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI) task while receiving continuous fMRI-neurofeedback, and (ii) whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB) received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL) group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and MI, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke. PMID:26733832

  4. Early-onset motor impairment and increased accumulation of phosphorylated α-synuclein in the motor cortex of normal aging mice are ameliorated by coenzyme Q.

    PubMed

    Takahashi, Kazuhide; Ohsawa, Ikuroh; Shirasawa, Takuji; Takahashi, Mayumi

    2016-08-01

    Brain mitochondrial function declines with age; however, the accompanying behavioral and histological alterations that are characteristic of Parkinson's disease (PD) are poorly understood. We found that the mitochondrial oxygen consumption rate (OCR) and coenzyme Q (CoQ) content were reduced in aged (15-month-old) male mice compared to those in young (6-month-old) male mice. Concomitantly, motor functions, including the rate of movement and exploratory and voluntary motor activities, were significantly reduced in the aged mice compared to the young mice. In the motor cortex of the aged mouse brain, the accumulation of α-synuclein (α-syn) phosphorylated at serine129 (Ser129) significantly increased, and the level of vesicular glutamate transporter 1 (VGluT1) decreased compared with that in the young mouse brain. The administration of exogenous water-soluble CoQ10 to aged mice via drinking water restored the mitochondrial OCR, motor function, and phosphorylated α-syn and VGluT1 levels in the motor cortex. These results suggest that early-onset motor impairment and the increased accumulation of Ser129-phosphorylated α-syn in the motor cortex are ameliorated by the exogenous administration of CoQ10. PMID:27143639

  5. Cell and neuron densities in the primary motor cortex of primates

    PubMed Central

    Young, Nicole A.; Collins, Christine E.; Kaas, Jon H.

    2013-01-01

    Cell and neuron densities vary across the cortical sheet in a predictable manner across different primate species (Collins et al., 2010b). Primary motor cortex, M1, is characterized by lower neuron densities relative to other cortical areas. M1 contains a motor representation map of contralateral body parts from tail to tongue in a mediolateral sequence. Different functional movement representations within M1 likely require specialized microcircuitry for control of different body parts, and these differences in circuitry may be reflected by variation in cell and neuron densities. Here we determined cell and neuron densities for multiple sub-regions of M1 in six primate species, using the semi-automated flow fractionator method. The results verify previous reports of lower overall neuron densities in M1 compared to other parts of cortex in the six primate species examined. The most lateral regions of M1 that correspond to face and hand movement representations, are more neuron dense relative to medial locations in M1, which suggests differences in cortical circuitry within movement zones. PMID:23450743

  6. Motor Cortex Stimulation Reduces Hyperalgesia in an Animal Model of Central Pain

    PubMed Central

    Lucas, Jessica M; Ji, Yadong; Masri, Radi

    2011-01-01

    Electrical stimulation of the primary motor cortex has been used since 1991 to treat chronic neuropathic pain. Since its inception, motor cortex stimulation (MCS) treatment has had varied clinical outcomes. Until this point, there has not been a systematic study of the stimulation parameters that most effectively treat chronic pain, or of the mechanisms by which MCS relieves pain. Here, using a rodent model of central pain, we perform a systematic study of stimulation parameters used for MCS and investigate the mechanisms by which MCS reduces hyperalgesia. Specifically, we study the role of the inhibitory nucleus zona incerta (ZI) in mediating the analgesic effects of MCS. In animals with mechanical and thermal hyperalgesia, we find that stimulation at 50 µA, 50 Hz, and 300 µs square pulses, for 30 minutes is sufficient to reverse mechanical and thermal hyperalgesia. We also find that stimulation of the ZI mimics the effects of MCS and that reversible inactivation of ZI blocks the effects of MCS. These findings suggest that the reduction of hyperalgesia maybe due to MCS effects on ZI. PMID:21396776

  7. Modulation of Cortical Inhibitory Circuits after Cathodal Transcranial Direct Current Stimulation over the Primary Motor Cortex

    PubMed Central

    Sasaki, Ryoki; Miyaguchi, Shota; Kotan, Shinichi; Kojima, Sho; Kirimoto, Hikari; Onishi, Hideaki

    2016-01-01

    Here, we aimed to evaluate whether cathodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) and primary somatosensory cortex (S1) can modulate cortical inhibitory circuits. Sixteen healthy subjects participated in this study. Cathodal tDCS was positioned over the left M1 (M1 cathodal) or left S1 (S1 cathodal) with an intensity of 1 mA for 10 min. Sham tDCS was applied for 10 min over the left M1 (sham). Motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) were recorded from the right abductor pollicis brevis (APB) muscle before the intervention (pre) and 10 and 30 min after the intervention (post 1 and post 2, respectively). Cortical inhibitory circuits were evaluated using short-interval intracortical inhibition (SICI) and short-latency afferent inhibition (SAI). M1 cathodal decreased single-pulse MEP amplitudes at post 1 and decreased SAI at post 1 and post 2; however, SICI did not exhibit any change. S1 cathodal and sham did not show any changes in MEP amplitudes at any of the three time points. These results demonstrated that cathodal tDCS over the M1 not only decreases the M1 excitability but also affects the cortical inhibitory circuits related to SAI. PMID:26869909

  8. Functional network reorganization in motor cortex can be explained by reward-modulated Hebbian learning

    PubMed Central

    Legenstein, Robert; Chase, Steven M.; Schwartz, Andrew B.; Maass, Wolfgang

    2011-01-01

    The control of neuroprosthetic devices from the activity of motor cortex neurons benefits from learning effects where the function of these neurons is adapted to the control task. It was recently shown that tuning properties of neurons in monkey motor cortex are adapted selectively in order to compensate for an erroneous interpretation of their activity. In particular, it was shown that the tuning curves of those neurons whose preferred directions had been misinterpreted changed more than those of other neurons. In this article, we show that the experimentally observed self-tuning properties of the system can be explained on the basis of a simple learning rule. This learning rule utilizes neuronal noise for exploration and performs Hebbian weight updates that are modulated by a global reward signal. In contrast to most previously proposed reward-modulated Hebbian learning rules, this rule does not require extraneous knowledge about what is noise and what is signal. The learning rule is able to optimize the performance of the model system within biologically realistic periods of time and under high noise levels. When the neuronal noise is fitted to experimental data, the model produces learning effects similar to those found in monkey experiments. PMID:25284966

  9. Role of the motor cortex in the rearrangement of a natural movement coordination in dogs.

    PubMed

    Pavlova, O G; Mats, V N; Ponomarev, V N

    2008-07-01

    Chronic experiments on dogs were performed to study the activity of the shoulder muscles involved in elevating the forelimb used by the animal to lift a food-containing cup and keep it elevated during eating. At the early stage of acquisition of this operant reaction, limb-lifting occurred with an anticipatory upward head movement; lowering of the head to the feeder was associated with lowering of the lifted limb. The new coordination required for food to be obtained, i.e., maintaining the elevated limb in a posture with the head lowered, could only be achieved as a result of learning. In untrained dogs with the natural coordination, elevation of the limb occurred with activation of the deltoid and teres major muscles, teres minor being active on standing but ceasing its activity before limb elevation. During training the activity of the teres minor muscle changed to the opposite pattern. Limb elevation in the learned coordination was accompanied by activation of all three shoulder flexors. Lesioning of the motor cortex in the projection area of the "working" limb, but not in other areas, led to impairments of the acquired coordination and a new pattern of shoulder muscle activity. These data led to the conclusion that rearrangement of the initial coordination was linked with the formation of a new means of elevating the limb in which the muscle pattern was supported by the motor cortex.

  10. Development and Maturation of Embryonic Cortical Neurons Grafted into the Damaged Adult Motor Cortex

    PubMed Central

    Ballout, Nissrine; Frappé, Isabelle; Péron, Sophie; Jaber, Mohamed; Zibara, Kazem; Gaillard, Afsaneh

    2016-01-01

    Injury to the human central nervous system can lead to devastating consequences due to its poor ability to self-repair. Neural transplantation aimed at replacing lost neurons and restore functional circuitry has proven to be a promising therapeutical avenue. We previously reported in adult rodent animal models with cortical lesions that grafted fetal cortical neurons could effectively re-establish specific patterns of projections and synapses. The current study was designed to provide a detailed characterization of the spatio-temporal in vivo development of fetal cortical transplanted cells within the lesioned adult motor cortex and their corresponding axonal projections. We show here that as early as 2 weeks after grafting, cortical neuroblasts transplanted into damaged adult motor cortex developed appropriate projections to cortical and subcortical targets. Grafted cells initially exhibited characteristics of immature neurons, which then differentiated into mature neurons with appropriate cortical phenotypes where most were glutamatergic and few were GABAergic. All cortical subtypes identified with the specific markers CTIP2, Cux1, FOXP2, and Tbr1 were generated after grafting as evidenced with BrdU co-labeling. The set of data provided here is of interest as it sets biological standards for future studies aimed at replacing fetal cells with embryonic stem cells as a source of cortical neurons. PMID:27536221

  11. Automatic detection and quantitative analysis of cells in the mouse primary motor cortex

    NASA Astrophysics Data System (ADS)

    Meng, Yunlong; He, Yong; Wu, Jingpeng; Chen, Shangbin; Li, Anan; Gong, Hui

    2014-09-01

    Neuronal cells play very important role on metabolism regulation and mechanism control, so cell number is a fundamental determinant of brain function. Combined suitable cell-labeling approaches with recently proposed three-dimensional optical imaging techniques, whole mouse brain coronal sections can be acquired with 1-μm voxel resolution. We have developed a completely automatic pipeline to perform cell centroids detection, and provided three-dimensional quantitative information of cells in the primary motor cortex of C57BL/6 mouse. It involves four principal steps: i) preprocessing; ii) image binarization; iii) cell centroids extraction and contour segmentation; iv) laminar density estimation. Investigations on the presented method reveal promising detection accuracy in terms of recall and precision, with average recall rate 92.1% and average precision rate 86.2%. We also analyze laminar density distribution of cells from pial surface to corpus callosum from the output vectorizations of detected cell centroids in mouse primary motor cortex, and find significant cellular density distribution variations in different layers. This automatic cell centroids detection approach will be beneficial for fast cell-counting and accurate density estimation, as time-consuming and error-prone manual identification is avoided.

  12. Upper alpha neurofeedback training over the motor cortex increases SMR desynchronization in motor tasks.

    PubMed

    López-Larraz, Eduardo; Escolano, Carlos; Minguez, Javier

    2012-01-01

    Desynchronization of sensorimotor rhythms (SMR) is a distinctive feature that provides a discriminative pattern for BCI operation. However, individuals such as BCI illiterates can not produce these discriminable patterns with sufficient reliability. Additionally, SMR desynchronization can become deteriorated or extinct in patients with spinal cord injury or a cerebrovascular accident. In all these situations BCI usage is compromised. This paper proposes an intervention based on neurofeedback training of the upper alpha band to improve SMR desynchronization. The feasibility of this intervention is demonstrated in a preliminary study in which five healthy subjects were trained to increase their upper alpha band power. Such increases produced higher SMR desynchronization and better discrimination between rest and execution states of a motor task.

  13. Transdural motor cortex stimulation reverses neuropathic pain in rats: a profile of neuronal activation.

    PubMed

    Pagano, Rosana L; Assis, Danielle V; Clara, Joseph A; Alves, Adilson S; Dale, Camila S; Teixeira, Manoel J; Fonoff, Erich T; Britto, Luiz R

    2011-03-01

    Motor cortex stimulation (MCS) has been used to treat patients with neuropathic pain resistant to other therapeutic approaches; however, the mechanisms of pain control by MCS are still not clearly understood. We have demonstrated that MCS increases the nociceptive threshold of naive conscious rats, with opioid participation. In the present study, the effect of transdural MCS on neuropathic pain in rats subjected to chronic constriction injury of the sciatic nerve was investigated. In addition, the pattern of neuronal activation, evaluated by Fos and Zif268 immunolabel, was performed in the spinal cord and brain sites associated with the modulation of persistent pain. MCS reversed the mechanical hyperalgesia and allodynia induced by peripheral neuropathy. After stimulation, Fos immunoreactivity (Fos-IR) decreased in the dorsal horn of the spinal cord and in the ventral posterior lateral and medial nuclei of the thalamus, when compared to animals with neuropathic pain. Furthermore, the MCS increased the Fos-IR in the periaqueductal gray, the anterior cingulate cortex and the central and basolateral amygdaloid nuclei. Zif268 results were similar to those obtained for Fos, although no changes were observed for Zif268 in the anterior cingulate cortex and the central amygdaloid nucleus after MCS. The present findings suggest that MCS reverts neuropathic pain phenomena in rats, mimicking the effect observed in humans, through activation of the limbic and descending pain inhibitory systems. Further investigation of the mechanisms involved in this effect may contribute to the improvement of the clinical treatment of persistent pain.

  14. Low Doses of Ethanol Enhance LTD-like Plasticity in Human Motor Cortex.

    PubMed

    Fuhl, Anna; Müller-Dahlhaus, Florian; Lücke, Caroline; Toennes, Stefan W; Ziemann, Ulf

    2015-12-01

    Humans liberally use ethanol for its facilitating effects on social interactions but its effects on central nervous system function remain underexplored. We have recently described that very low doses of ethanol abolish long-term potentiation (LTP)-like plasticity in human cortex, most likely through enhancement of tonic inhibition [Lücke et al, 2014, Neuropsychopharmacology 39:1508-18]. Here, we studied the effects of low-dose ethanol on long-term depression (LTD)-like plasticity. LTD-like plasticity was induced in human motor cortex by paired associative transcranial magnetic stimulation (PASLTD), and measured as decreases of motor evoked potential input-output curve (IO-curve). In addition, sedation was measured by decreases in saccade peak velocity (SPV). Ethanol in two low doses (EtOH<10mM, EtOH<20mM) was compared to single oral doses of alprazolam (APZ, 1mg) a classical benzodiazepine, and zolpidem (ZLP, 10 mg), a non-benzodiazepine hypnotic, in a double-blinded randomized placebo-controlled crossover design in ten healthy human subjects. EtOH<10mM and EtOH<20mM but not APZ or ZLP enhanced the PASLTD-induced LTD-like plasticity, while APZ and ZLP but not EtOH<10mM or EtOH<20mM decreased SPV. Non-sedating low doses of ethanol, easily reached during social drinking, enhance LTD-like plasticity in human cortex. This effect is most likely explained by the activation of extrasynaptic α4-subunit containing gamma-aminobutyric type A receptors by low-dose EtOH, resulting in increased tonic inhibition. Findings may stimulate cellular research on the role of tonic inhibition in regulating excitability and plasticity of cortical neuronal networks. PMID:26038159

  15. Low Doses of Ethanol Enhance LTD-like Plasticity in Human Motor Cortex.

    PubMed

    Fuhl, Anna; Müller-Dahlhaus, Florian; Lücke, Caroline; Toennes, Stefan W; Ziemann, Ulf

    2015-12-01

    Humans liberally use ethanol for its facilitating effects on social interactions but its effects on central nervous system function remain underexplored. We have recently described that very low doses of ethanol abolish long-term potentiation (LTP)-like plasticity in human cortex, most likely through enhancement of tonic inhibition [Lücke et al, 2014, Neuropsychopharmacology 39:1508-18]. Here, we studied the effects of low-dose ethanol on long-term depression (LTD)-like plasticity. LTD-like plasticity was induced in human motor cortex by paired associative transcranial magnetic stimulation (PASLTD), and measured as decreases of motor evoked potential input-output curve (IO-curve). In addition, sedation was measured by decreases in saccade peak velocity (SPV). Ethanol in two low doses (EtOH<10mM, EtOH<20mM) was compared to single oral doses of alprazolam (APZ, 1mg) a classical benzodiazepine, and zolpidem (ZLP, 10 mg), a non-benzodiazepine hypnotic, in a double-blinded randomized placebo-controlled crossover design in ten healthy human subjects. EtOH<10mM and EtOH<20mM but not APZ or ZLP enhanced the PASLTD-induced LTD-like plasticity, while APZ and ZLP but not EtOH<10mM or EtOH<20mM decreased SPV. Non-sedating low doses of ethanol, easily reached during social drinking, enhance LTD-like plasticity in human cortex. This effect is most likely explained by the activation of extrasynaptic α4-subunit containing gamma-aminobutyric type A receptors by low-dose EtOH, resulting in increased tonic inhibition. Findings may stimulate cellular research on the role of tonic inhibition in regulating excitability and plasticity of cortical neuronal networks.

  16. Reliability of directional information in unsorted spikes and local field potentials recorded in human motor cortex

    PubMed Central

    Perge, János A.; Zhang, Shaomin; Malik, Wasim Q.; Homer, Mark L.; Cash, Sydney; Friehs, Gerhard; Eskandar, Emad N.; Donoghue, John P.; Hochberg, Leigh R.

    2014-01-01

    Objective Action potentials and local field potentials (LFPs) recorded in primary motor cortex contain information about the direction of movement. LFPs are assumed to be more robust to signal instabilities than action potentials, which makes LFPs along with action potentials a promising signal source for brain-computer interface applications. Still, relatively little research has directly compared the utility of LFPs to action potentials in decoding movement direction in human motor cortex. Approach We conducted intracortical multielectrode recordings in motor cortex of two persons (T2 and [S3]) as they performed a motor imagery task. We then compared the offline decoding performance of LFPs and spiking extracted from the same data recorded across a one-year period in each participant. Main results We obtained offline prediction accuracy of movement direction and endpoint velocity in multiple LFP bands, with the best performance in the highest (200–400Hz) LFP frequency band, presumably also containing low-pass filtered action potentials. Cross-frequency correlations of preferred directions and directional modulation index showed high similarity of directional information between action potential firing rates (spiking) and high frequency LFPs (70–400Hz), and increasing disparity with lower frequency bands (0–7, 10–40 and 50–65Hz). Spikes predicted the direction of intended movement more accurately than any individual LFP band, however combined decoding of all LFPs was statistically indistinguishable from spike based performance. As the quality of spiking signals (i.e. signal amplitude) and the number of significantly modulated spiking units decreased, the offline decoding performance decreased 3.6[5.65]%/month (for T2 and [S3] respectively). The decrease in the number of significantly modulated LFP signals and their decoding accuracy followed a similar trend (2.4[2.85]%/month, ANCOVA, p=0.27[0.03]). Significance Field potentials provided comparable

  17. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.

    PubMed

    Song, Weiguo; Amer, Alzahraa; Ryan, Daniel; Martin, John H

    2016-03-01

    An important strategy for promoting voluntary movements after motor system injury is to harness activity-dependent corticospinal tract (CST) plasticity. We combine forelimb motor cortex (M1) activation with co-activation of its cervical spinal targets in rats to promote CST sprouting and skilled limb movement after pyramidal tract lesion (PTX). We used a two-step experimental design in which we first established the optimal combined stimulation protocol in intact rats and then used the optimal protocol in injured animals to promote CST repair and motor recovery. M1 was activated epidurally using an electrical analog of intermittent theta burst stimulation (iTBS). The cervical spinal cord was co-activated by trans-spinal direct current stimulation (tsDCS) that was targeted to the cervical enlargement, simulated from finite element method. In intact rats, forelimb motor evoked potentials (MEPs) were strongly facilitated during iTBS and for 10 min after cessation of stimulation. Cathodal, not anodal, tsDCS alone facilitated MEPs and also produced a facilitatory aftereffect that peaked at 10 min. Combined iTBS and cathodal tsDCS (c-tsDCS) produced further MEP enhancement during stimulation, but without further aftereffect enhancement. Correlations between forelimb M1 local field potentials and forelimb electromyogram (EMG) during locomotion increased after electrical iTBS alone and further increased with combined stimulation (iTBS+c-tsDCS). This optimized combined stimulation was then used to promote function after PTX because it enhanced functional connections between M1 and spinal circuits and greater M1 engagement in muscle contraction than either stimulation alone. Daily application of combined M1 iTBS on the intact side and c-tsDCS after PTX (10 days, 27 min/day) significantly restored skilled movements during horizontal ladder walking. Stimulation produced a 5.4-fold increase in spared ipsilateral CST terminations. Combined neuromodulation achieves optimal motor

  18. Parallel Cortical Networks Formed by Modular Organization of Primary Motor Cortex Outputs.

    PubMed

    Hamadjida, Adjia; Dea, Melvin; Deffeyes, Joan; Quessy, Stephan; Dancause, Numa

    2016-07-11

    In primates, the refinement of motor behaviors, in particular hand use, is associated with the establishment of more direct projections from primary motor cortex (M1) onto cervical motoneurons [1, 2] and the appearance of additional premotor and sensory cortical areas [3]. All of these areas have reciprocal connections with M1 [4-7]. Thus, during the evolution of the sensorimotor network, the number of interlocutors with which M1 interacts has tremendously increased. It is not clear how these additional interconnections are organized in relation to one another within the hand representation of M1. This is important because the organization of connections between M1 and phylogenetically newer and specialized cortical areas is likely to be key to the increased repertoire of hand movements in primates. In cebus monkeys, we used injections of retrograde tracers into the hand representation of different cortical areas of the sensorimotor network (ventral and dorsal premotor areas [PMv and PMd], supplementary motor area [SMA], and posterior parietal cortex [area 5]), and we analyzed the pattern of labeled neurons within the hand representation of M1. Instead of being uniformly dispersed across M1, neurons sending projections to each distant cortical area were largely segregated in different subregions of M1. These data support the view that primates split the cortical real estate of M1 into modules, each preferentially interconnected with a particular cortical area within the sensorimotor network. This modular organization could sustain parallel processing of interactions with multiple specialized cortical areas to increase the behavioral repertoire of the hand. PMID:27322001

  19. Effects of antiepileptic drugs on associative LTP-like plasticity in human motor cortex.

    PubMed

    Heidegger, Tonio; Krakow, Karsten; Ziemann, Ulf

    2010-10-01

    Antiepileptic drugs (AEDs) are used extensively in clinical practice but relatively little is known on their specific effects at the systems level of human cortex. Here we tested, using a double-blind randomized placebo-controlled crossover design in healthy subjects, the effects of a single therapeutic oral dose of seven AEDs with different modes of action (tiagabine, diazepam, gabapentin, lamotrigine, topiramate, levetiracetam and piracetam) on long-term potentiation (LTP)-like motor cortical plasticity induced by paired associative transcranial magnetic stimulation (PAS). PAS-induced LTP-like plasticity was assessed from the increase in motor evoked potential amplitude in a hand muscle contralateral to the stimulated motor cortex. Levetiracetam significantly reduced LTP-like plasticity when compared to the placebo condition. Tiagabine, diazepam, lamotrigine and piracetam resulted in nonsignificant trends towards reduction of LTP-like plasticity while gabapentin and topiramate had no effect. The particularly depressant effect of levetiracetam is probably explained by its unique mode of action through binding at the vesicle membrane protein SV2A. Enhancement of gamma-amino butyric acid-dependent cortical inhibition by tiagabine, diazepam and possibly levetiracetam, and blockage of voltage-gated sodium channels by lamotrigine, may also depress PAS-induced LTP-like plasticity but these mechanisms appear to be less relevant. Findings may inform about AED-related adverse effects on important LTP-dependent central nervous systems processes such as learning or memory formation. The particular depressant effect of levetiracetam on LTP-like plasticity may also relate to the unique properties of this drug to inhibit epileptogenesis, a potentially LTP-associated process.

  20. Parallel Cortical Networks Formed by Modular Organization of Primary Motor Cortex Outputs.

    PubMed

    Hamadjida, Adjia; Dea, Melvin; Deffeyes, Joan; Quessy, Stephan; Dancause, Numa

    2016-07-11

    In primates, the refinement of motor behaviors, in particular hand use, is associated with the establishment of more direct projections from primary motor cortex (M1) onto cervical motoneurons [1, 2] and the appearance of additional premotor and sensory cortical areas [3]. All of these areas have reciprocal connections with M1 [4-7]. Thus, during the evolution of the sensorimotor network, the number of interlocutors with which M1 interacts has tremendously increased. It is not clear how these additional interconnections are organized in relation to one another within the hand representation of M1. This is important because the organization of connections between M1 and phylogenetically newer and specialized cortical areas is likely to be key to the increased repertoire of hand movements in primates. In cebus monkeys, we used injections of retrograde tracers into the hand representation of different cortical areas of the sensorimotor network (ventral and dorsal premotor areas [PMv and PMd], supplementary motor area [SMA], and posterior parietal cortex [area 5]), and we analyzed the pattern of labeled neurons within the hand representation of M1. Instead of being uniformly dispersed across M1, neurons sending projections to each distant cortical area were largely segregated in different subregions of M1. These data support the view that primates split the cortical real estate of M1 into modules, each preferentially interconnected with a particular cortical area within the sensorimotor network. This modular organization could sustain parallel processing of interactions with multiple specialized cortical areas to increase the behavioral repertoire of the hand.

  1. Stimulation over primary motor cortex during action observation impairs effector recognition.

    PubMed

    Naish, Katherine R; Barnes, Brittany; Obhi, Sukhvinder S

    2016-04-01

    Recent work suggests that motor cortical processing during action observation plays a role in later recognition of the object involved in the action. Here, we investigated whether recognition of the effector making an action is also impaired when transcranial magnetic stimulation (TMS) - thought to interfere with normal cortical activity - is applied over the primary motor cortex (M1) during action observation. In two experiments, single-pulse TMS was delivered over the hand area of M1 while participants watched short clips of hand actions. Participants were then asked whether an image (experiment 1) or a video (experiment 2) of a hand presented later in the trial was the same or different to the hand in the preceding video. In Experiment 1, we found that participants' ability to recognise static images of hands was significantly impaired when TMS was delivered over M1 during action observation, compared to when no TMS was delivered, or when stimulation was applied over the vertex. Conversely, stimulation over M1 did not affect recognition of dot configurations, or recognition of hands that were previously presented as static images (rather than action movie clips) with no object. In Experiment 2, we found that effector recognition was impaired when stimulation was applied part way through (300ms) and at the end (500ms) of the action observation period, indicating that 200ms of action-viewing following stimulation was not long enough to form a new representation that could be used for later recognition. The findings of both experiments suggest that interfering with cortical motor activity during action observation impairs subsequent recognition of the effector involved in the action, which complements previous findings of motor system involvement in object memory. This work provides some of the first evidence that motor processing during action observation is involved in forming representations of the effector that are useful beyond the action observation period

  2. Motor learning and modulation of prefrontal cortex: an fNIRS assessment

    NASA Astrophysics Data System (ADS)

    Ono, Yumie; Noah, Jack Adam; Zhang, Xian; Nomoto, Yasunori; Suzuki, Tatsuya; Shimada, Sotaro; Tachibana, Atsumichi; Bronner, Shaw; Hirsch, Joy

    2015-12-01

    Objective. Prefrontal hemodynamic responses are observed during performance of motor tasks. Using a dance video game (DVG), a complex motor task that requires temporally accurate footsteps with given visual and auditory cues, we investigated whether 20 h of DVG training modified hemodynamic responses of the prefrontal cortex in six healthy young adults. Approach. Fronto-temporal activity during actual DVG play was measured using functional near-infrared spectroscopy (fNIRS) pre- and post-training. To evaluate the training-induced changes in the time-courses of fNIRS signals, we employed a regression analysis using the task-specific template fNIRS signals that were generated from alternate well-trained and/or novice DVG players. The HRF was also separately incorporated as a template to construct an alternate regression model. Change in coefficients for template functions at pre- and post- training were determined and compared among different models. Main results. Training significantly increased the motor performance using the number of temporally accurate steps in the DVG as criteria. The mean oxygenated hemoglobin (ΔoxyHb) waveform changed from an activation above baseline pattern to that of a below baseline pattern. Participants showed significantly decreased coefficients for regressors of the ΔoxyHb response of novice players and HRF. The model using ΔoxyHb responses from both well-trained and novice players of DVG as templates showed the best fit for the ΔoxyHb responses of the participants at both pre- and post-training when analyzed with Akaike information criteria. Significance. These results suggest that the coefficients for the template ΔoxyHb responses of the novice players are sensitive indicators of motor learning during the initial stage of training and thus clinically useful to determine the improvement in motor performance when patients are engaged in a specific rehabilitation program.

  3. The Coemergence of Cognition, Language, and Speech Motor Control in Early Development: A Longitudinal Correlation Study

    PubMed Central

    Nip, Ignatius S. B.; Green, Jordan R.; Marx, David B.

    2010-01-01

    Although the development of spoken language is dependent on the emergence of cognitive, language, and speech motor skills, knowledge about how these domains interact during the early stages of communication development is currently limited. This exploratory investigation examines the strength of associations between longitudinal changes in articulatory kinematics and development of skills in multiple domains thought to support early communication development. Twenty-four infants were investigated every three months between the ages of 9 and 21 months. Movements of the upper lip, lower lip, and jaw were transduced using a three-dimensional motion capture system to obtain age-related changes in movement speed and range of movement. Standardized measures of cognition and language from the Battelle Developmental Inventory, 2nd edition and the MacArthur-Bates Child Development Inventory were also collected. Significant associations were identified between orofacial kinematic and the standardized measures of language and cognitive skills, even when age served as covariate. These findings provide preliminary evidence of interactions between cognition, language, and speech motor skills during early communication development. Further work is needed to identify and quantify causal relations among these co-emerging skills. PMID:21035125

  4. Primary motor cortex underlies multi-joint integration for fast feedback control.

    PubMed

    Pruszynski, J Andrew; Kurtzer, Isaac; Nashed, Joseph Y; Omrani, Mohsen; Brouwer, Brenda; Scott, Stephen H

    2011-10-20

    A basic difficulty for the nervous system is integrating locally ambiguous sensory information to form accurate perceptions about the outside world. This local-to-global problem is also fundamental to motor control of the arm, because complex mechanical interactions between shoulder and elbow allow a particular amount of motion at one joint to arise from an infinite combination of shoulder and elbow torques. Here we show, in humans and rhesus monkeys, that a transcortical pathway through primary motor cortex (M1) resolves this ambiguity during fast feedback control. We demonstrate that single M1 neurons of behaving monkeys can integrate shoulder and elbow motion information into motor commands that appropriately counter the underlying torque within about 50 milliseconds of a mechanical perturbation. Moreover, we reveal a causal link between M1 processing and multi-joint integration in humans by showing that shoulder muscle responses occurring ∼50 milliseconds after pure elbow displacement can be potentiated by transcranial magnetic stimulation. Taken together, our results show that transcortical processing through M1 permits feedback responses to express a level of sophistication that rivals voluntary control; this provides neurophysiological support for influential theories positing that voluntary movement is generated by the intelligent manipulation of sensory feedback. PMID:21964335

  5. Neural Summation in Human Motor Cortex by Subthreshold Transcranial Magnetic Stimulations

    PubMed Central

    Du, Xiaoming; Choa, Fow-Sen; Summerfelt, Ann; Tagamets, Malle A.; Rowland, Laura M.; Kochunov, Peter; Shepard, Paul; Hong, L. Elliot

    2014-01-01

    Integration of diverse synaptic inputs is a basic neuronal operation that relies on many neurocomputational principles, one of which is neural summation. However, we lack empirical understanding of neuronal summation in the human brains in vivo. Here we explored the effect of neural summation in the motor cortex using two subthreshold pulses of transcranial magnetic stimulation (TMS), each with intensities ranging from 60% - 95% of the resting motor threshold (RMT) and interstimulus intervals (ISI) varying from 1 – 25 ms. We found that two subthreshold TMS pulses can produce supra threshold motor response when ISIs were less than 10 ms, most prominent at 1, 1.5 and 3 ms. This facilitatory, above threshold response was evident when the intensity of the subthreshold pulses were above 80% of RMT but was absent as the intensity was 70% or below. Modeling of the summation data across intensity suggested that they followed an exponential function with excellent model fitting. Understanding the constraints for inducing summation of subthreshold stimulations to generate above threshold response may have implications in modeling neural operations and potential clinical applications. PMID:25399245

  6. Diversity of layer 5 projection neurons in the mouse motor cortex

    PubMed Central

    Oswald, Manfred J.; Tantirigama, Malinda L. S.; Sonntag, Ivo; Hughes, Stephanie M.; Empson, Ruth M.

    2013-01-01

    In the primary motor cortex (M1), layer 5 projection neurons signal directly to distant motor structures to drive movement. Despite their pivotal position and acknowledged diversity these neurons are traditionally separated into broad commissural and corticofugal types, and until now no attempt has been made at resolving the basis for their diversity. We therefore probed the electrophysiological and morphological properties of retrogradely labeled M1 corticospinal (CSp), corticothalamic (CTh), and commissural projecting corticostriatal (CStr) and corticocortical (CC) neurons. An unsupervised cluster analysis established at least four phenotypes with additional differences between lumbar and cervical projecting CSp neurons. Distinguishing parameters included the action potential (AP) waveform, firing behavior, the hyperpolarisation-activated sag potential, sublayer position, and soma and dendrite size. CTh neurons differed from CSp neurons in showing spike frequency acceleration and a greater sag potential. CStr neurons had the lowest AP amplitude and maximum rise rate of all neurons. Temperature influenced spike train behavior in corticofugal neurons. At 26°C CTh neurons fired bursts of APs more often than CSp neurons, but at 36°C both groups fired regular APs. Our findings provide reliable phenotypic fingerprints to identify distinct M1 projection neuron classes as a tool to understand their unique contributions to motor function. PMID:24137110

  7. Perturbation-evoked responses in primary motor cortex are modulated by behavioral context.

    PubMed

    Omrani, Mohsen; Pruszynski, J Andrew; Murnaghan, Chantelle D; Scott, Stephen H

    2014-12-01

    Corrective responses to external perturbations are sensitive to the behavioral task being performed. It is believed that primary motor cortex (M1) forms part of a transcortical pathway that contributes to this sensitivity. Previous work has identified two distinct phases in the perturbation response of M1 neurons, an initial response starting ∼20 ms after perturbation onset that does not depend on the intended motor action and a task-dependent response that begins ∼40 ms after perturbation onset. However, this invariant initial response may reflect ongoing postural control or a task-independent response to the perturbation. The present study tested these two possibilities by examining if being engaged in an ongoing postural task before perturbation onset modulated the initial perturbation response in M1. Specifically, mechanical perturbations were applied to the shoulder and/or elbow while the monkey maintained its hand at a central target or when it was watching a movie and not required to respond to the perturbation. As expected, corrective movements, muscle stretch responses, and M1 population activity in the late perturbation epoch were all significantly diminished in the movie task. Strikingly, initial perturbation responses (<40 ms postperturbation) remained the same across tasks, suggesting that the initial phase of M1 activity constitutes a task-independent response that is sensitive to the properties of the mechanical perturbation but not the goal of the ongoing motor task.

  8. Repetitive speech elicits widespread deactivation in the human cortex: the “Mantra” effect?

    PubMed Central

    Berkovich-Ohana, Aviva; Wilf, Meytal; Kahana, Roni; Arieli, Amos; Malach, Rafael

    2015-01-01

    Background Mantra (prolonged repetitive verbal utterance) is one of the most universal mental practices in human culture. However, the underlying neuronal mechanisms that may explain its powerful emotional and cognitive impact are unknown. In order to try to isolate the effect of silent repetitive speech, which is used in most commonly practiced Mantra meditative practices, on brain activity, we studied the neuronal correlates of simple repetitive speech in nonmeditators – that is, silent repetitive speech devoid of the wider context and spiritual orientations of commonly practiced meditation practices. Methods We compared, using blood oxygenated level-dependent (BOLD) functional magnetic resonance imaging (fMRI), a simple task of covertly repeating a single word to resting state activity, in 23 subjects, none of which practiced meditation before. Results We demonstrate that the repetitive speech was sufficient to induce a widespread reduction in BOLD signal compared to resting baseline. The reduction was centered mainly on the default mode network, associated with intrinsic, self-related processes. Importantly, contrary to most cognitive tasks, where cortical-reduced activation in one set of networks is typically complemented by positive BOLD activity of similar magnitude in other cortical networks, the repetitive speech practice resulted in unidirectional negative activity without significant concomitant positive BOLD. A subsequent behavioral study showed a significant reduction in intrinsic thought processes during the repetitive speech condition compared to rest. Conclusions Our results are compatible with a global gating model that can exert a widespread induction of negative BOLD in the absence of a corresponding positive activation. The triggering of a global inhibition by the minimally demanding repetitive speech may account for the long-established psychological calming effect associated with commonly practiced Mantra-related meditative practices. PMID

  9. Analysis of neural activity in human motor cortex -- Towards brain machine interface system

    NASA Astrophysics Data System (ADS)

    Secundo, Lavi

    The discovery of directional tuned neurons in the primary motor cortex has advanced motor research in several domains. For instance, in the area of brain machine interface (BMI), researchers have exploited the robust characteristic of tuned motor neurons to allow monkeys to learn control of various machines. In the first chapter of this work we examine whether this phenomena can be observed using the less invasive method of recording electrocorticographic signals (ECoG) from the surface of a human's brain. Our findings reveal that individual ECoG channels contain complex movement information about the neuronal population. While some ECoG channels are tuned to hand movement direction (direction specific channels), others are associated to movement but do not contain information regarding movement direction (non-direction specific channels). More specifically, directionality can vary temporally and by frequency within one channel. In addition, a handful of channels contain no significant information regarding movement at all. These findings strongly suggest that directional and non-directional regions of cortex can be identified with ECoG and provide solutions to decoding movement at the signal resolution provided by ECoG. In the second chapter we examine the influence of movement context on movement reconstruction accuracy. We recorded neuronal signals recorded from electro-corticography (ECoG) during performance of cued- and self-initiated movements. ECoG signals were used to train a reconstruction algorithm to reconstruct continuous hand movement. We found that both cued- and self-initiated movements could be reconstructed with similar accuracy from the ECoG data. However, while an algorithm trained on the cued task could reconstruct performance on a subsequent cued trial, it failed to reconstruct self-initiated arm movement. The same task-specificity was observed when the algorithm was trained with self-initiated movement data and tested on the cued task. Thus

  10. Reappraisal of field dynamics of motor cortex during self-paced finger movements

    PubMed Central

    Suzuki, Masataka; Wasaka, Toshiaki; Inui, Koji; Kakigi, Ryusuke

    2013-01-01

    Background The exact origin of neuronal responses in the human sensorimotor cortex subserving the generation of voluntary movements remains unclear, despite the presence of characteristic but robust waveforms in the records of electroencephalography or magnetoencephalography (MEG). Aims To clarify this fundamental and important problem, we analyzed MEG in more detail using a multidipole model during pulsatile extension of the index finger, and made some important new findings. Results Movement-related cerebral fields (MRCFs) were confirmed over the sensorimotor region contralateral to the movement, consisting of a temporal succession of the first premovement component termed motor field, followed by two or three postmovement components termed movement evoked fields. A source analysis was applied to separately model each of these field components. Equivalent current diploes of all components of MRCFs were estimated to be located in the same precentral motor region, and did not differ with respect to their locations and orientations. The somatosensory evoked fields following median nerve stimulation were used to validate these findings through comparisons of the location and orientation of composite sources with those specified in MRCFs. The sources for the earliest components were evoked in Brodmann's area 3b located lateral to the sources of MRCFs, and those for subsequent components in area 5 and the secondary somatosensory area were located posterior to and inferior to the sources of MRCFs, respectively. Another component peaking at a comparable latency with the area 3b source was identified in the precentral motor region where all sources of MRCFs were located. Conclusion These results suggest that the MRCF waveform reflects a series of responses originating in the precentral motor area. PMID:24363977

  11. On the functional organization and operational principles of the motor cortex

    PubMed Central

    Capaday, Charles; Ethier, Christian; Van Vreeswijk, Carl; Darling, Warren G.

    2013-01-01

    Recent studies on the functional organization and operational principles of the motor cortex (MCx), taken together, strongly support the notion that the MCx controls the muscle synergies subserving movements in an integrated manner. For example, during pointing the shoulder, elbow and wrist muscles appear to be controlled as a coupled functional system, rather than singly and separately. The recurrent pattern of intrinsic synaptic connections between motor cortical points is likely part of the explanation for this operational principle. So too is the reduplicated, non-contiguous and intermingled representation of muscles in the MCx. A key question addressed in this article is whether the selection of movement related muscle synergies is a dynamic process involving the moment to moment functional linking of a variety of motor cortical points, or rather the selection of fixed patterns embedded in the MCx circuitry. It will be suggested that both operational principles are probably involved. We also discuss the neural mechanisms by which cortical points may be dynamically linked to synthesize movement related muscle synergies. Separate corticospinal outputs sum linearly and lead to a blending of the movements evoked by activation of each point on its own. This operational principle may simplify the synthesis of motor commands. We will discuss two possible mechanisms that may explain linear summation of outputs. We have observed that the final posture of the arm when pointing to a given spatial location is relatively independent of its starting posture. From this observation and the recurrent nature of the MCx intrinsic connectivity we hypothesize that the basic mode of operation of the MCx is to associate spatial location to final arm posture. We explain how the recurrent network connectivity operates to generate the muscle activation patterns (synergies) required to move the arm and hold it in its final position. PMID:23616749

  12. Non-stationary discharge patterns in motor cortex under subthalamic nucleus deep brain stimulation.

    PubMed

    Santaniello, Sabato; Montgomery, Erwin B; Gale, John T; Sarma, Sridevi V

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) directly modulates the basal ganglia (BG), but how such stimulation impacts the cortex upstream is largely unknown. There is evidence of cortical activation in 6-hydroxydopamine (OHDA)-lesioned rodents and facilitation of motor evoked potentials in Parkinson's disease (PD) patients, but the impact of the DBS settings on the cortical activity in normal vs. Parkinsonian conditions is still debated. We use point process models to analyze non-stationary activation patterns and inter-neuronal dependencies in the motor and sensory cortices of two non-human primates during STN DBS. These features are enhanced after treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which causes a consistent PD-like motor impairment, while high-frequency (HF) DBS (i.e., ≥100 Hz) strongly reduces the short-term patterns (period: 3-7 ms) both before and after MPTP treatment, and elicits a short-latency post-stimulus activation. Low-frequency DBS (i.e., ≤50 Hz), instead, has negligible effects on the non-stationary features. Finally, by using tools from the information theory [i.e., receiver operating characteristic (ROC) curve and information rate (IR)], we show that the predictive power of these models is dependent on the DBS settings, i.e., the probability of spiking of the cortical neurons (which is captured by the point process models) is significantly conditioned on the timely delivery of the DBS input. This dependency increases with the DBS frequency and is significantly larger for high- vs. low-frequency DBS. Overall, the selective suppression of non-stationary features and the increased modulation of the spike probability suggest that HF STN DBS enhances the neuronal activation in motor and sensory cortices, presumably because of reinforcement mechanisms, which perhaps involve the overlap between feedback antidromic and feed-forward orthodromic responses along the BG-thalamo-cortical loop.

  13. Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex.

    PubMed

    Chadderdon, George L; Neymotin, Samuel A; Kerr, Cliff C; Lytton, William W

    2012-01-01

    Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology. In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task, which consisted of rotating a single-joint "forearm" to a target. Learning was based on a reinforcement mechanism analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated around an elbow joint, controlled by flexor and extensor muscles. The model consisted of 144 excitatory and 64 inhibitory event-based neurons, each with AMPA, NMDA, and GABA synapses. Proprioceptive cell input to this model encoded the 2 muscle lengths. Plasticity was only enabled in feedforward connections between input and output excitatory units, using spike-timing-dependent eligibility traces for synaptic credit or blame assignment. Learning resulted from a global 3-valued signal: reward (+1), no learning (0), or punishment (-1), corresponding to phasic increases, lack of change, or phasic decreases of dopaminergic cell firing, respectively. Successful learning only occurred when both reward and punishment were enabled. In this case, 5 target angles were learned successfully within 180 s of simulation time, with a median error of 8 degrees. Motor babbling allowed exploratory learning, but decreased the stability of the learned behavior, since the hand continued moving after reaching the target. Our model demonstrated that a global reinforcement signal, coupled with eligibility traces for synaptic plasticity, can train a spiking sensorimotor network to perform goal-directed motor behavior.

  14. Mirror illusion reduces motor cortical inhibition in the ipsilateral primary motor cortex during forceful unilateral muscle contractions.

    PubMed

    Zult, Tjerk; Goodall, Stuart; Thomas, Kevin; Hortobágyi, Tibor; Howatson, Glyn

    2015-04-01

    Forceful, unilateral contractions modulate corticomotor paths targeting the resting, contralateral hand. However, it is unknown whether mirror-viewing of a slowly moving but forcefully contracting hand would additionally affect these paths. Here we examined corticospinal excitability and short-interval intracortical inhibition (SICI) of the right-ipsilateral primary motor cortex (M1) in healthy young adults under no-mirror and mirror conditions at rest and during right wrist flexion at 60% maximal voluntary contraction (MVC). During the no-mirror conditions neither hand was visible, whereas in the mirror conditions participants looked at the right hand's reflection in the mirror. Corticospinal excitability increased during contractions in the left flexor carpi radialis (FCR) (contraction 0.41 mV vs. rest 0.21 mV) and extensor carpi radialis (ECR) (contraction 0.56 mV vs. rest 0.39 mV), but there was no mirror effect (FCR: P = 0.743, ηp (2) = 0.005; ECR: P = 0.712, ηp (2) = 0.005). However, mirror-viewing of the contracting and moving wrist attenuated SICI relative to test pulse in the left FCR by ∼9% compared with the other conditions (P < 0.05, d ≥ 0.62). Electromyographic activity in the resting left hand prior to stimulation was not affected by the mirror (FCR: P = 0.255, ηp (2) = 0.049; ECR: P = 0.343, ηp (2) = 0.035) but increased twofold during contractions. Thus viewing the moving hand in the mirror and not just the mirror image of the nonmoving hand seems to affect motor cortical inhibitory networks in the M1 associated with the mirror image. Future studies should determine whether the use of a mirror could increase interlimb transfer produced by cross-education, especially in patient groups with unilateral orthopedic and neurological conditions.

  15. Mirror illusion reduces motor cortical inhibition in the ipsilateral primary motor cortex during forceful unilateral muscle contractions.

    PubMed

    Zult, Tjerk; Goodall, Stuart; Thomas, Kevin; Hortobágyi, Tibor; Howatson, Glyn

    2015-04-01

    Forceful, unilateral contractions modulate corticomotor paths targeting the resting, contralateral hand. However, it is unknown whether mirror-viewing of a slowly moving but forcefully contracting hand would additionally affect these paths. Here we examined corticospinal excitability and short-interval intracortical inhibition (SICI) of the right-ipsilateral primary motor cortex (M1) in healthy young adults under no-mirror and mirror conditions at rest and during right wrist flexion at 60% maximal voluntary contraction (MVC). During the no-mirror conditions neither hand was visible, whereas in the mirror conditions participants looked at the right hand's reflection in the mirror. Corticospinal excitability increased during contractions in the left flexor carpi radialis (FCR) (contraction 0.41 mV vs. rest 0.21 mV) and extensor carpi radialis (ECR) (contraction 0.56 mV vs. rest 0.39 mV), but there was no mirror effect (FCR: P = 0.743, ηp (2) = 0.005; ECR: P = 0.712, ηp (2) = 0.005). However, mirror-viewing of the contracting and moving wrist attenuated SICI relative to test pulse in the left FCR by ∼9% compared with the other conditions (P < 0.05, d ≥ 0.62). Electromyographic activity in the resting left hand prior to stimulation was not affected by the mirror (FCR: P = 0.255, ηp (2) = 0.049; ECR: P = 0.343, ηp (2) = 0.035) but increased twofold during contractions. Thus viewing the moving hand in the mirror and not just the mirror image of the nonmoving hand seems to affect motor cortical inhibitory networks in the M1 associated with the mirror image. Future studies should determine whether the use of a mirror could increase interlimb transfer produced by cross-education, especially in patient groups with unilateral orthopedic and neurological conditions. PMID:25632077

  16. Predicting hand orientation in reach-to-grasp tasks using neural activities from primary motor cortex.

    PubMed

    Zhang, Peng; Ma, Xuan; Huang, Hailong; He, Jiping

    2014-01-01

    Hand orientation is an important control parameter during reach-to-grasp task. In this paper, we presented a study for predicting hand orientation of non-human primate by decoding neural activities from primary motor cortex (M1). A non-human primate subject was guided to do reaching and grasping tasks meanwhile neural activities were acquired by chronically implanted microelectrode arrays. A Support Vector Machines (SVMs) classifier has been trained for predicting three different hand orientations using these M1 neural activities. Different number of neurons were selected and analyzed; the classifying accuracy was 94.1% with 2 neurons and was 100% with 8 neurons. Data from highly event related neuron units contribute a lot to the accuracy of hand orientation prediction. These results indicate that three different hand orientations can be predicted accurately and effectively before the actual movements occurring with a small number of related neurons in M1.

  17. Neurophysiology. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human.

    PubMed

    Aflalo, Tyson; Kellis, Spencer; Klaes, Christian; Lee, Brian; Shi, Ying; Pejsa, Kelsie; Shanfield, Kathleen; Hayes-Jackson, Stephanie; Aisen, Mindy; Heck, Christi; Liu, Charles; Andersen, Richard A

    2015-05-22

    Nonhuman primate and human studies have suggested that populations of neurons in the posterior parietal cortex (PPC) may represent high-level aspects of action planning that can be used to control external devices as part of a brain-machine interface. However, there is no direct neuron-recording evidence that human PPC is involved in action planning, and the suitability of these signals for neuroprosthetic control has not been tested. We recorded neural population activity with arrays of microelectrodes implanted in the PPC of a tetraplegic subject. Motor imagery could be decoded from these neural populations, including imagined goals, trajectories, and types of movement. These findings indicate that the PPC of humans represents high-level, cognitive aspects of action and that the PPC can be a rich source for cognitive control signals for neural prosthetics that assist paralyzed patients.

  18. Laminar-specific distribution of zinc: evidence for presence of layer IV in forelimb motor cortex in the rat.

    PubMed

    Alaverdashvili, Mariam; Hackett, Mark J; Pickering, Ingrid J; Paterson, Phyllis G

    2014-12-01

    The rat is the most widely studied pre-clinical model system of various neurological and neurodegenerative disorders affecting hand function. Although brain injury to the forelimb region of the motor cortex in rats mostly induces behavioral abnormalities in motor control of hand movements, behavioral deficits in the sensory-motor domain are also observed. This questions the prevailing view that cortical layer IV, a recipient of sensory information from the thalamus, is absent in rat motor cortex. Because zinc-containing neurons are generally not found in pathways that run from the thalamus, an absence of zinc (Zn) in a cortical layer would be suggestive of sensory input from the thalamus. To test this hypothesis, we used synchrotron micro X-ray fluorescence imaging to measure Zn distribution across cortical layers. Zn maps revealed a heterogeneous layered Zn distribution in primary and secondary motor cortices of the forelimb region in the adult rat. Two wider bands with elevated Zn content were separated by a narrow band having reduced Zn content, and this was evident in two rat strains. The Zn distribution pattern was comparable to that in sensorimotor cortex, which is known to contain a well demarcated layer IV. Juxtaposition of Zn maps and the images of brain stained for Nissl bodies revealed a "Zn valley" in primary motor cortex, apparently starting at the ventral border of pyramidal layer III and ending at the close vicinity of layer V. This finding indicates the presence of a conspicuous cortical layer between layers III and V, i.e. layer IV, the presence of which previously has been disputed. The results have implications for the use of rat models to investigate human brain function and neuropathology, such as after stroke. The presence of layer IV in the forelimb region of the motor cortex suggests that therapeutic interventions used in rat models of motor cortex injury should target functional abnormalities in both motor and sensory domains. The finding

  19. Laminar-specific distribution of zinc: Evidence for presence of layer IV in forelimb motor cortex in the rat

    PubMed Central

    Alaverdashvili, Mariam; Hackett, Mark J.; Pickering, Ingrid J.; Paterson, Phyllis G.

    2015-01-01

    The rat is the most widely studied pre-clinical model system of various neurological and neurodegenerative disorders affecting hand function. Although brain injury to the forelimb region of the motor cortex in rats mostly induces behavioral abnormalities in motor control of hand movements, behavioral deficits in the sensory-motor domain are also observed. This questions the prevailing view that cortical layer IV, a recipient of sensory information from the thalamus, is absent in rat motor cortex. Because zinc-containing neurons are generally not found in pathways that run from the thalamus, an absence of zinc (Zn) in a cortical layer would be suggestive of sensory input from the thalamus. To test this hypothesis, we used synchrotron micro X-ray fluorescence imaging to measure Zn distribution across cortical layers. Zn maps revealed a heterogeneous layered Zn distribution in primary and secondary motor cortices of the forelimb region in the adult rat. Two wider bands with elevated Zn content were separated by a narrow band having reduced Zn content, and this was evident in two rat strains. The Zn distribution pattern was comparable to that in sensorimotor cortex, which is known to contain a well demarcated layer IV. Juxtaposition of Zn maps and the images of brain stained for Nissl bodies revealed a “Zn valley” in primary motor cortex, apparently starting at the ventral border of pyramidal layer III and ending at the close vicinity of layer V. This finding indicates the presence of a conspicuous cortical layer between layers III and V, i.e. layer IV, the presence of which previously has been disputed. The results have implications for the use of rat models to investigate human brain function and neuropathology, such as after stroke. The presence of layer IV in the forelimb region of the motor cortex suggests that therapeutic interventions used in rat models of motor cortex injury should target functional abnormalities in both motor and sensory domains. The

  20. [Morphometric study of motor cortex in acute focal epilepsy rat induced by coriaria lactone].

    PubMed

    Zeng, Z; Liao, D; Wu, L; Chen, S; Li, X; Ma, Y

    1994-09-01

    Twenty adult male Wistar rats were divided randomly into two groups (10 rats for LM, 10 rats for EM). The experimental rats were injected with convulsive dosage 3.8 microliters (19 micrograms) of coriaria lactone (CL) in the left cerebral motor cortex of the fore limb to induce acute focal epilepsy. The control rats were injected with normal saline of the same volume and at the same location. Motor cortex was cut coronally 2 hours after seizure and the layer V was studied morphometrically. Under x400 and x7000, take photos of focus, parafocus areas respectively for morphometric study. The number of neurons and neuroglias of layer V was counted in the LM photos. The number of presynaptic terminals of the neuropil was counted in the x7000 EM photos and the area fraction of each constitute in the neuropil was measured. The positive results demonstrated that the number of neurons and neuroglias in the focus and parafocus areas of the experimental animals was significantly lower than that in the control group, the side injected was lower than the other side and it was the lowest in the focus. The number and area fraction of the presynaptic terminals of the experimental rats at the focus neuropil decreased significantly, but the area fraction of neuroglial components increased significantly. The authors suggest that the convulsive dosage of CL may have toxic effect on some neurons and neuroglias and therefore to decrease the number of both types of cells and the number and area fraction of presynaptic terminals in the neuropil.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation.

    PubMed Central

    Baker, S N; Olivier, E; Lemon, R N

    1997-01-01

    1. Recordings were made of local field potential (slow waves) and pyramidal tract neurone (PTN) discharge from pairs of sites separated by a horizontal distance of up to 1.5 mm in the primary motor cortex of two conscious macaque monkeys performing a precision grip task. 2. In both monkeys, the slow wave recordings showed bursts of oscillations in the 20-30 Hz range. Spectral analysis revealed that the oscillations were coherent between the two simultaneously recorded cortical sites. In the monkey from which most data were recorded, the mean frequency of peak coherence was 23.4 Hz. 3. Coherence in this frequency range was also seen between cortical slow wave recordings and rectified EMG of hand and forearm muscles active during the task, and between pairs of rectified EMGs. 4. The dynamics of the coherence were investigated by analysing short, quasi-stationary data segments aligned relative to task performance. This revealed that the 20-30 Hz coherent oscillations were present mainly during the hold phase of the precision grip task. 5. The spikes of identified PTNs were used to compile spike-triggered averages of the slow wave recordings. Oscillations were seen in 11/17 averages of the slow wave recorded on the same electrode as the triggering spike, and 11/17 averages of the slow wave recorded on the distant electrode. The mean period of these oscillations was 45.8 ms. 6. It is concluded that oscillations in the range 20-30 Hz are present in monkey motor cortex, are coherent between spatially separated cortical sites, and encompass the pyramidal tract output neurones. They are discernable in the EMG of active muscles, and show a consistent task-dependent modulation. Images Figure 3 Figure 6 Figure 7 PMID:9175005

  2. Accurate stepping on a narrow path: mechanics, EMG, and motor cortex activity in the cat.

    PubMed

    Farrell, Brad J; Bulgakova, Margarita A; Sirota, Mikhail G; Prilutsky, Boris I; Beloozerova, Irina N

    2015-11-01

    How do cats manage to walk so graciously on top of narrow fences or windowsills high above the ground while apparently exerting little effort? In this study we investigated cat full-body mechanics and the activity of limb muscles and motor cortex during walking along a narrow 5-cm path on the ground. We tested the hypotheses that during narrow walking 1) lateral stability would be lower because of the decreased base-of-support area and 2) the motor cortex activity would increase stride-related modulation because of imposed demands on lateral stability and paw placement accuracy. We measured medio-lateral and rostro-caudal dynamic stability derived from the extrapolated center of mass position with respect to the boundaries of the support area. We found that cats were statically stable in the frontal plane during both unconstrained and narrow-path walking. During narrow-path walking, cats walked slightly slower with more adducted limbs, produced smaller lateral forces by hindlimbs, and had elevated muscle activities. Of 174 neurons recorded in cortical layer V, 87% of forelimb-related neurons (from 114) and 90% of hindlimb-related neurons (from 60) had activities during narrow-path walking distinct from unconstrained walking: more often they had a higher mean discharge rate, lower depth of stride-related modulation, and/or longer period of activation during the stride. These activity changes appeared to contribute to control of accurate paw placement in the medio-lateral direction, the width of the stride, rather than to lateral stability control, as the stability demands on narrow-path and unconstrained walking were similar.

  3. Accurate stepping on a narrow path: mechanics, EMG, and motor cortex activity in the cat

    PubMed Central

    Farrell, Brad J.; Bulgakova, Margarita A.; Sirota, Mikhail G.; Prilutsky, Boris I.

    2015-01-01

    How do cats manage to walk so graciously on top of narrow fences or windowsills high above the ground while apparently exerting little effort? In this study we investigated cat full-body mechanics and the activity of limb muscles and motor cortex during walking along a narrow 5-cm path on the ground. We tested the hypotheses that during narrow walking 1) lateral stability would be lower because of the decreased base-of-support area and 2) the motor cortex activity would increase stride-related modulation because of imposed demands on lateral stability and paw placement accuracy. We measured medio-lateral and rostro-caudal dynamic stability derived from the extrapolated center of mass position with respect to the boundaries of the support area. We found that cats were statically stable in the frontal plane during both unconstrained and narrow-path walking. During narrow-path walking, cats walked slightly slower with more adducted limbs, produced smaller lateral forces by hindlimbs, and had elevated muscle activities. Of 174 neurons recorded in cortical layer V, 87% of forelimb-related neurons (from 114) and 90% of hindlimb-related neurons (from 60) had activities during narrow-path walking distinct from unconstrained walking: more often they had a higher mean discharge rate, lower depth of stride-related modulation, and/or longer period of activation during the stride. These activity changes appeared to contribute to control of accurate paw placement in the medio-lateral direction, the width of the stride, rather than to lateral stability control, as the stability demands on narrow-path and unconstrained walking were similar. PMID:26354314

  4. Sensorimotor restriction affects complex movement topography and reachable space in the rat motor cortex

    PubMed Central

    Budri, Mirco; Lodi, Enrico; Franchi, Gianfranco

    2014-01-01

    Long-duration intracortical microstimulation (ICMS) studies with 500 ms of current pulses suggest that the forelimb area of the motor cortex is organized into several spatially distinct functional zones that organize movements into complex sequences. Here we studied how sensorimotor restriction modifies the extent of functional zones, complex movements, and reachable space representation in the rat forelimb M1. Sensorimotor restriction was achieved by means of whole-forelimb casting of 30 days duration. Long-duration ICMS was carried out 12 h and 14 days after cast removal. Evoked movements were measured using a high-resolution 3D optical system. Long-term cast caused: (i) a reduction in the number of sites where complex forelimb movement could be evoked; (ii) a shrinkage of functional zones but no change in their center of gravity; (iii) a reduction in movement with proximal/distal coactivation; (iv) a reduction in maximal velocity, trajectory and vector length of movement, but no changes in latency or duration; (v) a large restriction of reachable space. Fourteen days of forelimb freedom after casting caused: (i) a recovery of the number of sites where complex forelimb movement could be evoked; (ii) a recovery of functional zone extent and movement with proximal/distal coactivation; (iii) an increase in movement kinematics, but only partial restoration of control rat values; (iv) a slight increase in reachability parameters, but these remained far below baseline values. We pose the hypothesis that specific aspects of complex movement may be stored within parallel motor cortex re-entrant systems. PMID:25565987

  5. A combined TMS-EEG study of short-latency afferent inhibition in the motor and dorsolateral prefrontal cortex.

    PubMed

    Noda, Yoshihiro; Cash, Robin F H; Zomorrodi, Reza; Dominguez, Luis Garcia; Farzan, Faranak; Rajji, Tarek K; Barr, Mera S; Chen, Robert; Daskalakis, Zafiris J; Blumberger, Daniel M

    2016-09-01

    Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) enables noninvasive neurophysiological investigation of the human cortex. A TMS paradigm of short-latency afferent inhibition (SAI) is characterized by attenuation of the motor-evoked potential (MEP) and modulation of N100 of the TMS-evoked potential (TEP) when TMS is delivered to motor cortex (M1) following median nerve stimulation. SAI is a marker of cholinergic activity in the motor cortex; however, the SAI has not been tested from the prefrontal cortex. We aimed to explore the effect of SAI in dorsolateral prefrontal cortex (DLPFC). SAI was examined in 12 healthy subjects with median nerve stimulation and TMS delivered to M1 and DLPFC at interstimulus intervals (ISIs) relative to the individual N20 latency. SAI in M1 was tested at the optimal ISI of N20 + 2 ms. SAI in DLPFC was investigated at a range of ISI from N20 + 2 to N20 + 20 ms to explore its temporal profile. For SAI in M1, the attenuation of MEP amplitude was correlated with an increase of TEP N100 from the left central area. A similar spatiotemporal neural signature of SAI in DLPFC was observed with a marked increase of N100 amplitude. SAI in DLPFC was maximal at ISI N20 + 4 ms at the left frontal area. These findings establish the neural signature of SAI in DLPFC. Future studies could explore whether DLPFC-SAI is neurophysiological marker of cholinergic dysfunction in cognitive disorders.

  6. The Largest Response Component in the Motor Cortex Reflects Movement Timing but Not Movement Type

    PubMed Central

    Sussillo, David; Ryu, Stephen I.

    2016-01-01

    Abstract Neural activity in monkey motor cortex (M1) and dorsal premotor cortex (PMd) can reflect a chosen movement well before that movement begins. The pattern of neural activity then changes profoundly just before movement onset. We considered the prediction, derived from formal considerations, that the transition from preparation to movement might be accompanied by a large overall change in the neural state that reflects when movement is made rather than which movement is made. Specifically, we examined “components” of the population response: time-varying patterns of activity from which each neuron’s response is approximately composed. Amid the response complexity of individual M1 and PMd neurons, we identified robust response components that were “condition-invariant”: their magnitude and time course were nearly identical regardless of reach direction or path. These condition-invariant response components occupied dimensions orthogonal to those occupied by the “tuned” response components. The largest condition-invariant component was much larger than any of the tuned components; i.e., it explained more of the structure in individual-neuron responses. This condition-invariant response component underwent a rapid change before movement onset. The timing of that change predicted most of the trial-by-trial variance in reaction time. Thus, although individual M1 and PMd neurons essentially always reflected which movement was made, the largest component of the population response reflected movement timing rather than movement type. PMID:27761519

  7. Altered Modulation of Silent Period in Tongue Motor Cortex of Persistent Developmental Stuttering in Relation to Stuttering Severity

    PubMed Central

    Busan, Pierpaolo; Del Ben, Giovanni; Bernardini, Simona; Natarelli, Giulia; Bencich, Marco; Monti, Fabrizio; Manganotti, Paolo; Battaglini, Piero Paolo

    2016-01-01

    Motor balance in developmental stuttering (DS) was investigated with Transcranial Magnetic Stimulation (TMS), with the aim to define novel neural markers of persistent DS in adulthood. Eleven DS adult males were evaluated with TMS on tongue primary motor cortex, compared to 15 matched fluent speakers, in a “state” condition (i.e. stutterers vs. fluent speakers, no overt stuttering). Motor and silent period thresholds (SPT), recruitment curves, and silent period durations were acquired by recording tongue motor evoked potentials. Tongue silent period duration was increased in DS, especially in the left hemisphere (P<0.05; Hedge’s g or Cohen’s dunbiased = 1.054, i.e. large effect size), suggesting a “state” condition of higher intracortical inhibition in left motor cortex networks. Differences in motor thresholds (different excitatory/inhibitory ratios in DS) were evident, as well as significant differences in SPT. In fluent speakers, the left hemisphere may be marginally more excitable than the right one in motor thresholds at lower muscular activation, while active motor thresholds and SPT were higher in the left hemisphere of DS with respect to the right one, resulting also in a positive correlation with stuttering severity. Pre-TMS electromyography data gave overlapping evidence. Findings suggest the existence of a complex intracortical balance in DS tongue primary motor cortex, with a particular interplay between excitatory and inhibitory mechanisms, also in neural substrates related to silent periods. Findings are discussed with respect to functional and structural impairments in stuttering, and are also proposed as novel neural markers of a stuttering “state” in persistent DS, helping to define more focused treatments (e.g. neuro-modulation). PMID:27711148

  8. Differential modulation of motor cortex excitability in BDNF Met allele carriers following experimentally induced and use-dependent plasticity.

    PubMed

    Cirillo, John; Hughes, James; Ridding, Michael; Thomas, Paul Q; Semmler, John G

    2012-09-01

    The purpose of this study was to investigate how healthy young subjects with one of three variants of the brain-derived neurotrophic factor (BDNF) gene modulate motor cortex excitability following experimentally induced and use-dependent plasticity interventions. Electromyographic recordings were obtained from the right first dorsal interosseous (FDI) muscle of 12 Val/Val, ten Val/Met and seven Met/Met genotypes (aged 18-39 years). Transcranial magnetic stimulation of the left hemisphere was used to assess changes in FDI motor-evoked potentials (MEPs) following three separate interventions involving paired associative stimulation, a simple ballistic task and complex visuomotor tracking task using the index finger. Val/Val subjects increased FDI MEPs following all interventions (≥ 25%, P < 0.01), whereas the Met allele carriers only showed increased MEPs after the simple motor task (≥ 26%, P < 0.01). In contrast to the simple motor task, there was no significant change in MEPs for the Val/Met subjects (7%, P = 0.50) and a reduction in MEPs for the Met/Met group (-38%, P < 0.01) following the complex motor task. Despite these differences in use-dependent plasticity, the performance of both motor tasks was not different between BDNF genotypes. We conclude that modulation of motor cortex excitability is strongly influenced by the BDNF polymorphism, with the greatest differences observed for the complex motor task. We also found unique motor cortex plasticity in the rarest form of the BDNF polymorphism (Met/Met subjects), which may have implications for functional recovery after disease or injury to the nervous system in these individuals. PMID:22694150

  9. The Contribution of Primary Motor Cortex Is Essential for Probabilistic Implicit Sequence Learning: Evidence from Theta Burst Magnetic Stimulation

    ERIC Educational Resources Information Center

    Wilkinson, Leonora; Teo, James T.; Obeso, Ignacio; Rothwell, John C.; Jahanshahi, Marjan

    2010-01-01

    Theta burst transcranial magnetic stimulation (TBS) is considered to produce plastic changes in human motor cortex. Here, we examined the inhibitory and excitatory effects of TBS on implicit sequence learning using a probabilistic serial reaction time paradigm. We investigated the involvement of several cortical regions associated with implicit…

  10. The Co-Emergence of Cognition, Language, and Speech Motor Control in Early Development: A Longitudinal Correlation Study

    ERIC Educational Resources Information Center

    Nip, Ignatius S. B.; Green, Jordan R.; Marx, David B.

    2011-01-01

    Although the development of spoken language is dependent on the emergence of cognitive, language, and speech motor skills, knowledge about how these domains interact during the early stages of communication development is currently limited. This exploratory investigation examines the strength of associations between longitudinal changes in…

  11. The Effects of Home-Based Literacy Activities on the Communication of Students with Severe Speech and Motor Impairments

    ERIC Educational Resources Information Center

    Cox, Amy Swartz; Clark, Denise M.; Skoning, Stacey N.; Wegner, Theresa M.; Muwana, Florence C.

    2015-01-01

    This study examined the effects of using sensory, augmentative, and alternative communication (AAC), and supportive communication strategies on the rate and type of communication used by three students with severe speech and motor impairments (SSMI). Using a multiple baseline across behaviour design with sensory and AAC intervention phases,…

  12. Costs of control: decreased motor cortex engagement during a Go/NoGo task in Tourette's syndrome.

    PubMed

    Thomalla, Götz; Jonas, Melanie; Bäumer, Tobias; Siebner, Hartwig R; Biermann-Ruben, Katja; Ganos, Christos; Orth, Michael; Hummel, Friedhelm C; Gerloff, Christian; Müller-Vahl, Kirsten; Schnitzler, Alfons; Münchau, Alexander

    2014-01-01

    Gilles de la Tourette syndrome is a neuropsychiatric disorder characterized by an impaired ability to inhibit unwanted behaviour. Although the presence of chronic motor and vocal tics defines Tourette's syndrome, other distinctive behavioural features like echo- and coprophenomena, and non-obscene socially inappropriate behaviour are also core features. We investigated neuronal activation during stimulus-driven execution and inhibition of prepared movements in Tourette's syndrome. To this end, we performed event-related functional magnetic resonance imaging and structural diffusion tensor imaging in 15 moderately affected uncomplicated patients with 'pure' Tourette's syndrome and 15 healthy control participants matched for age and gender. Subjects underwent functional magnetic resonance imaging during a Go/NoGo reaction time task. They had to withhold a prepared finger movement for a variable time until a stimulus instructed them to either execute (Go) or inhibit it (NoGo). Tics were monitored throughout the experiments, combining surface electromyogram, video recording, and clinical assessment in the scanner. Patients with Tourette's syndrome had longer reaction times than healthy controls in Go trials and made more errors in total. Their functional brain activation was decreased in left primary motor cortex and secondary motor areas during movement execution (Go trials) but not during response inhibition (NoGo trials) compared with healthy control subjects. Volume of interest analysis demonstrated less task-related activation in patients with Tourette's syndrome in primary and secondary motor cortex bilaterally, but not in the basal ganglia and cortical non-motor areas. They showed reduced co-activation between the left primary sensory-motor hand area and a network of contralateral sensory-motor areas and ipsilateral cerebellar regions. There were no between-group differences in structural connectivity of the left primary sensory-motor cortex as measured by

  13. Reduced functional connectivity within the primary motor cortex of patients with brachial plexus injury.

    PubMed

    Fraiman, D; Miranda, M F; Erthal, F; Buur, P F; Elschot, M; Souza, L; Rombouts, S A R B; Schimmelpenninck, C A; Norris, D G; Malessy, M J A; Galves, A; Vargas, C D

    2016-01-01

    This study aims at the effects of traumatic brachial plexus lesion with root avulsions (BPA) upon the organization of the primary motor cortex (M1). Nine right-handed patients with a right BPA in whom an intercostal to musculocutaneous (ICN-MC) nerve transfer was performed had post-operative resting state fMRI scanning. The analysis of empirical functional correlations between neighboring voxels revealed faster correlation decay as a function of distance in the M1 region corresponding to the arm in BPA patients as compared to the control group. No differences between the two groups were found in the face area. We also investigated whether such larger decay in patients could be attributed to a gray matter diminution in M1. Structural imaging analysis showed no difference in gray matter density between groups. Our findings suggest that the faster decay in neighboring functional correlations without significant gray matter diminution in BPA patients could be related to a reduced activity in intrinsic horizontal connections in M1 responsible for upper limb motor synergies. PMID:27547727

  14. Motor cortex single-neuron and population contributions to compensation for multiple dynamic force fields.

    PubMed

    Addou, Touria; Krouchev, Nedialko I; Kalaska, John F

    2015-01-15

    To elucidate how primary motor cortex (M1) neurons contribute to the performance of a broad range of different and even incompatible motor skills, we trained two monkeys to perform single-degree-of-freedom elbow flexion/extension movements that could be perturbed by a variety of externally generated force fields. Fields were presented in a pseudorandom sequence of trial blocks. Different computer monitor background colors signaled the nature of the force field throughout each block. There were five different force fields: null field without perturbing torque, assistive and resistive viscous fields proportional to velocity, a resistive elastic force field proportional to position and a resistive viscoelastic field that was the linear combination of the resistive viscous and elastic force fields. After the monkeys were extensively trained in the five field conditions, neural recordings were subsequently made in M1 contralateral to the trained arm. Many caudal M1 neurons altered their activity systematically across most or all of the force fields in a manner that was appropriate to contribute to the compensation for each of the fields. The net activity of the entire sample population likewise provided a predictive signal about the differences in the time course of the external forces encountered during the movements across all force conditions. The neurons showed a broad range of sensitivities to the different fields, and there was little evidence of a modular structure by which subsets of M1 neurons were preferentially activated during movements in specific fields or combinations of fields.

  15. Fast and Slow Oscillations in Human Primary Motor Cortex Predict Oncoming Behaviorally Relevant Cues

    PubMed Central

    Saleh, Maryam; Reimer, Jacob; Penn, Richard; Ojakangas, Catherine L.; Hatsopoulos, Nicholas G.

    2011-01-01

    SUMMARY Beta oscillations (12-30Hz) in local field potentials are prevalent in the motor system, yet their functional role within the context of planning a movement is still debated. In this study, a human participant implanted with a multi-electrode array in the hand area of primary motor cortex (MI) was instructed to plan a movement using either the second or fourth of five sequentially presented instruction cues. The beta amplitude increased from the start of the trial until the informative (second or fourth) cue, and was diminished afterwards. Moreover, the beta amplitude peaked just prior to each instruction cue and the delta frequency (0.5-1.5Hz) entrained to the interval between the cues - but only until the informative cue. This result suggests that the beta amplitude and delta phase in MI reflect the subject’s engagement with the rhythmically-presented cues and work together to enhance sensitivity to predictable and task-relevant visual cues. PMID:20188651

  16. Voltage-sensitive dye imaging of primary motor cortex activity produced by ventral tegmental area stimulation.

    PubMed

    Kunori, Nobuo; Kajiwara, Riichi; Takashima, Ichiro

    2014-06-25

    The primary motor cortex (M1) receives dopaminergic projections from the ventral tegmental area (VTA) through the mesocortical dopamine pathway. However, few studies have focused on changes in M1 neuronal activity caused by VTA activation. To address this issue, we used voltage-sensitive dye imaging (VSD) to reveal the spatiotemporal dynamics of M1 activity induced by single-pulse stimulation of VTA in anesthetized rats. VSD imaging showed that brief electrical stimulation of unilateral VTA elicited a short-latency excitatory-inhibitory sequence of neuronal activity not only in the ipsilateral but also in the contralateral M1. The contralateral M1 response was not affected by pharmacological blockade of ipsilateral M1 activity, but it was completely abolished by corpus callosum transection. Although the VTA-evoked neuronal activity extended throughout the entire M1, we found the most prominent activity in the forelimb area of M1. The 6-OHDA-lesioned VTA failed to evoke M1 activity. Furthermore, both excitatory and inhibitory intact VTA-induced activity was entirely extinguished by blocking glutamate receptors in the target M1. When intracortical microstimulation of M1 was paired with VTA stimulation, the evoked forelimb muscle activity was facilitated or inhibited, depending on the interval between the two stimuli. These findings suggest that VTA neurons directly modulate the excitability of M1 neurons via fast glutamate signaling and, consequently, may control the last cortical stage of motor command processing. PMID:24966388

  17. Low-frequency repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex.

    PubMed

    Di Lazzaro, V; Pilato, F; Dileone, M; Profice, P; Oliviero, A; Mazzone, P; Insola, A; Ranieri, F; Tonali, P A; Rothwell, J C

    2008-09-15

    Previous studies have shown that low-frequency repetitive transcranial magnetic stimulation (rTMS) suppresses motor-evoked potentials (MEPs) evoked by single pulse TMS. The aim of the present paper was to investigate the central nervous system level at which rTMS produces a suppression of MEP amplitude. We recorded corticospinal volleys evoked by single pulse TMS of the motor cortex before and after 1 Hz rTMS in five conscious subjects who had an electrode implanted in the cervical epidural space for the control of pain. One of the patients had Parkinson's disease and was studied on medication. Repetitive TMS significantly suppressed the amplitude of later I-waves, and reduced the amplitude of concomitantly recorded MEPs. The earliest I-wave was not significantly modified by rTMS. The present results show that 1 Hz rTMS may decrease the amplitude of later descending waves, consistent with a cortical origin of the effect of 1 Hz rTMS on MEPs. PMID:18653655

  18. Reduced functional connectivity within the primary motor cortex of patients with brachial plexus injury.

    PubMed

    Fraiman, D; Miranda, M F; Erthal, F; Buur, P F; Elschot, M; Souza, L; Rombouts, S A R B; Schimmelpenninck, C A; Norris, D G; Malessy, M J A; Galves, A; Vargas, C D

    2016-01-01

    This study aims at the effects of traumatic brachial plexus lesion with root avulsions (BPA) upon the organization of the primary motor cortex (M1). Nine right-handed patients with a right BPA in whom an intercostal to musculocutaneous (ICN-MC) nerve transfer was performed had post-operative resting state fMRI scanning. The analysis of empirical functional correlations between neighboring voxels revealed faster correlation decay as a function of distance in the M1 region corresponding to the arm in BPA patients as compared to the control group. No differences between the two groups were found in the face area. We also investigated whether such larger decay in patients could be attributed to a gray matter diminution in M1. Structural imaging analysis showed no difference in gray matter density between groups. Our findings suggest that the faster decay in neighboring functional correlations without significant gray matter diminution in BPA patients could be related to a reduced activity in intrinsic horizontal connections in M1 responsible for upper limb motor synergies.

  19. Vacillation, indecision and hesitation in moment-by-moment decoding of monkey motor cortex

    PubMed Central

    Kaufman, Matthew T; Churchland, Mark M; Ryu, Stephen I; Shenoy, Krishna V

    2015-01-01

    When choosing actions, we can act decisively, vacillate, or suffer momentary indecision. Studying how individual decisions unfold requires moment-by-moment readouts of brain state. Here we provide such a view from dorsal premotor and primary motor cortex. Two monkeys performed a novel decision task while we recorded from many neurons simultaneously. We found that a decoder trained using ‘forced choices’ (one target viable) was highly reliable when applied to ‘free choices’. However, during free choices internal events formed three categories. Typically, neural activity was consistent with rapid, unwavering choices. Sometimes, though, we observed presumed ‘changes of mind’: the neural state initially reflected one choice before changing to reflect the final choice. Finally, we observed momentary ‘indecision’: delay forming any clear motor plan. Further, moments of neural indecision accompanied moments of behavioral indecision. Together, these results reveal the rich and diverse set of internal events long suspected to occur during free choice. DOI: http://dx.doi.org/10.7554/eLife.04677.001 PMID:25942352

  20. Audiovisual speech integration does not rely on the motor system: evidence from articulatory suppression, the McGurk effect, and fMRI.

    PubMed

    Matchin, William; Groulx, Kier; Hickok, Gregory

    2014-03-01

    Visual speech influences the perception of heard speech. A classic example of this is the McGurk effect, whereby an auditory /pa/ overlaid onto a visual /ka/ induces the fusion percept of /ta/. Recent behavioral and neuroimaging research has highlighted the importance of both articulatory representations and motor speech regions of the brain, particularly Broca's area, in audiovisual (AV) speech integration. Alternatively, AV speech integration may be accomplished by the sensory system through multisensory integration in the posterior STS. We assessed the claims regarding the involvement of the motor system in AV integration in two experiments: (i) examining the effect of articulatory suppression on the McGurk effect and (ii) determining if motor speech regions show an AV integration profile. The hypothesis regarding experiment (i) is that if the motor system plays a role in McGurk fusion, distracting the motor system through articulatory suppression should result in a reduction of McGurk fusion. The results of experiment (i) showed that articulatory suppression results in no such reduction, suggesting that the motor system is not responsible for the McGurk effect. The hypothesis of experiment (ii) was that if the brain activation to AV speech in motor regions (such as Broca's area) reflects AV integration, the profile of activity should reflect AV integration: AV > AO (auditory only) and AV > VO (visual only). The results of experiment (ii) demonstrate that motor speech regions do not show this integration profile, whereas the posterior STS does. Instead, activity in motor regions is task dependent. The combined results suggest that AV speech integration does not rely on the motor system.

  1. Assistive technology and robotic control using motor cortex ensemble-based neural interface systems in humans with tetraplegia

    PubMed Central

    Donoghue, John P; Nurmikko, Arto; Black, Michael; Hochberg, Leigh R

    2007-01-01

    This review describes the rationale, early stage development, and initial human application of neural interface systems (NISs) for humans with paralysis. NISs are emerging medical devices designed to allow persons with paralysis to operate assistive technologies or to reanimate muscles based upon a command signal that is obtained directly from the brain. Such systems require the development of sensors to detect brain signals, decoders to transform neural activity signals into a useful command, and an interface for the user. We review initial pilot trial results of an NIS that is based on an intracortical microelectrode sensor that derives control signals from the motor cortex. We review recent findings showing, first, that neurons engaged by movement intentions persist in motor cortex years after injury or disease to the motor system, and second, that signals derived from motor cortex can be used by persons with paralysis to operate a range of devices. We suggest that, with further development, this form of NIS holds promise as a useful new neurotechnology for those with limited motor function or communication. We also discuss the additional potential for neural sensors to be used in the diagnosis and management of various neurological conditions and as a new way to learn about human brain function. PMID:17272345

  2. Rhythmic motor entrainment in children with speech and language impairments: tapping to the beat.

    PubMed

    Corriveau, Kathleen H; Goswami, Usha

    2009-01-01

    In prior work (Corriveau et al., 2007), we showed that children with speech and language impairments (SLI) were significantly less sensitive than controls to two auditory cues to rhythmic timing, amplitude envelope rise time and duration. Here we explore whether rhythmic problems extend to rhythmic motor entrainment. Tapping in synchrony with a beat has been described as the simplest rhythmic act that humans perform. We explored whether tapping to a beat would be impaired in children for whom auditory rhythmic timing is impaired. Children with SLI were indeed found to be impaired in a range of measures of paced rhythmic tapping, but were not equally impaired in tapping in an unpaced control condition requiring an internally-generated rhythm. The severity of impairment in paced tapping was linked to language and literacy outcomes. PMID:19046744

  3. Primary motor cortex activity reduction under the regulation of SMA by real-time fMRI

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Zhao, Xiaojie; Li, Yi; Yao, Li; Chen, Kewei

    2012-03-01

    Real-time fMRI (rtfMRI) is a new technology which allows human subjects to observe and control their own BOLD signal change from one or more localized brain regions during scanning. Current rtfMRI-neurofeedback studies mainly focused on the target region itself without considering other related regions influenced by the real-time feedback. However, there always exits important directional influence between many of cooperative regions. On the other hand, rtfMRI based on motor imagery mainly aimed at somatomotor cortex or primary motor area, whereas supplement motor area (SMA) was a relatively more integrated and pivotal region. In this study, we investigated whether the activities of SMA can be controlled utilizing different motor imagery strategies, and whether there exists any possible impact on an unregulated but related region, primary motor cortex (M1). SMA was first localized using overt finger tapping task, the activities of SMA were feedback to subjects visually on line during each of two subsequent imagery motor movement sessions. All thirteen healthy participants were found to be able to successfully control their SMA activities by self-fit imagery strategies which involved no actual motor movements. The activation of right M1 was also found to be significantly reduced in both intensity and extent with the neurofeedback process targeted at SMA, suggestive that not only the part of motor cortex activities were influenced under the regulation of a key region SMA, but also the increased difference between SMA and M1 might reflect the potential learning effect.

  4. Motor cortex involvement during choice reaction time: a transcranial magnetic stimulation study in man.

    PubMed

    Romaiguère, P; Possamaï, C A; Hasbroucq, T

    1997-05-01

    It has been shown that transcranial magnetic stimulation can delay simple reaction time; this happens when the stimulation is delivered during the reaction time and over the cortical area which commands the prime mover of the required response. Although it is agreed that magnetic stimulation could be a useful tool for studying information processing in man, we argue that, because of the use of simple reaction time, the results reported so far are difficult to interpret within this theoretical framework. In the present paper, three experiments are reported. Six subjects participated in experiment 1 in which magnetic stimulation was delivered, at different times, during choice reaction time. The effects of the magnetic stimulation of the cortical area involved in the response (induced current passing forward over the motor representation of the responding hand), were compared to the effects of an electrical stimulation of the median nerve (H-reflex). In a first control experiment (experiment 2a; 5 subjects), the coil was placed over the ipsilateral motor cortex (induced current passing backward over the motor representation of the non-responding hand) thus minimizing the probability to excite the same neural nets as in the first experiment. In a second control experiment (experiment 2b; 4 subjects), the coil was placed a few centimeters away from the subject's scalp thus ensuring no stimulation of any neural nets. The results show that: (1) the noise and the smarting of the skin associated with the coil discharge produce an intersensory facilitation thereby shortening reaction time (experiment 2a), (2) actually, the noise produced by the stimulation is sufficient to produce such a facilitatory effect (experiment 2b), (3) a stimulation over the area at the origin of the motor command causes a reaction time delay which counteracts this intersensory facilitation effect (experiment 1), (4) in this latter case, the closer the stimulation to the actual overt response, the

  5. Transcranial Direct Current Stimulation of the Motor Cortex Biases Action Choice in a Perceptual Decision Task.

    PubMed

    Javadi, Amir-Homayoun; Beyko, Angeliki; Walsh, Vincent; Kanai, Ryota

    2015-11-01

    One of the multiple interacting systems involved in the selection and execution of voluntary actions is the primary motor cortex (PMC). We aimed to investigate whether the transcranial direct current stimulation (tDCS) of this area can modulate hand choice. A perceptual decision-making task was administered. Participants were asked to classify rectangles with different height-to-width ratios into horizontal and vertical rectangles using their right and left index fingers while their PMC was stimulated either bilaterally or unilaterally. Two experiments were conducted with different stimulation conditions: the first experiment (n = 12) had only one stimulation condition (bilateral stimulation), and the second experiment (n = 45) had three stimulation conditions (bilateral, anodal unilateral, and cathodal unilateral stimulations). The second experiment was designed to confirm the results of the first experiment and to further investigate the effects of anodal and cathodal stimulations alone in the observed effects. Each participant took part in two sessions. The laterality of stimulation was reversed over the two sessions. Our results showed that anodal stimulation of the PMC biases participants' responses toward using the contralateral hand whereas cathodal stimulation biases responses toward the ipsilateral hand. Brain stimulation also modulated the RT of the left hand in all stimulation conditions: Responses were faster when the response bias was in favor of the left hand and slower when the response bias was against it. We propose two possible explanations for these findings: the perceptual bias account (bottom-up effects of stimulation on perception) and the motor-choice bias account (top-down modulation of the decision-making system by facilitation of response in one hand over the other). We conclude that motor responses and the choice of hand can be modulated using tDCS. PMID:26151605

  6. Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rat.

    PubMed

    Lang, Eric J; Sugihara, Izumi; Llinás, Rodolfo

    2006-02-15

    The vibrissal movements known as whisking are generated in a pulsatile, or non-continuous, fashion and comprise sequences of brief regularly spaced movements. These rhythmic timing sequences imply the existence of periodically issued motor commands. As inferior olivary (IO) neurones generate periodic synchronous discharges that could provide the underlying timing signal, this possibility was tested by determining whether the olivocerebellar system modulates motor cortex (MCtx)-triggered whisker movements in rats. Trains of current pulses were applied to MCtx, and the resulting whisker movements were recorded using a high speed video camera. The evoked movement patterns demonstrated properties consistent with the existence of an oscillatory motor driving rhythm. In particular, movement amplitude showed a bell-shaped dependence on stimulus frequency, with a peak at 11.5+/-2.3 Hz. Moreover, movement trajectories showed harmonic and subharmonic entrainment patterns within specific stimulus frequency ranges. By contrast, movements evoked by facial nerve stimulation showed no such frequency-dependent properties. To test whether the IO was the oscillator in question, IO neuronal properties were modified in vivo by intra-IO picrotoxin injection, which enhances synchronous oscillatory IO activity and reduces its natural frequency. The ensuing changes in the evoked whisker patterns were consistent with these pharmacological effects. Furthermore, in cerebellectomized rats, oscillatory modulation of MCtx-evoked movements was greatly reduced, and intra-IO picrotoxin injections did not affect the evoked movement patterns. Additionally, multielectrode recording of Purkinje cell complex spikes showed a temporal correlation of olivocerebellar activity during MCtx stimulus trains to evoked movement patterns. In sum, the results indicate that MCtx's ability to generate movements is modulated by an oscillatory signal arising in the olivocerebellar system. PMID:16357010

  7. Local field potentials in primate motor cortex encode grasp kinetic parameters

    PubMed Central

    Milekovic, Tomislav; Truccolo, Wilson; Grün, Sonja; Riehle, Alexa; Brochier, Thomas

    2015-01-01

    Reach and grasp kinematics are known to be encoded in the spiking activity of neuronal ensembles and in local field potentials (LFPs) recorded from primate motor cortex during movement planning and execution. However, little is known, especially in LFPs, about the encoding of kinetic parameters, such as forces exerted on the object during the same actions. We implanted two monkeys with microelectrode arrays in the motor cortical areas MI and PMd to investigate encoding of grasp-related parameters in motor cortical LFPs during planning and execution of reach-and-grasp movements. We identified three components of the LFP that modulated during grasps corresponding to low (0.3 - 7Hz), intermediate (∼10 - ∼40Hz) and high (∼80 - 250Hz) frequency bands. We show that all three components can be used to classify not only grip types but also object loads during planning and execution of a grasping movement. In addition, we demonstrate that all three components recorded during planning or execution can be used to continuously decode finger pressure forces and hand position related to the grasping movement. Low and high frequency components provide similar classification and d